Sample records for target x-ray tube

  1. Note: Development of target changeable palm-top pyroelectric x-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imashuku, Susumu; Kawai, Jun

    2012-01-15

    A target changeable palm-top size x-ray tube was realized using pyroelectric crystal and detachable vacuum flanges. The target metals can be exchanged easily by attaching them on the brass stage with carbon tape. When silver and titanium palates (area: 10 mm{sup 2}) were used as targets, silver L{alpha} and titanium K lines were clearly observed by bombarding electrons on the targets for 90 s. The intensities were the same or higher than those of previously reported pyroelectric x-ray tubes. Chromium, iron, nickel, copper, and zinc K lines in the x-ray tube (stainless steel and brass) disappeared by replacing the brassmore » stage and the stainless steel vacuum flange with a carbon stage and a glass tube, respectively.« less

  2. X-ray tube thermal management

    NASA Astrophysics Data System (ADS)

    Nadella, Naresh; Khounsary, Ali M.

    2015-09-01

    This paper presents a brief overview of the various stationary anode X-ray tube designs and the thermal management challenges of the anode target that limit the intensity of the generated X-ray beams. Several options to further increase X-ray beam intensity are discussed.

  3. Thermal analysis on x-ray tube for exhaust process

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Rao Ratnala, Srinivas; Veeresh Kumar, G. B.; Shivakumar Gouda, P. S.

    2018-02-01

    It is great importance in the use of X-rays for medical purposes that the dose given to both the patient and the operator is carefully controlled. There are many types of the X- ray tubes used for different applications based on their capacity and power supplied. In present thesis maxi ray 165 tube is analysed for thermal exhaust processes with ±5% accuracy. Exhaust process is usually done to remove all the air particles and to degasify the insert under high vacuum at 2e-05Torr. The tube glass is made up of Pyrex material, 95%Tungsten and 5%rhenium is used as target material for which the melting point temperature is 3350°C. Various materials are used for various parts; during the operation of X- ray tube these waste gases are released due to high temperature which in turn disturbs the flow of electrons. Thus, before using the X-ray tube for practical applications it has to undergo exhaust processes. Initially we build MX 165 model to carry out thermal analysis, and then we simulate the bearing temperature profiles with FE model to match with test results with ±5%accuracy. At last implement the critical protocols required for manufacturing processes like MF Heating, E-beam, Seasoning and FT.

  4. Control Scheme for Quickly Starting X-ray Tube

    NASA Astrophysics Data System (ADS)

    Nakahama, Masayuki; Nakanishi, Toshiki; Ishitobi, Manabu; Ito, Tuyoshi; Hosoda, Kenichi

    A control scheme for quickly starting a portable X-ray generator used in the livestock industry is proposed in this paper. A portable X-ray generator used to take X-ray images of animals such as horses, sheep and dogs should be capable of starting quickly because it is difficult for veterinarians to take X-ray images of animals at their timing. In order to develop a scheme for starting the X-ray tube quickly, it is necessary to analysis the X-ray tube. However, such an analysis has not been discussed until now. First, the states of an X-ray tube are classified into the temperature-limited state and the space-charge-limited state. Furthermore, existence of “mixed state” that comprises both is newly proposed in this paper. From these analyses, a novel scheme for quickly starting an X-ray generator is proposed; this scheme is considered with the characteristics of the X-ray tube. The proposed X-ray system that is capable of starting quickly is evaluated on the basis of experimental results.

  5. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  6. Building lab-scale x-ray tube based irradiators

    USDA-ARS?s Scientific Manuscript database

    The construction of economical x-ray tube based irradiators in a variety of configurations is described using 1000 Watt x-ray tubes. Single tube, double tube, and four tube designs are described, as well as various cabinet construction techniques. Relatively high dose rates were achieved for small s...

  7. 21 CFR 892.1760 - Diagnostic x-ray tube housing assembly.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray tube housing assembly. 892.1760... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1760 Diagnostic x-ray tube housing assembly. (a) Identification. A diagnostic x-ray tube housing assembly is an x-ray generating tube encased...

  8. 21 CFR 892.1760 - Diagnostic x-ray tube housing assembly.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray tube housing assembly. 892.1760... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1760 Diagnostic x-ray tube housing assembly. (a) Identification. A diagnostic x-ray tube housing assembly is an x-ray generating tube encased...

  9. 21 CFR 892.1760 - Diagnostic x-ray tube housing assembly.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray tube housing assembly. 892.1760... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1760 Diagnostic x-ray tube housing assembly. (a) Identification. A diagnostic x-ray tube housing assembly is an x-ray generating tube encased...

  10. 21 CFR 892.5930 - Therapeutic x-ray tube housing assembly.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Therapeutic x-ray tube housing assembly. 892.5930... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5930 Therapeutic x-ray tube housing assembly. (a) Identification. A therapeutic x-ray tube housing assembly is an x-ray generating tube encased...

  11. 21 CFR 892.5930 - Therapeutic x-ray tube housing assembly.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Therapeutic x-ray tube housing assembly. 892.5930... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5930 Therapeutic x-ray tube housing assembly. (a) Identification. A therapeutic x-ray tube housing assembly is an x-ray generating tube encased...

  12. 21 CFR 892.5930 - Therapeutic x-ray tube housing assembly.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Therapeutic x-ray tube housing assembly. 892.5930... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5930 Therapeutic x-ray tube housing assembly. (a) Identification. A therapeutic x-ray tube housing assembly is an x-ray generating tube encased...

  13. 21 CFR 892.5930 - Therapeutic x-ray tube housing assembly.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Therapeutic x-ray tube housing assembly. 892.5930... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5930 Therapeutic x-ray tube housing assembly. (a) Identification. A therapeutic x-ray tube housing assembly is an x-ray generating tube encased...

  14. 21 CFR 892.5930 - Therapeutic x-ray tube housing assembly.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Therapeutic x-ray tube housing assembly. 892.5930... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5930 Therapeutic x-ray tube housing assembly. (a) Identification. A therapeutic x-ray tube housing assembly is an x-ray generating tube encased...

  15. 21 CFR 892.1760 - Diagnostic x-ray tube housing assembly.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray tube housing assembly. 892.1760... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1760 Diagnostic x-ray tube housing assembly. (a) Identification. A diagnostic x-ray tube housing assembly is an x-ray generating tube encased...

  16. 21 CFR 892.1760 - Diagnostic x-ray tube housing assembly.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray tube housing assembly. 892.1760... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1760 Diagnostic x-ray tube housing assembly. (a) Identification. A diagnostic x-ray tube housing assembly is an x-ray generating tube encased...

  17. 21 CFR 892.1770 - Diagnostic x-ray tube mount.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray tube mount. 892.1770 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1770 Diagnostic x-ray tube mount. (a) Identification. A diagnostic x-ray tube mount is a device intended to support and to position the diagnostic x...

  18. 21 CFR 892.1770 - Diagnostic x-ray tube mount.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray tube mount. 892.1770 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1770 Diagnostic x-ray tube mount. (a) Identification. A diagnostic x-ray tube mount is a device intended to support and to position the diagnostic x...

  19. 21 CFR 892.1770 - Diagnostic x-ray tube mount.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray tube mount. 892.1770 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1770 Diagnostic x-ray tube mount. (a) Identification. A diagnostic x-ray tube mount is a device intended to support and to position the diagnostic x...

  20. 21 CFR 892.1770 - Diagnostic x-ray tube mount.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray tube mount. 892.1770 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1770 Diagnostic x-ray tube mount. (a) Identification. A diagnostic x-ray tube mount is a device intended to support and to position the diagnostic x...

  1. 21 CFR 892.1770 - Diagnostic x-ray tube mount.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray tube mount. 892.1770 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1770 Diagnostic x-ray tube mount. (a) Identification. A diagnostic x-ray tube mount is a device intended to support and to position the diagnostic x...

  2. X-ray tube with magnetic electron steering

    DOEpatents

    Reed, Kim W.; Turman, Bobby N.; Kaye, Ronald J.; Schneider, Larry X.

    2000-01-01

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.

  3. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  4. Generation of flash x-rays using a mercury-anode radiation tube

    NASA Astrophysics Data System (ADS)

    Oizumi, Teiji; Sato, Eiichi; Sagae, Michiaki; Hayasi, Yasuomi; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1993-02-01

    The constructions and the radiographic characteristics of a flash x-ray generator having a liquid-anode radiation tube are described. This generator consisted of the following essential components: a high-voltage power supply, a combined ceramic condenser of 10.7 nF, an oil- diffusion pump, an oil circulator, a trigger device, and a flash x-ray tube. The x-ray tube was of a triode and was composed of the following major devices: a mercury anode, a rod-shaped graphite cathode, a trigger electrode made from a copper wire, an x-ray window made from a polyethyleneterephthalate film, and a glass tube body. The ceramic condenser was charged from 40 to 60 kV by a power supply, and the electric charges in the condenser were discharged to the x-ray tube after the triggering. The maximum tube voltage was equivalent to the initial charged voltage of the condenser, and the tube current was less than 0.7 kA. The pulse widths of the flash x rays had values of about 1 microsecond(s) , and the time-integrated x-ray intensity was about 2.4 (mu) C/kg at 0.26 m per pulse with a charged voltage of 60 kV.

  5. Modeling and experimental investigation of x-ray spectra from a liquid metal anode x-ray tube

    NASA Astrophysics Data System (ADS)

    David, Bernd R.; Thran, Axel; Eckart, Rainer

    2004-11-01

    This paper presents simulated and measured spectra of a novel type of x-ray tube. The bremsstrahlung generating principle of this tube is based on the interaction of high energetic electrons with a turbulently flowing liquid metal separated from the vacuum by a thin window. We simulated the interaction of 50-150 keV electrons with liquid metal targets composed of the elements Ga, In, Sn, as well as the solid elements C, W and Re used for the electron windows. We obtained x-ray spectra and energy loss curves for various liquid metal/window combinations and thicknesses of the window material. In terms of optimum heat transport a thin diamond window in combination with the liquid metal GaInSn is the best suited system. If photon flux is the optimization criteria, thin tungsten/rhenium windows cooled by GaInSn should be preferred.

  6. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters

    NASA Astrophysics Data System (ADS)

    Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2012-05-01

    A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min-1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution.

  7. Alignment of x-ray tube focal spots for spectral measurement.

    PubMed

    Nishizawa, K; Maekoshi, H; Kamiya, Y; Kobayashi, Y; Ohara, K; Sakuma, S

    1982-01-01

    A general method to align a diagnostic x-ray machine for x-ray spectrum measurement purpose was theoretically and experimentally investigated by means of the optical alignment of focal pinhole images. Focal pinhole images were obtained by using a multi-pinholed lead plate. the vertical plane, including the central axis and tube axis, was decided upon by observing the symmetry of focal images. the central axis was designated as a line through the center of focus parallel to the target surface lying in the vertical plane. A method to determine the manipulation of the central axis in any direction is presented.

  8. X-ray tube voltage and image quality in adult and pediatric CT

    NASA Astrophysics Data System (ADS)

    Huda, W.; Ogden, K. M.; Scalzetti, E. M.; Lavallee, R. L.; Samei, E.

    2006-03-01

    The purpose of this study was to investigate how tissue x-ray attenuation coefficients, and their uncertainties, vary with x-ray tube voltage in different sized patients. Anthropomorphic phantoms (newborn, 10 year old, adult) were scanned a GE LightSpeed scanner at four x-ray tube voltages. Measurements were made of tissue attenuation in the head, chest and abdomen regions, as well as the corresponding noise values. Tissue signal to noise ratios (SNR) were obtained by dividing the average attenuation coefficient by the corresponding standard deviation. Soft tissue attenuation coefficients, relative to water, showed little variation with patient location or x-ray voltage (< 0.5%), but increasing the x-ray tube voltage from 80 to 140 kV reduced bone x-ray attenuation by ~14%. All tissues except adult bone showed a reduction of noise with increasing x-ray tube voltage (kV); the noise was found to be proportional to kV n and the average value of n for all tissues was -1.19 +/- 0.57. In pediatric patients at a constant x-ray tube voltage, SNR values were approximately independent of the body region, but the adult abdomen soft tissue SNR values were ~40% lower than the adult head. SNR values in the newborn were more than double the corresponding SNR soft tissue values in adults. SNR values for lung and bone were generally lower than those for soft tissues. For soft tissues, increasing the x-ray tube voltage from 80 to 140 kV increased the SNR by an average of ~90%. Data in this paper can be used to help design CT imaging protocols that take into account patient size and diagnostic imaging task.

  9. The Noninvasive Measurement of X-Ray Tube Potential.

    NASA Astrophysics Data System (ADS)

    Ranallo, Frank Nunzio

    In this thesis I briefly describe the design of clinical x-ray imaging systems and also the various methods of measuring x-ray tube potential, both invasive and noninvasive. I also discuss the meaning and usage of the quantities tube potential (kV) and peak tube potential (kVp) with reference to x-ray systems used in medical imaging. I propose that there exist several quantities which describe different important aspects of the tube potential as a function of time. These quantities are measurable and can be well defined. I have developed a list of definitions of these quantities along with suggested names and symbols. I describe the development and physical principles of a superior noninvasive method of tube potential measurement along with the instrumentation used to implement this method. This thesis research resulted in the development of several commercial kVp test devices (or "kVp Meters") for which the actual measurement procedure is simple, rapid, and reliable compared to other methods, invasive or noninvasive. These kVp test devices provide measurements with a high level of accuracy and reliability over a wide range of test conditions. They provide results which are more reliable and clinically meaningful than many other, more primary and invasive methods. The errors inherent in these new kVp test devices were investigated and methods to minimize them are discussed.

  10. Calculation of x-ray spectra emerging from an x-ray tube. Part I. electron penetration characteristics in x-ray targets.

    PubMed

    Poludniowski, Gavin G; Evans, Philip M

    2007-06-01

    The penetration characteristics of electron beams into x-ray targets are investigated for incident electron kinetic energies in the range 50-150 keV. The frequency densities of electrons penetrating to a depth x in a target, with a fraction of initial kinetic energy, u, are calculated using Monte Carlo methods for beam energies of 50, 80, 100, 120 and 150 keV in a tungsten target. The frequency densities for 100 keV electrons in Al, Mo and Re targets are also calculated. A mixture of simple modeling with equations and interpolation from data is used to generalize the calculations in tungsten. Where possible, parameters derived from the Monte Carlo data are compared to experimental measurements. Previous electron transport approximations in the semiempirical models of other authors are discussed and related to this work. In particular, the crudity of the use of the Thomson-Whiddington law to describe electron penetration and energy loss is highlighted. The results presented here may be used towards calculating the target self-attenuation correction for bremsstrahlung photons emitted within a tungsten target.

  11. Half-value-layer increase owing to tungsten buildup in the x-ray tube: fact or fiction.

    PubMed

    Stears, J G; Felmlee, J P; Gray, J E

    1986-09-01

    The half-value layer (HVL) of an x-ray beam is generally believed to increase with x-ray tube use. This increase in HVL has previously been attributed to the hardening of the x-ray beam as a result of a buildup of tungsten on the x-ray tube glass window. Radiographs and HVL measurements were obtained to determine the effect of tungsten deposited on the x-ray tube windows. This work, along with the HVL data from approximately 200 functioning x-ray tubes used for all applications that were monitored for more than 8 years, indicated there is no significant increase in HVL with diagnostic x-ray tube use.

  12. First demonstration of iodine mapping in nonliving phantoms using an X-ray fluorescence computed tomography system with a cadmium telluride detector and a tungsten-target tube

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuichi; Ehara, Shigeru; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-05-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects, and XRF is emitted by absorbing X-ray photons with energies beyond the K-edge energy of the target atom. Narrow-energy-width bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter. These rays are absorbed by iodine media in objects, and iodine XRF is produced from the iodine atoms. Next, iodine Kα photons are discriminated by a multichannel analyzer and the number of photons is counted by a counter card. CT is performed by repeated linear scans and rotations of an object. The X-ray generator has a 100 μm focus tube with a 0.5-mm-thick beryllium window, and the tube voltage and the current for XRF were 80 kV and 0.50 mA, respectively. The demonstration of XRF-CT for mapping iodine atoms was carried out by selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  13. Using computational modeling to compare X-ray tube Practical Peak Voltage for Dental Radiology

    NASA Astrophysics Data System (ADS)

    Holanda Cassiano, Deisemar; Arruda Correa, Samanda Cristine; de Souza, Edmilson Monteiro; da Silva, Ademir Xaxier; Pereira Peixoto, José Guilherme; Tadeu Lopes, Ricardo

    2014-02-01

    The Practical Peak Voltage-PPV has been adopted to measure the voltage applied to an X-ray tube. The PPV was recommended by the IEC document and accepted and published in the TRS no. 457 code of practice. The PPV is defined and applied to all forms of waves and is related to the spectral distribution of X-rays and to the properties of the image. The calibration of X-rays tubes was performed using the MCNPX Monte Carlo code. An X-ray tube for Dental Radiology (operated from a single phase power supply) and an X-ray tube used as a reference (supplied from a constant potential power supply) were used in simulations across the energy range of interest of 40 kV to 100 kV. Results obtained indicated a linear relationship between the tubes involved.

  14. Bismuth@US-tubes as a Potential Contrast Agent for X-ray Imaging Applications

    PubMed Central

    Rivera, Eladio J.; Tran, Lesa A.; Hernández-Rivera, Mayra; Yoon, Diana; Mikos, Antonios G.; Rusakova, Irene A.; Cheong, Benjamin Y.; Cabreira-Hansen, Maria da Graça; Willerson, James T.; Perin, Emerson C.; Wilson, Lon J.

    2013-01-01

    The encapsulation of bismuth as BiOCl/Bi2O3 within ultra-short (ca. 50 nm) single-walled carbon nanocapsules (US-tubes) has been achieved. The Bi@US-tubes have been characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Bi@US-tubes have been used for intracellular labeling of pig bone marrow-derived mesenchymal stem cells (MSCs) to show high X-ray contrast in computed tomography (CT) cellular imaging for the first time. The relatively high contrast is achieved with low bismuth loading (2.66% by weight) within the US-tubes and without compromising cell viability. X-ray CT imaging of Bi@US-tubes-labeled MSCs showed a nearly two-fold increase in contrast enhancement when compared to unlabeled MSCs in a 100 kV CT clinical scanner. The CT signal enhancement from the Bi@US-tubes is 500 times greater than polymer-coated Bi2S3 nanoparticles and several-fold that of any clinical iodinated contrast agent (CA) at the same concentration. Our findings suggest that the Bi@US-tubes can be used as a potential new class of X-ray CT agent for stem cell labeling and possibly in vivo tracking. PMID:24288589

  15. WE-H-204-01: William D. Coolidge, Inventor of the Modern X-Ray Tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard, D.

    “William D. Coolidge, Inventor of the Modern X-ray Tube” David J. Allard, M.S., CHP - Director, PA DEP Bureau of Radiation Protection William David Coolidge 1873–1975 was a research scientist and inventor of the modern X-ray tube. Besides Roentgen, with his 1895 discovery and subsequent studies of X-rays, perhaps no other individual contributed more to the advancement of X-ray technology than did Coolidge. He was born in Hudson, MA and received his Bachelor of Science degree from MIT in 1896. That same year he went to Europe to study under renowned physicists of the time. Coolidge received his Ph.D. summamore » cum laude from the University of Leipzig in 1899 and soon after joined the staff of MIT. While studying at Leipzig, he met Roentgen. In 1905 he was asked to join the newly established General Electric Research Laboratory in Schenectady, NY. He promptly began fundamental work on the production of ductile tungsten filaments as a replacement for fragile carbon filaments used in incandescent light bulbs. This improved light bulb was brought to market by GE in 1911. It was subsequent application of his tungsten work that led Coolidge to his studies in X ray production. Circa 1910, the state-of-the-art X-ray tube was a “gas tube” or “cold cathode” type tube. These crude X-ray tubes relied on residual gas molecules as a source of electrons for bombardment of low to medium atomic number metal targets. In 1912 Coolidge described the use of tungsten as an improved anode target material for X-ray tubes. Shortly after in 1913 he published a paper in Physical Review describing “A Powerful Roentgen Ray Tube With a Pure Electron Discharge.” This tube used a tungsten filament as a thermionic source of electrons under high vacuum to bombard a tungsten anode target. Great improvements in X-ray tube stability, output and performance were obtained with the “hot cathode” or “Coolidge tube.” With some variation in filament and target geometry, this 100

  16. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. Behavior of characteristic X-rays from a partial-transmission-type X-ray target.

    PubMed

    Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2013-10-01

    The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  19. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Y., E-mail: yves.kayser@psi.ch; Paul Scherrer Institut, 5232 Villigen-PSI; Błachucki, W.

    2014-04-15

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-raymore » tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.« less

  20. [Characteristics of specifications of transportable inverter-type X-ray equipment].

    PubMed

    Yamamoto, Keiichi; Miyazaki, Shigeru; Asano, Hiroshi; Shinohara, Fuminori; Ishikawa, Mitsuo; Ide, Toshinori; Abe, Shinji; Negishi, Toru; Miyake, Hiroyuki; Imai, Yoshio; Okuaki, Tomoyuki

    2003-07-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met JIS standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendency to decrease when X-ray tube voltage increased. Although the X-ray output reproducibility of system A exceeded the JIS standard, the other systems were within the JIS standard. Equipment A required 40 ms for X-ray tube current to reach the target value, and there was some X-ray output loss because of a trough in X-ray tube current. Owing to the influence of the ripple in X-ray tube current, the strength of the fluorescence waveform rippled in equipments B and C. Waveform analysis could not be done by aliasing of the recording device in equipment D. The maximum X-ray tube current of transportable inverter-type X-ray equipment is as low as 10-20 mA, and the irradiation time of chest X-ray photography exceeds 0.1 sec. However, improvement of the radiophotographic technique is required for patients who cannot move their bodies or halt respiration. It is necessary to make the irradiation time of the equipments shorter for remote medical treatment.

  1. Cooling for a rotating anode X-ray tube

    DOEpatents

    Smither, Robert K.

    1998-01-01

    A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

  2. Iodine X-ray fluorescence computed tomography system utilizing a cadmium telluride detector in conjunction with a cerium-target tube

    NASA Astrophysics Data System (ADS)

    Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-06-01

    An X-ray fluorescence computed tomography system (XRF-CT) is useful for determining the main atoms in objects. To detect iodine atoms without using a synchrotron, we developed an XRF-CT system utilizing a cadmium telluride (CdTe) detector and a cerium X-ray generator. CT is performed by repeated linear scans and rotations of an object. When cerium K-series characteristic X-rays are absorbed by iodine atoms in objects, iodine K fluorescence is produced from atoms and is detected by the CdTe detector. Next, event signals of X-ray photons are produced with the use of charge-sensitive and shaping amplifiers. Iodine Kα fluorescence is isolated using a multichannel analyzer, and the number of photons is counted using a counter card. In energy-dispersive XRF-CT, the tube voltage and tube current were 70 kV and 0.40 mA, respectively, and the X-ray intensity was 115.3 μGy/s at a distance of 1.0 m from the source. The demonstration of XRF-CT was carried out by the selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  3. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone.

    PubMed

    Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling

    2017-03-01

    K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g -1 bone mineral using a cadmium zinc telluride detector. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.

  4. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone

    PubMed Central

    Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling

    2017-01-01

    Objective K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 μg g−1 bone mineral using a cadmium zinc telluride detector. Significance In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment. PMID:28169835

  5. Target for production of X-rays

    NASA Astrophysics Data System (ADS)

    Korenev, S. A.

    2004-09-01

    The patented new type of X-ray target is considered in this report. The main concept of the target consists in developing a sandwich structure depositing a coating of materials with high Z on the substrate with low Z, high thermal conductivity and high thermal stability. The target presents multiple layers system. The thermal conditions for X-ray target are discussed. The experimental results for Ta target on the Al and Cu substrates are presented.

  6. Lightweight Target Generates Bright, Energetic X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    Radiography with x rays is a long-established method to see inside objects, from human limbs to weapon parts. Livermore scientists have a continuing need for powerful x rays for such applications as backlighting, or illuminating, inertial confinement fusion (ICF) experiments and imaging still or exploding materials for the nation's Stockpile Stewardship Program. X-radiography is one of the prime diagnostics for ICF experiments because it captures the fine detail needed to determine what happens to nearly microscopic targets when they are compressed by laser light. For example, Livermore scientists participating in the National Ignition Facility's (NIF's) 18-month-long Early Light experimental campaign,more » which ended in 2004, used x rays to examine hydrodynamic instabilities in jets of plasma. In these experiments, one laser beam irradiated a solid target of titanium, causing it to form a high-temperature plasma that generated x rays of about 4.65 kiloelectronvolts (keV). These x rays backlit a jet of plasma formed when two other laser beams hit a plastic ablator and sent a shock to an aluminum washer. Livermore physicist Kevin Fournier of the Physics and Advanced Technologies Directorate leads a team that is working to increase the efficiency of converting laser energy into x rays so the resulting images provide more information about the object being illuminated. The main characteristics of x-ray sources are energy and brightness. ''As experimental targets get larger and as compression of the targets increases, the backlighter sources must be brighter and more energetic'', says Fournier. The more energetic the x rays, the further they penetrate an object. The brighter the source--that is, the more photons it has--the clearer the image. historically, researchers have used solid targets such as thin metal foils to generate x rays. however, when photon energies are greater than a few kiloelectronvolts, the conversion efficiency of solid targets is only a

  7. First demonstration of 10 keV-width energy-discrimination K-edge radiography using a cadmium-telluride X-ray camera with a tungsten-target tube

    NASA Astrophysics Data System (ADS)

    Watanabe, Manabu; Sato, Eiichi; Abderyim, Purkhet; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-05-01

    Energy-discrimination X-ray camera is useful to perform monochromatic radiography using polychromatic X-rays. This X-ray camera was developed to carry out K-edge radiography using cerium and gadolinium-based contrast media. In this camera, objects are irradiated by a cone beam from a tungsten-target X-ray generator, and penetrating X-ray photons are detected by a cadmium-telluride detector with amplifiers. Both optimal photon-energy level and energy width are selected using a multichannel analyzer, and the photon number is counted by a counter card. Radiography was performed by the detector scanning using an x- y stage driven by a two-stage controller, and radiograms were shown on a personal computer monitor. In radiography, tube voltage and current were 90 kV and 5.8 μA, respectively, and the X-ray intensity was 0.61 μGy/s at 1.0 m from the X-ray source. The K-edge energies of cerium and gadolinium are 40.3 and 50.3 keV, respectively, and 10 keV-width enhanced K-edge radiography was performed using X-ray photons with energies just beyond K-edge energies of cerium and gadolinium. Thus, cerium K-edge radiography was carried out using X-ray photons with an energy range from 40.3 to 50. 3 keV, and gadolinium K-edge radiography was accomplished utilizing photon energies ranging from 50.3 to 60.3 keV.

  8. Line focus x-ray tubes—a new concept to produce high brilliance x-rays

    NASA Astrophysics Data System (ADS)

    Bartzsch, Stefan; Oelfke, Uwe

    2017-11-01

    Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3rd generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy s-1 can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.

  9. Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Ogden, Kent M.

    2004-05-01

    The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults

  10. Evaluation of the Effect of Source Geometry on the Output of Miniature X-ray Tube for Electronic Brachytherapy through Simulation

    PubMed Central

    Barati, B.; Zabihzadeh, M.; Tahmasebi Birgani, M.J.; Chegini, N.; Fatahiasl, J.; Mirr, I.

    2018-01-01

    Objective: The use of miniature X-ray source in electronic brachytherapy is on the rise so there is an urgent need to acquire more knowledge on X-ray spectrum production and distribution by a dose. The aim of this research was to investigate the influence of target thickness and geometry at the source of miniature X-ray tube on tube output. Method: Five sources were simulated based on problems each with a specific geometric structure and conditions using MCNPX code. Tallies proportional to the output were used to calculate the results for the influence of source geometry on output. Results: The results of this work include the size of the optimal thickness of 5 miniature sources, energy spectrum of the sources per 50 kev and also the axial and transverse dose of simulated sources were calculated based on these thicknesses. The miniature source geometric was affected on the output x-ray tube. Conclusion: The result of this study demonstrates that hemispherical-conical, hemispherical and truncated-conical miniature sources were determined as the most suitable tools. PMID:29732338

  11. Fill-Tube-Induced Mass Perturbations on X-Ray-Driven, Ignition-Scale, Inertial-Confinement-Fusion Capsule Shells and the Implications for Ignition Experiments

    DOE PAGES

    Bennett, G. R.; Herrmann, M. C.; Edwards, M. J.; ...

    2007-11-13

    We present on the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. μg-scale shell perturbations Δm' arising from multiple, 10–50 μm-diameter, hollow SiO 2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Finally, simulations compare well with observation, whence it is corroborated that Δm' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10–20 μm tubes will negligibly affect fusion yield on a full-ignition facility.

  12. Closed bore XMR (CBXMR) systems for aortic valve replacement: Investigation of rotating-anode x-ray tube heat loadability

    PubMed Central

    Bracken, John A.; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2008-01-01

    In order to improve the safety and efficacy of percutaneous aortic valve replacement procedures, a closed bore hybrid x-ray∕MRI (CBXMR) system is proposed in which an x-ray C-arm will be positioned with its isocenter ≈1 m from the entrance of a clinical MRI scanner. This system will harness the complementary strengths of both modalities to improve clinical outcome. A key component of the CBXMR system will be a rotating anode x-ray tube to produce high-quality x-ray images. There are challenges in positioning an x-ray tube in the magnetic fringe field of the MRI magnet. Here, the effects of an external magnetic field on x-ray tube induction motors of radiography x-ray tubes and the corresponding reduction of x-ray tube heat loadability are investigated. Anode rotation frequency fanode was unaffected when the external magnetic field Bb was parallel to the axis of rotation of the anode but decreased when Bb was perpendicular to the axis of rotation. The experimental fanode values agreed with predicted values to within ±3% over a Bb range of 0–30 mT. The MRI fringe field at the proposed location of the x-ray tube mounted on the C-arm (≈4 mT) reduced fanode by only 1%, so x-ray tube heat loadability will not be compromised when using CBXMR systems for percutaneous aortic valve replacement procedures. Eddy current heating power in the rotor due to an MRI fringe field was found to be two orders of magnitude weaker than the heating power produced on the anode due to a fluoroscopic exposure, so eddy current heating had no effect on x-ray tube heat loadability. PMID:18841857

  13. Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields.

    PubMed

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca

    2014-11-01

    A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and -20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric field in addition to the

  14. Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca

    2014-01-01

    Purpose: A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. Methods: The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. Results: An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and −20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric

  15. Comparison of simulated and measured spectra from an X-ray tube for the energies between 20 and 35 keV

    NASA Astrophysics Data System (ADS)

    Yücel, M.; Emirhan, E.; Bayrak, A.; Ozben, C. S.; Yücel, E. Barlas

    2015-11-01

    Design and production of a simple and low cost X-ray imaging system that can be used for light industrial applications was targeted in the Nuclear Physics Laboratory of Istanbul Technical University. In this study, production, transmission and detection of X-rays were simulated for the proposed imaging device. OX/70-P dental tube was used and X-ray spectra simulated by Geant4 were validated by comparison with X-ray spectra measured between 20 and 35 keV. Relative detection efficiency of the detector was also determined to confirm the physics processes used in the simulations. Various time optimization tools were performed to reduce the simulation time.

  16. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    NASA Astrophysics Data System (ADS)

    Minami, K.; Saito, Y.; Kai, H.; Shirota, K.; Yada, K.

    2009-09-01

    We have newly developed an open type fine-focus X-ray tube "TX-510" to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The "TX-510" employs a ZrO/W(100) Schottky emitter and an "In-Lens Field Emission Gun". The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  17. High-durability surface-discharge flash x-ray tube driven by a two-stage Marx pulser

    NASA Astrophysics Data System (ADS)

    Shikoda, Arimitsu; Sato, Eiichi; Kimura, Shingo; Oizumi, Teiji; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1993-02-01

    We developed a high-durability flash x-ray tube with a plate-shaped ferrite cathode for the use in the field of biomedical engineering and technology. The surface-discharge cathode was very useful for generating stable flash x rays. This flash x-ray generator consisted of the following essential components: a high-voltage power supply, an energy-storage condenser of 97 nF, a two-stage Marx type pulser, an oil diffusion pump, and a flash x-ray tube. This x-ray tube was of a diode which was connected to the turbo molecular pump and had plate-shaped anode and cathode electrodes. The cathode electrode was made of ferrite, and its edge was covered with a thin gold film by means of the spattering in order to decrease contact resistance. The space between the anode and cathode electrodes could be regulated from the outside of the x-ray rube. The two condensers in Marx circuit were charged from 50 to 70 kV by a power supply, and the condensers were connected in series after closing a gap switch. Thus the maximum output voltages from the pulser were about two times the charged voltages. In this experiment, the maximum tube voltage and the current were about 110 kV and 0.8 kA, respectively. The pulse widths were less than 140 ns, and the maximum x-ray intensity was 1.27 (mu) C/kg at 0.5 m per pulse. The size of the focal spot and the maximum repetition rate were about 2 X 2.5 mm and 50 Hz (fps), respectively.

  18. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes.

    PubMed

    Poludniowski, G; Landry, G; DeBlois, F; Evans, P M; Verhaegen, F

    2009-10-07

    A software program, SpekCalc, is presented for the calculation of x-ray spectra from tungsten anode x-ray tubes. SpekCalc was designed primarily for use in a medical physics context, for both research and education purposes, but may also be of interest to those working with x-ray tubes in industry. Noteworthy is the particularly wide range of tube potentials (40-300 kVp) and anode angles (recommended: 6-30 degrees) that can be modelled: the program is therefore potentially of use to those working in superficial/orthovoltage radiotherapy, as well as diagnostic radiology. The utility is free to download and is based on a deterministic model of x-ray spectrum generation (Poludniowski 2007 Med. Phys. 34 2175). Filtration can be applied for seven materials (air, water, Be, Al, Cu, Sn and W). In this note SpekCalc is described and illustrative examples are shown. Predictions are compared to those of a state-of-the-art Monte Carlo code (BEAMnrc) and, where possible, to an alternative, widely-used, spectrum calculation program (IPEM78).

  19. Liquid metal anode x-ray tubes: interesting, but are they useful?

    NASA Astrophysics Data System (ADS)

    Harding, Geoffrey

    2004-10-01

    An analysis is presented of factors affecting the specific loadability (W mm-2 K-1) of electron impact liquid metal anode x-ray sources (LIMAX). It is shown that in general, the limit to loadability is set by energy deposited in the electron window by inelastic electron scattering. Removal of this energy through convection cooling by the liquid metal stream represents the least efficient thermal transport process in LIMAX. As the electron window energy loss is approximately inversely proportional to the electron beam energy, the power loadability of a LIMAX source operated under otherwise constant conditions scales roughly with the square of the tube voltage. A comparison of the loadability of the liquid metal anode x-ray concept to conventional stationary anode x-ray tubes demonstrates the superiority of the former. The utility of LIMAX-based computed tomography in the field of air cargo container inspection is briefly discussed. In particular its characteristics relative to linac-based air cargo container inspection are highlighted: these include a higher contrast-to-noise ratio (CNR); compact radiation shielding and collimation; reduced detector cross-talk; improved image contrast; and the possibility of combining container CT with material-specific alarm resolution capability based on x-ray diffraction tomography.

  20. Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Hao; Margie, P. Olbinado; Atsushi, Momose; Hua-Jie, Han; Hu, Ren-Fang; Wang, Zhi-Li; Gao, Kun; Zhang, Kai; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-06-01

    X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a conventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus bearing tremendous potential for future clinical diagnosis. In this work, by changing the accelerating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Experimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ˜ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum. Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, China (Grant No. 11321503), the National Natural Science Foundation of China (Grant Nos. 11179004, 10979055, 11205189, and 11205157), and the Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) Administered by the Japan Science and Technology Agency.

  1. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  2. Measurement and validation of benchmark-quality thick-target tungsten X-ray spectra below 150 kVp.

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-11-01

    Pulse-height distributions of two constant potential X-ray tubes with fixed anode tungsten targets were measured and unfolded. The measurements employed quantitative alignment of the beam, the use of two different semiconductor detectors (high-purity germanium and cadmium-zinc-telluride), two different ion chamber systems with beam-specific calibration factors, and various filter and tube potential combinations. Monte Carlo response matrices were generated for each detector for unfolding the pulse-height distributions into spectra incident on the detectors. These response matrices were validated for the low error bars assigned to the data. A significant aspect of the validation of spectra, and a detailed characterization of the X-ray tubes, involved measuring filtered and unfiltered beams at multiple tube potentials (30-150 kVp). Full corrections to ion chamber readings were employed to convert normalized fluence spectra into absolute fluence spectra. The characterization of fixed anode pitting and its dominance over exit window plating and/or detector dead layer was determined. An Appendix of tabulated benchmark spectra with assigned error ranges was developed for future reference.

  3. A digital miniature x-ray tube with a high-density triode carbon nanotube field emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul

    2013-01-14

    We have fabricated a digital miniature x-ray tube (6 mm in diameter and 32 mm in length) with a high-density triode carbon nanotube (CNT) field emitter for special x-ray applications. The triode CNT emitter was densely formed within a diameter of below 4 mm with the focusing-functional gate. The brazing process enables us to obtain and maintain a desired vacuum level for the reliable electron emission from the CNT emitters after the vacuum packaging. The miniature x-ray tube exhibited a stable and reliable operation over 250 h in a pulse mode at an anode voltage of above 25 kV.

  4. Evidence that the X-Ray Plasma in Microflares is in a Sequence of Subresolution Magnetic Tubes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.

    1998-01-01

    We analyze the cooling of the X-ray emitting thermal plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope. A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approximately 2 x 10(exp 8) cm) (Shimizu 1995, PASJ, 47, 251). The X-ray plasma in the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is filled by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (1995) (X-ray brightness through the thin aluminum filter approximately 4 x 10(exp 3) DN/s/pixel, lifetime approximately 5 min, temperature approximately 6 x 10(exp 6) K, loop length approximately 10(exp 9) cm, loop diameter approximately 3 x 10(exp 8) cm), we find that for filling factors greater than approximately 1% (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that (1) heating to X-ray temperatures continues through nearly the entire life of a microflare, (2) the heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes

  5. Magnetostatic focal spot correction for x-ray tubes operating in strong magnetic fields using iterative optimization

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Conolly, Steven M.; Fahrig, Rebecca

    2012-01-01

    Purpose: Combining x-ray fluoroscopy and MR imaging systems for guidance of interventional procedures has become more commonplace. By designing an x-ray tube that is immune to the magnetic fields outside of the MR bore, the two systems can be placed in close proximity to each other. A major obstacle to robust x-ray tube design is correcting for the effects of the magnetic fields on the x-ray tube focal spot. A potential solution is to design active shielding that locally cancels the magnetic fields near the focal spot. Methods: An iterative optimization algorithm is implemented to design resistive active shielding coils that will be placed outside the x-ray tube insert. The optimization procedure attempts to minimize the power consumption of the shielding coils while satisfying magnetic field homogeneity constraints. The algorithm is composed of a linear programming step and a nonlinear programming step that are interleaved with each other. The coil results are verified using a finite element space charge simulation of the electron beam inside the x-ray tube. To alleviate heating concerns an optimized coil solution is derived that includes a neodymium permanent magnet. Any demagnetization of the permanent magnet is calculated prior to solving for the optimized coils. The temperature dynamics of the coil solutions are calculated using a lumped parameter model, which is used to estimate operation times of the coils before temperature failure. Results: For a magnetic field strength of 88 mT, the algorithm solves for coils that consume 588 A/cm2. This specific coil geometry can operate for 15 min continuously before reaching temperature failure. By including a neodymium magnet in the design the current density drops to 337 A/cm2, which increases the operation time to 59 min. Space charge simulations verify that the coil designs are effective, but for oblique x-ray tube geometries there is still distortion of the focal spot shape along with deflections of approximately

  6. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip

    2011-10-15

    Purpose: To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. Methods: A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. Inmore » this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO{sub 4} scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. Results: The focal spots were measured at about 1 x 2 mm{sup 2} using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. Conclusions: A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.« less

  7. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  8. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube.

    PubMed

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi

    2011-10-01

    To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO(4) scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. The focal spots were measured at about 1 × 2 mm(2) using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.

  9. Closed bore XMR (CBXMR) systems for aortic valve replacement: active magnetic shielding of x-ray tubes.

    PubMed

    Bracken, John A; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A

    2009-05-01

    Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (approximately 1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.

  10. Surface applicator of a miniature X-ray tube for superficial electronic brachytherapy of skin cancer.

    PubMed

    Kim, Hyun Nam; Lee, Ju Hyuk; Park, Han Beom; Kim, Hyun Jin; Cho, Sung Oh

    2018-01-01

    We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers. © 2017 American Association of Physicists in Medicine.

  11. Debris-free soft x-ray source with gas-puff target

    NASA Astrophysics Data System (ADS)

    Ni, Qiliang; Chen, Bo; Gong, Yan; Cao, Jianlin; Lin, Jingquan; Lee, Hongyan

    2001-12-01

    We have been developing a debris-free laser plasma light source with a gas-puff target system whose nozzle is driven by a piezoelectric crystal membrane. The gas-puff target system can utilize gases such as CO2, O2 or some gas mixture according to different experiments. Therefore, in comparison with soft X-ray source using a metal target, after continuously several-hour laser interaction with gas from the gas-puff target system, no evidences show that the light source can produce debris. The debris-free soft X-ray source is prepared for soft X-ray projection lithography research at State Key Laboratory of Applied Optics. Strong emission from CO2, O2 and Kr plasma is observed.

  12. Al K x-ray production for incident /sup 16/O ions: The influence of target thickness effects on observed target x-ray yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, T.J.; Richard, P.; Gealy, G.

    1979-04-01

    Thin solid Al targets ranging in thickness from approx. 1 to 30 ..mu..g/cm/sup 2/ were bombarded by /sup 16/O ions wih incident energies from 0.25 to 2.25 MeV/amu. The effects of target thickness on the measured Al K x-ray yield for ions incident without an initial K-shell vacancy were determined. Comparisons of the data for Al K x-ray production in vanishingly thin targets (and 29-..mu..g/cm/sup 2/ targets) were made to perturbed-stationary-state calculations (PSS) for O ions on Al targets. The PSS calculations contained corrections for Coulomb deflection and binding energy (PSS(CB)) and for Coulomb deflection, binding energy, and polarization (PSS(CBP)).more » Further, two different PSS calculation procedures were employed: calculations without radial cutoffs employed in the binding-energy contribution (PSS), and calculations with radial cutoffs employed in the binding-energy correction (NPSS). The PSS(CBP) calculations agree with the measured Al K x-ray production cross section for data taken in the limit of a vanishingly thin target. The NPSS(CBP) calculations agree with the data taken for a 29-..mu..g/cm/sup 2/ Al target. The latter agreement is fortuitous, as the increase observed in the measured target x-ray yield for the 29-..mu..g/cm/sup 2/ target, in comparison to the yield extracted as rhox ..-->.. 0 at each bombarding energy, is due to K-shell--to--K-shell charge exchange. Comparisons are made with previously published data for /sup 16/O ions incident on finite-thickness Al targets.« less

  13. Microscope using an x-ray tube and a bubble compound refractive lens

    NASA Astrophysics Data System (ADS)

    Piestrup, M. A.; Gary, C. K.; Park, H.; Harris, J. L.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.; Kolchevsky, N. N.; Komarov, F. F.

    2005-03-01

    We present x-ray images of grid meshes and biological material obtained using an unfiltered x-ray tube and a compound refractive lens composed of microbubbles embedded in epoxy inside a glass capillary. Images obtained using this apparatus are compared with those using a synchrotron source and the same lens. We find that the field of view is larger than that obtained using the synchrotron source, whereas the contrast and resolution are reduced. Geometrical distortion around the edges of the field of view is also reduced. The experiments demonstrate the usefulness of the apparatus in a modest laboratory setting.

  14. Counter tube window and X-ray fluorescence analyzer study

    NASA Technical Reports Server (NTRS)

    Hertel, R.; Holm, M.

    1973-01-01

    A study was performed to determine the best design tube window and X-ray fluorescence analyzer for quantitative analysis of Venusian dust and condensates. The principal objective of the project was to develop the best counter tube window geometry for the sensing element of the instrument. This included formulation of a mathematical model of the window and optimization of its parameters. The proposed detector and instrument has several important features. The instrument will perform a near real-time analysis of dust in the Venusian atmosphere, and is capable of measuring dust layers less than 1 micron thick. In addition, wide dynamic measurement range will be provided to compensate for extreme variations in count rates. An integral pulse-height analyzer and memory accumulate data and read out spectra for detail computer analysis on the ground.

  15. Closed bore XMR (CBXMR) systems for aortic valve replacement: Active magnetic shielding of x-ray tubes

    PubMed Central

    Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-01-01

    Hybrid closed bore x-ray∕MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (≈1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session. PMID:19544789

  16. Feasibility of employing thick microbeams from superficial and orthovoltage kVp x-ray tubes for radiotherapy of superficial cancers

    NASA Astrophysics Data System (ADS)

    Kamali-Zonouzi, P.; Shutt, A.; Nisbet, A.; Bradley, D. A.

    2017-11-01

    Preclinical investigations of thick microbeams show these to be feasible for use in radiotherapeutic dose delivery. To create the beams we access a radiotherapy x-ray tube that is familiarly used within a conventional clinical environment, coupling this with beam-defining grids. Beam characterisation, both single and in the form of arrays, has been by use of both MCNP simulation and direct Gafchromic EBT film dosimetry. As a first step in defining optimal exit-beam profiles over a range of beam energies, simulation has been made of the x-ray tube and numbers of beam-defining parallel geometry grids, the latter being made to vary in thickness, slit separation and material composition. For a grid positioned after the treatment applicator, and of similar design to those used in the first part of the study, MCNP simulation and Gafchromic EBT film were then applied in examining the resultant radiation profiles. MCNP simulations and direct dosimetry both show useful thick microbeams to be produced from the x-ray tube, with peak-to-valley dose ratios (PVDRs) in the approximate range 8.8-13.9. Although the potential to create thick microbeams using radiotherapy x-ray tubes and a grid has been demonstrated, Microbeam Radiation Therapy (MRT) would still need to be approved outside of the preclinical setting, a viable treatment technique of clinical interest needing to benefit for instance from substantially improved x-ray tube dose rates.

  17. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  18. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  19. Study on the influence of X-ray tube spectral distribution on the analysis of bulk samples and thin films: Fundamental parameters method and theoretical coefficient algorithms

    NASA Astrophysics Data System (ADS)

    Sitko, Rafał

    2008-11-01

    Knowledge of X-ray tube spectral distribution is necessary in theoretical methods of matrix correction, i.e. in both fundamental parameter (FP) methods and theoretical influence coefficient algorithms. Thus, the influence of X-ray tube distribution on the accuracy of the analysis of thin films and bulk samples is presented. The calculations are performed using experimental X-ray tube spectra taken from the literature and theoretical X-ray tube spectra evaluated by three different algorithms proposed by Pella et al. (X-Ray Spectrom. 14 (1985) 125-135), Ebel (X-Ray Spectrom. 28 (1999) 255-266), and Finkelshtein and Pavlova (X-Ray Spectrom. 28 (1999) 27-32). In this study, Fe-Cr-Ni system is selected as an example and the calculations are performed for X-ray tubes commonly applied in X-ray fluorescence analysis (XRF), i.e., Cr, Mo, Rh and W. The influence of X-ray tube spectra on FP analysis is evaluated when quantification is performed using various types of calibration samples. FP analysis of bulk samples is performed using pure-element bulk standards and multielement bulk standards similar to the analyzed material, whereas for FP analysis of thin films, the bulk and thin pure-element standards are used. For the evaluation of the influence of X-ray tube spectra on XRF analysis performed by theoretical influence coefficient methods, two algorithms for bulk samples are selected, i.e. Claisse-Quintin (Can. Spectrosc. 12 (1967) 129-134) and COLA algorithms (G.R. Lachance, Paper Presented at the International Conference on Industrial Inorganic Elemental Analysis, Metz, France, June 3, 1981) and two algorithms (constant and linear coefficients) for thin films recently proposed by Sitko (X-Ray Spectrom. 37 (2008) 265-272).

  20. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    DOE PAGES

    May, M. J.; Fournier, K. B.; Colvin, J. D.; ...

    2015-06-01

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainlessmore » steel. The NIF laser deposited ~460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. In conclusion, time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range« less

  1. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Hohenberger, M.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Regan, S. P.

    2015-06-01

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5-9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ˜460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  2. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  3. Computed tomographic images using tube source of x rays: interior properties of the material

    NASA Astrophysics Data System (ADS)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.

    2002-01-01

    An image intensifier based computed tomography scanner and a tube source of x-rays are used to obtain the images of small objects, plastics, wood and soft materials in order to know the interior properties of the material. A new method is developed to estimate the degree of monochromacy, total solid angle, efficiency and geometrical effects of the measuring system and the way to produce monoenergetic radiation. The flux emitted by the x-ray tube is filtered using the appropriate filters at the chosen optimum energy and reasonable monochromacy is achieved and the images are acceptably distinct. Much attention has been focused on the imaging of small objects of weakly attenuating materials at optimum value. At optimum value it is possible to calculate the three-dimensional representation of inner and outer surfaces of the object. The image contrast between soft materials could be significantly enhanced by optimal selection of the energy of the x-rays by Monte Carlo methods. The imaging system is compact, reasonably economic, has a good contrast resolution, simple operation and routine availability and explores the use of optimizing tomography for various applications.

  4. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  5. A new measurement method of actual focal spot position of an x-ray tube using a high-precision carbon-interspaced grid

    NASA Astrophysics Data System (ADS)

    Lee, H. W.; Lim, H. W.; Jeon, D. H.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kim, K. S.; Kim, G. A.; Park, S. Y.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Woo, T. H.; Oh, J. E.

    2018-06-01

    This study investigated the effectiveness of a new method for measuring the actual focal spot position of a diagnostic x-ray tube using a high-precision antiscatter grid and a digital x-ray detector in which grid magnification, which is directly related to the focal spot position, was determined from the Fourier spectrum of the acquired x-ray grid’s image. A systematic experiment was performed to demonstrate the viability of the proposed measurement method. The hardware system used in the experiment consisted of an x-ray tube run at 50 kVp and 1 mA, a flat-panel detector with a pixel size of 49.5 µm, and a high-precision carbon-interspaced grid with a strip density of 200 lines/inch. The results indicated that the focal spot of the x-ray tube (Jupiter 5000, Oxford Instruments) used in the experiment was located approximately 31.10 mm inside from the exit flange, well agreed with the nominal value of 31.05 mm, which demonstrates the viability of the proposed measurement method. Thus, the proposed method can be utilized for system’s performance optimization in many x-ray imaging applications.

  6. Repetitive flash x-ray generator operated at low-dose rates for a medical x-ray television system

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Isobe, Hiroshi; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1991-04-01

    The fundamental studies for the repetitive flash x-ray generator operated at lowdose rates for a medical x-ray television system are described. This x-ray generator consisted of the following components: a high-voltage power supply, an energy storage condenser of lOOnF, a coaxial cable condenser with a capacity of l000pF, a repetitive impulse switching system, a turbo molecular pump, and an x-ray tube having a cold cathode. The condenser was charged from 40 to 70kV by a power supply, and the electric charges stored in the condenser were discharged repetitively by using a trigger electrode operated by an impulse switching system. The x-ray tube was of the triode-type which was connected to the turbo molecular pump and had a large discharge impedance in order to prevent the damped oscillations of the tube current and voltage. The maximum tube voltage was equivalent to the initial charged voltage, and the peak current was less than 70A. The durations were about 2ps, and the x-ray intensities were less than 1. OpC/kg at 0. 5m per pulse. The repetition frequency was less than 50Hz, and the effective focal spot size was equivalent to the anode diameter of 3. 0mm. For the x-ray television system used in conjunction with this repetitive pulsed x-ray generator, since the electromagnetic noise primarily caused by the high tube current was decreased, noise-free stroboscopic radiography performed by the television system could be realized.

  7. Generation of calibrated tungsten target x-ray spectra: modified TBC model.

    PubMed

    Costa, Paulo R; Nersissian, Denise Y; Salvador, Fernanda C; Rio, Patrícia B; Caldas, Linda V E

    2007-01-01

    In spite of the recent advances in the experimental detection of x-ray spectra, theoretical or semi-empirical approaches for determining realistic x-ray spectra in the range of diagnostic energies are important tools for planning experiments, estimating radiation doses in patients, and formulating radiation shielding models. The TBC model is one of the most useful approaches since it allows for straightforward computer implementation, and it is able to accurately reproduce the spectra generated by tungsten target x-ray tubes. However, as originally presented, the TBC model fails in situations where the determination of x-ray spectra produced by an arbitrary waveform or the calculation of realistic values of air kerma for a specific x-ray system is desired. In the present work, the authors revisited the assumptions used in the original paper published by . They proposed a complementary formulation for taking into account the waveform and the representation of the calculated spectra in a dosimetric quantity. The performance of the proposed model was evaluated by comparing values of air kerma and first and second half value layers from calculated and measured spectra by using different voltages and filtrations. For the output, the difference between experimental and calculated data was better then 5.2%. First and second half value layers presented differences of 23.8% and 25.5% in the worst case. The performance of the model in accurately calculating these data was better for lower voltage values. Comparisons were also performed with spectral data measured using a CZT detector. Another test was performed by the evaluation of the model when considering a waveform distinct of a constant potential. In all cases the model results can be considered as a good representation of the measured data. The results from the modifications to the TBC model introduced in the present work reinforce the value of the TBC model for application of quantitative evaluations in radiation

  8. X-ray microscopy using reflection targets based on SEM with tungsten filament

    NASA Astrophysics Data System (ADS)

    Liu, Junbiao; Ma, Yutian; Zhao, Weixia; Niu, Geng; Chu, Mingzhang; Yin, Bohua; Han, Li; Liu, Baodong

    2016-10-01

    X-ray MicroandNano imaging is developed based on the conventional x-ray tomography, it can not only provide nondestructive testing with higher resolution measurement, but also be used to examine the material or the structure with low atomic number and low density. The source with micro-focal spot size is one of the key components of x-ray MicroandNano imaging. The focused electron beam from SEM bombarding the metal target can generate x-ray with ultra-small size. It is convenient to set up x-ray microscopy based on SEM for laboratory use. This paper describes a new x-ray microscopy using reflection targets based on FEI Quanta600 SEM with tungsten filament. The flat panel detector is placed outside of the vacuum chamber with 300μm thickness Be-window to isolate vacuum from the air. A stage with 3 DOFs is added to adjust the positions of the target, the SEM's sample stage is used to move sample. And the shape of target is designed as cone with 60° half cone angle to get the maximum x-ray dosage. The attenuation coefficient of Bewindow for x-ray is about 25%. Finally, the line pair card is used to evaluate the resolution and the result shows that the resolution of the system can receive less than 750nm, when the acceleration voltage is 30keV, the beam current is 160nA, the SEM working distance is 5mm and the acquisition time of the detector is 60s.

  9. Final Report on X-ray Yields from OMEGA II Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K B; May, M J; MacLaren, S A

    2007-06-20

    We present details about X-ray yields measured with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields are accurate to 10-15%. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the sub-keV range. Themore » PCD and HENWAY and DANTE numbers are compared. The time histories of the moderately hard (h{nu} > 4 keV) X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtration. There is general agreement between the H11 PCD and SNL PCD measured FWHM except for two of the shorter-laser-pulse shots, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope. X-ray waveforms from target emission in two softer spectral bands are also shown; the X-ray emissions have increasing duration as the spectral content gets softer.« less

  10. [Increasing the anode characteristics of sharp-focused Coolidge X-ray tubes by changing from a high to a low vacuum].

    PubMed

    Kanikovskiĭ, V B

    2002-01-01

    The anode characteristics of up-to-date sharp-focused Coolidge X-ray tubes are analyzed. The reason for differences in the real anode characteristics from theoretical ones has been found to be a higher tube gas pressure than that accepted. There is evidence that there are new third-class X-tubes--electronic tubes with compensation for negative volumetric charge of electrons with positive gas ions.

  11. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M. J.; Fournier, K. B.; Colvin, J. D.

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ ofmore » 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.« less

  12. Bright betatron X-ray radiation from a laser-driven-clustering gas target

    PubMed Central

    Chen, L. M.; Yan, W. C.; Li, D. Z.; Hu, Z. D.; Zhang, L.; Wang, W. M.; Hafz, N.; Mao, J. Y.; Huang, K.; Ma, Y.; Zhao, J. R.; Ma, J. L.; Li, Y. T.; Lu, X.; Sheng, Z. M.; Wei, Z. Y.; Gao, J.; Zhang, J.

    2013-01-01

    Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications. PMID:23715033

  13. Grazing incidence x-ray diffraction analysis of zeolite NaA membranes on porous alumina tubes.

    PubMed

    Kyotani, Tomohiro

    2006-07-01

    Zeolite NaA-type membranes hydrothermally synthesized on porous alumina tubes, for dehydration process, were characterized by grazing incidence 2 theta scan X-ray diffraction analysis (GIXRD). The fine structure of the membrane was studied fractionally for surface layer and for materials embedded in the porous alumina tube. The thickness of the surface layer on the porous alumina tube in the membranes used in this study was approximately 2-3 microm as determined from transmission electron microscopy with focused ion beam thin-layer specimen preparation technique (FIB-TEM). To discuss the effects of the membrane surface morphology on the GIXRD measurements, CaA-type membrane prepared by ion exchange from the NaA-type membrane and surface-damaged NaA-type membrane prepared by water leaching were also studied. For the original NaA-type membrane, 2 theta scan GIXRD patterns could be clearly measured at X-ray incidence angles (alpha) ranging from 0.1 to 2.0 deg in increments of 0.1 deg. The surface layers of the 2 - 3 microm on the porous alumina tube correspond to the alpha values up to ca. 0.2 deg. For the CaA-type and the surface-damaged NaA-type membranes, however, diffraction patterns from the surface layer could not be successfully detected and the others were somewhat broad. For all the three samples, diffraction intensities of both zeolite and alumina increased with depth (X-ray incidence angle, alpha) in the porous alumina tube region. The depth profile analysis of the membranes based on the GIXRD first revealed that amount of zeolite crystal embedded in the porous alumina tube is much larger than that in the surface layer. Thus, the 2 theta scan GIXRD is a useful method to study zeolite crystal growth mechanism around (both inside and outside) the porous alumina support during hydrothermal synthesis and to study water permeation behavior in the dehydration process.

  14. Energy-discrimination x-ray computed tomography system utilizing a scanning cadmium-telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abduraxit, Ablajan; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-04-01

    An energy-discrimination K-edge x-ray computed tomography (CT) system is useful for controlling the image contrast of a target region by selecting both the photon energy and the energy width. The CT system has an oscillation-type linear cadmium telluride (CdTe) detectror. CT is performed by repeated linear scans and rotations of an object. Penetrating x-ray photons from the object are detected by a CdTe detector, and event signals of x-ray photons are produced using charge-sensitive and shaping amplifiers. Both photon energy and energy width are selected out using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, the tube voltage and tube current were 80 kV and 20 μA, respectively, and the x-ray intensity was 1.92 μGy/s at a distance of 1.0 m from the source and a tube voltage of 80 kV. The energy-discrimination CT was carried out by selecting x-ray photon energies.

  15. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  16. Photon counting x-ray imaging with K-edge filtered x-rays: A simulation study.

    PubMed

    Atak, Haluk; Shikhaliev, Polad M

    2016-03-01

    In photon counting (PC) x-ray imaging and computed tomography (CT), the broad x-ray spectrum can be split into two parts using an x-ray filter with appropriate K-edge energy, which can improve material decomposition. Recent experimental study has demonstrated substantial improvement in material decomposition with PC CT when K-edge filtered x-rays were used. The purpose of the current work was to conduct further investigations of the K-edge filtration method using comprehensive simulation studies. The study was performed in the following aspects: (1) optimization of the K-edge filter for a particular imaging configuration, (2) effects of the K-edge filter parameters on material decomposition, (3) trade-off between the energy bin separation, tube load, and beam quality with K-edge filter, (4) image quality of general (unsubtracted) images when a K-edge filter is used to improve dual energy (DE) subtracted images, and (5) improvements with K-edge filtered x-rays when PC detector has limited energy resolution. The PC x-ray images of soft tissue phantoms with 15 and 30 cm thicknesses including iodine, CaCO3, and soft tissue contrast materials, were simulated. The signal to noise ratio (SNR) of the contrast elements was determined in general and material-decomposed images using K-edge filters with different atomic numbers and thicknesses. The effect of the filter atomic number and filter thickness on energy separation factor and SNR was determined. The boundary conditions for the tube load and halfvalue layer were determined when the K-edge filters are used. The material-decomposed images were also simulated using PC detector with limited energy resolution, and improvements with K-edge filtered x-rays were quantified. The K-edge filters with atomic numbers from 56 to 71 and K-edge energies 37.4-63.4 keV, respectively, can be used for tube voltages from 60 to 150 kVp, respectively. For a particular tube voltage of 120 kVp, the Gd and Ho were the optimal filter materials

  17. X-ray microtomography experiments using a diffraction tube and a focusing multilayer-mirror

    NASA Astrophysics Data System (ADS)

    Gurker, N.; Nell, R.; Backfrieder, W.; Kandutsch, J.; Sarg, K.; Prevrhal, S.; Nentwich, C.

    1994-10-01

    A first-generation (i.e. translate-rotate) micro X-ray transmission computed tomography system has been developed, which utilizes a standard 2.2 kW long-fine-focus diffraction tube with Cu-anode as the X-ray source, a spherical W/C multilayer-mirror to condense and spectrally select the CuKα-radiation (8.04 keV) from the tube and a scintillation counter to detect the X-ray photons; in the present configuration the optical system demagnifies the original source size in the direction parallel to the imaged object slice by a factor of 5, where a small slit captures the radiation and thus gives an intense microscopic (pseudo-) source of monochromatic X-radiation in close vicinity of the scanned specimen. The system provides tomographic images of small objects (up to 25 mm in diameter) reconstructed as 128 × 128 matrices with resolutions between ˜ 20 and 200 μm in ≥ 10 min. The software package which is available for image reconstruction includes filtered backprojection, correcting backprojection (ART, MART) and a new type of weighted backprojection, which turns out to be a simplified version of MART (SMART). A dedicated scan- and reconstruction-procedure demonstrates the feasibility to image selected regions-of-interest within the investigated specimen slice with (up to 1 order of magnitude) higher spatial resolution than their surroundings without major artefacts (Zoom-CT). The hard-and software-components of this CT-system are discussed, several examples are given and perspectives of further development are outlined.

  18. Titanium dioxide nanofiber-cotton targets for efficient multi-keV x-ray generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, Minoru; Nishimura, Hiroaki; Fujioka, Shinsuke

    Multi-keV x-ray generation from low-density (27{+-}7 mg/cm{sup 3}) nanofiber-cotton targets composed of titanium dioxide has been investigated. The cotton targets were heated volumetrically and supersonically to a peak electron temperature of 2.3 keV, which is optimal to yield Ti K-shell x rays. Considerable enhancement of conversion efficiency [(3.7{+-}0.5)%] from incident laser energy into Ti K-shell x rays (4-6 keV band) was attained in comparison with that [(1.4{+-}0.9)%] for a planar Ti-foil target.

  19. Picosecond x-ray streak cameras

    NASA Astrophysics Data System (ADS)

    Averin, V. I.; Bryukhnevich, Gennadii I.; Kolesov, G. V.; Lebedev, Vitaly B.; Miller, V. A.; Saulevich, S. V.; Shulika, A. N.

    1991-04-01

    The first multistage image converter with an X-ray photocathode (UMI-93 SR) was designed in VNIIOFI in 1974 [1]. The experiments carried out in IOFAN pointed out that X-ray electron-optical cameras using the tube provided temporal resolution up to 12 picoseconds [2]. The later work has developed into the creation of the separate streak and intensifying tubes. Thus, PV-003R tube has been built on base of UMI-93SR design, fibre optically connected to PMU-2V image intensifier carrying microchannel plate.

  20. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  1. Limitations of Routine Verification of Nasogastric Tube Insertion Using X-Ray and Auscultation: Two Case Reports of Life-Threatening Complications.

    PubMed

    Nejo, Takahide; Oya, Soichi; Tsukasa, Tsuchiya; Yamaguchi, Naomi; Matsui, Toru

    2016-12-01

    Several bedside approaches used in combination with thoracoabdominal X-ray are widely used to avoid severe complications that have been reported during nasogastric tube management. Although confirmation by X-ray is considered the gold standard, it is not yet perfect. We present 2 cases of rare complications in which the routine verification methods could not detect all the complications related to the nasogastric tube placement. Case 1 was a 17-year-old male who presented with a brain tumor and repeatedly required nasogastric tube placement. Despite normal auscultatory and X-ray findings, the patient's condition deteriorated rapidly after resuming the enteral nutrition (EN). Computed tomography images showed the presence of hepatic portal venous gas (HPVG). Urgent upper gastrointestinal endoscopy showed esophagogastric submucosal tunneling of the tube that required an emergency open total gastrectomy. Case 2 was a 76-year-old man with long-term EN after stroke. While the last auscultatory verification was normal, he suddenly developed extensive HPVG due to gastric mucosal injury following EN, which resulted in progressive intestinal necrosis, general peritonitis, and death. These 2 cases indicated that routine verification methods consisting of auscultation and X-ray may not be completely reliable, and the awareness of the limitations of these methods should be reaffirmed because expeditious examinations and necessary interventions are critical in preventing life-threatening complications.

  2. Design optimization of MR-compatible rotating anode x-ray tubes for stable operation

    PubMed Central

    Shin, Mihye; Lillaney, Prasheel; Hinshaw, Waldo; Fahrig, Rebecca

    2013-01-01

    Purpose: Hybrid x-ray/MR systems can enhance the diagnosis and treatment of endovascular, cardiac, and neurologic disorders by using the complementary advantages of both modalities for image guidance during interventional procedures. Conventional rotating anode x-ray tubes fail near an MR imaging system, since MR fringe fields create eddy currents in the metal rotor which cause a reduction in the rotation speed of the x-ray tube motor. A new x-ray tube motor prototype has been designed and built to be operated close to a magnet. To ensure the stability and safety of the motor operation, dynamic characteristics must be analyzed to identify possible modes of mechanical failure. In this study a 3D finite element method (FEM) model was developed in order to explore possible modifications, and to optimize the motor design. The FEM provides a valuable tool that permits testing and evaluation using numerical simulation instead of building multiple prototypes. Methods: Two experimental approaches were used to measure resonance characteristics: the first obtained the angular speed curves of the x-ray tube motor employing an angle encoder; the second measured the power spectrum using a spectrum analyzer, in which the large amplitude of peaks indicates large vibrations. An estimate of the bearing stiffness is required to generate an accurate FEM model of motor operation. This stiffness depends on both the bearing geometry and adjacent structures (e.g., the number of balls, clearances, preload, etc.) in an assembly, and is therefore unknown. This parameter was set by matching the FEM results to measurements carried out with the anode attached to the motor, and verified by comparing FEM predictions and measurements with the anode removed. The validated FEM model was then used to sweep through design parameters [bearing stiffness (1×105–5×107 N/m), shaft diameter (0.372–0.625 in.), rotor diameter (2.4–2.9 in.), and total length of motor (5.66–7.36 in.)] to increase the

  3. Considerations about projectile and target X-rays induced during heavy ion bombardment

    NASA Astrophysics Data System (ADS)

    Fernandes, F.; Bauer, D. V.; Duarte, A.; Ferrari, T. M.; Niekraszewicz, L. A. B.; Amaral, L.; Dias, J. F.

    2018-02-01

    In this work we present some results concerning the X-rays emitted by heavy ions during target bombardment. In this case, Cl4+ and Cl5+ ions with energies from 4 MeV to 10 MeV were employed to irradiate vitreous carbon planchets. Moreover, total X-ray production cross sections of titanium X-rays induced by chlorine ions were obtained as well for the same energy range. Only inner shell transitions were considered in the present work. The titanium target consisted of a thin film deposited over vitreous carbon planchets. The results indicate that the projectile X-ray yields increase as a function of the bombarding energy for the present energy range. Effects due to projectile charge state appears to be of minor importance at these low ion velocities. It is shown that a simple exponential function can represent the continuum background of such complex spectra. The chlorine transition rates Kβ/Kα obtained from chlorine acting as a projectile interacting with a carbon target are about half the value when compared to the chlorine Kβ/Kα ratios obtained when a LiCl target is bombarded with C+ and C3+ ions with energies from 2 MeV to 6 MeV. As far as the total X-ray production cross sections of Ti induced by chlorine ions are concerned, the ECPSSR theory underestimates the Ti total X-rays production cross sections by several orders of magnitude. The role of electron capture and possible mechanisms responsible for these effects are discussed.

  4. SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M; Ishihara, Y; Matsuo, Y

    Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infraredmore » marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy.« less

  5. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C

    NASA Astrophysics Data System (ADS)

    Ay, M. R.; Shahriari, M.; Sarkar, S.; Adib, M.; Zaidi, H.

    2004-11-01

    The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.

  6. X-Ray Flare Oscillations Track Plasma Sloshing along Star-disk Magnetic Tubes in the Orion Star-forming Region

    NASA Astrophysics Data System (ADS)

    Reale, Fabio; Lopez-Santiago, Javier; Flaccomio, Ettore; Petralia, Antonino; Sciortino, Salvatore

    2018-03-01

    Pulsing X-ray emission tracks the plasma “echo” traveling in an extremely long magnetic tube that flares in an Orion pre-main sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting ones typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (∼20%), long-period (∼3 hr) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single long magnetic tube, triggered by a sufficiently short (∼1 hr) heat pulse. These magnetic tubes are ≥20 solar radii long, enough to connect the star with the surrounding disk.

  7. High purity tungsten targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    High purity tungsten, which is used for targets in X-ray tubes was considered for space processing. The demand for X-ray tubes was calculated using the growth rates for dental and medical X-ray machines. It is concluded that the cost benefits are uncertain.

  8. Thick-target bremsstrahlung interpretation of short time-scale solar hard X-ray features

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1983-01-01

    Steady-state analyses of bremsstrahlung hard X-ray production in solar flares are appropriate only if the lifetime of the high energy electrons in the X-ray source is much shorter than the duration of the observed X-ray burst. For a thick-target nonthermal model, this implies that a full time-dependent analysis is required when the duration of the burst is comparable to the collisional lifetime of the injected electrons, in turn set by the lengths and densities of the flaring region. In this paper we present the results of such a time-dependent analysis, and we point out that the intrinsic temporal signature of the thick-target production mechanism, caused by the finite travel time of the electrons through the target, may indeed rule out such a mechanism for extremely short duration hard X-ray events.

  9. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  10. Automatic SMT Inspection With -X-Ray Vision

    NASA Astrophysics Data System (ADS)

    Kuntz, Robert A.; Steinmetz, Peter D.

    1988-02-01

    X-ray is used in many different ways and in a broad variety of applications with today's world. One of the most obvious uses is in the medically related applications. Although less obvious, x-ray is used within industry as well. Inspection of metal castings, pipe-line welds, equipment structures and personal security are just a few. Historically, both medical and industrial x-ray have been dependent on film exposure, development and reading to capture and present the projected image. This process however is labor intensive, time consuming and costly. Correct exposure time and proper view orientation are in question until the film is developed and examined. In many cases, this trial and error causes retakes with the accompanying expense and delays. Recently, due to advances in x-ray tube technology, tubes with microfocus construction have become available. These tubes operate at high enough flux density such that when combined with x-ray to visible light converters, real-time imaging is possible.

  11. [Development of X-ray excited fluorescence spectrometer].

    PubMed

    Ni, Chen; Gu, Mu; Di, Wang; Cao, Dun-Hua; Liu, Xiao-Lin; Huang, Shi-Ming

    2009-08-01

    An X-ray excited fluorescence spectrometer was developed with an X-ray tube and a spectrometer. The X-ray tube, spectrometer, autocontrol method and data processing selected were roundly evaluated. The wavelength and detecting efficiency of the apparatus were calibrated with the mercury and tungsten bromine standard lamps, and the X-ray excited emission spectra of BaF2, Cs I (Tl) crystals were measured. The results indicate that the apparatus has advantages of good wavelength resolution, high stability, easy to operation and good radioprotection. It is a wery effective tool for exploration of new scintillation materials.

  12. MULTI-KEV X-RAY YIELDS FROM HIGH-Z GAS TARGETS FIELDED AT OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, J O; Fournier, K B; May, M J

    2010-11-04

    The authors report on modeling of x-ray yield from gas-filled targets shot at the OMEGA laser facility. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at {approx} 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3{omega} ({approx} 350 nm) laser energy delivered in a 1 ns square pulse. the emitted x-ray flux was monitored with the x-ray diode based DANTE instruments in the sub-keV range. Two-dimensional x-ray images (for energies 3-5 keV) of the targets were recordedmore » with gated x-ray detectors. The x-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. Predictions are 2D r-z cylindrical with DCA NLTE atomic physics. Models generally: (1) underpredict the Xe L-shell yields; (2) overpredict the Ar K-shell yields; (3) correctly predict the Xe thermal yields; and (4) greatly underpredict the Ar thermal yields. However, there are spreads within the data, e.g. the DMX Ar K-shell yields are correctly predicted. The predicted thermal yields show strong angular dependence.« less

  13. Composite x-ray pinholes for time-resolved microphotography of laser compressed targets.

    PubMed

    Attwood, D T; Weinstein, B W; Wuerker, R F

    1977-05-01

    Composite x-ray pinholes having dichroic properties are presented. These pinholes permit both x-ray imaging and visible alignment with micron accuracy by presenting different apparent apertures in these widely disparate regions of the spectrum. Their use is mandatory in certain applications in which the x-ray detection consists of a limited number of resolvable elements whose use one wishes to maximize. Mating the pinhole camera with an x-ray streaking camera is described, along with experiments which spatially and temporally resolve the implosion of laser irradiated targets.

  14. Development of cable fed flash X-ray (FXR) system

    NASA Astrophysics Data System (ADS)

    Menon, Rakhee; Mitra, S.; Patel, A. S.; Kumar, R.; Singh, G.; Senthil, K.; Kumar, Ranjeet; Kolge, T. S.; Roy, Amitava; Acharya, S.; Biswas, D.; Sharma, Archana

    2017-08-01

    Flash X-ray sources driven by pulsed power find applications in industrial radiography, and a portable X-ray source is ideal where the radiography needs to be taken at the test site. A compact and portable flash X-ray (FXR) system based on a Marx generator has been developed with the high voltage fed to the FXR tube via a cable feed-through arrangement. Hard bremsstrahlung X-rays of few tens of nanosecond duration are generated by impinging intense electron beams on an anode target of high Z material. An industrial X-ray source is developed with source size as low as 1 mm. The system can be operated from 150 kV to 450 kV peak voltages and a dose of 10 mR has been measured at 1 m distance from the source window. The modeling of the FXR source has been carried out using particle-in-cell and Monte Carlo simulations for the electron beam dynamics and X-ray generation, respectively. The angular dose profile of X-ray has been measured and compared with the simulation.

  15. Titanium-Dioxide Nano-Fiber-Cotton Targets for Efficient Multi-keV X-Ray Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, M; Nishimura, H; Fujioka, S

    Multi-keV x-ray generation from low-density (27 {+-} 7 mg/cc) nano-fiber-cotton targets composed of titanium-dioxide has been investigated. The cotton targets were heated volumetrically and supersonically to a peak electron temperature of 2.3 keV, which is optimal to yield Ti K-shell x rays. Considerable enhancement of conversion efficiency (3.7 {+-} 0.5%) from incident laser energy into Ti K-shell x rays (4-6 keV band) was attained in comparison with that (1.4 {+-} 0.9%) for a planar Ti-foil target.

  16. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    DOE PAGES

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai; ...

    2016-02-12

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm 3, when compared with that of a solid gold target (19.3 g/cm 3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  17. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm 3, when compared with that of a solid gold target (19.3 g/cm 3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  18. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  19. A novel portable energy dispersive X-ray fluorescence spectrometer with triaxial geometry

    NASA Astrophysics Data System (ADS)

    Pessanha, S.; Alves, M.; Sampaio, J. M.; Santos, J. P.; Carvalho, M. L.; Guerra, M.

    2017-01-01

    The X-ray fluorescence technique is a powerful analytical tool with a broad range of applications such as quality control, environmental contamination by heavy metals, cultural heritage, among others. For the first time, a portable energy dispersive X-ray fluorescence spectrometer was assembled, with orthogonal triaxial geometry between the X-ray tube, the secondary target, the sample and the detector. This geometry reduces the background of the measured spectra by reducing significantly the Bremsstrahlung produced in the tube through polarization in the secondary target and in the sample. Consequently, a practically monochromatic excitation energy is obtained. In this way, a better peak-background ratio is obtained compared to similar devices, improving the detection limits and leading to superior sensitivity. The performance of this setup is compared with the one of a benchtop setup with triaxial geometry and a portable setup with planar geometry. Two case studies are presented concerning the analysis of a 18th century paper document, and the bone remains of an individual buried in the early 19th century.

  20. A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications

    NASA Astrophysics Data System (ADS)

    Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.

    2017-10-01

    A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.

  1. Adjustable lead glass shielding device for use with an over-the-table x-ray tube.

    PubMed

    Eubig, C; Groves, B M; Davey, G

    1978-12-01

    Sources of scattered radiation exposure to personnel from a ceiling-mounted x-ray tube were examined at the side of cardiac catheterization patients. A fully adjustable mounting for a lead glass shield was designed to afford maximum radiation protection to the attending physician's head and neck area, while minimizing interference with the procedure.

  2. Medical X-ray sources now and for the future

    NASA Astrophysics Data System (ADS)

    Behling, Rolf

    2017-11-01

    This paper focuses on the use of X-rays in their largest field of application: medical diagnostic imaging and image-guided therapy. For this purpose, vacuum electronics in the form of X-ray tubes as the source of bremsstrahlung (braking radiation) have been the number one choice for X-ray production in the range of photon energies between about 16 keV for mammography and 150 keV for general radiography. Soft tissue on one end and bony structures on the other are sufficiently transparent and the contrast delivered by difference of absorption is sufficiently high for this spectral range. The dominance of X-ray tubes holds even more than 120 years after Conrad Roentgen's discovery of the bremsstrahlung mechanism. What are the specifics of current X-ray tubes and their medical diagnostic applications? How may the next available technology at or beyond the horizon look like? Can we hope for substantial game changers? Will flat panel sources, less expensive X-ray "LED's", compact X-ray Lasers, compact synchrotrons or equivalent X-ray sources appear in medical diagnostic imaging soon? After discussing the various modalities of imaging systems and their sources of radiation, this overview will briefly touch on the physics of bremsstrahlung generation, key characteristics of X-ray tubes, and material boundary conditions, which restrict performance. It will discuss the deficits of the bremsstrahlung technology and try to sketch future alternatives and their prospects of implementation in medical diagnostics.

  3. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  4. X-ray Thomson scattering measurements from hohlraum-driven spheres on the OMEGA laser [X-ray Thomson scattering measurements from hohlraum targets on the OMEGA laser

    DOE PAGES

    Saunders, A. M.; Jenei, A.; Doppner, T.; ...

    2016-08-30

    X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH 2 targets on the OMEGA laser. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule, but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Here, knowledge gained in this experiment show a promising future for further XRTS measurements on indirectly driven OMEGA targets.

  5. X-ray Thomson scattering measurements from hohlraum-driven spheres on the OMEGA laser [X-ray Thomson scattering measurements from hohlraum targets on the OMEGA laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, A. M.; Jenei, A.; Doppner, T.

    X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH 2 targets on the OMEGA laser. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule, but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Here, knowledge gained in this experiment show a promising future for further XRTS measurements on indirectly driven OMEGA targets.

  6. NBSGSC - a FORTRAN program for quantitative x-ray fluorescence analysis. Technical note (final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, G.Y.; Pella, P.A.; Rousseau, R.M.

    1985-04-01

    A FORTRAN program (NBSGSC) was developed for performing quantitative analysis of bulk specimens by x-ray fluorescence spectrometry. This program corrects for x-ray absorption/enhancement phenomena using the comprehensive alpha coefficient algorithm proposed by Lachance (COLA). NBSGSC is a revision of the program ALPHA and CARECAL originally developed by R.M. Rousseau of the Geological Survey of Canada. Part one of the program (CALCO) performs the calculation of theoretical alpha coefficients, and part two (CALCOMP) computes the composition of the analyte specimens. The analysis of alloys, pressed minerals, and fused specimens can currently be treated by the program. In addition to using measuredmore » x-ray tube spectral distributions, spectra from seven commonly used x-ray tube targets could also be calculated with an NBS algorithm included in the program. NBSGSC is written in FORTRAN IV for a Digital Equipment Corporation (DEC PDP-11/23) minicomputer using RLO2 firm disks and an RSX 11M operating system.« less

  7. Flash x-ray generator having a liquid-anode diode

    NASA Astrophysics Data System (ADS)

    Oizumi, Teiji; Sato, Eiichi; Shikoda, Arimitsu; Sagae, Michiaki; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru; Ojima, Hidenori; Takayama, Kazuyoshi; Fujiwara, Akihiro; Mitoya, Kanji

    1995-05-01

    The constructions and the fundamental studies of a flash x-ray generator having a liquid-anode diode are described. This flash x-ray generator consisted of the following essential components: a high-voltage power supply, a high-voltage pulser, a thyratron pulser as a trigger device, an oil diffusion pump, and a flash x-ray tube. The main condenser was negatively charged from 50 to 70 kV by the power supply, and the electric charges in the condenser were discharged to the x-ray tube after closing a gap switch by using the thyratron pulser. The flash x- ray tube was of a diode type having a mercury anode and a ferrite cathode. The pressure of the tube was primarily determined by the steam pressure of mercury as a function of temperature. The maximum output voltage from the pulser was about -1 times the charged voltage. The maximum tube voltage and current were approximately 60 kV and 3 kA, respectively, with a charged voltage of -60 kV and a space between the anode and cathode electrodes (AC space) of 2.0 mm. The pulse widths of flash x rays were about 50 ns, and the x-ray intensity measured by a thermoluminescence dosimeter had a value of about 2.5 (mu) C/kg at 0.3 m per pulse with a charged voltage of -70 kV and an AC space of 1.0 mm.

  8. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E [Manteca, CA

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  9. Effect of Tube-Based X-Ray Microtomography Imaging on the Amino Acid and Amine Content of the Murchison CM2 Chondrite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Friedrich, J. M.; Aponte, J. C.; Dworkin, J. P.; Ebel, D. S.; Elsila, J. E.; Hill, M.; McLain, H. L.; Towbin, W. H.

    2017-01-01

    X-ray and synchrotron X-ray micro-computed tomography (micro-CT) are increasingly being used for three dimensional reconnaissance imaging of chondrites and returned extraterrestrial material prior to detailed chemical and mineralogical analyses. Although micro-CT imaging is generally considered to be a non-destructive technique since silicate and metallic minerals in chondrites are not affected by X-ray exposures at the intensities and wavelengths typically used, there are concerns that the use of micro-CT could be detrimental to the organics in carbonaceous chondrites. We recently conducted a synchrotron micro-CT experiment on a powdered sample of the Murchison CM2 carbonaceous chondrite exposed to a monochromatic high energy (approximately 48 kiloelectronvolts) total X-ray radiation dose of approximately 1 kilogray (kGy) using the Advanced Photon Source beamline 13-BMD (13-Bending Magnet-D Beamline) at Argonne National Laboratory and found that there were no detectable changes in the amino acid abundances or enantiomeric compositions in the chondrite after exposure relative to a Murchison control sample that was not exposed. However, lower energy bremsstrahlung X-rays could interact more with amino acids and other lower molecular weight amines in meteorites. To test for this possibility, three separate micro-CT imaging experiments of the Murchison meteorite using the GE Phoenix v/tome/x s 240 kilovolt microfocus high resolution tungsten target X-ray tube instrument at the American Museum of Natural History (AMNH) were conducted and the amino acid abundances and enantiomeric compositions were determined. We also investigated the abundances of the C1-C5 amines in Murchison which were not analyzed in the first study.

  10. X-ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse Compton x-ray source

    NASA Astrophysics Data System (ADS)

    Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.

    2016-12-01

    While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.

  11. A new spectrometer for total reflection X-ray fluorescence analysis of light elements

    NASA Astrophysics Data System (ADS)

    Streli, Christina; Wobrauschek, Peter; Unfried, Ernst; Aiginger, Hannes

    1993-10-01

    A new spectrometer for total reflection X-ray fluorescence analysis (TXRF) of light elements as C, N, O, F, Na,… has been designed, constructed and realized. This was done under the aspect of optimizing all relevant parameters for excitation and detection under the conditions of Total Reflection in a vacuum chamber. A commercially available Ge(HP) detector with a diamond window offering a high transparency for low energy radiation was used. As excitation sources a special self-made windowless X-ray tube with Cu-target as well as a standard fine-focus Cr-tube were applied. Detection limits achieved are in the ng range for Carbon and Oxygen.

  12. Characterisation of the rare cadmium chromate pigment in a 19th century tube colour by Raman, FTIR, X-ray and EPR

    NASA Astrophysics Data System (ADS)

    Christiansen, Marie Bitsch; Sørensen, Mikkel Agerbæk; Sanyova, Jana; Bendix, Jesper; Simonsen, Kim Pilkjær

    2017-03-01

    In an investigation of the artists' materials used by P. S. Krøyer the contents of the tube colours found in Krøyer's painting cabinet were examined. In most cases, the results of the pigment analyses were as expected based on our knowledge of artists' colours used in the late 1800s and early 1900s. However, in one of the tube colours labelled "Jaune de Cadmium Citron" (cadmium lemon yellow) an extremely rare cadmium chromate pigment was found. The pigment was analysed and characterised by Raman microscopy (MRS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), powder X-ray diffraction (PXRD), single-crystal X-ray crystallography, and electron paramagnetic resonance (EPR) spectroscopy. Cadmium chromate was synthesised by precipitation from an aqueous solution of cadmium nitrate and potassium chromate, and the resulting yellow crystals proved identical to the pigment found in the tube colour "Jaune de Cadmium Citron". The structure determined by single-crystal X-ray diffraction identified the pigment as 2CdCrO4·KOH·H2O or more accurately as KCd2(CrO4)2(H3O2) illustrating the μ-H3O2- species. The yellow colour of the paint sample taken from the tube had a greenish hue, which became even more prominent upon storage and drying. EPR analysis of the sample showed the presence of paramagnetic degradation products containing Cr(III) and Cr(V).

  13. Characterisation of the rare cadmium chromate pigment in a 19th century tube colour by Raman, FTIR, X-ray and EPR.

    PubMed

    Christiansen, Marie Bitsch; Sørensen, Mikkel Agerbæk; Sanyova, Jana; Bendix, Jesper; Simonsen, Kim Pilkjær

    2017-03-15

    In an investigation of the artists' materials used by P. S. Krøyer the contents of the tube colours found in Krøyer's painting cabinet were examined. In most cases, the results of the pigment analyses were as expected based on our knowledge of artists' colours used in the late 1800s and early 1900s. However, in one of the tube colours labelled "Jaune de Cadmium Citron" (cadmium lemon yellow) an extremely rare cadmium chromate pigment was found. The pigment was analysed and characterised by Raman microscopy (MRS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), powder X-ray diffraction (PXRD), single-crystal X-ray crystallography, and electron paramagnetic resonance (EPR) spectroscopy. Cadmium chromate was synthesised by precipitation from an aqueous solution of cadmium nitrate and potassium chromate, and the resulting yellow crystals proved identical to the pigment found in the tube colour "Jaune de Cadmium Citron". The structure determined by single-crystal X-ray diffraction identified the pigment as 2CdCrO 4 ·KOH·H 2 O or more accurately as KCd 2 (CrO 4 ) 2 (H 3 O 2 ) illustrating the μ-H 3 O 2 - species. The yellow colour of the paint sample taken from the tube had a greenish hue, which became even more prominent upon storage and drying. EPR analysis of the sample showed the presence of paramagnetic degradation products containing Cr(III) and Cr(V). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  15. SLAC pulsed X-ray facility

    NASA Astrophysics Data System (ADS)

    Ipe, N. E.; McCall, R. C.; Baker, E. D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.

  16. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  17. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1996-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  18. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSCF was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  19. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  20. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  1. The selection criteria elements of X-ray optics system

    NASA Astrophysics Data System (ADS)

    Plotnikova, I. V.; Chicherina, N. V.; Bays, S. S.; Bildanov, R. G.; Stary, O.

    2018-01-01

    At the design of new modifications of x-ray tomography there are difficulties in the right choice of elements of X-ray optical system. Now this problem is solved by practical consideration, selection of values of the corresponding parameters - tension on an x-ray tube taking into account the thickness and type of the studied material. For reduction of time and labor input of design it is necessary to create the criteria of the choice, to determine key parameters and characteristics of elements. In the article two main elements of X-ray optical system - an x-ray tube and the detector of x-ray radiation - are considered. Criteria of the choice of elements, their key characteristics, the main dependences of parameters, quality indicators and also recommendations according to the choice of elements of x-ray systems are received.

  2. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  3. Optimization of tungsten x-ray spectra for digital mammography: a comparison of model to experiment

    NASA Astrophysics Data System (ADS)

    Andre, Michael P.; Spivey, Brett A.

    1997-05-01

    Tungsten (W) target x-rays tubes are being studied for use in digital mammography to improve x-ray flux, reduce noise and increase tube heat capacity. A parametric model was developed for digital mammography to evaluate optimization of x-ray spectra for a particular sensor. The model computes spectra and mean glandular doses (MGD) for combinations of W target, beam filters, kVp, breast type and thickness. Two figures of merit were defined: (signal/noise)2/MGD and spectral quantum efficiency; these were computed as a means to approach optimization of object contrast. The model is derived from a combination of classic equations, XCOM from NBS, and published data. X-ray spectra were calculated and measured for filters of Al, Sn, Rh, Mo and Ag on a Eureka tube. (Signal/noise)2/MGD was measured for a filtered W target tube and a digital camera employing CsI scintillator optically coupled to a CCD for which the detective quantum efficiency (DQE) was known. A 3-mm thick acrylic disk was imaged on thickness of 3-8 cm of acrylic and the results were compared to the predictions of the model. The relative error between predicted and measured spectra was +/- 2 percent from 24 to 34 kVp. Calculated MGD as a function of breast thickness, half-value layer and beam filter compares very well to published data. Best performance was found for the following combinations: Mo filter with 30 mm breast, Ag filter with 45 mm, Sn filter for 60 mm, and Al filter for 75 mm thick breast. The parametric model agrees well with measurement and provides a means to explore optimum combinations of kVp and beam filter. For a particular detector, this data may be used with the DQE to estimate total system signal-to-noise ratio for a particular imaging task.

  4. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    PubMed

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Feasibility study of total reflection X-ray fluorescence analysis using a liquid metal jet X-ray tube

    NASA Astrophysics Data System (ADS)

    Maderitsch, A.; Smolek, S.; Wobrauschek, P.; Streli, C.; Takman, P.

    2014-09-01

    Total reflection X-ray spectroscopy (TXRF) is a powerful analytical technique for qualitative and quantitative analysis of trace and ultratrace elements in a sample with lower limits of detection (LLDs) of pg/g to ng/g in concentration and absolute high fg levels are attainable. Several X-ray sources, from low power (few W), 18 kW rotating anodes to synchrotron radiation, are in use for the excitation and lead accordingly to their photon flux delivered on the sample the detection limits specified. Not only the power, but also the brilliance and focal shape are of importance for TXRF. A microfocus of 50-100 μm spot size or the line focus of diffraction tubes is best suited. Excillum developed a new approach in the design of a source: the liquid metal jet anode. In this paper the results achieved with this source are described. A versatile TXRF spectrometer with vacuum chamber designed at Atominstitut was used for the experiments. A multilayer monochromator selecting the intensive Ga-Kα radiation was taken and the beam was collimated by 50 μm slits. Excellent results regarding geometric beam stability, high fluorescence intensities and low background were achieved leading to detection limits in the high fg range for Ni. A 100 mm2 silicon drift detector (SDD) collimated to 80 mm2 was used to collect the fluorescence radiation. The results from measurements on single element samples are presented.

  6. Improved intensifying screen reduces X-ray exposure

    NASA Technical Reports Server (NTRS)

    Buchanan, R. A.

    1972-01-01

    X-ray intensifying screen may make possible radiographic procedures where detection speed and X-ray tube power have been the limiting factors. Device will reduce total population exposure to harmful radiation in the United States.

  7. New device for accurate measurement of the x-ray intensity distribution of x-ray tube focal spots.

    PubMed

    Doi, K; Fromes, B; Rossmann, K

    1975-01-01

    A new device has been developed with which the focal spot distribution can be measured accurately. The alignment and localization of the focal spot relative to the device are accomplished by adjustment of three micrometer screws in three orthogonal directions and by comparison of red reference light spots with green fluorescent pinhole images at five locations. The standard deviations for evaluating the reproducibility of the adjustments in the horizontal and vertical directions were 0.2 and 0.5 mm, respectively. Measurements were made of the pinhole images as well as of the line-spread functions (LSFs) and modulation transfer functions (MTFs) for an x-ray tube with focal spots of 1-mm and 50-mum nominal size. The standard deviations for the LSF and MTF of the 1-mm focal spot were 0.017 and 0.010, respectively.

  8. Diagnostic X-ray sources-present and future

    NASA Astrophysics Data System (ADS)

    Behling, Rolf; Grüner, Florian

    2018-01-01

    This paper compares very different physical principles of X-ray production to spur ideation. Since more than 120 years, bremsstrahlung from X-ray tubes has been the workhorse of medical diagnostics. Generated by X-ray segments comprised of X-ray tubes and high-voltage generators in the various medical systems, X-ray photons in the spectral range between about 16 keV and 150 keV deliver information about anatomy and function of human patients and in pre-clinical animal studies. Despite of strides to employ the wave nature of X-rays as phase sensitive means, commercial diagnostic X-ray systems available until the time of writing still rely exclusively on measuring the attenuation and scattering of X-rays by matter. Significant activities in research aim at building highly brilliant short pulse X-ray sources, based on e.g. synchrotron radiation, free electron lasers and/or laser wake-field acceleration of electrons followed by wiggling with magnetic structures or Thomson scattering in bunches of light. While both approaches, non-brilliant and brilliant sources, have different scope of application, we speculate that a combination may expand the efficacy in medical application. At this point, however, severe technical and commercial difficulties hinder closing this gap. This article may inspire further development and spark innovation in this important field.

  9. X-ray focal spot locating apparatus and method

    DOEpatents

    Gilbert, Hubert W.

    1985-07-30

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  10. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  11. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    NASA Technical Reports Server (NTRS)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP

  12. An X-ray monitor for measurement of a titanium tritide target thickness

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 micrometers has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.

  13. Second Preliminary Report on X-ray Yields from OMEGA II Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K B; May, M J; MacLaren, S A

    2006-08-28

    We present details about X-ray yields measured with LLNL and SNL diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields may be 35-40% too large. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the nearly sub-keV range. The PCD and HENWAY and DANTEmore » numbers are compared. The time histories of the X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtering. There is a persistent disagreement between the H11 PCD and SNL PCD measured FWHM, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope, and which are not plotted here.« less

  14. Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria.

    PubMed

    Luo, Yang; Hossain, Mainul; Wang, Chaoming; Qiao, Yong; An, Jincui; Ma, Liyuan; Su, Ming

    2013-01-21

    This paper describes a nanoparticle enhanced X-ray irradiation based strategy that can be used to kill multidrug resistant (MDR) bacteria. In the proof-of-concept experiment using MDR Pseudomonas aeruginosa (P. aeruginosa) as an example, polyclonal antibody modified bismuth nanoparticles are introduced into bacterial culture to specifically target P. aeruginosa. After washing off uncombined bismuth nanoparticles, the bacteria are irradiated with X-rays, using a setup that mimics a deeply buried wound in humans. Results show that up to 90% of MDR P. aeruginosa are killed in the presence of 200 μg ml(-1) bismuth nanoparticles, whereas only ∼6% are killed in the absence of bismuth nanoparticles when exposed to 40 kVp X-rays for 10 min. The 200 μg ml(-1) bismuth nanoparticles enhance localized X-ray dose by 35 times higher than the control with no nanoparticles. In addition, no significant harmful effects on human cells (HeLa and MG-63 cells) have been observed with 200 μg ml(-1) bismuth nanoparticles and 10 min 40 kVp X-ray irradiation exposures, rendering the potential for future clinical use. Since X-rays can easily penetrate human tissues, this bactericidal strategy has the potential to be used in effectively killing deeply buried MDR bacteria in vivo.

  15. A low-energy x-ray irradiator for electrophysiological studies.

    PubMed

    Schauer, D A; Zeman, G H; Pellmar, T C

    1989-01-01

    A 50 kVp molybdenum target/filter x-ray tube has been installed inside a lead-shielded Faraday cage. High-dose rates of up to 1.54 Gy min-1 (17.4 keV weighted average photons) have been used to conduct local in vitro irradiations of the hippocampal region of guinea pig brains. Electrophysiological recordings of subtle changes in neuronal activity indicate this system is suitable for this application.

  16. Investigating inertial confinement fusion target fuel conditions through x-ray spectroscopya)

    NASA Astrophysics Data System (ADS)

    Hansen, Stephanie B.

    2012-05-01

    Inertial confinement fusion (ICF) targets are designed to produce hot, dense fuel in a neutron-producing core that is surrounded by a shell of compressing material. The x-rays emitted from ICF plasmas can be analyzed to reveal details of the temperatures, densities, gradients, velocities, and mix characteristics of ICF targets. Such diagnostics are critical to understand the target performance and to improve the predictive power of simulation codes.

  17. Digital tomosynthesis (DTS) with a Circular X-ray tube: Its image reconstruction based on total-variation minimization and the image characteristics

    NASA Astrophysics Data System (ADS)

    Park, Y. O.; Hong, D. K.; Cho, H. S.; Je, U. K.; Oh, J. E.; Lee, M. S.; Kim, H. J.; Lee, S. H.; Jang, W. S.; Cho, H. M.; Choi, S. I.; Koo, Y. S.

    2013-09-01

    In this paper, we introduce an effective imaging system for digital tomosynthesis (DTS) with a circular X-ray tube, the so-called circular-DTS (CDTS) system, and its image reconstruction algorithm based on the total-variation (TV) minimization method for low-dose, high-accuracy X-ray imaging. Here, the X-ray tube is equipped with a series of cathodes distributed around a rotating anode, and the detector remains stationary throughout the image acquisition. We considered a TV-based reconstruction algorithm that exploited the sparsity of the image with substantially high image accuracy. We implemented the algorithm for the CDTS geometry and successfully reconstructed images of high accuracy. The image characteristics were investigated quantitatively by using some figures of merit, including the universal-quality index (UQI) and the depth resolution. For selected tomographic angles of 20, 40, and 60°, the corresponding UQI values in the tomographic view were estimated to be about 0.94, 0.97, and 0.98, and the depth resolutions were about 4.6, 3.1, and 1.2 voxels in full width at half maximum (FWHM), respectively. We expect the proposed method to be applicable to developing a next-generation dental or breast X-ray imaging system.

  18. Focusing hard X-rays with old LPs

    NASA Astrophysics Data System (ADS)

    Cederström, Björn; Cahn, Robert N.; Danielsson, Mats; Lundqvist, Mats; Nygren, David R.

    2000-04-01

    We have found that two sections cut from a vinyl long-playing record can form a spherical aberration-free refractive lens for hard X-rays. Our manufactured saw-tooth refractive lens has a focal length of 22 cm for 23-keV X-rays. The low cost and short focal length of this lens make it feasible for use in small-scale experiments with conventional X-ray tubes.

  19. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stradling, G.L.

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolvedmore » x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.« less

  20. The Mapping X-Ray Fluorescence Spectrometer (MAPX)

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Bristow, Thomas; Downs, Robert; Gailhanou, Marc; Marchis, Franck; Ming, Douglas; Morris, Richard; Sole, Vincente Armando; Thompson, Kathleen; hide

    2016-01-01

    MapX will provide elemental imaging at =100 micron spatial resolution over 2.5 X 2.5 centimeter areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or alpha-particles / gamma rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of =100 micron and quantitative XRF spectra from Regions of Interest (ROI) 2 centimers = x = 100 micron. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa.

  1. Transmission data for shielding diagnostic x-ray facilities.

    PubMed

    Simpkin, D J

    1995-05-01

    Recently published exposure transmission curves for broad diagnostic x-ray beams in lead, concrete, gypsum wallboard, steel, plate glass, and wood have been used to calculate the transmission in 5 kVp increments over the 25 to 35 kVp range for molybdenum-anode tubes and 50 to 150 kVp for tungsten-anode tubes. The data are fit to a three parameter model for ease in calculating the x-ray transmission with computers or calculators.

  2. Characteristics of a capillary-discharge flash x-ray generator

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Usuki, Tatsumi; Sato, Koetsu; Takayama, Kazuyoshi; Ido, Hideaki

    2002-11-01

    The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments are primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 0.2 μF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damp oscillations. The peak values of the voltage and current increased when the charging voltage was increased and their maximum values were -10.8 kV and 4.7 kV, respectively. The x-ray durations observed by a 1.6 μm aluminum filter were less than 30 μs, and we detected the aluminum characteristic x-ray intensity using a 6.8 μm aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in teh condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent

  3. A bright attosecond x-ray pulse train generation in a double-laser-driven cone target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Li-Xiang; Yu, Tong-Pu, E-mail: tongpu@nudt.edu.cn; Shao, Fu-Qiu

    By using full three-dimensional particle-in-cell and Monte Carlo simulations, we investigate the generation of a high-brightness attosecond x-ray pulse train in a double-laser-driven cone target. The scheme makes use of two lasers: the first high-intensity laser with a laser peak intensity 1.37 × 10{sup 20 }W/cm{sup 2} irradiates the cone and produces overdense attosecond electron bunches; the second counterpropagating weakly relativistic laser with a laser peak intensity 4.932 × 10{sup 17 }W/cm{sup 2} interacts with the produced electron bunches and a bright x-ray pulse train is generated by Thomson backscattering of the second laser off the attosecond electron bunches. It is shown that the photon fluxmore » rises by 5 times using the cone target as compared with a normal channel. Meanwhile, the x-ray peak brightness increases significantly from 1.4 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV) to 6.0 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV), which is much higher than that of the Thomson x-ray source generated from traditional accelerators. We also discuss the influence of the laser and target parameters on the x-ray pulse properties. This compact bright x-ray source may have diverse applications, e.g., the study of electric dynamics and harmonics emission in the atomic scale.« less

  4. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector.

    PubMed

    Russo, Paolo; Mettivier, Giovanni

    2011-04-01

    The goal of this study is to evaluate a new method based on a coded aperture mask combined with a digital x-ray imaging detector for measurements of the focal spot sizes of diagnostic x-ray tubes. Common techniques for focal spot size measurements employ a pinhole camera, a slit camera, or a star resolution pattern. The coded aperture mask is a radiation collimator consisting of a large number of apertures disposed on a predetermined grid in an array, through which the radiation source is imaged onto a digital x-ray detector. The method of the coded mask camera allows one to obtain a one-shot accurate and direct measurement of the two dimensions of the focal spot (like that for a pinhole camera) but at a low tube loading (like that for a slit camera). A large number of small apertures in the coded mask operate as a "multipinhole" with greater efficiency than a single pinhole, but keeping the resolution of a single pinhole. X-ray images result from the multiplexed output on the detector image plane of such a multiple aperture array, and the image of the source is digitally reconstructed with a deconvolution algorithm. Images of the focal spot of a laboratory x-ray tube (W anode: 35-80 kVp; focal spot size of 0.04 mm) were acquired at different geometrical magnifications with two different types of digital detector (a photon counting hybrid silicon pixel detector with 0.055 mm pitch and a flat panel CMOS digital detector with 0.05 mm pitch) using a high resolution coded mask (type no-two-holes-touching modified uniformly redundant array) with 480 0.07 mm apertures, designed for imaging at energies below 35 keV. Measurements with a slit camera were performed for comparison. A test with a pinhole camera and with the coded mask on a computed radiography mammography unit with 0.3 mm focal spot was also carried out. The full width at half maximum focal spot sizes were obtained from the line profiles of the decoded images, showing a focal spot of 0.120 mm x 0.105 mm at 35

  5. Chandra X-Ray Observatory High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  6. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N. Robert; Pelc, Norbert; Fahrig, Rebecca

    2013-01-01

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors’ assembly were also

  7. Inspection of small multi-layered plastic tubing during extrusion, using low-energy X-ray beams

    NASA Astrophysics Data System (ADS)

    Armentrout, C.; Basinger, T.; Beyer, J.; Colesa, B.; Olsztyn, P.; Smith, K.; Strandberg, C.; Sullivan, D.; Thomson, J.

    1999-02-01

    The automotive industry uses nylon tubing with a thin ETFE (ethylene-tetrafluroethylene) inner layer to carry fuel from the tank to the engine. This fluorocarbon inner barrier layer is important to reduce the migration of hydrocarbons into the environment. Pilot Industries has developed a series of real-time inspection stations for dimensional measurements and flaw detection during the extrusion of this tubing. These stations are named LERA TM (low-energy radioscopic analysis), use a low energy X-ray source, a special high-resolution image converter and intensifier (ICI) stage, image capture hardware, a personal computer, and software that was specially designed to meet this task. Each LERA TM station operates up to 20 h a day, 6 days a week and nearly every week of the year. The tubing walls are 1-2 mm thick and the outer layer is nylon and the inner 0.2 mm thick layer is ethylene-tetrafluroethylene.

  8. The ratio of microwaves to X-rays in solar flares: The case for the thick target model

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Petrosian, Vahe

    1988-01-01

    The expected ratio of synchrotron microwave radiation to bremsstrahlung X-rays for thick target, thin target, and multithermal solar flare models is calculated. The calculations take into account the variation of the microwave to X-ray ratio with X-ray spectral index. The theoretical results are compared with observed ratios of a sample of 51 solar flares with well known spectral index. From this it is concluded that the nonthermal thick target model with a loop length of and order of 10 to the 9th power cm and a magnetic field of 500 + or - 200 G provides the best fit to the data. The thin target and multithermal models require unreasonably large density or pressure and/or low magnetic field to match the data.

  9. X-ray Fluorescence Holography: Principles, Apparatus, and Applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Kouichi; Korecki, Pawel

    2018-06-01

    X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.

  10. Enhanced phosphorescence in N contained Ba 2SiO 4:Eu 2+ for X-ray and cathode ray tubes

    NASA Astrophysics Data System (ADS)

    Wang, Meiyuan; Zhang, Xia; Hao, Zhendong; Ren, Xinguang; Luo, Yongshi; Wang, Xiaojun; Zhang, Jiahua

    2010-07-01

    A bluish-green color long-lasting phosphorescent phosphor of N contained Ba 2SiO 4:Eu 2+ for X-ray and cathode ray tubes are prepared with the chemical component formula Ba 2SiO 4:0.01Eu 2+ - xSi 3N 4 - 2BaCO 3 ( x = 0.1 to 1.0) by the conventional high-temperature solid-state method. The phosphorescence and fluorescence properties as a function of Si 3N 4 content and temperature are investigated. The emission spectra show a single broad band peaking at 505 nm, which are ascribed to the 4f 65d 1 → 4f 7 transition of Eu 2+. Thermoluminescence (TL) glow-curves show that Ba 2SiO 4:0.01Eu 2+ without N holds a high-temperature peak at 417 K. With increasing the content of Si 3N 4, the phosphorescence grows super-linearly and some new TL peaks appear at low temperatures of about 400, 355, 365, and 335 K. These peaks are ascribed to the formation of new traps related to N substitution for O.

  11. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  12. Study for identification of beneficial Uses of Space (BUS). Volume 2: Technical report. Book 3: Development and business analysis of space processed tungsten fox X-ray targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development plans, analysis of required R and D and production resources, the costs of such resources, and finally, the potential profitability of a commercial space processing opportunity for containerless melting and resolidification of tungsten are discussed. The aim is to obtain a form of tungsten which, when fabricated into targets for X-ray tubes, provides at least, a 50 percent increase in service life.

  13. X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube

    DOE PAGES

    MacPhee, A. G.; Casey, D. T.; Clark, D. S.; ...

    2017-03-30

    Measurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations. The measurements were performed at a convergence ratio of ~2 using in-flight x-ray radiography. The initial seed due to shadow imprintmore » is estimated to be equivalent to ~50–100 nm of solid ablator material. As a result, this discovery has prompted the need for a mitigation strategy for future inertial confinement fusion designs as proposed here.« less

  14. X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Casey, D. T.; Clark, D. S.

    Measurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations. The measurements were performed at a convergence ratio of ~2 using in-flight x-ray radiography. The initial seed due to shadow imprintmore » is estimated to be equivalent to ~50–100 nm of solid ablator material. As a result, this discovery has prompted the need for a mitigation strategy for future inertial confinement fusion designs as proposed here.« less

  15. X-ray energy selected imaging with Medipix II

    NASA Astrophysics Data System (ADS)

    Ludwig, J.; Zwerger, A.; Benz, K.-W.; Fiederle, M.; Braml, H.; Fauler, A.; Konrath, J.-P.

    2004-09-01

    Two different X-ray tube accelerating voltages (60 and 70kV) are used for diagnosis of front teeth and molars. Different energy ranges are necessary as function of tooth thickness to obtain similar contrast for imaging. This technique drives the costs for the X-ray tube up and allows for just two optimized settings. Energy range selection for the detection of the penetrating X-rays would overcome these severe setbacks. The single photon counting chip MEDIPIX2 http://www.cern.ch/medipix exhibits exactly this feature.First simulations and measurements have been carried out using a dental X-ray source. As a demonstrator a real tooth has been used with different cavities and filling materials. Simulations showed in general larger improvements as compared to measurements regarding SNR and contrast: A beneficial factor of 4% wrt SNR and 25% for contrast, measurements showed factors of 2.5 and up to 10%, respectively.

  16. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system.

    PubMed

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N Robert; Pelc, Norbert; Fahrig, Rebecca

    2013-02-01

    Using hybrid x-ray∕MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine

  17. The Mapping X-Ray Fluorescence Spectrometer (mapx)

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.; Downs, R. T.; Gailhanou, M.; Marchis, F.; Ming, D. W.; Morris, R. V.; Sole, V. A.; Thompson, K.; Walter, P.; Wilson, M.; Yen, A. S.; Webb, S.

    2016-12-01

    MapX will provide elemental imaging at ≤100 µm spatial resolution over 2.5 X 2.5 cm areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or α-particles / γ-rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of ≤100 µm and quantitative XRF spectra from Regions of Interest (ROI) 2 cm ≤ x ≤ 100 µm. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa. [1] Schoonjans, T. et al.(2012). Spectrachim. Acta Part B, 70, 10-23. [2] Agostinelli, S. et al. (2003). Nucl. Instr. and Methods in Phys. Research A, 506, 250-303. [3] V.A. Solé et al. (2007). Spectrochim. Acta Part B, 62, 63-68.

  18. Study of Super- and Subsonic Ionization Fronts in Low-Density, Soft X-Ray-Irradiated Foam Targets

    NASA Astrophysics Data System (ADS)

    Willi, O.; Barringer, L.; Vickers, C.; Hoarty, D.

    2000-04-01

    The transition from super- to subsonic propagation of an ionization front has been studied in X-ray irradiated, low-density foam targets using soft X-ray imaging and point projection absorption spectroscopy. The foams were doped with chlorine and irradiated with an intense pulse of soft X-ray radiation with a temperature up to 120 eV produced by laser heating a burnthrough converter foil. The cylindrical foam targets were radiographed side-on allowing the change in the chlorine ionization and hence the front to be observed. From the absolute target transmission the density profile was obtained. Comparison of experimental absorption spectra with simulated ones allowed the temperature of the heated material to be inferred for the first time without reliance on detailed hydrodynamic simulations to interpret the data. The experimental observations were compared to radiation hydrodynamic simulations.

  19. Generation and dose distribution measurement of flash x-ray in KALI-5000 system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Rakhee; Roy, Amitava; Mitra, S.

    2008-10-15

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. Amore » maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.« less

  20. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  1. Silicon trench photodiodes on a wafer for efficient X-ray-to-current signal conversion using side-X-ray-irradiation mode

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Tetsuya; Takane, Yuta; Iwasa, Jumpei; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka

    2018-04-01

    In this paper, we report a direct-conversion-type X-ray sensor composed of trench-structured silicon photodiodes, which achieves a high X-ray-to-current conversion efficiency under side X-ray irradiation. The silicon X-ray sensor with a length of 22.6 mm and a trench depth of 300 µm was fabricated using a single-poly single-metal 0.35 µm process. X-rays with a tube voltage of 80 kV were irradiated along the trench photodiode from the side of the test chip. The theoretical limit of X-ray-to-current conversion efficiency of 83.8% was achieved at a low reverse bias voltage of 25 V. The X-ray-to-electrical signal conversion efficiency of conventional indirect-conversion-type X-ray sensors is about 10%. Therefore, the developed sensor has a conversion efficiency that is about eight times higher than that of conventional sensors. It is expected that the developed X-ray sensor will be able to markedly lower the radiation dose required for X-ray diagnoses.

  2. Studies of soft x-ray transmission through grid supported CH layers

    NASA Astrophysics Data System (ADS)

    Davis, J. S.; Keiter, P. A.; Klein, S. R.; Frank, Y.; Drake, R. P.; Shvarts, D.

    2017-10-01

    Recent experiments have shown that it may be possible to use laser-heated high-Z foils to drive new radiation transport (RadTran) experiments in gas fill tubes. These tubes must be pressurized above 1atm and the x-ray source needs to be physically separated from the gas. To achieve this, a grid-supported CH seal is implemented. The grid reduces the total surface area of the gas-seal interaction region lowering the thickness requirements for the CH layer. However, as mesh spacing is reduced, hole closure from wire ablation may reduce the x-ray flux. To optimize the seal design, experiments were performed measuring x-ray transmission through CH layers supported by meshes composed of copper, gold, or stainless steel and using hexagonal or square mesh geometries. The x-ray source was formed by heating a 0.5 μm thick planar gold foil with a 4 ns laser pulse at an intensity of 2 ×1014 W / cm 2. Emission data was collected using an x-ray framing camera and a Dante photodiode array. Experiments show that the CH layers can reach effective temperatures of nearly 100 eV but mesh design significantly affects performance, with a nearly 20 eV difference between the best and worst performing seal targets. This talk will discuss our findings and their impact on future RadTran experiments. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HED Laboratory Plasmas, Grant Number DE-NA0001840, the National LUFP, Grant Number DE-NA0000850, and through NNSA/OICF under Cooperatvie Agreement No. DE-FC52-08NA2830.

  3. High frequency x-ray generator basics.

    PubMed

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  4. Investigation of the practical aspects of an additional 0.1 mm copper x-ray spectral filter for cine acquisition mode imaging in a clinical care setting.

    PubMed

    Fetterly, Kenneth A

    2010-11-01

    Minimizing the x-ray radiation dose is an important aspect of patient safety during interventional fluoroscopy procedures. This work investigates the practical aspects of an additional 0.1 mm Cu x-ray beam spectral filter applied to cine acquisition mode imaging on patient dose and image quality. Measurements were acquired using clinical interventional imaging systems. Acquisition images of Solid Water phantoms (15-40 cm) were acquired using x-ray beams with the x-ray tube inherent filtration and using an additional 0.1 mm Cu x-ray beam spectral filter. The skin entrance air kerma (dose) rate was measured and the signal difference to noise ratio (SDNR) of an iodine target embedded into the phantom was calculated to assess image quality. X-ray beam parameters were recorded and analyzed and a primary x-ray beam simulation was performed to assess additional x-ray tube burden attributable to the Cu filter. For all phantom thicknesses, the 0.1 mm Cu filter resulted in a 40% reduction in the entrance air kerma rate to the phantoms and a 9% reduction in the SDNR of the iodine phantom. The expected additional tube load required by the 0.1 mm Cu filter ranged from 11% for a 120 kVp x-ray beam to 43% for a 60 kVp beam. For these clinical systems, use of the 0.1 mm Cu filter resulted in a favorable compromise between reduced skin dose rate and image quality and increased x-ray tube burden.

  5. Subresolution Fibrillation in X-Ray Microflares Observed by Yohkoh SXT

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Porter, Jason

    1999-01-01

    We analyze the cooling of the X-ray plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope (SXT). A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approx. 2 x 10(exp 8) cm). The plasma heated to X-ray temperatures in the body of the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is fluid by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (X-ray brightness through the thin aluminum filter - 4 x 10(exp 3) DN/s/pixeL lifetime approx. 5 min, temperature approx. 6 x 10(exp 6) K, loop length approx. 10(exp 9) cm, loop diameter approx. 3 x 10(exp 8) cm), we find that for filling factors greater than approx. 1%: (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that: (1) heating to X-ray temperatures continues through nearly the entire lifetime of the microflare, (2) die heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes filled with X-ray plasma occupy only a small fraction

  6. Fast ultrasonic wavelength tuning in X-ray experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blagov, A. E., E-mail: blagov-ae@mail.ru; Pisarevskii, Yu. V.; Koval’chuk, M. V.

    2016-03-15

    A method of tuning (scanning) X-ray beam wavelength based on modulation of the lattice parameter of X-ray optical crystal by an ultrasonic standing wave excited in it has been proposed and experimentally implemented. The double-crystal antiparallel scheme of X-ray diffraction, in which an ultrasonic wave is excited in the second crystal, is used in the experiment. The profile of characteristic line k{sub α1} of an X-ray tube with a molybdenum anode is recorded using both the proposed tuning scheme and conventional mechanical rotation of crystal. The results obtained by both techniques are in good agreement.

  7. X-ray and gamma ray emission from petawatt laser-driven nanostructured metal targets

    NASA Astrophysics Data System (ADS)

    Hill, Matthew; Allan, Peter; Brown, Colin; Hoarty, David; Hobbs, Lauren; James, Steven; Bargsten, Clayton; Hollinger, Reed; Rocca, Jorge; Park, Jaebum; Chen, Hui; London, Richard; Shepherd, Ronnie; Tommasini, Riccardo; Vinko, Sam; Wark, Justin; Marjoribanks, Robin; Neely, David; Spindloe, Chris

    2016-10-01

    Nano-wire arrays of nickel and gold have been fired at the Orion laser facility using high contrast 1 ω and 2 ω short pulse beams (0.7 ps pulse length, >1020 W cm-2 intensity). Time-resolved and time-integrated K-shell and M-shell emission have been characterized and compared to those of flat foils, investigating the capability of these metamaterial coatings to enhance laser-target coupling and X-ray emission. Bremsstrahlung emission of gamma rays and associated pair production via the Bethe-Heitler process have also been investigated by use of 1 mm-thick gold substrates attached to the gold nanowires. We present our latest experimental data and outline some potential future applications.

  8. Spectral structure of a polycapillary lens shaped X-ray beam

    NASA Astrophysics Data System (ADS)

    Gogolev, A. S.; Filatov, N. A.; Uglov, S. R.; Hampai, D.; Dabagov, S. B.

    2018-04-01

    Polycapillary X-ray optics is widely used in X-ray analysis techniques to create a small secondary source, for instance, or to deliver X-rays to the point of interest with minimum intensity losses [1]. The main characteristics of the analytical devices on its base are the size and divergence of the focused or translated beam. In this work, we used the photon-counting pixel detector ModuPIX to study the parameters for polycapillary focused X-ray tube radiation as well as the energy and spatial dependences of radiation at the focus. We have characterized the high-speed spectral camera ModuPIX, which is a single Timepix device with a fast parallel readout allowing up to 850 frames per second with 256 × 256 pixels and a 55 μm pitch defined by the frame frequency. By means of the silicon monochromator the energy response function is measured in clustering mode by the energy scan over total X-ray tube spectrum.

  9. X-ray emission scaling law from a plasma focus with different anode tip materials (Cu, Mo, and W)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharif, M.; Ahmad, S.; Zakaullah, M.

    X-ray emission from a 2.3-5.3 kJ Mather-type plasma focus [Phys. Fluids 7, 5 (1964)] employing copper, molybdenum, and tungsten anode tip is studied. Argon is used as a working gas. Characteristic Cu K{alpha} and Mo K-series emission and their ratio to the continuous x-rays are determined. From the variation of the x-ray yield data with filling pressure at different charging voltages, scaling laws are obtained. X-ray pinhole images demonstrate that a significant amount of x-ray emission is from the anode tip. The comparison of the ratio of characteristic to continuum radiation for copper anode with typical x-ray tube data revealsmore » that the contribution of very high energy electron beam from the focus region for x-ray generation through thick target bremsstrahlung mechanism is not significant. Rather, electrons with energy of the order of, or even less than, the charging voltage are responsible for bulk of the x-ray emission.« less

  10. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  11. The STAR-X X-Ray Telescope Assembly (XTA)

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2017-01-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  12. The STAR-X X-Ray Telescope Assembly (XTA)

    NASA Astrophysics Data System (ADS)

    McClelland, Ryan S.

    2017-08-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCDs capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called metashells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  13. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    NASA Astrophysics Data System (ADS)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  14. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.

    PubMed

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. X-ray Photon Counting Using 100 MHz Ready-Made Silicon P-Intrinsic-N X-ray Diode and Its Application to Energy-Dispersive Computed Tomography

    NASA Astrophysics Data System (ADS)

    Kodama, Hajime; Watanabe, Manabu; Sato, Eiichi; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-07-01

    X-ray photons are directly detected using a 100 MHz ready-made silicon P-intrinsic-N X-ray diode (Si-PIN-XD). The Si-PIN-XD is shielded using an aluminum case with a 25-µm-thick aluminum window and a BNC connector. The photocurrent from the Si-PIN-XD is amplified by charge sensitive and shaping amplifiers, and the event pulses are sent to a multichannel analyzer (MCA) to measure X-ray spectra. At a tube voltage of 90 kV, we observe K-series characteristic X-rays of tungsten. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by linear scanning at a tube current of 2.0 mA. The exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. At a tube voltage of 90 kV, the maximum count rate is 150 kcps. We carry out PC-CT using gadolinium media and confirm the energy-dispersive effect with changes in the lower level voltage of the event pulse using a comparator.

  16. X-ray targeted bond or compound destruction

    DOEpatents

    Pravica, Sr., Michael G.

    2016-11-01

    This document provides methods, systems, and devices for inducing a decomposition reaction by directing x-rays towards a location including a particular compound. The x-rays can have an irradiation energy that corresponds to a bond distance of a bond in the particular compound in order to break that bond and induce a decomposition of that particular compound. In some cases, the particular compound is a hazardous substance or part of a hazardous substance. In some cases, the particular compound is delivered to a desired location in an organism and x-rays induce a decomposition reaction that creates a therapeutic substance (e.g., a toxin that kills cancer cells) in the location of the organism. In some cases, the particular compound decomposes to produce a reactant in a reactor apparatus (e.g., fuel cell or semiconductor fabricator).

  17. Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm2 and a dose of 3.3 μJ/cm2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved.

  18. X-ray penumbral imaging diagnostic developments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, B.; Abu-Shawareb, H.; Alexander, N.; Ayers, J.; Bailey, C. G.; Bell, P.; Benedetti, L. R.; Bradley, D.; Collins, G.; Divol, L.; Döppner, T.; Felker, S.; Field, J.; Forsman, A.; Galbraith, J. D.; Hardy, C. M.; Hilsabeck, T.; Izumi, N.; Jarrot, C.; Kilkenny, J.; Kramer, S.; Landen, O. L.; Ma, T.; MacPhee, A.; Masters, N.; Nagel, S. R.; Pak, A.; Patel, P.; Pickworth, L. A.; Ralph, J. E.; Reed, C.; Rygg, J. R.; Thorn, D. B.

    2017-08-01

    X-ray penumbral imaging has been successfully fielded on a variety of inertial confinement fusion (ICF) capsule implosion experiments on the National Ignition Facility (NIF). We have demonstrated sub-5 μm resolution imaging of stagnated plasma cores (hot spots) at x-ray energies from 6 to 30 keV. These measurements are crucial for improving our understanding of the hot deuterium-tritium fuel assembly, which can be affected by various mechanisms, including complex 3-D perturbations caused by the support tent, fill tube or capsule surface roughness. Here we present the progress on several approaches to improve x-ray penumbral imaging experiments on the NIF. We will discuss experimental setups that include penumbral imaging from multiple lines-of-sight, target mounted penumbral apertures and variably filtered penumbral images. Such setups will improve the signal-to-noise ratio and the spatial imaging resolution, with the goal of enabling spatially resolved measurements of the hot spot electron temperature and material mix in ICF implosions.

  19. High-Energy X-Ray Detection of G359.89-0.08 (SGR A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Technical Reports Server (NTRS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; hide

    2014-01-01

    We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  20. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    NASA Astrophysics Data System (ADS)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (< 10‑3 radiation length) internal targets in cyclic accelerators leads to multiple passes (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  1. SU-E-T-145: MRI Gel Dosimetry Applied to Dose Profile Determination for 50kV X-Ray Tube.

    PubMed

    Schwarcke, M; Marques, T; Nicolucci, P; Filho, O Baffa

    2012-06-01

    The aim of this study was to use MRI gel dosimetry to determine the dose profile of 50kV MAGNUM® X-ray tube, MOXTEK Inc., in order to calibrate small solid dosimeters of alanine, tooth enamel and LiF-TLDs, commonly used in clinical quality assurance and datation dosimetry. MAGIC-f polymer gel was kept in two plastic containers of 100mL, avoiding attenuation of the primary beam trough the wall. Beam aberture of 3mm and dose rate of 16.5Gy/min were set, reproducing irradiation conditions of interest. The dose rate was assumed based on data of the vendor information of the tube and dose of 30Gy was delivered at the surface of the gel. MAGIC-f gel was irradiated at source-surface distances(SSD) of 0.1cm and 1.0cm. After 24hours of irradiation, gel was scanned in an Achieva® 3T Philips® MRI tomography using relaxometry sequence with 32 Echos, Time-to-Echo(TE) of 15.0ms, Time-to-Repetition(TR) of 6000ms and Field-of-View(FOV) of 0.5×0.5×2.0mm. Dose map at the central plain of irradiation was calculated from T2 relaxometry map. The gel dosimetry results evidenced a build-up depth of 0.13cm for SSD=0.1cm and no build-up was detected for SSD=1.0cm. However, the dose profile evidenced high gradient of dose in SSD=0.1, decreasing the dose from 100% to 30% in 1.4cm depth inside the gel; In turn, the dose distribution is homogeneous after 0.4cm deth for SSD=1.0cm. MRI gel dosimetry using MAGIC-f presented as feasible technique to determine dose profiles for kilovoltage x-rays tubes. The results evidenced that the calibration of small solid dosimeters can be performed using SSD of 1.0cm in the 50kV MAGNUM® X-ray tube using 0.4cm/g/cm 3 filter. This work was funded supported by CNPQ, CAPES and FAPESP. © 2012 American Association of Physicists in Medicine.

  2. Sealed-tube synthesis and phase diagram of Li{sub x}TiS{sub 2} (0 ≤ x ≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ziping; National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Science, Beijing 100190; Dong, Cheng, E-mail: chengdon@aphy.iphy.ac.cn

    2015-01-15

    Graphical abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S aslithium source. A schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed based on the DTA and XRD data. - Abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S as lithium source. The Li{sub x}TiS{sub 2} samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and differential thermal analysis. Themore » variations of the lattice parameters with lithium content x in Li{sub x}TiS{sub 2} were determined by X-ray powder diffraction analysis for both 1T and 3R phases. The phase transition between low-temperature 1T phase and high-temperature 3R phase was confirmed by the powder X-ray diffraction analysis. Based on the differential thermal analysis and X-ray diffraction results, a schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed, providing a guideline to synthesize Li{sub x}TiS{sub 2} in 1T structure or 3R structure.« less

  3. Four-arm variable-resolution x-ray detector for CT target imaging

    NASA Astrophysics Data System (ADS)

    DiBianca, Frank A.; Gulabani, Daya; Jordan, Lawrence M.; Vangala, Sravanthi; Rendon, David; Laughter, Joseph S.; Melnyk, Roman; Gaber, M. W.; Keyes, Gary S.

    2005-04-01

    The basic VRX technique boosts spatial resolution of a CT scanner in the scan plane by two or more orders of magnitude by reducing the angle of incidence of the x-ray beam with respect to the detector surface. A four-arm Variable-Resolution X-ray (VRX) detector has been developed for CT scanning. The detector allows for "target imaging" in which an area of interest is scanned at higher resolution than the remainder of the subject, yielding even higher resolution for the focal area than that obtained from the basic VRX technique. The new VRX-CT detector comprises four quasi-identical arms each containing six 24-cell modules (576 cells total). The modules are made of individual custom CdWO4 scintillators optically-coupled to custom photodiode arrays. The maximum scan field is 40 cm for a magnification of 1.4. A significant advantage of the four-arm geometry is that it can transform quickly to the two-arm, or even the single-arm geometry, for comparison studies. These simpler geometries have already been shown experimentally to yield in-plane CT detector resolution exceeding 60 cy/mm (<8μ) for small fields of view. Geometrical size and resolution limits of the target VRX field are calculated. Two-arm VRX-CT data are used to simulate and establish the feasibility of VRX CT target imaging. A prototype target VRX-CT scanner has been built and is undergoing initial testing.

  4. Characteristic of x-ray tomography performance using CdTe timepix detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; O'Shea, V.; Maneuski, D.

    2017-01-01

    X-ray Computed Tomography (CT) is a non-destructive technique for visualizing interior features within solid objects, and for obtaining digital information on their 3-D geometries and properties. The selection of CdTe Timepix detector has a sufficient performance of imaging detector is based on quality of detector performance and energy resolution. The study of Modulation Transfer Function (MTF) shows a 70% contrast at 4 lp/mm was achieved for the 55 µm pixel pitch detector with the 60 kVp X-ray tube and 5 keV noise level. No significant degradation in performance was observed for X-ray tube energies of 20 - 60 keV. The paper discusses the application of the CdTe Timepix detector to produce a good quality image of X-ray tomography imaging.

  5. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  6. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    NASA Astrophysics Data System (ADS)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  7. Wide band laser-plasma soft X-ray source using a gas puff target for direct photo-etching of polymers

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Rakowski, Rafał; Szczurek, Mirosław

    2005-09-01

    Organic polymers (PMMA, PTFE, PET, and PI) are considered as the important materials in microengineering, especially for biological and medical applications. Micromachining of such materials is possible with the use of different techniques that involve electromagnetic radiation or charged particle beams. Another possibility of high aspect ratio micromachining of PTFE is direct photo-etching using synchrotron radiation. X-ray and ultraviolet radiation from other sources, for micromachining of materials by direct photo-etching can be also applied. In this paper we present the results of investigation of a wide band soft X-ray source and its application for direct photo-etching of organic polymers. X-ray radiation in the wavelength range from about 3 nm to 20 nm was produced as a result of irradiation of a double-stream gas puff target with laser pulses of energy 0.8 J and time duration of about 3 ns. The spectra, plasma size and absolute energies of soft X-ray pulses for different gas puff targets were measured. Photo-etching process of polymers irradiated with the use of the soft X-ray radiation was analyzed and investigated. Samples of organic polymers were placed inside a vacuum chamber of the x-ray source, close to the gas puff target at the distance of about 2 cm from plasmas created by focused laser pulses. A fine metal grid placed in front of the samples was used as a mask to form structures by x-ray ablation. The results of photo-etching process for several minutes exposition with l0Hz repetition rate were presented. High ablation efficiency was obtained with the use of the gas puff target containing xenon surrounded by helium.

  8. Streaked x-ray backlighting with twin-slit imager for study of density profile and trajectory of low-density foam target filled with deuterium liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraga, H.; Mahigashi, N.; Yamada, T.

    2008-10-15

    Low-density plastic foam filled with liquid deuterium is one of the candidates for inertial fusion target. Density profile and trajectory of 527 nm laser-irradiated planer foam-deuterium target in the acceleration phase were observed with streaked side-on x-ray backlighting. An x-ray imager employing twin slits coupled to an x-ray streak camera was used to simultaneously observe three images of the target: self-emission from the target, x-ray backlighter profile, and the backlit target. The experimentally obtained density profile and trajectory were in good agreement with predictions by one-dimensional hydrodynamic simulation code ILESTA-1D.

  9. Lab-based x-ray nanoCT imaging

    NASA Astrophysics Data System (ADS)

    Müller, Mark; Allner, Sebastian; Ferstl, Simone; Dierolf, Martin; Tuohimaa, Tomi; Pfeiffer, Franz

    2017-03-01

    Due to the recent development of transmission X-ray tubes with very small focal spot sizes, laboratory-based CT imaging with sub-micron resolutions is nowadays possible. We recently developed a novel X-ray nanoCT setup featuring a prototype nanofocus X-ray source and a single-photon counting detector. The system is based on mere geometrical magnification and can reach resolutions of 200 nm. To demonstrate the potential of the nanoCT system for biomedical applications we show high resolution nanoCT data of a small piece of human tooth comprising coronal dentin. The reconstructed CT data clearly visualize the dentin tubules within the tooth piece.

  10. Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector.

    PubMed

    Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-07-01

    An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  11. Principle and design of small-sized and high-definition x-ray machine

    NASA Astrophysics Data System (ADS)

    Zhao, Anqing

    2010-10-01

    The paper discusses the circuit design and working principles of VMOS PWM type 75KV10mA high frequency X-ray machine. The system mainly consists of silicon controlled rectifier, VMOS tube PWM type high-frequency and highvoltage inverter circuit, filament inverter circuit, high-voltage rectifier filter circuit and as X-ray tube. The working process can be carried out under the control of a single-chip microcomputer. Due to the small size and high resolution in imaging, the X-ray machine is mostly adopted for emergent medical diagnosis and specific circumstances where nondestructive tests are conducted.

  12. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Vekemans, Bart; Verhaeven, Eddy; Tack, Pieter; De Wolf, Robin; Garrevoet, Jan; Vandenabeele, Peter; Vincze, Laszlo

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg-Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position.

  13. Portable x-ray fluorescence spectrometer for environmental monitoring of inorganic pollutants

    NASA Technical Reports Server (NTRS)

    Clark, III, Benton C. (Inventor); Thornton, Michael G. (Inventor)

    1991-01-01

    A portable x-ray fluorescence spectrometer has a portable sensor unit containing a battery, a high voltage power supply, an x-ray tube which produces a beam x-ray radiation directed toward a target sample, and a detector for fluorescent x-rays produced by the sample. If a silicon-lithium detector is used, the sensor unit also contains either a thermoelectric or thermochemical cooler, or a small dewar flask containing liquid nitrogen to cool the detector. A pulse height analyzer (PHA) generates a spectrum of data for each sample consisting of the number of fluorescent x-rays detected as a function of their energy level. The PHA can also store spectrum data for a number of samples in the field. A processing unit can be attached to the pulse height analyzer to upload and analyze the stored spectrum data for each sample. The processing unit provides a graphic display of the spectrum data for each sample, and provides qualitative and/or quantitative analysis of the elemental composition of the sample by comparing the peaks in the sample spectrum against known x-ray energies for various chemical elements. An optional filtration enclosure can be used to filter particles from a sample suspension, either in the form of a natural suspension or a chemically created precipitate. The sensor unit is then temporarily attached to the filtration unit to analyze the particles collected by the filter medium.

  14. Mitigation of X-ray shadow seeding of hydrodynamic instabilities on inertial confinement fusion capsules using a reduced diameter fuel fill-tube

    NASA Astrophysics Data System (ADS)

    MacPhee, A. G.; Smalyuk, V. A.; Landen, O. L.; Weber, C. R.; Robey, H. F.; Alfonso, E. L.; Biener, J.; Bunn, T.; Crippen, J. W.; Farrell, M.; Felker, S.; Field, J. E.; Hsing, W. W.; Kong, C.; Milovich, J.; Moore, A.; Nikroo, A.; Rice, N.; Stadermann, M.; Wild, C.

    2018-05-01

    We report a reduced X-ray shadow imprint of hydrodynamic instabilities on the high-density carbon ablator surface of inertial confinement fusion (ICF) capsules using a reduced diameter fuel fill tube on the National Ignition Facility (NIF). The perturbation seed mass from hydrodynamic instabilities was reduced by approximately an order of magnitude by reducing both the diameter and wall thickness of the fill tube by ˜2×, consistent with analytical estimates. This work demonstrates a successful mitigation strategy for engineered features for ICF implosions on the NIF.

  15. Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications

    DOE PAGES

    Gao, Lan; Hill, K. W.; Bitter, M.; ...

    2016-08-23

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  16. Shielding of medical imaging X-ray facilities: a simple and practical method.

    PubMed

    Bibbo, Giovanni

    2017-12-01

    The most widely accepted method for shielding design of X-ray facilities is that contained in the National Council on Radiation Protection and Measurements Report 147 whereby the computation of the barrier thickness for primary, secondary and leakage radiations is based on the knowledge of the distances from the radiation sources, the assumptions of the clinical workload, and usage and occupancy of adjacent areas. The shielding methodology used in this report is complex. With this methodology, the shielding designers need to make assumptions regarding the use of the X-ray room and the adjoining areas. Different shielding designers may make different assumptions resulting in different shielding requirements for a particular X-ray room. A more simple and practical method is to base the shielding design on the shielding principle used to shield X-ray tube housing to limit the leakage radiation from the X-ray tube. In this case, the shielding requirements of the X-ray room would depend only on the maximum radiation output of the X-ray equipment regardless of workload, usage or occupancy of the adjacent areas of the room. This shielding methodology, which has been used in South Australia since 1985, has proven to be practical and, to my knowledge, has not led to excess shielding of X-ray installations.

  17. Fluorescence imaging as a diagnostic of M-band x-ray drive condition in hohlraum with fluorescent Si targets

    NASA Astrophysics Data System (ADS)

    Li, Qi; Hu, Zhimin; Yao, Li; Huang, Chengwu; Yuan, Zheng; Zhao, Yang; Xiong, Gang; Qing, Bo; Lv, Min; Zhu, Tuo; Deng, Bo; Li, Jin; Wei, Minxi; Zhan, Xiayu; Li, Jun; Yang, Yimeng; Su, Chunxiao; Yang, Guohong; Zhang, Jiyan; Li, Sanwei; Yang, Jiamin; Ding, Yongkun

    2017-01-01

    Fluorescence imaging of surrogate Si-doped CH targets has been used to provide a measurement for drive condition of high-energy x-ray (i.e. M-band x-ray) drive symmetry upon the capsule in hohlraum on Shenguang-II laser facility. A series of experiments dedicated to the study of photo-pumping and fluorescence effect in Si-plasma are presented. To investigate the feasibility of fluorescence imaging in Si-plasma, an silicon plasma in Si-foil target is pre-formed at ground state by the soft x-ray from a half-hohlraum, which is then photo-pumped by the K-shell lines from a spatially distinct laser-produced Si-plasma. The resonant Si photon pump is used to improve the fluorescence signal and cause visible image in the Si-foil. Preliminary fluorescence imaging of Si-ball target is performed in both Si-doped and pure Au hohlraum. The usual capsule at the center of the hohlraum is replaced with a solid Si-doped CH-ball (Si-ball). Since the fluorescence is proportional to the photon pump upon the Si-plasma, high-energy x-ray drive symmetry is equal to the fluorescence distribution of the Si-ball.

  18. Application of an X-ray Fluorescence Instrument to Helicopter Wear Debris Analysis

    DTIC Science & Technology

    2008-04-01

    from magnesium (Mg) to uranium (U) using two X-ray detection sensors: a FOCUS 5+ detector AlX-ray tube X-ray Detector 1. Incident X-ray...zinc (Zn), whilst the PIN detector is used to detect elements from calcium (Ca) to uranium (U) [4]. Elements between calcium (Ca) to zinc (Zn) can be... carbide paper, however polishing is not a normal sample preparation requirement for the Twin-X (see Figure 16). The samples were placed polished side

  19. Compact low power infrared tube furnace for in situ X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Doran, A.; Schlicker, L.; Beavers, C. M.; Bhat, S.; Bekheet, M. F.; Gurlo, A.

    2017-01-01

    We describe the development and implementation of a compact, low power, infrared heated tube furnace for in situ powder X-ray diffraction experiments. Our silicon carbide (SiC) based furnace design exhibits outstanding thermal performance in terms of accuracy control and temperature ramping rates while simultaneously being easy to use, robust to abuse and, due to its small size and low power, producing minimal impact on surrounding equipment. Temperatures in air in excess of 1100 °C can be controlled at an accuracy of better than 1%, with temperature ramping rates up to 100 °C/s. The complete "add-in" device, minus power supply, fits in a cylindrical volume approximately 15 cm long and 6 cm in diameter and resides as close as 1 cm from other sensitive components of our experimental synchrotron endstation without adverse effects.

  20. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGonegle, David, E-mail: d.mcgonegle1@physics.ox.ac.uk; Wark, Justin S.; Higginbotham, Andrew

    2015-08-14

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less

  1. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    DOE PAGES

    McGonegle, David; Milathianaki, Despina; Remington, Bruce A.; ...

    2015-08-11

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. In conclusion, the simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less

  2. Low- Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feld, Geoffrey K.; Heymann, Michael; Benner, W. Henry

    X-ray free-electron lasers (XFELs) offer a new avenue to the structural probing of complex materials, including biomolecules. Delivery of precious sample to the XFEL beam is a key consideration, as the sample of interest must be serially replaced after each destructive pulse. The fixed-target approach to sample delivery involves depositing samples on a thin-film support and subsequent serial introduction via a translating stage. Some classes of biological materials, including two-dimensional protein crystals, must be introduced on fixed-target supports, as they require a flat surface to prevent sample wrinkling. A series of wafer and transmission electron microscopy (TEM)-style grid supports constructedmore » of low- Z plastic have been custom-designed and produced. Aluminium TEM grid holders were engineered, capable of delivering up to 20 different conventional or plastic TEM grids using fixed-target stages available at the Linac Coherent Light Source (LCLS). As proof-of-principle, X-ray diffraction has been demonstrated from two-dimensional crystals of bacteriorhodopsin and three-dimensional crystals of anthrax toxin protective antigen mounted on these supports at the LCLS. In conclusion, the benefits and limitations of these low- Z fixed-target supports are discussed; it is the authors' belief that they represent a viable and efficient alternative to previously reported fixed-target supports for conducting diffraction studies with XFELs.« less

  3. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, B.; Brandt, W. N.; Scott, A. E.

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars,more » i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.« less

  4. Surface modification of platinum by laser-produced X-rays

    NASA Astrophysics Data System (ADS)

    Latif, Hamid; Shahid Rafique, M.; Khaleeq-ur-Rahaman, M.; Sattar, Abdul; Anjum, S.; Usman, A.; Zaheer, S.; Rawat, R. S.

    2014-11-01

    Laser-induced plasma is used as an X-ray source for the growth of hillocks like nanostructures on platinum surface. To generate X-rays, plasma is produced by Nd:YAG laser, which is operated at second harmonics (λ = 532 nm, E = 400 mJ). Analytical grade 5 N pure Al, Cu and W are used as laser targets for X-rays production. X-rays produced from Al, Cu and W plasmas are used to irradiate three analytical grade (5 N pure) platinum substrates, respectively, under the vacuum ∼10-4 torr. XRD analysis shows considerable structural changes in the exposed platinum. The decrement in reflection intensities, increment in dislocation line density, change in d-spacing and disturbance in the periodicity of planes evidently prove these structural changes. Atomic force microscope AFM topographic analysis of the platinum exposed to X-rays emitted from Al, Cu and W targets showed that nanometer-size hillocks are produced on the platinum surface irrespective of the source. It has also been observed that due to these hillocks, the roughness of the surface has increased. Conductivity of hillocks produced from X-rays produced by Al, Cu and W targets is compared and it is shown that the hillocks produced by Al target X-rays have better conductivity compared to the hillocks produced by X-rays from Cu and W targets.

  5. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  6. Patient size and x-ray technique factors in head computed tomography examinations. II. Image quality.

    PubMed

    Huda, Walter; Lieberman, Kristin A; Chang, Jack; Roskopf, Marsha L

    2004-03-01

    We investigated how patient head characteristics, as well as the choice of x-ray technique factors, affect lesion contrast and noise values in computed tomography (CT) images. Head sizes and mean Hounsfield unit (HU) values were obtained from head CT images for five classes of patients ranging from the newborn to adults. X-ray spectra with tube voltages ranging from 80 to 140 kV were used to compute the average photon energy, and energy fluence, transmitted through the heads of patients of varying size. Image contrast, and the corresponding contrast to noise ratios (CNRs), were determined for lesions of fat, muscle, and iodine relative to a uniform water background. Maintaining a constant image CNR for each lesion, the patient energy imparted was also computed to identify the x-ray tube voltage that minimized the radiation dose. For adults, increasing the tube voltage from 80 to 140 kV changed the iodine HU from 2.62 x 10(5) to 1.27 x 10(5), the fat HU from -138 to -108, and the muscle HU from 37.1 to 33.0. Increasing the x-ray tube voltage from 80 to 140 kV increased the percentage energy fluence transmission by up to a factor of 2. For a fixed x-ray tube voltage, the percentage transmitted energy fluence in adults was more than a factor of 4 lower than for newborns. For adults, increasing the x-ray tube voltage from 80 to 140 kV improved the CNR for muscle lesions by 130%, for fat lesions by a factor of 2, and for iodine lesions by 25%. As the size of the patient increased from newborn to adults, lesion CNR was reduced by about a factor of 2. The mAs value can be reduced by 80% when scanning newborns while maintaining the same lesion CNR as for adults. Maintaining the CNR of an iodine lesion at a constant level, use of 140 kV increases the energy imparted to an adult patient by nearly a factor of 3.5 in comparison to 80 kV. For fat and muscle lesions, raising the x-ray tube voltage from 80 to 140 kV at a constant CNR increased the patient dose by 37% and 7

  7. Measurement and simulation for a complementary imaging with the neutron and X-ray beams

    NASA Astrophysics Data System (ADS)

    Hara, Kaoru Y.; Sato, Hirotaka; Kamiyama, Takashi; Shinohara, Takenao

    2017-09-01

    By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.

  8. X-ray Measurements of Laser Irradiated Foam Filled Liners

    NASA Astrophysics Data System (ADS)

    Patankar, Siddharth; Mariscal, Derek; Goyon, Clement; Baker, Kevin; MacLaren, Stephan; Hammer, Jim; Baumann, Ted; Amendt, Peter; Menapace, Joseph; Berger, Bob; Afeyan, Bedros; Tabak, Max; Dixit, Sham; Kim, Sung Ho; Moody, John; Jones, Ogden

    2016-10-01

    Low-density foam liners are being investigated as sources of efficient x-rays. Understanding the laser-foam interaction is key to modeling and optimizing foam composition and density for x-ray production with reduced backscatter. We report on the experimental results of laser-irradiated foam liners filled with SiO2 and Ta2O5 foams at densities between 2 to 30mg/cc. The foam liners consist of polyimide tubes filled with low-density foams and sealed with a gold foil at one end. The open end of the tube is driven with 250J of 527nm laser light in a 2ns 2-step pulse using the Jupiter Laser Facility at LLNL. A full aperture backscatter system is used to diagnose the coupled energy and losses. A streaked x-ray camera and filtered x-ray pinhole cameras are used to measure laser penetration into the low-density foam for different mass densities. A HOPG crystal spectrometer is used to estimate a thermal electron temperature. Comparisons with beam propagation and x-ray emission simulations are presented. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with funding support from the Laboratory Directed Research and Development Program under project 15.

  9. Intense X-ray machine for penetrating radiography

    NASA Astrophysics Data System (ADS)

    Lucht, Roy A.; Eckhouse, Shimon

    Penetrating radiography has been used for many years in the nuclear weapons research programs. Infrequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash X-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low inductance Marx generator that charges up a 7.4-(Omega), 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-(Omega) water line that rings up the voltage into the high impendance X-ray diode. A long (233-cm) vacuum drift tube is used to separate the large diameter oil-insulated diode region from the X-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is selffocused at the target area using a low pressure background gas.

  10. TH-F-209-01: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behling, R.

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, themore » aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to

  11. TH-F-209-00: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, themore » aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to

  12. Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: A truly hybrid x-ray/MR imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahrig, R.; Wen, Z.; Ganguly, A.

    2005-06-15

    Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo{sup TM} flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP{sup TM}) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for fieldmore » strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.« less

  13. Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: a truly hybrid x-ray/MR imaging system.

    PubMed

    Fahrig, R; Wen, Z; Ganguly, A; DeCrescenzo, G; Rowlands, J A; Stevens, G M; Saunders, R F; Pelc, N J

    2005-06-01

    Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.

  14. X-ray beam method for displacement measurement in hostile environments

    NASA Technical Reports Server (NTRS)

    Jordan, Eric H.; Pease, D. M.; Canistraro, H.; Brew, Dale

    1989-01-01

    A new method of extensometry using an X-ray beam was devised, and the results of current testing reveal it to be highly feasible. This technique has been shown to provide a non-contacting system that is immune to problems associated with density variations in gaseous environments, that plague currently available optical methods. This advantage is a result of the non-refracting penetrating nature of X-rays. The method is based on X-ray-induced X-ray fluorescence of targets, which subsequently serve as fudicial markers. Some target materials have melting points over 1600 degrees C which will facilitate measurement at extremely high temperatures. A highly focused intense X-ray beam, which is produced using a Johansen 'bent crystal', is then scanned across the target, which responds by fluorescing X-rays when stimulated by the incident beam. This secondary radiation is monitored using a detector. By carefully measuring beam orientation, change in target edge position can be determined. Many variations on this basic theme are now possible such as two targets demarcating a gage length, or a beam shadowing method using opaque targets.

  15. Pulse X-ray device for stereo imaging and few-projection tomography of explosive and fast processes

    NASA Astrophysics Data System (ADS)

    Palchikov, E. I.; Dolgikh, A. V.; Klypin, V. V.; Krasnikov, I. Y.; Ryabchun, A. M.

    2017-10-01

    This paper describes the operation principles and design features of the device for single pulse X-raying of explosive and high-speed processes, developed on the basis of a Tesla transformer with lumped secondary capacitor bank. The circuit with the lumped capacitor bank allows transferring a greater amount of energy to the discharge circuit as compared with the Marks-surge generator for more effective operation with remote X-ray tubes connected by coaxial cables. The device equipped with multiple X-ray tubes provides simultaneous X-raying of extended or spaced objects, stereo imaging, or few-projection tomography.

  16. Multiple pinhole collimator based X-ray luminescence computed tomography

    PubMed Central

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-01-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  17. [Evaluation of dental X-ray apparatus in terms of patient exposure to ionizing radiation].

    PubMed

    Olszewski, Jerzy; Wrzesień, Małgorzata

    2017-06-27

    The use of X-ray in dental procedures causes exposure of the patient to ionizing radiation. This exposure depends primarily on the parameters used in tooth examination. The aim of the study was to determine the patients exposure and to assess the technical condition of X-ray tubes. Seventeen hundred dental offices were covered by the questionnaire survey and 740 questionnaires were sent back. Direct measurements were performed in 100 units by using the thermoluminescent detectors and X-ray films. The results showed that the most commonly used exposure time is 0.22±0.16 s. The average entrance dose for the parameters used most commonly by dentists is 1.7±1.4 mGy. The average efficiency of X-ray tube estimated on the basis of exposures is 46.5±23.7 μGy/mAs. The study results indicate that the vast majority of X-ray tubes meet the requirements specified in the binding regulations. Med Pr 2017;67(4):491-496. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  18. X-Ray Crystallography Reagent

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  19. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  20. X-ray angiography systems.

    PubMed

    1993-11-01

    Despite the emergence of several alternative angiographic imaging techniques (i.e., magnetic resonance imaging, computed tomography, and ultrasound angiography), x-ray angiography remains the predominant vascular imaging modality, generating over $4 billion in revenue a year in U.S. hospitals. In this issue, we provide a brief overview of the various angiographic imaging techniques, comparing them with x-ray angiography, and discuss the clinical aspects of x-ray vascular imaging, including catheterization and clinical applications. Clinical, cost, usage, and legal issues related to contrast media are discussed in "Contrast Media: Ionic versus Nonionic and Low-osmolality Agents." We also provide a technical overview and selection guidance for a basic x-ray angiography imaging system, including the gantry and table system, x-ray generator, x-ray tube, image intensifier, video camera and display monitors, image-recording devices, and digital acquisition and processing systems. This issue also contains our Evaluation of the GE Advantx L/C cardiac angiography system and the GE Advantx AFM general-purpose angiography system; the AFM can be used for peripheral, pulmonary, and cerebral vascular studied, among others, and can also be configured for cardiac angiography. Many features of the Advantx L/C system, including generator characteristics and ease of use, also apply to the Advantx AFM as configured for cardiac angiography. Our ratings are based on the systems' ability to provide the best possible image quality for diagnosis and therapy while minimizing patient and personnel exposure to radiation, as well as its ability to minimize operator effort and inconvenience. Both units are rated Acceptable. In the Guidance Section, "Radiation Safety and Protection," we discuss the importance of keeping patient and personnel exposures to radiation as low as reasonably possible, especially in procedures such as cardiac catheterization, angiographic imaging for special procedures

  1. Automatic tool alignment in a backscatter X-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-11-17

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a medical device is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  2. Automatic tool alignment in a backscatter x-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-06-16

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a tool is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  3. The normalization of solar X-ray data from many experiments.

    NASA Technical Reports Server (NTRS)

    Wende, C. D.

    1972-01-01

    A conversion factor is used to convert Geiger (GM) tube count rates or ion chamber currents into units of the incident X-ray energy flux in a specified passband. A method is described which varies the passband to optimize these conversion factors such that they are relatively independent of the spectrum of the incident photons. This method was applied to GM tubes flown on Explorers 33 and 35 and Mariner 5 and to ion chambers flown on OSO 3 and OGO 4. Revised conversion factors and passbands are presented, and the resulting absolute solar X-ray fluxes based on these are shown to improve the agreement between the various experiments. Calculations have shown that, although the GM tubes on Explorer 33 viewed the Sun off-axis, the effective passband did not change appreciably, and the simple normalization of the count rates to the count rates of a similar GM tube on Explorer 35 was justified.

  4. Miniaturized, High-Speed, Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick

    2013-01-01

    A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum

  5. The geometry of three-dimensional measurement from paired coplanar x-ray images.

    PubMed

    Baumrind, S; Moffitt, F H; Curry, S

    1983-10-01

    This article outlines the geometric principles which underlie the process of making craniofacial measurements in three dimensions by combining information from pairs of coplanar x-ray images. The main focus is upon the rationale of the method rather than upon the computational details. We stress particularly the importance of having available accurate measurements as to the relative positions of the x-ray tubes and the film plane. The use of control arrays of radiopaque "points" whose projected images upon the film plane allow the retrospective calculation of the spatial relationship between the x-ray tubes and the film plane is explained. Finally, the question of correcting for movement of the subject between two films of an image pair is considered briefly.

  6. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  7. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    PubMed Central

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-01-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography. PMID:26315891

  8. X-ray transmission microscope development

    NASA Astrophysics Data System (ADS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-08-01

    This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.

  9. X-ray transmission microscope development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-01-01

    This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.

  10. Energy discriminating x-ray camera utilizing a cadmium telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Purkhet, Abderyim; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Wantanabe, Manabu; Nagao, Jiro; Nomiya, Seiichiro; Hitomi, Keitaro; Tanaka, Etsuro; Kawai, Toshiaki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-07-01

    An energy-discriminating x-ray camera is useful for performing monochromatic radiography using polychromatic x rays. This x-ray camera was developed to carry out K-edge radiography using iodine-based contrast media. In this camera, objects are exposed by a cone beam from a cerium x-ray generator, and penetrating x-ray photons are detected by a cadmium telluride detector with an amplifier unit. The optimal x-ray photon energy and the energy width are selected out using a multichannel analyzer, and the photon number is counted by a counter card. Radiography was performed by the detector scanning using an x-y stage driven by a two-stage controller, and radiograms obtained by energy discriminating are shown on a personal computer monitor. In radiography, the tube voltage and current were 60 kV and 36 μA, respectively, and the x-ray intensity was 4.7 μGy/s. Cerium K-series characteristic x rays are absorbed effectively by iodine-based contrast media, and iodine K-edge radiography was performed using x rays with energies just beyond iodine K-edge energy 33.2 keV.

  11. Optically Levitated Targets as a Source for High Brightness X-rays and a Platform for Mass-Limited Laser-interaction Experiments

    NASA Astrophysics Data System (ADS)

    Giltrap, Samuel; Stuart, Nick; Robinson, Tim; Armstrong, Chris; Hicks, George; Eardley, Sam; Gumbrell, Ed; Smith, Roland

    2016-10-01

    Here we report on the development of an optical levitation based x-ray and proton source, motivated by the requirement for a debris free, high spatial resolution, and low EMP source for x-ray radiography and proton production. Research at Imperial College has led to the development of a feedback controlled optical levitation trap which is capable of holding both solid (Glass beads) and liquid (silicon based oil) micro-targets ( 3-10um). The optical levitation trap has been successfully fielded in a high-intensity laser interaction experiment at Imperial College London and at the Vulcan Petawatt Laser system at the Rutherford Appleton Laboratory (RAL). Here we report on the results from that RAL run including; an x-ray source size of 10-15um with very good spherical symmetry when compared to wire targets, secondly very low EMP signal from isolated levitated targets (9 times less RF signal than a comparable wire target). At Imperial College we were also able to record an x-ray energy spectrum which produced an electron temperature of 0.48KeV, and performed interferometry of a shock evolving into a blast wave off an optically levitated droplet which allowed us to infer the electron density within the shock front.

  12. X ray based displacement measurement for hostile environments

    NASA Technical Reports Server (NTRS)

    Canistraro, Howard A.; Jordon, Eric H.; Pease, Douglas M.; Fralick, Gustave C.

    1992-01-01

    A new method on noncontacting, high temperature extensometry based on the focus and scanning of x rays is currently under development and shows great promise of overcoming limitations associated with available techniques. The chief advantage is the ability to make undisturbed measurements through stratified or flowing gases, smoke, and flame. The system is based on the ability to focus and scan low energy, hard x rays such as those emanating from copper or molybdenum sources. The x rays are focused into a narrow and intense line image which can be scanned onto targets that fluoresce secondary x ray radiation. The final goal of the system is the ability to conduct macroscopic strain measurements in hostile environments by utilizing two or more fluorescing targets. Current work is limited to displacement measurement of a single target with a resolution of 1.25 micro-m and a target temperature of 1200 C, directly through an open flame. The main advantage of the technique lies in the penetrating nature of x rays which are not affected by the presence of refracting gas layers, smoke, flame, or intense thermal radiation, all of which could render conventional extensometry methods inoperative or greatly compromise their performance.

  13. Stimulated Electronic X-Ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

    2013-12-01

    We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

  14. Shift focal spot X-ray tube to the imposition anode under long exposure

    NASA Astrophysics Data System (ADS)

    Obodovskiy, A. V.; Bessonov, V. B.; Larionov, I. A.

    2018-02-01

    X-ray non-destructive testing is an integral part of any modern industrial production. Microfocus X-ray sources make it possible to obtain projected images with an increased spatial resolution by using a direct geometric magnification during the survey. On the basis of the St. Petersburg State Electrotechnical University staff of the department of electronic devices and equipment has been designed model of microfocus X-ray computed tomography.

  15. Characteristics of a ceramic-substrate x-ray diode and its application to computed tomography

    NASA Astrophysics Data System (ADS)

    Watanabe, Manabu; Sato, Eiichi; Kodama, Hajime; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-09-01

    X-ray photon counting was performed using a silicon X-ray diode (Si-XD) at a tube current of 2.0 mA and tube voltages ranging from 50 to 70 kV. The Si-XD is a high-sensitivity Si photodiode selected for detecting X-ray photons, and Xray photons are directly detected using the Si-XD without a scintillator. Photocurrent from the diode is amplified using charge-sensitive and shaping amplifiers. To investigate the X-ray-electric conversion, we performed the event-pulseheight (EPH) analysis using a multichannel analyzer. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 10 min at a scan step of 0.5 mm and a rotation step of 1.0°. In PC-CT at a tube voltage of 70 kV, the image contrast of iodine media fell with increasing lower-level voltage of the event pulse using a comparator.

  16. Refractive Optics for Hard X-ray Transmission Microscopy

    NASA Astrophysics Data System (ADS)

    Simon, M.; Ahrens, G.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E.; Voigt, A.

    2011-09-01

    For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation—resulting in apertures greater than 1 mm—and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

  17. X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.

    2017-12-01

    We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical

  18. Apparatus for obtaining an X-ray image

    DOEpatents

    Watanabe, Eiji

    1979-01-01

    A computed tomography apparatus in which a fan-shaped X-ray beam is caused to pass through a section of an object, enabling absorption detection on the opposite side of the object by a detector comprising a plurality of discrete detector elements. An electron beam generating the X-ray beam by impacting upon a target is caused to rotate over the target.

  19. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... irradiation. Diagnostic source assembly means the tube housing assembly with a beam-limiting device attached. Diagnostic x-ray system means an x-ray system designed for irradiation of any part of the human body for the... diagnostic source assembly. Fluoroscopic irradiation time means the cumulative duration during an examination...

  20. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... irradiation. Diagnostic source assembly means the tube housing assembly with a beam-limiting device attached. Diagnostic x-ray system means an x-ray system designed for irradiation of any part of the human body for the... diagnostic source assembly. Fluoroscopic irradiation time means the cumulative duration during an examination...

  1. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... irradiation. Diagnostic source assembly means the tube housing assembly with a beam-limiting device attached. Diagnostic x-ray system means an x-ray system designed for irradiation of any part of the human body for the... diagnostic source assembly. Fluoroscopic irradiation time means the cumulative duration during an examination...

  2. Spherical grating based x-ray Talbot interferometry.

    PubMed

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-11-01

    Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh-Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose

  3. Burning plasmas with ultrashort soft-x-ray flashing

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Skupsky, S.

    2012-07-01

    Fast ignition with narrow-band coherent x-ray pulses has been revisited for cryogenic deuterium-tritium (DT) plasma conditions achieved on the OMEGA Laser System. In contrast to using hard-x-rays (hv = 3-6 keV) proposed in the original x-ray fast-ignition proposal, we find that soft-x-ray sources with hv ≈ 500 eV photons can be suitable for igniting the dense DT-plasmas achieved on OMEGA. Two-dimensional radiation-hydrodynamics simulations have identified the break-even conditions for realizing such a "hybrid" ignition scheme (direct-drive compression with soft-x-ray heating) with 50-μm-offset targets: ˜10 ps soft-x-ray pulse (hv ≈ 500 eV) with a total energy of 500-1000 J to be focused into a 10 μm spot-size. A variety of x-ray pulse parameters have also been investigated for optimization. It is noted that an order of magnitude increase in neutron yield has been predicted even with x-ray energy as low as ˜50 J. Scaling this idea to a 1 MJ large-scale target, a gain above ˜30 can be reached with the same soft-x-ray pulse at 1.65 kJ energy. Even though such energetic x-ray sources do not currently exist, we hope that the proposed ignition scheme may stimulate efforts on generating powerful soft-x-ray sources in the near future.

  4. Use of polarized radiation for increasing the sensitivity of multielement x-ray fluorescence analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ter-Saakov, A.A.; Glebov, M.V.

    1985-10-01

    An experimental x-ray fluorescence analysis facility has been developed using polarized radiation. A modernized small-sized REIS-I emitter is used as the x-ray genertor. Its characteristics are: a straight-through drift tube with a copper, molybdenum, or silver anode; and a controlled working voltage from 0 to 45 kV. The thickness of the inlet beryllium window is 100 um. Experiments were carried out on the facility on the optimization of fluorescence excitation conditions of biological samples. The investigations conducted of the dosimetric and spectral characteristics of the BS-1, BS-3, and BKh-7 x-ray tubes with copper, silver, and molybdenum anodes have shown thatmore » for the analysis in samples of biogenic elements, it is most efficient to use the BKh-7 and BS-1 tubes with a copper anode.« less

  5. Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.

    2010-04-01

    A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.

  6. Grazing-incidence small-angle X-ray scattering (GISAXS) on small periodic targets using large beams

    PubMed Central

    Soltwisch, Victor; Probst, Jürgen; Scholze, Frank; Krumrey, Michael

    2017-01-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nano­structured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all litho­graphically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g. for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint. PMID:28875030

  7. Grazing-incidence small-angle X-ray scattering (GISAXS) on small periodic targets using large beams.

    PubMed

    Pflüger, Mika; Soltwisch, Victor; Probst, Jürgen; Scholze, Frank; Krumrey, Michael

    2017-07-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nano-structured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all litho-graphically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g.  for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint.

  8. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-01

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  9. [The property and applications of the photovoltaic solar panel in the region of diagnostic X-ray].

    PubMed

    Hirota, Jun'ichi; Tarusawa, Kohetsu; Kudo, Kohsei

    2010-10-20

    In this study, the sensitivity in the diagnostic X-ray region of the single crystalline Si photovoltaic solar panel, which is expected to grow further, was measured by using an X-ray tube. The output voltage of the solar panel was clearly proportional to the tube voltage and a good time response in the irradiation time setting of the tube was measured. The factor which converts measured voltage to irradiation dose was extracted experimentally using a correction filter to investigate the ability of the solar panel as a dose monitor. The obtained conversion factors were N(S) = 13 ± 1[µV/µSv/s] for the serial and N(P) = 58 ± 2[µV/µSv/s] for the parallel connected solar panels, both with the Al 1 mm + Cu 0.1 mm correction filter, respectively. Therefore, a good dose dependence of the conversion factor was confirmed by varying the distance between the X-ray tube and the solar panel with that filter. In conclusion, a simple extension of our results pointed out the potential of a new concept of measurements using, for example, the photovoltaic solar panel, the direct dose measurement from X-ray tube and real time estimation of the exposed dose in IVR.

  10. K-edge subtraction synchrotron X-ray imaging in bio-medical research.

    PubMed

    Thomlinson, W; Elleaume, H; Porra, L; Suortti, P

    2018-05-01

    High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Accuracy of radiographic caries diagnosis using different X-ray generators.

    PubMed

    Svenson, B; Petersson, A

    1989-05-01

    Dental X-ray machines utilizing five different combinations of X-ray generators and tube voltages (Philips Oralix 65 kV, Siemens Heliodent EC 60 kV, Siemens Heliodent 70 kV, Soredex Minray DC 60 kV and Soredex Minray DC 70 kV) were compared with respect to the accuracy of radiographic diagnosis of proximal caries. Nine observers diagnosed proximal caries in radiographs of extracted premolars. The findings of the observers were compared to the actual presence or absence of caries. The ROC-curve technique was used to evaluate differences in diagnostic accuracy between the X-ray machines. The results showed small differences in diagnostic accuracy between the different X-ray generators but they proved to be statistically non-significant.

  12. A first evaluation of the analytical capabilities of the new X-ray fluorescence facility at International Atomic Energy Agency-Elettra Sincrotrone Trieste for multipurpose total reflection X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Marguí, Eva; Hidalgo, Manuela; Migliori, Alessandro; Leani, Juan José; Queralt, Ignasi; Kallithrakas-Kontos, Nikolaos; Streli, Christina; Prost, Josef; Karydas, Andreas Germanos

    2018-07-01

    The aim of the work is to present a systematic evaluation of the analytical capabilities of the new X-ray fluorescence facility jointly operated between the International Atomic Energy Agency and the Elettra Sincrotrone Trieste for multipurpose total reflection X-ray fluorescence analysis. The analytical performance of the XRF beamline end-station (IAEAXspe) was systematically evaluated under TXRF excitation geometry by analyzing different types of aqueous (lake, waste and fresh water) and solid (soil, vegetal, biological) certified reference materials using an excitation energy of 13.0 keV (for the purpose of multielemental analysis). The results obtained for both types of samples in terms of limits of detection and accuracy were also compared with those obtained using laboratory X-ray tube based TXRF systems with different features (including Mo and W X-ray tube systems). Taking advantage of the possibility to work under high vacuum, the IAEAXspe set-up instrumental sensitivity was also determined using an excitation energy of 6.2 keV to explore the possibilities for light elements determination. A clear improvement of the element detection limits is achieved when comparing this facility to conventional X-ray tube based TXRF systems highlighting the benefits of using the monoenergetic synchrotron exciting radiation and the ultra-high vacuum chamber in comparison with conventional laboratory systems. The results of the present work are discussed in view of further exploitation of the facility for different environmental and biological related applications.

  13. Fluorescent scanning x-ray tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji

    1995-02-01

    Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.

  14. The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector

    NASA Technical Reports Server (NTRS)

    Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.

    1991-01-01

    The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.

  15. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.

    PubMed

    Alnewaini, Zaid; Langer, Eric; Schaber, Philipp; David, Matthias; Kretz, Dominik; Steil, Volker; Hesser, Jürgen

    2017-03-01

    Dosimetric control of staff exposure during interventional procedures under fluoroscopy is of high relevance. In this paper, a novel ray casting approximation of radiation transport is presented and the potential and limitation vs. a full Monte Carlo transport and dose measurements are discussed. The x-ray source of a Siemens Axiom Artix C-arm is modeled by a virtual source model using single Gaussian-shaped source. A Geant4-based Monte Carlo simulation determines the radiation transport from the source to compute scatter from the patient, the table, the ceiling and the floor. A phase space around these scatterers stores all photon information. Only those photons are traced that hit a surface of phantom that represents medical staff in the treatment room, no indirect scattering is considered; and a complete dose deposition on the surface is calculated. To evaluate the accuracy of the approximation, both experimental measurements using Thermoluminescent dosimeters (TLDs) and a Geant4-based Monte Carlo simulation of dose depositing for different tube angulations of the C-arm from cranial-caudal angle 0° and from LAO (Left Anterior Oblique) 0°-90° are realized. Since the measurements were performed on both sides of the table, using the symmetry of the setup, RAO (Right Anterior Oblique) measurements were not necessary. The Geant4-Monte Carlo simulation agreed within 3% with the measured data, which is within the accuracy of measurement and simulation. The ray casting approximation has been compared to TLD measurements and the achieved percentage difference was -7% for data from tube angulations 45°-90° and -29% from tube angulations 0°-45° on the side of the x-ray source, whereas on the opposite side of the x-ray source, the difference was -83.8% and -75%, respectively. Ray casting approximation for only LAO 90° was compared to a Monte Carlo simulation, where the percentage differences were between 0.5-3% on the side of the x-ray source where the highest dose

  16. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    PubMed

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  17. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, A.L.; Gerardo, J.B.; Raymond, T.D.

    1992-12-29

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography is disclosed. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser. 8 figs.

  18. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, Arnold L.; Gerardo, James B.; Raymond, Thomas D.

    1992-01-01

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser.

  19. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    NASA Astrophysics Data System (ADS)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  20. Toward a fourth-generation x-ray source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monction, D. E.

    1999-05-19

    The field of synchrotron radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research that is possible with them. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the optical laser. Theoretical workmore » over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission (SASE) in flee-electron lasers. A major facility of this type based upon a superconducting linac could produce a cost-effective facility that spans wave-lengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotrons facilities, immense new scientific opportunities would result from fourth-generation sources.« less

  1. X-ray imaging of fibers

    NASA Astrophysics Data System (ADS)

    Moosman, B.; Song, Y.; Weathers, L.; Wessel, F.

    1996-11-01

    A pulsed x-ray backlighter was developed to image exploding wires and cryogenic fibers. The x-ray pulse width is between 10-20 ns, with an output of 100-150 mJ, mostly in the Al k-shell (1.486 keV). The backlighter is located 50 cm from the 20-50 micron diameter target (typically, a copper wire). A 15 micron Al filter eliminates UV emission from the backlighter and target. It is placed 3 cm from the target with SB-5 film directly behind it. From the optical density of the film, target absorption and density can be calculated. The spatial resolution of this system is better than 40 microns. The wire is exploded using a 10 kA, 1 microsecond pulser. Analysis with simultaneous Moire imaging will also be presented. Supported by Los Alamos National Laboratories

  2. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics

    PubMed Central

    Sowa, Katarzyna M.; Last, Arndt; Korecki, Paweł

    2017-01-01

    Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10–100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy. PMID:28322316

  3. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics.

    PubMed

    Sowa, Katarzyna M; Last, Arndt; Korecki, Paweł

    2017-03-21

    Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10-100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy.

  4. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  5. High-intensity soft-flash x-ray generator utilizing a low-vacuum diode

    NASA Astrophysics Data System (ADS)

    Isobe, Hiroshi; Sato, Eiichi; Shikoda, Arimitsu; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1991-04-01

    The fundamental studies on the high-intensity single flash x-ray generator having a low-vacuum diode for biomedical radiography are described. This generator consisted of the following essential components: a high-voltage power supply, a high-voltage pulser with a coaxial oil condenser of l5OnF, a low impedance transmission line made from four coaxial cables with lengths of 5. 6m and a total capacity of 292OpF, a mechanical booster pump, and a flash x-ray tube. The x-ray tube was of the diode-type which was connected to the booster pump with a constant pressure of 1. 7Pa and consisted of the following major devices: a long anode tip made of tungsten with a diameter (D) of less than 3. 0mm and a length (L) of 50mm, a long cathode tip made of tungsten with a D of 1. 0mm and a L of 40mm, a polyoxymethylene insulator, lead diaphragms, and an x-ray window made of polyethylene terephthalate. The coaxial oil condenser in the pulser was charged from 50 to 90kV, and the electric charges in the condenser were discharged to the flash x-ray tube through a transmission line by using a gas gap switch with a highcurrent capacity. The peak voltage increased according to increases in the condenser charged voltage and its value was more than the charged voltage. The peak current primarily increased when the charged voltage was increased, and its value was less than 4OkA. The pulse width of the flash x-rays ranged from 60 to 8Ons, and the time integrated x-ray intensity with a charged voltage of 90kV and an anode cathode (A-C) space of 3. 0mm was about 4pC/kg at 1. Om per pulse the source. The effective focal spot size was primarily determined by the diameter of the anode tip, and its value was about 3. 0mm when an anode diameter of 3. 0mm was employed.

  6. Mcps-range photon-counting x-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Enomoto, Toshiyuki; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-10-01

    10 Mcps photon counting was carried out using a detector consisting of a 2.0 mm-thick ZnO (zinc oxide) single-crystal scintillator and an MPPC (multipixel photon counter) module in an X-ray computed tomography (CT) system. The maximum count rate was 10 Mcps (mega counts per second) at a tube voltage of 70 kV and a tube current of 2.0 mA. Next, a photon-counting X-ray CT system consists of an X-ray generator, a turntable, a scan stage, a two-stage controller, the ZnO-MPPC detector, a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan with a scan velocity of 25 mm/s. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The exposure time for obtaining a tomogram was 600 s at a scan step of 0.5 mm and a rotation step of 1.0°, and photon-counting CT was accomplished using iodine-based contrast media.

  7. Target Z dependence of Xe L x-ray emission in heavy ion-atom collision near the Bohr velocity: influence of level matching

    NASA Astrophysics Data System (ADS)

    Ren, Jieru; Zhao, Yongtao; Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Wang, Xing; Xu, Ge; Wang, Yuyu; Liu, Shidong; Yu, Yang; Li, Yongfeng; Zhang, Xiaoan; Xu, Zhongfeng; Xiao, Guoqing

    2013-09-01

    X-ray yields for the projectile L-shell have been measured for collisions between Xe20+ and thick solid targets throughout the periodic table with incident energies near the Bohr velocity. The yields show a very pronounced cyclic dependence on the target atomic number. This result indicates that Xe L x-ray emission intensity is greatly enhanced either in near-symmetric collisions or if the binding energy of the Xe M-shell matches the L- or N-shell binding energy of the target.

  8. Dual Energy X-Ray Densitometry Apparatus and Method Using Single X-Ray Pulse

    DTIC Science & Technology

    1999-10-13

    future bone fracture risk. Bone mineral loss is associated with aging and is more rapid in post-menopausal women. In addition, bone mineral loss is... parameters of the x-ray tube of Figures 1 and 2 illustrating, respectively, the calculated current, voltage and power; and Figures 4(a) and 4(d) are...assumed to be that of water. The bone mineral is hydroxyapatite (Ca5P30i3H) with an assumed density of 0.25 g/cm3 based on the lumbar vertebra metrology

  9. Laser plasma cryogenic target on translating substrate for generation of continuously repetitive EUV and soft X-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amano, Sho

    2014-06-15

    To generate continuously repetitive EUV and soft X-ray pulses with various wavelengths from laser-produced plasmas, a one-dimensionally translating substrate system with a closed He gas cryostat that can continuously supply various cryogenic targets for ∼10 Hz laser pulses has been developed. The system was successfully operated at a lowest temperature of 15 K and at a maximum up-down speed of 12 mm/s. Solid Ar, Kr, and Xe layers were formed, and their growth rates and the laser crater sizes on them were studied. By optimization of the operational parameters in accordance with our design rule, it was shown that stablemore » output power was achieved continuously from the plasma emission at frequencies of 1–10 Hz. The average soft X-ray and EUV powers obtained were 19 mW at 3.2 nm, 33 mW at 10.0 nm, and 66 mW at 10.8 nm, with 10% bandwidths, from the Ar, Kr, and Xe solid targets, respectively, with a laser power of 1 W. We will be able to achieve higher frequencies using a high beam quality laser that produces smaller craters, and can expect higher powers. Although only Ar, Kr, and Xe gases were tested in this study, the target system achieved a temperature of 15 K and can thus solidify almost all target gases, apart from H and He, and can continuously supply the solid target. The use of various target materials will enable expansion of the EUV and soft X-ray emission wavelength range.« less

  10. Spherical grating based x-ray Talbot interferometry

    PubMed Central

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  11. Spherical grating based x-ray Talbot interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme formore » a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  12. Deviation Value for Conventional X-ray in Hospitals in South Sulawesi Province from 2014 to 2016

    NASA Astrophysics Data System (ADS)

    Bachtiar, Ilham; Abdullah, Bualkar; Tahir, Dahlan

    2018-03-01

    This paper describes the conventional X-ray machine parameters tested in the region of South Sulawesi from 2014 to 2016. The objective of this research is to know deviation of every parameter of conventional X-ray machine. The testing parameters were analyzed by using quantitative methods with participatory observational approach. Data collection was performed by testing the output of conventional X-ray plane using non-invasive x-ray multimeter. The test parameters include tube voltage (kV) accuracy, radiation output linearity, reproducibility and radiation beam value (HVL) quality. The results of the analysis show four conventional X-ray test parameters have varying deviation spans, where the tube voltage (kV) accuracy has an average value of 4.12%, the average radiation output linearity is 4.47% of the average reproducibility of 0.62% and the averaged of the radiation beam (HVL) is 3.00 mm.

  13. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  14. Design and Development of Thin Plastic Foil, Conical Approximation, High Through-out X-Ray Telescope: Light Weight, Thin Plastic Foil, X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Schnopper, Herbert W.; Barbera, Marco; Silver, Eric; Ingram, Russell; Christensen, Finn E.; Romaine, Suzanne; Cohen, Lester; Collura, Alfonso; Murray, Stephen S.; Brinton, John C. (Technical Monitor)

    2002-01-01

    We present results from a program to develop an X-ray telescope made from thin plastic shells. Our initial results have been obtained from multi-shell cylindrical lenses that are used in a point-to-point configuration to image the small focal spot of a an X-ray tube on a microchannel plate detector. We describe the steps that led up to the present design and present data from the tests that have been used to identify the properties of the plastic material that make it a suitable X-ray reflector. We discuss two applications of our technology to X-ray missions that are designed to address some of the scientific priorities set forth in NASA's long term plans for high energy astrophysics. One mission will observe in the 1 - 10 keV band, the other will extend up to ca. 100 keV.

  15. Quality assessment of digital X-ray chest images using an anthropomorphic chest phantom

    NASA Astrophysics Data System (ADS)

    Vodovatov, A. V.; Kamishanskaya, I. G.; Drozdov, A. A.; Bernhardsson, C.

    2017-02-01

    The current study is focused on determining the optimal tube voltage for the conventional X-ray digital chest screening examinations, using a visual grading analysis method. Chest images of an anthropomorphic phantom were acquired in posterior-anterior projection on four digital X-ray units with different detector types. X-ray images obtained with an anthropomorphic phantom were accepted by the radiologists as corresponding to a normal human anatomy, hence allowing using phantoms in image quality trials without limitations.

  16. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

  17. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, David Peter; Johnson, Erik D.; Guckel, Henry; Klein, Jonathan L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  18. SIGHT - A balloon borne hard X-ray telescope

    NASA Technical Reports Server (NTRS)

    Wilkerson, J.; Edberg, T. K.; Hurley, K.; Lin, R. P.; Parsons, A.

    1991-01-01

    The authors report on progress toward developing a large-area, high-pressure xenon gas scintillator for use in hard X-ray astrophysics. Proof test results for a low-mass pressure vessel are presented. The design of a high-voltage multiplier board operating inside the scintillation chamber is discussed. The development of tetrakis-dimethylamine-thylene (TMAE)-based proportional tubes for detecting primary scintillation in the xenon is described. Finally, Monte Carlo tests of a scheme to use conventional photomultiplier tubes are discussed.

  19. Diagnostic value of chest ultrasound after cardiac surgery: a comparison with chest X-ray and auscultation.

    PubMed

    Vezzani, Antonella; Manca, Tullio; Brusasco, Claudia; Santori, Gregorio; Valentino, Massimo; Nicolini, Francesco; Molardi, Alberto; Gherli, Tiziano; Corradi, Francesco

    2014-12-01

    Chest auscultation and chest x-ray commonly are used to detect postoperative abnormalities and complications in patients admitted to intensive care after cardiac surgery. The aim of the study was to evaluate whether chest ultrasound represents an effective alternative to bedside chest x-ray to identify early postoperative abnormalities. Diagnostic accuracy of chest auscultation and chest ultrasound were compared in identifying individual abnormalities detected by chest x-ray, considered the reference method. Cardiac surgery intensive care unit. One hundred fifty-one consecutive adult patients undergoing cardiac surgery. All patients included were studied by chest auscultation, ultrasound, and x-ray upon admission to intensive care after cardiac surgery. Six lung pathologic changes and endotracheal tube malposition were found. There was a highly significant correlation between abnormalities detected by chest ultrasound and x-ray (k = 0.90), but a poor correlation between chest auscultation and x-ray abnormalities (k = 0.15). Chest auscultation may help identify endotracheal tube misplacement and tension pneumothorax but it may miss most major abnormalities. Chest ultrasound represents a valid alternative to chest x-ray to detect most postoperative abnormalities and misplacements. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Portable X-Ray, K-Edge Heavy Metal Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, V.

    The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precisemore » assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available.« less

  1. Technical Note: Effect of explicit M and N-shell atomic transitions on a low-energy x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Peter G. F., E-mail: peter.watson@mail.mcgill.ca; Seuntjens, Jan

    Purpose: In EGSnrc, atomic transitions to and from the M and N-shells are treated in an average way by default. This approach is justified in which the energy difference between explicit and average M and N-shell binding energies is less than 1 keV, and for most applications can be considered negligible. However, for simulations of low energy x-ray sources on thin, high-Z targets, characteristic x-rays can make up a significant portion of the source spectra. As of release V4-2.4.0, EGSnrc has included an option to enable a more complete algorithm of all atomic transitions available in the EADL compilation. Inmore » this paper, the effect of M and N-shell averaging on the calculation of half-value layer (HVL) and relative depth dose (RDD) curve of a 50 kVp intraoperative x-ray tube with a thin gold target was investigated. Methods: A 50 kVp miniature x-ray source with a gold target (The INTRABEAM System, Carl Zeiss, Germany) was modeled with the EGSnrc user code cavity, both with and without M and N-shell averaging. From photon fluence spectra simulations, the source HVLs were determined analytically. The same source model was then used with egs-chamber to calculate RDD curves in water. Results: A 4% increase of HVL was reported when accounting for explicit M and N-shell transitions, and up to a 9% decrease in local relative dose for normalization at 3 mm depth in water. Conclusions: The EGSnrc default of using averaged M and N-shell binding energies has an observable effect on the HVL and RDD of a low energy x-ray source with high-Z target. For accurate modeling of this class of devices, explicit atomic transitions should be included.« less

  2. 3rd International Conference on X-ray Technique

    NASA Astrophysics Data System (ADS)

    Potrakhov, N. N.; Gryaznov, A. Yu; Lisenkov, A. A.; Kostrin, D. K.

    2017-02-01

    In this preface a brief history, modern aspects and future tendencies in development of the X-ray technique as seen from the 3rd International Conference on X-ray Technique that was held on 24-25 November 2016 in Saint Petersburg, Russia are described On 24-25 November 2016 in Saint Petersburg on the basis of Saint Petersburg State Electrotechnical University “LETI” n. a. V. I. Ulyanov (Lenin) was held the 3rd International Conference on X-ray Technique. The tradition to hold a similar conference in our country was laid in Soviet times. The last of them, the All-Union Conference on the Prospects of X-ray Tubes and Equipment was organized and held more than a quarter century ago - on 21-23 November 1999, at the initiative and under the leadership of the chief engineer of the Leningrad association of electronic industry “Svetlana” Borovsky Alexander Ivanovich and the chief of special design bureau of X-ray devices of “Svetlana” Shchukin Gennady Anatolievich. The most active part in the organization and work of the conference played members of the department of X-ray and electron beam instruments of Leningrad Electrotechnical Institute “LETI” (the former name of Saint Petersburg State Electrotechnical University “LETI”), represented by head of the department professor Ivanov Stanislav Alekseevich.

  3. TU-AB-BRC-07: Efficiency of An IAEA Phase-Space Source for a Low Energy X-Ray Tube Using Egs++

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, PGF; Renaud, MA; Seuntjens, J

    Purpose: To extend the capability of the EGSnrc C++ class library (egs++) to write and read IAEA phase-space files as a particle source, and to assess the relative efficiency gain in dose calculation using an IAEA phase-space source for modelling a miniature low energy x-ray source. Methods: We created a new ausgab object to score particles exiting a user-defined geometry and write them to an IAEA phase-space file. A new particle source was created to read from IAEA phase-space data. With these tools, a phase-space file was generated for particles exiting a miniature 50 kVp x-ray tube (The INTRABEAM System,more » Carl Zeiss). The phase-space source was validated by comparing calculated PDDs with a full electron source simulation of the INTRABEAM. The dose calculation efficiency gain of the phase-space source was determined relative to the full simulation. The efficiency gain as a function of i) depth in water, and ii) job parallelization was investigated. Results: The phase-space and electron source PDDs were found to agree to 0.5% RMS, comparable to statistical uncertainties. The use of a phase-space source for the INTRABEAM led to a relative efficiency gain of greater than 20 over the full electron source simulation, with an increase of up to a factor of 196. The efficiency gain was found to decrease with depth in water, due to the influence of scattering. Job parallelization (across 2 to 256 cores) was not found to have any detrimental effect on efficiency gain. Conclusion: A set of tools has been developed for writing and reading IAEA phase-space files, which can be used with any egs++ user code. For simulation of a low energy x-ray tube, the use of a phase-space source was found to increase the relative dose calculation efficiency by factor of up to 196. The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant No. 432290).« less

  4. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Haugh and M. B. Schneider

    2008-10-31

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. Amore » multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less

  5. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  6. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, Glenn D.; Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  7. Searching for X-ray emission from AGB stars

    NASA Astrophysics Data System (ADS)

    Ramstedt, S.; Montez, R.; Kastner, J.; Vlemmings, W. H. T.

    2012-07-01

    Context. Magnetic fields have been measured around asymptotic giant branch (AGB) stars of all chemical types using maser polarization observations. If present, a large-scale magnetic field would lead to X-ray emission, which should be observable using current X-ray observatories. Aims: The aim is to search the archival data for AGB stars that are intrinsic X-ray emitters. Methods: We have searched the ROSAT, CXO, and XMM-Newton archives for serendipitous X-ray observations of a sample of ~500 AGB stars. We specifically searched for the AGB stars detected with GALEX. The data is calibrated, analyzed and the X-ray luminosities and temperatures are estimated as functions of the circumstellar absorption. Results: We identify 13 AGB stars as having either serendipitous or targeted observations in the X-ray data archives, however for a majority of the sources the detailed analysis show that the detections are questionable. Two new sources are detected by ROSAT: T Dra and R UMa. The spectral analysis suggests that the emission associated with these sources could be due to coronal activity or interaction across a binary system. Conclusions: Further observations of the detected sources are necessary to clearly determine the origin of the X-ray emission. Moreover, additional objects should be subject to targeted X-ray observations in order to achieve better constraints for the magnetic fields around AGB stars. Appendices are available in electronic form at http://www.aanda.org

  8. Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharrati, Hedi; Agrebi, Amel; Karaoui, Mohamed-Karim

    2007-04-15

    X-ray buildup factors of lead in broad beam geometry for energies from 15 to 150 keV are determined using the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C). The obtained buildup factors data are fitted to a modified three parameter Archer et al. model for ease in calculating the broad beam transmission with computer at any tube potentials/filters combinations in diagnostic energies range. An example for their use to compute the broad beam transmission at 70, 100, 120, and 140 kVp is given. The calculated broad beam transmission is compared to data derived from literature, presenting good agreement.more » Therefore, the combination of the buildup factors data as determined and a mathematical model to generate x-ray spectra provide a computationally based solution to broad beam transmission for lead barriers in shielding x-ray facilities.« less

  9. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  10. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisniega, A.; Vaquero, J. J., E-mail: juanjose.vaquero@uc3m.es; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007

    2014-01-15

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modifiedmore » to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and

  11. Protection of the electronic components of measuring equipment from the X-ray radiation

    NASA Astrophysics Data System (ADS)

    Perez Vasquez, N. O.; Kostrin, D. K.; Uhov, A. A.

    2018-02-01

    In this work the effect of X-ray radiation on the operation of integrated circuits of the measurement equipment is discussed. The results of the calculations of a shielding system, allowing using integrated circuits with a high degree of integration in the vicinity of the X-ray source, are shown. The results of the verification of two measurement devices that was used for more than five years in the facility for training and testing of X-ray tubes are presented.

  12. Ground calibrations of the X-ray detector system of the Solar Intensity X-ray Spectrometer (SIXS) on board BepiColombo

    NASA Astrophysics Data System (ADS)

    Huovelin, Juhani; Lehtolainen, Arto; Genzer, Maria; Korpela, Seppo; Esko, Eero; Andersson, Hans

    2014-05-01

    SIXS includes X-ray and particle detector systems for the BepiColombo Mercury Planetary Orbiter (MPO). Its task is to monitor the direct solar X-rays and energetic particles in a wide field of view in the energy range of 1-20 keV (X-rays), 0.1-3 MeV (electrons) and 1-30 MeV (protons). The main purpose of these measurements is to provide quantitative information on the high energy radiation incident on Mercury's surface which causes the X-ray glow of the planet measured by the MIXS instrument. The X-ray and particle measurements of SIXS are also useful for investigations of the solar corona and the magnetosphere of Mercury. The ground calibrations of the X-ray detectors of the SIXS flight model were carried out in the X-ray laboratory of the Helsinki University during May and June 2012. The aim of the ground calibrations was to characterize the performance of the SIXS instrument's three High-Purity Silicon PIN X-ray detectors and verify that they fulfil their scientific performance requirements. The calibrations included the determination of the beginning of life energy resolution at different operational temperatures, determination of the detector's sensitivity within the field of view as a function of the off-axis and roll angles, pile-up tests for determining the speed of the read out electronics, measurements of the low energy threshold of the energy scale, a cross-calibration with the SMART-1 XSM flight spare detector, and the determination of the temperature dependence of the energy scale. An X-ray tube and the detectors' internal Ti coated 55Fe calibration sources were used as primary X-ray sources. In addition, two external fluorescence sources were used as secondary X-ray sources in the determination of the energy resolutions and in the comparison calibration with the SMART-1 XSM. The calibration results show that the detectors fulfill all of the scientific performance requirements. The ground calibration data combined with the instrument house-keeping data

  13. Studies in useful hard x-ray induced chemistry

    NASA Astrophysics Data System (ADS)

    Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong

    2013-06-01

    The observed rapid decomposition of potassium chlorate (via 2KClO3 + h ν --> 2KCl +3O2) via synchrotron hard x-ray irradiation (>10 keV) has enabled experiments that are developing novel and useful hard x-ray chemistry. We have observed a number of radiation-induced in situ decomposition reactions in various substances which release O2, H2, N2, NH3, and H2O in a diamond anvil cell (DAC) at ambient and high pressures. These novel acatalytic and isothermal reactions represent a highly controllable, penetrating, and focused method to initiate chemistry (including x-ray induced combustion) in sealed and/or isolated chambers which maintain matter under extreme conditions. During our studies, we have typically observed a slowing of decomposition with pressure including phase dependent decomposition of KClO3. Energy dependent studies have observed an apparent resonance near 15 keV at which the decomposition rate is maximized. This may enable use of much lower flux and portable x-ray sources (e.g. x-ray tubes) in larger scale experiments. These developments support novel means to load DACs and control chemical reactions providing novel routes of synthesis of novel materials under extreme conditions.

  14. Template For Aiming An X-Ray Machine

    NASA Technical Reports Server (NTRS)

    Morphet, W. J.

    1994-01-01

    Relatively inexpensive template helps in aligning x-ray machine with phenolic ring to be inspected for flaws. Phenolic ring in original application part of rocket nozzle. Concept also applicable to x-ray inspection of other rings. Template contains alignment holes for adjusting orientation, plus target spot for adjusting lateral position, of laser spotting beam. (Laser spotting beam coincides with the x-ray beam, turned on later, after alignment completed.) Use of template decreases positioning time and error, providing consistent sensitivity for detection of flaws.

  15. Amended Results for Hard X-Ray Emission by Non-thermal Thick Target Recombination in Solar Flares

    NASA Astrophysics Data System (ADS)

    Reep, J. W.; Brown, J. C.

    2016-06-01

    Brown & Mallik and the corresponding corrigendum Brown et al. presented expressions for non-thermal recombination (NTR) in the collisionally thin- and thick-target regimes, claiming that the process could account for a substantial part of the hard X-ray continuum in solar flares usually attributed entirely to thermal and non-thermal bremsstrahlung (NTB). However, we have found the thick-target expression to become unphysical for low cut-offs in the injected electron energy spectrum. We trace this to an error in the derivation, derive a corrected version that is real-valued and continuous for all photon energies and cut-offs, and show that, for thick targets, Brown et al. overestimated NTR emission at small photon energies. The regime of small cut-offs and large spectral indices involve large (reducing) correction factors but in some other thick-target parameter regimes NTR/NTB can still be of the order of unity. We comment on the importance of these results to flare and microflare modeling and spectral fitting. An empirical fit to our results shows that the peak NTR contribution comprises over half of the hard X-ray signal if δ ≳ 6{≤ft(\\tfrac{{E}0c}{4{keV}}\\right)}0.4.

  16. Studying the energy dependence of intrinsic conversion efficiency of single crystal scintillators under X-ray excitation

    NASA Astrophysics Data System (ADS)

    Kalyvas, N.; Valais, I.; David, S.; Michail, Ch.; Fountos, G.; Liaparinos, P.; Kandarakis, I.

    2014-05-01

    Single crystal scintilators are used in various radiation detectors applications. The efficiency of the crystal can be determined by the Detector Optical Gain (DOG) defined as the ratio of the emitted optical photon flux over the incident radiation photons flux. A parameter affecting DOG is the intrinsic conversion efficiency ( n C ) giving the percentage of the X-ray photon power converted to optical photon power. n C is considered a constant value for X-ray energies in the order of keV although a non-proportional behavior has been reported. In this work an analytical model, has been utilized to single crystals scintillators GSO:Ce, LSO:Ce and LYSO:Ce to examine whether the intrinsic conversion efficiency shows non proportional behavior under X-ray excitation. DOG was theoretically calculated as a function of the incident X-ray spectrum, the X-ray absorption efficiency, the energy of the produced optical photons and the light transmission efficiency. The theoretical DOG values were compared with experimental data obtained by irradiating the crystals with X-rays at tube voltages from 50 to 140 kV and by measuring the light energy flux emitted from the irradiated screen. An initial value for n C (calculated from literature data) was assumed for the X-ray tube voltage of 50 kV. For higher X-ray tube voltages the optical photon propagation phenomena was assumed constant and any deviations between experimental and theoretical data were associated with changes in the intrinsic conversion efficiency. The experimental errors were below 7% for each experimental setup. The behavior of n C values for LSO:Ce and LYSO:Ce were found very similar, i.e., ranging with values from 0.089 at 50 kV to 0.015 at 140 kV, while for GSO:Ce, n C demonstrated a peak at 80 kV.

  17. Hard-X-ray dark-field imaging using a grating interferometer.

    PubMed

    Pfeiffer, F; Bech, M; Bunk, O; Kraft, P; Eikenberry, E F; Brönnimann, Ch; Grünzweig, C; David, C

    2008-02-01

    Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early stage with several techniques, dark-field imaging, or more generally scattering-based imaging, with hard X-rays and good signal-to-noise ratio, in practice still remains a challenging task even at highly brilliant synchrotron sources. In this letter, we report a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. Because the image contrast is formed through the mechanism of small-angle scattering, it provides complementary and otherwise inaccessible structural information about the specimen at the micrometre and submicrometre length scale. Our approach is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme. Applications to X-ray medical imaging, industrial non-destructive testing and security screening are discussed.

  18. An MCNP-based model of a medical linear accelerator x-ray photon beam.

    PubMed

    Ajaj, F A; Ghassal, N M

    2003-09-01

    The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.

  19. Miniaturized High-Speed Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  20. X-Ray Diffraction Reference Intensity Ratios of Amorphous and Poorly Crystalline Phases: Implications for CheMin on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Achilles, C. N.; Chipera, S. J.; Ming, D. W.; Rampe, E. B.

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument.

  1. GAMMA AND X-RAY DOSIMETER AND DOSIMETRIC METHOD

    DOEpatents

    Taplin, G.V.; Douglas, C.H.; Sigoloff, S.C.

    1958-08-19

    An improvement in colorimetric gamma and x-ray dosimeter systems and a self-contained. hand carried dostmeter of the afore-mentioned type ts described. A novel point of the invention ltes in the addition of specific quantities of certain normalizing agents to the two phase chlorinated hydro-carbon-aqueous dyc colortmetric dosimeter to eliminate the after reaction and thereby extend the utility of such systein. The structure of the two phase colorimetric dosimeter tubes and the carrying case for the tubes of the portable dosimeter are unique features.

  2. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    NASA Astrophysics Data System (ADS)

    Py, J.; Groetz, J.-E.; Hubinois, J.-C.; Cardona, D.

    2015-04-01

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1-20 g L-1 is given.

  3. Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J.; Schneider, M. B.

    2008-10-15

    The static x-ray imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the x rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The charge coupled device (CCD) chip is an x-ray sensitive silicon sensor, with a large format array (2kx2k), 24 {mu}m square pixels, and 15 {mu}mmore » thick. A multianode Manson x-ray source, operating up to 10 kV and 10 W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/{delta}E{approx_equal}10. The x-ray beam intensity was measured using an x-ray photodiode that has an accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The x-ray beam provides full CCD illumination and is flat, within {+-}1% maximum to minimum. The spectral efficiency was measured at ten energy bands ranging from 930 to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an x-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less

  4. Evaluation of Mean Glandular Dose and Modulation Transfer Function for Different Tube Potentials and Target-Filter Combinations in Computed Radiography Mammography

    PubMed Central

    Abdul Aziz,, Siti Aishah; Mohd Saparudin, Abdul Khaliq; Harun, Ahmad Zaky

    2013-01-01

    Background: Different target-filter combinations in computed radiography have different impacts on the dose and image quality in digital radiography. This study aims to evaluate the mean glandular dose (MGD) and modulation transfer function (MTF) of various target-filter combinations by investigating the signal intensities of X-ray beams. Methods: General Electric (GE) Senographe DMR Plus mammography unit was used for MGD and MTF evaluation. The measured MGD was compared with the dose reference level (DRL), whereas the MTF was evaluated using ImageJ 1.46o software. A modified Mammography Accreditation Phantom RMI 156 was exposed using different target-filter combinations of molybdenum-molybdenum (Mo-Mo), molybdenum-rhodium (Mo-Rh) and rhodium-rhodium (Rh-Rh) at two different tube voltages, 26 kV and 32 kV with 50 mAs. Results: In the MGD evaluations, all target-filters gave an MGD value of < 1.5 mGy. The one-way ANOVA test showed a highly significant interaction between the MGD and the kilovoltage and target-filter material used (26 kV: F (2,12) = 49,234, P = 0.001;32 kV: F (2,12) = 89,972, P = 0.001). A Tukey post-hoc test revealed that the MGD for 26 kV and 32 kV was highly affected by the target-filter combinations. The test of homogeneity of variances indicates that the MGD varies significantly for 26 kV and 32 kV images (0.045 and 0.030 (P < 0.05), respectively). However, the one-way ANOVA for the MTF shows that no significant difference exists between the target-filter combinations used with 26 kV and 32 kV images either in parallel or perpendicular to the chest wall side F (2,189) = 0.26, P > 0.05). Conclusion: Higher tube voltage and atomic number target-filter yield higher MGD values. However, the MTF is independent of the X-ray energy and the type of target-filter combinations used. PMID:23966821

  5. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.

    2000-01-01

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  6. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula.

    PubMed

    Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell

    2000-06-20

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  7. Simulation study of 3-5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-01

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3-5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (˜nc/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using Hydra, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from Cretin, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3-5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ˜100-150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (˜20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3-5 keV x-ray source on NIF.

  8. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Bartlesville, OK; Lewis, Cris [Los Alamos, NM; Mahan, Cynthia A [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM

    2009-04-14

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow-separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  9. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Bartlesville, OK; Lewis, Cris [Los Alamos, NM; Mahan, Cynthia A [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM

    2011-04-26

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  10. PATIENT RADIATION DOSE FROM CHEST X-RAY EXAMINATIONS IN THE WEST BANK-PALESTINE.

    PubMed

    Lahham, Adnan; Issa, Ahlam; ALMasri, Hussein

    2018-02-01

    Radiation doses to patients resulting from chest X-ray examinations were evaluated in four medical centers in the West Bank and East Jerusalem-Palestine. Absorbed organ and effective doses were calculated for a total of 428 adult male and female patients by using commercially available Monte Carlo based softwares; CALDOSE-X5 and PCXMC-2.0, and hermaphrodite mathematical adult phantoms. Patients were selected randomly from medical records in the time period from November 2014 to February 2015. A database of surveyed patients and exposure factors has been established and includes: patient's height, weight, age, gender, X-ray tube voltage, electric current (mAs), examination projection (anterior posterior (AP), posterior anterior (PA), lateral), X-ray tube filtration thickness in each X-ray equipment, anode angle, focus to skin distance and X-ray beam size. The average absorbed doses in the whole body from different projections were: 0.06, 0.07 and 0.11 mGy from AP, PA and lateral projections, respectively. The average effective dose for all surveyed patients was 0.14 mSv for all chest X-ray examinations and projections in the four investigated medical centers. The effect of projection geometry was also investigated. The average effective doses for AP, PA and lateral projections were 0.14, 0.07 and 0.22 mSv, respectively. The collective effective dose estimated for the exposed population was ~60 man-mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  12. On angiography with a Thomson laser-electron X-ray generator

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. V.; Vinogradov, S. L.; D'yachkov, N. V.; Polunina, A. V.; Postnov, A. A.

    2017-02-01

    We consider a possibility of application of laser-electron X-ray generators for diagnosing the vessel status of internal organs. It is shown that modern lasers and linear accelerators can be used for the development of angiographic instruments of a new type with an increased spatial and temporal resolution while maintaining or reducing the radiation load on the patient and medical staff. Such improvements in diagnostic and ambient factors cannot be achieved with the use of X-ray tubes. All particular estimates and calculations have been performed for a contrast agent based on iodine compounds.

  13. A novel vacuum spectrometer for total reflection x-ray fluorescence analysis with two exchangeable low power x-ray sources for the analysis of low, medium, and high Z elements in sequence

    NASA Astrophysics Data System (ADS)

    Wobrauschek, P.; Prost, J.; Ingerle, D.; Kregsamer, P.; Misra, N. L.; Streli, C.

    2015-08-01

    The extension of the detectable elemental range with Total Reflection X-ray Fluorescence (TXRF) analysis is a challenging task. In this paper, it is demonstrated how a TXRF spectrometer is modified to analyze elements from carbon to uranium. Based on the existing design of a vacuum TXRF spectrometer with a 12 specimen sample changer, the following components were renewed: the silicon drift detector with 20 mm2 active area and having a special ultra-thin polymer window allowing the detection of elements from carbon upwards. Two exchangeable X-ray sources guarantee the efficient excitation of both low and high Z elements. These X-ray sources were two light-weighted easily mountable 35 W air-cooled low-power tubes with Cr and Rh anodes, respectively. The air cooled tubes and the Peltier-cooled detector allowed to construct a transportable tabletop spectrometer with compact dimensions, as neither liquid nitrogen cooling for the detector nor a water cooling circuit and a bulky high voltage generator for the X-ray tubes are required. Due to the excellent background conditions as a result of the TXRF geometry, detection limits of 150 ng for C, 12 ng for F, and 3.3 ng for Na have been obtained using Cr excitation in vacuum. For Rh excitation, the detection limits of 90 pg could be achieved for Sr. Taking 10 to 20 μl of sample volume, extrapolated detection limits in the ng/g (ppb) range are resulting in terms of concentration.

  14. Simulation of a complete X-ray digital radiographic system for industrial applications.

    PubMed

    Nazemi, E; Rokrok, B; Movafeghi, A; Choopan Dastjerdi, M H

    2018-05-19

    Simulating X-ray images is of great importance in industry and medicine. Using such simulation permits us to optimize parameters which affect image's quality without the limitations of an experimental procedure. This study revolves around a novel methodology to simulate a complete industrial X-ray digital radiographic system composed of an X-ray tube and a computed radiography (CR) image plate using Monte Carlo N Particle eXtended (MCNPX) code. In the process of our research, an industrial X-ray tube with maximum voltage of 300 kV and current of 5 mA was simulated. A 3-layer uniform plate including a polymer overcoat layer, a phosphor layer and a polycarbonate backing layer was also defined and simulated as the CR imaging plate. To model the image formation in the image plate, at first the absorbed dose was calculated in each pixel inside the phosphor layer of CR imaging plate using the mesh tally in MCNPX code and then was converted to gray value using a mathematical relationship determined in a separate procedure. To validate the simulation results, an experimental setup was designed and the images of two step wedges created out of aluminum and steel were captured by the experiments and compared with the simulations. The results show that the simulated images are in good agreement with the experimental ones demonstrating the ability of the proposed methodology for simulating an industrial X-ray imaging system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. High-sensitive computed tomography system using a silicon-PIN x-ray diode

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    A low-dose-rate X-ray computed tomography (CT) system is useful for reducing absorbed dose for patients. The CT system with a tube current of 1.91 mA was developed using a silicon-PIN X-ray diode (Si-PIN-XD). The Si-PIN-XD is a selected high-sensitive Si-PIN photodiode (PD) for detecting X-ray photons. X-ray photons are detected directly using the Si-PIN-XD without a scintillator, and the photocurrent from the diode is amplified using current-voltage and voltage-voltage amplifiers. The output voltage is converted into logical pulses using a voltage-frequency converter with maximum frequency of 500 kHz, and the frequency is proportional to the voltage. The pulses from the converter are sent to differentiator with a time constant of 1 μs to generate short positive pulses for counting, and the pulses are counted using a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 5 min at a scan step of 0.5 mm and a rotation step of 3.0°. The tube current and voltage were 1.91 mA and 100 kV, respectively, and gadolinium K-edge CT was carried out using filtered X-ray spectra with a peak energy of 52 keV.

  16. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  17. X-ray microscopy of live biological micro-organisms

    NASA Astrophysics Data System (ADS)

    Raja Al-Ani, Ma'an Nassar

    Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.

  18. Characterization of X-ray emission from laser generated plasma

    NASA Astrophysics Data System (ADS)

    Cannavò, Antonino; Torrisi, Lorenzo; Ceccio, Giovanni; Cutroneo, Mariapompea; Calcagno, Lucia; Sciuto, Antonella; Mazzillo, Massimo

    2018-01-01

    X-ray emission from laser generated plasma was studied at low (1010 W/cm2) and high (1018 W/cm2) intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  19. Glandular radiation dose in tomosynthesis of the breast using tungsten targets.

    PubMed

    Sechopoulos, Ioannis; D'Orsi, Carl J

    2008-10-24

    With the advent of new detector technology, digital tomosynthesis imaging of the breast has, in the past few years, become a technique intensely investigated as a replacement for planar mammography. As with all other x-ray-based imaging methods, radiation dose is of utmost concern in the development of this new imaging technology. For virtually all development and optimization studies, knowledge of the radiation dose involved in an imaging protocol is necessary. A previous study characterized the normalized glandular dose in tomosynthesis imaging and its variation with various breast and imaging system parameters. This characterization was performed with x-ray spectra generated by molybdenum and rhodium targets. In the recent past, many preliminary patient studies of tomosynthesis imaging have been reported in which the x-ray spectra were generated with x-ray tubes with tungsten targets. The differences in x-ray distribution among spectra from these target materials make the computation of new normalized glandular dose values for tungsten target spectra necessary. In this study we used previously obtained monochromatic normalized glandular dose results to obtain spectral results for twelve different tungsten target x-ray spectra. For each imaging condition, two separate values were computed: the normalized glandular dose for the zero degree projection angle (DgN0), and the ratio of the glandular dose for non-zero projection angles to the glandular dose for the zero degree projection (the relative glandular dose, RGD(alpha)). It was found that DgN0 is higher for tungsten target x-ray spectra when compared with DgN0 values for molybdenum and rhodium target spectra of both equivalent tube voltage and first half value layer. Therefore, the DgN0 for the twelve tungsten target x-ray spectra and different breast compositions and compressed breast thicknesses simulated are reported. The RGD(alpha) values for the tungsten spectra vary with the parameters studied in a

  20. Energetics of impulsive solar flares: Correlating BATSE hard x-ray bursts and the solar atmosphere's soft x-ray response

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth

    1996-01-01

    This investigation has involved the correlation of BATSE-observed solar hard X-ray emission with the characteristics of soft X-ray emitting plasma observed by the Yohkoh Bragg Crystal Spectrometers. The goal was to test the hypothesis that localized electron beam heating is the dominant energy transport mechanism in impulsive flares, as formulated in the thick-target electron-heated model of Brown.

  1. Microfocus/Polycapillary-Optic Crystallographic X-Ray System

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Gubarev, Mikhail; Ciszak, Ewa

    2005-01-01

    A system that generates an intense, nearly collimated, nearly monochromatic, small-diameter x-ray beam has been developed for use in macromolecular crystallography. A conventional x-ray system for macromolecular crystallography includes a rotating-anode x-ray source, which is massive (.500 kg), large (approximately 2 by 2 by 1 m), and power-hungry (between 2 and 18 kW). In contrast, the present system generates a beam of the required brightness from a microfocus source, which is small and light enough to be mounted on a laboratory bench, and operates at a power level of only tens of watts. The figure schematically depicts the system as configured for observing x-ray diffraction from a macromolecular crystal. In addition to the microfocus x-ray source, the system includes a polycapillary optic . a monolithic block (typically a bundle of fused glass tubes) that contains thousands of straight or gently curved capillary channels, along which x-rays propagate with multiple reflections. This particular polycapillary optic is configured to act as a collimator; the x-ray beam that emerges from its output face consists of quasi-parallel subbeams with a small angular divergence and a diameter comparable to the size of a crystal to be studied. The gap between the microfocus x-ray source and the input face of the polycapillary optic is chosen consistently with the focal length of the polycapillary optic and the need to maximize the solid angle subtended by the optic in order to maximize the collimated x-ray flux. The spectrum from the source contains a significant component of Cu K (photon energy is 8.08 keV) radiation. The beam is monochromatized (for Cu K ) by a nickel filter 10 m thick. In a test, this system was operated at a power of 40 W (current of 897 A at an accelerating potential of 45 kV), with an anode x-ray spot size of 41+/-2 microns. Also tested, in order to provide a standard for comparison, was a commercial rotating-anode x-ray crystallographic system with a

  2. X-ray beam equalization for digital fluoroscopy

    NASA Astrophysics Data System (ADS)

    Molloi, Sabee Y.; Tang, Jerry; Marcin, Martin R.; Zhou, Yifang; Anvar, Behzad

    1996-04-01

    The concept of radiographic equalization has previously been investigated. However, a suitable technique for digital fluoroscopic applications has not been developed. The previously reported scanning equalization techniques cannot be applied to fluoroscopic applications due to their exposure time limitations. On the other hand, area beam equalization techniques are more suited for digital fluoroscopic applications. The purpose of this study is to develop an x- ray beam equalization technique for digital fluoroscopic applications that will produce an equalized radiograph with minimal image artifacts and tube loading. Preliminary unequalized images of a humanoid chest phantom were acquired using a digital fluoroscopic system. Using this preliminary image as a guide, an 8 by 8 array of square pistons were used to generate masks in a mold with CeO2. The CeO2 attenuator thicknesses were calculated using the gray level information from the unequalized image. The generated mask was positioned close to the focal spot (magnification of 8.0) in order to minimize edge artifacts from the mask. The masks were generated manually in order to investigate the piston and matrix size requirements. The development of an automated version of mask generation and positioning is in progress. The results of manual mask generation and positioning show that it is possible to generate equalized radiographs with minimal perceptible artifacts. The equalization of x-ray transmission across the field exiting from the object significantly improved the image quality by preserving local contrast throughout the image. Furthermore, the reduction in dynamic range significantly reduced the effect of x-ray scatter and veiling glare from high transmission to low transmission areas. Also, the x-ray tube loading due to the mask assembly itself was negligible. In conclusion it is possible to produce area beam compensation that will be compatible with digital fluoroscopy with minimal compensation artifacts

  3. A Normal Incidence X-ray Telescope (NIXT) sounding rocket payload

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1989-01-01

    Work on the High Resolution X-ray (HRX) Detector Program is described. In the laboratory and flight programs, multiple copies of a general purpose set of electronics which control the camera, signal processing and data acquisition, were constructed. A typical system consists of a phosphor convertor, image intensifier, a fiber optics coupler, a charge coupled device (CCD) readout, and a set of camera, signal processing and memory electronics. An initial rocket detector prototype camera was tested in flight and performed perfectly. An advanced prototype detector system was incorporated on another rocket flight, in which a high resolution heterojunction vidicon tube was used as the readout device for the H(alpha) telescope. The camera electronics for this tube were built in-house and included in the flight electronics. Performance of this detector system was 100 percent satisfactory. The laboratory X-ray system for operation on the ground is also described.

  4. Improving material identification by combining x-ray and neutron tomography

    NASA Astrophysics Data System (ADS)

    LaManna, Jacob M.; Hussey, Daniel S.; Baltic, Eli; Jacobson, David L.

    2017-09-01

    X-rays and neutrons provide complementary non-destructive probes for the analysis of structure and chemical composition of materials. Contrast differences between the modes arise due to the differences in interaction with matter. Due to the high sensitivity to hydrogen, neutrons excel at separating liquid water or hydrogenous phases from the underlying structure while X-rays resolve the solid structure. Many samples of interest, such as fluid flow in porous materials or curing concrete, are stochastic or slowly changing with time which makes analysis of sequential imaging with X-rays and neutrons difficult as the sample may change between scans. To alleviate this issue, NIST has developed a system for simultaneous X-ray and neutron tomography by orienting a 90 keVpeak micro-focus X-ray tube orthogonally to a thermal neutron beam. This system allows for non-destructive, multimodal tomography of dynamic or stochastic samples while penetrating through sample environment equipment such as pressure and flow vessels. Current efforts are underway to develop methods for 2D histogram based segmentation of reconstructed volumes. By leveraging the contrast differences between X-rays and neutrons, greater histogram peak separation can occur in 2D vs 1D enabling improved material identification.

  5. Tutorial on X-Ray Free-Electron Lasers

    DOE PAGES

    Carlsten, Bruce E.

    2018-05-02

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  6. Tutorial on X-Ray Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsten, Bruce E.

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  7. An X-ray fluorescence spectrometer and its applications in materials studies

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Han, K. S.

    1977-01-01

    An X-ray fluorescence system based on a Co(57) gamma-ray source has been developed. The system was used to calculate the atomic percentages of iron implanted in titanium targets. Measured intensities of Fe (k-alpha + k-beta) and Ti (k-alpha + k-beta) X-rays from the Fe-Ti targets are in good agreement with the calculated values based on photoelectric cross sections of Ti and Fe for the Co(57) gamma rays.

  8. Application of the Monte Carlo method to the analysis of doses and shielding around an X-ray fluorescence equipment

    NASA Astrophysics Data System (ADS)

    Ródenas, José; Juste, Belén; Gallardo, Sergio; Querol, Andrea

    2017-09-01

    An X-ray fluorescence equipment is used for practical exercises in the laboratory of Nuclear Engineering of the Polytechnic University of Valencia (Spain). This equipment includes a compact X-ray tube, ECLIPSE-III, and a Si-PIN XR-100T detector. The voltage (30 kV), and the current (100 μA) of the tube are low enough so that expected doses around the tube do not represent a risk for students working in the laboratory. Nevertheless, doses and shielding should be evaluated to accomplish the ALARA criterion. The Monte Carlo method has been applied to evaluate the dose rate around the installation provided with a shielding composed by a box of methacrylate. Dose rates calculated are compared with experimental measurements to validate the model. Obtained results show that doses are below allowable limits. Hence, no extra shielding is required for the X-ray beam. A previous Monte Carlo model was also developed to obtain the tube spectrum and validated by comparison with data from manufacturer.

  9. Contact x-ray microscopy using Asterix

    NASA Astrophysics Data System (ADS)

    Conti, Aldo; Batani, Dimitri; Botto, Cesare; Masini, Alessandra; Bernardinello, A.; Bortolotto, Fulvia; Moret, M.; Poletti, G.; Piccoli, S.; Cotelli, F.; Lora Lamia Donin, C.; Stead, Anthony D.; Marranca, A.; Eidmann, Klaus; Flora, Francesco; Palladino, Libero; Reale, Lucia

    1997-10-01

    The use of a high energy laser source for soft x-ray contact microscopy is discussed. Several different targets were used and their emission spectra compared. The x-ray emission, inside and outside the Water Window, was characterized in detail by means of many diagnostics, including pin hole and streak cameras. Up to 12 samples holders per shot were exposed thanks to the large x-ray flux and the geometry of the interaction chamber. Images of several biological samples were obtained, including Chlamydomonas and Crethidia green algae, fish and boar sperms and Saccharomyces Cerevisiae yeast cells. A 50 nm resolution was reached on the images of boar sperm. Original information concerning the density of inner structures of Crethidia green algae were obtained.

  10. An update on carbon nanotube-enabled X-ray sources for biomedical imaging.

    PubMed

    Puett, Connor; Inscoe, Christina; Hartman, Allison; Calliste, Jabari; Franceschi, Dora K; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2018-01-01

    A new imaging technology has emerged that uses carbon nanotubes (CNT) as the electron emitter (cathode) for the X-ray tube. Since the performance of the CNT cathode is controlled by simple voltage manipulation, CNT-enabled X-ray sources are ideal for the repetitive imaging steps needed to capture three-dimensional information. As such, they have allowed the development of a gated micro-computed tomography (CT) scanner for small animal research as well as stationary tomosynthesis, an experimental technology for large field-of-view human imaging. The small animal CT can acquire images at specific points in the respiratory and cardiac cycles. Longitudinal imaging therefore becomes possible and has been applied to many research questions, ranging from tumor response to the noninvasive assessment of cardiac output. Digital tomosynthesis (DT) is a low-dose and low-cost human imaging tool that captures some depth information. Known as three-dimensional mammography, DT is now used clinically for breast imaging. However, the resolution of currently-approved DT is limited by the need to swing the X-ray source through space to collect a series of projection views. An array of fixed and distributed CNT-enabled sources provides the solution and has been used to construct stationary DT devices for breast, lung, and dental imaging. To date, over 100 patients have been imaged on Institutional Review Board-approved study protocols. Early experience is promising, showing an excellent conspicuity of soft-tissue features, while also highlighting technical and post-acquisition processing limitations that are guiding continued research and development. Additionally, CNT-enabled sources are being tested in miniature X-ray tubes that are capable of generating adequate photon energies and tube currents for clinical imaging. Although there are many potential applications for these small field-of-view devices, initial experience has been with an X-ray source that can be inserted into the

  11. X-ray based displacement and strain measurements for hostile environments

    NASA Technical Reports Server (NTRS)

    Canistraro, Howard A.; Jordan, Eric H.; Pease, Douglas M.

    1993-01-01

    A completely new method of non-contacting, hostile environment displacement and strain measurement based on the focus and scanning of x-rays, has been developed and demonstrated. The new technique has the ability to overcome many of the limitations associated with available methods. The system is based on the focus and scanning of low energy, hard x-rays such as those emanating from table top copper or molybdenum sources. The x-rays are focused into a narrow and intense line image which can be swept onto targets that fluoresce secondary x-ray radiation. By monitoring the secondary radiation intensity and comparing it with the focused x-ray image's position as it is swept over the target edge, the position of the target edge relative to the focused image can be determined. The present system has a resolution of 0.5 micron, which has been shown to be limited by bearing backlash (or 'yaw' error) in the linear translation table. Its use has been demonstrated in the presence of an open flame with a resultant target temperature in excess of 2000 degrees Fahrenheit (1000 degrees Celsius). Strain measurements have been conducted in a laboratory environment at both room temperature and at a specimen temperature of 1300 degrees Fahrenheit, with an accuracy of within 20 microstrain (primarily a function of the 0.5 micron resolution limit). The main advantage of the technique lies in the penetrating, non-refractive nature of x-rays, which are virtually immune to the presence of refracting gas layers, smoke, flame or intense thermal radiation.

  12. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles

  13. Detection and Analysis of X Ray Emission from the Princeton-Field-Reversed Configuration (PFRC-2)

    NASA Astrophysics Data System (ADS)

    Bosh, Alexandra; Swanson, Charles; Jandovitz, Peter; Cohen, Samuel

    2016-10-01

    The PFRC is an odd-parity rotating-magnetic-field-driven field-reversed-configuration magnetic confinement experiment. Studying X rays produced via electron Bremsstrahlung with neutral particles is crucial to the further understanding of the energy and particle confinement of the PFRC. The data on the x rays are collected using a detector system comprised of two, spatially scannable Amptek XR-100 CR detectors and a Amptek XR-100 SDD detector that view the plasma column at two axial locations, one in the divertor and one near the axial midplane. These provide X-ray energy and arrival-time information. (Data analysis requires measurement of each detector's efficiency, a parameter that is modified by window transmission. Detector calibrations were performed with a custom-made X-ray tube that impinged 1-microamp 1-5 kV electron beams onto a carbon target.) From the analyzed data, the average electron energy, effective temperature, and electron density can be extracted. Spatial scans then allow the FRC's internal energy to be measured. We present recent measurements of the Bremsstrahlung spectrum from 0.8 to 6 keV and the inferred electron temperature in the PFRC device as functions of heating power, magnetic field and fill gas pressure. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  14. Rest-wavelength fiducials for the ITER core imaging x-ray spectrometer.

    PubMed

    Beiersdorfer, P; Brown, G V; Graf, A T; Bitter, M; Hill, K W; Kelley, R L; Kilbourne, C A; Leutenegger, M A; Porter, F S

    2012-10-01

    Absolute wavelength references are needed to derive the plasma velocities from the Doppler shift of a given line emitted by a moving plasma. We show that such reference standards exist for the strongest x-ray line in neonlike W(64+), which has become the line of choice for the ITER (Latin "the way") core imaging x-ray spectrometer. Close-by standards are the Hf Lβ(3) line and the Ir Lα(2) line, which bracket the W(64+) line by ±30 eV; other standards are given by the Ir Lα(1) and Lα(2) lines and the Hf Lβ(1) and Lβ(2) lines, which bracket the W(64+) line by ±40 and ±160 eV, respectively. The reference standards can be produced by an x-ray tube built into the ITER spectrometer. We present spectra of the reference lines obtained with an x-ray microcalorimeter and compare them to spectra of the W(64+) line obtained both with an x-ray microcalorimeter and a crystal spectrometer.

  15. Rest-wavelength Fiducials for the ITER Core Imaging X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Graf, A. T.; Bitter, M.; Hill, K. W.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Porter, F. S.

    2012-01-01

    Absolute wavelength references are needed to derive the plasma velocities from the Doppler shift of a given line emitted by a moving plasma. We show that such reference standards exist for the strongest x-ray line in neonlike W64+, which has become the line of choice for the ITER (Latin the way) core imaging x-ray spectrometer. Close-by standards are the Hf L3 line and the Ir L2 line, which bracket the W64+ line by 30 eV; other standards are given by the Ir L1 and L2 lines and the Hf L1 and L2 lines, which bracket the W64+ line by 40 and 160 eV, respectively. The reference standards can be produced by an x-ray tube built into the ITER spectrometer. We present spectra of the reference lines obtained with an x-ray microcalorimeter and compare them to spectra of the W64+ line obtained both with an x-ray microcalorimeter and a crystal spectrometer

  16. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  17. Permeation fill-tube design for inertial confinement fusion target capsules

    DOE PAGES

    Rice, B. S.; Ulreich, J.; Fella, C.; ...

    2017-03-22

    A unique approach for permeation filling of nonpermeable inertial confinement fusion target capsules with deuterium–tritium (DT) is presented. This process uses a permeable capsule coupled into the final target capsule with a 0.03-mm-diameter fill tube. Leak free permeation filling of glow-discharge polymerization (GDP) targets using this method have been successfully demonstrated, as well as ice layering of the target, yielding an inner ice surface roughness of 1-more » $$\\unicode[STIX]{x03BC}$$m rms (root mean square). Finally, the measured DT ice-thickness profile for this experiment was used to validate a thermal model’s prediction of the same thickness profile.« less

  18. Spirit Switches on Its X-ray Vision

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the Mars Exploration Rover Spirit probing its first target rock, Adirondack. At the time this picture was snapped, the rover had begun analyzing the rock with the alpha particle X-ray spectrometer located on its robotic arm. This instrument uses alpha particles and X-rays to determine the elemental composition of martian rocks and soil. The image was taken by the rover's hazard-identification camera.

  19. Long life electrodes for large-area x-ray generators

    NASA Technical Reports Server (NTRS)

    Rothe, Dietmar E. (Inventor)

    1991-01-01

    This invention is directed to rugged, reliable, and long-life electrodes for use in large-area, high-current-density electron gun and x-ray generators which are employed as contamination-free preionizers for high-energy pulsed gas lasers. The electron source at the cathode is a corona plasma formed at the interface between a conductor, or semiconductor, and a high-permittivity dielectric. Detailed descriptions are provided of a reliable cold plasma cathode, as well as an efficient liquid-cooled electron beam target (anode) and x-ray generator which concentrates the x-ray flux in the direction of an x-ray window.

  20. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  1. Cadaveric and in vivo human joint imaging based on differential phase contrast by X-ray Talbot-Lau interferometry.

    PubMed

    Tanaka, Junji; Nagashima, Masabumi; Kido, Kazuhiro; Hoshino, Yoshihide; Kiyohara, Junko; Makifuchi, Chiho; Nishino, Satoshi; Nagatsuka, Sumiya; Momose, Atsushi

    2013-09-01

    We developed an X-ray phase imaging system based on Talbot-Lau interferometry and studied its feasibility for clinical diagnoses of joint diseases. The system consists of three X-ray gratings, a conventional X-ray tube, an object holder, an X-ray image sensor, and a computer for image processing. The joints of human cadavers and healthy volunteers were imaged, and the results indicated sufficient sensitivity to cartilage, suggesting medical significance. Copyright © 2012. Published by Elsevier GmbH.

  2. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  3. Transmission of broad W/Rh and W/Al (target/filter) x-ray beams operated at 25-49 kVp through common shielding materials.

    PubMed

    Li, Xinhua; Zhang, Da; Liu, Bob

    2012-07-01

    To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-μm Rh and 700-μm Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV, including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10(-5) for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of α, β, and γ in Archer equation were provided. The α values of kVp ≥ 40 were approximately consistent with those of NCRP Report No. 147. These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.

  4. Bismuth Sulfide Nanoflowers for Detection of X-rays in the Mammographic Energy Range

    PubMed Central

    Nambiar, Shruti; Osei, Ernest K.; Yeow, John T. W.

    2015-01-01

    The increased use of diagnostic x-rays, especially in the field of medical radiology, has necessitated a significant demand for high resolution, real-time radiation detectors. In this regard, the photoresponse of bismuth sulfide (Bi2S3), an n-type semiconducting metal chalcogenide, to low energy x-rays has been investigated in this study. In recent years, several types of nanomaterials of Bi2S3 have been widely studied for optoelectronic and thermoelectric applications. However, photoresponse of Bi2S3 nanomaterials for dosimetric applications has not yet been reported. The photosensitivity of Bi2S3 with nanoscale “flower-like” structures was characterized under x-ray tube-potentials typically used in mammographic procedures. Both dark current and photocurrent were measured under varying x-ray doses, field sizes, and bias voltages for each of the tube potentials – 20, 23, 26 and 30 kV. Results show that the Bi2S3 nanoflowers instantaneously responded to even minor changes in the dose delivered. The photoresponse was found to be relatively high (few nA) at bias voltage as low as +1 V, and fairly repeatable for both short and long exposures to mammographic x-rays with minimal or no loss in sensitivity. The overall dose-sensitivity of the Bi2S3 nanoflowers was found to be similar to that of a micro-ionization chamber. PMID:25801531

  5. Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study

    PubMed Central

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Xing, Lei; Fahrig, Rebecca

    2015-01-01

    Abstract. Thanks to the current advances in nanoscience, molecular biochemistry, and x-ray detector technology, x-ray fluorescence computed tomography (XFCT) has been considered for molecular imaging of probes containing high atomic number elements, such as gold nanoparticles. The commonly used XFCT imaging performed with K-shell x rays appears to have insufficient imaging sensitivity to detect the low gold concentrations observed in small animal studies. Low energy fluorescence L-shell x rays have exhibited higher signal-to-background ratio and appeared as a promising XFCT mode with greatly enhanced sensitivity. The aim of this work was to experimentally demonstrate the feasibility of L-shell XFCT imaging and to assess its achievable sensitivity. We built an experimental L-shell XFCT imaging system consisting of a miniature x-ray tube and two spectrometers, a silicon drift detector (SDD), and a CdTe detector placed at ±120  deg with respect to the excitation beam. We imaged a 28-mm-diameter water phantom with 4-mm-diameter Eppendorf tubes containing gold solutions with concentrations of 0.06 to 0.1% Au. While all Au vials were detectable in the SDD L-shell XFCT image, none of the vials were visible in the CdTe L-shell XFCT image. The detectability limit of the presented L-shell XFCT SDD imaging setup was 0.007% Au, a concentration observed in small animal studies. PMID:26839910

  6. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  7. The Columbia University proton-induced soft x-ray microbeam.

    PubMed

    Harken, Andrew D; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2011-09-15

    A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 μm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 μm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 μm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.

  8. BEaTriX, expanded x-ray beam facility for testing modular elements of telescope optics: an update

    NASA Astrophysics Data System (ADS)

    Pelliciari, C.; Spiga, D.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.

    2015-09-01

    We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach an angular resolution of about 4 arcsec, since the ATHENA requirement for the entire telescope is 5 arcsec. Such a low divergence over the typical aperture of modular optics would require an X-ray source to be located in a several kilometers long vacuum tube. In contrast, BEaTriX will be compact enough (5 m x 14 m) to be housed in a small laboratory, will produce an expanded X-ray beam 60 mm x 200 mm broad, characterized by a very low divergence (1.5 arcsec HEW), strong polarization, high uniformity, and X-ray energy selectable between 1.5 keV and 4.5 keV. In this work we describe the BEaTriX layout and show a performance simulation for the X-ray energy of 4.5 keV.

  9. Soft x-ray streak camera for laser fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stradling, G.L.

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV aremore » also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.« less

  10. Thick-target-method study of Mα β x-ray production cross sections of Pb and Bi impacted by positrons up to 9 keV

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Liang, Y.; Xu, M. X.; Yuan, Y.; Chang, C. H.; Qian, Z. C.; Wang, B. Y.; Kuang, P.; Zhang, P.

    2018-03-01

    Atomic M -shell x-ray production cross sections induced by positrons near the threshold energy have been presented in this paper. In the experiment, online monitoring technology, which utilizes a high-purity germanium detector to record the annihilation photons emitted from the pure thick target impacted by positrons, was developed to obtain the accurate number of the incident positrons. The effects of the multiple scattering of incident positrons, from the bremsstrahlung and annihilation photons and other secondary particles on the experimental characteristic x-ray yield, were eliminated by Monte Carlo simulation in combination with theoretical integral calculation. The Tikhonov regularization method was adopted to handle the ill-posed inverse problem involved in the thick-target method, i.e., x-ray production cross sections by the corrected characteristic x-ray yield. Experimental results of Mα β x-ray production cross sections for Pb and Bi impacted by 6-9-keV positrons were compared with the corresponding values predicted by the distorted-wave Born approximation (DWBA). Good agreement was found between the two. Moreover, we have presented the experimental results on the ratios of the Mα β x-ray production cross sections by electron impact in the literature to that by 6-9-keV positron impact in this work. They were also in accordance with the theoretical ratios calculated by the predictions of DWBA theory.

  11. Accuracy validation of incident photon fluence on DQE for various measurement conditions and X-ray units.

    PubMed

    Haba, Tomonobu; Kondo, Shimpei; Hayashi, Daiki; Koyama, Shuji

    2013-07-01

    Detective quantum efficiency (DQE) is widely used as a comprehensive metric for X-ray image evaluation in digital X-ray units. The incident photon fluence per air kerma (SNR²(in)) is necessary for calculating the DQE. The International Electrotechnical Commission (IEC) reports the SNR²(in) under conditions of standard radiation quality, but this SNR²(in) might not be accurate as calculated from the X-ray spectra emitted by an actual X-ray tube. In this study, we evaluated the error range of the SNR²(in) presented by the IEC62220-1 report. We measured the X-ray spectra emitted by an X-ray tube under conditions of standard radiation quality of RQA5. The spectral photon fluence at each energy bin was multiplied by the photon energy and the mass energy absorption coefficient of air; then the air kerma spectrum was derived. The air kerma spectrum was integrated over the whole photon energy range to yield the total air kerma. The total photon number was then divided by the total air kerma. This value is the SNR²(in). These calculations were performed for various measurement parameters and X-ray units. The percent difference between the calculated value and the standard value of RQA5 was up to 2.9%. The error range was not negligibly small. Therefore, it is better to use the new SNR²(in) of 30694 (1/(mm(2) μGy)) than the current [Formula: see text] of 30174 (1/(mm(2) μGy)).

  12. Examining nanoparticle assemblies using high spatial resolution x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Jenneson, P. M.; Luggar, R. D.; Morton, E. J.; Gundogdu, O.; Tüzün, U.

    2004-09-01

    An experimental system has been designed to examine the assembly of nanoparticles in a variety of process engineering applications. These applications include the harvesting from solutions of nanoparticles into green parts, and the subsequent sintering into finished components. The system is based on an x-ray microtomography with a spatial resolution down to 5μm. The theoretical limitations in x-ray imaging are considered to allow experimental optimization. A standard nondestructive evaluation type apparatus with a small focal-spot x-ray tube, high-resolution complementary metal oxide semiconductor flat-panel pixellated detector, and a mechanical rotational stage is used to image the static systems. Dynamic sintering processes are imaged using the same x-ray source and detector but a custom rotational stage which is contained in an environmental chamber where the temperature, atmospheric pressure, and compaction force can be controlled. Three-dimensional tomographic data sets are presented here for samples from the pharmaceutical, nutraceutical, biotechnology, and nanoparticle handling industries and show the microscopic features and defects which can be resolved with the system.

  13. Small angle x-ray scattering with edge-illumination

    NASA Astrophysics Data System (ADS)

    Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco

    2016-08-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.

  14. Development of a fluorescent x-ray source for medical imaging

    NASA Astrophysics Data System (ADS)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  15. Development of high intensity X-ray sources at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    May, M. J.; Colvin, J. D.; Kemp, G. E.; Barrios, M. A.; Widmann, K.; Benjamin, R.; Thorn, D.; Poole, P.; Blue, B.

    2018-05-01

    Laser heated plasmas have provided recently some of the most powerful and energetic nanosecond length laboratory sources of x-ray photons (Ephoton = 1-30 keV). The highest x-ray to laser conversion is currently accessible by using underdense (ne ˜ 0.25 nc) plasmas since optimal laser coupling is obtained in millimeter scale targets. The targets can have conversion efficiencies of up to 10%. Several types of targets can be used to produce underdense plasmas: metal lined cylindrical cavities, gas pipes, and most recently nano-wire foams. Both the experimental and simulation details of these high intensity x-ray sources are discussed.

  16. Development Of A Flash X-Ray Scanner For Stereoradiography And CT

    NASA Astrophysics Data System (ADS)

    Endorf, Robert J.; DiBianca, Frank A.; Fritsch, Daniel S.; Liu, Wen-Ching; Burns, Charles B.

    1989-05-01

    We are developing a flash x-ray scanner for stereoradiography and CT which will be able to produce a stereoradiograph in 30 to 70 ns and a complete CT scan in one microsecond. This type of imaging device will be valuable in studying high speed processes, high acceleration, and traumatic events. We have built a two channel flash x-ray system capable of producing stereo radiographs with stereo angles of from 15 to 165 degrees. The dynamic and static Miff 's for the flash x-ray system were measured and compared with similar MIT's measured for a conventional medical x-ray system. We have written and tested a stereo reconstruction algorithm to determine three dimensional space points from corresponding points in the two stereo images. To demonstrate the ability of the system to image traumatic events, a radiograph was obtained of a bone undergoing a fracture. The effects of accelerations of up to 600 g were examined on radiographs taken of human kidney tissue samples in a rapidly rotating centrifuge. Feasibility studies of CT reconstruction have been performed by making simulated Cr images of various phantoms for larger flash x-ray systems of from 8 to 29 flash x-ray tubes.

  17. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  18. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive ...

  19. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  20. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  1. The development of high resolution silicon x-ray microcalorimeters

    NASA Astrophysics Data System (ADS)

    Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.

    2005-12-01

    Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.

  2. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  3. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray ...

  4. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; hide

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  5. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantlymore » absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.« less

  6. X-ray ptychography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz

    2018-01-01

    X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.

  7. Multilayer screen gives cathode ray tube high contrast

    NASA Technical Reports Server (NTRS)

    Bullinger, H.; Hilborn, E. H.

    1970-01-01

    Fabrication method for cathode ray tubes uses low-cost siloxane resin formulations. The resins contain sufficient methyl or phenyl groups for solubility in organic solvents. After vaporization and baking, the polymerized material is stable under vacuum and under temperatures required for tube fabrication.

  8. Transmission of broad W/Rh and W/Al (target/filter) x-ray beams operated at 25-49 kVp through common shielding materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xinhua; Zhang Da; Liu, Bob

    2012-07-15

    Purpose: To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. Methods: The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-{mu}m Rh and 700-{mu}m Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV,more » including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. Results: The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10{sup -5} for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of {alpha}, {beta}, and {gamma} in Archer equation were provided. The {alpha} values of kVp Greater-Than-Or-Slanted-Equal-To 40 were approximately consistent with those of NCRP Report No. 147. Conclusions: These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.« less

  9. Hard disk drive based microsecond X-ray chopper for characterization of ionization chambers and photodiodes.

    PubMed

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  10. X-ray diffraction diagnostic design for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ahmed, Maryum F.; House, Allen; Smith, R. F.; Ayers, Jay; Lamb, Zachary S.; Swift, David W.

    2013-09-01

    This paper describes the design considerations for Target Diffraction In-Situ (TARDIS), an x-ray diffraction diagnostic at the National Ignition Facility. A crystal sample is ramp-compressed to peak pressures between 10 and 30 Mbar and, during a pressure hold period, is probed with quasi-monochromatic x-rays emanating from a backlighter source foil. The crystal spectrography diffraction lines are recorded onto image plates. The crystal sample, filter, and image plates are packaged into one assembly, allowing for accurate and repeatable target to image plate registration. Unconverted laser light impinges upon the device, generating debris, the effects of which have been mitigated. Dimpled blast shields, high strength steel alloy, and high-z tungsten are used to shield and protect the image plates. A tapered opening was designed to provide adequate thickness of shielding materials without blocking the drive beams or x-ray source from reaching the crystal target. The high strength steel unit serves as a mount for the crystal target and x-ray source foil. A tungsten body contains the imaging components. Inside this sub-assembly, there are three image plates: a 160 degree field of view curved plate directly opposite the target opening and two flat plates for the top and bottom. A polycarbonate frame, coated with the appropriate filter material and embedded with registration features for image plate location, is inserted into the diagnostic body. The target assembly is metrologized and then the diagnostic assembly is attached.

  11. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source.

    PubMed

    Manohar, Nivedh; Reynoso, Francisco J; Cho, Sang Hyun

    2013-08-01

    To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg∕cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence∕scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm×15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73×10(-2) cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo

  12. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    PubMed Central

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10−2 cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. Conclusions:L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level

  13. UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources

    NASA Astrophysics Data System (ADS)

    Schreier, E. J.; Tananbaum, H.

    2000-09-01

    The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.

  14. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  15. Characterization results from several commercial soft X-ray streak cameras

    NASA Astrophysics Data System (ADS)

    Stradling, G. L.; Studebaker, J. K.; Cavailler, C.; Launspach, J.; Planes, J.

    The spatio-temporal performance of four soft X-ray streak cameras has been characterized. The objective in evaluating the performance capability of these instruments is to enable us to optimize experiment designs, to encourage quantitative analysis of streak data and to educate the ultra high speed photography and photonics community about the X-ray detector performance which is available. These measurements have been made collaboratively over the space of two years at the Forge pulsed X-ray source at Los Alamos and at the Ketjak laser facility an CEA Limeil-Valenton. The X-ray pulse lengths used for these measurements at these facilities were 150 psec and 50 psec respectively. The results are presented as dynamically-measured modulation transfer functions. Limiting temporal resolution values were also calculated. Emphasis is placed upon shot noise statistical limitations in the analysis of the data. Space charge repulsion in the streak tube limits the peak flux at ultra short experiments duration times. This limit results in a reduction of total signal and a decrease in signal to no ise ratio in the streak image. The four cameras perform well with 20 1p/mm resolution discernable in data from the French C650X, the Hadland X-Chron 540 and the Hamamatsu C1936X streak cameras. The Kentech X-ray streak camera has lower modulation and does not resolve below 10 1p/mm but has a longer photocathode.

  16. TOPICAL REVIEW: Digital x-ray tomosynthesis: current state of the art and clinical potential

    NASA Astrophysics Data System (ADS)

    Dobbins, James T., III; Godfrey, Devon J.

    2003-10-01

    Digital x-ray tomosynthesis is a technique for producing slice images using conventional x-ray systems. It is a refinement of conventional geometric tomography, which has been known since the 1930s. In conventional geometric tomography, the x-ray tube and image receptor move in synchrony on opposite sides of the patient to produce a plane of structures in sharp focus at the plane containing the fulcrum of the motion; all other structures above and below the fulcrum plane are blurred and thus less visible in the resulting image. Tomosynthesis improves upon conventional geometric tomography in that it allows an arbitrary number of in-focus planes to be generated retrospectively from a sequence of projection radiographs that are acquired during a single motion of the x-ray tube. By shifting and adding these projection radiographs, specific planes may be reconstructed. This topical review describes the various reconstruction algorithms used to produce tomosynthesis images, as well as approaches used to minimize the residual blur from out-of-plane structures. Historical background and mathematical details are given for the various approaches described. Approaches for optimizing the tomosynthesis image are given. Applications of tomosynthesis to various clinical tasks, including angiography, chest imaging, mammography, dental imaging and orthopaedic imaging, are also described.

  17. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  18. Low Dose High Energy X-ray In-Line Phase Sensitive Imaging Prototype: Investigation of Optimal Geometric Conditions and Design Parameters

    PubMed Central

    Ghani, Muhammad. U.; Yan, Aimin; Wong, Molly. D.; Li, Yuhua; Ren, Liqiang; Wu, Xizeng; Liu, Hong

    2016-01-01

    The objective of this study was to investigate the optimization of a high energy in-line phase sensitive x-ray imaging prototype under different geometric and operating conditions for mammography application. A phase retrieval algorithm based on phase attenuation duality (PAD) was applied to the phase contrast images acquired by the prototype. Imaging performance was investigated at four magnification values of 1.67, 2, 2.5 and 3 using an acrylic edge, an American College of Radiology (ACR) mammography phantom and contrast detail (CD) phantom with tube potentials of 100, 120 and 140 kVp. The ACR and CD images were acquired at the same mean glandular dose (MGD) of 1.29 mGy with a computed radiography (CR) detector of 43.75 µm pixel pitch at a fixed source to image distance (SID) of 170 cm. The x-ray tube focal spot size was kept constant as 7 µm while a 2.5 mm thick aluminum (Al) filter was used for beam hardening. The performance of phase contrast and phase retrieved images were compared with computer simulations based on the relative phase contrast factor (RPF) at high x-ray energies. The imaging results showed that the x-ray tube operated at 100 kVp under the magnification of 2.5 exhibits superior imaging performance which is in accordance to the computer simulations. As compared to the phase contrast images, the phase retrieved images of the ACR and CD phantoms demonstrated improved imaging contrast and target discrimination. We compared the CD phantom images acquired in conventional contact mode with and without the anti-scatter grid using the same prototype at 1.295 mGy and 2.59 mGy using 40 kVp, a 25 µm rhodium (Rh) filter. At the same radiation dose, the phase sensitive images provided improved detection capabilities for both the large and small discs, while compared to the double dose image acquired in conventional mode, the observer study also indicated that the phase sensitive images provided improved detection capabilities for the large discs. This

  19. Development of technique for three-dimensional visualization of grain boundaries by white X-ray microbeam

    NASA Astrophysics Data System (ADS)

    Kajiwara, K.; Shobu, T.; Toyokawa, H.; Sato, M.

    2014-04-01

    A technique for three-dimensional visualization of grain boundaries was developed at BL28B2 at SPring-8. The technique uses white X-ray microbeam diffraction and a rotating slit. Three-dimensional images of small silicon single crystals filled in a plastic tube were successfully obtained using this technique for demonstration purposes. The images were consistent with those obtained by X-ray computed tomography.

  20. PSPC soft x-ray observations of Seyfert 2 galaxies

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Urry, C. M.; Mushotzky, R. F.

    1993-01-01

    We present the results from ROSAT PSPC soft x-ray (0.1-2.0 keV) observations of six Seyfert 2 galaxies, chosen from the brightest Seyfert 2s detected with the Einstein Imaging Proportional Counter. All of the targets were detected with the ROSAT PSPC. Spatial analysis shows that the source density within a few arcmin of each Seyfert 2 galaxy is a factor of approximately eight higher than in the rest of the inner field of view of the PSPC images. In NGC1365 it appears that the serendipitous sources may be x-ray binary systems in the host galaxy. The proximity of the serendipitous sources, typically within a few arcmin of the target Seyfert 2, means that previous x-ray observations of the Seyfert 2 galaxies have been significantly contaminated, and that source confusion is important on a spatial scale of approximately 1 arcmin. Some spectra, most notably Mrk3 and NGC1365, indicate the presence of a high equivalent width soft x-ray line blend consistent with unresolved iron L and oxygen K emission.

  1. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  2. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  3. Imaging plates calibration to X-rays

    NASA Astrophysics Data System (ADS)

    Curcio, A.; Andreoli, P.; Cipriani, M.; Claps, G.; Consoli, F.; Cristofari, G.; De Angelis, R.; Giulietti, D.; Ingenito, F.; Pacella, D.

    2016-05-01

    The growing interest for the Imaging Plates, due to their high sensitivity range and versatility, has induced, in the last years, to detailed characterizations of their response function in different energy ranges and kind of radiation/particles. A calibration of the Imaging Plates BAS-MS, BAS-SR, BAS-TR has been performed at the ENEA-Frascati labs by exploiting the X-ray fluorescence of different targets (Ca, Cu, Pb, Mo, I, Ta) and the radioactivity of a BaCs source, in order to cover the X-ray range between few keV to 80 keV.

  4. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    PubMed

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P < 0.05) with irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  5. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  6. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  7. High-precision X-ray spectroscopy of highly-charged ions at the experimental storage ring using silicon microcalorimeters

    NASA Astrophysics Data System (ADS)

    Scholz, Pascal A.; Andrianov, Victor; Echler, Artur; Egelhof, Peter; Kilbourne, Caroline; Kiselev, Oleg; Kraft-Bermuth, Saskia; McCammon, Dan

    2017-10-01

    X-ray spectroscopy on highly charged heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. One limitation of the current accuracy of such experiments is the energy resolution of available X-ray detectors for energies up to 100 keV. To improve this accuracy, a novel detector concept, namely the concept of microcalorimeters, is exploited for this kind of measurements. The microcalorimeters used in the present experiments consist of silicon thermometers, ensuring a high dynamic range, and of absorbers made of high-Z material to provide high X-ray absorption efficiency. Recently, besides an earlier used detector, a new compact detector design, housed in a new dry cryostat equipped with a pulse tube cooler, was applied at a test beamtime at the experimental storage ring (ESR) of the GSI facility in Darmstadt. A U89+ beam at 75 MeV/u and a 124Xe54+ beam at various beam energies, both interacting with an internal gas-jet target, were used in different cycles. This test was an important benchmark for designing a larger array with an improved lateral sensitivity and statistical accuracy.

  8. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  9. An ultrafast X-ray scintillating detector made of ZnO(Ga)

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Yan, Jun; Deng, Bangjie; Zhang, Jingwen; Lv, Jinge; Wen, Xin; Gao, Keqing

    2017-12-01

    Owing to its ultrafast scintillation, quite high light yield, strong radiation resistance, and non-deliquescence, ZnO(Ga) is a highly promising choice for an ultrafast X-ray detector. Because of its high deposition rate, good production repeatability and strong adhesive force, reactive magnetron sputtering was used to produce a ZnO(Ga) crystal on a quartz glass substrate, after the production conditions were optimized. The fluorescence lifetime of the sample was 173 ps. An ultrafast X-ray scintillating detector, equipped with a fast microchannel plate (MCP) photomultiplier tube (PMT), was developed and the X-ray tests show a signal full width at half maximum (FWHM) of only 385.5 ps. Moreover, derivation from the previous measurement shows the ZnO(Ga) has an ultrafast time response (FWHM = 355.1 ps) and a high light yield (14740 photons/MeV).

  10. Optimizing soft X-ray NEXAFS spectroscopy in the laboratory

    NASA Astrophysics Data System (ADS)

    Mantouvalou, I.; Jonas, A.; Witte, K.; Jung, R.; Stiel, H.; Kanngießer, B.

    2017-05-01

    Near edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range is feasible in the laboratory using laser-produced plasma sources. We present a study using seven different target materials for optimized data analysis. The emission spectra of the materials with atomic numbers ranging from Z = 6 to Z = 79 show distinct differences, rendering the adapted selection of a suitable target material for specialized experiments feasible. For NEXAFS spectroscopy a 112.5 nm thick polyimide film is investigated as a reference exemplifying the superiority of quasi-continuum like emission spectra.

  11. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  12. Multiple-collision analysis of characteristic X-rays from low-energy Ar 2+ travelling in solid targets

    NASA Astrophysics Data System (ADS)

    Cipolla, Sam J.; Mildebrath, Mark E.

    1983-12-01

    The density of atoms in a solid target fosters a multiple-collision mechanism that leads to the production of an equilibrium fraction of L-shell vacancies in an incident heavy ion. It is then possiblein a subsequent ion-atom collision in the solid for an L-vacancy to be transferred to the K-shell of a target atom via rotational coupling of the 2p π-2p σ molecular orbitals formed in the ion-atom quasimolecule. The vacancy-transfer cross section and the equilibrium fraction and lifetime of the vacancies can be found by using an appropriate multiple-collision analysis of the characteristic target and projectile X-rays. Results will be presented for 160-380 keV Ar 2+ incident of targets of Mg, Al, and Si.

  13. Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Kim, Hae Koo; Lee, Sang Joon

    2010-07-27

    X-ray-based imaging is one of the most powerful and convenient methods in terms of versatility in applicable energy and high performance in use. Different from conventional nuclear medicine imaging, contrast agents are required in X-ray imaging especially for effectively targeted and molecularly specific functions. Here, in contrast to much reported static accumulation of the contrast agents in targeted organs, dynamic visualization in a living organism is successfully accomplished by the particle-traced X-ray imaging for the first time. Flow phenomena across perforated end walls of xylem vessels in rice are monitored by a gold nanoparticle (AuNP) (approximately 20 nm in diameter) as a flow tracing sensor working in nontransparent biofluids. AuNPs are surface-modified to control the hydrodynamic properties such as hydrodynamic size (DH), zeta-potential, and surface plasmonic properties in aqueous conditions. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray nanoscopy (XN), and X-ray microscopy (XM) are used to correlate the interparticle interactions with X-ray absorption ability. Cluster formation and X-ray contrast ability of the AuNPs are successfully modulated by controlling the interparticle interactions evaluated as flow-tracing sensors.

  14. Time-resolved hard x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Moy, Kenneth; Cuneo, Michael; McKenna, Ian; Keenan, Thomas; Sanford, Thomas; Mock, Ray

    2006-08-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and axial (polar) views. UNSPEC 1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  15. Use of graphite epoxy composites in the Solar-A Soft X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Jurcevich, B. K.; Bruner, M. E.

    1990-01-01

    This paper describes the use of composite materials in the Soft X-Ray Telescope (SXT). One of the primary structural members of the telescope is a graphite epoxy metering tube. The metering tube maintains the structural stability of the telescope during launch as well as the focal length through various environmental conditions. The graphite epoxy metering tube is designed to have a negative coefficient of thermal expansion to compensate for the positive expansion of titanium structural supports. The focus is maintained to + or - 0.001 inch by matching the CTE of the composite tube to the remaining structural elements.

  16. Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation.

    PubMed

    Ando, Koki; Yamaguchi, Mitsutaka; Yamamoto, Seiichi; Toshito, Toshiyuki; Kawachi, Naoki

    2017-06-21

    Imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-energy x-ray camera and conducted imaging of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm  ×  20 mm  ×  1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-sensitive photomultiplier tube to form an imaging detector. The imaging detector was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray imaging was conducted during irradiation of the proton beams for three different proton energies, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and sensitivity of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2  ×  10 -7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could image the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton energies could be estimated from the images. The measured ranges from the images were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the imaging of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.

  17. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  18. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  19. Using measured 30-150 kVp polychromatic tungsten x-ray spectra to determine ion chamber calibration factors, Nx (Gy C(-1)).

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-10-01

    Two methods for determining ion chamber calibration factors (Nx) are presented for polychromatic tungsten x-ray beams whose spectra differ from beams with known Nx. Both methods take advantage of known x-ray fluence and kerma spectral distributions. In the first method, the x-ray tube potential is unchanged and spectra of differing filtration are measured. A primary standard ion chamber with known Nx for one beam is used to calculate the x-ray fluence spectrum of a second beam. Accurate air energy absorption coefficients are applied to the x-ray fluence spectra of the second beam to calculate actual air kerma and Nx. In the second method, two beams of differing tube potential and filtration with known Nx are used to bracket a beam of unknown Nx. A heuristically derived Nx interpolation scheme based on spectral characteristics of all three beams is described. Both methods are validated. Both methods improve accuracy over the current half value layer Nx estimating technique.

  20. A novel vacuum spectrometer for total reflection x-ray fluorescence analysis with two exchangeable low power x-ray sources for the analysis of low, medium, and high Z elements in sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wobrauschek, P., E-mail: wobi@ati.ac.at; Prost, J.; Ingerle, D.

    2015-08-15

    The extension of the detectable elemental range with Total Reflection X-ray Fluorescence (TXRF) analysis is a challenging task. In this paper, it is demonstrated how a TXRF spectrometer is modified to analyze elements from carbon to uranium. Based on the existing design of a vacuum TXRF spectrometer with a 12 specimen sample changer, the following components were renewed: the silicon drift detector with 20 mm{sup 2} active area and having a special ultra-thin polymer window allowing the detection of elements from carbon upwards. Two exchangeable X-ray sources guarantee the efficient excitation of both low and high Z elements. These X-raymore » sources were two light-weighted easily mountable 35 W air-cooled low-power tubes with Cr and Rh anodes, respectively. The air cooled tubes and the Peltier-cooled detector allowed to construct a transportable tabletop spectrometer with compact dimensions, as neither liquid nitrogen cooling for the detector nor a water cooling circuit and a bulky high voltage generator for the X-ray tubes are required. Due to the excellent background conditions as a result of the TXRF geometry, detection limits of 150 ng for C, 12 ng for F, and 3.3 ng for Na have been obtained using Cr excitation in vacuum. For Rh excitation, the detection limits of 90 pg could be achieved for Sr. Taking 10 to 20 μl of sample volume, extrapolated detection limits in the ng/g (ppb) range are resulting in terms of concentration.« less

  1. Multi-Layer Organic Squaraine-Based Photodiode for Indirect X-Ray Detection

    NASA Astrophysics Data System (ADS)

    Iacchetti, Antonio; Binda, Maddalena; Natali, Dario; Giussani, Mattia; Beverina, Luca; Fiorini, Carlo; Peloso, Roberta; Sampietro, Marco

    2012-10-01

    The paper presents an organic-based photodiode coupled to a CsI(Tl) scintillator to realize an X-ray detector. A suitable blend of an indolic squaraine derivative and of fullerene derivative has been used for the photodiode, thus allowing external quantum efficiency in excess of 10% at a wavelength of 570 nm, well matching the scintillator output spectrum. Thanks to the additional deposition of a 15 nm thin layer of a suitable low electron affinity polymer, carriers injection from the metal into the organic semiconductor has been suppressed, and dark current density as low as has been obtained, which is comparable to standard Si-based photodiodes. By using a collimated X-ray beam impinging onto the scintillator mounted over the photodiode we have been able to measure current variations in the order of 150 pA on a dark current floor of less than 50 pA when operating the X-ray tube in switching mode, thus proving the feasibility of indirect X-ray detection by means of organic semiconductors.

  2. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, G. E., E-mail: kemp10@llnl.gov; Colvin, J. D.; Fournier, K. B.

    2015-05-15

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3–5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (∼n{sub c}/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facilitymore » (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from CRETIN, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3–5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ∼100–150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (∼20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3–5 keV x-ray source on NIF.« less

  3. Nondestructive Imaging of Internal Structures of Frog (Xenopus laevis) Embryos by Shadow-Projection X-Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Yoneda, Ikuo; Nagai, Takeharu; Ueno, Naoto; Murakami, Kazuo

    1994-04-01

    Nondestructive high-resolution imaging of frog ( Xenopus laevis) embryos has been developed by X-ray microtomography. Shadow-projection X-ray microtomography with a brilliant fine focus laboratory X-ray source could image fine structures of Xenopus embryos which were embedded in paraffin wax. The imaging system enabled us to not only distinguish endoderm from ectoderm at the gastrula stage, but also to obtain a cross-section view of the tail bud embryo showing muscle, notochord and neural tube without staining. Furthermore, the distribution of myosin was also imaged in combination with whole-mount immunohistochemistry.

  4. Quantitative imaging of single-shot liquid distributions in sprays using broadband flash x-ray radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halls, B. R.; Roy, S.; Gord, J. R.

    Flash x-ray radiography is used to capture quantitative, two-dimensional line-of-sight averaged, single-shot liquid distribution measurements in impinging jet sprays. The accuracy of utilizing broadband x-ray radiation from compact flash tube sources is investigated for a range of conditions by comparing the data with radiographic high-speed measurements from a narrowband, high-intensity synchrotron x-ray facility at the Advanced Photon Source (APS) of Argonne National Laboratory. The path length of the liquid jets is varied to evaluate the effects of energy dependent x-ray attenuation, also known as spectral beam hardening. The spatial liquid distributions from flash x-ray and synchrotron-based radiography are compared, alongmore » with spectral characteristics using Taylor’s hypothesis. The results indicate that quantitative, single-shot imaging of liquid distributions can be achieved using broadband x-ray sources with nanosecond temporal resolution. Practical considerations for optimizing the imaging system performance are discussed, including the coupled effects of x-ray bandwidth, contrast, sensitivity, spatial resolution, temporal resolution, and spectral beam hardening.« less

  5. Formation and Evolution of X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fragkos, Anastasios

    X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in

  6. The impact of Relative Prevalence on dual-target search for threat items from airport X-ray screening.

    PubMed

    Godwin, Hayward J; Menneer, Tamaryn; Cave, Kyle R; Helman, Shaun; Way, Rachael L; Donnelly, Nick

    2010-05-01

    The probability of target presentation in visual search tasks influences target detection performance: this is known as the prevalence effect (Wolfe et al., 2005). Additionally, searching for several targets simultaneously reduces search performance: this is known as the dual-target cost (DTC: Menneer et al., 2007). The interaction between the DTC and prevalence effect was investigated in a single study by presenting one target in dual-target search at a higher level of prevalence than the other target (Target A: 45% Prevalence; Target B: 5% Prevalence). An overall DTC was found for both RTs and response accuracy. Furthermore, there was an effect of target prevalence in dual-target search, suggesting that, when one target is presented at a higher level of prevalence than the other, both the dual-target cost and the prevalence effect contribute to decrements in performance. The implications for airport X-ray screening are discussed. Copyright 2010 Elsevier B.V. All rights reserved.

  7. A compact x-ray system for two-phase flow measurement

    NASA Astrophysics Data System (ADS)

    Song, Kyle; Liu, Yang

    2018-02-01

    In this paper, a compact x-ray densitometry system consisting of a 50 kV, 1 mA x-ray tube and several linear detector arrays is developed for two-phase flow measurement. The system is capable of measuring void fraction and velocity distributions with a spatial resolution of 0.4 mm per pixel and a frequency of 1000 Hz. A novel measurement model has been established for the system which takes account of the energy spectrum of x-ray photons and the beam hardening effect. An improved measurement accuracy has been achieved with this model compared with the conventional log model that has been widely used in the literature. Using this system, void fraction and velocity distributions are measured for a bubbly and a slug flow in a 25.4 mm I.D. air-water two-phase flow test loop. The measured superficial gas velocities show an error within  ±4% when compared with the gas flowmeter for both conditions.

  8. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  9. The early history of x-ray diagnosis with emphasis on the contributions of physics 1895-1915.

    PubMed

    Mould, R F

    1995-11-01

    The contribution of physics to the development of x-ray diagnosis was vital in the early years of this century following Röntgen's discovery of x-rays in November 1895. This review records some of the highlights during the period 1895-1915. Much of the information presented has been buried in libraries for more than 50 years and the selection of illustrations and text will be largely unknown to today's readership of Physics in Medicine and Biology. It is also a celebration of what could be achieved in physics before the occurrence of the technological revolution involving not only computer applications but also the disappearance of the small independent x-ray companies into today's multinational companies. Research and development is nowadays just too expensive for much independent practical high-technology contributions without financial backing. Hence this review takes us to those bygone years of experimental physics in home laboratories, poorly equipped university physics laboratories and of the lecture-demonstrations of the period. The sections are presented in a logical order beginning with the discovery of x-rays, followed by x-ray tube technology to the advent of the hot cathode Coolidge tube, with the third and final section covering diagnostic radiology physics. It has been compiled from personal research over 35 years in libraries worldwide, drawing on textbooks, journals, popular magazines, newspapers, x-ray company catalogues and museum exhibits. I have included a certain amount of anecdotal information, because after all, much of the early commentaries were indeed anecdotal--and make very interesting reading. Finally it is commented that although this review is devoted to x-ray diagnosis, x-ray therapy should not be forgotten, and readers are referred to another review by the author on early therapeutic advances.

  10. X-ray digital intra-oral tomosynthesis for quasi-three-dimensional imaging: system, reconstruction algorithm, and experiments

    NASA Astrophysics Data System (ADS)

    Li, Liang; Chen, Zhiqiang; Zhao, Ziran; Wu, Dufan

    2013-01-01

    At present, there are mainly three x-ray imaging modalities for dental clinical diagnosis: radiography, panorama and computed tomography (CT). We develop a new x-ray digital intra-oral tomosynthesis (IDT) system for quasi-three-dimensional dental imaging which can be seen as an intermediate modality between traditional radiography and CT. In addition to normal x-ray tube and digital sensor used in intra-oral radiography, IDT has a specially designed mechanical device to complete the tomosynthesis data acquisition. During the scanning, the measurement geometry is such that the sensor is stationary inside the patient's mouth and the x-ray tube moves along an arc trajectory with respect to the intra-oral sensor. Therefore, the projection geometry can be obtained without any other reference objects, which makes it be easily accepted in clinical applications. We also present a compressed sensing-based iterative reconstruction algorithm for this kind of intra-oral tomosynthesis. Finally, simulation and experiment were both carried out to evaluate this intra-oral imaging modality and algorithm. The results show that IDT has its potentiality to become a new tool for dental clinical diagnosis.

  11. Spectral reconstruction of dental X-ray tubes using laplace inverse transform of the attenuation curve

    NASA Astrophysics Data System (ADS)

    Malezan, A.; Tomal, A.; Antoniassi, M.; Watanabe, P. C. A.; Albino, L. D.; Poletti, M. E.

    2015-11-01

    In this work, a spectral reconstruction methodology for diagnostic X-ray, using Laplace inverse transform of the attenuation, was successfully applied to dental X-ray equipments. The attenuation curves of 8 commercially available dental X-ray equipment, from 3 different manufactures (Siemens, Gnatus and Dabi Atlante), were obtained by using an ionization chamber and high purity aluminium filters, while the kVp was obtained with a specific meter. A computational routine was implemented in order to adjust a model function, whose inverse Laplace transform is analytically known, to the attenuation curve. This methodology was validated by comparing the reconstructed and the measured (using semiconductor detector of cadmium telluride) spectra of a given dental X-ray unit. The spectral reconstruction showed the Dabi Atlante equipments generating similar shape spectra. This is a desirable feature from clinic standpoint because it produces similar levels of image quality and dose. We observed that equipments from Siemens and Gnatus generate significantly different spectra, suggesting that, for a given operating protocol, these units will present different levels of image quality and dose. This fact claims for the necessity of individualized operating protocols that maximize image quality and dose. The proposed methodology is suitable to perform a spectral reconstruction of dental X-ray equipments from the simple measurements of attenuation curve and kVp. The simplified experimental apparatus and the low level of technical difficulty make this methodology accessible to a broad range of users. The knowledge of the spectral distribution can help in the development of operating protocols that maximize image quality and dose.

  12. Characterization of CuHal-intercalated carbon nanotubes with x-ray absorption spectroscopy combined with x-ray photoelectron and resonant photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Brzhezinskaya, M.; Generalov, A.; Vinogdradov, A.; Eliseev, A.

    2013-04-01

    Encapsulated single-walled carbon nanotubes (SWCNTs) with inner channels filled by different compounds present the new class of composite materials. Such CNTs give opportunity to form 1D nanocrystals as well as quantum nanowires with new physical and chemical properties inside the tubes. The present study is aimed to characterize the possible chemical interaction between CuHal (Hal=I, Cl, Br) and SWCNTs in CuHal@SWCNTs and electronic structure of the latter using high-resolution near edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with high-resolution X-ray photoelectron spectroscopy and resonant photoemission spectroscopy. The present study has shown that there is a chemical interaction between the filler and π-electron subsystem of CNTs which is accompanied by changes of the atomic and electronic structure of the filler during the encapsulating it inside CNTs.

  13. Trans-oral miniature X-ray radiation delivery system with endoscopic optical feedback.

    PubMed

    Boese, Axel; Johnson, Fredrick; Ebert, Till; Mahmoud-Pashazadeh, Ali; Arens, Christoph; Friebe, Michael

    2017-11-01

    planning system. The presented system was designed for radiation therapy of the oral cavity and the larynx. This first set-up tried to cover all clinical aspects that are necessary for a later use in surgery. The miniaturized X-ray tube offers the size and the power for intraoperative radiation therapy. The adjustable shielding system in combination with the holder and actuator provides a precise placement. The visualization of radiation zone allows a targeting and observation of the radiation zone.

  14. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  15. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    NASA Astrophysics Data System (ADS)

    Fíla, T.; Kumpová, I.; Koudelka, P.; Zlámal, P.; Vavřík, D.; Jiroušek, O.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi7Mg0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation.

  16. MO-FG-BRA-02: Modulation of Clinical Orthovoltage X-Ray Spectrum Further Enhances Radiosensitization of Cancer Cells Targeted with Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, T; Reynoso, F; Cho, J

    2015-06-15

    Purpose: To assess the potential to amplify radiosensitization of cancer cells targeted with gold nanoparticles by augmenting selective spectral components of X-ray beam. Methods: Human prostate cancer cells were treated for 24h with gold nanorods conjugated to goserelin acetate or pegylated, systematically washed and irradiated with 250 kVp X-rays (25mA, 0.25mm Cu- filter, 8x8cm{sup 2} field size, 50cm SSD) with or without an additional 0.25 mm Erbium (Er) filter. As demonstrated in a companion Monte Carlo study, Er-filter acted as an external target to feed Erbium K-shell X-ray fluorescence photons (∼50 keV) into the 250 kVp beam. After irradiation, wemore » performed measurements of clonogenic viability with doses between 0 -6Gy, irreparable DNA damage assay to measure double-strand breaks via γH2AX-foci staining, and production of stable reactive oxygen species (ROS). Results: The clonogenic assay for the group treated with conjugated nanoparticles showed radiosensitization enhancement factor (REF), calculated at the 10% survival fraction aisle, of (1.62±0.07) vs. (1.23±0.04) with/without the Er-filter in the 250 kVp beam, respectively. The group treated with pegylated nanoparticles, albeit retained in modest amounts within the cells, also showed statistically significant REF (1.13±0.09) when the Erbium filter was added to the beam. No significant radiosensitization was observed for other groups. Measurements of ROS levels showed increments of (1.9±0.2) vs. (1.4±0.1) for combined treatment with targeted nanoparticles and Er-filtered beam. γH2AX-foci showed 50% increase for the same treatment combination, confirming the enhanced radiosensitization in a consistent fashion. Conclusion: Our study demonstrates the feasibility of enhancing radiosensitization of cancer cells by combining actively targeted gold nanoparticles and modulating the X-ray spectrum in the desired energy range. The established technique will not only help develop strategies to

  17. Real-time observation of X-ray diffraction patterns with the Lixiscope

    NASA Technical Reports Server (NTRS)

    Chung, D. Y.; Tsang, T.; Yin, L. I.; Anderson, J. R.

    1981-01-01

    The feasibility of the Lixiscope (Low Intensity X-ray Imaging Scope) is demonstrated for real-time observation of transmission Laue patterns. Making use of the high-gain capability of microchannel plate (MCP) visible-light image intensifier tubes, X-ray images are converted to visible-light images by a scintillator. Pb discs are taped to the center of the Lixiscope input face, and crystal samples are held on a goniometer stage with modeling clay. With a compact size to facilitate off axis viewing, and real-time viewing to allow instantaneous response, the Lixiscope may prove useful in dynamic studies of the effects of plastic flows, stresses, high pressures, and low temperatures.

  18. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  19. The soft x ray telescope for Solar-A

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.

  20. Unique X-ray emission characteristics from volumetrically heated nanowire array plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J. J.; Bargsten, C.; Hollinger, R.; Shlyaptsev, V.; Pukhov, A.; Kaymak, V.; Capeluto, G.; Keiss, D.; Townsend, A.; Rockwood, A.; Wang, Y.; Wang, S.

    2015-11-01

    Highly anisotropic emission of hard X-ray radiation (h ν >10 keV) is observed when arrays of ordered nanowires (50 nm diameter wires of Au or Ni) are volumetrically heated by normal incidence irradiation with high contrast 50-60 fs laser pulses of relativistic intensity. The annular emission is in contrast with angular distribution of softer X-rays (h ν >1 KeV) from these targets and with the X-ray radiation emitted by polished flat targets, both of which are nearly isotropic. Model computations that make use the electron energy distribution computed by particle-in-cell simulations show that the unexpected annular distribution of the hard x-rays is the result of bremsstrahlung from fast electrons. Volumetric heating of Au nanowire arrays irradiated with an intensity of 2 x 10 19 W cm-2 is measured to convert laser energy into h ν>1KeV photons with a record efficiency of >8 percent into 2 π, creating a bright picosecond X-ray source for applications. Work supported by the Office of Fusion Energy Science of the U.S Department of Energy, and the Defense Threat Reduction Agency. A.P was supported by DFG project TR18.

  1. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  2. Repetitive flash x-ray generator having a high-durability diode driven by a two-cable-type line pulser

    NASA Astrophysics Data System (ADS)

    Shikoda, A.; Sato, E.; Sagae, M.; Oizumi, T.; Tamakawa, Y.; Yanagisawa, T.

    1994-04-01

    The fundamental studies of a repetitive soft flash x-ray generator having a high-durability diode for high-speed radiography in biomedical and technological fields are described. This generator consisted of the following essential components: a constant negative high-voltage power supply, a line-type high-voltage pulser with two 10 m coaxial-cable condensers, each with a capacity of 1.0 nF, a thyratron pulser as a trigger device, an oil-diffusion pump, and a flash x-ray tube. The x-ray tube was of a diode type which was evacuated by an oil-diffusion pump with a pressure of approximately 6.7×10-3 Pa and was composed of a planar tungsten anode, a planar ferrite cathode, and a polymethylmethacrylate tube body. The space between the anode and cathode electrodes (AC space) could be regulated from the outside of the tube. The two cable condensers were charged from -40 to -60 kV by a power supply, and the output voltage was about -1.5 times the charged voltage. Both the first peak voltage and current increased according to increases in the charged voltage, and the maximum values of the voltage and current were about 90 kV and 0.72 kA, respectively. The pulse widths had values of less than 100 ns, and the maximum x-ray intensity was approximately 1.1 μC/kg at 0.5 m per pulse. The repetition rate was less than 54 Hz, and the maximum focal spot size was about 2.0×2.5 mm.

  3. Fluorescent x-ray computed tomography to visualize specific material distribution

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Yuasa, Tetsuya; Hoshino, Atsunori; Akiba, Masahiro; Uchida, Akira; Kazama, Masahiro; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1997-10-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT systems consists of a silicon channel cut monochromator, an x-ray slit and a collimator for detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the K(alpha) line, incident monochromatic x-ray was set at 37 keV. At 37 keV Monte Carlo simulation showed almost complete separation between Compton scattering and the K(alpha) line. Actual experiments revealed small contamination of Compton scattering on the K(alpha) line. A clear FXCT image of a phantom was obtained. Using this system the minimal detectable dose of iodine was 30 ng in a volume of 1 mm3, and a linear relationship was demonstrated between photon counts of fluorescent x-rays and the concentration of iodine contrast material. The use of high incident x-ray energy allows an increase in the signal to noise ratio by reducing the Compton scattering on the K(alpha) line.

  4. Soft X-ray streak camera for laser fusion applications

    NASA Astrophysics Data System (ADS)

    Stradling, G. L.

    1981-04-01

    The development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development is reviewed as well as laser fusion and laser fusion diagnostics. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.

  5. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  6. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  7. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  8. Thermal limits on MV x-ray production by bremsstrahlung targets in the context of novel linear accelerators.

    PubMed

    Wang, Jinghui; Trovati, Stefania; Borchard, Philipp M; Loo, Billy W; Maxim, Peter G; Fahrig, Rebecca

    2017-12-01

    To study the impact of target geometrical and linac operational parameters, such as target material and thickness, electron beam size, repetition rate, and mean current on the ability of the radiotherapy treatment head to deliver high-dose-rate x-ray irradiation in the context of novel linear accelerators capable of higher repetition rates/duty cycle than conventional clinical linacs. The depth dose in a water phantom without a flattening filter and heat deposition in an x-ray target by 10 MeV pulsed electron beams were calculated using the Monte-Carlo code MCNPX, and the transient temperature behavior of the target was simulated by ANSYS. Several parameters that affect both the dose distribution and temperature behavior were investigated. The target was tungsten with a thickness ranging from 0 to 3 mm and a copper heat remover layer. An electron beam with full width at half maximum (FWHM) between 0 and3 mm and mean current of 0.05-2 mA was used as the primary beam at repetition rates of 100, 200, 400, and 800 Hz. For a 10 MeV electron beam with FWHM of 1 mm, pulse length of 5 μs, by using a thin tungsten target with thickness of 0.2 mm instead of 1 mm, and by employing a high repetition rate of 800 Hz instead of 100 Hz, the maximum dose rate delivered can increase two times from 0.57 to 1.16 Gy/s. In this simple model, the limiting factor on dose rate is the copper heat remover's softening temperature, which was considered to be 500°C in our study. A high dose rate can be obtained by employing thin targets together with high repetition rate electron beams enabled by novel linac designs, whereas the benefit of thin targets is marginal at conventional repetition rates. Next generation linacs used to increase dose rate need different target designs compared to conventional linacs. © 2017 American Association of Physicists in Medicine.

  9. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  10. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    NASA Astrophysics Data System (ADS)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  11. Characterization of a hybrid target multi-keV x-ray source by a multi-parameter statistical analysis of titanium K-shell emission

    DOE PAGES

    Primout, M.; Babonneau, D.; Jacquet, L.; ...

    2015-11-10

    We studied the titanium K-shell emission spectra from multi-keV x-ray source experiments with hybrid targets on the OMEGA laser facility. Using the collisional-radiative TRANSPEC code, dedicated to K-shell spectroscopy, we reproduced the main features of the detailed spectra measured with the time-resolved MSPEC spectrometer. We developed a general method to infer the N e, T e and T i characteristics of the target plasma from the spectral analysis (ratio of integrated Lyman-α to Helium-α in-band emission and the peak amplitude of individual line ratios) of the multi-keV x-ray emission. Finally, these thermodynamic conditions are compared to those calculated independently bymore » the radiation-hydrodynamics transport code FCI2.« less

  12. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. Why it's done X-ray technology is used to examine many parts of the ...

  13. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology with extra beam filtering.

    PubMed

    den Boer, A; de Feyter, P J; Hummel, W A; Keane, D; Roelandt, J R

    1994-06-01

    Radiographic technology plays an integral role in interventional cardiology. The number of interventions continues to increase, and the associated radiation exposure to patients and personnel is of major concern. This study was undertaken to determine whether a newly developed x-ray tube deploying grid-switched pulsed fluoroscopy and extra beam filtering can achieve a reduction in radiation exposure while maintaining fluoroscopic images of high quality. Three fluoroscopic techniques were compared: continuous fluoroscopy, pulsed fluoroscopy, and a newly developed high-output pulsed fluoroscopy with extra filtering. To ascertain differences in the quality of images and to determine differences in patient entrance and investigator radiation exposure, the radiated volume curve was measured to determine the required high voltage levels (kVpeak) for different object sizes for each fluoroscopic mode. The fluoroscopic data of 124 patient procedures were combined. The data were analyzed for radiographic projections, image intensifier field size, and x-ray tube kilovoltage levels (kVpeak). On the basis of this analysis, a reference procedure was constructed. The reference procedure was tested on a phantom or dummy patient by all three fluoroscopic modes. The phantom was so designed that the kilovoltage requirements for each projection were comparable to those needed for the average patient. Radiation exposure of the operator and patient was measured during each mode. The patient entrance dose was measured in air, and the operator dose was measured by 18 dosimeters on a dummy operator. Pulsed compared with continuous fluoroscopy could be performed with improved image quality at lower kilovoltages. The patient entrance dose was reduced by 21% and the operator dose by 54%. High-output pulsed fluoroscopy with extra beam filtering compared with continuous fluoroscopy improved the image quality, lowered the kilovoltage requirements, and reduced the patient entrance dose by 55% and

  14. Individual selection of X-ray tube settings in computed tomography coronary angiography: Reliability of an automated software algorithm to maintain constant image quality.

    PubMed

    Durmus, Tahir; Luhur, Reny; Daqqaq, Tareef; Schwenke, Carsten; Knobloch, Gesine; Huppertz, Alexander; Hamm, Bernd; Lembcke, Alexander

    2016-05-01

    To evaluate a software tool that claims to maintain a constant contrast-to-noise ratio (CNR) in high-pitch dual-source computed tomography coronary angiography (CTCA) by automatically selecting both X-ray tube voltage and current. A total of 302 patients (171 males; age 61±12years; body weight 82±17kg, body mass index 27.3±4.6kg/cm(2)) underwent CTCA with a topogram-based, automatic selection of both tube voltage and current using dedicated software with quality reference values of 100kV and 250mAs/rotation (i.e., standard values for an average adult weighing 75kg) and an injected iodine load of 222mg/kg. The average radiation dose was estimated to be 1.02±0.64mSv. All data sets had adequate contrast enhancement. Average CNR in the aortic root, left ventricle, and left and right coronary artery was 15.7±4.5, 8.3±2.9, 16.1±4.3 and 15.3±3.9 respectively. Individual CNR values were independent of patients' body size and radiation dose. However, individual CNR values may vary considerably between subjects as reflected by interquartile ranges of 12.6-18.6, 6.2-9.9, 12.8-18.9 and 12.5-17.9 respectively. Moreover, average CNR values were significantly lower in males than females (15.1±4.1 vs. 16.6±11.7 and 7.9±2.7 vs. 8.9±3.0, 15.5±3.9 vs. 16.9±4.6 and 14.7±3.6 vs. 16.0±4.1 respectively). A topogram-based automatic selection of X-ray tube settings in CTCA provides diagnostic image quality independent of patients' body size. Nevertheless, considerable variation of individual CNR values between patients and significant differences of CNR values between males and females occur which questions the reliability of this approach. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    PubMed

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  16. X-Ray Characteristics of Megamaser Galaxies

    NASA Astrophysics Data System (ADS)

    Leiter, K.; Kadler, M.; Wilms, J.; Braatz, J.; Grossberger, C.; Krauss, F.; Kreikenbohm, A.; Langejahn, M.; Litzinger, E.; Markowitz, A.

    2017-10-01

    Water megamaser galaxies are a rare subclass of Active Galactic Nuclei (AGN). They play a key role in modern cosmology, providing a significant improvement for measuring geometrical distances with high precision. Megamaser studies presently measure H_{0} to about 5%. The goal of modern programs is to reach 3%, which strongly constrains the equation of state of dark energy. An increasing number of independent measurements of suitable water masers is providing the statistics necessary to decrease the uncertainties. X-ray studies of maser galaxies yield important constraints on target-selection criteria for future surveys, increasing their detection rate. We studied the X-ray properties of a homogeneous sample of Type 2 AGN with water maser activity observed by XMM-Newton to investigate the properties of megamaser-hosting galaxies compared to a control sample of non-maser galaxies. Comparing the luminosity distributions confirm previous results that water maser galaxies appear more luminous than non-maser sources. The maser phenomenon goes along with more complex X-ray spectra, higher column densities and higher equivalent widths of the Fe Kα line. Both a sufficiently luminous X-ray source and a high absorbing column density in the line of sight are necessary prerequisites to favour the appearance of the water megamaser phenomenon in AGN.

  17. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors.

    PubMed

    Russ, M; Shankar, A; Setlur Nagesh, S V; Ionita, C N; Bednarek, D R; Rudin, S

    2017-02-11

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  18. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  19. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  20. X-Ray source populations in old open clusters: Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; van den Berg, Maureen; Wijnands, Rudy

    2014-09-01

    We are carrying out an X-ray survey of old open clusters with the Chandra X-ray Observatory. Single old stars, being slow rotators, are very faint in X-rays (L_X < 1×10^27 erg/s). Hence, X-rays produced by mass transfer in cataclysmic variables (CVs) or by rapid rotation of the stars in tidally locked, detached binaries (active binaries; ABs) can be detected, without contamination from single stars. By comparing the properties of various types of interacting binaries in different environments (the Galactic field, old open clusters, globular clusters), we aim to study binary evolution and how it may be affected by dynamical encounters with other cluster stars. Stellar clusters are good targets to study binaries, as age, distance, chemical composition, are well constrained. Collinder (Cr) 261 is an old open cluster (age ~ 7 Gyr), with one of the richest populations inferred of close binaries and blue stragglers of all open clusters and is therefore an obvious target to study the products of close encounters in open clusters. We will present the first results of this study, detailing the low-luminosity X-ray population of Cr 261, in conjunction with other open clusters in our survey (NGC 188, Berkeley 17, NGC 6253, M67, NGC 6791) and in comparison with populations in globular clusters.

  1. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  2. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  3. Two-colour hard X-ray free-electron laser with wide tunability.

    PubMed

    Hara, Toru; Inubushi, Yuichi; Katayama, Tetsuo; Sato, Takahiro; Tanaka, Hitoshi; Tanaka, Takashi; Togashi, Tadashi; Togawa, Kazuaki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2013-01-01

    Ultrabrilliant, femtosecond X-ray pulses from X-ray free-electron lasers (XFELs) have promoted the investigation of exotic interactions between intense X-rays and matters, and the observation of minute targets with high spatio-temporal resolution. Although a single X-ray beam has been utilized for these experiments, the use of multiple beams with flexible and optimum beam parameters should drastically enhance the capability and potentiality of XFELs. Here we show a new light source of a two-colour double-pulse (TCDP) XFEL in hard X-rays using variable-gap undulators, which realizes a large and flexible wavelength separation of more than 30% with an ultraprecisely controlled time interval in the attosecond regime. Together with sub-10-fs pulse duration and multi-gigawatt peak powers, the TCDP scheme enables us to elucidate X-ray-induced ultrafast transitions of electronic states and structures, which will significantly contribute to the advancement of ultrafast chemistry, plasma and astronomical physics, and quantum X-ray optics.

  4. Line x-ray source for diffraction enhanced imaging in clinical and industrial applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqin

    Mammography is one type of imaging modalities that uses a low-dose x-ray or other radiation sources for examination of breasts. It plays a central role in early detection of breast cancers. The material similarity of tumor-cell and health cell, breast implants surgery and other factors, make the breast cancers hard to visualize and detect. Diffraction enhanced imaging (DEI), first proposed and investigated by D. Chapman is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron source, which produced images of thick absorbing objects that are almost completely free of scatter. It shows dramatically improved contrast over standard imaging when applied to the same phantom. The contrast is based not only on attenuation but also on the refraction and diffraction properties of the sample. This imaging method may improve image quality of mammography, other medical applications, industrial radiography for non-destructive testing and x-ray computed tomography. However, the size, and cost, of a synchrotron source limits the application of the new modality to be applicable at clinical levels. This research investigates the feasibility of a designed line x-ray source to produce intensity compatible to synchrotron sources. It is composed of a 2-cm in length tungsten filament, installed on a carbon steel filament cup (backing plate), as the cathode and a stationary oxygen-free copper anode with molybdenum coating on the front surface serves as the target. Characteristic properties of the line x-ray source were computationally studied and the prototype was experimentally investigated. SIMIION code was used to computationally study the electron trajectories emanating from the filament towards the molybdenum target. A Faraday cup on the prototype device, proof-of-principle, was used to measure the distribution of electrons on the target, which compares favorably to computational results. The intensities of characteristic x-ray for molybdenum

  5. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  6. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  7. MapX: An In Situ, Full-Frame X-Ray Spectroscopic Imager for the Biogenic Elements

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Thompson, Kathy; Bristow, Thomas

    2016-01-01

    Microbial life exploits microscale disequilibria at boundaries where valence, chemical potential, pH, Eh, etc. vary on a length scale commensurate with the organisms themselves - tens to hundreds of micrometers. These disequilibria can exist within cracks or veins in rocks and ice, at inter- or intra-crystalline boundaries, at sediment/water or sediment/atmosphere interfaces, or even within fluid inclusions trapped inside minerals. The detection of accumulations of the biogenic elements C,N,O,P,S at appropriate concentrations on or in a mineral/ice substrate would constitute permissive evidence of extant life, but context is also required. Does the putative biosignature exist in a habitable environment? Under what conditions of P, T, and chemical potential was the host mineralogy formed? MapX is an arm-deployed contact instrument that directly images the biogenic elements C, N, O, P, S, as well as the cations of the rock-forming minerals (Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe) and important anions such as Cl, Fl. The instrument provides element images having =100 micron lateral spatial resolution over a 2.5 cm X 2.5 cm area, as well as quantitative XRF spectra from ground-selected or instrument-selected Regions of Interest (ROI) on the sample. Quantitative XRF spectra from ROI can be translated into mineralogies using ground- or instrument-based algorithms. Either an X-ray tube source (X-ray fluorescence) or a radioisotope source such as 244-Cm (alpha-particle and gamma-ray fluorescence) can be used, and characteristic X-rays emitted from the sample are imaged onto an X-ray sensitive CCD through an X-ray MicroPore Optic (MPO). As a fluorescent source, 244-Cm is highly desirable in a MapX instrument intended for life detection since high-energy alpha-particles are unrivaled in fluorescence yield for the low-Z elements. The MapX design as well as baseline performance requirements for a MapX instrument intended for life detection/identification of habitable

  8. High-redshift Extremely Red Quasars in X-Rays

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Zakamska, Nadia L.; Alexandroff, Rachael M.; Assef, Roberto J.; Banerji, Manda; Hamann, Fred; Wylezalek, Dominika; Brandt, William N.; Greene, Jenny E.; Lansbury, George B.; Pâris, Isabelle; Richards, Gordon; Stern, Daniel; Strauss, Michael A.

    2018-03-01

    Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper, we present X-ray observations of 11 extremely red quasars (ERQs) with L bol ∼ 1047 erg s‑1 at z = 1.5–3.2 with evidence for high-velocity (v ≥slant 1000 km s‑1) [O III] λ5007 outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect 10 out of 11 ERQs available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of N H ≈ 1023 cm‑2, including four Compton-thick candidates (N H ≥slant 1024 cm‑2). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of N H ∼ 8 × 1023 cm‑2. The absorption-corrected (intrinsic) 2–10 keV X-ray luminosity of the stack is 2.7 × 1045 erg s‑1, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds.

  9. Beam Measurement of 11.424 GHz X-Band Linac for Compton Scattering X-ray Source

    NASA Astrophysics Data System (ADS)

    Natsui, Takuya; Mori, Azusa; Masuda, Hirotoshi; Uesaka, Mitsuru; Sakamoto, Fumito

    2010-11-01

    An inverse Compton scattering X-ray source for medical applications, consisting of an X-band (11.424 GHz) linac and Q-switched Nd:YAG laser, is currently being developed at the University of Tokyo. This system uses an X-band 3.5-cell thermionic cathode RF gun for electron beam generation. We can obtain a multi-bunch electron beam with this gun. The beam is accelerated to 30 MeV by a traveling-wave accelerating tube. So far, we have verified stable beam generation (around 2.3 MeV) by using the newly designed RF gun and we have succeeded in beam transportation to a beam dump.

  10. Simulations of sonic boom ray tube area fluctuations for propagation through atmospheric turbulence including caustics via a Monte Carlo method

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.; Pierce, Allan D.

    1992-01-01

    A theory which gives statistical predictions for how often sonic booms propagating through the earth's turbulent boundary layer will encounter caustics, given the spectral properties of the atmospheric turbulence, is outlined. The theory is simple but approximately accounts for the variation of ray tube areas along ray paths. This theory predicts that the variation of ray tube areas is determined by the product of two similar area factors, psi (x) and phi (x), each satisfying a generic harmonic oscillator equation. If an area factor increases the peak acoustic pressure decreases, and if the factor decreases the peak acoustic pressure increases. Additionally, if an area factor decreases to zero and becomes negative, the ray has propagated through a caustic, which contributes a phase change of 90 degrees to the wave. Thus, it is clear that the number of times that a sonic boom wave passes through a caustic should be related to the distorted boom waveform received on the ground. Examples are given based on a characterization of atmospheric turbulence due to the structure function of Tatarski as modified by Crow.

  11. Accuracy evaluation of an X-ray microtomography system.

    PubMed

    Fernandes, Jaquiel S; Appoloni, Carlos R; Fernandes, Celso P

    2016-06-01

    Microstructural parameter evaluation of reservoir rocks is of great importance to petroleum production companies. In this connection, X-ray computed microtomography (μ-CT) has proven to be a quite useful method for the assessment of rocks, as it provides important microstructural parameters, such as porosity, permeability, pore size distribution and porous phase of the sample. X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields 2-D cross-sectional images of the sample as well as volume rendering. This technique offers an additional advantage, as it does not require sample preparation, of reducing the measurement time, which is approximately one to three hours, depending on the spatial resolution used. Although this technique is extensively used, accuracy verification of measurements is hard to obtain because the existing calibrated samples (phantoms) have large volumes and are assessed in medical CT scanners with millimeter spatial resolution. Accordingly, this study aims to determine the accuracy of an X-ray computed microtomography system using a Skyscan 1172 X-ray microtomograph. To accomplish this investigation, it was used a nylon thread set with known appropriate diameter inserted into a glass tube. The results for porosity size and phase distribution by X-ray microtomography were very close to the geometrically calculated values. The geometrically calculated porosity and the porosity determined by the methodology using the μ-CT was 33.4±3.4% and 31.0±0.3%, respectively. The outcome of this investigation was excellent. It was also observed a small variability in the results along all 401 sections of the analyzed image. Minimum and maximum porosity values between the cross sections were 30.9% and 31.1%, respectively. A 3-D image representing the actual structure of the sample was also rendered from the 2-D images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer.

    PubMed

    Wrobel, Pawel; Czyzycki, Mateusz; Furman, Leszek; Kolasinski, Krzysztof; Lankosz, Marek; Mrenca, Alina; Samek, Lucyna; Wegrzynek, Dariusz

    2012-05-15

    Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    NASA Astrophysics Data System (ADS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-04-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation.

  14. X-ray spectrometer with a low-cost SiC photodiode

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Lioliou, G.; Barnett, A. M.

    2018-04-01

    A low-cost Commercial-Off-The-Shelf (COTS) 4H-SiC 0.06 mm2 UV p-n photodiode was coupled to a low-noise charge-sensitive preamplifier and used as photon counting X-ray spectrometer. The photodiode/spectrometer was investigated at X-ray energies from 4.95 keV to 21.17 keV: a Mo cathode X-ray tube was used to fluoresce eight high-purity metal foils to produce characteristic X-ray emission lines which were used to characterise the instrument. The energy resolution (full width at half maximum, FWHM) of the spectrometer was found to be 1.6 keV to 1.8 keV, across the energy range. The energy linearity of the detector/spectrometer (i.e. the detector's charge output per photon as a function of incident photon energy across the 4.95 keV to 21.17 keV energy range), as well as the count rate linearity of the detector/spectrometer (i.e. number of detected photons as a function of photon fluence at a specific energy) were investigated. The energy linearity of the detector/spectrometer was linear with an error < ± 0.7 %; the count rate linearity of the detector/spectrometer was linear with an error < ± 2 %. The use of COTS SiC photodiodes as detectors for X-ray spectrometers is attractive for nanosatellite/CubeSat applications (including solar flare monitoring), and for cost sensitive industrial uses.

  15. Modification of a Superficial X-Ray Therapy Machine for Rectal Contact Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barish, Robert J.; Donohue, Karen Episcopia

    2015-01-15

    X-ray therapy of superficial rectal cancers using a hand-held 50 kV contact unit (Philips RT-50) in a technique first described by Papillon had reached a point of widening clinical acceptability when the manufacturer of this equipment discontinued its production. To pursue this endocavitary approach to rectal therapy, technical modifications have to be made to conventional superficial x-ray therapy machines. Advantages over the original Papillon method include remote viewing of the lesion through the proctoscopic cone and a lower radiation exposure for the operator. We have evaluated a Bucky Combination Therapy Unit under conditions in which the operating voltage (65 kV),more » target skin distance (23.6 cm), and added filtration (0.39 mm Al) were selected in order to match as closely as possible the beam penetration characteristics of the “standard” (Papillon) technique. With this equipment, the thermal characteristics of the tube anode and housing limit the amount of radiation that can be delivered before a “rest period” for the machine is needed. In practice, 3 minutes of irradiation at an exposure rate of 500 R/min can be performed followed by an interval of 3 minutes before irradiation can be resumed.« less

  16. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  17. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  18. Impact of rare earth element added filters on the X-ray beam spectra: a Monte Carlo approach.

    PubMed

    Eskandarlou, Amir; Jafari, Amir Abbas; Mohammadi, Mohammad; Zehtabian, Mehdi; Faghihi, Reza; Shokri, Abbas; Pourolajal, Jalal

    2014-01-01

    The effectiveness of added filters including conventional and rare earth materials for dental radiography tasks was investigated using a simulation approach. Current study focuses on the combination of a range of various filters to investigate the reduction of radiation absorbed dose and improving the quality of a radiography image. To simulate the X-ray beam spectrum, a MCNP5 code was applied. Relative intensity, beam quality, and mean energy were investigated for a typical dental radiography machine. The impact of different rare-earth materials with different thicknesses and tube voltages on the X-ray spectrum was investigated. For Aluminum as a conventional filter, the modeled X-ray spectra and HVL values were in a good agreement with those reported by IPEM. The results showed that for a 70 kVp voltage, with an increase of the thickness and atomic number of a given added filters, an increase of HVL values were observed. However, with the increase of the attenuator thickness, X-ray beam intensity decreases. For mean energy, different results were observed. It was also found that rare earth made filters reduce high energy X-ray radiation due to k-edge absorption. This leads to an ideal beam for intra-oral radiography tasks. However, as a disadvantage of rare earth added filters, the reduction of the tube output levels should also be considered.

  19. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.

    PubMed

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-05-11

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  20. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  1. Advanced High Brilliance X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gibson, Walter M.

    1998-01-01

    The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent

  2. Simultaneous Monitoring of X-ray and Radio Variability in Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Haggard, Daryl; Capellupo, Daniel M.; Choux, Nicolas; Baganoff, Frederick K.; Bower, Geoffrey C.; Cotton, William D.; Degenaar, Nathalie; Dexter, Jason; Falcke, Heino; Fragile, P. Christopher Christopher; Heinke, Craig O.; Law, Casey J.; Markoff, Sera; Neilsen, Joseph; Ponti, Gabriele; Rea, Nanda; Yusef-Zadeh, Farhad

    2017-08-01

    We report on joint X-ray/radio campaigns targeting Sagittarius A*, including 9 contemporaneous Chandra and VLA observations. These campaigns are the most extensive of their kind and have allowed us to test whether the black hole’s variations in different parts of the electromagnetic spectrum are due to the same physical processes. We detect significant radio variability peaking >176 minutes after the brightest X-ray flare ever detected from Sgr A*. We also identify other potentially associated X-ray and radio variability, with radio peaks appearing <80 minutes after weaker X-ray flares. These results suggest that stronger X-ray flares lead to longer time lags in the radio. However, we also test the possibility that the variability at X-ray and at radio wavelengths are not temporally correlated, and show that the radio variations occurring around the time of X-ray flaring are not significantly greater than the overall radio flux variations. We also cross-correlate data from mismatched X-ray and radio epochs and obtain comparable correlations to the matched data. Hence, we find no overall statistical evidence that X-ray flares and radio variability are correlated, underscoring a need for more simultaneous, long duration X-ray-radio monitoring of Sgr A*.

  3. Laser-driven powerful kHz hard x-ray source

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie

    2017-08-01

    A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.

  4. Design and fabrication of x-ray Kirkpatrick-Baez microscope for ICF

    NASA Astrophysics Data System (ADS)

    Mu, Baozhong; Wang, Zhanshan; Huang, Shengling; Yi, Shengzhen; Shen, Zhengxiang

    2007-12-01

    A hard x-ray (8 keV, Kα line of Cu) Kirkpatrick-Baez (KB) microscope was designed for the diagnostics of inertial confinement fusion (ICF). Three main parts including optical design, fabrication of multilayers, and alignment method were discussed in this paper. According to the deduced equation of aberration in whole field, an optical system was designed, which gives attention to not only spatial resolution but also the collection efficiency. Tungsten (W) and boron carbide (B4C) were chosen as multilayer materials and the non-periodic multilayer with 40 layers was deposited. The measured reflectivity by XRD is better than 18% in the bandwidth range of about 0.3%. Super accurately alignment is another difficulty in the application of KB microscope. To meet the requirements of pointing and co-focusing, a binocular laser pointer which is flexible enough was designed. Finally, an 8keV x-ray tube was used as source in x-ray imaging experiment and images with magnification of 2× were obtained.

  5. Characterization of the external and internal flow structure of an aerated-liquid injector using X-ray radiography and fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peltier, Scott J.; Lin, Kuo-Cheng; Carter, Campbell D.

    In the present study, the internal flowfield of aerated-liquid fuel injectors is examined through x-ray radiography and x-ray fluorescence. An inside-out injector, consisting of a perforated aerating tube within an annular liquid stream, sprays into a quiescent environment at a fixed mass flow rate of water and nitrogen gas. The liquid is doped with bromine (in the form of NaBr) to create an x-ray fluorescence signal. This allows for reasonable absorption and fluorescence signals, and one or both diagnostics can be used to track the liquid distribution. The injector housing is fabricated from beryllium (Be), which allows the internal flowfieldmore » to be examined (as Be has relatively low x-ray attenuation coefficient). Two injector geometries are compared, illustrating the effects of aerating orifice size and location on the flow evolution. Time-averaged equivalent pathlength (EPL) and line-of-sight averaged density ρ(y) reveal the formation of the two-phase mixture, showing that the liquid film thickness along the injector walls is a function of the aerating tube geometry, though only upstream of the nozzle. These differences in gas and liquid distribution (between injectors with different aerating tube designs) are suppressed as the mixture traverses the nozzle contraction. The averaged liquid velocity (computed from the density and liquid mass flow rate) reveal a similar trend. This suggests that at least for the current configurations, the plume width, liquid mass distribution, and averaged liquid velocity for the time-averaged external spray are insensitive to the aerating tube geometry.« less

  6. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  7. Observation of Reverse Saturable Absorption of an X-ray Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, B. I.; Cho, M. S.; Kim, M.

    A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10more » 16 –10 17 W=cm 2. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in the extreme state of matters, as well as affording the potential to regulate ultrafast x-ray freeelectron laser pulses.« less

  8. Observation of Reverse Saturable Absorption of an X-ray Laser

    DOE PAGES

    Cho, B. I.; Cho, M. S.; Kim, M.; ...

    2017-08-16

    A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10more » 16 –10 17 W=cm 2. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in the extreme state of matters, as well as affording the potential to regulate ultrafast x-ray freeelectron laser pulses.« less

  9. Asymmetric masks for laboratory-based X-ray phase-contrast imaging with edge illumination.

    PubMed

    Endrizzi, Marco; Astolfo, Alberto; Vittoria, Fabio A; Millard, Thomas P; Olivo, Alessandro

    2016-05-05

    We report on an asymmetric mask concept that enables X-ray phase-contrast imaging without requiring any movement in the system during data acquisition. The method is compatible with laboratory equipment, namely a commercial detector and a rotating anode tube. The only motion required is that of the object under investigation which is scanned through the imaging system. Two proof-of-principle optical elements were designed, fabricated and experimentally tested. Quantitative measurements on samples of known shape and composition were compared to theory with good agreement. The method is capable of measuring the attenuation, refraction and (ultra-small-angle) X-ray scattering, does not have coherence requirements and naturally adapts to all those situations in which the X-ray image is obtained by scanning a sample through the imaging system.

  10. SUZAKU X-RAY FOLLOW-UP OBSERVATIONS OF SEVEN UNASSOCIATED FERMI-LAT GAMMA-RAY SOURCES AT HIGH GALACTIC LATITUDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y.; Kataoka, J.; Nakamori, T.

    2012-03-01

    We report on our second-year campaign of X-ray follow-up observations of unidentified Fermi Large Area Telescope (LAT) {gamma}-ray sources at high Galactic latitudes (|b| > 10 Degree-Sign ) using the X-ray Imaging Spectrometer on board the Suzaku X-ray Observatory. In this second year of the project, seven new targets were selected from the First Fermi-LAT Catalog, and studied with 20-40 ks effective Suzaku exposures. We detected an X-ray point source coincident with the position of the recently discovered millisecond pulsar (MSP) PSR J2302+4442 within the 95% confidence error circle of 1FGL J2302.8+4443. The X-ray spectrum of the detected counterpart wasmore » well fit by a blackbody model with temperature of kT {approx_equal} 0.3 keV, consistent with an origin of the observed X-ray photons from the surface of a rotating magnetized neutron star. For four other targets that were also recently identified with a normal pulsar (1FGL J0106.7+4853) and MSPs (1FGL J1312.6+0048, J1902.0-5110, and J2043.2+1709), only upper limits in the 0.5-10 keV band were obtained at the flux levels of {approx_equal} 10{sup -14} erg cm{sup -2} s{sup -1}. A weak X-ray source was found in the field of 1FGL J1739.4+8717, but its association with the variable {gamma}-ray emitter could not be confirmed with the available Suzaku data alone. For the remaining Fermi-LAT object 1FGL J1743.8-7620 no X-ray source was detected within the LAT 95% error ellipse. We briefly discuss the general properties of the observed high Galactic-latitude Fermi-LAT objects by comparing their multiwavelength properties with those of known blazars and MSPs.« less

  11. [Object Separation from Medical X-Ray Images Based on ICA].

    PubMed

    Li, Yan; Yu, Chun-yu; Miao, Ya-jian; Fei, Bin; Zhuang, Feng-yun

    2015-03-01

    X-ray medical image can examine diseased tissue of patients and has important reference value for medical diagnosis. With the problems that traditional X-ray images have noise, poor level sense and blocked aliasing organs, this paper proposes a method for the introduction of multi-spectrum X-ray imaging and independent component analysis (ICA) algorithm to separate the target object. Firstly image de-noising preprocessing ensures the accuracy of target extraction based on independent component analysis and sparse code shrinkage. Then according to the main proportion of organ in the images, aliasing thickness matrix of each pixel was isolated. Finally independent component analysis obtains convergence matrix to reconstruct the target object with blind separation theory. In the ICA algorithm, it found that when the number is more than 40, the target objects separate successfully with the aid of subjective evaluation standard. And when the amplitudes of the scale are in the [25, 45] interval, the target images have high contrast and less distortion. The three-dimensional figure of Peak signal to noise ratio (PSNR) shows that the different convergence times and amplitudes have a greater influence on image quality. The contrast and edge information of experimental images achieve better effects with the convergence times 85 and amplitudes 35 in the ICA algorithm.

  12. Analysis of monochromatic and quasi-monochromatic X-ray sources in imaging and therapy

    NASA Astrophysics Data System (ADS)

    Westphal, Maximillian; Lim, Sara; Nahar, Sultana; Orban, Christopher; Pradhan, Anil

    2017-04-01

    We studied biomedical imaging and therapeutic applications of recently developed quasi-monochromatic and monochromatic X-ray sources. Using the Monte Carlo code GEANT4, we found that the quasi-monochromatic 65 keV Gaussian X-ray spectrum created by inverse Compton scattering with relatavistic electron beams were capable of producing better image contrast with less radiation compared to conventional 120 kV broadband CT scans. We also explored possible experimental detection of theoretically predicted K α resonance fluorescence in high-Z elements using the European Synchrotron Research Facility with a tungsten (Z = 74) target. In addition, we studied a newly developed quasi-monochromatic source generated by converting broadband X-rays to monochromatic K α and β X-rays with a zirconium target (Z = 40). We will further study how these K α and K β dominated spectra can be implemented in conjunction with nanoparticles for targeted therapy. Acknowledgement: Ohio Supercomputer Center, Columbus, OH.

  13. The increasing X-Ray Activity of PKS 2155-304

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2016-10-01

    The southern TeV-detected HBL source PKS 2155-304 (z=0.116) is prominent with its very strong TeV/X-ray flaring behaviour (see, e.g., Aharonian et al. 2009, A & A, 502, 749; Abramowski et al. 2012, A & A, 539; Kapanadze et al. 2014, MNRAS, 444; 1076), and, therefore, it represents one of the frequent Swift targets (203 observations since 2005 November 17). In the framework of our Target of Opportunity (ToO) request Number 8344, the source was pointed nine time by X-Ray Telescope onboard the Swift satellite (Swift-XRT) since 2016 August 5 with one week intervals between the successive observations.

  14. Investigations in x-radiation stimulation

    NASA Astrophysics Data System (ADS)

    Gupta, K. D.

    1982-03-01

    The objective is to invent a crystal x-ray laser. Investigations in the Radiation Research Lab. at Texas Tech University have established in a very straightforward way the line narrowing associated with a threshold pumping and a nonlinear rise in intensity. Recent work on x-ray Borrmann channeling via monocrystals has demonstrated the existence of a monochromatic x-ray beam without any vertical divergence. This would allow the transport of x-ray energy in space for thousands of miles without any loss of power. Preliminary experiments with a monocrystal excited by pulsed x-rays at Air Force Weapons Laboratory, KAFB, Albuquerque, seem to indicate a gain in intensity of the nondivergent hot spot with a concomitant fading of the regular Laue pattern. Current investigations in this line indicates that with proper doping of the monocrystal the nondivergent beam could be increased in intensity using a flash x-ray tube to pump the doped monocrystal. A concial target double beam flash x-ray line source instrument has been constructed to obtain a beam of nondivergent, stimulated, coherent, and monochromatic x-rays from doped monocrystals. A generation of stimulated x-rays using bunched electrons from pulsed high power klystron striking a monocrystal has been conceived.

  15. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    DOE PAGES

    Doppner, T.; Bachmann, B.; Albert, F.; ...

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information onmore » hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.« less

  16. Investigation of the hard x-ray background in backlit pinhole imagers.

    PubMed

    Fein, J R; Peebles, J L; Keiter, P A; Holloway, J P; Klein, S R; Kuranz, C C; Manuel, M J-E; Drake, R P

    2014-11-01

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  17. Investigation of the hard x-ray background in backlit pinhole imagers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fein, J. R., E-mail: jrfein@umich.edu; Holloway, J. P.; Peebles, J. L.

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographicmore » image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.« less

  18. Planetary X-ray studies: past, present and future

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella

    2016-07-01

    relative contributions of different processes. SWCX X-ray emission from the Earth's exosphere is turning from unwanted variable background in astrophysical observations to a novel and global diagnostic tool for investigating solar-terrestrial interactions: this underpins the development of the ESA-CAS joint mission SMILE (Solar Wind Magnetosphere Ionosphere Link Explorer) due for launch in 2021. On the longer term ATHENA (Advanced Telescope for High ENergy Astrophysics, launch 2028) will provide planetary targets with vastly improved X-ray sensitivity on that currently afforded by XMM-Newton.

  19. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  20. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.