Gray, Michael J; Gong, Jian; Hatch, Michaela M S; Nguyen, Van; Hughes, Christopher C W; Hutchins, Jeff T; Freimark, Bruce D
2016-05-11
The purpose of this study was to investigate the potential of antibody-directed immunotherapy targeting the aminophospholipid phosphatidylserine, which promotes immunosuppression when exposed in the tumor microenvironment, alone and in combination with antibody treatment towards the T-cell checkpoint inhibitor PD-1 in breast carcinomas, including triple-negative breast cancers. Immune-competent mice bearing syngeneic EMT-6 or E0771 tumors were subjected to treatments comprising of a phosphatidylserine-targeting and an anti-PD-1 antibody either as single or combinational treatments. Anti-tumor effects were determined by tumor growth inhibition and changes in overall survival accompanying each treatment. The generation of a tumor-specific immune response in animals undergoing complete tumor regression was assessed by secondary tumor cell challenge and splenocyte-produced IFNγ in the presence or absence of irradiated tumor cells. Changes in the presence of tumor-infiltrating lymphocytes were assessed by flow cytometry, while mRNA-based immune profiling was determined using NanoString PanCancer Immune Profiling Panel analysis. Treatment by a phosphatidylserine-targeting antibody inhibits in-vivo growth and significantly enhances the anti-tumor activity of antibody-mediated PD-1 therapy, including providing a distinct survival advantage over treatment by either single agent. Animals in which complete tumor regression occurred with combination treatments were resistant to secondary tumor challenge and presented heightened expression levels of splenocyte-produced IFNγ. Combinational treatment by a phosphatidylserine-targeting antibody with anti-PD-1 therapy increased the number of tumor-infiltrating lymphocytes more than that observed with single-arm therapies. Finally, immunoprofiling analysis revealed that the combination of anti-phosphatidylserine targeting antibody and anti-PD-1 therapy enhanced tumor-infiltrating lymphocytes, and increased expression of pro-immunosurveillance-associated cytokines while significantly decreasing expression of pro-tumorigenic cytokines that were induced by single anti-PD-1 therapy. Our data suggest that antibody therapy targeting phosphatidylserine-associated immunosuppression, which has activity as a single agent, can significantly enhance immunotherapies targeting the PD-1 pathway in murine breast neoplasms, including triple-negative breast cancers.
Pegram, Hollie J.; Park, Jae H.; Brentjens, Renier J.
2015-01-01
CD19-targeted chimeric antigen receptor (CAR) T cells are currently being tested in the clinic with very promising outcomes. However, limitations to CAR T cell therapy exist. These include lack of efficacy against some tumors, specific targeting of tumor cells without affecting normal tissue and retaining activity within the suppressive tumor microenvironment. Whilst promising clinical trials are in progress, preclinical development is focused on optimizing CAR design, to generate “armored CAR T cells” which are protected from the inhibitory tumor microenvironment. Studies investigating the expression of cytokine transgenes, combination therapy with small molecule inhibitors or monoclonal antibodies are aimed at improving the anti-tumor efficacy of CAR T cell therapy. Other strategies aimed at improving CAR T cell therapy include utilizing dual CARs and chemokine receptors to more specifically target tumor cells. This review will describe the current clinical data and some novel “armored CAR T cell” approaches for improving anti-tumor efficacy therapy. PMID:24667958
Ma, Jing; Shen, Ming; Xu, Chang Song; Sun, Ying; Duan, You Rong; Du, Lian Fang
2016-11-29
A porous-structure nano-scale ultrasound contrast agent (UCA) was made of monomethoxypoly (ethylene glycol)-poly (lactic-co-glycolic acid) (mPEG-PLGA), and modified by double-targeted antibody: anti-carcinoembryonic antigen (CEA) and anti-carbohydrate antigen 19-9 (CA19-9), as a double-targeted nanoparticles (NPs). Anti-tumor drug paclitaxel (PTX) was encapsulated in the double-targeted nanoparticles (NPs). The morphor and release curve were characterized. We verified a certain anticancer effect of PTX-NPs through cytotoxicity experiments. The cell uptake result showed much more NPs may be facilitated to ingress the cells or tissues with ultrasound (US) or ultrasound targeted microbubble destruction (UTMD) transient sonoporation in vitro. Ultrasound contrast-enhanced images in vitro and in vivo were investigated. Compared with SonoVue, the NPs prolonged imaging time in rabbit kidneys and tumor of nude mice, which make it possible to further enhance anti-tumor effects by extending retention time in the tumor region. The novel double-targeted NPs with the function of ultrasound contrast enhanced imaging and anti-tumor therapy can be a promising way in clinic.
A targeted IL-15 fusion protein with potent anti-tumor activity
Chen, Siqi; Huang, Qiang; Liu, Jiayu; Xing, Jieyu; Zhang, Ning; Liu, Yawei; Wang, Zhong; Li, Qing
2015-01-01
IL-15 has been actively investigated for its potential in tumor immunotherapy. To enhance the anti-tumor activity of IL-15, the novel PFC-1 construct was designed, which comprises the following 3 parts: (1) IL-15Rα fused with IL-15 to enhance IL-15 activity, (2) an Fc fragment to increase protein half-life, and (3) an integrin-targeting RGD peptide to enhance tumor targeting. PFC-1 showed tumor cell targeting without compromising IL-15 activity. PFC-1 also had potent anti-tumor activities in xenograft models, suggesting the potential application of this multi-functional fusion protein in tumor therapy. PMID:26176990
Yan, Huaming; Romero-López, Mónica; Benitez, Lesly I.; Di, Kaijun; Frieboes, Hermann B.; Hughes, Christopher C. W.; Bota, Daniela A.; Lowengrub, John S.
2017-01-01
Glioblastoma (GBM), the most aggressive brain tumor in human patients, is decidedly heterogeneous and highly vascularized. Glioma stem/initiating cells (GSC) are found to play a crucial role by increasing cancer aggressiveness and promoting resistance to therapy. Recently, crosstalk between GSC and vascular endothelial cells has been shown to significantly promote GSC self-renewal and tumor progression. Further, GSC also transdifferentiate into bona-fide vascular endothelial cells (GEC), which inherit mutations present in GSC and are resistant to traditional anti-angiogenic therapies. Here we use 3D mathematical modeling to investigate GBM progression and response to therapy. The model predicted that GSC drive invasive fingering and that GEC spontaneously form a network within the hypoxic core, consistent with published experimental findings. Standard-of-care treatments using DNA-targeted therapy (radiation/chemo) together with anti-angiogenic therapies, reduced GBM tumor size but increased invasiveness. Anti-GEC treatments blocked the GEC support of GSC and reduced tumor size but led to increased invasiveness. Anti-GSC therapies that promote differentiation or disturb the stem cell niche effectively reduced tumor invasiveness and size, but were ultimately limited in reducing tumor size because GEC maintain GSC. Our study suggests that a combinatorial regimen targeting the vasculature, GSC, and GEC, using drugs already approved by the FDA, can reduce both tumor size and invasiveness and could lead to tumor eradication. PMID:28536277
Anti-VEGF/VEGFR therapy for cancer: Reassessing the target
Sitohy, Basel; Nagy, Janice A.; Dvorak, Harold F.
2012-01-01
Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed anti-angiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor/vascular endothelial growth factor (VEGF-A) as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and we here call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least six well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All six types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A164. Once formed, four of the six types lose their VEGF-A dependency and so their responsiveness to anti-VEGF/VEGFR therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels. PMID:22508695
Combination of Anti-angiogenesis with Chemotherapy for More Effective Cancer Treatment*
Ma, Jie; Waxman, David J.
2008-01-01
Angiogenesis is a hallmark of tumor development and metastasis and is now a validated target for cancer treatment. Overall, however, the survival benefits of anti-angiogenic drugs have, thus far, been rather modest, stimulating interest in developing more effective ways to combine anti-angiogenic drugs with established chemotherapies. This review discusses recent progress and emerging challenges in this field; interactions between anti-angiogenic drugs and conventional chemotherapeutic agents are examined, and strategies for the optimization of combination therapies are discussed. Anti-angiogenic drugs such as the anti-VEGF antibody bevacizumab can induce a functional normalization of the tumor vasculature that is transient and can potentiate the activity of co-administered chemoradiotherapies. However, chronic angiogenesis inhibition typically reduces tumor uptake of co-administered chemotherapeutics, indicating a need to explore new approaches, including intermittent treatment schedules and provascular strategies to increase chemotherapeutic drug exposure. In cases where anti-angiogenesis-induced tumor cell starvation augments the intrinsic cytotoxic effects of a conventional chemotherapeutic drug, combination therapy may increase anti-tumor activity despite a decrease in cytotoxic drug exposure. As new angiogenesis inhibitors enter the clinic, reliable surrogate markers are needed to monitor the progress of anti-angiogenic therapies and to identify responsive patients. New targets for anti-angiogenesis continue to be discovered, increasing the opportunities to interdict tumor angiogenesis and circumvent resistance mechanisms that may emerge with chronic use of these drugs. PMID:19074844
Homologous recombination deficiency and host anti-tumor immunity in triple-negative breast cancer.
Telli, M L; Stover, D G; Loi, S; Aparicio, S; Carey, L A; Domchek, S M; Newman, L; Sledge, G W; Winer, E P
2018-05-07
Triple-negative breast cancer (TNBC) is associated with worse outcomes relative to other breast cancer subtypes. Chemotherapy remains the standard-of-care systemic therapy for patients with localized or metastatic disease, with few biomarkers to guide benefit. We will discuss recent advances in our understanding of two key biological processes in TNBC, homologous recombination (HR) DNA repair deficiency and host anti-tumor immunity, and their intersection. Recent advances in our understanding of homologous recombination (HR) deficiency, including FDA approval of PARP inhibitor olaparib for BRCA1 or BRCA2 mutation carriers, and host anti-tumor immunity in TNBC offer potential for new and biomarker-driven approaches to treat TNBC. Assays interrogating HR DNA repair capacity may guide treatment with agents inducing or targeting DNA damage repair. Tumor infiltrating lymphocytes (TILs) are associated with improved prognosis in TNBC and recent efforts to characterize infiltrating immune cell subsets and activate host anti-tumor immunity offer promise, yet challenges remain particularly in tumors lacking pre-existing immune infiltrates. Advances in these fields provide potential biomarkers to stratify patients with TNBC and guide therapy: induction of DNA damage in HR-deficient tumors and activation of existing or recruitment of host anti-tumor immune cells. Importantly, these advances provide an opportunity to guide use of existing therapies and development of novel therapies for TNBC. Efforts to combine therapies that exploit HR deficiency to enhance the activity of immune-directed therapies offer promise. HR deficiency remains an important biomarker target and potentially effective adjunct to enhance immunogenicity of 'immune cold' TNBCs.
Disrupting Tumor Angiogenesis and "the Hunger Games" for Breast Cancer.
Zhou, Ziwei; Yao, Herui; Hu, Hai
2017-01-01
Angiogenesis, one of the hallmarks of cancers, has become an attractive target for cancer therapy since decades ago. It is broadly thought that upregulation of angiogenesis is involved in tumor progression and metastasis. Though tumor vessels are tortuous, disorganized, and leaky, they deliver oxygen and nutrients for tumor development. Based on this knowledge, many kinds of drugs targeting angiogenesis pathways have been developed, such as bevacizumab. However, the clinical outcomes of anti-angiogenesis therapies are moderate in metastatic breast cancer as well as in metastatic colorectal cancer and non-small cell lung cancer, even combined with traditional chemotherapy. In this chapter, the morphologic angiogenesis patterns and the key molecular pathways regulating angiogenesis are elaborated. The FDA-approved anti-angiogenesis drugs and current challenges of anti-angiogenesis therapy are described. The strategies to overcome the barriers will also be elucidated.
Yan, Fei; Wu, Hao; Liu, Hongmei; Deng, Zhiting; Liu, Hong; Duan, Wanlu; Liu, Xin; Zheng, Hairong
2016-02-28
Multifunctional near-infrared (NIR) nanoparticles demonstrate great potential in tumor theranostic applications. To achieve the sensitive detection and effective phototherapy in the early stage of tumor genesis, it is highly desirable to improve the targeting of NIR theranostic agents to biomarkers and to enhance their accumulation in tumor. Here we report a novel targeted multifunctional theranostic nanoparticle, internalized RGD (iRGD)-modified indocyanine green (ICG) liposomes (iRGD-ICG-LPs), for molecular imaging-guided photothermal therapy (PTT) and photodynamic therapy (PDT) therapy against breast tumor. The iRGD peptides with high affinity to αvβ3 integrin and effective tumor-internalized property were firstly used to synthesize iRGD-PEG2000-DSPE lipopeptides, which were further utilized to fabricate the targeted ICG liposomes. The results indicated that iRGD-ICG-LPs exhibited excellent stability and could provide an accurate and sensitive detection of breast tumor through NIR fluorescence molecular imaging. We further employed this nanoparticle for tumor theranostic application, demonstrating significantly higher tumor accumulation and tumor inhibition efficacy through PTT/PDT effects. Histological analysis further revealed much more apoptotic cells, confirming the advantageous anti-tumor effect of iRGD-ICG-LPs over non-targeted ICG-LPs. Notably, the targeting therapy mediated by iRGD provides almost equivalent anti-tumor efficacy at a 12.5-fold lower drug dose than that by monoclonal antibody, and no tumor recurrence and obvious treatment-induced toxicity were observed in our study. Our study provides a promising strategy to realize the sensitive detection and effective treatment of tumors by integrating molecular imaging into PTT/PDT therapy. Copyright © 2015. Published by Elsevier B.V.
Xu, L.; Tang, W. H.; Huang, C. C.; Alexander, W.; Xiang, L. M.; Pirollo, K. F.; Rait, A.; Chang, E. H.
2001-01-01
BACKGROUND: A long-standing goal in genetic therapy for cancer is a systemic gene delivery system that selectively targets tumor cells, including metastases. Here we describe a novel cationic immunolipoplex system that shows high in vivo gene transfer efficiency and anti- tumor efficacy when used for systemic p53 gene therapy of cancer. MATERIALS AND METHODS: A cationic immunolipoplex incorporating a biosynthetically lipid-tagged, anti-transferrin receptor single-chain antibody (TfRscFv), was designed to target tumor cells both in vitro and in vivo. A human breast cancer metastasis model was employed to evaluate the in vivo efficacy of systemically administered, TfRscFv-immunolipoplex-mediated, p53 gene therapy in combination with docetaxel. RESULTS: The TfRscFv-targeting cationic immunolipoplex had a size of 60-100 nm, showed enhanced tumor cell binding, and improved targeted gene delivery and transfection efficiencies, both in vitro and in vivo. The p53 tumor suppressor gene was not only systemically delivered by the immunolipoplex to human tumor xenografts in nude mice but also functionally expressed. In the nude mouse breast cancer metastasis model, the combination of the p53 gene delivered by the systemic administration of the TfRscFv-immunolipoplex and docetaxel resulted in significantly improved efficacy with prolonged survival. CONCLUSIONS: This is the first report using scFv-targeting immunolipoplexes for systemic gene therapy. The TfRscFv has a number of advantages over the transferrin (Tf) molecule itself: (1) scFv has a much smaller size than Tf producing a smaller immunolipoplex giving better penetration into solid tumors; (2) unlike Tf, the scFv is a recombinant protein, not a blood product; (3) large scale production and strict quality control of the recombinant scFv, as well as scFv-immunolipoplex, are feasible. The sensitization of tumors to chemotherapy by this tumor-targeted and efficient p53 gene delivery method could lower the effective dose of the drug, correspondingly lessening the severe side effects, while decreasing the possibility of recurrence. Moreover, this approach is applicable to both primary and recurrent tumors, and more significantly, metastatic disease. The TfRscFv-targeting of cationic immunolipoplexes is a promising method of tumor targeted gene delivery that can be used for systemic gene therapy of cancer with the potential to critically impact the clinical management of cancer. PMID:11713371
Immune checkpoint therapy in liver cancer.
Xu, Feng; Jin, Tianqiang; Zhu, Yuwen; Dai, Chaoliu
2018-05-29
Immune checkpoints include stimulatory and inhibitory checkpoint molecules. In recent years, inhibitory checkpoints, including cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed cell death protein-1 (PD-1), and programmed cell death ligand 1 (PD-L1), have been identified to suppress anti-tumor immune responses in solid tumors. Novel drugs targeting immune checkpoints have succeeded in cancer treatment. Specific PD-1 blockades were approved for treatment of melanoma in 2014 and for treatment of non-small-cell lung cancer in 2015 in the United States, European Union, and Japan. Preclinical and clinical studies show immune checkpoint therapy provides survival benefit for greater numbers of patients with liver cancer, including hepatocellular carcinoma and cholangiocarcinoma, two main primary liver cancers. The combination of anti-PD-1/PD-L1 with anti-CTLA-4 antibodies is being evaluated in phase 1, 2 or 3 trials, and the results suggest that an anti-PD-1 antibody combined with locoregional therapy or other molecular targeted agents is an effective treatment strategy for HCC. In addition, studies on activating co-stimulatory receptors to enhance anti-tumor immune responses have increased our understanding regarding this immunotherapy in liver cancer. Epigenetic modulations of checkpoints for improving the tumor microenvironment also expand our knowledge of potential therapeutic targets in improving the tumor microenvironment and restoring immune recognition and immunogenicity. In this review, we summarize current knowledge and recent developments in immune checkpoint-based therapies for the treatment of hepatocellular carcinoma and cholangiocarcinoma and attempt to clarify the mechanisms underlying its effects.
VEGF-ablation therapy reduces drug delivery and therapeutic response in ECM-dense tumors.
Röhrig, F; Vorlová, S; Hoffmann, H; Wartenberg, M; Escorcia, F E; Keller, S; Tenspolde, M; Weigand, I; Gätzner, S; Manova, K; Penack, O; Scheinberg, D A; Rosenwald, A; Ergün, S; Granot, Z; Henke, E
2017-01-05
The inadequate transport of drugs into the tumor tissue caused by its abnormal vasculature is a major obstacle to the treatment of cancer. Anti-vascular endothelial growth factor (anti-VEGF) drugs can cause phenotypic alteration and maturation of the tumor's vasculature. However, whether this consistently improves delivery and subsequent response to therapy is still controversial. Clinical results indicate that not all patients benefit from antiangiogenic treatment, necessitating the development of criteria to predict the effect of these agents in individual tumors. We demonstrate that, in anti-VEGF-refractory murine tumors, vascular changes after VEGF ablation result in reduced delivery leading to therapeutic failure. In these tumors, the impaired response after anti-VEGF treatment is directly linked to strong deposition of fibrillar extracellular matrix (ECM) components and high expression of lysyl oxidases. The resulting condensed, highly crosslinked ECM impeded drug permeation, protecting tumor cells from exposure to small-molecule drugs. The reduced vascular density after anti-VEGF treatment further decreased delivery in these tumors, an effect not compensated by the improved vessel quality. Pharmacological inhibition of lysyl oxidases improved drug delivery in various tumor models and reversed the negative effect of VEGF ablation on drug delivery and therapeutic response in anti-VEGF-resistant tumors. In conclusion, the vascular changes after anti-VEGF therapy can have a context-dependent negative impact on overall therapeutic efficacy. A determining factor is the tumor ECM, which strongly influences the effect of anti-VEGF therapy. Our results reveal the prospect to revert a possible negative effect and to potentiate responsiveness to antiangiogenic therapy by concomitantly targeting ECM-modifying enzymes.
VEGF-ablation therapy reduces drug delivery and therapeutic response in ECM-dense tumors
Röhrig, F; Vorlová, S; Hoffmann, H; Wartenberg, M; Escorcia, F E; Keller, S; Tenspolde, M; Weigand, I; Gätzner, S; Manova, K; Penack, O; Scheinberg, D A; Rosenwald, A; Ergün, S; Granot, Z; Henke, E
2017-01-01
The inadequate transport of drugs into the tumor tissue caused by its abnormal vasculature is a major obstacle to the treatment of cancer. Anti-vascular endothelial growth factor (anti-VEGF) drugs can cause phenotypic alteration and maturation of the tumor's vasculature. However, whether this consistently improves delivery and subsequent response to therapy is still controversial. Clinical results indicate that not all patients benefit from antiangiogenic treatment, necessitating the development of criteria to predict the effect of these agents in individual tumors. We demonstrate that, in anti-VEGF-refractory murine tumors, vascular changes after VEGF ablation result in reduced delivery leading to therapeutic failure. In these tumors, the impaired response after anti-VEGF treatment is directly linked to strong deposition of fibrillar extracellular matrix (ECM) components and high expression of lysyl oxidases. The resulting condensed, highly crosslinked ECM impeded drug permeation, protecting tumor cells from exposure to small-molecule drugs. The reduced vascular density after anti-VEGF treatment further decreased delivery in these tumors, an effect not compensated by the improved vessel quality. Pharmacological inhibition of lysyl oxidases improved drug delivery in various tumor models and reversed the negative effect of VEGF ablation on drug delivery and therapeutic response in anti-VEGF-resistant tumors. In conclusion, the vascular changes after anti-VEGF therapy can have a context-dependent negative impact on overall therapeutic efficacy. A determining factor is the tumor ECM, which strongly influences the effect of anti-VEGF therapy. Our results reveal the prospect to revert a possible negative effect and to potentiate responsiveness to antiangiogenic therapy by concomitantly targeting ECM-modifying enzymes. PMID:27270432
Li, Wei; Liu, Zhongyun; Li, Chengxia; Li, Ning; Fang, Lei; Chang, Jin; Tan, Jian
2016-03-01
Anti-epidermal growth factor receptor (EGFR)-targeted nanoparticles can be used to deliver a therapeutic and imaging agent to EGFR-overexpressing tumor cells. (131)I-labeled anti-EGFR nanoparticles derived from cetuximab were used as a tumor-targeting vehicle in radionuclide therapy. This paper describes the construction of the anti-EGFR nanoparticle EGFR-BSA-PCL. This nanoparticle was characterized for EGFR-targeted binding and cellular uptake in EGFR-overexpressing cancer cells by using flow cytometry and confocal microscopy. Anti-EGFR and non-targeted nanoparticles were labeled with (131)I using the chloramine-T method. Analyses of cytotoxicity and targeted cell killing with (131)I were performed using the MTT assay. The time-dependent cellular uptake of (131)I-labeled anti-EGFR nanoparticles proved the slow-release effects of nanoparticles. A radioiodine therapy study was also performed in mice. The EGFR-targeted nanoparticle EGFR-BSA-PCL and the non-targeted nanoparticle BSA-PCL were constructed; the effective diameters were approximately 100 nm. The results from flow cytometry and confocal microscopy revealed significant uptake of EGFR-BSA-PCL in EGFR-overexpressing tumor cells. Compared with EGFR-BSA-PCL, BSA-PCL could also bind to cells, but tumor cell retention was minimal and weak. In MTT assays, the EGFR-targeted radioactive nanoparticle (131)I-EGFR-BSA-PCL showed greater cytotoxicity and targeted cell killing than the non-targeted nanoparticle (131)I-BSA-PCL. The radioiodine uptake of both (131)I-labeled nanoparticles, (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL, was rapid and reached maximal levels 4 h after incubation, but the (131)I uptake of (131)I-EGFR-BSA-PCL was higher than that of (131)I-BSA-PCL. On day 15, the average tumor volumes of the (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL groups showed a slow growth relationship compared with that of the control group. The EGFR-targeted nanoparticle EGFR-BSA-PCL demonstrated superior cellular binding and uptake compared with those of the control BSA-PCL. The EGFR-targeted radioactive nanoparticle (131)I-EGFR-BSA-PCL exhibited favorable intracellular retention of (131)I. Radionuclide therapy using (131)I-EGFR-BSA-PCL, which showed excellent targeted cell killing, suppressed cancer cell growth caused by EGFR overexpression.
Hypoxia-activated prodrug enhances therapeutic effect of sunitinib in melanoma
Liu, Shujing; Tetzlaff, Michael T.; Wang, Tao; Chen, Xiang; Yang, Ruifeng; Kumar, Suresh M.; Vultur, Adina; Li, Pengxiang; Martin, James S.; Herlyn, Meenhard; Amaravadi, Ravi
2017-01-01
Angiogenesis is a critical step during tumor progression. Anti-angiogenic therapy has only provided modest benefits in delaying tumor progression despite its early promise in cancer treatment. It has been postulated that anti-angiogenic therapy may promote the emergence of a more aggressive cancer cell phenotype by generating increased tumor hypoxia—a well-recognized promoter of tumor progression. TH-302 is a 2-nitroimidazole triggered hypoxia-activated prodrug (HAP) which has been shown to selectively target the hypoxic tumor compartment and reduce tumor volume. Here, we show that melanoma cells grown under hypoxic conditions exhibit increased resistance to a wide variety of therapeutic agents in vitro and generate larger and more aggressive tumors in vivo than melanoma cells grown under normoxic conditions. However, hypoxic melanoma cells exhibit a pronounced sensitivity to TH-302 which is further enhanced by the addition of sunitinib. Short term sunitinib treatment fails to prolong the survival of melanoma bearing genetically engineered mice (Tyr::CreER; BRafCA;Ptenlox/lox) but increases tumor hypoxia. Long term TH-302 alone modestly prolongs the overall survival of melanoma bearing mice. Combination therapy of TH-302 with sunitinib further increases the survival of treated mice. These studies provide a translational rationale for combining hypoxic tumor cell targeted therapies with anti-angiogenics for treatment of melanoma. PMID:29383148
[Molecular imaging of tumor blood vessels].
Tilki, D; Singer, B; Seitz, M; Stief, C G; Ergün, S
2007-09-01
In the past three decades many efforts have been undertaken to understand the mechanisms of tumor angiogenesis. The introduction of the anti-angiogenic drugs in tumor therapy during the last few years necessitates the establishment of new techniques enabling molecular imaging of vascular remodeling. Tumor imaging by X-ray, CT, MRI and ultrasound has to be improved by coupling with molecular markers targeting the tumor vessels. The determination of tumor size as commonly used is not appropriate since the extended necrosis under anti-angiogenic therapy does not result in a reduction of tumor diameter. But remodeling of the tumor vessels under anti-angiogenic therapy obviously occurs at an early stage and seems to be a convincing parameter for tumor imaging. Despite the enormous progress in this field during the last few years the resolution is still not high enough to evaluate the remodeling of the microtumor vessels. Thus, new imaging approaches are needed to overcome this issue.
Targeting Thromboxane A2 Receptor for Anti-Metastasis Therapy of Breast Cancer
2011-09-01
of cell function by Rho GTPases." Drug News Perspect 14(7): 389-95. Erickson, J. W., R. A. Cerione, et al. (1997). "Identification of an actin...Focusing Tumor Microenvironment, Stem Cells and Metastasis 570 (MTOC) and Golgi apparatus to the front of the nucleus, oriented toward the direction of...define the function of TP in tumor cell motility and to validate TP as a target for anti-metastasis therapy of breast cancer. In the first aim, the
Molecular imaging of tumor blood vessels in prostate cancer.
Tilki, Derya; Seitz, Michael; Singer, Bernhard B; Irmak, Ster; Stief, Christian G; Reich, Oliver; Ergün, Süleyman
2009-05-01
In the past three decades many efforts have been undertaken to understand the mechanisms of tumor angiogenesis. The introduction of anti-angiogenic drugs in tumor therapy during the last few years necessitates the establishment of new techniques enabling molecular imaging of tumor vascular remodelling. The determination of tumor size as commonly used is not appropriate since the extended necrosis under anti-angiogenic therapy does not necessarily result in the reduction of tumor diameter. The basis for the molecular imaging of tumor blood vessels is the remodelling of the tumor vessels under anti-angiogenic therapy which obviously occurs at an early stage and seems to be a convincing parameter. Beside the enormous progress in this field during the last few years the resolution is still not high enough to evaluate the remodelling of the micro tumor vessels. New imaging approaches combining specific molecular markers for tumor vessels with the different imaging techniques are needed to overcome this issue as exemplarily discussed for prostate cancer in this review. Molecular contrast agents targeting the vasculature will allow clinicians the visualization of vascular remodelling processes taking place under anti-angiogenic therapy and improve tumor diagnosis and follow-up.
Wargo, Jennifer A; Reuben, Alexandre; Cooper, Zachary A; Oh, Kevin S; Sullivan, Ryan J
2015-08-01
There have been significant advances in cancer treatment over the past several years through the use of chemotherapy, radiation therapy, molecularly targeted therapy, and immunotherapy. Despite these advances, treatments such as monotherapy or monomodality have significant limitations. There is increasing interest in using these strategies in combination; however, it is not completely clear how best to incorporate molecularly targeted and immune-targeted therapies into combination regimens. This is particularly pertinent when considering combinations with immunotherapy, as other types of therapy may have significant impact on host immunity, the tumor microenvironment, or both. Thus, the influence of chemotherapy, radiation therapy, and molecularly targeted therapy on the host anti-tumor immune response and the host anti-host response (ie, autoimmune toxicity) must be taken into consideration when designing immunotherapy-based combination regimens. We present data related to many of these combination approaches in the context of investigations in patients with melanoma and discuss their potential relationship to management of patients with other tumor types. Importantly, we also highlight challenges of these approaches and emphasize the need for continued translational research. Copyright © 2015 Elsevier Inc. All rights reserved.
Giuliano, Mario; Hu, Huizhong; Wang, Yen-Chao; Fu, Xiaoyong; Nardone, Agostina; Herrera, Sabrina; Mao, Sufeng; Contreras, Alejandro; Gutierrez, Carolina; Wang, Tao; Hilsenbeck, Susan G.; De Angelis, Carmine; Wang, Nicholas J.; Heiser, Laura M.; Gray, Joe W.; Lopez-Tarruella, Sara; Pavlick, Anne C.; Trivedi, Meghana V.; Chamness, Gary C.; Chang, Jenny C.; Osborne, C. Kent; Rimawi, Mothaffar F.; Schiff, Rachel
2015-01-01
Purpose To investigate the direct effect and therapeutic consequences of epidermal growth factor receptor 2 (HER2)-targeting therapy on expression of estrogen receptor (ER) and Bcl2 in preclinical models and clinical tumor samples. Experimental design Archived xenograft tumors from two preclinical models (UACC812 and MCF7/HER2-18) treated with ER and HER2-targeting therapies, and also HER2+ clinical breast cancer specimens collected in a lapatinib neoadjuvant trial (baseline and week 2 post treatment), were used. Expression levels of ER and Bcl2 were evaluated by immunohistochemistry and western blot. The effects of Bcl2 and ER inhibition, by ABT-737 and fulvestrant respectively, were tested in parental versus lapatinib-resistant UACC812 cells in vitro. Results Expression of ER and Bcl2 was significantly increased in xenograft tumors with acquired resistance to anti-HER2 therapy, compared with untreated tumors, in both preclinical models (UACC812: ER p=0.0014; Bcl2 p<0.001. MCF7/HER2-18: ER p=0.0007; Bcl2 p=0.0306). In the neoadjuvant clinical study, lapatinib treatment for two weeks was associated with parallel upregulation of ER and Bcl2 (Spearman’s coefficient: 0.70; p=0.0002). Importantly, 18% of tumors originally ER-negative (ER−) converted to ER+ upon anti-HER2 therapy. In ER−/HER2+ MCF7/HER2-18 xenografts, ER re-expression was primarily observed in tumors responding to potent combination of anti-HER2 drugs. Estrogen deprivation added to this anti-HER2 regimen significantly delayed tumor progression (p=0.018). In the UACC812 cells, fulvestrant, but not ABT-737, was able to completely inhibit anti-HER2-resistant growth (p<0.0001). Conclusion HER2 inhibition can enhance or restore ER expression with parallel Bcl2 upregulation, representing an ER-dependent survival mechanism potentially leading to anti-HER2 resistance. PMID:26015514
Anti-VEGF/VEGFR therapy for cancer: reassessing the target.
Sitohy, Basel; Nagy, Janice A; Dvorak, Harold F
2012-04-15
Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed antiangiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor VEGF-A as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and, here, we call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least 6 well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All 6 types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A(164). Once formed, 4 of the 6 types lose their VEGF-A dependency, and so their responsiveness to anti-VEGF/VEGF receptor therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels.
Crittenden, Marka R.; Baird, Jason; Friedman, David; Savage, Talicia; Uhde, Lauren; Alice, Alejandro; Cottam, Benjamin; Young, Kristina; Newell, Pippa; Nguyen, Cynthia; Bambina, Shelly; Kramer, Gwen; Akporiaye, Emmanuel; Malecka, Anna; Jackson, Andrew; Gough, Michael J.
2016-01-01
Radiation therapy provides a means to kill large numbers of cancer cells in a controlled location resulting in the release of tumor-specific antigens and endogenous adjuvants. However, by activating pathways involved in apoptotic cell recognition and phagocytosis, irradiated cancer cells engender suppressive phenotypes in macrophages. We demonstrate that the macrophage-specific phagocytic receptor, Mertk is upregulated in macrophages in the tumor following radiation therapy. Ligation of Mertk on macrophages results in anti-inflammatory cytokine responses via NF-kB p50 upregulation, which in turn limits tumor control following radiation therapy. We demonstrate that in immunogenic tumors, loss of Mertk is sufficient to permit tumor cure following radiation therapy. However, in poorly immunogenic tumors, TGFb inhibition is also required to result in tumor cure following radiation therapy. These data demonstrate that Mertk is a highly specific target whose absence permits tumor control in combination with radiation therapy. PMID:27602953
A view on EGFR-targeted therapies from the oncogene-addiction perspective.
Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto
2013-01-01
Tumor cell growth and survival can often be impaired by inactivating a single oncogen- a phenomenon that has been called as "oncogene addiction." It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the "EGFR addiction" phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.
Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors
Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.
2006-01-01
Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important aspect of implementing gene therapy in the clinical arena is to be able to image the targeting of the therapeutics to the tumors, treatment effectiveness and progression of disease. We have therefore reviewed the most exciting non-invasive, in vivo imaging techniques which can be used in combination with gene therapy to monitor therapeutic efficacy over time. PMID:16248789
Anti-cancer vaccine therapy for hematologic malignancies: An evolving era.
Nahas, Myrna R; Rosenblatt, Jacalyn; Lazarus, Hillard M; Avigan, David
2018-02-15
The potential promise of therapeutic vaccination as effective therapy for hematologic malignancies is supported by the observation that allogeneic hematopoietic cell transplantation is curative for a subset of patients due to the graft-versus-tumor effect mediated by alloreactive lymphocytes. Tumor vaccines are being explored as a therapeutic strategy to re-educate host immunity to recognize and target malignant cells through the activation and expansion of effector cell populations. Via several mechanisms, tumor cells induce T cell dysfunction and senescence, amplifying and maintaining tumor cell immunosuppressive effects, resulting in failure of clinical trials of tumor vaccines and adoptive T cell therapies. The fundamental premise of successful vaccine design involves the introduction of tumor-associated antigens in the context of effective antigen presentation so that tolerance can be reversed and a productive response can be generated. With the increasing understanding of the role of both the tumor and tumor microenvironment in fostering immune tolerance, vaccine therapy is being explored in the context of immunomodulatory therapies. The most effective strategy may be to use combination therapies such as anti-cancer vaccines with checkpoint blockade to target critical aspects of this environment in an effort to prevent the re-establishment of tumor tolerance while limiting toxicity associated with autoimmunity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rahbari, Nuh N; Kedrin, Dmitriy; Incio, Joao; Liu, Hao; Ho, William W; Nia, Hadi T; Edrich, Christina M; Jung, Keehoon; Daubriac, Julien; Chen, Ivy; Heishi, Takahiro; Martin, John D; Huang, Yuhui; Maimon, Nir; Reissfelder, Christoph; Weitz, Jurgen; Boucher, Yves; Clark, Jeffrey W; Grodzinsky, Alan J; Duda, Dan G; Jain, Rakesh K; Fukumura, Dai
2016-10-12
The survival benefit of anti-vascular endothelial growth factor (VEGF) therapy in metastatic colorectal cancer (mCRC) patients is limited to a few months because of acquired resistance. We show that anti-VEGF therapy induced remodeling of the extracellular matrix with subsequent alteration of the physical properties of colorectal liver metastases. Preoperative treatment with bevacizumab in patients with colorectal liver metastases increased hyaluronic acid (HA) deposition within the tumors. Moreover, in two syngeneic mouse models of CRC metastasis in the liver, we show that anti-VEGF therapy markedly increased the expression of HA and sulfated glycosaminoglycans (sGAGs), without significantly changing collagen deposition. The density of these matrix components correlated with increased tumor stiffness after anti-VEGF therapy. Treatment-induced tumor hypoxia appeared to be the driving force for the remodeling of the extracellular matrix. In preclinical models, we show that enzymatic depletion of HA partially rescued the compromised perfusion in liver mCRCs after anti-VEGF therapy and prolonged survival in combination with anti-VEGF therapy and chemotherapy. These findings suggest that extracellular matrix components such as HA could be a potential therapeutic target for reducing physical barriers to systemic treatments in patients with mCRC who receive anti-VEGF therapy. Copyright © 2016, American Association for the Advancement of Science.
Barone, Amy; Sengupta, Rajarshi; Warrington, Nicole M; Smith, Erin; Wen, Patrick Y; Brekken, Rolf A; Romagnoli, Barbara; Douglas, Garry; Chevalier, Eric; Bauer, Michael P; Dembowsky, Klaus; Piwnica-Worms, David; Rubin, Joshua B
2014-10-30
Glioblastoma recurrence involves the persistence of a subpopulation of cells with enhanced tumor-initiating capacity (TIC) that reside within the perivascular space, or niche (PVN). Anti-angiogenic therapies may prevent the formation of new PVN but have not prevented recurrence in clinical trials, suggesting they cannot abrogate TIC activity. We hypothesized that combining anti-angiogenic therapy with blockade of PVN function would have superior anti-tumor activity. We tested this hypothesis in an established intracranial xenograft model of GBM using a monoclonal antibody specific for murine and human VEGF (mcr84) and a Protein Epitope Mimetic (PEM) CXCR4 antagonist, POL5551. When doses of POL5551 were increased to overcome an mcr84-induced improvement in vascular barrier function, combinatorial therapy significantly inhibited intracranial tumor growth and improved survival. Anti-tumor activity was associated with significant changes in tumor cell proliferation and apoptosis, and a reduction in the numbers of perivascular cells expressing the TIC marker nestin. A direct effect on TICs was demonstrated for POL5551, but not mcr84, in three primary patient-derived GBM isolates. These findings indicate that targeting the structure and function of the PVN has superior anti-tumor effect and provide a strong rationale for clinical evaluation of POL5551 and Avastin in patients with GBM.
Basher, Fahmin; Jeng, Emily K.; Wong, Hing; Wu, Jennifer
2016-01-01
Shedding of the human NKG2D ligand MIC (MHC class I-chain-related molecule) from tumor cell surfaces correlates with progression of many epithelial cancers. Shedding-derived soluble MIC (sMIC) enables tumor immune escape through multiple immune suppressive mechanisms, such as disturbing natural killer (NK) cell homeostatic maintenance, impairing NKG2D expression on NK cells and effector T cells, and facilitating the expansion of arginase I+ myeloid suppressor cells. Our recent study has demonstrated that sMIC is an effective cancer therapeutic target. Whether targeting tumor-derived sMIC would enhance current active immunotherapy is not known. Here, we determined the in vivo therapeutic effect of an antibody co-targeting sMIC with the immunostimulatory IL-15 superagonist complex, ALT-803, using genetically engineered transplantable syngeneic sMIC+ tumor models. We demonstrate that combined therapy of a nonblocking antibody neutralizing sMIC and ALT-803 improved the survival of animals bearing sMIC+ tumors in comparison to monotherapy. We further demonstrate that the enhanced therapeutic effect with combined therapy is through concurrent augmentation of NK and CD8 T cell anti-tumor responses. In particular, expression of activation-induced surface molecules and increased functional potential by cytokine secretion are improved greatly by the administration of combined therapy. Depletion of NK cells abolished the cooperative therapeutic effect. Our findings suggest that administration of the sMIC-neutralizing antibody can enhance the anti-tumor effects of ALT-803. With ALT-803 currently in clinical trials to treat progressive solid tumors, the majority of which are sMIC+, our findings provide a rationale for co-targeting sMIC to enhance the therapeutic efficacy of ALT-803 or other IL-15 agonists. PMID:26625316
Basher, Fahmin; Jeng, Emily K; Wong, Hing; Wu, Jennifer
2016-01-05
Shedding of the human NKG2D ligand MIC (MHC class I-chain-related molecule) from tumor cell surfaces correlates with progression of many epithelial cancers. Shedding-derived soluble MIC (sMIC) enables tumor immune escape through multiple immune suppressive mechanisms, such as disturbing natural killer (NK) cell homeostatic maintenance, impairing NKG2D expression on NK cells and effector T cells, and facilitating the expansion of arginase I+ myeloid suppressor cells. Our recent study has demonstrated that sMIC is an effective cancer therapeutic target. Whether targeting tumor-derived sMIC would enhance current active immunotherapy is not known. Here, we determined the in vivo therapeutic effect of an antibody co-targeting sMIC with the immunostimulatory IL-15 superagonist complex, ALT-803, using genetically engineered transplantable syngeneic sMIC+ tumor models. We demonstrate that combined therapy of a nonblocking antibody neutralizing sMIC and ALT-803 improved the survival of animals bearing sMIC+ tumors in comparison to monotherapy. We further demonstrate that the enhanced therapeutic effect with combined therapy is through concurrent augmentation of NK and CD8 T cell anti-tumor responses. In particular, expression of activation-induced surface molecules and increased functional potential by cytokine secretion are improved greatly by the administration of combined therapy. Depletion of NK cells abolished the cooperative therapeutic effect. Our findings suggest that administration of the sMIC-neutralizing antibody can enhance the anti-tumor effects of ALT-803. With ALT-803 currently in clinical trials to treat progressive solid tumors, the majority of which are sMIC+, our findings provide a rationale for co-targeting sMIC to enhance the therapeutic efficacy of ALT-803 or other IL-15 agonists.
Angiogenesis in neuroendocrine tumors: therapeutic applications.
Scoazec, Jean-Yves
2013-01-01
The considerable research efforts devoted to the understanding of the mechanisms of tumor angiogenesis have resulted in the development of targeted anti-angiogenic therapies and finally in their introduction in clinical practice. Neuroendocrine tumors (NETs), which are characterized by a high vascular supply and a strong expression of VEGF-A, one of the most potent pro-angiogenic factors, are an attractive indication for these new treatments. However, several lines of evidence show that the dense vascular networks associated with low-grade NETs are more likely to be a marker of differentiation than a marker of aggressiveness, as in other epithelial tumors. These observations form the basis for the so-called 'neuroendocrine paradox', according to which the most vascularized are the most differentiated and the less angiogenic NETs. This must be kept in mind when discussing the role of anti-angiogenic strategies in the treatment of NETs. Nevertheless, several targeted therapies, with direct or indirect anti-angiogenic properties, including anti-VEGF antibodies, tyrosine kinase inhibitors (sunitinib) and mTOR inhibitors (everolimus), have recently proven to be of clinical benefit. In addition, some drugs already used in NET treatment, such as somatostatin analogues and interferon-α, may also have anti-angiogenic properties. The main challenges for the next future are to validate biomarkers for the selection of patients and the prediction of their response to refine the indications of anti-angiogenic targeted therapies and to overcome the mechanisms of resistance, which explain the limited duration of action of most of these treatments. Copyright © 2012 S. Karger AG, Basel.
Van Sciver, Robert E; Lee, Michael P; Lee, Caroline Dasom; Lafever, Alex C; Svyatova, Elizaveta; Kanda, Kevin; Colliver, Amber L; Siewertsz van Reesema, Lauren L; Tang-Tan, Angela M; Zheleva, Vasilena; Bwayi, Monicah N; Bian, Minglei; Schmidt, Rebecca L; Matrisian, Lynn M; Petersen, Gloria M; Tang, Amy H
2018-05-14
Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.
Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme
Laurenzana, Anna; Biagioni, Alessio; D'Alessio, Silvia; Bianchini, Francesca; Chillà, Anastasia; Margheri, Francesca; Luciani, Cristina; Mazzanti, Benedetta; Pimpinelli, Nicola; Torre, Eugenio; Danese, Silvio; Calorini, Lido; Rosso, Mario Del; Fibbi, Gabriella
2014-01-01
The receptor for the urokinase-type plasminogen activator (uPAR) accounts for many features of cancer progression, and is therefore considered a target for anti-tumoral therapy. Only full length uPAR mediates tumor progression. Matrix-metallo-proteinase-12 (MMP12)-dependent uPAR cleavage results into the loss of invasion properties and angiogenesis. MMP12 can be employed in the field of “targeted therapies” as a biological drug to be delivered directly in patient's tumor mass. Endothelial Progenitor Cells (EPCs) are selectively recruited within the tumor and could be used as cellular vehicles for delivering anti-cancer molecules. The aim of our study is to inhibit cancer progression by engeneering ECFCs, a subset of EPC, with a lentivirus encoding the anti-tumor uPAR-degrading enzyme MMP12. Ex vivo manipulated ECFCs lost the capacity to perform capillary morphogenesis and acquired the anti-tumor and anti-angiogenetic activity. In vivo MMP12-engineered ECFCs cleaved uPAR within the tumor mass and strongly inhibited tumor growth, tumor angiogenesis and development of lung metastasis. The possibility to exploit tumor homing and activity of autologous MMP12-engineered ECFCs represents a novel way to combat melanoma by a “personalized therapy”, without rejection risk. The i.v. injection of radiolabelled MMP12-ECFCs can thus provide a new theranostic approach to control melanoma progression and metastasis. PMID:25003596
The Insulin Receptor: A New Target for Cancer Therapy
Malaguarnera, Roberta; Belfiore, Antonino
2011-01-01
A large body of evidences have shown that both the IGF-I receptor (IGF-IR) and the insulin receptor (IR) play a role in cancer development and progression. In particular, IR overactivation by IGF-II is common in cancer cells, especially in dedifferentiated/stem-like cells. In spite of these findings, until very recently, only IGF-IR but not IR has been considered a target in cancer therapy. Although several preclinical studies have showed a good anti-cancer activity of selective anti-IGF-IR drugs, the results of the clinical first trials have been disappointing. In fact, only a small subset of malignant tumors has shown an objective response to these therapies. Development of resistance to anti-IGF-IR drugs may include upregulation of IR isoform A (IR-A) in cancer cells and its overactivation by increased secretion of autocrine IGF-II. These findings have led to the concept that co-targeting IR together with IGF-IR may increase therapy efficacy and prevent adaptive resistance to selective anti-IGF-IR drugs. IR blockade should be especially considered in tumors with high IR-A:IGF-IR ratio and high levels of autocrine IGF-II. Conversely, insulin sensitizers, which ameliorate insulin resistance associated with metabolic disorders and cancer treatments, may have important implications for cancer prevention and management. Only few drugs co-targeting the IR and IGF-IR are currently available. Ideally, future IR targeting strategies should be able to selectively inhibit the tumor promoting effects of IR without impairing its metabolic effects. PMID:22654833
Broad targeting of angiogenesis for cancer prevention and therapy
Wang, Zongwei; Dabrosin, Charlotta; Yin, Xin; Fuster, Mark M.; Arreola, Alexandra; Rathmell, W. Kimryn; Generali, Daniele; Nagaraju, Ganji P.; El-Rayes, Bassel; Ribatti, Domenico; Chen, Yi Charlie; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G.; Nowsheen, Somaira; Amedei, Amedeo; Niccolai, Elena; Amin, Amr; Ashraf, S. Salman; Helferich, Bill; Yang, Xujuan; Guha, Gunjan; Bhakta, Dipita; Ciriolo, Maria Rosa; Aquilano, Katia; Chen, Sophie; Halicka, Dorota; Mohammed, Sulma I.; Azmi, Asfar S.; Bilsland, Alan; Keith, W. Nicol; Jensen, Lasse D.
2015-01-01
Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies. PMID:25600295
Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L
2015-01-01
Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904
Nanotherapeutic approaches for brain cancer management.
Saenz del Burgo, Laura; Hernández, Rosa María; Orive, Gorka; Pedraz, Jose Luis
2014-07-01
Around the world, cancer remains one of the most important causes of morbidity and mortality. Worldwide, approximately 238,000 new cases of brain and other central nervous system tumors are diagnosed every year. Nanotherapeutic approaches hold tremendous potential for diagnosis and treatment of brain cancer, including the ability to target complex molecular cargoes to the tumor sites and the capacity of crossing the blood-brain barrier and accessing to the brain after systemic administration. A new generation of "smart" nanoparticles has been designed as novel targeted delivery devices for new therapies including gene therapy, anti-angiogenic and thermotherapy. This review highlights the latest research, opportunities and challenges for developing novel nanotherapeutics for treating brain cancers. This comprehensive review highlights the latest research results, opportunities and challenges for developing novel nanotherapeutics for treating brain cancers, with a special focus on "smart" nanoparticles as novel targeted delivery devices for new therapies including gene therapy, anti-angiogenic therapy and localized thermotherapy. © 2014.
Ascierto, Maria Libera; McMiller, Tracee L.; Berger, Alan E.; Danilova, Ludmila; Anders, Robert A.; Netto, George J.; Xu, Haiying; Pritchard, Theresa S.; Fan, Jinshui; Cheadle, Chris; Cope, Leslie; Drake, Charles G.; Pardoll, Drew M.; Taube, Janis M.; Topalian, Suzanne L.
2016-01-01
Pretreatment tumor PD-L1 expression correlates with response to anti-PD-1/PD-L1 therapies. Yet, most patients with PD-L1+ tumors do not respond to treatment. The current study was undertaken to investigate mechanisms underlying the failure of PD-1–targeted therapies in patients with advanced renal cell carcinoma (RCC) whose tumors express PD-L1. Formalin-fixed, paraffin-embedded (FFPE) pretreatment tumor biopsies expressing PD-L1 were derived from 13 RCC patients. RNA was isolated from PD-L1+ regions and subjected to whole genome microarray and multiplex quantitative (q)RT-PCR gene expression analysis. A balance between gene expression profiles reflecting metabolic pathways and immune functions was associated with clinical outcomes following anti-PD-1 therapy. In particular, the expression of genes involved in metabolic and solute transport functions such as UGT1A family members, also found in kidney cancer cell lines, was associated with treatment failure in patients with PD-L1+ RCC. Conversely, tumors from responding patients overexpressed immune markers such as BACH2, a regulator of CD4+ T cell differentiation, and CCL3, involved in leukocyte migration. These findings suggest that tumor cell–intrinsic metabolic factors may contribute to treatment resistance in RCC, thus serving as predictive markers for treatment outcomes and potential new targets for combination therapy regimens with anti-PD-1. PMID:27491898
Molecular targeted therapy for the treatment of gastric cancer.
Xu, Wenting; Yang, Zhen; Lu, Nonghua
2016-01-04
Despite the global decline in the incidence and mortality of gastric cancer, it remains one of the most common malignant tumors of the digestive system. Although surgical resection is the preferred treatment for gastric cancer, chemotherapy is the preferred treatment for recurrent and advanced gastric cancer patients who are not candidates for reoperation. The short overall survival and lack of a standard chemotherapy regimen make it important to identify novel treatment modalities for gastric cancer. Within the field of tumor biology, molecular targeted therapy has attracted substantial attention to improve the specificity of anti-cancer efficacy and significantly reduce non-selective resistance and toxicity. Multiple clinical studies have confirmed that molecular targeted therapy acts on various mechanisms of gastric cancer, such as the regulation of epidermal growth factor, angiogenesis, immuno-checkpoint blockade, the cell cycle, cell apoptosis, key enzymes, c-Met, mTOR signaling and insulin-like growth factor receptors, to exert a stronger anti-tumor effect. An in-depth understanding of the mechanisms that underlie molecular targeted therapies will provide new insights into gastric cancer treatment.
Ding, Shuang; Xiong, Jian; Lei, Dan; Zhu, Xiao-Li; Zhang, Hai-Jun
2018-01-01
Breast cancer greatly threatens the health of women all over the word despite of several effective drugs. Targeted therapy for breast cancer is limited to human epidermal growth factor receptor 2 (HER2). Herceptin ® , monoclonal antibody against HER2, is now widely used in HER2(+) breast cancer. Abraxane ® , the current gold standard for paclitaxel (PTX) delivery, has shown superiority in breast cancer based on nanoparticle albumin bound technology. Despite these advances, further novel targeted therapy with more improved anti-tumor efficacy for breast cancer is still urgently needed. Here, we report the recombinant nanocomposites (NPs) composed of the above two clinical drugs of Abraxane ® and Herceptin ® (Abra/anti-HER2), which at first migrates to the tumor region through the unique targeting mechanism of human serum albumin (HSA) of Abraxane ® , and sequentially further precisely recognize the HER2(+) breast cancer cells due to Herceptin ® . The Abra/anti-HER2 NPs were fabricated by a "one-step" synthesis using EDC/NHS. In vitro analysis of cell viability, apoptosis and cell cycle revealed that Abra/anti-HER2 NPs showed more anti-tumor efficacy against HER2(+) SK-BR-3 cells than Abraxane ® at equivalent PTX concentration. In addition, in HER2(+) breast cancer xenograft model, Abra/anti-HER2 NPs significantly inhibited tumor growth with less side effects. Moreover, the properties of more precise target and delayed release of PTX were proved by NIRF imaging. Thus, our results indicate that Abra/anti-HER2 NPs could represent a next-generation sequentially dual-targeting therapeutic agent for HER2(+) breast cancer.
Biomaterial-based technologies for brain anti-cancer therapeutics and imaging.
Orive, G; Ali, O A; Anitua, E; Pedraz, J L; Emerich, D F
2010-08-01
Treating malignant brain tumors represents one of the most formidable challenges in oncology. Contemporary treatment of brain tumors has been hampered by limited drug delivery across the blood-brain barrier (BBB) to the tumor bed. Biomaterials are playing an increasingly important role in developing more effective brain tumor treatments. In particular, polymer (nano)particles can provide prolonged drug delivery directly to the tumor following direct intracerebral injection, by making them physiochemically able to cross the BBB to the tumor, or by functionalizing the material surface with peptides and ligands allowing the drug-loaded material to be systemically administered but still specifically target the tumor endothelium or tumor cells themselves. Biomaterials can also serve as targeted delivery devices for novel therapies including gene therapy, photodynamic therapy, anti-angiogenic and thermotherapy. Nanoparticles also have the potential to play key roles in the diagnosis and imaging of brain tumors by revolutionizing both preoperative and intraoperative brain tumor detection, allowing early detection of pre-cancerous cells, and providing real-time, longitudinal, non-invasive monitoring/imaging of the effects of treatment. Additional efforts are focused on developing biomaterial systems that are uniquely capable of delivering tumor-associated antigens, immunotherapeutic agents or programming immune cells in situ to identify and facilitate immune-mediated tumor cell killing. The continued translation of current research into clinical practice will rely on solving challenges relating to the pharmacology of nanoparticles but it is envisioned that novel biomaterials will ultimately allow clinicians to target tumors and introduce multiple, pharmaceutically relevant entities for simultaneous targeting, imaging, and therapy in a unique and unprecedented manner. Copyright 2010 Elsevier B.V. All rights reserved.
Higashikawa, Kei; Yagi, Katsuharu; Watanabe, Keiko; Kamino, Shinichiro; Ueda, Masashi; Hiromura, Makoto; Enomoto, Shuichi
2014-01-01
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) targeted therapy by anti-CTLA-4 monoclonal antibody (mAb) is highly effective in cancer patients. However, it is extremely expensive and potentially produces autoimmune-related adverse effects. Therefore, the development of a method to evaluate CTLA-4 expression prior to CTLA-4-targeted therapy is expected to open doors to evidence-based and cost-efficient medical care and to avoid adverse effects brought about by ineffective therapy. In this study, we aimed to develop a molecular imaging probe for CTLA-4 visualization in tumor. First, we examined CTLA-4 expression in normal colon tissues, cultured CT26 cells, and CT26 tumor tissues from tumor-bearing BALB/c mice and BALB/c nude mice by reverse transcription polymerase chain reaction (RT-PCR) analysis and confirmed whether CTLA-4 is strongly expressed in CT26 tumor tissues. Second, we newly synthesized 64Cu-1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid-anti-mouse CTLA-4 mAb (64Cu-DOTA-anti-CTLA-4 mAb) and evaluated its usefulness in positron emission tomography (PET) and ex-vivo biodistribution analysis in CT26-bearing BALB/c mice. High CTLA-4 expression was confirmed in the CT26 tumor tissues of tumor-bearing BALB/c mice. However, CTLA-4 expression was extremely low in the cultured CT26 cells and the CT26 tumor tissues of tumor-bearing BALB/c nude mice. The results suggested that T cells were responsible for the high CTLA-4 expression. Furthermore, 64Cu-DOTA-anti-CTLA-4 mAb displayed significantly high accumulation in the CT26 tumor, thereby realizing non-invasive CTLA-4 visualization in the tumor. Together, the results indicate that 64Cu-DOTA-anti-CTLA-4 mAb would be useful for the evaluation of CTLA-4 expression in tumor.
Higashikawa, Kei; Yagi, Katsuharu; Watanabe, Keiko; Kamino, Shinichiro; Ueda, Masashi; Hiromura, Makoto; Enomoto, Shuichi
2014-01-01
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) targeted therapy by anti-CTLA-4 monoclonal antibody (mAb) is highly effective in cancer patients. However, it is extremely expensive and potentially produces autoimmune-related adverse effects. Therefore, the development of a method to evaluate CTLA-4 expression prior to CTLA-4-targeted therapy is expected to open doors to evidence-based and cost-efficient medical care and to avoid adverse effects brought about by ineffective therapy. In this study, we aimed to develop a molecular imaging probe for CTLA-4 visualization in tumor. First, we examined CTLA-4 expression in normal colon tissues, cultured CT26 cells, and CT26 tumor tissues from tumor-bearing BALB/c mice and BALB/c nude mice by reverse transcription polymerase chain reaction (RT-PCR) analysis and confirmed whether CTLA-4 is strongly expressed in CT26 tumor tissues. Second, we newly synthesized 64Cu-1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid-anti-mouse CTLA-4 mAb (64Cu-DOTA-anti-CTLA-4 mAb) and evaluated its usefulness in positron emission tomography (PET) and ex-vivo biodistribution analysis in CT26-bearing BALB/c mice. High CTLA-4 expression was confirmed in the CT26 tumor tissues of tumor-bearing BALB/c mice. However, CTLA-4 expression was extremely low in the cultured CT26 cells and the CT26 tumor tissues of tumor-bearing BALB/c nude mice. The results suggested that T cells were responsible for the high CTLA-4 expression. Furthermore, 64Cu-DOTA-anti-CTLA-4 mAb displayed significantly high accumulation in the CT26 tumor, thereby realizing non-invasive CTLA-4 visualization in the tumor. Together, the results indicate that 64Cu-DOTA-anti-CTLA-4 mAb would be useful for the evaluation of CTLA-4 expression in tumor. PMID:25365349
Young, Patricia A; Morrison, Sherie L; Timmerman, John M
2014-10-01
The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results. Copyright © 2014 Elsevier Inc. All rights reserved.
Stromal cells in breast cancer as a potential therapeutic target
Dykes, Samantha S.; Hughes, Veronica S.; Wiggins, Jennifer M.; Fasanya, Henrietta O.; Tanaka, Mai; Siemann, Dietmar
2018-01-01
Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.
Biomarker-driven EGFR therapy improves outcomes in patients with metastatic colorectal cancer.
Hendifar, Andrew; Tan, Carlyn-Rose; Annamalai, Anand; Tuli, Richard
2014-09-01
As new data from randomized studies comparing EGFR-targeting therapies with VEGF inhibitors emerge, the treatment landscape for metastatic colorectal cancer is expected to change. Although both the VEGF inhibitor bevacizumab and the anti-EGFR antibody cetuximab are approved in the first-line setting, they have not until recently been compared directly in randomized studies. Unlike targeted therapy in the EGFR pathway, there are no biomarkers guiding VEGF treatment. Recent data, discussed in this review, demonstrate that patients with KRAS/NRAS wild-type tumors benefit from anti-EGFR therapy in the first-line setting and that anti-EGFR therapy may be superior when compared with anti-VEGF approaches. This review focuses on the clinical utility of targeting EGFR by revisiting the biologic rationale for EGFR inhibition in metastatic colorectal cancer and providing new insight on the advancements in biomarker analyses with the potential to change practice.
Melancon, Marites P.; Lu, Wei; Yang, Zhi; Zhang, Rui; Cheng, Zhi; Elliot, Andrew M.; Stafford, Jason; Olson, Tammy; Zhang, Jin Z.; Li, Chun
2009-01-01
Laser-induced phototherapy is a new therapeutic use of electromagnetic radiation for cancer treatment. The use of targeted plasmonic gold nanoparticles can reduce the laser energy necessary for selective tumor cell destruction. However, the ability for targeted delivery of the currently used gold nanoparticles to tumor cells is limited. Here, we describe a new class of molecular specific photothermal coupling agents based on hollow gold nanoshells (HAuNS, average diameter ~30 nm) covalently attached to monoclonal antibody directed at epidermal growth factor receptor (EGFR). The resulting anti-EGFR-HAuNS exhibited excellent colloidal stability and efficient photothermal effect in the near-infrared region. EGFR-mediated, selective uptake of anti-EGFR-HAuNS in EGFR-positive A431 tumor cells but not IgG-HAuNS control was demonstrated in vitro by imaging scattered light from the nanoshells. Irradiation of A431 cells treated with anti-EGFR-HAuNS with near-infrared laser resulted in selective destruction of these cells. In contrast, cells treated with anti-EGFR-HAuNS alone, laser alone, or IgG-HAuNS plus laser did not show observable effect on cell viability. Using 111In-labeled HAuNS, we showed that anti-EGFR-HAuNS could be delivered to EGFR-positive tumors at 6.8% of injected dose per gram of tissue, and the microscopic image of excised tumor with scattering signal from nanoshells confirmed preferential delivery to A431 tumor of anti-EGFR-HAuNS compared with IgG-HAuNS. The absence of silica core, the relatively small particle size and high tumor uptake, and the absence of cytotoxic surfactant required to stabilize other gold nanoparticles suggest that immuno-hollow gold nanoshells have the potential to extend to in vivo molecular therapy. PMID:18566244
Development of a Combination Therapy for Prostate Cancer by Targeting Stat3 and HIF-1alpha
2013-07-01
inflammation-induced cancer, making it an attractive target (25-27). A3. Innovation 1. TEL03 is a novel anti-cancer agent from Chinese herbal medicine ...agents from Chinese herbal medicine (CHM) that targets HIF-1α /2α for prostate cancer therapy. Hypoxia orchestrated by HIF-1αis crucial for tumor...Stat3 for treatment of prostate and other cancers. TEL03, which is a novel anti-cancer agent derived from Chinese herbal medicine (CHM: Hypocrella
Dual combination therapy targeting DR5 and EMMPRIN in pancreatic adenocarcinoma.
Kim, Hyunki; Zhai, Guihua; Samuel, Sharon L; Rigell, Christopher J; Umphrey, Heidi R; Rana, Samir; Stockard, Cecil R; Fineberg, Naomi S; Zinn, Kurt R
2012-02-01
The goal of the study was to assess the efficacy of combined extracellular matrix metalloprotease inducer (EMMPRIN)- and death receptor 5 (DR5)-targeted therapy for pancreatic adenocarcinoma in orthotopic mouse models with multimodal imaging. Cytotoxicity of anti-EMMPRIN antibody and anti-DR5 antibody (TRA-8) in MIA PaCa-2 and PANC-1 cell lines was measured by ATPlite assay in vitro. The distributions of Cy5.5-labeled TRA-8 and Cy3-labeled anti-EMMPRIN antibody in the 2 cell lines were analyzed by fluorescence imaging in vitro. Groups 1 to 12 of severe combined immunodeficient mice bearing orthotopic MIA PaCa-2 (groups 1-8) or PANC-1 (groups 9-12) tumors were used for in vivo studies. Dynamic contrast-enhanced-MRI was applied in group 1 (untreated) or group 2 (anti-EMMPRIN antibody). The tumor uptake of Tc-99m-labeled TRA-8 was measured in group 3 (untreated) and group 4 (anti-EMMPRIN antibody). Positron emission tomography/computed tomography imaging with (18)F-FDG was applied in groups 5 to 12. Groups 5 to 8 (or groups 9 to 12) were untreated or treated with anti-EMMPRIN antibody, TRA-8, and combination, respectively. TRA-8 showed high killing efficacy for both MIA PaCa-2 and PANC-1 cells in vitro, but additional anti-EMMPRIN treatment did not improve the cytotoxicity. Cy5.5-TRA-8 formed cellular caps in both the cell lines, whereas the maximum signal intensity was correlated with TRA-8 cytotoxicity. Anti-EMMPRIN therapy significantly enhanced the tumor delivery of the MR contrast agent, but not Tc-99m-TRA-8. Tumor growth was significantly suppressed by the combination therapy, and the additive effect of the combination was shown in both MIA PaCa-2 and PANC-1 tumor models.
Lee, Michael P.; Lee, Caroline Dasom; Lafever, Alex C.; Svyatova, Elizaveta; Kanda, Kevin; Collier, Amber L.; Siewertsz van Reesema, Lauren L.; Tang-Tan, Angela M.; Zheleva, Vasilena; Bwayi, Monicah N.; Bian, Minglei; Schmidt, Rebecca L.; Petersen, Gloria M.
2018-01-01
Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely “undruggable”. Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future. PMID:29757973
FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal.
Haemmerle, Monika; Bottsford-Miller, Justin; Pradeep, Sunila; Taylor, Morgan L; Choi, Hyun-Jin; Hansen, Jean M; Dalton, Heather J; Stone, Rebecca L; Cho, Min Soon; Nick, Alpa M; Nagaraja, Archana S; Gutschner, Tony; Gharpure, Kshipra M; Mangala, Lingegowda S; Rupaimoole, Rajesha; Han, Hee Dong; Zand, Behrouz; Armaiz-Pena, Guillermo N; Wu, Sherry Y; Pecot, Chad V; Burns, Alan R; Lopez-Berestein, Gabriel; Afshar-Kharghan, Vahid; Sood, Anil K
2016-05-02
Recent studies in patients with ovarian cancer suggest that tumor growth may be accelerated following cessation of antiangiogenesis therapy; however, the underlying mechanisms are not well understood. In this study, we aimed to compare the effects of therapy withdrawal to those of continuous treatment with various antiangiogenic agents. Cessation of therapy with pazopanib, bevacizumab, and the human and murine anti-VEGF antibody B20 was associated with substantial tumor growth in mouse models of ovarian cancer. Increased tumor growth was accompanied by tumor hypoxia, increased tumor angiogenesis, and vascular leakage. Moreover, we found hypoxia-induced ADP production and platelet infiltration into tumors after withdrawal of antiangiogenic therapy, and lowering platelet counts markedly inhibited tumor rebound after withdrawal of antiangiogenic therapy. Focal adhesion kinase (FAK) in platelets regulated their migration into the tumor microenvironment, and FAK-deficient platelets completely prevented the rebound tumor growth. Additionally, combined therapy with a FAK inhibitor and the antiangiogenic agents pazopanib and bevacizumab reduced tumor growth and inhibited negative effects following withdrawal of antiangiogenic therapy. In summary, these results suggest that FAK may be a unique target in situations in which antiangiogenic agents are withdrawn, and dual targeting of FAK and VEGF could have therapeutic implications for ovarian cancer management.
Raben, David; Bianco, Cataldo; Damiano, Vincenzo; Bianco, Roberto; Melisi, Davide; Mignogna, Chiara; D'Armiento, Francesco Paolo; Cionini, Luca; Bianco, A Raffaele; Tortora, Giampaolo; Ciardiello, Fortunato; Bunn, Paul
2004-08-01
Targeting the tumor vasculature may offer an alternative or complementary therapeutic approach to targeting growth factor signaling in lung cancer. The aim of these studies was to evaluate the antitumor effects in vivo of the combination of ZD6126, a tumor-selective vascular-targeting agent; ZD1839 (gefitinib, Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor; and ionizing radiation in the treatment of non-small cell lung cancer xenograft model. Athymic nude mice with established flank A549 human non-small cell lung cancer xenograft model xenografts were treated with fractionated radiation therapy, ZD6126, ZD1839, or combinations of each treatment. ZD6126 (150 mg/kg) was given i.p. the day after each course of radiation. Animals treated with ZD1839 received 100 mg/kg per dose per animal, 5 or 7 days/wk for 2 weeks. Immunohistochemistry was done to evaluate the effects on tumor growth using an anti-Ki67 monoclonal antibody. Effects on tumor-induced vascularization were quantified using an anti-factor VIII-related antigen monoclonal antibody. ZD6126 attenuated the growth of human A549 flank xenografts compared with untreated animals. Marked antitumor effects were observed when animals were treated with a combination of ZD6126 and fractionated radiation therapy with protracted tumor regression. ZD6126 + ZD1839 resulted in a greater tumor growth delay than either agent alone. Similar additive effects were seen with ZD1839 + fractionated radiation. Finally, the addition of ZD6126 to ZD1839 and radiation therapy seemed to further improve tumor growth control, with a significant tumor growth delay compared with animals treated with single agent or with double combinations. Immunohistochemistry showed that ZD1839 induced a marked reduction in A549 tumor cell proliferation. Both ZD1839 and ZD6126 treatment substantially reduced tumor-induced angiogenesis. ZD6126 caused marked vessel destruction through loss of endothelial cells and thrombosis, substantially increasing the level of necrosis seen when combined with radiation therapy. The combination of radiation therapy, ZD6126, and ZD1839 induced the greatest effects on tumor growth and angiogenesis. This first report shows that a selective vascular-targeting agent (ZD6126) + an anti-epidermal growth factor receptor agent (ZD1839) and radiation have additive in vivo effects in a human cancer model. Targeting the tumor vasculature offers an excellent strategy to enhance radiation cytotoxicity. Polytargeted therapy with agents that interfere with both growth factor and angiogenic signaling warrants further investigation.
Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse
Nowakowski, Adam; Drela, Katarzyna; Rozycka, Justyna; Janowski, Miroslaw
2016-01-01
Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials. PMID:27460260
Jiang, Hui; Guo, Song; Xiao, Dan; Bian, Xuzhao; Wang, Jie; Wang, Ying; Zhou, Huiting; Cai, Jun; Zheng, Zhongliang
2017-06-06
Arginine starvation has the potential to selectively treat both primary tumor and (micro) metastatic tissue with very low side effects. Arginine deiminase (ADI; EC 3.5.3.6), an arginine-degrading enzyme, has been studied as a potential anti-tumor drug for the treatment of arginine-auxotrophic tumors. Though ADI-PEG20 (pegylated ADI by PEG 20,000) already passed the phase I/II clinical trials [1], it is just used as adjuvant therapy because of its low efficiency and less targeting. Then, this paper discussed the efficiency of arginine starvation mediated by ADI expressed in cytoplasm for liver cancers. In order to guarantee the tumor targeting, human telomerase reverse transcriptase (hTERT) promoter was used to drive the expression of ADI in vivo. To access the anti-tumor efficiency of ADI, p53 gene was used as the positive control. Thus, ADI displayed obvious cytotoxicity to BEL7402 and HUH7 cell lines in cytoplasm. The apoptosis rates rose from 15% to nearly 60% after changing the expression vectors from pcDNA4 plasmid to adenovirus. Compared with p53-adenovirus, ADI-adenovirus showed the higher oncolytic activity in the intratumoral injection model of mice. Tumor disappeared after the treatment of ADI-adenovirus for two weeks, and the mice pulled through all. Therefore, ADI is an ideal anti-tumor gene for caner targeting therapy with the help of hTERT promoter.
EMMPRIN as a novel target for pancreatic cancer therapy
Kim, Hyunki; Zhai, Guihua; Liu, Zhiyong; Samuel, Sharon; Shah, Nemil; Helman, Emily E.; Knowles, Joseph A.; Stockard, Cecil R.; Fineberg, Naomi S.; Grizzle, William E.; Zhou, Tong; Zinn, Kurt R.; Rosenthal, Eben L.
2013-01-01
The objective of this study was to evaluate extracelluar matrix metalloproteinase (EMMPRIN) as a novel target in orthotopic pancreatic-cancer murine models. MIA PaCa-2 human pancreatic tumor cells were implanted in groups 1 and 3-7, while MIA PaCa-2 EMMPRIN knockdown cells were implanted in group 2. Dosing with anti-EMMPRIN antibody started immediately after implantation for groups 1-3 (residual tumor model) and at 21 days after cell implantation for groups 4-7 (established tumor model). Groups 3, 5, and 7 were treated with anti-EMMRPIN antibody (0.2-1.0 mg) twice weekly for 2-3 weeks, while the other groups served as the control. In residual tumor model, tumor growth of anti-EMMPRIN treated group was successfully arrested for 21 days (15±4 mm3), significantly lower than that of EMMPRIN knockdown group (80±15 mm3; p=0.001) or control group (240±41 mm3; p<0.001). In established tumor model, anti-EMMPRIN therapy lowered tumor-volume increase about 40% compared with control regardless of dose amount. Ki67-expressed cell densities of group 5 was 939±150 mm−2, significantly lower than that of group 4 (1709±145 mm−2; p=0.006). Microvessel density of group 5 (30±6 mm−2) was also significantly lower than that of group 4 (53±5 mm−2; p=0.014), while the microvessel size of group 5 (191±22 μm2) was significantly larger than that of group 4 (113±26 μm2; p=0.049). These data show the high potential of anti-EMMPRIN therapy for pancreatic cancer, and support its clinical translation. PMID:21730821
Targeting Therapy Resistant Tumor Vessels
2007-05-01
Porkka K, Laakko- nen P, Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell...anti-angiogenic therapy. Markers of such vessels will be useful in developing strategies for complete destruction of breast cancer vasculature, and in...express specific markers , and that these lymphatic markers are tumor type specific and distinct from blood vessel markers in the same tumors. The
Targeting tumor-associated macrophages by anti-tumor Chinese materia medica.
Pu, Wei-Ling; Sun, Li-Kang; Gao, Xiu-Mei; Rüegg, Curzio; Cuendet, Muriel; Hottiger, Micheal O; Zhou, Kun; Miao, Lin; Zhang, Yun-Sha; Gebauer, Margaret
2017-10-01
Tumor-associated macrophages (TAMs) play a key role in all stages of tumorigenesis and tumor progression. TAMs secrete different kinds of cytokines, chemokines, and enzymes to affect the progression, metastasis, and resistance to therapy depending on their state of reprogramming. Therapeutic benefit in targeting TAMs suggests that macrophages are attractive targets for cancer treatment. Chinese materia medica (CMM) is an important approach for treating cancer in China and in the Asian region. According to the theory of Chinese medicine (CM) and its practice, some prescriptions of CM regulate the body's internal environment possibly including the remodeling the tumor microenvironment (TME). Here we briefly summarize the pivotal effects of TAMs in shaping the TME and promoting tumorigenesis, invasion, metastasis and immunosuppression. Furthermore, we illustrate the effects and mechanisms of CMM targeting TAMs in antitumor therapy. Finally, we reveal the CMM's dual-regulatory and multi-targeting functions on regulating TAMs, and hopefully, provide the theoretical basis for CMM clinical practice related to cancer therapy.
Ward, Mark G; Irving, Peter M; Sparrow, Miles P
2015-10-28
In the last 15 years the management of inflammatory bowel disease has evolved greatly, largely through the increased use of immunomodulators and, especially, anti-tumor necrosis factor (anti-TNF) biologic agents. Within this time period, confidence in the use of anti-TNFs has increased, whilst, especially in recent years, the efficacy and safety of thiopurines has been questioned. Yet despite recent concerns regarding the risk: benefit profile of thiopurines, combination therapy with an immunomodulator and an anti-TNF has emerged as the recommended treatment strategy for the majority of patients with moderate-severe disease, especially those who are recently diagnosed. Concurrently, therapeutic drug monitoring has emerged as a means of optimizing the dosage of both immunomodulators and anti-TNFs. However the recommended therapeutic target levels for both drug classes were largely derived from studies of monotherapy with either agent, or studies underpowered to analyze outcomes in combination therapy patients. It has been assumed that these target levels are applicable to patients on combination therapy also, however there are few data to support this. Similarly, the timing and duration of treatment with immunomodulators when used in combination therapy remains unknown. Recent attention, including post hoc analyses of the pivotal registration trials, has focused on the optimization of anti-TNF agents, when used as either monotherapy or combination therapy. This review will instead focus on how best to optimize immunomodulators when used in combination therapy, including an evaluation of recent data addressing unanswered questions regarding the optimal timing, dosage and duration of immunomodulator therapy in combination therapy patients.
Schleich, Nathalie; Po, Chrystelle; Jacobs, Damien; Ucakar, Bernard; Gallez, Bernard; Danhier, Fabienne; Préat, Véronique
2014-11-28
Multifunctional nanoparticles combining therapy and imaging have the potential to improve cancer treatment by allowing personalized therapy. Herein, we aimed to compare in vivo different strategies in terms of targeting capabilities: (1) passive targeting via the EPR effect, (2) active targeting of αvβ3 integrin via RGD grafting, (3) magnetic targeting via a magnet placed on the tumor and (4) the combination of magnetic targeting and active targeting of αvβ3 integrin. For a translational approach, PLGA-based nanoparticles loaded with paclitaxel and superparamagnetic iron oxides were used. Electron Spin Resonance spectroscopy and Magnetic Resonance Imaging (MRI) were used to both quantify and visualize the accumulation of multifunctional nanoparticles into the tumors. We demonstrate that compared to untargeted or single targeted nanoparticles, the combination of both active strategy and magnetic targeting drastically enhanced (i) nanoparticle accumulation into the tumor tissue with an 8-fold increase compared to passive targeting (1.12% and 0.135% of the injected dose, respectively), (ii) contrast in MRI (imaging purpose) and (iii) anti-cancer efficacy with a median survival time of 22 days compared to 13 for the passive targeting (therapeutic purpose). Double targeting of nanoparticles to tumors by different mechanisms could be a promising translational approach for the management of therapeutic treatment and personalized therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2017-02-01
Near infrared photoimmunotherapy (NIR-PIT) is a new type of molecularly-targeted photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting target-specific cell-surface molecules. When exposed to NIR light, the conjugate rapidly induces a highly-selective cell death only in receptor-positive, MAb-IR700-bound cells. Current immunotherapies for cancer seek to modulate the balance among different immune cell populations, thereby promoting anti-tumor immune responses. However, because these are systemic therapies, they often cause treatment-limiting autoimmune adverse effects. It would be ideal to manipulate the balance between suppressor and effector cells within the tumor without disturbing homeostasis elsewhere in the body. CD4+CD25+Foxp3+ regulatory T cells (Tregs) are well-known immune-suppressor cells that play a key role in tumor immuno-evasion and have been the target of systemic immunotherapies. We used CD25-targeted NIR-PIT to selectively deplete Tregs, thus activating CD8+ T and NK cells and restoring local anti-tumor immunity. This not only resulted in regression of the treated tumor but also induced responses in separate untreated tumors of the same cell-line derivation. We conclude that CD25-targeted NIR-PIT causes spatially selective depletion of Tregs, thereby providing an alternative approach to cancer immunotherapy that can treat not only local tumors but also distant metastatic tumors.
Hong, Kwang-Won; Kim, Chang-Goo; Lee, Seung-Hyun; Chang, Ki-Hwan; Shin, Yong Won; Ryoo, Kyung-Hwan; Kim, Se-Ho; Kim, Yong-Sung
2010-01-01
The epidermal growth factor receptor (EGFR) overexpressed in many epithelial tumors is an attractive target for tumor therapy since numerous blocking agents of EGFR signaling have proven their anti-tumor activity. Here we report a novel monoclonal antibody (mAb), A13, which was generated from mice immunized with human cervical carcinoma A431 cells. In addition to binding to soluble EGFR with affinity of K(D) approximately 5.8nM, mAb A13 specifically bound to a variety of tumor cells and human placenta tissues expressing EGFR. A13 efficiently inhibited both EGF-dependant EGFR tyrosine phosphorylation in cervical and breast tumor cells and also in vitro colony formation of EGFR-overexpressing lung tumors. Competition and sandwich ELISAs, competitive surface plasmon resonance, and domain-level epitope mapping analyses demonstrated that mAb A13 competitively bound to the domain III (amino acids 302-503) of EGFR with EGF, but recognized distinct epitopes from those of cetuximab (Erbitux). Our results demonstrated that anti-EGFR mAb A13 interfered with EGFR proliferation signaling by blocking EGF binding to EGFR with different epitopes from those of cetuximab, suggesting that combination therapies of mAb A13 with cetuximab may prove beneficial for anti-tumor therapy.
Liao, Ning
2016-06-01
With the diagnosis and treatment of tumor enter into the area of precision medical, based on selected targeted molecular typing of patients with individualized diagnosis and treatment play an important role. HER gene encoded epidermal growth factor receptor 2 (HER2) leading to increased early distant metastasis of breast cancer in patients and poor prognosis. However, a number of clinical studies provided evidence-based anti-HER2 targeted therapy and confirmed the benefit of anti-HER2 targeted therapy in patient survival. In recent years, through the tireless efforts of scholars in the field of breast cancer in our country, the whole diagnosis and treatment of breast cancer has accomplished an international standard. But based on a variety of factors, the anti-HER2 targeted therapy between China and the developed countries, and between different areas in China still exists certain gaps, is now a problem need to be solved. This article will analyzing the diagnostic and treatment on HER2-positive breast cancer in the United States and China, exploring reasons and looking for answers to narrow down the gap in the treatment of HER2-positive breast cancer between China and the United States. Improve the anti-HER2 targeted therapy in our country, let the patients get maximum benefit from anti-HER2 targeted therapy.
Chakraborty, Ashok; Hatzis, Christos; DiGiovanna, Michael P
2017-05-01
Interactions between HER2, estrogen receptor (ER), and insulin-like growth factor I receptor (IGF1R) are implicated in resistance to monotherapies targeting these receptors. We have previously shown in pre-clinical studies synergistic anti-tumor effects for co-targeting each pairwise combination of HER2, IGF1R, and ER. Strikingly, synergy for HER2/IGF1R targeting occurred not only in a HER2+ model, but also in a HER2-normal model. The purpose of the current study was therefore to determine the generalizability of synergistic anti-tumor effects of co-targeting HER2/IGF1R, the anti-tumor activity of triple-targeting HER2/IGF1R/ER in hormone-dependent cell lines, and the effect of using the multi-targeting drugs neratinib (pan-HER) and BMS-754807 (dual IGF1R/insulin receptor). Proliferation and apoptosis assays were performed in a large panel of cell lines representing varying receptor expression levels. Mechanistic effects were studied using phospho-protein immunoblotting. Analyses of drug interaction effects were performed using linear mixed-effects regression models. Enhanced anti-proliferative effects of HER/IGF-insulin co-targeting were seen in most, though not all, cell lines, including HER2-normal lines. For ER+ lines, triple targeting with inclusion of anti-estrogen generally resulted in the greatest anti-tumor effects. Double or triple targeting generally resulted in marked increases in apoptosis in the sensitive lines. Mechanistic studies demonstrated that the synergy between drugs was correlated with maximal inhibition of Akt and ERK pathway signaling. Dual HER/IGF-insulin targeting, and triple targeting with inclusion of anti-estrogen drugs, shows striking anti-tumor activity across breast cancer types, and drugs with broader receptor specificity may be more effective than single receptor selective drugs, particularly for ER- cells.
Targeting Prostate Cancer for Gene Therapy Utilizing Lentivirus and Oncolytic VSV Virus
2010-04-01
antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma . Mol T her, 2008. 16(9): p. 1637-42. 16. Ribacka, C . a nd...adenovirus targeting to TERT and RB pathway induced specific and potent anti-tumor efficacy in vitro and in vivo for hepatocellular carcinoma . Cancer
Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery.
Volak, Adrienn; LeRoy, Stanley G; Natasan, Jeya Shree; Park, David J; Cheah, Pike See; Maus, Andreas; Fitzpatrick, Zachary; Hudry, Eloise; Pinkham, Kelsey; Gandhi, Sheetal; Hyman, Bradley T; Mu, Dakai; GuhaSarkar, Dwijit; Stemmer-Rachamimov, Anat O; Sena-Esteves, Miguel; Badr, Christian E; Maguire, Casey A
2018-05-16
The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
Brown, Christine E; Aguilar, Brenda; Starr, Renate; Yang, Xin; Chang, Wen-Chung; Weng, Lihong; Chang, Brenda; Sarkissian, Aniee; Brito, Alfonso; Sanchez, James F; Ostberg, Julie R; D'Apuzzo, Massimo; Badie, Behnam; Barish, Michael E; Forman, Stephen J
2018-01-03
T cell immunotherapy is emerging as a powerful strategy to treat cancer and may improve outcomes for patients with glioblastoma (GBM). We have developed a chimeric antigen receptor (CAR) T cell immunotherapy targeting IL-13 receptor α2 (IL13Rα2) for the treatment of GBM. Here, we describe the optimization of IL13Rα2-targeted CAR T cells, including the design of a 4-1BB (CD137) co-stimulatory CAR (IL13BBζ) and a manufacturing platform using enriched central memory T cells. Utilizing orthotopic human GBM models with patient-derived tumor sphere lines in NSG mice, we found that IL13BBζ-CAR T cells improved anti-tumor activity and T cell persistence as compared to first-generation IL13ζ-CAR CD8 + T cells that had shown evidence for bioactivity in patients. Investigating the impact of corticosteroids, given their frequent use in the clinical management of GBM, we demonstrate that low-dose dexamethasone does not diminish CAR T cell anti-tumor activity in vivo. Furthermore, we found that local intracranial delivery of CAR T cells elicits superior anti-tumor efficacy as compared to intravenous administration, with intraventricular infusions exhibiting possible benefit over intracranial tumor infusions in a multifocal disease model. Overall, these findings help define parameters for the clinical translation of CAR T cell therapy for the treatment of brain tumors. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma.
Kroesen, Michiel; Büll, Christian; Gielen, Paul R; Brok, Ingrid C; Armandari, Inna; Wassink, Melissa; Looman, Maaike W G; Boon, Louis; den Brok, Martijn H; Hoogerbrugge, Peter M; Adema, Gosse J
2016-06-01
Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients.
Chakraborty, Ashok K; Zerillo, Cynthia; DiGiovanna, Michael P
2015-08-01
The insulin-like growth factor I receptor (IGF1R) has been linked to resistance to HER2-directed therapy with trastuzumab (Herceptin). We examined the anti-tumor activity of figitumumab (CP-751,871), a human monoclonal antibody that blocks IGF1R ligand binding, alone and in combination with the therapeutic anti-HER2 antibody trastuzumab and the pan-HER family tyrosine kinase inhibitor neratinib, using in vitro and in vivo breast cancer model systems. In vitro assays of proliferation, apoptosis, and signaling, and in vivo anti-tumor experiments were conducted in HER2-overexpressing (BT474) and HER2-normal (MCF7) models. We find single-agent activity of the HER2-targeting drugs but not figitumumab in the BT474 model, while the reverse is true in the MCF7 model. However, in both models, combining figitumumab with HER2-targeting drugs shows synergistic anti-proliferative and apoptosis-inducing effects, and optimum inhibition of downstream signaling. In murine xenograft models, synergistic anti-tumor effects were observed in the HER2-normal MCF7 model for the combination of figitumumab with trastuzumab, and, in the HER2-overexpressing BT474 model, enhanced anti-tumor effects were observed for the combination of figitumumab with either trastuzumab or neratinib. Analysis of tumor extracts from the in vivo experiments showed evidence of the most optimal inhibition of downstream signaling for the drug combinations over the single-agent therapies. These results suggest promise for such combinations in treating patients with breast cancer, and that, unlike the case for single-agent therapy, the therapeutic effects of such combinations may be independent of expression levels of the individual receptors or the single-agent activity profile.
He, Qianjun; Shi, Jianlin
2014-01-22
In the anti-cancer war, there are three main obstacles resulting in high mortality and recurrence rate of cancers: the severe toxic side effect of anti-cancer drugs to normal tissues due to the lack of tumor-selectivity, the multi-drug resistance (MDR) to free chemotherapeutic drugs and the deadly metastases of cancer cells. The development of state-of-art nanomedicines based on mesoporous silica nanoparticles (MSNs) is expected to overcome the above three main obstacles. In the view of the fast development of anti-cancer strategy, this review highlights the most recent advances of MSN anti-cancer nanomedicines in enhancing chemotherapeutic efficacy, overcoming the MDR and inhibiting metastasis. Furthermore, we give an outlook of the future development of MSNs-based anti-cancer nanomedicines, and propose several innovative and forward-looking anti-cancer strategies, including tumor tissue-cell-nuclear successionally targeted drug delivery strategy, tumor cell-selective nuclear-targeted drug delivery strategy, multi-targeting and multi-drug strategy, chemo-/radio-/photodynamic-/ultrasound-/thermo-combined multi-modal therapy by virtue of functionalized hollow/rattle-structured MSNs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feng, Liang; Yao, Hang-Ping; Wang, Wei; Zhou, Yong-Qing; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai
2014-12-01
The receptor tyrosine kinase RON is critical in epithelial tumorigenesis and a drug target for cancer therapy. Here, we report the development and therapeutic efficacy of a novel anti-RON antibody Zt/g4-maytansinoid (DM1) conjugates for targeted colorectal cancer (CRC) therapy. Zt/g4 (IgG1a/κ) was conjugated to DM1 via thioether linkage to form Zt/g4-DM1 with a drug-antibody ratio of 4:1. CRC cell lines expressing different levels of RON were tested in vitro to determine Zt/g4-DM1-induced RON endocytosis, cell-cycle arrest, and cytotoxicity. Efficacy of Zt/g4-DM1 in vivo was evaluated in mouse xenograft CRC tumor model. Zt/g4-DM1 rapidly induced RON endocytosis, arrested cell cycle at G2-M phase, reduced cell viability, and caused massive cell death within 72 hours. In mouse xenograft CRC models, Zt/g4-DM1 at a single dose of 20 mg/kg body weight effectively delayed CRC cell-mediated tumor growth up to 20 days. In a multiple dose-ranging study with a five injection regimen, Zt/g4-DM1 inhibited more than 90% tumor growth at doses of 7, 10, and 15 mg/kg body weight. The minimal dose achieving 50% of tumor inhibition was approximately 5.0 mg/kg. The prepared Zt/g4-DM1 is stable at 37°C for up to 30 days. At 60 mg/kg, Zt/g4-DM1 had a moderate toxicity in vivo with an average of 12% reduction in mouse body weight. Zt/g4-DM1 is highly effective in targeted inhibition of CRC cell-derived tumor growth in mouse xenograft models. This work provides the basis for development of humanized Zt/g4-DM1 for RON-targeted CRC therapy in the future. ©2014 American Association for Cancer Research.
Cell selection and characterization of a novel human endothelial cell specific nanobody.
Ahmadvand, Davoud; Rasaee, Mohammad J; Rahbarizadeh, Fatemeh; Kontermann, Roland E; Sheikholislami, Farzaneh
2009-05-01
Antibody-based targeting of angiogenesis and vascular targeting therapy of cancer are extremely attractive conceptually and open new important diagnostic and therapeutic opportunities. Compelling evidence suggests that CD105 represents an ideal target for anti-angiogenic therapy and its presence in solid tumor vasculature has prognostic value. Camelids produce functional antibodies devoid of light chains and constant heavy chain domain (CH1). Nanobodies, the antigen-binding fragments of such heavy chain antibodies, are therefore comprised in one single domain. The aim of this study was to explore the possibilities of using anti-endoglin nanobody as an angiogenesis inhibitor. The anti-CD105 nanobody (AR-86a) was isolated from immune library by selections on purified antigens and target cells. Immunocytochemistry and FACS analysis showed that the purified nanobody reacted specifically with human umbilical vein endothelial cells (HUVECs) but not with other cell lines such as MDA-MB-453, Mel III, T-47D, MCF-7, AGO and HT 29. Further, selected nanobody potently inhibited proliferation of human endothelial cells and formation of capillary-like structures. This selected high affinity anti-endoglin nanobody may offer high specificity towards tumors with reduced side effects, and may be less likely to elicit drug resistance compared to conventional therapy.
Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.
Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da
2016-01-01
The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal
Haemmerle, Monika; Bottsford-Miller, Justin; Pradeep, Sunila; Taylor, Morgan L.; Hansen, Jean M.; Dalton, Heather J.; Stone, Rebecca L.; Cho, Min Soon; Nick, Alpa M.; Nagaraja, Archana S.; Gutschner, Tony; Gharpure, Kshipra M.; Mangala, Lingegowda S.; Han, Hee Dong; Zand, Behrouz; Armaiz-Pena, Guillermo N.; Wu, Sherry Y.; Pecot, Chad V.; Burns, Alan R.; Lopez-Berestein, Gabriel; Afshar-Kharghan, Vahid; Sood, Anil K.
2016-01-01
Recent studies in patients with ovarian cancer suggest that tumor growth may be accelerated following cessation of antiangiogenesis therapy; however, the underlying mechanisms are not well understood. In this study, we aimed to compare the effects of therapy withdrawal to those of continuous treatment with various antiangiogenic agents. Cessation of therapy with pazopanib, bevacizumab, and the human and murine anti-VEGF antibody B20 was associated with substantial tumor growth in mouse models of ovarian cancer. Increased tumor growth was accompanied by tumor hypoxia, increased tumor angiogenesis, and vascular leakage. Moreover, we found hypoxia-induced ADP production and platelet infiltration into tumors after withdrawal of antiangiogenic therapy, and lowering platelet counts markedly inhibited tumor rebound after withdrawal of antiangiogenic therapy. Focal adhesion kinase (FAK) in platelets regulated their migration into the tumor microenvironment, and FAK-deficient platelets completely prevented the rebound tumor growth. Additionally, combined therapy with a FAK inhibitor and the antiangiogenic agents pazopanib and bevacizumab reduced tumor growth and inhibited negative effects following withdrawal of antiangiogenic therapy. In summary, these results suggest that FAK may be a unique target in situations in which antiangiogenic agents are withdrawn, and dual targeting of FAK and VEGF could have therapeutic implications for ovarian cancer management. PMID:27064283
Anti-Angiogenics: Current Situation and Future Perspectives.
Zirlik, Katja; Duyster, Justus
2018-01-01
Angiogenesis, the process leading to the formation of new blood vessels, is one of the hallmarks of cancer. Extensive studies established that i) vascular endothelial growth factor (VEGF) is a key driver of sprouting angiogenesis, ii) VEGF is overexpressed in most solid cancers, and iii) inhibition of VEGF can suppress tumor growth in animal models. This has led to the development of pharmacological agents for anti-angiogenesis to disrupt the vascular supply and starve the tumor of nutrients and oxygen, primarily through the blockade of VEGF/VEGF receptor signaling. This effort has resulted in 11 anti-VEGF drugs approved for certain advanced cancers, either alone or in combination with chemotherapy and other targeted therapies. However, inhibition of VEGF signaling is not effective in all cancers, and anti-angiogenics have often only limited impact on overall survival of cancer patients. This review focuses on the current status of FDA-approved anti-angiogenic antibodies and tyrosine kinase inhibitors and summarizes the progress and future directions of VEGF-targeted therapy. © 2018 S. Karger GmbH, Freiburg.
The host immunological response to cancer therapy: An emerging concept in tumor biology.
Voloshin, Tali; Voest, Emile E; Shaked, Yuval
2013-07-01
Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction-both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. Copyright © 2013 Elsevier Inc. All rights reserved.
MACC1 - a novel target for solid cancers.
Stein, Ulrike
2013-09-01
The metastatic dissemination of primary tumors is directly linked to patient survival in many tumor entities. The previously undescribed gene metastasis-associated in colon cancer 1 (MACC1) was discovered by genome-wide analyses in colorectal cancer (CRC) tissues. MACC1 is a tumor stage-independent predictor for CRC metastasis linked to metastasis-free survival. In this review, the discovery of MACC1 is briefly presented. In the following, the overwhelming confirmation of these data is provided supporting MACC1 as a new remarkable biomarker for disease prognosis and prediction of therapy response for CRC and also for a variety of additional forms of solid cancers. Lastly, the potential clinical utility of MACC1 as a target for prevention or restriction of tumor progression and metastasis is envisioned. MACC1 has been identified as a prognostic biomarker in a variety of solid cancers. MACC1 correlated with tumor formation and progression, development of metastases and patient survival representing a decisive driver for tumorigenesis and metastasis. MACC1 was also demonstrated to be of predictive value for therapy response. MACC1 is a promising therapeutic target for anti-tumor and anti-metastatic intervention strategies of solid cancers. Its clinical utility, however, must be demonstrated in clinical trials.
Strickler, John H
2018-06-01
Anti-EGFR therapies have failed to improve survival for unselected patients with metastatic gastroesophageal cancer, but in a subset of patients, EGFR amplification may predict treatment benefit. Maron and colleagues report the clinical activity of anti-EGFR therapies in a cohort of patients with EGFR -amplified metastatic gastroesophageal cancer and utilize serial blood and tumor tissue collection to identify molecular drivers of treatment sensitivity and resistance. Their insights offer a path to overcome technical limitations associated with EGFR amplification and facilitate molecularly targeted therapeutic strategies. Cancer Discov; 8(6); 679-81. ©2018 AACR See related article by Maron et al., p. 696 . ©2018 American Association for Cancer Research.
Monitoring early tumor response to drug therapy with diffuse optical tomography
NASA Astrophysics Data System (ADS)
Flexman, Molly L.; Vlachos, Fotios; Kim, Hyun Keol; Sirsi, Shashank R.; Huang, Jianzhong; Hernandez, Sonia L.; Johung, Tessa B.; Gander, Jeffrey W.; Reichstein, Ari R.; Lampl, Brooke S.; Wang, Antai; Borden, Mark A.; Yamashiro, Darrell J.; Kandel, Jessica J.; Hielscher, Andreas H.
2012-01-01
Although anti-angiogenic agents have shown promise as cancer therapeutics, their efficacy varies between tumor types and individual patients. Providing patient-specific metrics through rapid noninvasive imaging can help tailor drug treatment by optimizing dosages, timing of drug cycles, and duration of therapy--thereby reducing toxicity and cost and improving patient outcome. Diffuse optical tomography (DOT) is a noninvasive three-dimensional imaging modality that has been shown to capture physiologic changes in tumors through visualization of oxygenated, deoxygenated, and total hemoglobin concentrations, using non-ionizing radiation with near-infrared light. We employed a small animal model to ascertain if tumor response to bevacizumab (BV), an anti-angiogenic agent that targets vascular endothelial growth factor (VEGF), could be detected at early time points using DOT. We detected a significant decrease in total hemoglobin levels as soon as one day after BV treatment in responder xenograft tumors (SK-NEP-1), but not in SK-NEP-1 control tumors or in non-responder control or BV-treated NGP tumors. These results are confirmed by magnetic resonance imaging T2 relaxometry and lectin perfusion studies. Noninvasive DOT imaging may allow for earlier and more effective control of anti-angiogenic therapy.
Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets.
Nagy, Janice A; Dvorak, Harold F
2012-10-01
Therapies directed against VEGF-A and its receptors are effective in treating many mouse tumors but have been less so in treating human cancer patients. To elucidate the reasons that might be responsible for this difference in response, we investigated the nature of the blood vessels that appear in human and mouse cancers and the tumor "surrogate" blood vessels that develop in immunodeficient mice in response to an adenovirus expressing VEGF-A(164). Both tumor and tumor surrogate blood vessels are heterogeneous and form by two distinct processes, angiogenesis and arterio-venogenesis. The first new angiogenic blood vessels to form are mother vessels (MV); MV arise from preexisting venules and capillaries and evolve over time into glomeruloid microvascular proliferations (GMP) and subsequently into capillaries and vascular malformations (VM). Arterio-venogenesis results from the remodeling and enlargement of preexisting arteries and veins, leading to the formation of feeder arteries (FA) and draining veins (DV) that supply and drain angiogenic vessels. Of these different blood vessel types, only the two that form first, MV and GMP, were highly responsive to anti-VEGF therapy, whereas "late"-formed capillaries, VM, FA and DV were relatively unresponsive. This finding may explain, at least in part, the relatively poor response of human cancers to anti-VEGF/VEGFR therapies, because human cancers, present for months or years prior to discovery, are expected to contain a large proportion of late-formed blood vessels. The future of anti-vascular cancer therapy may depend on finding new targets on "late" vessels, apart from those associated with the VEGF/VEGFR axis.
Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM).
Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P
2016-02-01
Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future analysis in clinical GBM samples. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM)*
Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P.
2016-01-01
Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future analysis in clinical GBM samples. PMID:26243272
Esser, Alison K; Schmieder, Anne H; Ross, Michael H; Xiang, Jingyu; Su, Xinming; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Allen, John S; Williams, Todd; Wickline, Samuel A; Pan, Dipanjan; Lanza, Gregory M; Weilbaecher, Katherine N
2016-01-01
Fumagillin, an unstable anti-angiogenesis mycotoxin, was synthesized into a stable lipase-labile prodrug and incorporated into integrin-targeted lipid-encapsulated nanoparticles (αvβ3-Fum-PD NP). Dual anti-angiogenic therapy combining αvβ3-Fum-PD NP with zoledronic acid (ZA), a long-acting osteoclast inhibitor with proposed anti-angiogenic effects, was evaluated. In vitro, αvβ3-Fum-PD NP reduced (P<0.05) endothelial cell viability without impacting macrophage viability. ZA suppressed (P<0.05) macrophage viability at high dosages but not endothelial cell proliferation. 3D MR neovascular imaging of rabbit Vx2 tumors showed no effect with ZA, whereas αvβ3-Fum-PD NP alone and with ZA decreased angiogenesis (P<0.05). Immunohistochemistry revealed decreased (P<0.05) microvascularity with αvβ3-Fum-PD NP and ZA and further microvascular reduction (P<0.05) with dual-therapy. In vivo, ZA did not decrease tumor macrophage numbers nor cancer cell proliferation, whereas αvβ3-Fum-PD-NPs reduced both measures. Dual-therapy with ZA and αvβ3-Fum-PD-NP may provide enhanced neo-adjuvant utility if macrophage ZA uptake is increased. From the Clinical Editor: Although anti-angiogenesis is one of the treatment modalities in the fight against cancer, many cancers become resistant to VEGF pathway inhibitors. In this article, the authors investigated the use of dual therapy using fumagillin, integrin-targeted lipid-encapsulated nanoparticles (αvβ3- Fum-PD NP) and zoledronic acid (ZA), in both in-vitro and in-vivo experiments. This combination approach may provide an insight to the design of future drugs against cancers. Copyright © 2015 Elsevier Inc. All rights reserved.
Qin, Hong; Wei, Guowei; Sakamaki, Ippei; Dong, Zhenyuan; Cheng, Wesley A; Smith, D Lynne; Wen, Feng; Sun, Han; Kim, Kunhwa; Cha, Soungchul; Bover, Laura; Neelapu, Sattva S; Kwak, Larry W
2018-03-01
Purpose: mAbs such as anti-CD20 rituximab are proven therapies in B-cell malignancies, yet many patients develop resistance. Novel therapies against alternative targets are needed to circumvent resistance mechanisms. We sought to generate mAbs against human B-cell-activating factor receptor (BAFF-R/TNFRSF13C), which has not yet been targeted successfully for cancer therapy. Experimental Design: Novel mAbs were generated against BAFF-R, expressed as a natively folded cell surface immunogen on mouse fibroblast cells. Chimeric BAFF-R mAbs were developed and assessed for in vitro and in vivo monotherapy cytotoxicity. The chimeric mAbs were tested against human B-cell tumor lines, primary patient samples, and drug-resistant tumors. Results: Chimeric antibodies bound with high affinity to multiple human malignant B-cell lines and induced potent antibody-dependent cellular cytotoxicity (ADCC) against multiple subtypes of human lymphoma and leukemia, including primary tumors from patients who had relapsed after anti-CD20 therapy. Chimeric antibodies also induced ADCC against ibrutinib-resistant and rituximab-insensitive CD20-deficient variant lymphomas, respectively. Importantly, they demonstrated remarkable in vivo growth inhibition of drug-resistant tumor models in immunodeficient mice. Conclusions: Our method generated novel anti-BAFF-R antibody therapeutics with remarkable single-agent antitumor effects. We propose that these antibodies represent an effective new strategy for targeting and treating drug-resistant B-cell malignancies and warrant further development. Clin Cancer Res; 24(5); 1114-23. ©2017 AACR . ©2017 American Association for Cancer Research.
The Notch Ligand Jagged1 as a Target for Anti-Tumor Therapy
Li, Demin; Masiero, Massimo; Banham, Alison H.; Harris, Adrian L.
2014-01-01
The Notch pathway is increasingly attracting attention as a source of therapeutic targets for cancer. Ligand-induced Notch signaling has been implicated in various aspects of cancer biology; as a consequence, pan-Notch inhibitors and therapeutic antibodies targeting one or more of the Notch receptors have been investigated for cancer therapy. Alternatively, Notch ligands provide attractive options for therapy in cancer treatment due to their more restricted expression and better-defined functions, as well as their low rate of mutations in cancer. One of the Notch ligands, Jagged1 (JAG1), is overexpressed in many cancer types, and plays an important role in several aspects of tumor biology. In fact, JAG1-stimulated Notch activation is directly implicated in tumor growth through maintaining cancer stem cell populations, promoting cell survival, inhibiting apoptosis, and driving cell proliferation and metastasis. In addition, JAG1 can indirectly affect cancer by influencing tumor microenvironment components such as tumor vasculature and immune cell infiltration. This article gives an overview of JAG1 and its role in tumor biology, and its potential as a therapeutic target. PMID:25309874
Anti–PD-1/PD-L1 therapy of human cancer: past, present, and future
Chen, Lieping; Han, Xue
2015-01-01
Major progress has been made toward our understanding of the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway (referred to as the PD pathway). mAbs are already being used to block the PD pathway to treat human cancers (anti-PD therapy), especially advanced solid tumors. This therapy is based on principles that were discovered through basic research more than a decade ago, but the great potential of this pathway to treat a broad spectrum of advanced human cancers is just now becoming apparent. In this Review, we will briefly review the history and development of anti-PD therapy, from the original benchwork to the most up-to-date clinical results. We will then focus the discussion on three basic principles that define this unique therapeutic approach and highlight how anti-PD therapy is distinct from other immunotherapeutic approaches, namely tumor site immune modulation, targeting tumor-induced immune defects, and repairing ongoing (rather than generating de novo) tumor immunity. We believe that these fundamental principles set the standard for future immunotherapies and will guide our efforts to develop more efficacious and less toxic immune therapeutics to treat human cancers. PMID:26325035
Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L; Yan, Wei; Xu, Lisa X
2016-01-01
Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an "acute" phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated "acute" phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86(+)MHCII(+) dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such "acute" environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest "acute" response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated "acute" microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of "acute" and "danger" signals play a key role in determining the efficacy of anti-tumor activity.
Wu, Xiao Yu; Xu, Hao; Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang
2015-12-29
Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis.
Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang
2015-01-01
Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis. PMID:26575424
Schuh, Elizabeth M; Portela, Roberta; Gardner, Heather L; Schoen, Christian; London, Cheryl A
2017-10-02
Hyperthermia is an established anti-cancer treatment but is limited by tolerance of adjacent normal tissues. Parenteral administration of gold nanorods (NRs) as a photosensitizer amplifies the effects of hyperthermia treatment while sparing normal tissues. This therapy is well tolerated and has demonstrated anti-tumor effects in mouse models. The purpose of this phase 1 study was to establish the safety and observe the anti-tumor impact of gold NR enhanced (plasmonic) photothermal therapy (PPTT) in client owned canine patients diagnosed with spontaneous neoplasia. Seven dogs underwent gold NR administration and subsequent NIR PPTT. Side effects were mild and limited to local reactions to NIR laser. All of the dogs enrolled in the study experienced stable disease, partial remission or complete remission. The overall response rate (ORR) was 28.6% with partial or complete remission of tumors at study end. PPTT utilizing gold nanorod therapy can be safely administered to canine patients. Further studies are needed to determine the true efficacy in a larger population of canine cancer patients and to and identify those patients most likely to benefit from this therapy.
Current status of gene therapy for brain tumors
MURPHY, ANDREA M.; RABKIN, SAMUEL D.
2013-01-01
Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma. PMID:23246627
Zhu, Rongrong; Wang, Zhaoqi; Liang, Peng; He, Xiaolie; Zhuang, Xizhen; Huang, Ruiqi; Wang, Mei; Wang, Qigang; Qian, Yechang; Wang, Shilong
2017-11-01
Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and is highly expressed in carcinoma, which make it an important target for tumor targeting therapy. Neuroblastoma is the main cause for cancer-related death in children. Like most solid tumors, it is also accompanied with the overexpression of VEGF. Doxorubicin Hydrochloride (DOX), a typical chemotherapeutic agent, exhibits efficient anticancer activities for various cancers. However, DOX, without targeting ability, usually causes severe damage to normal tissues. To overcome the shortages, we designed a novel nano-composite, which is Bevacizumab (Bev) modified SiO 2 @LDH nanoparticles (SiO 2 @LDH-Bev), loading with DOX to achieve targeting ability and curative efficiency. SiO 2 @LDH-DOX and SiO 2 @LDH-Bev-DOX nanoparticles were synthesized and the physicochemical properties were characterized by TEM detection, Zeta potential analysis, FTIR, Raman and XPS analysis. Then in vitro and in vivo anti-neuroblastoma efficiency, targeting ability and mechanisms of anti-carcinoma and anti-angiogenesis of SiO 2 @LDH-Bev-DOX were explored. Our results indicated that we obtained the core-shell structure SiO 2 @LDH-Bev with an average diameter of 253±10nm and the amount of conjugated Bev was 4.59±0.38μg/mg SiO 2 @LDH-Bev. SiO 2 @LDH-Bev-DOX could improve the cellular uptake and the targeting effect of DOX to brain and tumor, enhance the anti-neuroblastoma and anti-angiogenesis efficiency both in vitro and in vivo, and alleviate side effects of DOX sharply, especially hepatic injury. In addition, we also demonstrated that angiogenesis inhibitory effect was mediated by DOX and VEGF triggered signal pathways, including PI3K/Akt, Raf/MEK/ERK, and adhesion related pathways. In summary, SiO 2 @LDH-Bev could be a potential VEGF targeting nanocarrier applied in VEGF positive cancer therapy. This paper explored that a novel core-shell structure nanomaterial SiO 2 @LDH and modified SiO 2 @LDH with Bevacizumab (Bev) to form a new tumor vasculature targeting nanocarrier SiO 2 @LDH-Bev as vector of DOX, which was not reported before. The results indicated that SiO 2 @LDH-Bev could improve the VEGF targeting ability, anti-neuroblastoma and anti-angiogenesis efficiency of DOX. At the same time, SiO 2 @LDH-Bev-DOX could erase the cardiac toxicity and hepatic injury coming from DOX. Tube formation showed SiO 2 @LDH-Bev-DOX had the strongest effect on inhibiting angiogenesis among all the four formulations. SiO 2 @LDH-Bev-DOX could downregulate expression of p-VEGFR and inhibit activation of the Raf/MEK/ERK, p38MAPK, PI3K/Akt and FAK signaling pathways to achieve the goal of anti-angiogenesis. This work provides a novel system for the safe and efficient use of Bev and DOX on Neuroblastoma and explores the mechanism of the function of nano carrier in cancer therapy both in vitro and in vivo. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma
Kroesen, Michiel; Büll, Christian; Gielen, Paul R.; Brok, Ingrid C.; Armandari, Inna; Wassink, Melissa; Looman, Maaike W. G.; Boon, Louis; den Brok, Martijn H.; Hoogerbrugge, Peter M.; Adema, Gosse J.
2016-01-01
ABSTRACT Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients. PMID:27471639
Aminzadeh-Gohari, Sepideh; Feichtinger, René Günther; Vidali, Silvia; Locker, Felix; Rutherford, Tricia; O'Donnel, Maura; Stöger-Kleiber, Andrea; Mayr, Johannes Adalbert; Sperl, Wolfgang; Kofler, Barbara
2017-09-12
Neuroblastoma (NB) is a pediatric malignancy characterized by a marked reduction in aerobic energy metabolism. Recent preclinical data indicate that targeting this metabolic phenotype by a ketogenic diet (KD), especially in combination with calorie restriction, slows tumor growth and enhances metronomic cyclophosphamide (CP) therapy of NB xenografts. Because calorie restriction would be contraindicated in most cancer patients, the aim of the present study was to optimize the KD such that the tumors are sensitized to CP without the need of calorie restriction. In a NB xenograft model, metronomic CP was combined with KDs of different triglyceride compositions and fed to CD1-nu mice ad libitum . Metronomic CP in combination with a KD containing 8-carbon medium-chain triglycerides exerted a robust anti-tumor effect, suppressing growth and causing a significant reduction of tumor blood-vessel density and intratumoral hemorrhage, accompanied by activation of AMP-activated protein kinase in NB cells. Furthermore, the KDs caused a significant reduction in the serum levels of essential amino acids, but increased those of serine, glutamine and glycine. Our data suggest that targeting energy metabolism by a modified KD may be considered as part of a multimodal treatment regimen to improve the efficacy of classic anti-NB therapy.
Fu, Maoyong; Maresh, Erin L.; Helguera, Gustavo F.; Kiyohara, Meagan; Qin, Yu; Ashki, Negin; Daniels-Wells, Tracy R.; Aziz, Najib; Gordon, Lynn K.; Braun, Jonathan; Elshimali, Yahya; Soslow, Robert A.; Penichet, Manuel L.; Goodglick, Lee; Wadehra, Madhuri
2014-01-01
Despite significant advances in biology and medicine, the incidence and mortality due to breast cancer world-wide is still unacceptably high. Thus, there is an urgent need to discover new molecular targets. In this paper, we show evidence for a novel target in human breast cancer, the tetraspan protein epithelial membrane protein-2 (EMP2). Using tissue tumor arrays, protein expression of EMP2 was measured and found to be minimal in normal mammary tissue, but it was upregulated in 63% of invasive breast cancer tumors and in 73% of triple negative tumors tested. To test the hypothesis that EMP2 may be a suitable target for therapy, we constructed a fully human IgG1 antibody specific for a conserved domain of human and murine EMP2. Treatment of breast cancer cells with the anti-EMP2 IgG1 significantly inhibited EMP2 mediated signaling, blocked FAK/Src signaling, inhibited invasion, and promoted apoptosis in vitro. In both human xenograft and syngeneic metastatic tumor monotherapy models, anti-EMP2 IgG1 retarded tumor growth without detectable systemic toxicity. This anti-tumor effect was in part attributable to a potent ADCC response as well as direct cytotoxicity induced by the monoclonal antibody. Together, these results identify EMP2 as a novel therapeutic target for invasive breast cancer. PMID:24448822
Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Guo, Qingcheng; Gu, Nana; Zhang, Dapeng; Qian, Weizhu; Dai, Jianxin; Hou, Sheng; Wang, Hao; Guo, Yajun
The host immune system generally serves as a barrier against tumor formation. Programmed death-ligand 1 (PD-L1) is a critical "don't find me" signal to the adaptive immune system, whereas CD47 transmits an anti-phagocytic signal, known as the "don't eat me" signal, to the innate immune system. These and similar immune checkpoints are often overexpressed on human tumors. Thus, dual targeting both innate and adaptive immune checkpoints would likely maximize anti-tumor therapeutic effect and elicit more durable responses. Herein, based on the variable region of atezolizumab and consensus variant 1 (CV1) monomer, we constructed a dual-targeting fusion protein targeting both CD47 and PD-L1 using "Knobs-into-holes" technology, denoted as IAB. It was effective in inducing phagocytosis of tumor cells, stimulating T-cell activation and mediating antibody-dependent cell-mediated cytotoxicity in vitro. No obvious sign of hematological toxicity was observed in mice administered IAB at a dose of 100 mg/kg, and IAB exhibited potent antitumor activity in an immune-competent mouse model of MC38. Additionally, the anti-tumor effect of IAB was impaired by anti-CD8 antibody or clodronate liposomes, which implied that both CD8+ T cells and macrophages were required for the anti-tumor efficacy of IAB and IAB plays an essential role in the engagement of innate and adaptive immune responses. Collectively, these results demonstrate the capacity of an elicited endogenous immune response against tumors and elucidate essential characteristics of synergistic innate and adaptive immune response, and indicate dual blockade of CD47 and PD-L1 by IAB may be a synergistic therapy that activates both innate and adaptive immune response against tumors.
The host immunological response to cancer therapy: An emerging concept in tumor biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voloshin, Tali; Voest, Emile E.; Shaked, Yuval, E-mail: yshaked@tx.technion.ac.il
Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet onlymore » partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome.« less
Ma, Zhen-Gang; Ma, Rui; Xiao, Xiao-Lin; Zhang, Yong-Hui; Zhang, Xin-Zi; Hu, Nan; Gao, Jin-Lai; Zheng, Yu-Feng; Dong, De-Li; Sun, Zhi-Jie
2016-10-15
Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activity on colon cancer cells. Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We synthesized the star-shape amphiphilic polymer with azo bond and fabricated the DMF-loaded azo polymeric micelles. The four-arm polymer star-PCL-azo-mPEG (sPCEG-azo) (constituted by star-shape PCL (polycaprolactone) and mPEG (methoxypolyethylene glycols)-olsalazine) showed self-assembly ability. The average diameter and polydispersity index of the DMF-loaded sPCEG-azo polymeric micelles were 153.6nm and 0.195, respectively. In vitro drug release study showed that the cumulative release of DMF from the DMF-loaded sPCEG-azo polymeric micelles was no more than 20% in rat gastric fluid within 10h, whereas in the rat colonic fluids, the cumulative release of DMF reached 60% in the initial 2h and 100% within 10h, indicating that the DMF-loaded sPCEG-azo polymeric micelles had excellent colon-targeted property. The DMF-loaded sPCEG-azo polymeric micelles had no significant cytotoxicity on colon cancer cells in phosphate buffered solution (PBS) and rat gastric fluid. In rat colonic fluid, the micelles showed significant cytotoxic effect on colon cancer cells. The blank sPCEG-azo polymeric micelles (without DMF) showed no cytotoxic effect on colon cancer cells in rat colonic fluids. In conclusion, the DMF-loaded sPCEG-azo polymeric micelles show colon-targeted DMF release and anti-tumor activity, providing a novel approach potential for colon cancer therapy. Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activities on colon cancer cells (Br J Pharmacol. 2015 172(15):3929-43.). Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We found that the DMF-loaded sPCEG-azo polymeric micelles showed colon-targeted DMF release and anti-tumor activities, providing a novel approach potential for colon cancer therapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wairagu, Peninah M.; Institute of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do 220-701; Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do 220-701
2014-05-09
Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where eachmore » pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.« less
Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors
Linger, Rachel M.A.; Keating, Amy K.; Earp, H. Shelton
2010-01-01
Importance of the field Axl and/or Mer expression correlates with poor prognosis in several cancers. Until recently, the specific role of these receptor tyrosine kinases (RTKs) in the development and progression of cancer remained unexplained. Studies demonstrating that Axl and Mer contribute to mechanisms of cell survival, migration, invasion, metastasis, and chemosensitivity justify further investigation of Axl and Mer as novel therapeutic targets in cancer. Areas covered in this review Axl and Mer signaling pathways in cancer cells are summarized and evidence validating these RTKs as therapeutic targets in glioblastoma multiforme, non-small cell lung cancer, and breast cancer is examined. A comprehensive discussion of Axl and/or Mer inhibitors in development is also provided. What the reader will gain Potential toxicities associated with Axl or Mer inhibition are addressed. We hypothesize that the probable action of Mer and Axl inhibitors on cells within the tumor microenvironment will provide a unique therapeutic opportunity to target both tumor cells and the stromal components which facilitate disease progression. Take home message Axl and Mer mediate multiple oncogenic phenotypes and activation of these RTKs constitutes a mechanism of chemoresistance in a variety of solid tumors. Targeted inhibition of these RTKs may be effective as anti-tumor and/or anti-metastatic therapy, particularly if combined with standard cytotoxic therapies. PMID:20809868
Targeted Drug and Gene Delivery Systems for Lung Cancer Therapy
Sundaram, Sneha; Trivedi, Ruchit; Durairaj, Chandrasekar; Ramesh, Rajagopal; Ambati, Balamurali K.; Kompella, Uday B.
2009-01-01
Purpose To evaluate the efficacy of a novel docetaxel derivative of deslorelin, a luteinizing hormone releasing hormone (LHRH) agonist, and its combination in-vivo with RGD peptide conjugated nanoparticles encapsulating an anti-angiogenic, anti-VEGF intraceptor (Flt23k) (RGD-Flt23k-NP) in H1299 lung cancer cells and/or xenografts in athymic nude BALB/c mice. Experimental Design The in-vitro and in-vivo efficacy of the deslorelin-docetaxel conjugate (D-D) was evaluated in H1299 cells and xenografts in athymic nude mice. Co-administration of D-D and RGD-Flt23k-NP was tested in-vivo in mice. Tumor inhibition, apoptosis and VEGF inhibition were estimated in each of the treatment groups. Results The conjugate enhanced in-vitro docetaxel efficacy by 13-fold in H1299 cells compared to docetaxel at 24h, and this effect was inhibited following reduction of LHRH-receptor expression by an antisense oligonucleotide. Combination of the conjugate with the RGD-Flt23k-NP in-vivo resulted in an 82- and 15-fold tumor growth inhibition on day 39 following repeated weekly intravenous injections and a single intratumoral injection, respectively. These effects were significantly greater than individual targeted therapies or docetaxel alone. Similarly, apoptotic indices for the combination therapy were 14 and 10% in the intravenous and intratumoral groups, respectively, and higher than the individual therapies. Combination therapy groups exhibited greater VEGF inhibition in both the intravenous and intratumoral groups. Conclusions Docetaxel efficacy was enhanced by LHRH-receptor targeted deslorelin conjugate and further improved by combination with targeted anti-angiogenic nanoparticle gene therapy. Combination of novel targeted therapeutic approaches described here provides an attractive alternative to the current treatment options for lung cancer therapy. PMID:19920099
Everolimus affects vasculogenic mimicry in renal carcinoma resistant to sunitinib
Serova, Maria; Tijeras-Raballand, Annemilaï; Santos, Celia Dos; Martinet, Matthieu; Neuzillet, Cindy; Lopez, Alfred; Mitchell, Dianne C.; Bryan, Brad A.; Gapihan, Guillaume; Janin, Anne; Bousquet, Guilhem; Riveiro, Maria Eugenia; Bieche, Ivan; Faivre, Sandrine
2016-01-01
Angiogenesis is hallmark of clear cell renal cell carcinogenesis. Anti-angiogenic therapies have been successful in improving disease outcome; however, most patients treated with anti-angiogenic agents will eventually progress. In this study we report that clear cell renal cell carcinoma was associated with vasculogenic mimicry in both mice and human with tumor cells expressing endothelial markers in the vicinity of tumor vessels. We show that vasculogenic mimicry was efficiently targeted by sunitinib but eventually associated with tumor resistance and a more aggressive phenotype both in vitro and in vivo. Re-challenging these resistant tumors in mice, we showed that second-line treatment with everolimus particularly affected vasculogenic mimicry and tumor cell differentiation compared to sorafenib and axitinib. Finally, our results highlighted the phenotypic and genotypic changes at the tumor cell and microenvironment levels during sunitinib response and progression and the subsequent improvement second-line therapies bring to the current renal cell carcinoma treatment paradigm. PMID:27509260
Jain, Harsh; Jackson, Trachette
2018-05-01
Tumor growth and progression are critically dependent on the establishment of a vascular support system. This is often accomplished via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. VEGF ligands are overexpressed in a wide variety of solid tumors and therefore have inspired optimism that inhibition of the different axes of the VEGF pathway-alone or in combination-would represent powerful anti-angiogenic therapies for most cancer types. When considering treatments that target VEGF and its receptors, it is difficult to tease out the differential anti-angiogenic and anti-tumor effects of all combinations experimentally because tumor cells and vascular endothelial cells are engaged in a dynamic cross-talk that impacts key aspects of tumorigenesis, independent of angiogenesis. Here we develop a mathematical model that connects intracellular signaling responsible for both endothelial and tumor cell proliferation and death to population-level cancer growth and angiogenesis. We use this model to investigate the effect of bidirectional communication between endothelial cells and tumor cells on treatments targeting VEGF and its receptors both in vitro and in vivo. Our results underscore the fact that in vitro therapeutic outcomes do not always translate to the in vivo situation. For example, our model predicts that certain therapeutic combinations result in antagonism in vivo that is not observed in vitro. Mathematical modeling in this direction can shed light on the mechanisms behind experimental observations that manipulating VEGF and its receptors is successful in some cases but disappointing in others.
Kim, Sang-Soo; Harford, Joe B.; Pirollo, Kathleen F.; Chang, Esther H.
2015-01-01
Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood–brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review. PMID:26116770
Bhuvaneswari, Ramaswamy; Gan, Yik Yuen; Soo, Khee Chee; Olivo, Malini
2009-01-01
Background Photodynamic therapy (PDT) is a promising cancer treatment modality that involves the interaction of the photosensitizer, molecular oxygen and light of specific wavelength to destroy tumor cells. Treatment induced hypoxia is one of the main side effects of PDT and efforts are underway to optimize PDT protocols for improved efficacy. The aim of this study was to investigate the anti-tumor effects of PDT plus Erbitux, an angiogenesis inhibitor that targets epidermal growth factor receptor (EGFR), on human bladder cancer model. Tumor-bearing nude mice were assigned to four groups that included control, PDT, Erbitux and PDT plus Erbitux and tumor volume was charted over 90-day period. Results Our results demonstrate that combination of Erbitux with PDT strongly inhibits tumor growth in the bladder tumor xenograft model when compared to the other groups. Downregulation of EGFR was detected using immunohistochemistry, immunofluorescence and western blotting. Increased apoptosis was associated with tumor inhibition in the combination therapy group. In addition, we identified the dephosphorylation of ErbB4 at tyrosine 1284 site to play a major role in tumor inhibition. Also, at the RNA level downregulation of EGFR target genes cyclin D1 and c-myc was observed in tumors treated with PDT plus Erbitux. Conclusion The combination therapy of PDT and Erbitux effectively inhibits tumor growth and is a promising therapeutic approach in the treatment of bladder tumors. PMID:19878607
EMP2 is a novel therapeutic target for endometrial cancer stem cells
Kiyohara, Meagan H.; Dillard, Christen; Tsui, Jessica; Kim, Sara Ruth; Lu, Jianyi; Sachdev, Divya; Goodglick, Lee; Tong, Maomeng; Torous, Vanda Farahmand; Aryasomayajula, Chinmayi; Wang, Wei; Najafzadeh, Parisa; Gordon, Lynn K.; Braun, Jonathan; McDermott, Sean; Wicha, Max S.; Wadehra, Madhuri
2017-01-01
Previous studies have suggested that overexpression of the oncogenic protein epithelial membrane protein-2 (EMP2) correlates with endometrial carcinoma progression and ultimately poor survival from disease. To understand the role of EMP2 in the etiology of disease, gene analysis was performed to show transcripts that are reciprocally regulated by EMP2 levels. In particular, EMP2 expression correlates with and helps regulate the expression of several cancer stem cell associated markers including aldehyde dehydrogenase 1 (ALDH1). ALDH expression significantly promotes tumor initiation and correlates with the levels of EMP2 expression in both patient samples and tumor cell lines. As therapy against CSCs in endometrial cancer is lacking, the ability of anti-EMP2 IgG1 therapy to reduce primary and secondary tumor formation using xenograft HEC1A models was determined. Anti-EMP2 IgG1 reduced the expression and activity of ALDH and correspondingly reduced both primary and secondary tumor load. Our results collectively suggest that anti-EMP2 therapy may be a novel method of reducing endometrial cancer stem cells. PMID:28604744
CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response.
Chatterjee, Shilpak; Daenthanasanmak, Anusara; Chakraborty, Paramita; Wyatt, Megan W; Dhar, Payal; Selvam, Shanmugam Panneer; Fu, Jianing; Zhang, Jinyu; Nguyen, Hung; Kang, Inhong; Toth, Kyle; Al-Homrani, Mazen; Husain, Mahvash; Beeson, Gyda; Ball, Lauren; Helke, Kristi; Husain, Shahid; Garrett-Mayer, Elizabeth; Hardiman, Gary; Mehrotra, Meenal; Nishimura, Michael I; Beeson, Craig C; Bupp, Melanie Gubbels; Wu, Jennifer; Ogretmen, Besim; Paulos, Chrystal M; Rathmell, Jeffery; Yu, Xue-Zhong; Mehrotra, Shikhar
2018-01-09
Heightened effector function and prolonged persistence, the key attributes of Th1 and Th17 cells, respectively, are key features of potent anti-tumor T cells. Here, we established ex vivo culture conditions to generate hybrid Th1/17 cells, which persisted long-term in vivo while maintaining their effector function. Using transcriptomics and metabolic profiling approaches, we showed that the enhanced anti-tumor property of Th1/17 cells was dependent on the increased NAD + -dependent activity of the histone deacetylase Sirt1. Pharmacological or genetic inhibition of Sirt1 activity impaired the anti-tumor potential of Th1/17 cells. Importantly, T cells with reduced surface expression of the NADase CD38 exhibited intrinsically higher NAD + , enhanced oxidative phosphorylation, higher glutaminolysis, and altered mitochondrial dynamics that vastly improved tumor control. Lastly, blocking CD38 expression improved tumor control even when using Th0 anti-tumor T cells. Thus, strategies targeting the CD38-NAD + axis could increase the efficacy of anti-tumor adoptive T cell therapy. Copyright © 2017 Elsevier Inc. All rights reserved.
Biodegradable polymers for targeted delivery of anti-cancer drugs.
Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid
2016-06-01
Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.
Zhang, Fan; Stephan, Sirkka B; Ene, Chibawanye I; Smith, Tyrel T; Holland, Eric C; Stephan, Matthias T
2018-05-14
A major obstacle to the success rate of chimeric antigen receptor (CAR-) T cell therapy against solid tumors is the microenvironment antagonistic to T cells that solid tumors create. Conventional checkpoint blockade can silence lymphocyte anti-survival pathways activated by tumors, but because they are systemic, these treatments disrupt immune homeostasis and induce autoimmune side effects. Thus, new technologies are required to remodel the tumor milieu without causing systemic toxicities. Here we demonstrate that targeted nanocarriers that deliver a combination of immune-modulatory agents can remove pro-tumor cell populations and simultaneously stimulate anti-tumor effector cells. We administered repeated infusions of lipid nanoparticles coated with the tumor-targeting peptide iRGD and loaded with a combination of a PI3K inhibitor to inhibit immune-suppressive tumor cells and an alpha-GalCer agonist of therapeutic T cells to synergistically sway the tumor microenvironment of solid tumors from suppressive to stimulatory. This treatment created a therapeutic window of two weeks, enabling tumor-specific CAR-T cells to home to the lesion, undergo robust expansion, and trigger tumor regression. CAR-T cells administered outside this therapeutic window had no curative effect. The lipid nanoparticles we used are easy to manufacture in substantial amounts, and we demonstrate that repeated infusions of them are safe. Our technology may therefore provide a practical and low-cost strategy to potentiate many cancer immunotherapies used to treat solid tumors, including T cell therapy, vaccines, and BITE platforms. Copyright ©2018, American Association for Cancer Research.
Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition
Eyler, Christine E.; Foo, Wen-Chi; LaFiura, Katherine M.; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.
2009-01-01
Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer improved efficacy and reduced toxicity compared to conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biologies may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched non-stem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anti-cancer stem cell therapies. PMID:18802038
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagel, John M.; Matthews, Dana C.; Kenoyer, Aimee L.
2009-01-01
The efficacy of radioimmunotherapy (RIT) for treatment of patients with hematological malignancies frequently fails because of disease recurrence. We therefore conducted pretargeted RIT studies to augment the efficacy in mice of therapy using a pretargeted anti-human (h)CD45 antibody (Ab)-streptavidin (SA) conjugate followed by delivery of a biotinylated clearing agent and radiolabeled-DOTA-biotin. Tumor-to-blood ratios at 24 hours were 20:1 using pretargeted anti-hCD45 RIT and <1:1 with conventional RIT. In vivo imaging studies confirmed that the pretargeted RIT approach provided high-contrast tumor images with minimal blood-pool activity, whereas directly-labeled anti-hCD45 Ab produced distinct tumor images but the blood pool retained a largemore » amount of labeled antibody for a prolonged time. Therapy experiments demonstrated that 90Y-DOTA-biotin significantly prolonged survival of mice treated pretargeted with anti-hCD45 Ab-SA compared to mice treated with conventional RIT using 90Y-labeled anti-hCD45 Ab at the maximally tolerated dose (400 µCi). Since human CD45 antigens are confined to xenograft tumor cells in this model, and all murine tissues are devoid of hCD45 and will not bind anti-hCD45 Ab, we also compared one-step and pretargeted RIT using an anti-murine (m)CD45 Ab (A20 ) in a model where the target antigen is present on normal hematopoietic tissues. After 24 hours, 27.3 ± 2.8% of the injected dose of radionuclide was delivered per gram (% ID/g) of lymph node using 131I-A20-Ab compared with 40.0 ± 5.4% ID/g for pretargeted 111In-DOTA-biotin (p value). These data suggest that multi-step pretargeted methods for delivering RIT are superior to conventional RIT when targeting CD45 for the treatment of leukemia and may allow for the intensification of therapy, while minimizing toxicities.« less
Emerging monoclonal antibodies for the treatment of renal cell carcinoma (RCC).
Atkins, Michael B; Philips, George K
2016-09-01
Advanced renal cell carcinoma (RCC) was considered refractory to most cancer therapies until the 1980s, after which immune modulating agents and targeted agents were developed. Recently the rapid development of therapeutic monoclonal antibodies targeting immune checkpoint pathways has provided significant clinical benefit in patients with many distinct cancer types. Nivolumab, an anti-PD1 monoclonal antibody showed improvement in response rate and overall survival in patients with previously treated RCC and received US FDA approval in late 2015. Current efforts with anti-PD1-based therapy include combinations with ipilimumab and with VEGF pathway blockers in the hopes on building on the activity of single agent therapy. We describe our current understanding of tumor immunology including the basis of the tumor-specific immune response and the adaptive mechanisms used by the tumor for immune escape. We describe the mechanisms of action as well as the therapeutic application of the antibodies, ipilimumab, nivolumab and atezolizumab in patients with RCC. We identify key areas of active research in biomarker development and combination therapies. Clinical trials and the field of RCC therapeutics are expected to move in the direction of combination therapies using immune checkpoint inhibitors, extending overall survival as a benchmark for new drug approvals, and biomarker validation for improved selection of patients for specific therapies.
Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy.
Chen, Dan; Li, Bowen; Cai, Songhua; Wang, Peng; Peng, Shuwen; Sheng, Yuanzhi; He, Yuanyuan; Gu, Yueqing; Chen, Haiyan
2016-09-01
Dual targeting towards both extracellular and intracellular receptors specific to tumor is a significant approach for cancer diagnosis and therapy. In the present study, a novel nano-platform (AuNC-cRGD-Apt) with dual targeting function was initially established by conjugating gold nanocluster (AuNC) with cyclic RGD (cRGD) that is specific to αvβ3integrins over-expressed on the surface of tumor tissues and aptamer AS1411 (Apt) that is of high affinity to nucleolin over-expressed in the cytoplasm and nucleus of tumor cells. Then, AuNC-cRGD-Apt was further functionalized with near infrared (NIR) fluorescence dye (MPA), giving a NIR fluorescent dual-targeting probe AuNC-MPA-cRGD-Apt. AuNC-MPA-cRGD-Apt displays low cytotoxicity and favorable tumor-targeting capability at both in vitro and in vivo level, suggesting its clinical potential for tumor imaging. Additionally, Doxorubicin (DOX), a widely used clinical chemotherapeutic drug that kill cancer cells by intercalating DNA in cellular nucleus, was immobilized onto AuNC-cRGD-Apt forming a pro-drug, AuNC-DOX-cRGD-Apt. The enhanced tumor affinity, deep tumor penetration and improved anti-tumor activity of this pro-drug were demonstrated in different tumor cell lines, tumor spheroid and tumor-bearing mouse models. Results in this study suggest not only the prospect of non-toxic AuNC modified with two targeting ligands for tumor targeted imaging, but also confirm the promising future of dual targeting AuNC as a core for the design of prodrug in the field of cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer.
Singh, Prabhsimranjot; Toom, Sudhamshi; Huang, Yiwu
2017-05-12
Targeted therapy and immunotherapy have revolutionized treatment of various cancers in the past decade. Despite targeted therapy with trastuzumab in Her2-positive gastric cancer patients, survival has been dismal, mostly due to disease progression and toxicity related to the treatments. One area of active development is looking for ideal monoclonal antibodies (IMAB) specific to the proteins only on the tumor and hence avoiding unnecessary side effects. Claudin proteins with isoform 2 are one such protein, specific for several cancers, particularly gastric cancer and its metastases, leading to the development of anti-claudin 18.2 specific antibody, claudiximab. This review will highlight the latest development of claudiximab as first in class IMAB for the treatment of gastric cancer.
Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel.
Eldar-Boock, Anat; Miller, Keren; Sanchis, Joaquin; Lupu, Ruth; Vicent, María J; Satchi-Fainaro, Ronit
2011-05-01
Angiogenesis plays a prominent role in cancer progression. Anti-angiogenic therapy therefore, either alone or in combination with conventional cytotoxic therapy, offers a promising therapeutic approach. Paclitaxel (PTX) is a widely-used potent cytotoxic drug that also exhibits anti-angiogenic effects at low doses. However, its use, at its full potential, is limited by severe side effects. Here we designed and synthesized a targeted conjugate of PTX, a polymer and an integrin-targeted moiety resulting in a polyglutamic acid (PGA)-PTX-E-[c(RGDfK)(2)] nano-scaled conjugate. Polymer conjugation converted PTX to a macromolecule, which passively targets the tumor tissue exploiting the enhanced permeability and retention effect, while extravasating via the leaky tumor neovasculature. The cyclic RGD peptidomimetic enhanced the effects previously seen for PGA-PTX alone, utilizing the additional active targeting to the α(v)β(3) integrin overexpressed on tumor endothelial and epithelial cells. This strategy is particularly valuable when tumors are well-vascularized, but they present poor vascular permeability. We show that PGA is enzymatically-degradable leading to PTX release under lysosomal acidic pH. PGA-PTX-E-[c(RGDfK)(2)] inhibited the growth of proliferating α(v)β(3)-expressing endothelial cells and several cancer cells. We also showed that PGA-PTX-E-[c(RGDfK)(2)] blocked endothelial cells migration towards vascular endothelial growth factor; blocked capillary-like tube formation; and inhibited endothelial cells attachment to fibrinogen. Orthotopic studies in mice demonstrated preferential tumor accumulation of the RGD-bearing conjugate, leading to enhanced anti-tumor efficacy and a marked decrease in toxicity as compared with free PTX-treated mice. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hainfeld, James F.; O'Connor, Michael J.; Lin, Ping; Qian, Luping; Slatkin, Daniel N.; Smilowitz, Henry M.
2014-01-01
Gold nanoparticles (AuNPs) absorb light and can be used to heat and ablate tumors. The “tissue window” at ∼800 nm (near infrared, NIR) is optimal for best tissue penetration of light. Previously, large, 50–150 nm, gold nanoshells and nanorods that absorb well in the NIR have been used. Small AuNPs that may penetrate tumors better unfortunately barely absorb at 800 nm. We show that small AuNPs conjugated to anti-tumor antibodies are taken up by tumor cells that catalytically aggregate them (by enzyme degradation of antibodies and pH effects), shifting their absorption into the NIR region, thus amplifying their photonic absorption. The AuNPs are NIR transparent until they accumulate in tumor cells, thus reducing background heating in blood and non-targeted cells, increasing specificity, in contrast to constructs that are always NIR-absorptive. Treatment of human squamous cell carcinoma A431 which overexpresses epidermal growth factor receptor (EGFr) in subcutaneous murine xenografts with anti-EGFr antibodies conjugated to 15 nm AuNPs and NIR resulted in complete tumor ablation in most cases with virtually no normal tissue damage. The use of targeted small AuNPs therefore provides a potent new method of selective NIR tumor therapy. PMID:24520385
Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert
2016-05-26
The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.
Toi, Masakazu; Yasui, Wataru; Ito, Hisao; Tahara, Eiichi
2011-07-01
The 20th Hiroshima Cancer seminar focused upon breast cancer research and treatment particularly on the mechanism of tumorigenesis and drug resistance and development of novel therapeutics. Several molecules such as retinoblastoma and p16 were raised as key factors in tumorigenesis and invasiveness. Estrogen-related pathways seem to be closely involved in the process. For the tumor lacking hormone receptor and human epidermal growth factor 2, some other mechanisms could be responsible. It seems that MicroRNA 22 directing some putative targets such as SIRT1, Sp1 and CDK6 plays a crucial role in breast tumor growth and metastasis. In addition, ribophorin and the associated molecules might be engaged in breast cancer stemness. Obviously, these molecules provide potential for therapeutic targets. It was also discussed about new drug development such as anti-human epidermal growth factor 2 therapy, anti-angiogenesis, pro-tumor aspects of anti-cancer therapy and application of circulating markers for monitoring, imaging and health-care system. Furthermore, we discussed risk factors, prevention and screening to reduce invasive cancers as well. Throughout the conference, panelists and attendee indicated the importance of translational research and biomarker exploration in order to realize efficient and individualized therapy for breast cancer.
Advances in systemic delivery of anti-cancer agents for the treatment of metastatic cancer.
Grundy, Megan; Coussios, Constantin; Carlisle, Robert
2016-07-01
The successful treatment of metastatic cancer is refractory to strategies employed to treat confined, primary lesions, such as surgical resection and radiation therapy, and thus must be addressed by systemic delivery of anti-cancer agents. Conventional systemically administered chemotherapeutics are often ineffective and come with severe dose-limiting toxicities. This review focuses on the recent developments in systemic therapy for metastatic cancer. Firstly, the strategies employed to improve the efficacy of conventional chemotherapeutics by 'passively' and 'actively' targeting them to tumors are discussed. Secondly, recent advances in the use of biologics to better target cancer and to instigate anti-tumor immunity are reviewed. Under the label of 'biologics', antibody-therapies, T cell engaging therapies, oncolytic virotherapies and cell-based therapies are examined and evaluated. Improving specificity of action, and engaging the immune system appear to be key goals in the development of novel or reformulated anti-cancer agents for the treatment of metastatic cancer. One of the largest areas of opportunity in this field will be the identification of robust predictive biomarkers for use in conjunction with these agents. Treatment regimens that combine an agent to elicit an immune response (such as an oncolytic virus), and an agent to potentiate/mediate that immune response (such as immune checkpoint inhibitors) are predicted to be more effective than treatment with either agent alone.
Graversen, Jonas H; Svendsen, Pia; Dagnæs-Hansen, Frederik; Dal, Jakob; Anton, Gabriele; Etzerodt, Anders; Petersen, Mikkel D; Christensen, Peter A; Møller, Holger J; Moestrup, Søren K
2012-01-01
Synthetic glucocorticoids are potent anti-inflammatory drugs but serious side effects such as bone mobilization, muscle mass loss, immunosuppression, and metabolic alterations make glucocorticoid therapy a difficult balance. The therapeutic anti-inflammatory effect of glucocorticoids relies largely on the suppressed release of tumor-necrosis factor-α and other cytokines by macrophages at the sites of inflammation. We have now developed a new biodegradable anti-CD163 antibody-drug conjugate that specifically targets the glucocorticoid, dexamethasone to the hemoglobin scavenger receptor CD163 in macrophages. The conjugate, that in average contains four dexamethasone molecules per antibody, exhibits retained high functional affinity for CD163. In vitro studies in rat macrophages and in vivo studies of Lewis rats showed a strong anti-inflammatory effect of the conjugate measured as reduced lipopolysaccharide-induced secretion of tumor-necrosis factor-α. The in vivo potency of conjugated dexamethasone was about 50-fold that of nonconjugated dexamethasone. In contrast to a strong systemic effect of nonconjugated dexamethasone, the equipotent dose of the conjugate had no such effect, measured as thymus lymphocytes apoptosis, body weight loss, and suppression of endogenous cortisol levels. In conclusion, the study shows antibody-drug conjugates as a future approach in anti-inflammatory macrophage-directed therapy. Furthermore, the data demonstrate CD163 as an excellent macrophage target for anti-inflammatory drug delivery. PMID:22643864
Puskás, László G.; Mán, Imola; Szebeni, Gabor; Tiszlavicz, László; Tsai, Susan; James, Michael A.
2016-01-01
We and others have recently shown Cisplatin Resistance-Related Protein 9 (CRR9)/Cleft Lip and Palate Transmembrane 1-Like (CLPTM1L) to affect survival and proliferation in lung and pancreatic tumor cells. Our research has indicated that CLPTM1L affects multiple survival signaling pathways in tumor cells under oncogenic, genotoxic, and microenvironmental stress. We have confirmed the association of CLPTM1L with pancreatic cancer by demonstrating overexpression of CLPTM1L in pancreatic tumors and poor survival in patients with high tumor expression of CLPTM1L. Predicting a transmembrane structure, we determined that CLPTM1L could be targeted at the plasma membrane. Herein, we describe the development of monoclonal antibodies targeting CLPTM1L. Lead antibodies inhibited surface accumulation of CLPTM1L, Akt phosphorylation, anchorage-independent growth, and chemotherapeutic resistance in lung and pancreatic tumor cells. Gemcitabine promoted a physical interaction between CLPTM1L and p110α in pancreatic tumor cells, which was inhibited by anti-CLPTM1L. In-vivo treatment with anti-CLPTM1L robustly inhibited the growth of both lung and pancreatic adenocarcinoma xenografts. The efficacy of anti-CLPTM1L correlated with specific epitopes representing important targets in human cancers, particularly those driven by KRas, for which effective targeted therapies have been elusive. This study is the first to report cell-surface exposure of the tumor survival protein CLPTM1L and inhibition of the function of surface CLPTM1L with novel, systematically developed inhibitory monoclonal antibodies establishing proof of concept of clinically practical agents inhibiting this compelling new tumor survival target in cancer. PMID:26939707
Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma
Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.
2016-01-01
Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187
Therapeutic monoclonal antibodies for multiple myeloma: an update and future perspectives
Yang, Jing; Yi, Qing
2011-01-01
Multiple myeloma (MM) still remains incurable in most of the patients. Despite of treatments with high-dose chemotherapy, stem cell transplantation and other novel therapies, most patients will become refractory to the therapies and relapse. Thus, it is urgent to develop new approaches for MM treatment. Currently, antibody-targeted therapy has been extensively utilized in hematological malignancies, including MM. Several novel monoclonal antibodies (mAbs) against MM have been generated and developed over the past several years. These mAbs aim to target not only tumor cells alone but also tumor microenvironment, including interaction of tumor-bone marrow stromal cells and the components of bone marrow milieu, such as cytokines or chemokines that support myeloma cell growth and survival. These include mAbs specific for CD38, CS1, CD40, CD74, CD70, HM1.24, interleukin-6 and β2-microglobulin (β2M). We have shown that anti-β2M mAbs may be a potential antitumor agent for MM therapy due to their remarkable efficacy to induce myeloma cell apoptosis in tumor cell lines and primary myeloma cells from patients in vitro and in established myeloma mouse models. In this article, we will review advances in the development and mechanisms of MM-targeted mAbs and especially, anti-β2M mAbs. We will also discuss the potential application of the mAbs as therapeutic agents to treat MM. PMID:22065141
A New Transgenic Approach to Target Tumor Vasculature
2006-06-01
to the new vasculature, and any cDNA of interest can be selectively delivered to growing blood vessels using the RCAS virus as a delivery agent ...Flk1 promoter/enhancer was therefore expected to selectively drive TVA receptor expression in endothelial cells of newly forming blood vessels in the...therefore, promising targets for anti -cancer and anti - angiogenic therapies. The mice are also suitable to study proteins involved in the differentiation
Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer.
Kobold, Sebastian; Steffen, Julius; Chaloupka, Michael; Grassmann, Simon; Henkel, Jonas; Castoldi, Raffaella; Zeng, Yi; Chmielewski, Markus; Schmollinger, Jan C; Schnurr, Max; Rothenfußer, Simon; Schendel, Dolores J; Abken, Hinrich; Sustmann, Claudio; Niederfellner, Gerhard; Klein, Christian; Bourquin, Carole; Endres, Stefan
2015-01-01
One bottleneck for adoptive T cell therapy (ACT) is recruitment of T cells into tumors. We hypothesized that combining tumor-specific T cells, modified with a marker antigen and a bispecific antibody (BiAb) that selectively recognizes transduced T cells and tumor cells would improve T cell recruitment to tumors and enhance therapeutic efficacy. SV40 T antigen-specific T cells from T cell receptor (TCR)-I-transgenic mice were transduced with a truncated human epidermal growth factor receptor (EGFR) as a marker protein. Targeting and killing by combined ACT and anti-EGFR-anti-EpCAM BiAb therapy was analyzed in C57Bl/6 mice (n = six to 12 per group) carrying subcutaneous tumors of the murine gastric cancer cell line GC8 (SV40(+) and EpCAM(+)). Anti-EGFR x anti-c-Met BiAb was used for targeting of human tumor-specific T cells to c-Met(+) human tumor cell lines. Differences between experimental conditions were analyzed using the Student's t test, and differences in tumor growth with two-way analysis of variance. Overall survival was analyzed by log-rank test. All statistical tests were two-sided. The BiAb linked EGFR-transduced T cells to tumor cells and enhanced tumor cell lysis. In vivo, the combination of ACT and Biab produced increased T cell infiltration of tumors, retarded tumor growth, and prolonged survival compared with ACT with a control antibody (median survival 95 vs 75 days, P < .001). In human cells, this strategy enhanced recruitment of human EGFR-transduced T cells to immobilized c-Met and recognition of tyrosinase(+) melanoma cells by TCR-, as well as of CEA(+) colon cancer cells by chimeric antigen receptor (CAR)-modified T cells. BiAb recruitment of tumor-specific T cells transduced with a marker antigen to tumor cells may enhance efficacy of ACT. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao
2016-10-15
Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular siRNA release in the same delivery system could be effectively solved, resulting in enhanced siRNA silencing efficiency in tumor cells. To our knowledge, the described work is the first demonstration of a siRNA delivery system using a hypoxia trigger for regulation of siRNA release, which represents a new strategy for tumor-targeted therapy, and it is expected that this meaningful strategy must be widely applied in the future. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Auffinger, Brenda; Morshed, Ramin; Tobias, Alex; Cheng, Yu; Ahmed, Atique U; Lesniak, Maciej S
2013-01-01
Despite all recent advances in malignant glioma research, only modest progress has been achieved in improving patient prognosis and quality of life. Such a clinical scenario underscores the importance of investing in new therapeutic approaches that, when combined with conventional therapies, are able to effectively eradicate glioma infiltration and target distant tumor foci. Nanoparticle-loaded delivery systems have recently arisen as an exciting alternative to improve targeted anti-glioma drug delivery. As drug carriers, they are able to efficiently protect the therapeutic agent and allow for sustained drug release. In addition, their surface can be easily manipulated with the addition of special ligands, which are responsible for enhancing tumor-specific nanoparticle permeability. However, their inefficient intratumoral distribution and failure to target disseminated tumor burden still pose a big challenge for their implementation as a therapeutic option in the clinical setting. Stem cell-based delivery of drug-loaded nanoparticles offers an interesting option to overcome such issues. Their ability to incorporate nanoparticles and migrate throughout interstitial barriers, together with their inherent tumor-tropic properties and synergistic anti-tumor effects make these stem cell carriers a good fit for such combined therapy. In this review, we will describe the main nanoparticle delivery systems that are presently available in preclinical and clinical studies. We will discuss their mechanisms of targeting, current delivery methods, attractive features and pitfalls. We will also debate the potential applications of stem cell carriers loaded with therapeutic nanoparticles in anticancer therapy and why such an attractive combined approach has not yet reached clinical trials. PMID:23594406
Kareva, Irina
2017-10-13
Therapeutic resistance remains a major obstacle in treating many cancers, particularly in advanced stages. It is likely that cytotoxic lymphocytes (CTLs) have the potential to eliminate therapy-resistant cancer cells. However, their effectiveness may be limited either by the immunosuppressive tumor microenvironment, or by immune cell death induced by cytotoxic treatments. High-frequency low-dose (also known as metronomic) chemotherapy can help improve the activity of CTLs by providing sufficient stimulation for cytotoxic immune cells without excessive depletion. Additionally, therapy-induced removal of tumor cells that compete for shared nutrients may also facilitate tumor infiltration by CTLs, further improving prognosis. Metronomic chemotherapy can also decrease the number of immunosuppressive cells in the tumor microenvironment, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Immune checkpoint inhibition can further augment anti-tumor immune responses by maintaining T cells in an activated state. Combining immune checkpoint inhibition with metronomic administration of chemotherapeutic drugs may create a synergistic effect that augments anti-tumor immune responses and clears metabolic competition. This would allow immune-mediated elimination of therapy-resistant cancer cells, an effect that may be unattainable by using either therapeutic modality alone.
Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin
2015-10-12
Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis.
Liu, Ting; Wu, Hai-Jun; Liang, Yu; Liang, Xu-Jun; Huang, Hui-Chao; Zhao, Yan-Zhong; Liao, Qing-Chuan; Chen, Ya-Qi; Leng, Ai-Min; Yuan, Wei-Jian; Zhang, Gui-Ying; Peng, Jie; Chen, Yong-Heng
2016-06-21
To develop a potent and safe gene therapy for esophageal cancer. An expression vector carrying fusion suicide gene (yCDglyTK) and shRNA against vascular endothelial growth factor (VEGF) was constructed and delivered into EC9706 esophageal cancer cells by calcium phosphate nanoparticles (CPNP). To achieve tumor selectivity, expression of the fusion suicide gene was driven by a tumor-specific human telomerase reverse transcriptase (hTERT) promoter. The biologic properties and therapeutic efficiency of the vector, in the presence of prodrug 5-fluorocytosine (5-FC), were evaluated in vitro and in vivo. Both in vitro and in vivo testing showed that the expression vector was efficiently introduced by CPNP into tumor cells, leading to cellular expression of yCDglyTK and decreased VEGF level. With exposure to 5-FC, it exhibited strong anti-tumor effects against esophageal cancer. Combination of VEGF shRNA with the fusion suicide gene demonstrated strong anti-tumor activity. The shVEGF-hTERT-yCDglyTK/5-FC system provided a novel approach for esophageal cancer-targeted gene therapy.
Anti-cancer agents counteracting tumor glycolysis
Granchi, Carlotta
2012-01-01
Can we consider cancer as a “metabolic disease”? Tumors are the result of a metabolic selection, forming tissues composed of heterogeneous cells that generally express an overactive metabolism as a common feature. In fact, cancer cells have to deal with increased needs for both energy and biosynthetic intermediates, in order to support their growth and invasiveness. However, their high proliferation rate often generates regions that are not sufficiently oxygenated. Therefore, their carbohydrate metabolism has to rely mostly on a glycolytic process that is uncoupled from oxidative phosphorylation. This metabolic switch, also known as the “Warburg Effect”, constitutes a fundamental adaptation of the tumor cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumor glycolysis may constitute an attractive target for cancer therapy. This approach has often raised concerns that anti-glycolytic agents may cause serious side effects on normal cells. Actually, the key for a selective action against cancer cells can be found in their hyperbolic addiction to glycolysis, which may be exploited to generate new anti-cancer drugs showing minimal toxicity. In fact, there is growing evidence that supports many glycolytic enzymes and transporters as suitable candidate targets for cancer therapy. Herein we review some of the most relevant anti-glycolytic agents that have been investigated so far for the treatment of cancer. PMID:22684868
Chemotherapy and target therapy in the management of adult high- grade gliomas.
Spinelli, Gian Paolo; Miele, Evelina; Lo Russo, Giuseppe; Miscusi, Massimo; Codacci-Pisanelli, Giovanni; Petrozza, Vincenzo; Papa, Anselmo; Frati, Luigi; Della Rocca, Carlo; Gulino, Alberto; Tomao, Silverio
2012-10-01
Adult high grade gliomas (HGG) are the most frequent and fatal primary central nervous system (CNS) tumors. Despite recent advances in the knowledge of the pathology and the molecular features of this neoplasm, its prognosis remains poor. In the last years temozolomide (TMZ) has dramatically changed the life expectancy of these patients: the association of this drug with radiotherapy (RT), followed by TMZ alone, is the current standard of care. However, malignant gliomas often remain resistant to chemotherapy (CHT). Therefore, preclinical and clinical research efforts have been directed on identifying and understanding the different mechanisms of chemo-resistance operating in this subset of tumors,in order to develop effective strategies to overcome resistance. Moreover, the evidence of alterations in signal transduction pathways underlying tumor progression, has increased the number of trials investigating molecular target agents, such as anti-epidermal growth factor receptor (EGFR) and anti- vascular endothelial growth factor (VEGF) signaling. The purpose of this review is to point out the current standard of treatment and to explore new available target therapies in HGG.
Liao, Debbie; Luo, Yunping; Markowitz, Dorothy; Xiang, Rong; Reisfeld, Ralph A
2009-11-23
Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+) T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.
Target for Anti-Tumor Immune Responses | NCI Technology Transfer Center | TTC
The Surgery Branch of the National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to carry out genotypic as well as phenotypic analysis of the 888 mel cell line in order to better understand the nature of tumor cells that respond to therapy.
Halle, Bo; Marcusson, Eric G; Aaberg-Jessen, Charlotte; Jensen, Stine S; Meyer, Morten; Schulz, Mette K; Andersen, Claus; Kristensen, Bjarne W
2016-01-01
Over-expressed microRNAs (miRs) are promising new targets in glioblastoma (GBM) therapy. Inhibition of over-expressed miRs has been shown to diminish GBM proliferation, invasion and angiogenesis, indicating a significant therapeutic potential. However, the methods utilized for miR inhibition have had low translational potential. In clinical trials convection-enhanced delivery (CED) has been applied for local delivery of compounds in the brain. The aim of this study was to determine if safe and efficient miR inhibition was possible by CED of an anti-miR. We used a highly invasive GBM orthotopic xenograft model and targeted a well-validated miR, let-7a, with a 2'-O-methoxyethyl anti-miR with a combined phosphodiester/phosphorothioate backbone to establish an initial proof of concept. In vitro, anti-let-7a was delivered unassisted to the patient-derived T87 glioblastoma spheroid culture. In vivo, anti-let-7a or saline were administered by CED into orthotopic T87-derived tumors. After 1 month of infusion, tumors were removed and tumor mRNA levels of the target-gene High-mobility group AT-hook 2 (HMGA2) were determined. In vitro, 5 days inhibition was superior to 1 day at de-repressing the let-7a target HMGA2 and the inhibition was stable for 24 h. In vivo, anti-miR integrity was preserved in the pumps and no animals showed signs of severe adverse effects attributable to the anti-miR treatment. HMGA2 tumor level was significantly de-repressed in the anti-miR treated animals. The results showed-as an initial proof of concept-that miRs can be efficiently inhibited using CED delivery of anti-miR. The next step is to apply CED for anti-miR delivery focusing on key oncogenic miRs.
Aptamer-Targeted Plasmonic Photothermal Therapy of Cancer.
Kolovskaya, Olga S; Zamay, Tatiana N; Belyanina, Irina V; Karlova, Elena; Garanzha, Irina; Aleksandrovsky, Aleksandr S; Kirichenko, Andrey; Dubynina, Anna V; Sokolov, Alexey E; Zamay, Galina S; Glazyrin, Yury E; Zamay, Sergey; Ivanchenko, Tatiana; Chanchikova, Natalia; Tokarev, Nikolay; Shepelevich, Nikolay; Ozerskaya, Anastasia; Badrin, Evgeniy; Belugin, Kirill; Belkin, Simon; Zabluda, Vladimir; Gargaun, Ana; Berezovski, Maxim V; Kichkailo, Anna S
2017-12-15
Novel nanoscale bioconjugates combining unique plasmonic photothermal properties of gold nanoparticles (AuNPs) with targeted delivery using cell-specific DNA aptamers have a tremendous potential for medical diagnostics and therapy of many cell-based diseases. In this study, we demonstrate the high anti-cancer activity of aptamer-conjugated, 37-nm spherical gold nanoparticles toward Ehrlich carcinoma in tumor-bearing mice after photothermal treatment. The synthetic anti-tumor aptamers bring the nanoparticles precisely to the desired cells and selectively eliminate cancer cells after the subsequent laser treatment. To prove tumor eradication, we used positron emission tomography (PET) utilizing radioactive glucose and computer tomography, followed by histological analysis of cancer tissue. Three injections of aptamer-conjugated AuNPs and 5 min of laser irradiations are enough to make the tumor undetectable by PET. Histological analysis proves PET results and shows lower damage of healthy tissue in addition to a higher treatment efficiency and selectivity of the gold nanoparticles functionalized with aptamers in comparison to control experiments using free unconjugated nanoparticles. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Subbiah, Vivek; McMahon, Caitlin; Patel, Shreyaskumar; Zinner, Ralph; Silva, Elvio G; Elvin, Julia A; Subbiah, Ishwaria M; Ohaji, Chimela; Ganeshan, Dhakshina Moorthy; Anand, Deepa; Levenback, Charles F; Berry, Jenny; Brennan, Tim; Chmielecki, Juliann; Chalmers, Zachary R; Mayfield, John; Miller, Vincent A; Stephens, Philip J; Ross, Jeffrey S; Ali, Siraj M
2015-06-11
Recurrent, metastatic mesenchymal myxoid tumors of the gynecologic tract present a management challenge as there is minimal evidence to guide systemic therapy. Such tumors also present a diagnostic dilemma, as myxoid features are observed in leiomyosarcomas, inflammatory myofibroblastic tumors (IMT), and mesenchymal myxoid tumors. Comprehensive genomic profiling was performed in the course of clinical care on a case of a recurrent, metastatic myxoid uterine malignancy (initially diagnosed as smooth muscle tumor of uncertain malignant potential (STUMP)), to guide identify targeted therapeutic options. To our knowledge, this case represents the first report of clinical response to targeted therapy in a tumor harboring a DCTN1-ALK fusion protein. Hybridization capture of 315 cancer-related genes plus introns from 28 genes often rearranged or altered in cancer was applied to >50 ng of DNA extracted from this sample and sequenced to high, uniform coverage. Therapy was given in the context of a phase I clinical trial ClinicalTrials.gov Identifier: ( NCT01548144 ). Immunostains showed diffuse positivity for ALK1 expression and comprehensive genomic profiling identified an in frame DCTN1-ALK gene fusion. The diagnosis of STUMP was revised to that of an IMT with myxoid features. The patient was enrolled in a clinical trial and treated with an anaplastic lymphoma kinase (ALK) inhibitor (crizotinib/Xalkori®) and a multikinase VEGF inhibitor (pazopanib/Votrient®). The patient experienced an ongoing partial response (6+ months) by response evaluation criteria in solid tumors (RECIST) 1.1 criteria. For myxoid tumors of the gynecologic tract, comprehensive genomic profiling can identify clinical relevant genomic alterations that both direct treatment targeted therapy and help discriminate between similar diagnostic entities.
Shariatpanahi, Seyed Peyman; Shariatpanahi, Seyed Pooya; Madjidzadeh, Keivan; Hassan, Moustapha; Abedi-Valugerdi, Manuchehr
2018-04-07
Myeloid-derived suppressor cells (MDSCs) belong to immature myeloid cells that are generated and accumulated during the tumor development. MDSCs strongly suppress the anti-tumor immunity and provide conditions for tumor progression and metastasis. In this study, we present a mathematical model based on ordinary differential equations (ODE) to describe tumor-induced immunosuppression caused by MDSCs. The model consists of four equations and incorporates tumor cells, cytotoxic T cells (CTLs), natural killer (NK) cells and MDSCs. We also provide simulation models that evaluate or predict the effects of anti-MDSC drugs (e.g., l-arginine and 5-Fluorouracil (5-FU)) on the tumor growth and the restoration of anti-tumor immunity. The simulated results obtained using our model were in good agreement with the corresponding experimental findings on the expansion of splenic MDSCs, immunosuppressive effects of these cells at the tumor site and effectiveness of l-arginine and 5-FU on the re-establishment of antitumor immunity. Regarding this latter issue, our predictive simulation results demonstrated that intermittent therapy with low-dose 5-FU alone could eradicate the tumors irrespective of their origins and types. Furthermore, at the time of tumor eradication, the number of CTLs prevailed over that of cancer cells and the number of splenic MDSCs returned to the normal levels. Finally, our predictive simulation results also showed that the addition of l-arginine supplementation to the intermittent 5-FU therapy reduced the time of the tumor eradication and the number of iterations for 5-FU treatment. Thus, the present mathematical model provides important implications for designing new therapeutic strategies that aim to restore antitumor immunity by targeting MDSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ray, Kriti; Ujvari, Beata; Ramana, Venkata; Donald, John
2018-04-07
Epidermal growth factor receptor (EGFR) is a known target in cancer therapy and targeting the receptor has proven to be extremely successful in treating cancers that are dependent on EGFR signaling. To that effect, targeted therapies to EGFR such as Cetuximab, Panitumumab-monoclonal antibodies and Gefitinib, Erlotinib-tyrosine kinase inhibitors have had success in therapeutic scenarios. However, the development of resistance to these drugs makes it necessary to combine anti- EGFR therapies with other inhibitors, so that resistance can be overcome by the targeting of alternate signaling pathways. On the other hand, components of the inflammatory pathway, within and around a tumor, provide a conducive environment for tumor growth by supplying numerous cytokines and chemokines that foster carcinogenesis. Interleukin 6 (IL-6) is one such cytokine that is found to be associated with inflammation-driven cancers and which also plays a crucial role in acquired resistance to anti-EGFR drugs. The EGFR and IL-6 signaling pathways crosstalk in multiple ways, through various mediators and downstream signaling pathways driving resistance and hence co-targeting them has potential for future cancer treatments. Here we provide an overview on the crosstalk between the EGFR and IL-6 pathways, and discuss how co-targeting these two pathways could be a promising combination therapy of the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
Expression of NF-κB p50 in Tumor Stroma Limits the Control of Tumors by Radiation Therapy
Crittenden, Marka R.; Cottam, Benjamin; Savage, Talicia; Nguyen, Cynthia; Newell, Pippa; Gough, Michael J.
2012-01-01
Radiation therapy aims to kill cancer cells with a minimum of normal tissue toxicity. Dying cancer cells have been proposed to be a source of tumor antigens and may release endogenous immune adjuvants into the tumor environment. For these reasons, radiation therapy may be an effective modality to initiate new anti-tumor adaptive immune responses that can target residual disease and distant metastases. However, tumors engender an environment dominated by M2 differentiated tumor macrophages that support tumor invasion, metastases and escape from immune control. In this study, we demonstrate that following radiation therapy of tumors in mice, there is an influx of tumor macrophages that ultimately polarize towards immune suppression. We demonstrate using in vitro models that this polarization is mediated by transcriptional regulation by NFκB p50, and that in mice lacking NFκB p50, radiation therapy is more effective. We propose that despite the opportunity for increased antigen-specific adaptive immune responses, the intrinsic processes of repair following radiation therapy may limit the ability to control residual disease. PMID:22761754
Polyamine-Blocking Therapy Reverses Immunosuppression in the Tumor Microenvironment
Hayes, Candace S.; Shicora, Allyson C.; Keough, Martin P.; Snook, Adam E.; Burns, Mark R.; Gilmour, Susan K.
2014-01-01
Correcting T cell immunosuppression may unleash powerful antitumor responses, however, knowledge about the mechanisms and modifiers that may be targeted to improve therapy remains incomplete. Here we report that polyamine elevation in cancer, a common metabolic aberration in aggressive lesions, contributes significantly to tumor immunosuppression and that a polyamine depletion strategy can exert antitumor effects that may also promote immunity. A polyamine-blocking therapy (PBT) that combines the well-characterized ornithine decarboxylase (ODC) inhibitor difluoromethylornithine (DFMO) with AMXT1501, a novel inhibitor of the polyamine transport system, blocked tumor growth in immunocompetent mice but not in athymic nude mice lacking T cells. PBT had little effect on the proliferation of epithelial tumor cells but it increased the number of apoptotic cells. Analysis of CD45+ tumor immune infiltrates revealed that PBT decreased levels of Gr-1+CD11b+ myeloid suppressor cells and increased CD3+ T cells. Strikingly, in a model of neoadjuvant therapy, mice administered PBT one week before surgical resection of engrafted mammary tumors exhibited resistance to subsequent tumor re-challenge. Collectively, our results indicate that therapies targeting polyamine metabolism do not act exclusively as anti-proliferative agents, but also act strongly to prevent immune escape by the tumor. PBT may offer a general approach to heighten immune responses in cancer. PMID:24778323
Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy.
Zhang, Jin; Wang, Guan; Zhou, Yuxin; Chen, Yi; Ouyang, Liang; Liu, Bo
2018-05-01
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.
Vela, Laura; Marzo, Isabel
2015-08-01
Bcl-2 proteins are key determinants in the life-death balance. In recent years, proteins in this family have been identified as drug targets in the design of new anti-tumor therapies. Advances in the knowledge of the mechanism of action of anti-apoptotic and pro-apoptotic members of the Bcl-2 family have enabled the development of the so-called 'BH3 mimetics'. These compounds act by inhibiting anti-apoptotic proteins of the family, imitating the function of the BH3-only subset of pro-apoptotic members. Combinations of BH3-mimetics with anti-tumor drugs are being evaluated in both preclinical models and clinical trials. Recent advances in these approaches will be reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Genomic Alterations in Advanced Esophageal Cancer May Lead to Subtype-Specific Therapies
Forde, Patrick M.
2013-01-01
The development of targeted agents for metastatic esophageal or gastroesophageal junction (GEJ) tumors has been limited when compared with that for other common tumors. To date, the anti-human epidermal growth factor receptor-2 (HER-2) antibody, trastuzumab, in combination with chemotherapy, is the only approved novel agent for these cancers, and its use is limited to the small population of patients whose tumors overexpress HER-2. Despite recent progress in the field, median overall survival remains only 8–12 months for patients with stage IV esophageal or GEJ cancer. In this article, we examine the molecular aberrations thought to drive the development and spread of esophageal cancer and identify promising targets for specific tumor inhibition. Data from clinical studies of targeted agents are reviewed, including epidermal growth factor receptor antibodies, tyrosine kinase inhibitors, HER-2, and vascular endothelial growth factor-directed therapy. Current and future targets include MET, fibroblast growth factor receptor, and immune-based therapies. Evidence from trials to date suggests that molecularly unselected patient cohorts derive minimal benefit from most target-specific agents, suggesting that future collaborative investigation should focus on preselected molecular subgroups of patients with this challenging heterogeneous disease. PMID:23853247
Recent progress on nanoparticle-based drug delivery systems for cancer therapy
Xin, Yanru; Yin, Mingming; Zhao, Liyuan; Meng, Fanling; Luo, Liang
2017-01-01
The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years. PMID:28884040
Hashimoto, Yosuke; Tada, Minoru; Iida, Manami; Nagase, Shotaro; Hata, Tomoyuki; Watari, Akihiro; Okada, Yoshiaki; Doi, Takefumi; Fukasawa, Masayoshi; Yagi, Kiyohito; Kondoh, Masuo
2016-08-12
Claudin-1 (CLDN-1), an integral transmembrane protein, is an attractive target for drug absorption, prevention of infection, and cancer therapy. Previously, we generated mouse anti-CLDN-1 monoclonal antibodies (mAbs) and found that they enhanced epidermal absorption of a drug and prevented hepatitis C virus infection in human hepatocytes. Here, we investigated anti-tumor activity of a human-mouse chimeric IgG1, xi-3A2, from one of the anti-CLDN-1 mAbs, clone 3A2. Xi-3A2 accumulated in the tumor tissues in mice bearing with human CLDN-1-expressing tumor cells. Xi-3A2 activated Fcγ receptor IIIa-expressing reporter cells in the presence of human CLDN-1-expressing cells, suggesting xi-3A2 has a potential to exhibit antibody-dependent cellular cytotoxicity against CLDN-1 expressing tumor cells. We also constructed a mutant xi-3A2 antibody with Gly, Ser, and Ile substituted with Ala, Asp, and Arg at positions 236, 239, and 332 of the Fc domain. This mutant antibody showed greater activation of Fcγ receptor IIIa and in vivo anti-tumor activity in mice bearing human CLDN-1-expressing tumors than xi-3A2 did. These findings indicate that the G236A/S239D/I332E mutant of xi-3A2 might be a promising lead for tumor therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Katoh, Masaru
2017-11-01
Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers with immune evasion, although the context-dependent effects of WNT signaling on immunity should be carefully assessed. Omics monitoring, such as genome sequencing and transcriptome tests, immunohistochemical analyses on PD-L1 (CD274), PD-1 (PDCD1), ROR1 and nuclear β-catenin and organoid-based drug screening, is necessary to determine the appropriate WNT signaling-targeted therapeutics for cancer patients.
Katoh, Masaru
2017-01-01
Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers with immune evasion, although the context-dependent effects of WNT signaling on immunity should be carefully assessed. Omics monitoring, such as genome sequencing and transcriptome tests, immunohistochemical analyses on PD-L1 (CD274), PD-1 (PDCD1), ROR1 and nuclear β-catenin and organoid-based drug screening, is necessary to determine the appropriate WNT signaling-targeted therapeutics for cancer patients. PMID:29048660
Cao, Guoshuai; Wang, Jian; Zheng, Xiaodong; Wei, Haiming; Tian, Zhigang; Sun, Rui
2015-12-11
Immune cells are believed to participate in initiating anti-tumor effects during regular tumor therapy such as chemotherapy, radiation, hyperthermia, and cytokine injection. One of the mechanisms underlying this process is the expression of so-called stress-inducible immunostimulating ligands. Although the activating receptor NKG2D has been proven to play roles in tumor therapy through targeting its ligands, the role of NKp30, another key activating receptor, is seldom addressed. In this study, we found that the NKp30 ligand B7-H6 was widely expressed in tumor cells and closely correlated to their susceptibility to NK cell lysis. Further studies showed that treatment of tumor cells with almost all standard tumor therapeutics, including chemotherapy (cisplatin, 5-fluorouracil), radiation therapy, non-lethal heat shock, and cytokine therapy (TNF-α), could up-regulate the expression of B7-H6 in tumor cells and enhance tumor sensitivity to NK cell cytolysis. B7-H6 shRNA treatment effectively dampened sensitization of tumor cells to NK-mediated lysis. Our study not only reveals the possibility that tumor therapeutics work as stress inducers to enhance tumor sensitivity to NK cell cytolysis but also suggests that B7-H6 could be a potential target for tumor therapy in the future. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy
Perez Horta, Zulmarie; Goldberg, Jacob L; Sondel, Paul M
2016-01-01
Tumor-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the clinic, becoming an important approach for cancer immunotherapy. Due to its limited expression on normal tissue, the GD2 disialogangloside expressed on neuroblastoma cells is an excellent candidate for mAb therapy. In 2015, dinutuximab (an anti-GD2 mAb) was approved by the US FDA and is currently used in a combination immunotherapeutic regimen for the treatment of children with high-risk neuroblastoma. Here, we review the extensive preclinical and clinical development of anti-GD2 mAbs and the different mechanisms by which they mediate tumor cell killing. In addition, we discuss different mAb-based strategies that capitalize on the targeting ability of anti-GD2 mAbs to potentially deliver, as monotherapy, or in combination with other treatments, improved antitumor efficacy. PMID:27485082
Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma
Hu-Lieskovan, Siwen; Mok, Stephen; Moreno, Blanca Homet; Tsoi, Jennifer; Faja, Lidia Robert; Goedert, Lucas; Pinheiro, Elaine M.; Koya, Richard C.; Graeber, Thomas; Comin-Anduix, Begoña; Ribas, Antoni
2016-01-01
Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA-4 antibody ipilimumab was terminated early due to substantial liver toxicities. MEK inhibitors can potentiate the MAPK inhibition in BRAF mutant cells, while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAFV600E driven melanoma, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors and improved in vivo cytotoxicity. Single agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and MHC expression, and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested combination of dabrafenib, trametinib with anti-PD1 therapy in SM1 tumors, and observed superior anti-tumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAFV600E mutant metastatic melanoma. PMID:25787767
Chen, Albert C; Migliaccio, Ilenia; Rimawi, Mothaffar; Lopez-Tarruella, Sara; Creighton, Chad J; Massarweh, Suleiman; Huang, Catherine; Wang, Yen-Chao; Batra, Surinder K; Gutierrez, M Carolina; Osborne, C Kent; Schiff, Rachel
2012-07-01
We studied resistance to endocrine and HER2-targeted therapies using a xenograft model of estrogen receptor positive (ER)/HER2-overexpressing breast cancer. Here, we report a novel phenotype of drug resistance in this model. MCF7/HER2-18 xenografts were treated with endocrine therapy alone or in combination with lapatinib and trastuzumab (LT) to inhibit HER2. Archival tumor tissues were stained with hematoxylin and eosin and with mucicarmine. RNA extracted from tumors at early time points and late after acquired resistance were analyzed for mucin4 (MUC4) expression by microarray and quantitative reverse transcriptase-PCR. Protein expression of the MUC4, ER, and HER2 signaling pathways was measured by immunohistochemistry and western blotting. The combination of the potent anti-HER2 regimen LT with either tamoxifen (Tam + LT) or estrogen deprivation (ED + LT) can cause complete eradication of ER-positive/HER2-overexpressing tumors in mice. Tumors developing resistance to this combination, as well as those acquiring resistance to endocrine therapy alone, exhibited a distinct histological and molecular phenotype-a striking increase in mucin-filled vacuoles and upregulation of several mucins including MUC4. At the onset of resistance, MUC4 mRNA and protein were increased. These tumors also showed upregulation and reactivation of HER2 signaling, while losing ER protein and the estrogen-regulated gene progesterone receptor. Mucins are upregulated in a preclinical model of ER-positive/HER2-overexpressing breast cancer as resistance develops to the combination of endocrine and anti-HER2 therapy. These mucin-rich tumors reactivate the HER2 pathway and shift their molecular phenotype to become more ER-negative/HER2-positive.
Chen, Albert C.; Migliaccio, Ilenia; Rimawi, Mothaffar; Lopez-Tarruella, Sara; Creighton, Chad J.; Massarweh, Suleiman; Huang, Catherine; Wang, Yen-Chao; Batra, Surinder K.; Gutierrez, M. Carolina; Osborne, C. Kent; Schiff, Rachel
2012-01-01
Background We studied resistance to endocrine and HER2-targeted therapies using a xenograft model of estrogen receptor positive (ER)/HER2-overexpressing breast cancer. Here, we report a novel phenotype of drug resistance in this model. Methods MCF7/HER2-18 xenografts were treated with endocrine therapy alone or in combination with lapatinib and trastuzumab (LT) to inhibit HER2. Archival tumor tissues were stained with hematoxylin & eosin and mucicarmine. RNA extracted from tumors at early time points and late after acquired resistance were analyzed for mucin4 (MUC4) expression by microarray and quantitative reverse transcriptase-PCR. Protein expression of the MUC4, ER and HER2 signaling pathways was measured by immunohistochemistry and Western blotting. Results The combination of the potent anti-HER2 regimen LT with either tamoxifen (Tam+LT) or estrogen deprivation (ED+LT) can cause complete eradication of ER-positive/HER2-overexpressing tumors in mice. Tumors developing resistance to this combination, as well as those acquiring resistance to endocrine therapy alone, exhibited a distinct histological and molecular phenotype—a striking increase in mucin-filled vacuoles and upregulation of several mucins including MUC4. At the onset of resistance, MUC4 mRNA and protein were increased. These tumors also showed upregulation and reactivation of HER2 signaling, while losing ER protein and the estrogen-regulated gene, progesterone receptor. Conclusions Mucins are upregulated in a preclinical model of ER-positive/HER2-overexpressing breast cancer as resistance develops to the combination of endocrine and anti-HER2 therapy. These mucin-rich tumors reactivate the HER2 pathway and shift their molecular phenotype to become more ER-negative/HER2-positive. PMID:22644656
Yoshii, Yukie; Yoshimoto, Mitsuyoshi; Matsumoto, Hiroki; Furukawa, Takako; Zhang, Ming-Rong; Inubushi, Masayuki; Tsuji, Atsushi B; Fujibayashi, Yasuhisa; Higashi, Tatsuya; Saga, Tsuneo
2017-10-24
Bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, is an antiangiogenic agent clinically used for various cancers. However, repeated use of this agent leads to tumor-decreased vascularity and hypoxia with activation of an HIF-1 signaling pathway, which results in drug delivery deficiency and induction of malignant behaviors in tumors. Here, we developed a novel strategy to treat tumors with bevacizumab-induced vascular decrease and hypoxia using 64 Cu-diacetyl-bis ( N 4 -methylthiosemicarbazone) ( 64 Cu-ATSM), a potential theranostic agent, which possesses high tissue permeability and can target over-reduced conditions under hypoxia in tumors, with a human colon carcinoma HT-29 tumor-bearing mouse model. The long-term treatment with bevacizumab caused decreased blood vessel density and activation of an HIF-1 signaling pathway; increased uptake of 64 Cu-ATSM was also observed despite limited blood vessel density in HT-29 tumors. In vivo high-resolution SPECT/PET/CT imaging confirmed reduced vascularity and increased proportion of 64 Cu-ATSM uptake areas within the bevacizumab-treated tumors. 64 Cu-ATSM therapy was effective to inhibit tumor growth and prolong survival of the bevacizumab-treated tumor-bearing mice without major adverse effects. In conclusion, 64 Cu-ATSM therapy effectively enhanced anti-tumor effects in tumors with bevacizumab-induced vascular decrease and hypoxia. 64 Cu-ATSM therapy could represent a novel approach as an add-on to antiangiogenic therapy.
Yoshii, Yukie; Yoshimoto, Mitsuyoshi; Matsumoto, Hiroki; Furukawa, Takako; Zhang, Ming-Rong; Inubushi, Masayuki; Tsuji, Atsushi B.; Fujibayashi, Yasuhisa; Higashi, Tatsuya; Saga, Tsuneo
2017-01-01
Bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, is an antiangiogenic agent clinically used for various cancers. However, repeated use of this agent leads to tumor-decreased vascularity and hypoxia with activation of an HIF-1 signaling pathway, which results in drug delivery deficiency and induction of malignant behaviors in tumors. Here, we developed a novel strategy to treat tumors with bevacizumab-induced vascular decrease and hypoxia using 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM), a potential theranostic agent, which possesses high tissue permeability and can target over-reduced conditions under hypoxia in tumors, with a human colon carcinoma HT-29 tumor-bearing mouse model. The long-term treatment with bevacizumab caused decreased blood vessel density and activation of an HIF-1 signaling pathway; increased uptake of 64Cu-ATSM was also observed despite limited blood vessel density in HT-29 tumors. In vivo high-resolution SPECT/PET/CT imaging confirmed reduced vascularity and increased proportion of 64Cu-ATSM uptake areas within the bevacizumab-treated tumors. 64Cu-ATSM therapy was effective to inhibit tumor growth and prolong survival of the bevacizumab-treated tumor-bearing mice without major adverse effects. In conclusion, 64Cu-ATSM therapy effectively enhanced anti-tumor effects in tumors with bevacizumab-induced vascular decrease and hypoxia. 64Cu-ATSM therapy could represent a novel approach as an add-on to antiangiogenic therapy. PMID:29179478
NASA Astrophysics Data System (ADS)
Lin, Mei; Huang, Junxing; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Ye, Jun; Zhang, Dongsheng
2016-09-01
Combination targeted therapy is a promising cancer therapeutic strategy. Here, using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as magnetic media for MFH (magnetic fluid hyperthermia) and gene transfer vector for gene-therapy, a combined therapy, pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH, for hepatoma is developed. AntiAFPMcAb (Monoclonal antibody AFP) is exploited for targeting. The plasmids pHRE-Egr1-HSV-TK are achieved by incorporation of pEgr1-HSV-TK and pHRE-Egr1-EGFP. Restriction enzyme digestion and PCR confirm the recombinant plasmids pHRE-Egr1-HSV-TK are successfully constructed. After exposure to the magnetic field, PEI-MZF-NPs/pHRE-Egr1-EGFP fluid is warmed rapidly and then the temperature is maintained at 43 °C or so, which is quite appropriate for cancer treatment. The gene expression reaches the peak when treated with 200 μCi 131I for 24 hours, indicating that the dose of 200 μCi might be the optimal dose for irradiation and 24 h irradiation later is the best time to initiate MFH. The in vitro and in vivo experiments demonstrate that pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH can greatly suppress hepatic tumor cell proliferation and induce cell apoptosis and necrosis and effectively inhibit the tumor growth, much better than any monotherapy does alone. Furthermore, the combination therapy has few or no adverse effects. It might be applicable as a strategy to treat hepatic cancer.
Segal, Ehud; Pan, Huaizhong; Benayoun, Liat; Kopečková, Pavla; Shaked, Yuval; Kopeček, Jindčrich; Satchi-Fainaro, Ronit
2015-01-01
Bone neoplasms, such as osteosarcoma, exhibit a propensity for systemic metastases resulting in adverse clinical outcome. Traditional treatment consisting of aggressive chemotherapy combined with surgical resection, has been the mainstay of these malignances. Therefore, bone-targeted non-toxic therapies are required. We previously conjugated the aminobisphosphonate alendronate (ALN), and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer. HPMA copolymer-ALN-TNP-470 conjugate exhibited improved anti-angiogenic and anti-tumor activity compared with the combination of free ALN and TNP-470 when evaluated in a xenogeneic model of human osteosarcoma. The immune system has major effect on toxicology studies and on tumor progression. Therefore, in this manuscript we examined the safety and efficacy profiles of the conjugate using murine osteosarcoma syngeneic model. Toxicity and efficacy evaluation revealed superior anti-tumor activity and decreased organ-related toxicities of the conjugate compared with the combination of free ALN plus TNP-470. Finally, comparative anti-angiogenic activity and specificity studies, using surrogate biomarkers of circulating endothelial cells (CEC), highlighted the advantage of the conjugate over the free agents. The therapeutic platform described here may have clinical translational relevance for the treatment of bone-related angiogenesis-dependent malignances. PMID:21429572
Zhao, Yang; Ren, Wei; Zhong, Ting; Zhang, Shuang; Huang, Dan; Guo, Yang; Yao, Xin; Wang, Chao; Zhang, Wei-Qiang; Zhang, Xuan; Zhang, Qiang
2016-01-28
The pH environment in gliomas is acidic. Therefore, in the present research, we selected our previously reported tumor-specific pH-responsive peptide H7K(R2)2 as a targeting ligand, which could respond to the acidic pH environment in gliomas, possessing CPP characteristics. The pH-sensitive liposomes were selected as carriers which could also respond to the acidic pH environment in gliomas triggering encapsulated drug release from these pH-sensitive liposomes. The H7K(R2)2-modified pH-sensitive liposomes containing doxorubicin (DOX-PSL-H7K(R2)2) were designed and prepared in order to evaluate their potential targeting of glioma tumor cells and their anti-tumor activity in mice with glioma tumor cells. DOX-PSL-H7K(R2)2 was prepared by the thin-film hydration method followed by remote loading using an ammonium sulfate gradient method. The in vitro release of DOX from pH-sensitive liposomes was tested and the in vitro targeting characteristics of H7K(R2)2-modified liposomes regarding C6 (rat C6 glioma cells) and U87-MG (human glioblastoma cells) were evaluated. The in vivo anti-tumor activity of DOX-PSL-H7K(R2)2 was also investigated in C6 tumor-bearing mice and in U87-MG orthotopic tumor-bearing nude mice. A specific targeting effect triggered by an acidic pH was observed in our in vitro experiments in C6 and U87-MG glioma cells. The pH-triggered DOX release from the pH-sensitive liposomes under acidic conditions was also confirmed in our in vitro experiment. Anti-tumor activity of DOX-PSL-H7K(R2)2 was found in C6 tumor-bearing mice and U87-MG orthotopic tumor-bearing nude mice in in vivo experiments. The antiangiogenic activity of DOX-PSL-H7K(R2)2 was confirmed in C6 tumor-bearing mice in the in vivo experiment. These H7K(R2)2-modified pH-sensitive liposomes containing anti-tumor drugs developed in this study are a promising delivery system involving the response stimuli at the acidic pH in the glioma tumor microenvironment and are suitable for anti-tumor therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Santoro, Stephen P.; Kim, Soorin; Motz, Gregory T.; Alatzoglou, Dimitrios; Li, Chunsheng; Irving, Melita; Powell, Daniel J.; Coukos, George
2014-01-01
Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of pro-tumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA+ endothelial targets in vitro, regardless of the signaling domain. T cells bearing the 3rd generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA+ vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. PMID:25358763
B7-H3 Negatively Modulates CTL-Mediated Cancer Immunity.
Yonesaka, Kimio; Haratani, Koji; Takamura, Shiki; Sakai, Hitomi; Kato, Ryoji; Takegawa, Naoki; Takahama, Takayuki; Tanaka, Kaoru; Hayashi, Hidetoshi; Takeda, Masayuki; Kato, Sigeki; Maenishi, Osamu; Sakai, Kazuko; Chiba, Yasutaka; Okabe, Takafumi; Kudo, Keita; Hasegawa, Yoshikazu; Kaneda, Hiroyasu; Yamato, Michiko; Hirotani, Kenji; Miyazawa, Masaaki; Nishio, Kazuto; Nakagawa, Kazuhiko
2018-06-01
Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non-small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this study is the first to evaluate B7-H3 expression in NSCLCs treated with anti-PD-1 therapy and the therapeutic potential of a combination of anti-PD-1 therapy and B7-H3 targeting. Experimental Design: B7-H3 expression was evaluated immunohistochemically in patients with NSCLC ( n = 82), and its relationship with responsiveness to anti-PD-1 therapy and CD8 + tumor-infiltrating lymphocytes (TILs) was analyzed. The antitumor efficacy of dual anti-B7-H3 and anti-programmed death ligand-1 (PD-L1) antibody therapy was evaluated using a syngeneic murine cancer model. T-cell numbers and functions were analyzed by flow cytometry. Results: B7-H3 expression was evident in 74% of NSCLCs and was correlated critically with nonresponsiveness to anti-PD-1 immunotherapy. A small number of CD8 + TILs was observed as a subpopulation with PD-L1 tumor proportion score less than 50%, whereas CD8 + TILs were still abundant in tumors not expressing B7-H3. Anti-B7-H3 blockade showed antitumor efficacy accompanied with an increased number of CD8 + TILs and recovery of effector function. CD8 + T-cell depletion negated antitumor efficacy induced by B7-H3 blockade, indicating that improved antitumor immunity is mediated by CD8 + T cells. Compared with a single blocking antibody, dual blockade of B7-H3 and PD-L1 enhanced the antitumor reaction. Conclusions: B7-H3 expressed on tumor cells potentially circumvents CD8 + -T-cell-mediated immune surveillance. Anti-B7-H3 immunotherapy combined with anti-PD-1/PD-L1 antibody therapy is a promising approach for B7-H3-expressing NSCLCs. Clin Cancer Res; 24(11); 2653-64. ©2018 AACR . ©2018 American Association for Cancer Research.
Sochanik, Aleksander; Mitrus, Iwona; Smolarczyk, Ryszard; Cichoń, Tomasz; Snietura, Mirosław; Czaja, Maria; Szala, Stanisław
2010-06-01
Vasculature is essential for the sustained growth of solid tumors and metastases. Tumor cells surviving vascular-disruptive therapeutic intervention (especially those present at the tumor rim) can contribute to tumor regrowth. The aim was to strengthen, by carrier-mediated delivery of a chemotherapeutic, the curative effects of a bifunctional anti-vascular oligopeptide capable of inducing vascular shutdown and tumor shrinkage. For the in vitro experiments and animal therapy, ACDCRGDCFC-GG-(D)(KLAKLAK)(2) peptide (900 microM in D-PBSA, i.e. Dulbecco's PBS without Ca(2+) and Mg(2+)) and size-calibrated, passively or actively targeted liposomes based on distearoylphosphatidylcholine, cholesterol, and N-carbamoyl-methoxypolyethyleneglycol coupled to distearoylphosphatidylethanolamine (PEG-DSPE) and containing gradient-entrapped doxorubicin were used. The KB (human nasopharyngeal carcinoma) cell line overexpressing folate receptors was used in the fluorescence studies of liposomal uptake. The B16-F10 melanoma cell line was used for confirming, by flow cytometry and confocal microscopy, doxorubicin intracellular transfer as well as to induce experimental tumors in C57BL/6 mice. Animal therapy was achieved with injections of vascular-disrupting peptide, doxorubicin-loaded liposomes, or alternating combined therapy. The results (tumor growth inhibition and survival) were compared using the Mann-Whitney U test and the log-rank test. Necrosis in H&E-stained tumor sections was assessed microscopically by pathologists. Treatment of C57BL/6 mice bearing B16-F10 experimental tumors with a combination of vascular-disruptive peptide and doxorubicin-carrying pegylated liposomes (either passively targeted liposomes (PTL) or folate receptor targeted) gave better therapeutic effects when tumor development was re-challenged with a second cycle of combined therapy. Marked inhibition of tumor growth and a statistically significant extension of the lifespan of the treated mice were observed when the re-challenge involved the use of folate receptor-targeted liposomes (FTL). Anticancer therapy involving vascular-disruptive peptide and doxorubicin delivered via pegylated folate receptor-targeted liposomes is more effective than either monotherapy, especially when tumor growth is re-challenged with the therapeutic combination.
Wang, Zhi Dong; Wei, Sheng Quan; Wang, Qin Yi
2015-01-01
Tumors require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors. Many potential oncogenic mutations have been identified in tumor angiogenesis. Somatic mutations in the small GTPase KRAS are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Biguanides, such as the diabetes therapeutics metformin and phenformin, have demonstrated anti-tumor activity both in vitro and in vivo. The extracellular regulated protein kinases (ERK) signaling is known to be a major cellular target of biguanides. Based on KRAS activates several down-stream effectors leading to the stimulation of the RAF/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAF/MEK/ERK) and phosphatidylinositol-3-kinase (PI3K) pathways, we investigated the anti-tumor effects of biguanides on the proliferation of KRAS-mutated tumor cells in vitro and on KRAS-driven tumor growth in vivo. In cancer cells harboring oncogenic KRAS, phenformin switches off the ERK pathway and inhibit the expression of pro-angiogenic molecules. In tumor xenografts harboring the KRAS mutation, phenformin extensively modifies the tumor growth causing abrogation of angiogenesis. These results strongly suggest that significant therapeutic advantage may be achieved by phenformin anti-angiogenesis for the treatment of tumor.
Bahia, Malkeet S; Silakari, Om
2010-05-01
Tumor necrosis factor alpha is one of the most common pro-inflammatory cytokines responsible for various inflammatory disorders. It plays an important role in the origin and progression of rheumatoid arthritis and also in other autoimmune disease conditions. Some anti-tumor necrosis factor alpha antibodies like Enbrel, Humira and Remicade have been successfully used in these disease conditions as antagonists of tumor necrosis factor alpha. Inhibition of generation of active form of tumor necrosis factor alpha is a promising therapy for various inflammatory disorders. Therefore, the inhibition of an enzyme (tumor necrosis factor alpha converting enzyme), which is responsible for processing inactive form of tumor necrosis factor alpha into its active soluble form, is an encouraging target. Many tumor necrosis factor alpha converting enzyme inhibitors have been the candidates of clinical trials but none of them have reached in to the market because of their broad spectrum inhibitory activity for other matrix metalloproteases. Selectivity of tumor necrosis factor alpha converting enzyme inhibition over matrix metalloproteases is of utmost importance. If selectivity is achieved successfully, side-effects can be over-ruled and this approach may become a novel therapy for treatment of rheumatoid arthritis and other inflammatory disorders. This cytokine not only plays a pivotal role in inflammatory conditions but also in some cancerous conditions. Thus, successful targeting of tumor necrosis factor alpha converting enzyme may result in multifunctional therapy.
Habtemichael, Negusse; Bier, Carolin; Unruhe, Britta; Weisheit, Simona; Spange, Stephanie; Nonnenmacher, Frank; Fetz, Verena; Ginter, Torsten; Reichardt, Sigrid; Liebmann, Claus; Schneider, Günter; Krämer, Oliver H.
2012-01-01
Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignant neoplasm and more than 50% of patients succumb to this disease. HNSCCs are characterized by therapy resistance, which relies on the overexpression of anti-apoptotic proteins and on the aberrant regulation of the epidermal growth factor receptor (EGFR). As inherent and acquired resistance to therapy counteracts improvement of long-term survival, novel multi-targeting strategies triggering cancer cell death are urgently required. We investigated how induction of replicational stress by the ribonucleotide reductase inhibitor hydroxyurea (HU) combined with histone deacetylase inhibitors (HDACi) exerts anti-tumor activity. We treated HNSCC cell lines and freshly isolated tumor cells with HDACi, such as the clinically approved anti-epileptic drug valproic acid (VPA), in combination with HU. Our data demonstrate that at clinically achievable levels VPA/HU combinations efficiently block proliferation as well as clonogenic survival, and trigger apoptosis of HNSCC cells. In the presence of VPA/HU, such tumor cells increase expression of the pro-apoptotic BCL-2 family protein BIM, independent of wild-type p53 signaling and in the absence of increased expression of the p53 targets PUMA and BAX. The pro-apoptotic activity of BIM in HNSCCs was found critical for tumor cell death; ectopic overexpression of BIM induced HNSCC apoptosis and RNAi-mediated depletion of BIM protected HNSCC cells from VPA/HU. Also, significantly elevated BIM levels (p<0.01) were detectable in the apoptotic tumor centers versus proliferating tumor margins in HNSCC patients (n=31), underlining BIM's clinical relevance. Importantly, VPA/HU treatment additionally reduces expression and cell surface localization of EGFR. Accordingly, in a xenograft mouse model, VPA/HU efficiently blocked tumor growth (P<0.001) correlating with BIM induction and EGFR downregulation. We provide a molecular rationale for the potent anti-cancer activities of this drug combination. Our data suggest its exploitation as a potential strategy for the treatment of HNSCC and other tumor entities characterized by therapy resistance linked to dysregulated EGFR activation. PMID:22289787
NASA Astrophysics Data System (ADS)
Situ, Jun-Qing; Wang, Xiao-Juan; Zhu, Xiu-Liang; Xu, Xiao-Ling; Kang, Xu-Qi; Hu, Jing-Bo; Lu, Chen-Ying; Ying, Xiao-Ying; Yu, Ri-Sheng; You, Jian; Du, Yong-Zhong
2016-10-01
Specific delivery of chemotherapy drugs and magnetic resonance imaging (MRI) contrast agent into tumor cells is one of the issues to highly efficient tumor targeting therapy and magnetic resonance imaging. Here, A54 peptide-functionalized poly(lactic-co-glycolic acid)-grafted dextran (A54-Dex-PLGA) was synthesized. The synthesized A54-Dex-PLGA could self-assemble to form micelles with a low critical micelle concentration of 22.51 μg. mL-1 and diameter of about 50 nm. The synthetic A54-Dex-PLGA micelles can encapsulate doxorubicin (DOX) as a model anti-tumor drug and superparamagnetic iron oxide (SPIO) as a contrast agent for MRI. The drug-encapsulation efficiency was about 80% and the in vitro DOX release was prolonged to 72 hours. The DOX/SPIO-loaded micelles could specifically target BEL-7402 cell line. In vitro MRI results also proved the specific binding ability of A54-Dex-PLGA/DOX/SPIO micelles to hepatoma cell BEL-7402. The in vivo MR imaging experiments using a BEL-7402 orthotopic implantation model further validated the targeting effect of DOX/SPIO-loaded micelles. In vitro and in vivo anti-tumor activities results showed that A54-Dex-PLGA/DOX/SPIO micelles revealed better therapeutic effects compared with Dex-PLGA/DOX/SPIO micelles and reduced toxicity compared with commercial adriamycin injection.
Wang, Guangji; Liu, Huiying; Wu, Xiaolan; Wang, Qiong; Liu, Miao; Liao, Ke; Wu, Mengqiu; Cheng, Xuefang; Hao, Haiping
2012-01-01
NQO1 is an emerging and promising therapeutic target in cancer therapy. This study was to determine whether the anti-tumor effect of tanshinone IIA (TSA) is NQO1 dependent and to elucidate the underlying apoptotic cell death pathways. NQO1+ A549 cells and isogenically matched NQO1 transfected and negative H596 cells were used to test the properties and mechanisms of TSA induced cell death. The in vivo anti-tumor efficacy and the tissue distribution properties of TSA were tested in tumor xenografted nude mice. We observed that TSA induced an excessive generation of ROS, DNA damage, and dramatic apoptotic cell death in NQO1+ A549 cells and H596-NQO1 cells, but not in NQO1− H596 cells. Inhibition or silence of NQO1 as well as the antioxidant NAC markedly reversed TSA induced apoptotic effects. TSA treatment significantly retarded the tumor growth of A549 tumor xenografts, which was significantly antagonized by dicoumarol co-treatment in spite of the increased and prolonged TSA accumulations in tumor tissues. TSA activated a ROS triggered, p53 independent and caspase dependent mitochondria apoptotic cell death pathway that is characterized with increased ratio of Bax to Bcl-xl, mitochondrial membrane potential disruption, cytochrome c release, and subsequent caspase activation and PARP-1 cleavage. The results of these findings suggest that TSA is a highly specific NQO1 target agent and is promising in developing as an effective drug in the therapy of NQO1 positive NSCLC. PMID:22848731
NASA Astrophysics Data System (ADS)
Mroz, Pawel; Hamblin, Michael R.
2009-06-01
Epigenetic mechanisms, which involve DNA methylation and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. However, these changes must be actively maintained after each cell division rendering them a promising target for pharmacologic inhibition. DNA methyltransferase inhibitors like 5-aza-deoxycytidine (5-aza-dC) induce and/or up-regulate the expression of MAGE-type antigens in human and mice cancer cells. Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of stimulating tumor-directed immune response. We studied the effects of a new therapy that combined the demethylating agent 5-aza-dC with PDT in the breast cancer model 4T1 syngenic to immunocompetent BALB/c mice. PDT was used as a locally ablating tumor treatment that is capable of eliciting strong and tumor directed immune response while 5-aza-dC pretreatment was used promote de novo induction of the expression of P1A.protein. This is the mouse homolog of human MAGE family antigens and is reported to function as a tumor rejection antigen in certain mouse tumors. This strategy led to an increase in PDT-mediated immune response and better treatment outcome. These results strongly suggest that the MAGE family antigens are important target for PDT mediated immune response but that their expression can be silenced by epigenetic mechanisms. Therefore the possibility that PDT can be combined with epigenetic strategies to elicit anti-tumor immunity in MAGE-positive tumor models is highly clinically significant and should be studied in detail.
Xing, Lingxi; Shi, Qiusheng; Zheng, Kailiang; Shen, Ming; Ma, Jing; Li, Fan; Liu, Yang; Lin, Lizhou; Tu, Wenzhi; Duan, Yourong; Du, Lianfang
2016-01-01
Pancreatic cancer, one of the most lethal human malignancies with dismal prognosis, is refractory to existing radio-chemotherapeutic treatment modalities. There is a critical unmet need to develop effective approaches, especially for targeted pancreatic cancer drug delivery. Targeted and drug-loaded nanoparticles (NPs) combined with ultrasound-mediated microbubble destruction (UMMD) have been shown to significantly increase the cellular uptake in vitro and drug retention in vivo, suggesting a promising strategy for cancer therapy. In this study, we synthesized pancreatic cancer-targeting organic NPs that were modified with anti CA19-9 antibody and encapsulated paclitaxol (PTX). The three-block copolymer methoxy polyethylene glycol-polylacticco-glycolic acid-polylysine (mPEG-PLGA-PLL) constituted the skeleton of the NPs. We speculated that the PTX-NPs-anti CA19-9 would circulate long-term in vivo, "actively target" pancreatic cancer cells, and sustainably release the loaded PTX while UMMD would "passively target" the irradiated tumor and effectively increase the permeability of cell membrane and capillary gaps. Our results demonstrated that the combination of PTX-NPs-anti CA19-9 with UMMD achieved a low IC50, significant cell cycle arrest, and cell apoptosis in vitro. In mouse pancreatic tumor xenografts, the combined application of PTX-NP-anti CA19-9 NPs with UMMD attained the highest tumor inhibition rate, promoted the pharmacokinetic profile by increasing AUC, t1/2, and mean residence time (MRT), and decreased clearance. Consequently, the survival of the tumor-bearing nude mice was prolonged without obvious toxicity. The dynamic change in cellular uptake, targeted real-time imaging, and the concentration of PTX in the plasma and tumor were all closely associated with the treatment efficacy both in vitro and in vivo. Our study suggests that PTX-NP-anti CA19-9 NPs combined with UMMD is a promising strategy for the treatment of pancreatic cancer.
Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment.
Li, Ruixiang; He, Yuwei; Zhang, Shuya; Qin, Jing; Wang, Jianxin
2018-01-01
Taking inspiration from nature, the biomimetic concept has been integrated into drug delivery systems in cancer therapy. Disguised with cell membranes, the nanoparticles can acquire various functions of natural cells. The cell membrane-coating technology has pushed the limits of common nano-systems (fast elimination in circulation) to more effectively navigate within the body. Moreover, because of the various functional molecules on the surface, cell membrane-based nanoparticles (CMBNPs) are capable of interacting with the complex biological microenvironment of the tumor. Various sources of cell membranes have been explored to camouflage CMBNPs and different tumor-targeting strategies have been developed to enhance the anti-tumor drug delivery therapy. In this review article we highlight the most recent advances in CMBNP-based cancer targeting systems and address the challenges and opportunities in this field.
Un, Frank; Zhou, Bingsen; Yen, Yun
2012-11-01
Ribonucleotide reductase composed of the hRRM1 and hRRM2 subunits catalyzes the conversion of ribonucleotides to their corresponding deoxy forms for DNA replication. Anti-hRRM2 siRNA degrades hRRM2's mRNA and suppresses tumorigenesis. A Phase I clinical trial demonstrated its therapy potential. HN-1 represents a tumor-specifically internalizing peptide for targeted-drug delivery into human head and neck squamous cell carcinoma. Internalization of peptide was monitored by fluorescence microscopy. The peptide-siRNA conjugate was chemically synthesized. The hRRM2 expression was monitored by western blot analysis. HN-1(TYR) (HN-1 with two N-terminally added tyrosines) was internalized by human head and neck or breast cancer cells. Anti-hRRM2 siRNA(R) (resistant to RNase degradation) was conjugated to HN-1(TYR) without compromising their properties. The treatment with HN-1(TYR)-anti-hRRM2 siRNA(R) partly suppressed the endogenously expressed hRRM2 in human breast cancer cells. Our results establish the utility of tumor-specifically internalizing peptides for targeted siRNA delivery into human cancer cells.
Tsoli, Maria; Liu, Jie; Franshaw, Laura; Shen, Han; Cheng, Cecilia; Jung, MoonSun; Joshi, Swapna; Ehteda, Anahid; Khan, Aaminah; Montero-Carcabosso, Angel; Dilda, Pierre J.; Hogg, Philip; Ziegler, David S.
2018-01-01
Diffuse Intrinsic Pontine Gliomas (DIPG) are the most devastating of all pediatric brain tumors. They mostly affect young children and, as there are no effective treatments, almost all patients with DIPG will die of their tumor within 12 months of diagnosis. A key feature of this devastating tumor is its intrinsic resistance to all clinically available therapies. It has been shown that glioma development is associated with metabolic reprogramming, redox state disruption and resistance to apoptotic pathways. The mitochondrion is an attractive target as a key organelle that facilitates these critical processes. PENAO is a novel anti-cancer compound that targets mitochondrial function by inhibiting adenine nucleotide translocase (ANT). Here we found that DIPG neurosphere cultures express high levels of ANT2 protein and are sensitive to the mitochondrial inhibitor PENAO through oxidative stress, while its apoptotic effects were found to be further enhanced upon co-treatment with mTOR inhibitor temsirolimus. This combination therapy was found to act through inhibition of PI3K/AKT/mTOR pathway, HSP90 and activation of AMPK. In vivo experiments employing an orthotopic model of DIPG showed a marginal anti-tumour effect likely due to poor penetration of the inhibitors into the brain. Further testing of this anti-DIPG strategy with compounds that penetrate the BBB is warranted. PMID:29484131
Tropomyosin Receptor Kinase A Expression on Merkel Cell Carcinoma Cells.
Wehkamp, Ulrike; Stern, Sophie; Krüger, Sandra; Hauschild, Axel; Röcken, Christoph; Egberts, Friederike
2017-11-01
Merkel cell carcinoma (MCC) is a malignant neuroendocrine skin tumor frequently associated with the Merkel cell polyomavirus. Immune checkpoint therapy showed remarkable results, although not all patients are responsive to this therapy. Anti-tropomyosin receptor kinase A (TrkA)-targeted treatment has shown promising results in several tumor entities. To determine TrkA expression in MCC as a rationale for potential targeted therapy. This case series study investigated the MCC specimens of 55 patients treated at the Department of Dermatology, University Hospital of Schleswig-Holstein, Kiel, Germany, from January 1, 2005, through December 31, 2015. Thirty-nine of the 55 samples were suitable for further histopathologic examination. Expression of TrkA was explored by immunohistochemical analysis. Diagnosis of MCC was confirmed by staining positive for cytokeratin 20 (CK20) and synaptophysin. Expression of TrkA on the tumor cells. Specimens of 39 patients (21 women and 18 men; mean [SD] age, 75.0 [7.8] years) underwent immunohistochemical investigation. Thirty-eight of 38 specimens expressed CK20 and synaptophysin on the MCC tumor cells (100% expression). Merkel cell polyomavirus was detected in 32 of 38 specimens (84%). Tropomyosin receptor kinase A was found in all 36 evaluable specimens on the tumor cells; 34 (94%) showed a weak and 2 (6%) showed a strong cytoplasmic expression. In addition, strongly positive perinuclear dots were observed in 30 of 36 specimens (83%). Tropomyosin receptor kinase A was expressed on MCC tumor cells in 100% of evaluable specimens. This result may lead to the exploration of new targeted treatment options in MCC, especially for patients who do not respond to anti-programmed cell death protein 1 treatment.
Preclinical Assessment of CAR T-Cell Therapy Targeting the Tumor Antigen 5T4 in Ovarian Cancer
Owens, Gemma L.; Sheard, Victoria E.; Kalaitsidou, Milena; Blount, Daniel; Lad, Yatish; Cheadle, Eleanor J.; Edmondson, Richard J.; Kooner, Gurdeep; Gilham, David E.
2018-01-01
Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome both quantitative and qualitative shortfalls of the host immune system relating to the detection and subsequent destruction of tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step in the ability to utilize CAR T cells for the treatment of cancer. The 5T4 is a tumor-associated antigen which is expressed on the cell surface of most solid tumors including ovarian cancer. Matched blood and tumor samples were collected from 12 patients with ovarian cancer; all tumors were positive for 5T4 expression by immunohistochemistry. Patient T cells were effectively transduced with 2 different anti-5T4 CAR constructs which differed in their affinity for the target antigen. Co-culture of CAR T cells with matched autologous tumor disaggregates resulted in antigen-specific secretion of IFN-gamma. Furthermore, assessment of the efficacy of anti-5T4 CAR T cells in a mouse model resulted in therapeutic benefit against established ovarian tumors. These results demonstrate proof of principle that 5T4 is an attractive target for immune intervention in ovarian cancer and that patient T cells engineered to express a 5T4-specific CAR can recognize and respond physiologically to autologous tumor cells. PMID:29239915
NASA Astrophysics Data System (ADS)
Ying, Bo
Cancer is a major health problem in the United States and many other parts of the world. However, cancer treatment is severely limited by the lack of highly effective cytotoxic agents and selective delivery methods which can serve as the "magic bullet" (first raised by Dr. Paul Ehrlich, the goal of targeting a specific location without causing harm to surrounding tissues or to more distant regions in the body). The revolutionary finding that tumors cannot grow beyond a microscopic size without dedicated blood supply provided a highly effective alternative for the treatment of cancer. Currently, anti-angiogenic therapy and the discovery of RNA interference makes it possible to treat some conditions by silencing disorder-causing genes of targeting cells which are otherwise difficult to eradicate with more conventional therapies. However, before siRNA technology could be widely used as a therapeutic approach, the construct must be efficiently and safely delivered to target cells. Strategies used for siRNA delivery should minimize uptake by phagocytes, enzymatic degradation by nucleases and should be taken up preferentially, if not specifically, by the intended cell population. Kinesin spindle proteins (KSP) are the motor proteins which play critical roles during mitosis. Different from tubulins which are also present in post-mitotic cells, such as axons, KSP is exclusively expressed in mitotic cells, which makes them the ideal target for anti-mitotics. In the present study, we intend to develop, characterize and evaluate a liposome-based delivery system which can deliver KSP siRNA selectively to the tumor vasculature (thus inhibiting angiogenesis, destroying tumor vasculature and eventually, eradicating tumor growth). We first developed ten different liposome preparation types with different compositions of lipids. Next, the capacity for loading siRNA and efficiency of targeting the tumor vascular supply was evaluated using relevant cellular and tumor models. Pegylated cationic liposomes (PCLs) were selected as carriers for siRNA. Based on the silencing efficiency of siRNA formulated with different PCLs, DOPC based cationic liposomes, over DOPE based nanosystems, with a modest amount of polyetheleneglycol was selected to deliver KSP siRNA to tumor-bearing mice. Efficacy studies revealed that tumor suppression was observed when KSP siRNA was delivered using PCLs, but not in mice that received naked KSP siRNA or KSP siRNA in commercially available transfecting agents. The results were further supported by MRI (magnetic resonance imaging) analysis. To evaluate the role that vasculature supply plays in the development of the tumor, we also performed tumor response studies using a tumor model consisting of tumor cells which are resistant to KSP siRNA. The results showed that a prolonged suppression of tumor growth was achieved only when a large dose (5mg/kg) KSP siRNA was administered, but not with the administration of a relatively low dose (2mg/kg) of siRNA, suggesting that a combined treatment approach containing both anti-vasculature and anti-cancer agents should be considered to achieve the best treatment outcome. Finally, it was confirmed by qRT-PCR that the tumor growth inhibition was due to the successful knock-down of KSP mRNA.
Fu, Maoyong; Maresh, Erin L; Helguera, Gustavo F; Kiyohara, Meagan; Qin, Yu; Ashki, Negin; Daniels-Wells, Tracy R; Aziz, Najib; Gordon, Lynn K; Braun, Jonathan; Elshimali, Yahya; Soslow, Robert A; Penichet, Manuel L; Goodglick, Lee; Wadehra, Madhuri
2014-04-01
Despite significant advances in biology and medicine, the incidence and mortality due to breast cancer worldwide is still unacceptably high. Thus, there is an urgent need to discover new molecular targets. In this article, we show evidence for a novel target in human breast cancer, the tetraspan protein epithelial membrane protein-2 (EMP2). Using tissue tumor arrays, protein expression of EMP2 was measured and found to be minimal in normal mammary tissue, but it was upregulated in 63% of invasive breast cancer tumors and in 73% of triple-negative tumors tested. To test the hypothesis that EMP2 may be a suitable target for therapy, we constructed a fully human immunoglobulin G1 (IgG1) antibody specific for a conserved domain of human and murine EMP2. Treatment of breast cancer cells with the anti-EMP2 IgG1 significantly inhibited EMP2-mediated signaling, blocked FAK/Src signaling, inhibited invasion, and promoted apoptosis in vitro. In both human xenograft and syngeneic metastatic tumor monotherapy models, anti-EMP2 IgG1 retarded tumor growth without detectable systemic toxicity. This antitumor effect was, in part, attributable to a potent antibody-dependent cell-mediated cytotoxicity response as well as direct cytotoxicity induced by the monoclonal antibody. Together, these results identify EMP2 as a novel therapeutic target for invasive breast cancer.
Pohl, Michael; Schmiegel, Wolff
Colorectal cancer (CRC) is the third most common cancer type in Western countries. Significant progress has been made in the last decade in the therapy of metastatic CRC (mCRC) with a median overall survival (OS) of patients exceeding 30 months. The integration of biologic targeted therapies and anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MABs) in the treatment of patients with genomically selected all-RAS wild-type mCRC leads to a significant progress in advanced incurable disease state. After the introduction of the anti-VEGF MAB bevacizumab, the FDA approved with ramucirumab the second antiangiogenic MAB for the mCRC treatment. Further new drugs are on the horizon and new diagnostic tools will be introduced soon. Molecular heterogeneity of mCRC has been recognized as pivotal in the evolution of clonal populations during anti-EGFR therapies. Mutations in RAS genes predict a lack of response to anti-EGFR MABs. Mutations in the mitogen-activated protein kinase-phosphoinositide 3-kinase pathways like BRAF or PIK3CA mutations or HER2/ERBB2 or MET amplifications bypass EGFR signaling and also may confer resistance to anti-EGFR MABs. HER2/ERBB2 amplification is a further driver of resistance to anti-EGFR MABs in mCRC. The phase II study of HER2 Amplification for Colo-Rectal Cancer Enhanced Stratification (HERACLES) discovers that a dual HER2-targeted therapy may be an option for HER2-amplified mCRC. The mismatch repair deficiency predicts responsiveness to an immune checkpoint blockade with the anti-PD-1 immune checkpoint inhibitor pembrolizumab. The understanding of primary (de novo) and secondary (acquired) resistance to anti-EGFR therapies, new targeted therapies, immuno-oncology and about predictive biomarkers in mCRC is guiding the development of rational therapeutic strategies. Combinations of targeted therapies are necessary to effectively treat drug-resistant cancers. Liquid biopsy is an upcoming new tool in the primary diagnosis and follow-up analysis of mutations in circulating tumor DNA. © 2016 S. Karger AG, Basel.
Kareva, Irina; Waxman, David J.; Klement, Giannoula Lakka
2014-12-23
The administration of chemotherapy at reduced doses given at regular, frequent time intervals, termed ‘metronomic’ chemotherapy, presents an alternative to standard maximal tolerated dose (MTD) chemotherapy. The primary target of metronomic chemotherapy was originally identified as endothelial cells supporting the tumor vasculature, and not the tumor cells themselves, consistent with the emerging concept of cancer as a systemic disease involving both tumor cells and their microenvironment. While anti-angiogenesis is an important mechanism of action of metronomic chemotherapy, other mechanisms, including activation of anti-tumor immunity and a decrease in acquired therapeutic resistance, have also been identified. In this paper, we presentmore » evidence supporting a mechanistic explanation for the improved activity of cancer chemotherapy when administered on a metronomic, rather than an MTD schedule and discuss the implications of these findings for further translation into the clinic.« less
Kareva, Irina; Waxman, David J; Lakka Klement, Giannoula
2015-03-28
The administration of chemotherapy at reduced doses given at regular, frequent time intervals, termed 'metronomic' chemotherapy, presents an alternative to standard maximal tolerated dose (MTD) chemotherapy. The primary target of metronomic chemotherapy was originally identified as endothelial cells supporting the tumor vasculature, and not the tumor cells themselves, consistent with the emerging concept of cancer as a systemic disease involving both tumor cells and their microenvironment. While anti-angiogenesis is an important mechanism of action of metronomic chemotherapy, other mechanisms, including activation of anti-tumor immunity and a decrease in acquired therapeutic resistance, have also been identified. Here we present evidence supporting a mechanistic explanation for the improved activity of cancer chemotherapy when administered on a metronomic, rather than an MTD schedule and discuss the implications of these findings for further translation into the clinic. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Raucher, Drazen; Massodi, Iqbal; Bidwell, Gene L
2008-03-01
Current chemotherapy treatment of solid tumors is limited due to a lack of specific delivery of the drugs to the tumor, leading to systemic toxicity. Therefore, it is necessary to develop targeted cancer therapies and tumor-targeted drug carriers. The authors review the development of elastin-like polypeptide (ELP) as a potential carrier for thermally targeted delivery of therapeutics. The authors searched Medline for articles concerning the application of ELP as a drug delivery vector for small molecule drugs and therapeutic peptides. ELP has been demonstrated to be a promising thermally targeted carrier. Further examination of the in vivo biodistribution and efficacy will provide the necessary data to advance ELP technology toward the ultimate goal of human therapeutics.
Zhao, Yinbo; Lin, Dayong; Wu, Fengbo; Guo, Li; He, Gu; Ouyang, Liang; Song, Xiangrong; Huang, Wei; Li, Xiang
2014-09-29
In the current study, the lipid-shell and polymer-core hybrid nanoparticles (lpNPs) modified by Arg-Gly-Asp(RGD) peptide, loaded with curcumin (Cur), were developed by emulsification-solvent volatilization method. The RGD-modified hybrid nanoparticles (RGD-lpNPs) could overcome the poor water solubility of Cur to meet the requirement of intravenous administration and tumor active targeting. The obtained optimal RGD-lpNPs, composed of PLGA (poly(lactic-co-glycolic acid))-mPEG (methoxyl poly(ethylene- glycol)), RGD-polyethylene glycol (PEG)-cholesterol (Chol) copolymers and lipids, had good entrapment efficiency, submicron size and negatively neutral surface charge. The core-shell structure of RGD-lpNPs was verified by TEM. Cytotoxicity analysis demonstrated that the RGD-lpNPs encapsulated Cur retained potent anti-tumor effects. Flow cytometry analysis revealed the cellular uptake of Cur encapsulated in the RGD-lpNPs was increased for human umbilical vein endothelial cells (HUVEC). Furthermore, Cur loaded RGD-lpNPs were more effective in inhibiting tumor growth in a subcutaneous B16 melanoma tumor model. The results of immunofluorescent and immunohistochemical studies by Cur loaded RGD-lpNPs therapies indicated that more apoptotic cells, fewer microvessels, and fewer proliferation-positive cells were observed. In conclusion, RGD-lpNPs encapsulating Cur were developed with enhanced anti-tumor activity in melanoma, and Cur loaded RGD-lpNPs represent an excellent tumor targeted formulation of Cur which might be an attractive candidate for cancer therapy.
Benzimidazole as Novel Therapy for Hormone-Refractory Metastatic Prostate Cancer
2011-05-01
8 4 INTRODUCTION The focus of this project is to evaluate the anti-tumor effects of benzimidazoles as a...potential anti-metastatic prostate cancer therapy. We identified benzimidazoles , a class of anti-parasitic drug, in a drug screening process for...preferential anti-tumor activity on metastatic prostate cancer cells. We have data indicate that benzimidazoles have potent anti-tumor activities
Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma
Ren, Pei-pei; Li, Ming; Li, Tian-fang; Han, Shuang-yin
2017-01-01
Glioblastoma (GBM) is one of the most devastating brain tumors with poor prognosis and high mortality. Although radical surgical treatment with subsequent radiation and chemotherapy can improve the survival, the efficacy of such regimens is insufficient because the GBM cells can spread and destroy normal brain structures. Moreover, these non-specific treatments may damage adjacent healthy brain tissue. It is thus imperative to develop novel therapies to precisely target invasive tumor cells without damaging normal tissues. Immunotherapy is a promising approach due to its capability to suppress the growth of various tumors in preclinical model and clinical trials. Adoptive cell therapy (ACT) using T cells engineered with chimeric antigen receptor (CAR) targeting an ideal molecular marker in GBM, e.g. epidermal growth factor receptor type III (EGFRvIII) has demonstrated a satisfactory efficacy in treating malignant brain tumors. Here we summarize the recent progresses in immunotherapeutic strategy using CAR-modified T cells oriented to EGFRvIII against GBM. PMID:28302023
Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy
TANIGUCHI, Masaru; HARADA, Michishige; DASHTSOODOL, Nyambayar; KOJO, Satoshi
2015-01-01
Natural Killer T (NKT) cells are unique lymphocytes characterized by their expression of a single invariant antigen receptor encoded by Vα14Jα18 in mice and Vα24Jα18 in humans, which recognizes glycolipid antigens in association with the monomorphic CD1d molecule. NKT cells mediate adjuvant activity to activate both CD8T cells to kill MHC-positive tumor cells and NK cells to eliminate MHC-negative tumor at the same time in patients, resulting in the complete eradication of tumors without relapse. Therefore, the NKT cell-targeted therapy can be applied to any type of tumor and also to anyone individual, regardless of HLA type. Phase IIa clinical trials on advanced lung cancers and head and neck tumors have been completed and showed significantly prolonged median survival times with only the primary treatment. Another potential treatment option for the future is to use induced pluripotent stem cell (iPS)-derived NKT cells, which induced adjuvant effects on anti-tumor responses, inhibiting in vivo tumor growth in a mouse model. PMID:26194854
Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products.
Grossman, Elizabeth A; Ward, Carl C; Spradlin, Jessica N; Bateman, Leslie A; Huffman, Tucker R; Miyamoto, David K; Kleinman, Jordan I; Nomura, Daniel K
2017-11-16
Many natural products that show therapeutic activities are often difficult to synthesize or isolate and have unknown targets, hindering their development as drugs. Identifying druggable hotspots targeted by covalently acting anti-cancer natural products can enable pharmacological interrogation of these sites with more synthetically tractable compounds. Here, we used chemoproteomic platforms to discover that the anti-cancer natural product withaferin A targets C377 on the regulatory subunit PPP2R1A of the tumor-suppressor protein phosphatase 2A (PP2A) complex leading to activation of PP2A activity, inactivation of AKT, and impaired breast cancer cell proliferation. We developed a more synthetically tractable cysteine-reactive covalent ligand, JNS 1-40, that selectively targets C377 of PPP2R1A to impair breast cancer signaling, proliferation, and in vivo tumor growth. Our study highlights the utility of using chemoproteomics to map druggable hotspots targeted by complex natural products and subsequently interrogating these sites with more synthetically tractable covalent ligands for cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prabhu, Varun V.; Allen, Joshua E.; Dicker, David T.; El-Deiry, Wafik S.
2015-01-01
Self-renewing colorectal cancer stem/progenitor cells (CSCs) contribute to tumor maintenance and resistance to therapy. Therapeutic targeting of CSCs could improve treatment response and prolong patient survival. ONC201/TIC10 is a first-in-class anti-tumor agent that induces TRAIL pathway mediated cell death in cancer cells without observed toxicity. We have previously described that ONC201/TIC10 exposure leads to transcriptional induction of the TRAIL gene via transcription factor Foxo3a, which is activated by dual inactivation of Akt and ERK. The Akt and ERK pathways serve as important targets in CSCs. Foxo3a is a key mediator of Akt and ERK-mediated CSC regulation. We hypothesized that the potent anti-tumor effect of ONC201/TIC10 in colorectal cancer involves targeting CSCs and bulk tumor cells. ONC201/TIC10 depletes CD133(+), CD44(+) and Aldefluor(+) cells in vitro and in vivo. TIC10 significantly inhibits colonosphere formation of unsorted and sorted 5-Fluorouracil-resistant CSCs. ONC201/TIC10 significantly reduces CSC-initiated xenograft tumor growth in mice and prevents the passage of these tumors. ONC201/TIC10 treatment also decreased xenograft tumor initiation and was superior to 5-Fluorouracil treatment. Thus, ONC201/TIC10 inhibits CSC self-renewal in vitro and in vivo. ONC201/TIC10 inhibits Akt and ERK, consequently activating Foxo3a and significantly induces cell surface TRAIL and DR5 expression in both CSCs and non-CSCs. ONC201/TIC10-mediated anti-CSC effect is significantly blocked by the TRAIL sequestering antibody RIK-2. Overexpression of Akt, DR5 knockdown and Foxo3a knockdown rescues ONC201/TIC10-mediated depletion of CD44(+) cells and colonosphere inhibition. In conclusion, ONC201/TIC10 is a promising agent for colorectal cancer therapy that targets both non-CSCs and CSCs in an Akt-Foxo3a-TRAIL-dependent manner. PMID:25712124
Chou, Cassie K.; Schietinger, Andrea; Liggitt, H. Denny; Tan, Xiaoxia; Funk, Sarah; Freeman, Gordon J.; Ratliff, Timothy L.; Greenberg, Norman M.; Greenberg, Philip D.
2012-01-01
Adoptive T cell therapy (ACT) for the treatment of established cancers is actively being pursued in clinical trials. However, poor in vivo persistence and maintenance of anti-tumor activity of transferred T cells remain major problems. Transforming growth factor beta (TGFβ) is a potent immunosuppressive cytokine that is often expressed at high levels within the tumor microenvironment, potentially limiting T cell mediated anti-tumor activity. Here, we used a model of autochthonous murine prostate cancer to evaluate the effect of cell intrinsic abrogation of TGFβ signaling in self/tumor specific CD8 T cells used in ACT to target the tumor in situ. We found that persistence and anti-tumor activity of adoptively transferred effector T cells deficient in TGFβ signaling was significantly improved in the cancerous prostate. However, over time, despite persistence in peripheral lymphoid organs, the numbers of transferred cells in the prostate decreased and the residual prostate infiltrating T cells were no longer functional. These findings reveal that TGFβ negatively regulates the accumulation and effector function of transferred self/tumor specific CD8 T cells and highlight that, when targeting a tumor antigen that is also expressed as a self-protein, additional substantive obstacles are operative within the tumor microenvironment, potentially hampering the success of ACT for solid tumors. PMID:22984076
Kock, Anna; Larsson, Karin; Bergqvist, Filip; Eissler, Nina; Elfman, Lotta H M; Raouf, Joan; Korotkova, Marina; Johnsen, John Inge; Jakobsson, Per-Johan; Kogner, Per
2018-06-01
Despite recent progress in diagnosis and treatment, survival for children with high-risk metastatic neuroblastoma is still poor. Prostaglandin E 2 (PGE 2 )-driven inflammation promotes tumor growth, immune suppression, angiogenesis and resistance to established cancer therapies. In neuroblastoma, cancer-associated fibroblasts (CAFs) residing in the tumor microenvironment are the primary source of PGE 2 . However, clinical targeting of PGE 2 with current non-steroidal anti-inflammatory drugs or cyclooxygenase inhibitors has been limited due to risk of adverse side effects. By specifically targeting microsomal prostaglandin E synthase-1 (mPGES-1) activity with a small molecule inhibitor we could block CAF-derived PGE 2 production leading to reduced tumor growth, impaired angiogenesis, inhibited CAF migration and infiltration, reduced tumor cell proliferation and a favorable shift in the M1/M2 macrophage ratio. In this study, we provide proof-of-principle of the benefits of targeting mPGES-1 in neuroblastoma, applicable to a wide variety of tumors. This non-toxic single drug treatment targeting infiltrating stromal cells opens up for combination treatment options with established cancer therapies. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Thibault, Benoît; Clement, Emily; Zorza, Grégoire; Meignan, Samuel; Delord, Jean-Pierre; Couderc, Bettina; Bailly, Christian; Narducci, Fabrice; Vandenberghe, Isabelle; Kruczynski, Anna; Guilbaud, Nicolas; Ferré, Pierre; Annereau, Jean-Philippe
2016-01-01
Epithelial ovarian cancer is the fourth cause of death among cancer-bearing women and frequently associated with carboplatin resistance, underlining the need for more efficient and targeted therapies. F14512 is an epipodophylotoxin-core linked to a spermine chain which enters cells via the polyamine transport system (PTS). Here, we investigate this novel concept of vectorization in ovarian cancer. We compared the effects of etoposide and F14512 on a panel of five carboplatin-sensitive or resistant ovarian cancer models. We assessed the incorporation of F17073, a spermine-linked fluorescent probe, in these cells and in 18 clinical samples. We then showed that F14512 exhibits a high anti-proliferative and pro-apoptotic activity, particularly in cells with high levels of F17073 incorporation. Consistently, F14512 significantly inhibited tumor growth compared to etoposide, in a cisplatin-resistant A2780R subcutaneous model, at a dose of 1.25 mg/kg. In addition, ex vivo analysis indicated that 15 out of 18 patients presented a higher F17073 incorporation into tumor cells compared to normal cells. Overall, our data suggest that F14512, a targeted drug with a potent anti-tumor efficacy, constitutes a potential new therapy for highly PTS-positive and platinum-resistant ovarian cancer-bearing patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hou, Lin; Feng, Qianhua; Wang, Yating; Zhang, Huijuan; Jiang, Guixiang; Yang, Xiaomin; Ren, Junxiao; Zhu, Xiali; Shi, Yuyang; Zhang, Zhenzhong
2015-03-01
Graphene oxide (GO) with strong optical absorption in the near-infrared (NIR) region has shown great potential both in photothermal therapy and drug delivery. In this work, hyaluronic acid (HA)-functionalized GO (HA-GO) was successfully synthesized and controlled loading of mitoxantrone (MIT) onto HA-GO via π- π stacking interaction was investigated. The results revealed that drug-loaded nanosheets with high loading efficiency of 45 wt% exhibited pH-sensitive responses to tumor environment. Owing to the receptor-mediated endocytosis, cellular uptake analysis of HA-GO showed enhanced internalization. In vivo optical imaging test demonstrated that HA-GO nanosheets could enhance the targeting ability and residence time in tumor site. Moreover, the anti-tumor activity of free MIT, MIT/GO, and MIT/HA-GO in combination with NIR laser was investigated using human MCF-7 cells. In vitro cytotoxicity study revealed that HA-GO could stand as a biocompatible nanocarrier and MIT/HA-GO demonstrated remarkably higher toxicity than free MIT and MIT/GO, with IC50 of 0.79 µg ml-1. Tumor cell-killing potency was enhanced when MIT/HA-GO were combined with NIR irradiation, and the IC50 of MIT/HA-GO plus laser irradiation was 0.38 µg ml-1. In vivo, MIT/HA-GO plus NIR laser irradiation with the tumor growth inhibition of 93.52 % displayed greater anti-tumor effect compared with free MIT and MIT/GO with or without laser irradiation. Therefore, the MIT/HA-GO nanosheets may potentially be useful for further development of synergistic cancer therapy.
GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA
2016-01-01
MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518
Semkina, Alevtina S; Abakumov, Maxim A; Skorikov, Alexander S; Abakumova, Tatiana O; Melnikov, Pavel A; Grinenko, Nadejda F; Cherepanov, Sergey A; Vishnevskiy, Daniil A; Naumenko, Victor A; Ionova, Klavdiya P; Majouga, Alexander G; Chekhonin, Vladimir P
2018-05-03
In presented paper we have developed new system for cancer theranostics based on vascular endothelial growth factor (VEGF) targeted magnetic nanoparticles. Conjugation of anti-VEGF antibodies with bovine serum albumin coated PEGylated magnetic nanoparticles allows for improved binding with murine breast adenocarcinoma 4T1 cell line and facilitates doxorubicin delivery to tumor cells. It was shown that intravenous injection of doxorubicin loaded VEGF targeted nanoparticles increases median survival rate of mice bearing 4T1 tumors up to 50%. On the other hand magnetic resonance imaging (MRI) of 4T1 tumors 24 h after intravenous injection showed accumulation of nanoparticles in tumors, thus allowing simultaneous cancer therapy and diagnostics. Copyright © 2018. Published by Elsevier Inc.
Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Khazak, Vladimir; El-Deiry, Wafik S
2018-01-22
Small molecule ONC201 is an investigational anti-tumor agent that upregulates intra-tumoral TRAIL expression and the integrated stress response pathway. A Phase I clinical trial using ONC201 therapy in advanced cancer patients has been completed and the drug has progressed into Phase II trials in several cancer types. Colorectal cancer (CRC) remains one of the leading causes of cancer worldwide and metastatic disease has a poor prognosis. Clinical trials in CRC and other tumor types have demonstrated that therapeutics targeting the vascular endothelial growth factor (VEGF) pathway, such as bevacizumab, are effective in combination with certain chemotherapeutic agents. We investigated the potential combination of VEGF inhibitors such as bevacizumab and its murine-counterpart; along with other anti-angiogenic agents and ONC201 in both CRC xenograft and patient-derived xenograft (PDX) models. We utilized non-invasive imaging and immunohistochemistry to determine potential mechanisms of action. Our results demonstrate significant tumor regression or complete tumor ablation in human xenografts with the combination of ONC201 with bevacizumab, and in syngeneic MC38 colorectal cancer xenografts using a murine VEGF-A inhibitor. Imaging demonstrated the impact of this combination on decreasing tumor growth and tumor metastasis. Our results indicate that ONC201 and anti-angiogenic agents act through distinct mechanisms while increasing tumor cell death and inhibiting proliferation. With the use of both a murine VEGF inhibitor in syngeneic models, and bevacizumab in human cell line-derived xenografts, we demonstrate that ONC201 in combination with anti-angiogenic therapies such as bevacizumab represents a promising approach for further testing in the clinic for the treatment of CRC.
Akalu, Yemsratch T; Rothlin, Carla V; Ghosh, Sourav
2017-03-01
Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Long, Adrienne H.; Haso, Waleed M.; Shern, Jack F.; Wanhainen, Kelsey M.; Murgai, Meera; Ingaramo, Maria; Smith, Jillian P.; Walker, Alec J.; Kohler, M. Eric; Venkateshwara, Vikas R.; Kaplan, Rosandra N.; Patterson, George H.; Fry, Terry J.; Orentas, Rimas J.; Mackall, Crystal L.
2015-01-01
Chimeric antigen receptors (CARs) targeting CD19 have mediated dramatic anti-tumor responses in hematologic malignancies, but tumor regression has rarely occurred using CARs targeting other antigens. It remains unknown whether the impressive effects of CD19 CARs relate to greater susceptibility of hematologic malignancies to CAR therapies, or superior functionality of the CD19 CAR itself. We discovered that tonic CAR CD3ζ phosphorylation, triggered by antigen-independent clustering of CAR scFvs, can induce early exhaustion of CAR T cells that limits anti-tumor efficacy. Such activation is present to varying degrees in all CARs studied, with the exception of the highly effective CD19 CAR. We further identify that CD28 costimulation augments, while 4-1BB costimulation ameliorates, exhaustion induced by persistent CAR signaling. Our results provide biological explanations for the dramatic anti-tumor effects of CD19 CARs and for the observations that CD19.BBz CAR T cells are more persistent than CD19.28z CAR T cells in clinical trials. PMID:25939063
Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis.
Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra; Rommelaere, Jean; Van Damme, Jo; Dinsart, Christiane
2013-12-01
Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. © 2013 Elsevier Inc. All rights reserved.
Targeting p53-MDM2-MDMX Loop for Cancer Therapy
Zhang, Qi; Zeng, Shelya X.
2015-01-01
The tumor suppressor p53 plays a central role in anti-tumorigenesis and cancer therapy. It has been described as “the guardian of the genome”, because it is essential for conserving genomic stability by preventing mutation, and its mutation and inactivation are highly related to all human cancers. Two important p53 regulators, MDM2 and MDMX, inactivate p53 by directly inhibiting its transcriptional activity and mediating its ubiquitination in a feedback fashion, as their genes are also the transcriptional targets of p53. On account of the importance of the p53-MDM2- MDMX loop in the initiation and development of wild type p53-containing tumors, intensive studies over the past decade have been aiming to identify small molecules or peptides that could specifically target individual protein molecules of this pathway for developing better anti-cancer therapeutics. In this chapter, we review the approaches for screening and discovering efficient and selective MDM2 inhibitors with emphasis on the most advanced synthetic small molecules that interfere with the p53-MDM2 interaction and are currently on Phase I clinical trials. Other therapeutically useful strategies targeting this loop, which potentially improve the prospects of cancer therapy and prevention, will also be discussed briefly. PMID:25201201
Choueiri, Toni K; Lim, Zita Dubauskas; Hirsch, Michelle S; Tamboli, Pheroze; Jonasch, Eric; McDermott, David F; Dal Cin, Paola; Corn, Paul; Vaishampayan, Ulka; Heng, Daniel Y C; Tannir, Nizar M
2010-11-15
Adult "translocation" renal cell carcinoma (RCC), bearing transcription factor E3 (TFE3) gene fusions at Xp11.2, is a recently recognized, unique entity for which prognosis and therapy remain poorly understood. In the current study, the authors investigated the effect of vascular endothelial growth factor (VEGF)-targeted therapy in this distinct subtype of RCC. A retrospective review was conducted to describe the clinical characteristics and outcome of adult patients with metastatic Xp11.2 RCC who had strong TFE3 nuclear immunostaining and received anti-VEGF therapy. Tumor response to anti-VEGF therapy was evaluated using Response Evaluation Criteria in Solid Tumors (RECIST) criteria. The Kaplan-Meier method was used to estimate progression-free survival (PFS) and overall survival (OS) distributions. Fifteen patients were identified, of whom 10, 3, and 2 received sunitinib, sorafenib, and monoclonal anti-VEGF antibodies, respectively. The median follow-up was 19.1 months, the median age of the patients was 41 years, and the female:male ratio was 4:1. Initial histologic description included clear cell (n = 8 patients), papillary (n = 1 patient), or mixed clear cell/papillary RCC (n = 6 patients). Five patients had received prior systemic therapy. Five patients had undergone fluorescent in situ hybridization analysis and all demonstrated a translocation involving chromosome Xp11.2. When treated with VEGF-targeted therapy, 3 patients achieved a partial response, 7 patients had stable disease, and 5 patients developed progressive disease. The median PFS and OS of the entire cohort were 7.1 months and 14.3 months, respectively. Adult-onset, translocation-associated metastatic RCC is an aggressive disease that affects a younger population of patients with a female predominance. In the current study, VEGF-targeted agents appeared to demonstrate some efficacy. Copyright © 2010 American Cancer Society.
Clinical Application of Liquid Biopsy in Targeted Therapy of Metastatic Colorectal Cancer
Trojan, Jörg; Klein-Scory, Susanne; Koch, Christine; Schmiegel, Wolff
2017-01-01
Background. Colorectal cancers (CRC) shed DNA into blood circulation. There is growing evidence that the analysis of circulating tumor DNA can be effectively used for monitoring of disease, to track tumor heterogeneity and to evaluate response to treatment. Case Presentation. Here, we describe two cases of patients with advanced CRC. The first case is about a patient with no available tissue for analysis of RAS mutation status. Liquid biopsy revealed RAS-wild-type and the therapy with anti-EGFR (epidermal growth factor receptor) monoclonal antibody cetuximab could be initiated. In the second case, the mutational profile of a patient with initial wild-type RAS-status was continually tracked during the course of treatment. An acquired KRAS exon 3 mutation was detected. The number of KRAS mutated fragments decreased continuously after the discontinuation of the therapy with EGFR-specific antibodies. Conclusion. Liquid biopsy provides a rapid genotype result, which accurately reproduces the current mutation status of tumor tissue. Furthermore, liquid biopsy enables close monitoring of the onset of secondary resistance to anti-EGFR therapy. PMID:28232873
Clinical Application of Liquid Biopsy in Targeted Therapy of Metastatic Colorectal Cancer.
Trojan, Jörg; Klein-Scory, Susanne; Koch, Christine; Schmiegel, Wolff; Baraniskin, Alexander
2017-01-01
Background. Colorectal cancers (CRC) shed DNA into blood circulation. There is growing evidence that the analysis of circulating tumor DNA can be effectively used for monitoring of disease, to track tumor heterogeneity and to evaluate response to treatment. Case Presentation. Here, we describe two cases of patients with advanced CRC. The first case is about a patient with no available tissue for analysis of RAS mutation status. Liquid biopsy revealed RAS-wild-type and the therapy with anti-EGFR (epidermal growth factor receptor) monoclonal antibody cetuximab could be initiated. In the second case, the mutational profile of a patient with initial wild-type RAS-status was continually tracked during the course of treatment. An acquired KRAS exon 3 mutation was detected. The number of KRAS mutated fragments decreased continuously after the discontinuation of the therapy with EGFR-specific antibodies. Conclusion . Liquid biopsy provides a rapid genotype result, which accurately reproduces the current mutation status of tumor tissue. Furthermore, liquid biopsy enables close monitoring of the onset of secondary resistance to anti-EGFR therapy.
2013-01-01
Background Secondary lymphoid tissue chemokine (SLC) is a key CC chemokine for chemotaxis of immune cells and has been an attractive candidate for anti-tumor treatments. However, among the immune cells recruited by SLC to tumors, the CD25+ Foxp3+ regulatory T cells (Tregs) compromise the anti-tumor effects. In this study, we proposed the combination therapy of intratumoral co-administration of SLC and anti-CD25 monoclonal antibodies (mAbs). We hypothesized that the intratumoral injections of SLC and depletion of Tregs would have stronger inhibition effects on the progression of hepatocellular carcinoma (HCC) in mice. Methods C57BL/6 mice were inoculated subcutaneously with the murine HCC cell line, and mice with visible tumors were treated intratumorally with SLC, SLC plus anti-CD25 mAbs or the control antibodies. The percentages of Tregs, effector CD8+ T cells and CD4+ T cells were checked in the tumors, lymph nodes, spleen and liver at regular intervals. The levels of intratumoral IL-12, IFN-γ, IL-10 and TGF-β1 were evaluated. The final anti-tumor effects were measured by the tumor volume and weight as well as the intratumoral activity of MMP2 and MMP9. Bone-marrow-derived dendritic cells were used to explore the mechanisms of maturation induced by SLC in vitro. Results Our experiments showed the combination therapy significantly decreased the frequency of Tregs, and increased CD8+ T cells and CD4+ T cells at tumor sites. These alterations were accompanied by an increased level of IL-12 and IFN-γ, and decreased level of IL-10 and TGF-β1. Unexpectedly, we observed a significantly decreased percentage of Tregs, and increased CD8+ T cells and CD4+ T cells in the lymph nodes, spleen and liver after the combination therapy. The growth and invasiveness of HCC was also maximally inhibited in the combination therapy compared with the SLC alone. Furthermore, we confirmed SLC induced the maturation of DCs via NF-κB p65 and this maturation would benefit the combination therapy. Conclusions Our data demonstrated that intratumoral co-administration of SLC and anti-CD25 mAbs was an effective treatment for HCC, which was correlated with the altered tumor microenvironment and systemically optimized percentages of Tregs, CD8+ T cells and CD4+ T cells in peripheral immune organs. PMID:24304581
Brand, Toni M; Hartmann, Stefan; Bhola, Neil E; Peyser, Noah D; Li, Hua; Zeng, Yan; Isaacson Wechsler, Erin; Ranall, Max V; Bandyopadhyay, Sourav; Duvvuri, Umamaheswar; LaVallee, Theresa M; Jordan, Richard C K; Johnson, Daniel E; Grandis, Jennifer R
2017-06-15
Purpose: Human papillomavirus (HPV) 16 plays an etiologic role in a growing subset of head and neck squamous cell carcinomas (HNSCC), where viral expression of the E6 and E7 oncoproteins is necessary for tumor growth and maintenance. Although patients with HPV + tumors have a more favorable prognosis, there are currently no HPV-selective therapies. Recent studies identified differential receptor tyrosine kinase (RTK) profiles in HPV + versus HPV - tumors. One such RTK, HER3, is overexpressed and interacts with phosphoinositide-3-kinase (PI3K) in HPV + tumors. Therefore, we investigated the role of HPV oncoproteins in regulating HER3-mediated signaling and determined whether HER3 could be a molecular target in HPV + HNSCC. Experimental Design: HER3 was investigated as a molecular target in HPV + HNSCC using established cell lines, patient-derived xenografts (PDX), and human tumor specimens. A mechanistic link between HPV and HER3 was examined by augmenting E6 and E7 expression levels in HNSCC cell lines. The dependency of HPV + and HPV - HNSCC models on HER3 was evaluated with anti-HER3 siRNAs and the clinical stage anti-HER3 monoclonal antibody KTN3379. Results: HER3 was overexpressed in HPV + HNSCC, where it was associated with worse overall survival in patients with pharyngeal cancer. Further investigation indicated that E6 and E7 regulated HER3 protein expression and downstream PI3K pathway signaling. Targeting HER3 with siRNAs or KTN3379 significantly inhibited the growth of HPV + cell lines and PDXs. Conclusions: This study uncovers a direct relationship between HPV infection and HER3 in HNSCC and provides a rationale for the clinical evaluation of targeted HER3 therapy for the treatment of HPV + patients. Clin Cancer Res; 23(12); 3072-83. ©2016 AACR . ©2016 American Association for Cancer Research.
[Anti-tumor target prediction and activity verification of Ganoderma lucidum triterpenoids].
Du, Guo-Hua; Wang, Hong-Xu; Yan, Zheng; Liu, Li-Ying; Chen, Ruo-Yun
2017-02-01
It has reported that Ganoderma lucidum triterpenoids had anti-tumor activity. However, the anti-tumor target is still unclear. The present study was designed to investigate the anti-tumor activity of G. lucidum triterpenoids on different tumor cells, and predict their potential targets by virtual screening. In this experiment, molecular docking was used to simulate the interactions of 26 triterpenoids isolated from G. lucidum and 11 target proteins by LibDock module of Discovery Studio2016 software, then the anti-tumor targets of triterpenoids were predicted. In addition, the in vitro anti-tumor effects of triterpenoids were evaluated by MTT assay by determining the inhibition of proliferation in 5 tumor cell lines. The docking results showed that the poses were greater than five, and Libdock Scores higher than 100, which can be used to determine whether compounds were activity. Eight triterpenoids might have anti-tumor activity as a result of good docking, five of which had multiple targets. MTT experiments demonstrated that the ganoderic acid Y had a certain inhibitory activity on lung cancer cell H460, with IC₅₀ of 22.4 μmol•L ⁻¹, followed by 7-oxo-ganoderic acid Z2, with IC₅₀ of 43.1 μmol•L ⁻¹. However, the other triterpenoids had no anti-tumor activity in the detected tumor cell lines. Taking together, molecular docking approach established here can be used for preliminary screening of anti-tumor activity of G.lucidum ingredients. Through this screening method, combined with the MTT assay, we can conclude that ganoderic acid Y had antitumor activity, especially anti-lung cancer, and 7-oxo-ganoderic acid Z2 as well as ganoderon B, to a certain extent, had anti-tumor activity. These findings can provide basis for the development of anti-tumor drugs. However, the anti-tumor mechanisms need to be further studied. Copyright© by the Chinese Pharmaceutical Association.
The roles of pathology in targeted therapy of women with gynecologic cancers.
Murali, Rajmohan; Grisham, Rachel N; Soslow, Robert A
2018-01-01
The role of the pathologist in the multidisciplinary management of women with gynecologic cancer has evolved substantially over the past decade. Pathologists' evaluation of parameters such as pathologic stage, histologic subtype, grade and microsatellite instability, and their identification of patients at risk for Lynch syndrome have become essential components of diagnosis, prognostic assessment and determination of optimal treatment of affected women. Despite the use of multimodality treatment and combination cytotoxic chemotherapy, the prognosis of women with advanced-stage gynecologic cancer is often poor. Therefore, expanding the arsenal of available systemic therapies with targeted therapeutic agents is appealing. Anti-angiogenic therapies, immunotherapy and poly ADP ribose polymerase (PARP) inhibitors are now routinely used for the treatment of advanced gynecologic cancer, and many more are under investigation. Pathologists remain important in the clinical management of patients with targeted therapy, by identifying potentially targetable tumors on the basis of their pathologic phenotype, by assessing biomarkers that are predictive of response to targeted therapy (e.g. microsatellite instability, PD1/PDL1 expression), and by monitoring treatment response and resistance. Pathologists are also vital to research efforts exploring novel targeted therapies by identifying homogenous subsets of tumors for more reliable and meaningful analyses, and by confirming expression in tumor tissues of novel targets identified in genomic, epigenetic or other screening studies. In the era of precision gynecologic oncology, the roles of pathologists in the discovery, development and implementation of targeted therapeutic strategies remain as central as they are for traditional (surgery-chemotherapy-radiotherapy) management of women with gynecologic cancers. Copyright © 2017 Elsevier Inc. All rights reserved.
Hatakeyama, Shinji; Summermatter, Serge; Jourdain, Marie; Melly, Stefan; Minetti, Giulia C; Lach-Trifilieff, Estelle
2016-01-01
Cachexia affects the majority of patients with advanced cancer and is associated with reduced treatment tolerance, response to therapy, quality of life, and life expectancy. Cachectic patients with advanced cancer often receive anti-cancer therapies against their specific cancer type as a standard of care, and whether specific ActRII inhibition is efficacious when combined with anti-cancer agents has not been elucidated yet. In this study, we evaluated interactions between ActRII blockade and anti-cancer agents in CT-26 mouse colon cancer-induced cachexia model. CDD866 (murinized version of bimagrumab) is a neutralizing antibody against the activin receptor type II (ActRII) preventing binding of ligands such as myostatin and activin A, which are involved in cancer cachexia. CDD866 was evaluated in association with cisplatin as a standard cytotoxic agent or with everolimus, a molecular-targeted agent against mammalian target of rapamycin (mTOR). In the early studies, the treatment effect on cachexia was investigated, and in the additional studies, the treatment effect on progression of cancer and the associated cachexia was evaluated using body weight loss or tumor volume as interruption criteria. Cisplatin accelerated body weight loss and tended to exacerbate skeletal muscle loss in cachectic animals, likely due to some toxicity of this anti-cancer agent. Administration of CDD866 alone or in combination with cisplatin protected from skeletal muscle weight loss compared to animals receiving only cisplatin, corroborating that ActRII inhibition remains fully efficacious under cisplatin treatment. In contrast, everolimus treatment alone significantly protected the tumor-bearing mice against skeletal muscle weight loss caused by CT-26 tumor. CDD866 not only remains efficacious in the presence of everolimus but also showed a non-significant trend for an additive effect on reversing skeletal muscle weight loss. Importantly, both combination therapies slowed down time-to-progression. Anti-ActRII blockade is an effective intervention against cancer cachexia providing benefit even in the presence of anti-cancer therapies. Co-treatment comprising chemotherapies and ActRII inhibitors might constitute a promising new approach to alleviate chemotherapy- and cancer-related wasting conditions and extend survival rates in cachectic cancer patients.
Emdal, Kristina B; Dittmann, Antje; Reddy, Raven J; Lescarbeau, Rebecca S; Moores, Sheri L; Laquerre, Sylvie; White, Forest M
2017-11-01
Approximately 10% of non-small cell lung cancer (NSCLC) patients in the United States and 40% of NSCLC patients in Asia have activating epidermal growth factor receptor (EGFR) mutations and are eligible to receive targeted anti-EGFR therapy. Despite an extension of life expectancy associated with this treatment, resistance to EGFR tyrosine kinase inhibitors and anti-EGFR antibodies is almost inevitable. To identify additional signaling routes that can be cotargeted to overcome resistance, we quantified tumor-specific molecular changes that govern resistant cancer cell growth and survival. Mass spectrometry-based quantitative proteomics was used to profile in vivo signaling changes in 41 therapy-resistant tumors from four xenograft NSCLC models. We identified unique and tumor-specific tyrosine phosphorylation rewiring in tumors resistant to treatment with the irreversible third-generation EGFR-inhibitor, osimertinib, or the novel dual-targeting EGFR/Met antibody, JNJ-61186372. Tumor-specific increases in tyrosine-phosphorylated peptides from EGFR family members, Shc1 and Gab1 or Src family kinase (SFK) substrates were observed, underscoring a differential ability of tumors to uniquely escape EGFR inhibition. Although most resistant tumors within each treatment group displayed a marked inhibition of EGFR as well as SFK signaling, the combination of EGFR inhibition (osimertinib) and SFK inhibition (saracatinib or dasatinib) led to further decrease in cell growth in vitro This result suggests that residual SFK signaling mediates therapeutic resistance and that elimination of this signal through combination therapy may delay onset of resistance. Overall, analysis of individual resistant tumors captured unique in vivo signaling rewiring that would have been masked by analysis of in vitro cell population averages. Mol Cancer Ther; 16(11); 2572-85. ©2017 AACR . ©2017 American Association for Cancer Research.
Miles, Kiersten Marie; Seshadri, Mukund; Ciamporcero, Eric; Adelaiye, Remi; Gillard, Bryan; Sotomayor, Paula; Attwood, Kristopher; Shen, Li; Conroy, Dylan; Kuhnert, Frank; Lalani, Alshad S.; Thurston, Gavin; Pili, Roberto
2014-01-01
Background The Notch ligand Delta-like 4 (Dll4) is highly expressed in vascular endothelium and has been shown to play a pivotal role in regulating tumor angiogenesis. Blockade of the Dll4-Notch pathway in preclinical cancer models has been associated with non-productive angiogenesis and reduced tumor growth. Given the cross-talk between the vascular endothelial growth factor (VEGF) and Delta-Notch pathways in tumor angiogenesis, we examined the activity of a function-blocking Dll4 antibody, REGN1035, alone and in combination with anti-VEGF therapy in renal cell carcinoma (RCC). Methods and Results Severe combined immunodeficiency (SCID) mice bearing patient-derived clear cell RCC xenografts were treated with REGN1035 and in combination with the multi-targeted tyrosine kinase inhibitor sunitinib or the VEGF blocker ziv-aflibercept. Immunohistochemical and immunofluorescent analyses were carried out, as well as magnetic resonance imaging (MRI) examinations pre and 24 hours and 2 weeks post treatment. Single agent treatment with REGN1035 resulted in significant tumor growth inhibition (36–62%) that was equivalent to or exceeded the single agent anti-tumor activity of the VEGF pathway inhibitors sunitinib (38–54%) and ziv-aflibercept (46%). Importantly, combination treatments with REGN1035 plus VEGF inhibitors resulted in enhanced anti-tumor effects (72–80% growth inhibition), including some tumor regression. Magnetic resonance imaging showed a marked decrease in tumor perfusion in all treatment groups. Interestingly, anti-tumor efficacy of the combination of REGN1035 and ziv-aflibercept was also observed in a sunitinib resistant ccRCC model. Conclusions Overall, these findings demonstrate the potent anti-tumor activity of Dll4 blockade in RCC patient-derived tumors and a combination benefit for the simultaneous targeting of the Dll4 and VEGF signaling pathways, highlighting the therapeutic potential of this treatment modality in RCC. PMID:25393540
Cassetta, Luca; Kitamura, Takanori
2018-01-01
Inhibition of immune checkpoint pathways in CD8 + T cell is a promising therapeutic strategy for the treatment of solid tumors that has shown significant anti-tumor effects and is now approved by the FDA to treat patients with melanoma and lung cancer. However the response to this therapy is limited to a certain fraction of patients and tumor types, for reasons still unknown. To ensure success of this treatment, CD8 + T cells, the main target of the checkpoint inhibitors, should exert full cytotoxicity against tumor cells. However recent studies show that tumor-associated macrophages (TAM) can impede this process by different mechanisms. In this mini-review we will summarize recent studies showing the effect of TAM targeting on immune checkpoint inhibitors efficacy. We will also discuss on the limitations of the current strategies as well on the future scientific challenges for the progress of the tumor immunology field.
Targeting the p53 signaling pathway in cancer therapy - The promises, challenges, and perils
Stegh, Alexander H.
2012-01-01
Introduction Research over the past three decades has identified p53 as a multifunctional transcription factor, which regulates the expression of >2,500 target genes. p53 impacts myriad, highly diverse cellular processes, including the maintenance of genomic stability and fidelity, metabolism, longevity, and represents one of the most important and extensively studied tumor suppressors. Activated by various stresses, foremost genotoxic damage, hypoxia, heat shock and oncogenic assault, p53 blocks cancer progression by provoking transient or permanent growth arrest, by enabling DNA repair or by advancing cellular death programs. This potent and versatile anti-cancer activity profile, together with genomic and mutational analyses documenting inactivation of p53 in more than 50% of human cancers, motivated drug development efforts to (re-) activate p53 in established tumors. Areas covered In this review the complexities of p53 signaling in cancer are summarized. Current strategies and challenges to restore p53’s tumor suppressive function in established tumors, i.e. adenoviral gene transfer and small molecules to activate p53, to inactivate p53 inhibitors and to restore wild type function of p53 mutant proteins are discussed. Expert opinion It is indubitable that p53 represents an attractive target for the development of anti-cancer therapies. Whether p53 is ‘druggable’, however, remains an area of active research and discussion, as p53 has pro-survival functions and chronic p53 activation accelerates aging, which may compromise the long-term homeostasis of an organism. Thus, the complex biology and dual functions of p53 in cancer prevention and age-related cellular responses pose significant challenges on the development of p53-targeting cancer therapies. PMID:22239435
Novel Therapeutic Strategies for Solid Tumor Based on Body's Intrinsic Antitumor Immune System.
Duan, Haifeng
2018-05-22
The accumulation of mutated somatic cells due to the incompetency of body's immune system may lead to tumor onset. Therefore, enhancing the ability of the system to eliminate such cells should be the core of tumor therapy. The intrinsic antitumor immunity is triggered by tumor-specific antigens (TSA) or TSA-sensitized dendritic cells (DC). Once initiated, specific anti-tumor antibodies are produced and tumor-specific killer immune cells, including cytotoxic T lymphocytes (CTL), NK cells, and macrophages, are raised or induced. Several strategies may enhance antitumor action of immune system, such as supplying tumor-targeted antibody, activating T cells, enhancing the activity and tumor recognition of NK cells, promoting tumor-targeted phagocytosis of macrophages, and eliminating the immunosuppressive myeloid-derived suppressor cells (MDSCs) and Treg cells. Apart from the immune system, the removal of tumor burden still needs to be assisted by drugs, surgery or radiation. And the body's internal environment and tumor microenvironment should be improved to recover immune cell function and prevent tumor growth. Multiple microenvironment modulatory therapies may be applied, including addressing hypoxia and oxidative stress, correcting metabolic disorders, and controlling chronic inflammation. Finally, to cure tumor and prevent tumor recurrence, repairing or supporting therapy that consist of tissue repair and nutritional supplement should be applied properly. © 2018 The Author(s). Published by S. Karger AG, Basel.
The 26S Proteasome Complex: An Attractive Target for Cancer Therapy
Frankland-Searby, Sarah; Bhaumik, Sukesh R.
2011-01-01
The 26S proteasome complex engages in an ATP-dependent proteolytic degradation of a variety of oncoproteins, transcription factors, cell cycle specific cyclins, cyclin-dependent kinase inhibitors, ornithine decarboxylase, and other key regulatory cellular proteins. Thus, the proteasome regulates either directly or indirectly many important cellular processes. Altered regulation of these cellular events is linked to the development of cancer. Therefore, the proteasome has become an attractive target for the treatment of numerous cancers. Several proteasome inhibitors that target the proteolytic active sites of the 26S proteasome complex have been developed and tested for anti-tumor activities. These proteasome inhibitors have displayed impressive anti-tumor functions by inducing apoptosis in different tumor types. Further, the proteasome inhibitors have been shown to induce cell cycle arrest, and inhibit angiogenesis, cell-cell adhesion, cell migration, immune and inflammatory responses, and DNA repair response. A number of proteasome inhibitors are now in clinical trials to treat multiple myeloma and solid tumors. Many other proteasome inhibitors with different efficiencies are being developed and tested for anti-tumor activities. Several proteasome inhibitors currently in clinical trials have shown significantly improved anti-tumor activities when combined with other drugs such as histone deacetylase (HDAC) inhibitors, Akt (protein kinase B) inhibitors, DNA damaging agents, Hsp90 (heat shock protein 90) inhibitors, and lenalidomide. The proteasome inhibitor bortezomib is now in the clinic to treat multiple myeloma and mantle cell lymphoma. Here, we discuss the 26S proteasome complex in carcinogenesis and different proteasome inhibitors with their potential therapeutic applications in treatment of numerous cancers. PMID:22037302
Platelet factor-4 (CXCL4/PF-4): an angiostatic chemokine for cancer therapy.
Wang, Zhe; Huang, He
2013-05-01
Platelet factor-4 (CXCL4/PF-4) is the first chemokine identified to have several biological functions. Notably, CXCL4/PF-4 inhibits endothelial cell proliferation and migration, leading to suppression of angiogenesis. Since angiogenesis is essential for the growth of most primary tumors and their subsequent metastases, it is a target for cancer therapy; due to its multiple functions, CXCL4/PF-4 is a potential clinical anti-tumor agent. This report reviews the mechanisms of CXCL4/PF-4 angiostatic activity, including interference with angiogenic growth factors bFGF-2 and VEGF165, activation of CXCR3B, interactions with integrins, interference with cell cycle, interactions with factors such as VEGF121 and CXCL8/IL-8, and derived molecules of CXCL4/PF-4 with angiostatic and anti-tumoral activities in different models in vivo or in vitro. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Li, Aifen; Xing, Jieyu; Li, Li; Zhou, Changhua; Dong, Bin; He, Ping; Li, Qing; Wang, Zhong
2016-12-01
Her2, which is frequently overexpressed in breast cancer, is one of the most studied tumor-associated antigens for cancer therapy. Anti-HER2 monoclonal antibody, trastuzumab, has achieved significant clinical benefits in metastatic breast cancer. In this study, we describe a novel bispecific antibody Her2-S-Fab targeting Her2 by linking a single domain anti-CD16 VHH to the trastuzumab Fab. The Her2-S-Fab antibody can be efficiently expressed and purified from Escherichia coli, and drive potent cancer cell killing in HER2-overexpressing cancer cells. In xenograft model, the Her2-S-Fab suppresses tumor growth in the presence of human immune cells. Our results suggest that the bispecific Her2-S-Fab may provide a valid alternative to Her2 positive cancer therapy.
Regulatory Role of the NF-kB Pathway in Lymphangiogenesis and Breast Cancer Metastasis
2010-10-01
Task 3. To determine the effect of anti -inflammatory treatment on VEGFR-3 expression, tumor lymphangiogenesis, lymphatic metastasis, and spread to...breast carcinoma line MDA-MB-231 into the MFP of CB-17 SCID mice and treat them with NF-κB targeting anti -inflammatory drugs, PDTC and dexamethasone...model of human breast cancer is significantly enhanced by concurrent anti -VEGF-A therapy. Neoplasia. 2008 Jun;10(6):613-23. Awards/Presentations
Puyal, Julien; Margue, Christiane; Michel, Sébastien; Kreis, Stephanie; Kulms, Dagmar; Barras, David; Nahimana, Aimable; Widmann, Christian
2016-01-01
Tumor cell resistance to apoptosis, which is triggered by many anti-tumor therapies, remains a major clinical problem. Therefore, development of more efficient therapies is a priority to improve cancer prognosis. We have previously shown that a cell-permeable peptide derived from the p120 Ras GTPase-activating protein (RasGAP), called TAT-RasGAP317-326, bears anti-malignant activities in vitro and in vivo, such as inhibition of metastatic progression and tumor cell sensitization to cell death induced by various anti-cancer treatments. Recently, we discovered that this RasGAP-derived peptide possesses the ability to directly kill some cancer cells. TAT-RasGAP317-326 can cause cell death in a manner that can be either partially caspase-dependent or fully caspase-independent. Indeed, TAT-RasGAP317-326-induced toxicity was not or only partially prevented when apoptosis was inhibited. Moreover, blocking other forms of cell death, such as necroptosis, parthanatos, pyroptosis and autophagy did not hamper the killing activity of the peptide. The death induced by TAT-RasGAP317-326 can therefore proceed independently from these modes of death. Our finding has potentially interesting clinical relevance because activation of a death pathway that is distinct from apoptosis and necroptosis in tumor cells could lead to the generation of anti-cancer drugs that target pathways not yet considered for cancer treatment. PMID:27602963
Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling
Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.
2018-01-01
Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR-targeted therapies to the clinic. PMID:29435103
Gene therapy in pancreatic cancer
Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang
2014-01-01
Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC. PMID:25309069
Microenvironment-derived HGF overcomes genetically determined sensitivity to anti-MET drugs.
Pennacchietti, Selma; Cazzanti, Manuela; Bertotti, Andrea; Rideout, William M; Han, May; Gyuris, Jeno; Perera, Timothy; Comoglio, Paolo M; Trusolino, Livio; Michieli, Paolo
2014-11-15
Cell-based drug screenings indicate that tumors displaying c-MET gene amplification are "addicted" to MET signaling and therefore are very sensitive to MET-targeted agents. However, these screenings were conducted in the absence of the MET ligand, hepatocyte growth factor (HGF), which is abundant in the tumor microenvironment. Sensitivity of six MET-addicted human tumor cells to three MET kinase inhibitors (JNJ-38877605, PHA-665752, crizotinib) and one antagonistic anti-MET antibody (DN30 Fab) was analyzed in the absence or presence of HGF, in a stroma-tumor coculture system, and by combining anti-MET drugs with an HGF neutralizing antibody (ficlatuzumab) in human HGF knock-in mice bearing c-MET-amplified tumors. In all models examined, HGF promoted resistance to MET-targeted agents, affecting both their potency and efficacy. HGF-induced resistance was due to restoration of physiologic GAB1-mediated PI3K activation that compensated for loss of aberrant HER3-dependent PI3K signaling. Ficlatuzumab restored sensitivity to MET-targeted agents in coculture systems and overcame resistance to JNJ-38877605, crizotinib, and DN30 Fab in human HGF knock-in mice. These data suggest that c-MET-amplified tumor cells-which normally exhibit ligand-independent, constitutive MET activation-become dependent on HGF for survival upon pharmacologic MET inhibition. Because HGF is frequently overexpressed in human cancer, this mechanism may represent a major cause of resistance to anti-MET therapies. The ability of ficlatuzumab to overcome HGF-mediated resistance generates proof of principle that vertical inhibition of both a tyrosine kinase receptor and its ligand can be therapeutically beneficial and opens new perspectives for the treatment of MET-dependent tumors. ©2014 American Association for Cancer Research.
Jena, Bipulendu; Maiti, Sourindra; Huls, Helen; Singh, Harjeet; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.
2013-01-01
Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy. PMID:23469246
Petrachi, Tiziana; Romagnani, Alessandra; Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia
2017-01-24
Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma.
Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia
2017-01-01
Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma. PMID:28036292
Shen, Hongchang; Xu, Jun; Zhu, Linhai; Liu, Qi; Du, Jiajun
2015-01-01
Background Small cell lung cancer (SCLC) is a recalcitrant malignancy with distinct biologic properties. Antibody targeting therapy has been actively investigated as a new drug modality. Methods We tested the expression of IGF-1R and calculated the survival in 61 SCLC patients. We also evaluated the anti-tumor effects of anti-IGF-1R monoclonal antibody Figitumumab (CP) on SCLC, and tried two drug combinations to improve CP therapy. Results Our clinical data suggested that high IGF-1R expression was correlated with low SCLC patient survival. We then demonstrated the effect of CP was likely through IGF-1R blockage and down-regulation without IGF-1R auto-phosphorylation and PI3K/AKT activation. However, we observed elevated MEK/ERK activation upon CP treatment in SCLC cells, and this MEK/ERK activation was enhanced by ß-arrestin1 knockdown while attenuated by ß-arrestin2 knockdown. We found both MEK/ERK inhibitor and metformin could enhance CP treatment in SCLC cells. We further illustrated the additive effect of metformin was likely through promoting further IGF-1R down-regulation. Conclusion Our results highlighted the potential of anti-IGF-1R therapy and the adjuvant therapy strategy with either MEK/ERK inhibitor or metformin to target SCLC, warranting further studies. PMID:26287334
Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu
2015-01-01
A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery.
Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu
2015-01-01
A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery. PMID:26379789
Repositioning of proton pump inhibitors in cancer therapy.
Lu, Zhen-Ning; Tian, Bing; Guo, Xiu-Li
2017-11-01
Drug repositioning, as a smart way to exploit new molecular targets of a known drug, has been gaining increasing attention in the discovery of anti-cancer drugs. Proton pump inhibitors (PPIs) as benzimidazole derivatives, which are essentially H + -K + -ATPases inhibitors, are commonly used in the treatment of acid-related diseases such as gastric ulcer. In recent years, exploring the new application of PPIs in anti-cancer field has become a hot research topic. Interestingly, cancer cells display an alkaline intracellular pH and an acidic extracellular pH. The extracellular acidity of tumors can be corrected by PPIs that are selectively activated in an acid milieu. It is generally believed that PPIs might provoke disruption of pH homeostasis by targeting V-ATPase on cancer cells, which is the theoretical basis for PPIs to play an anti-cancer role. Numerous studies have shown specialized effects of the PPIs on tumor cell growth, metastasis, chemoresistance, and autophagy. PPIs may really represent new anti-cancer drugs due to better safety and tolerance, the potential selectivity in targeting tumor acidity, and the ability to inhibit mechanism pivotal for cancer homeostasis. In this review, we focus on the new therapeutic applications of PPIs in multiple cancers, explaining the rationale behind this approach and providing practical evidence.
You, Linyi; Wang, Xiangyu; Guo, Zhide; Zhang, Deliang; Zhang, Pu; Li, Jindian; Su, Xinhui; Pan, Weimin; Zhang, Xianzhong
2018-04-04
Intercellular adhesion molecule-1(ICAM-1) is a potential molecular target and biomarker for triple negative breast cancer (TNBC) therapy and diagnosis. In this study, aICAM-1 was radioiodinated with 125 I/ 131 I in high radiochemical yield and the probes for TNBC tumor targeting and radioimmunotherapy were evaluated in tumor-bearing mice. High and specific accumulation of 125 I-aICAM1 in TNBC MDA-MB-231 tumor was observed in SPECT imaging and the tumor grew was inhibited obviously by 131 I-aICAM1. Thus, the radioiodinated aICAM1 could serve as potential agents for TNBC theranostics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Clark, Paul A.; Bhattacharya, Saswati; Elmayan, Ardem; Darjatmoko, Soesiawati R.; Thuro, Bradley A.; Yan, Michael B.; van Ginkel, Paul R.; Polans, Arthur S.; Kuo, John S.
2016-01-01
Object Glioblastoma multiforme (GBM) is an aggressive brain cancer with median survival of less than two years with current treatment. GBM exhibits extensive intra-tumor and inter-patient heterogeneity, suggesting that successful therapies should exert broad anti-cancer activities. Therefore, the natural non-toxic pleiotropic agent, resveratrol, was studied for anti-tumorigenic effects against GBM. Methods Resveratrol’s effects on cell proliferation, sphere-forming ability, and invasion were tested using multiple patient-derived GBM stem-like cell (GSC) lines and established U87 glioma cells, and changes in oncogenic AKT and tumor suppressive p53 were analyzed. Resveratrol was also tested in vivo against U87 glioma flank xenografts using multiple delivery methods, including direct tumor injection. Finally, resveratrol was delivered directly to brain tissue to determine toxicity and achievable drug concentrations in the brain parenchyma. Results Resveratrol significantly inhibited proliferation in U87 glioma and multiple patient-derived GSC lines, demonstrating similar inhibitory concentrations across these phenotypically heterogeneous lines. Resveratrol also inhibited the sphere-forming ability of GSCs, suggesting anti-stem cell effects. Additionally, resveratrol blocked U87 glioma and GSC invasion in an in vitro Matrigel transwell assay at doses similar to those mediating anti-proliferative effects. In U87 glioma cells and GSCs, resveratrol reduced AKT phosphorylation and induced p53 expression and activation that led to transcription of downstream p53 target genes. Resveratrol administration via oral gavage or ad libitum in the water supply significantly suppressed GBM xenograft growth; intra-tumor or peri-tumor resveratrol injection further suppressed growth and approximating tumor regression. Intracranial resveratrol injection resulted in 100-fold higher local drug concentration compared to intravenous delivery, and with no apparent toxicity. Conclusions Resveratrol potently inhibited GBM and GBM stem-like cell growth and infiltration, acting partially via AKT deactivation and p53 induction, and suppressed glioblastoma growth in vivo. The ability of resveratrol to modulate AKT and p53, as well as reportedly many other anti-tumorigenic pathways, is attractive for therapy against a genetically heterogeneous tumor such as GBM. Although resveratrol exhibits low bioavailability when administered orally or intravenously, novel delivery methods such as direct injection (i.e. convection enhanced delivery) could potentially be used to achieve and maintain therapeutic doses in brain. Resveratrol’s non-toxic nature and broad anti-GBM effects make it a compelling candidate to supplement current GBM therapies. PMID:27419830
Kim, Sang-Soo; Rait, Antonina; Kim, Eric; Pirollo, Kathleen F; Chang, Esther H
2015-02-01
Development of temozolomide (TMZ) resistance contributes to the poor prognosis for glioblastoma multiforme (GBM) patients. It was previously demonstrated that delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex (SGT-53) which crosses the blood-brain barrier could sensitize highly TMZ-resistant GBM tumors to TMZ. Here we assessed whether SGT-53 could inhibit development of TMZ resistance. SGT-53 significantly chemosensitized TMZ-sensitive human GBM cell lines (U87 and U251), in vitro and in vivo. Furthermore, in an intracranial GBM tumor model, two cycles of concurrent treatment with systemically administered SGT-53 and TMZ inhibited tumor growth, increased apoptosis and most importantly, significantly prolonged median survival. In contrast TMZ alone had no significant effect on median survival compared to a single cycle of TMZ. These results suggest that combining SGT-53 with TMZ appears to limit development of TMZ resistance, prolonging its anti-tumor effect and could be a more effective therapy for GBM. Using human glioblastoma multiforma cell lines, this research team demonstrated that the delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex limited the development of temozolomide resistance and prolonged its anti-tumor effect, which may enable future human application of this or similar techniques. Copyright © 2015 Elsevier Inc. All rights reserved.
Emerging application of genomics-guided therapeutics in personalized lung cancer treatment.
Zaman, Aubhishek; Bivona, Trever G
2018-05-01
In lung cancer, genomics-driven comprehensive molecular profiling has identified novel chemically and immunologically addressable vulnerabilities, resulting in an increasing application of precision medicine by targeted inactivation of tumor oncogenes and immunogenic activation of host anti-tumor surveillance as modes of treatment. However, initially profound response of these targeted therapies is followed by relapse due to therapy-resistant residual disease states. Although distinct mechanisms and frameworks for therapy resistance have been proposed, accounting for and upfront prediction of resistance trajectories has been challenging. In this review, we discuss in both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), the current standing, and challenges associated with genomics-guided strategies for personalized therapy against both oncogenic alterations as well as post-therapy resistance mechanisms. In NSCLC, we catalog the targeted therapy approaches against most notable oncogenic alterations such as epidermal growth factor receptor (EGFR), serine/threonine-protein kinase b-raf (BRAF), Kirsten rat sarcoma viral proto-oncogene (KRAS), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1). For SCLC, currently highly recalcitrant to targeted therapy, we enumerate a range of exciting and maturing precision medicine approaches. Furthermore, we discuss a number of immunotherapy approaches, in combination or alone, that are being actively pursued clinically in lung cancer. This review not only highlights common mechanistic themes underpinning different classes of resistance and discusses tumor heterogeneity as a source of residual disease, but also discusses potential ways to overcome these barriers. We emphasize how an extensive understanding of these themes can predict and improve therapeutic strategies, such as through poly-therapy approaches, to forestall tumor evolution upfront.
Incio, Joao; Ligibel, Jennifer A; McManus, Daniel T; Suboj, Priya; Jung, Keehoon; Kawaguchi, Kosuke; Pinter, Matthias; Babykutty, Suboj; Chin, Shan M; Vardam, Trupti D; Huang, Yuhui; Rahbari, Nuh N; Roberge, Sylvie; Wang, Dannie; Gomes-Santos, Igor L; Puchner, Stefan B; Schlett, Christopher L; Hoffmman, Udo; Ancukiewicz, Marek; Tolaney, Sara M; Krop, Ian E; Duda, Dan G; Boucher, Yves; Fukumura, Dai; Jain, Rakesh K
2018-03-14
Anti-vascular endothelial growth factor (VEGF) therapy has failed to improve survival in patients with breast cancer (BC). Potential mechanisms of resistance to anti-VEGF therapy include the up-regulation of alternative angiogenic and proinflammatory factors. Obesity is associated with hypoxic adipose tissues, including those in the breast, resulting in increased production of some of the aforementioned factors. Hence, we hypothesized that obesity could contribute to anti-VEGF therapy's lack of efficacy. We found that BC patients with obesity harbored increased systemic concentrations of interleukin-6 (IL-6) and/or fibroblast growth factor 2 (FGF-2), and their tumor vasculature was less sensitive to anti-VEGF treatment. Mouse models revealed that obesity impairs the effects of anti-VEGF on angiogenesis, tumor growth, and metastasis. In one murine BC model, obesity was associated with increased IL-6 production from adipocytes and myeloid cells within tumors. IL-6 blockade abrogated the obesity-induced resistance to anti-VEGF therapy in primary and metastatic sites by directly affecting tumor cell proliferation, normalizing tumor vasculature, alleviating hypoxia, and reducing immunosuppression. Similarly, in a second mouse model, where obesity was associated with increased FGF-2, normalization of FGF-2 expression by metformin or specific FGF receptor inhibition decreased vessel density and restored tumor sensitivity to anti-VEGF therapy in obese mice. Collectively, our data indicate that obesity fuels BC resistance to anti-VEGF therapy via the production of inflammatory and angiogenic factors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Cbl-independent degradation of Met: ways to avoid agonism of bivalent Met-targeting antibody.
Lee, J M; Kim, B; Lee, S B; Jeong, Y; Oh, Y M; Song, Y-J; Jung, S; Choi, J; Lee, S; Cheong, K H; Kim, D U; Park, H W; Han, Y K; Kim, G W; Choi, H; Song, P H; Kim, K A
2014-01-02
The Met receptor tyrosine kinase, found to be constitutively activated in many tumors, has become a leading target for cancer therapy. Disruptions in Met downregulation have been associated with aggressive tumor progression with several therapeutic strategies addressing this aspect of Met biology. Castias B-lineage lymphoma (Cbl) E3 ligase-mediated degradation, which attenuates Met signaling via ligand-dependent Met internalization, is a major negative regulator of Met expression. It is believed that one of the mechanisms by which the therapeutic anti-Met antibodies induce cancer cell death in Met overexpressing tumors is via internalization and subsequent degradation of Met from the cell surface. However, a previously reported Met-targeting antibody demonstrated intrinsic agonistic activity while being capable of inducing Cbl-mediated degradation of Met, suggesting that Cbl-mediated degradation requires receptor activation and impedes therapeutic application. We have developed a potent and selective bivalent Met-targeting antibody (SAIT301) that invokes Met degradation using an alternative regulator LRIG1. In this report, we demonstrate that LRIG1 mediates degradation of Met by SAIT301 and this degradation does not require Met activation. Furthermore, SAIT301 was able to downregulate Met and dramatically inhibit growth of tumors with low or no Cbl expression, as well as tumors with Met exon 14 deletion that prevents Met binding to Cbl. In summary, we demonstrate the enhanced therapeutic potential of a novel tumor-inhibiting anti-Met antibody, SAIT301, which utilizes a Cbl-independent, LRIG1-mediated Met degradation pathway and thereby avoids the agonism that limits the effectiveness of previously reported anti-Met antibodies.
Yu, Jie; Javier, David; Yaseen, Mohammad A.; Nitin, Nitin; Richards-Kortum, Rebecca; Anvari, Bahman; Wong, Michael S.
2010-01-01
New colloidal materials that can generate heat upon irradiation are being explored for photothermal therapy as a minimally invasive approach to cancer treatment. The near-infrared dye indocyanine green (ICG) could serve as a basis for such a material, but its encapsulation and subsequent use is very difficult to carry out. We report the three-step room-temperature synthesis of ~120-nm capsules loaded with ICG within salt-crosslinked polyallylamine aggregates, and coated with anti-epidermal growth factor receptor (anti-EGFR) antibodies for tumor cell targeting capability. We studied the synthesis conditions such as temperature and water dilution to control the capsule size and characterized the size distribution via dynamic light scattering and scanning electron microscopy. We further studied the specificity of tumor cell targeting using three carcinoma cell lines with different levels of EGFR expression, and investigated the photothermal effects of ICG containing nanocapsules on EGFR-rich tumor cells. Significant thermal toxicity was observed for encapsulated ICG as compared to free ICG at 808 nm laser irradiation with radiant exposure of 6 W/cm2. These results illustrate the ability to design a colloidal material with cell targeting and heat generating capabilities using non-covalent chemistry. PMID:20092330
CD22 antigen is broadly expressed on lung cancer cells and is a target for antibody-based therapy.
Tuscano, Joseph M; Kato, Jason; Pearson, David; Xiong, Chengyi; Newell, Laura; Ma, Yunpeng; Gandara, David R; O'Donnell, Robert T
2012-11-01
Most patients with lung cancer still die from their disease, necessitating additional options to improve treatment. Here, we provide evidence for targeting CD22, a cell adhesion protein known to influence B-cell survival that we found is also widely expressed in lung cancer cells. In characterizing the antitumor activity of an established anti-CD22 monoclonal antibody (mAb), HB22.7, we showed CD22 expression by multiple approaches in various lung cancer subtypes, including 7 of 8 cell lines and a panel of primary patient specimens. HB22.7 displayed in vitro and in vivo cytotoxicity against CD22-positive human lung cancer cells and tumor xenografts. In a model of metastatic lung cancer, HB22.7 inhibited the development of pulmonary metastasis and extended overall survival. The finding that CD22 is expressed on lung cancer cells is significant in revealing a heretofore unknown mechanism of tumorigenesis and metastasis. Our work suggests that anti-CD22 mAbs may be useful for targeted therapy of lung cancer, a malignancy that has few tumor-specific targets. ©2012 AACR.
Boswell, C Andrew; Mundo, Eduardo E; Zhang, Crystal; Stainton, Shannon L; Yu, Shang-Fan; Lacap, Jennifer A; Mao, Weiguang; Kozak, Katherine R; Fourie, Aimee; Polakis, Paul; Khawli, Leslie A; Lin, Kedan
2012-09-01
TENB2, also known as tomoregulin or transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains, is a transmembrane proteoglycan overexpressed in human prostate tumors. This protein is a promising target for antimitotic monomethyl auristatin E (MMAE)-based antibody-drug conjugate (ADC) therapy. Nonlinear pharmacokinetics in normal mice suggested that antigen expression in normal tissues may contribute to targeted mediated disposition. We evaluated a predosing strategy with unconjugated antibody to block ADC uptake in target-expressing tissues in a mouse model while striving to preserve tumor uptake and efficacy. Unconjugated, unlabeled antibody was preadministered to mice bearing the TENB2-expressing human prostate explant model, LuCaP 77, followed by a single administration of (111)In-labeled anti-TENB2-MMAE for biodistribution and SPECT/CT studies. A tumor-growth-inhibition study was conducted to determine the pharmacodynamic consequences of predosing. Preadministration of anti-TENB2 at 1 mg/kg significantly increased blood exposure of the radiolabeled ADC and reduced intestinal, hepatic, and splenic uptake while not affecting tumor accretion. Similar tumor-to-heart ratios were measured by SPECT/CT at 24 h with and without the predose. Consistent with this, the preadministration of 0.75 mg/kg did not interfere with efficacy in a tumor-growth study dosed at 0.75 mg or 2.5 mg of ADC per kilogram. Overall, the potential to mask peripheral, nontumor antigen uptake while preserving tumor uptake and efficacy could ameliorate toxicity and may significantly affect future dosing strategies for ADCs.
Kuczynski, Elizabeth A; Yin, Melissa; Bar-Zion, Avinoam; Lee, Christina R; Butz, Henriett; Man, Shan; Daley, Frances; Vermeulen, Peter B; Yousef, George M; Foster, F Stuart; Reynolds, Andrew R; Kerbel, Robert S
2016-08-01
The anti-angiogenic Sorafenib is the only approved systemic therapy for advanced hepatocellular carcinoma (HCC). However, acquired resistance limits its efficacy. An emerging theory to explain intrinsic resistance to other anti-angiogenic drugs is 'vessel co-option,' ie, the ability of tumors to hijack the existing vasculature in organs such as the lungs or liver, thus limiting the need for sprouting angiogenesis. Vessel co-option has not been evaluated as a potential mechanism for acquired resistance to anti-angiogenic agents. To study sorafenib resistance mechanisms, we used an orthotopic human HCC model (n = 4-11 per group), where tumor cells are tagged with a secreted protein biomarker to monitor disease burden and response to therapy. Histopathology, vessel perfusion assessed by contrast-enhanced ultrasound, and miRNA sequencing and quantitative real-time polymerase chain reaction were used to monitor changes in tumor biology. While sorafenib initially inhibited angiogenesis and stabilized tumor growth, no angiogenic 'rebound' effect was observed during development of resistance unless therapy was stopped. Instead, resistant tumors became more locally infiltrative, which facilitated extensive incorporation of liver parenchyma and the co-option of liver-associated vessels. Up to 75% (±10.9%) of total vessels were provided by vessel co-option in resistant tumors relative to 23.3% (±10.3%) in untreated controls. miRNA sequencing implicated pro-invasive signaling and epithelial-to-mesenchymal-like transition during resistance development while functional imaging further supported a shift from angiogenesis to vessel co-option. This is the first documentation of vessel co-option as a mechanism of acquired resistance to anti-angiogenic therapy and could have important implications including the potential therapeutic benefits of targeting vessel co-option in conjunction with vascular endothelial growth factor receptor signaling. © The Author 2016. Published by Oxford University Press.
Combination cancer therapy by hapten-targeted prodrug-activating enzymes and cytokines.
Chuang, Kuo-Hsiang; Cheng, Chiu-Min; Roffler, Steve R; Lu, Yu-Lin; Lin, Shiu-Ru; Wang, Jaw-Yuan; Tzou, Wen-Shyong; Su, Yu-Cheng; Chen, Bing-Mae; Cheng, Tian-Lu
2006-01-01
Combination therapy can help overcome limitations in the treatment of heterogeneous tumors. In the current study, we examined whether multiple therapeutic agents could be targeted to anti-dansyl single-chain antibodies (DNS scFv) that were anchored on the plasma membrane of cancer cells. Functional DNS scFv could be stably expressed on CT-26 colon cancer cells both in vitro and in vivo. Dansyl moieties were covalently attached to recombinant beta-glucuronidase (betaG) and interleukin 2 (IL-2) via a flexible poly(ethylene glycol) linker to form DNS-PEG-betaG and DNS-PEG-IL-2 conjugates. The conjugates displayed enzymatic and splenocyte-stimulatory activities, respectively, that were similar to those of the unmodified proteins. The conjugates selectively bound CT-26 cells that expressed anti-DNS scFv (CT-26/DNS cells) but not CT-26 cells that expressed control scFv (CT-26/phOx cells). DNS-PEG-betaG preferentially activated a glucuronide prodrug (BHAMG) of p-hydroxy aniline mustard at CT-26/DNS cells in culture and accumulated in subcutaneous CT-26/DNS tumors after intravenous administration. Systemic administration of DNS-PEG-IL-2 or DNS-PEG-betaG and BHAMG significantly delayed the growth of CT-26/DNS but not control CT-26/phOx tumors. Combination treatment with DNS-PEG-betaG and BHAMG followed by DNS-PEG-IL-2 therapy significantly suppressed the growth of CT-26/DNS tumors as compared to either single-agent regimen. These results show that at least two DNS-modified therapeutic agents can be selectively delivered to DNS scFv receptors in vitro and in vivo, allowing combination therapy of DNS scFv-modified tumors.
Gao, Dong-Yu; Lin, Ts-Ting; Sung, Yun-Chieh; Liu, Ya Chi; Chiang, Wen-Hsuan; Chang, Chih-Chun; Liu, Jia-Yu; Chen, Yunching
2015-10-01
Sorafenib, a multikinase inhibitor, has been used as an anti-angiogenic agent against highly vascular hepatocellular carcinoma (HCC) - yet associated with only moderate therapeutic effect and the high incidence of HCC recurrence. We have shown intratumoral hypoxia induced by sorafenib activated C-X-C receptor type 4 (CXCR4)/stromal-derived factor 1α (SDF1α) axis, resulting in polarization toward a tumor-promoting microenvironment and resistance to anti-angiogenic therapy in HCC. Herein, we formulated sorafenib in CXCR4-targeted lipid-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with a CXCR4 antagonist, AMD3100 to systemically deliver sorafenib into HCC and sensitize HCC to sorafenib treatment. We demonstrated that CXCR4-targeted NPs efficiently delivered sorafenib into HCCs and human umbilical vein endothelial cells (HUVECs) to achieve cytotoxicity and anti-angiogenic effect in vitro and in vivo. Despite the increased expression of SDF1α upon the persistent hypoxia induced by sorafenib-loaded CXCR4-targeted NPs, AMD3100 attached to the NPs can block CXCR4/SDF1α, leading to the reduced infiltration of tumor-associated macrophages, enhanced anti-angiogenic effect, a delay in tumor progression and increased overall survival in the orthotopic HCC model compared with other control groups. In conclusion, our results highlight the clinical potential of CXCR4-targeted NPs for delivering sorafenib and overcoming acquired drug resistance in liver cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
An evaluation of the anti-tumor efficacy of oleanolic acid-loaded PEGylated liposomes
NASA Astrophysics Data System (ADS)
Tang, Shengnan; Gao, Dawei; Zhao, Tingting; Zhou, Jing; Zhao, Xiaoning
2013-06-01
The effective delivery of oleanolic acid (OA) to the target site has several benefits in therapy for different pathologies. However, the delivery of OA is challenging due to its poor aqueous solubility. The study aims to evaluate the tumor inhibition effect of the PEGylated OA nanoliposome on the U14 cervical carcinoma cell line. In our previous study, OA was successfully encapsulated into PEGylated liposome with the modified ethanol injection method. Oral administration of PEGylated OA liposome was demonstrated to be more efficient in inhibiting xenograft tumors. The results of organ index indicated that PEG liposome exhibited higher anti-tumor activity and lower cytotoxicity. It was also found that OA and OA liposomes induced tumor cell apoptosis detected by flow cytometry. Furthermore, effects of OA on the morphology of tumor and other tissues were observed by hematoxylin and eosin staining. The histopathology sections did not show pathological changes in kidney or liver in tested mice. In contrast, there was a significant difference in tumor tissues between treatment groups and the negative control group. These observations imply that PEGylated liposomes seem to have advantages for cancer therapy in terms of effective delivery of OA.
Shuhendler, Adam J; Prasad, Preethy; Leung, Michael; Rauth, Andrew M; Dacosta, Ralph S; Wu, Xiao Yu
2012-09-01
The overexpression of α(v) β(3) integrin receptors on tumor cells and tumor vascular endothelium makes it a useful target for imaging, chemotherapy and anti-angiogenic therapy. However integrin-targeted delivery of therapeutics by nanoparticles have provided only marginal, if any, enhancement of therapeutic effect. This work was thus focused on the development of novel α(v) β(3) -targeted near infrared light-emitting solid lipid nanoparticles (SLN) through conjugation to the α(v) β(3) integrin-specific ligand cyclic Arg-Gly-Asp (cRGD), and the assessment of the effects of α(v) β(3) targeting on nanoparticle biodistribution. Since our previously developed non-targeted "stealth" SLN showed little hepatic accumulation, unlike most reported liposomes and micelles, they served as a reference for quantifying the effects of cRGD-conjugation on tumor uptake and whole animal biodistribution of SLN. Non-targeted SLN, actively targeted (RGD-SLN) and blocked RGD-SLN were prepared to contain near infrared quantum dots for live animal imaging. They were injected intravenously to nude mice bearing xenograft orthotopic human breast tumors or dorsal window chamber breast tumors. Tumor micropharmacokinetics of various SLN formulations were determined using intravital microscopy, and whole animal biodistribution was followed over time by optical imaging. The active tumor targeting with cRGD was found to be a "double-edged sword": while the specificity of RGD-SLN accumulation in tumor blood vessels and their tumor residence time increased, their distribution in the liver, spleen, and kidneys was significantly greater than the non-targeted SLN, leaving a smaller amount of nanoparticles in the tumor tissue. Nevertheless the enhanced specificity and retention of RGD-SLN in tumor neovasculature could make this novel formulation useful for tumor neovascular-specific therapies and imaging applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arora, Geetanjali; Dubey, Priyanka; Shukla, Jaya; Ghosh, Sourabh; Bandopadhyaya, Gurupad
2016-06-01
We propose an innovative strategy of nanoparticle-mediated-peptide receptor radionuclide therapy (PRRT) employing PLGA-nanoparticles together with anti-β-hCG antibodies that can protect kidneys from radiation damage while simultaneously enhancing its tumor targeting and cytotoxic ability for somatostatin receptor (SSR) positive tumors. PEG-coated-(177)Lu-DOTATATE-PLGA-nanoparticles (PEG-LuD-NP) were formulated and characterized. In vitro toxicity of these particles was tested on human glioblastoma cell line U87MG over a radiation dose range of 19-78 Gy, using MTT assay and flow cytometry. To further enhance cytotoxicity and test the feasibility of active tumor targeting, apoptosis-inducing anti-β-hCG monoclonal antibodies were employed in vitro, after confirming expression of β-hCG on U87MG. In vivo tumor targeting ability of these particles, in comparison to uncoated particles and un-encapsulated (177)Lu-DOTATATE, was assessed by intravenous administration in tumor-induced wistar rats. Rats were first imaged in a gamma camera followed by euthanasia for organ extraction and counting in gamma counter. The particles were spherical in shape with mean diameter of 300 nm. Highest cytotoxicity that could be achieved with PEG-LuD-NP, on radio-resistant U87MG cells, was 35.8 % due to complex cellular response triggered by ionizing radiation. Interestingly, synergistic action of antibodies and PEG-LuD-NP doubled the cytotoxicity (80 %). PEG-LuD-NP showed the highest tumor uptake (4.3 ± 0.46 % ID/g) as compared to (177)Lu-DOTATATE (3.5 ± 0.31 %) and uncoated-(177)Lu-DOTATATE-nanoparticles (3.4 ± 0.35 %) in tumor-inoculated wistar rats (p < 0.001). Renal uptake/retention was decreased 3-4 folds with these particles, resulting in the highest tumor-to-kidney ratio (8.58; p < 0.01) while tumor-to-liver and tumor-to-bone ratios were comparable to un-encapsulated-drug. Nanocarrier-mediated-PRRT is an effective way of targeting SSR positive tumors for enhanced cytoxicity and reduced renal radiation dose associated with conventional PRRT. To our knowledge of literature, this is the first study to establish in vitro and in vivo efficacy profile of nanoparticles in PRRT providing a stepping-stone for undergoing and future research endeavors in the direction of abating associated radiation concerns of radionuclide therapy and may offer a paradigm shift in PRRT strategy.
Targeting Therapy Resistant Tumor Vessels
2008-08-01
No 6 C8161 s.c. xenografts No 5 K14-HPV16 skin cancer No 4 MDA-MB-435 orthotopic xenografts No 4 AGR TRAMP PIN lesions TRAMP PIN lesions Yes 18 TRAMP...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c...Summary We developed three tumor models under this project: 4T1 mouse breast cancer and MDA-MB-435 human cancer xenograft tumors treated with anti
Dahlberg, Carin I. M.; Sarhan, Dhifaf; Chrobok, Michael; Duru, Adil D.; Alici, Evren
2015-01-01
Natural killer (NK) cells were discovered 40 years ago, by their ability to recognize and kill tumor cells without the requirement of prior antigen exposure. Since then, NK cells have been seen as promising agents for cell-based cancer therapies. However, NK cells represent only a minor fraction of the human lymphocyte population. Their skewed phenotype and impaired functionality during cancer progression necessitates the development of clinical protocols to activate and expand to high numbers ex vivo to be able to infuse sufficient numbers of functional NK cells to the cancer patients. Initial NK cell-based clinical trials suggested that NK cell-infusion is safe and feasible with almost no NK cell-related toxicity, including graft-versus-host disease. Complete remission and increased disease-free survival is shown in a small number of patients with hematological malignances. Furthermore, successful adoptive NK cell-based therapies from haploidentical donors have been demonstrated. Disappointingly, only limited anti-tumor effects have been demonstrated following NK cell infusion in patients with solid tumors. While NK cells have great potential in targeting tumor cells, the efficiency of NK cell functions in the tumor microenvironment is yet unclear. The failure of immune surveillance may in part be due to sustained immunological pressure on tumor cells resulting in the development of tumor escape variants that are invisible to the immune system. Alternatively, this could be due to the complex network of immune-suppressive compartments in the tumor microenvironment, including myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Although the negative effect of the tumor microenvironment on NK cells can be transiently reverted by ex vivo expansion and long-term activation, the aforementioned NK cell/tumor microenvironment interactions upon reinfusion are not fully elucidated. Within this context, genetic modification of NK cells may provide new possibilities for developing effective cancer immunotherapies by improving NK cell responses and making them less susceptible to the tumor microenvironment. Within this review, we will discuss clinical trials using NK cells with a specific reflection on novel potential strategies, such as genetic modification of NK cells and complementary therapies aimed at improving the clinical outcome of NK cell-based immune therapies. PMID:26648934
Imatinib: A Breakthrough of Targeted Therapy in Cancer
Iqbal, Naveed
2014-01-01
Deregulated protein tyrosine kinase activity is central to the pathogenesis of human cancers. Targeted therapy in the form of selective tyrosine kinase inhibitors (TKIs) has transformed the approach to management of various cancers and represents a therapeutic breakthrough. Imatinib was one of the first cancer therapies to show the potential for such targeted action. Imatinib, an oral targeted therapy, inhibits tyrosine kinases specifically BCR-ABL, c-KIT, and PDGFRA. Apart from its remarkable success in CML and GIST, Imatinib benefits various other tumors caused by Imatinib-specific abnormalities of PDGFR and c-KIT. Imatinib has also been proven to be effective in steroid-refractory chronic graft-versus-host disease because of its anti-PDGFR action. This paper is a comprehensive review of the role of Imatinib in oncology. PMID:24963404
Raj, Ganesh V; Sareddy, Gangadhara Reddy; Ma, Shihong; Lee, Tae-Kyung; Viswanadhapalli, Suryavathi; Li, Rui; Liu, Xihui; Murakami, Shino; Chen, Chien-Cheng; Lee, Wan-Ru; Mann, Monica; Krishnan, Samaya Rajeshwari; Manandhar, Bikash; Gonugunta, Vijay K; Strand, Douglas; Tekmal, Rajeshwar Rao; Ahn, Jung-Mo; Vadlamudi, Ratna K
2017-01-01
The majority of human breast cancer is estrogen receptor alpha (ER) positive. While anti-estrogens/aromatase inhibitors are initially effective, resistance to these drugs commonly develops. Therapy-resistant tumors often retain ER signaling, via interaction with critical oncogenic coregulator proteins. To address these mechanisms of resistance, we have developed a novel ER coregulator binding modulator, ERX-11. ERX-11 interacts directly with ER and blocks the interaction between a subset of coregulators with both native and mutant forms of ER. ERX-11 effectively blocks ER-mediated oncogenic signaling and has potent anti-proliferative activity against therapy-sensitive and therapy-resistant human breast cancer cells. ERX-11 is orally bioavailable, with no overt signs of toxicity and potent activity in both murine xenograft and patient-derived breast tumor explant models. This first-in-class agent, with its novel mechanism of action of disrupting critical protein-protein interactions, overcomes the limitations of current therapies and may be clinically translatable for patients with therapy-sensitive and therapy-resistant breast cancers. DOI: http://dx.doi.org/10.7554/eLife.26857.001 PMID:28786813
Zheng, Yiran; Tang, Li; Mabardi, Llian; Kumari, Sudha; Irvine, Darrell J.
2017-01-01
Adoptive cell therapy (ACT) has achieved striking efficacy in B-cell leukemias, but less success treating other cancers, in part due to the rapid loss of ACT T-cell effector function in vivo due to immunosuppression in solid tumors. Transforming growth factor-β (TGF-β) signaling is an important mechanism of immune suppression in the tumor microenvironment, but systemic inhibition of TGF-β is toxic. Here we evaluated the potential of targeting a small molecule inhibitor of TGF-β to ACT T-cells using PEGylated immunoliposomes. Liposomes were prepared that released TGF-β inhibitor over ~3 days in vitro. We compared the impact of targeting these drug-loaded vesicles to T-cells via an internalizing receptor (CD90) or non-internalizing receptor (CD45). When lymphocytes were pre-loaded with immunoliposomes in vitro prior to adoptive therapy, vesicles targeted to both CD45 and CD90 promoted enhanced T-cell expression of granzymes relative to free systemic drug administration, but only targeting to CD45 enhanced accumulation of granzyme-expressing T-cells in tumors, which correlated with the greatest enhancement of T-cell anti-tumor activity. By contrast, when administered i.v. to target T-cells in vivo, only targeting of a CD90 isoform expressed exclusively by the donor T-cells led to greater tumor regression over equivalent doses of free systemic drug. These results suggest that in vivo, targeting of receptors uniquely expressed by donor T-cells is of paramount importance for maximal efficacy. This immunoliposome strategy should be broadly applicable to target exogenous or endogenous T-cells and defines parameters to optimize delivery of supporting (or suppressive) drugs to these important immune effectors. PMID:28231431
Lu, Lan; Li, Zhi Jie; Li, Long Fei; Shen, Jing; Zhang, Lin; Li, Ming Xing; Xiao, Zhan Gang; Wang, Jian Hao; Cho, Chi Hin
2017-11-01
Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs. Copyright © 2017. Published by Elsevier Inc.
Lode, Holger N.; Xiang, Rong; Duncan, Steven R.; Theofilopoulos, Argyrios N.; Gillies, Stephen D.; Reisfeld, Ralph A.
1999-01-01
Induction, maintenance, and amplification of tumor-protective immunity after cytokine gene therapy is essential for the clinical success of immunotherapeutic approaches. We investigated whether this could be achieved by single-chain IL-12 (scIL-12) gene therapy followed by tumor-targeted IL-2 using a fusion protein containing a tumor-specific recombinant anti-ganglioside GD2 antibody and IL-2 (ch14.18-IL-2) in a poorly immunogenic murine neuroblastoma model. Herein, we demonstrate the absence of liver and bone marrow metastases after a lethal challenge with NXS2 wild-type cells only in mice (five of six animals) vaccinated with scIL-12-producing NXS2 cells and given a booster injection of low-dose ch14.18-IL-2 fusion protein. This tumor-protective immunity was effective 3 months after initial vaccination, in contrast to control animals treated with a nonspecific fusion protein or an equivalent mixture of antibody and IL-2. Only vaccinated mice receiving the tumor-specific ch14.18-IL-2 fusion protein revealed a reactivation of CD8+ T cells and subsequent MHC class I-restricted tumor target cell lysis in vitro. The sequential increase in the usage of TCR chains Vβ11 and -13 in mouse CD8+ T cells after vaccination and amplification with ch14.18-IL-2 suggests that the initial polyclonal CD8+ T cell response is effectively boosted by targeted IL-2. In conclusion, we demonstrate that a successful boost of a partially protective memory T cell immune response that is induced by scIL-12 gene therapy could be generated by tumor-specific targeting of IL-2 with a ch14.18-IL-2 fusion protein. This approach could increase success rates of clinical cancer vaccine trials. PMID:10411920
Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma.
Ren, Pei-Pei; Li, Ming; Li, Tian-Fang; Han, Shuang-Yin
2017-01-01
Glioblastoma (GBM) is one of the most devastating brain tumors with poor prognosis and high mortality. Although radical surgical treatment with subsequent radiation and chemotherapy can improve the survival, the efficacy of such regimens is insufficient because the GBM cells can spread and destroy normal brain structures. Moreover, these non-specific treatments may damage adjacent healthy brain tissue. It is thus imperative to develop novel therapies to precisely target invasive tumor cells without damaging normal tissues. Immunotherapy is a promising approach due to its capability to suppress the growth of various tumors in preclinical model and clinical trials. Adoptive cell therapy (ACT) using T cells engineered with chimeric antigen receptor (CAR) targeting an ideal molecular marker in GBM, e.g. epidermal growth factor receptor type III (EGFRvIII) has demonstrated a satisfactory efficacy in treating malignant brain tumors. Here we summarize the recent progresses in immunotherapeutic strategy using CAR-modified T cells oriented to EGFRvIII against GBM. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Barbieri, Federica; Albertelli, Manuela; Grillo, Federica; Mohamed, Amira; Saveanu, Alexandru; Barlier, Anne; Ferone, Diego; Florio, Tullio
2014-04-01
Neuroendocrine tumors (NETs) are heterogeneous neoplasms with respect to molecular characteristics and clinical outcome. Although slow-growing, NETs are often late diagnosed, already showing invasion of adjacent tissues and metastases. Precise knowledge of NET biological and molecular features has opened the door to the identification of novel pharmacological targets. Therapeutic options include somatostatin analogs, alone or in combination with interferon-α, multi-targeted tyrosine kinase inhibitors (e.g. sunitinib) or mammalian target of rapamycin (mTOR) inhibitors (e.g. everolimus). Antiangiogenic approaches and anti insulin-like growth factor receptor (IGFR) compounds have been also proposed as combination therapies with the aforementioned compounds. This review will focus on recent studies that have improved therapeutic strategies in NETs, discussing management challenges such as drug resistance development as well as focusing on the need for predictive biomarkers to design distinct drug combinations and optimize pharmacological control. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Research advances in CKLF-like MARVEL transmembrane domain containing member 5].
Yuan, Ye-qing; Xiao, Yun-bei; Liu, Zhen-hua; Zhang, Xiao-wei; Xu, Tao; Wang, Xiao-feng
2012-12-01
CKLF-like MARVEL transmembrane domain containing member(CMTM)is a novel generic family firstly reported by Peking University Center for Human Disease Genomics. CMTM5 belongs to this family and has exhibited tumor-inhibiting activities. It can encode proteins approaching to the transmembrane 4 superfamily(TM4SF). CMTM5 is broadly expressed in normal adult and fetal human tissues, but is undetectable or down-regulated in most carcinoma cell lines and tissues. Restoration of CMTM5 may inhibit the proliferation, migration, and invasion of carcinoma cells. Although the exact mechanism of its anti-tumor activity remains unclear, CMTM5 may be involved in various signaling pathways governing the occurrence and development of tumors. CMTM5 may be a new target in the gene therapies for tumors, while further studies on CMTM5 and its anti-tumor mechanisms are warranted.
The Implications of the Cancer Stem Cell Hypothesis for Neuro-Oncology and Neurology.
Rich, Jeremy N
2008-05-01
The cancer stem cell hypothesis posits that cancers contain a subset of neoplastic cells that propagate and maintain tumors through sustained self-renewal and potent tumorigenecity. Recent excitement has been generated by a number of reports that have demonstrated the existence of cancer stem cells in several types of brain tumors. Brain cancer stem cells - also called tumor initiating cells or tumor propagating cells - share features with normal neural stem cells but do not necessarily originate from stem cells. Although most cancers have only a small fraction of cancer stem cells, these tumor cells have been shown in laboratory studies to contribute to therapeutic resistance, formation of new blood vessels to supply the tumor, and tumor spread. As malignant brain tumors rank among the deadliest of all neurologic diseases, the identification of new cellular targets may have profound implications in neuro-oncology. Novel drugs that target stem cell pathways active in brain tumors have been efficacious against cancer stem cells suggesting that anti-cancer stem cell therapies may advance brain tumor therapy. The cancer stem cell hypothesis may have several implications for other neurologic diseases as caution must be exercised in activating stem cell maintenance pathways in cellular therapies for neurodegenerative diseases. The ability for a small fraction of cells to determine the overall course of a disease may also inform new paradigms of disease that may translate into improved patient outcomes.
Novel Immunocytokine IL12-SS1 (Fv) Inhibits Mesothelioma Tumor Growth in Nude Mice
Kim, Heungnam; Gao, Wei; Ho, Mitchell
2013-01-01
Mesothelin is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed on the cell surface of malignant mesothelioma. Monoclonal antibodies against mesothelin are being evaluated for the treatment of mesothelioma. Immunocytokines represent a novel class of armed antibodies. To provide an alternative approach to current mesothelin-targeted antibody therapies, we have developed a novel immunocytokine based on interleukin-12 (IL12) and the SS1 Fv specific for mesothelin. IL12 possesses potent anti-tumor activity in a wide variety of solid tumors. The newly-developed recombinant immunocytokine, IL12-SS1 (Fv), was produced in insect cells using a baculovirus-insect cell expression system. The SS1 single-chain Fv was fused to the C terminus of the p35 subunit of IL12 through a short linker (GSADGG). The single-chain IL12-SS1 (Fv) immunocytokine bound native mesothelin proteins on malignant mesothelioma (NCI-H226) and ovarian (OVCAR-3) cells as well as recombinant mesothelin on A431/H9 cells. The immunocytokine retained sufficient bioactivity of IL12 and significantly inhibited human malignant mesothelioma (NCI-H226) grown in the peritoneal cavity of nude mice and showed comparable anti-tumor activity to that of the SS1P immunotoxin. IL12-SS1 (Fv) is the first reported immunocytokine to mesothelin-positive tumors and may be an attractive addition to mesothelin-targeted cancer therapies. PMID:24260587
Arginine dependence of tumor cells: targeting a chink in cancer’s armor
Patil, MD; Bhaumik, J; Babykutty, S; Banerjee, UC; Fukumura, D
2017-01-01
Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities. PMID:27109103
Targeting glycolysis by 3-bromopyruvate improves tamoxifen cytotoxicity of breast cancer cell lines.
Attia, Yasmin M; El-Abhar, Hanan S; Al Marzabani, Mahmoud M; Shouman, Samia A
2015-11-03
Tamoxifen is the standard endocrine therapy for ER+ breast cancer; however, many women still relapse after long-term therapy. 3-Bromopyruvate, a glycolytic inhibitor, has shown high selective anti-tumor activity in vitro, and in vivo. The aim of this study was to evaluate the possible augmentation of the effect of tamoxifen via reprograming cancer cell metabolism using 3-bromopyruvate. An in vitro screening of antitumor activity as well as the apoptotic, anti-metastatic, and anti-angiogenic potentials of the combination therapy were carried out using different techniques on breast cancer cell lines MCF7and T47D. In addition the antitumor effect of the combined therapy was done on mice bearing tumor. Our results showed modulation in apoptosis, angiogenesis and metastatic potential by either drug alone; however, their combination has surpassed that of the individual one. Combination regimen enhanced activated caspases-3, 7 and 9, as well as oxidative stress, signified by increased malondialdehyde and decreased glutathione level. Additionally, the angiogenesis and metastasis markers, including hypoxia inducing factor-1α, vascular endothelia growth factor, and metaloproteinases-2 and 9 were decreased after using the combination regimen. These results were further confirmed by the in vivo study, which depicted a decrease in the tumor volume and angiogenesis and an increase in oxidative stress as well. 3-bromopyruvate could be a valuable compound when added with tamoxifen in breast cancer treatment.
Baddley, J W; Cantini, F; Goletti, D; Gómez-Reino, J J; Mylonakis, E; San-Juan, R; Fernández-Ruiz, M; Torre-Cisneros, J
2018-06-01
The present review is part of the ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies. To review, from an Infectious Diseases perspective, the safety profile of agents targeting tumour necrosis factor-α (TNF-α) and to suggest preventive recommendations. Computer-based MEDLINE searches with MeSH terms pertaining to each agent or therapeutic family. Preclinical and clinical evidence indicate that anti-TNF-α therapy (infliximab, adalimumab, golimumab, certolizumab pegol and etanercept) is associated with a two-to four-fold increase in the risk of active tuberculosis and other granulomatous conditions (mostly resulting from the reactivation of a latent infection). In addition, it may lead to the occurrence of other serious infections (bacterial, fungal, opportunistic and certain viral infections). These associated risks seem to be lower for etanercept than other agents. Screening for latent tuberculosis infection should be performed before starting anti-TNF-α therapy, followed by anti-tuberculosis therapy if appropriate. Screening for chronic hepatitis B virus (HBV) infection is also recommended, and antiviral prophylaxis may be warranted for hepatitis B surface antigen-positive individuals. No benefit is expected from the use of antibacterial, anti-Pneumocystis or antifungal prophylaxis. Pneumococcal and age-appropriate antiviral vaccinations (i.e. influenza) should be administered. Live-virus vaccines (i.e. varicella-zoster virus or measles-mumps-rubella) may be contraindicated in people receiving anti-TNF-α therapy, although additional data are needed before definitive recommendations can be made. Prevention measures should be implemented to reduce the risk of latent tuberculosis or HBV reactivation among individuals receiving anti-TNF-α therapy. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
The effect of CT26 tumor-derived TGF-β on the balance of tumor growth and immunity.
Owyang, Stephanie Y; Zhang, Min; Walkup, Grace A; Chen, Grace E; Grasberger, Helmut; El-Zaatari, Mohamad; Kao, John Y
2017-11-01
TGF-β is an important target for many cancer therapies under development. In addition to suppressing anti-tumor immunity, it has pleiotropic direct pro- and anti- tumor effects. The actions of increased endogenous TGF-β production remain unclear, and may affect the outcomes of anti-TGF-β cancer therapy. We hypothesize that tumor-derived TGF-β (td-TGF-β) plays an important role in maintaining tumor remission by controlling tumor proliferation in vivo, and that decreasing td-TGF-β in the tumor microenvironment will result in tumor progression. The aim of this study was to examine the effect of TGF-β in the tumor microenvironment on the balance between its anti-proliferative and immunosuppressive effects. A murine BALB/c spontaneous colon adenocarcinoma cell line (CT26) was genetically engineered to produce increased active TGF-β (CT26-TGF-β), a dominant-negative soluble TGF-β receptor (CT26-TGF-β-R), or the empty neomycin cassette as control (CT26-neo). In vitro proliferation rates were measured. For in vivo studies, the three cell lines were injected into syngeneic BALB/c mice, and tumor growth was measured over time. Immunodeficient BALB/c nude mice were used to investigate the role of T and B cells. In vitro, CT26-TGF-β-R and CT26-TGF-β cells showed increased and suppressed proliferation, respectively, compared to control (CT26-neo), confirming TGF-β has direct anti-tumor effects. In vivo, we found that CT26-TGF-β-R cells displayed slower growth compared to control, likely secondary to reduced suppression of anti-tumor immunity, as this effect was ablated in immunodeficient BALB/c nude mice. However, CT26-TGF-β cells (excess TGF-β) exhibited rapid early growth compared to control, but later failed to progress. The same pattern was shown in immunodeficient BALB/c nude mice, suggesting the effect on tumor growth is direct, with minimal immune system involvement. There was minimal effect on systemic antitumor immunity as determined by peripheral antigen-specific splenocyte type 1 cytokine production and tumor growth rate of CT26-neo on the contralateral flank of the same mice. Although TGF-β has opposing effects on tumor growth, this study showed that excessive td-TGF-β in the tumor microenvironment renders the tumor non-proliferative. Depleting excess td-TGF-β may release this endogenous tumor suppressive mechanism, thus triggering the progression of the tumor. Therefore, our findings support cautions against using anti-TGF-β strategies in treating cancer, as this may tip the balance of anti-immunity vs. anti-tumor effects of TGF-β, leading to tumor progression instead of remission. Copyright © 2017 European Federation of Immunological Societies. All rights reserved.
Wein, Alexander N.; Liu, Shihui; Zhang, Yi; McKenzie, Andrew T.; Leppla, Stephen H.
2013-01-01
PA-U2, an engineered anthrax protective antigen that is activated by urokinase was combined with wild-type lethal factor in the treatment of Colo205 colon adenocarcinoma in vitro and B16-BL6 mouse melanoma in vitro and in vivo. This therapy was also tested in combination with the small molecule paclitaxel, based on prior reports suggesting synergy between ERK1/2 inhibition and chemotherapeutics. Colo205 was sensitive to PA-U2/LF while B16-BL6 was not. For the combination treatment of B16-BL6, paclitaxel showed a dose response in vitro, but cells remained resistant to PA-U2/LF even in the presence of paclitaxel. In vivo, each therapy slowed tumor progression, and an additive effect between the two was observed. Since LF targets tumor vasculature while paclitaxel is an anti-mitotic, it is possible the agents were acting against different cells in the stroma, precluding a synergistic effect. The engineered anthrax toxin PA-U2/LF warrants further development and testing, possibly in combination with an anti-angiogenesis therapy such as sunitinib or sorafinib. PMID:22843210
Synergy of Immune Checkpoint Blockade with a Novel Synthetic Consensus DNA Vaccine Targeting TERT.
Duperret, Elizabeth K; Wise, Megan C; Trautz, Aspen; Villarreal, Daniel O; Ferraro, Bernadette; Walters, Jewell; Yan, Jian; Khan, Amir; Masteller, Emma; Humeau, Laurent; Weiner, David B
2018-02-07
Immune checkpoint blockade antibodies are setting a new standard of care for cancer patients. It is therefore important to assess any new immune-based therapies in the context of immune checkpoint blockade. Here, we evaluate the impact of combining a synthetic consensus TERT DNA vaccine that has improved capacity to break tolerance with immune checkpoint inhibitors. We observed that blockade of CTLA-4 or, to a lesser extent, PD-1 synergized with TERT vaccine, generating more robust anti-tumor activity compared to checkpoint alone or vaccine alone. Despite this anti-tumor synergy, none of these immune checkpoint therapies showed improvement in TERT antigen-specific immune responses in tumor-bearing mice. αCTLA-4 therapy enhanced the frequency of T-bet + /CD44 + effector CD8 + T cells within the tumor and decreased the frequency of regulatory T cells within the tumor, but not in peripheral blood. CTLA-4 blockade synergized more than Treg depletion with TERT DNA vaccine, suggesting that the effect of CTLA-4 blockade is more likely due to the expansion of effector T cells in the tumor rather than a reduction in the frequency of Tregs. These results suggest that immune checkpoint inhibitors function to alter the immune regulatory environment to synergize with DNA vaccines, rather than boosting antigen-specific responses at the site of vaccination. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Kaumaya, Pravin TP
2015-01-01
There is a recognizable and urgent need to speed the development and application of novel, more efficacious anti-cancer vaccine therapies that inhibit tumor progression and prevent acquisition of tumor resistance. We have created and established a portfolio of validated peptide epitopes against multiple receptor tyrosine kinases and we have identified the most biologically effective combinations of EGFR (HER-1), HER-2, HER-3, VEGF and IGF-1R peptide vaccines/mimics to selectively inhibit multiple receptors and signaling pathways. The strategy is based on the use of chimeric conformational B-cell epitope peptides incorporating “promiscuous” T-cell epitopes that afford the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide antibodies as potential vaccines and peptide mimics that act as antagonists to receptor signaling that drive cancer metastasis. In this review we will summarize our ongoing studies based on the development of combinatorial immunotherapeutic strategies that act synergistically to enhance immune-mediated tumor killing aimed at addressing mechanisms of tumor resistance for several tumor types. PMID:25874884
Biotin decorated PLGA nanoparticles containing SN-38 designed for cancer therapy.
Mehdizadeh, Mozhdeh; Rouhani, Hasti; Sepehri, Nima; Varshochian, Reyhaneh; Ghahremani, Mohammad Hossein; Amini, Mohsen; Gharghabi, Mehdi; Ostad, Seyed Nasser; Atyabi, Fatemeh; Baharian, Azin; Dinarvand, Rassoul
2017-05-01
Active targeted chemotherapy is expected to provide more specific delivery of cytotoxic drugs to the tumor cells and hence reducing the side effects on healthy tissues. Due to the over expression of biotin receptors on cancerous cells as a result of further requirement for rapid proliferations, biotin can be a good candidate as a targeting agent. In this study, biotin decorated PLGA nanoparticles (NPs) containing SN-38 were prepared and in vitro studies were evaluated for their improved anti-cancer properties. In conclusion, biotin targeted PLGA NPs containing SN-38 showed preferential anticancer properties against tumor cells with biotin receptor over expression.
Bilateral Warthin tumor in psoriatic patients in therapy with multiple immunosuppressive therapy.
Burlando, M; Cozzani, E; Chinazzo, C; Larosa, M; Boggio, M; Parodi, A
2015-03-01
Anti-TNFα drugs have strongly changed the way in which we deal with moderate and severe psoriasis. However, it is debatable whether biological drugs could increase the risk of developing cancer. The correlation between anti-TNFα drugs and lymphomas is well-known and is reported in all the technical details of biologic drugs. However, the association between anti-TNFα agents and solid tumors is still controversial. The authors report a case of bilateral salivary gland tumor in a psoriatic patient treated with several immunosuppressive therapies including anti-TNFα inhibitors. © The Author(s) 2015.
Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng
2013-01-01
Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely 131I-hypericin (131I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications. PMID:23412554
Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng
2013-01-01
Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely (131)I-hypericin ((131)I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications.
Anti-inflammatory and Antitumor Activity of a Triple Therapy for a Colitis-Related Colorectal Cancer
Figueroa-González, Gabriela; García-Castillo, Verónica; Coronel-Hernández, Jossimar; López-Urrutia, Eduardo; León-Cabrera, Sonia; Arias-Romero, Luis E; Terrazas, LI; Rodríguez-Sosa, Miriam; Campos-Parra, Alma Delia; Zúñiga-Calzada, Eduardo; Lopez-Camarillo, Cesar; Morales-González, Fermín; Jacobo-Herrera, Nadia J; Pérez-Plasencia, Carlos
2016-01-01
Colorectal cancer (CRC) is an important health issue worldwide, accounting for the third place of cancer incidence. Chronic inflammation, as seen in Crohn's disease and ulcerative colitis, is the most important risk factor for developing CRC, as it favours neoplastic transformation by enhancing epithelial cell turnover in the colonic mucosa. Treatments for CRC need to be improved; currently they are not specific and have several secondary effects in patients. The main objective of this work was to evaluate a new therapeutic strategy against a colitis-related colorectal cancer in vivo and in vitro by targeting mTOR-signaling and lactate dehydrogenase A. Together, these mechanisms directly affect tumor energetics. In this study we evaluated a better and more efficient triple therapy against a chronic inflammation-associated CRC in vivo and in vitro. After the development of tumors, mice were treated intraperitoneally during a forty-day period with single drugs or different combinations of Metformin, Sodium Oxamate and Doxorubicin. Targeted inhibition of the mTOR pathway, lactate dehydrogenase A and the concurrent use of Doxorubicin (called in this work as triple therapy), leaded to a notable reduction in the number and size of tumors in mice, and, a significant pro-inflammatory cytokines reduction Besides, we showed that treated cells were induced to early autophagy, and apoptosis cell death. Our results represent a novel and robust therapeutic strategy for overcoming CRC by means of targeting central molecular pathways in cancer by the combination of Metformin, Oxamate, and Doxorubicin leading to a rapid tumor growth inhibition and a dramatic colorectal crypt restoration. Besides, drug combination resulted in a notable reduction of anti-inflammatory cytokines. PMID:27698900
Insights into the regulation of tumor dormancy by angiogenesis in experimental tumors.
Indraccolo, Stefano
2013-01-01
While it is well established that an angiogenic switch marks escape from tumor dormancy in xenograft models, the molecular pathways involved in the control of tumor cell proliferation or survival by angiogenesis remain substantially uncharted. We recently demonstrated that signals stemming from angiogenic endothelial cells (EC) regulate the behavior of dormant cancer cells. Specifically, we observed that the Notch ligand Dll4, induced by angiogenic factors in EC, triggers Notch3 activation in neighboring tumor cells and promotes a tumorigenic phenotype. Evidence that Notch signaling is involved in tumor dormancy was further strengthened by the observation that MKP-1 levels-a broadly expressed phosphatase-are controlled by Notch3 by regulation of protein ubiquitination and stability. Notch3 and MKP-1 levels are consistently low in dormant tumors, and this is accompanied by relatively high levels of phosphorylated p38, a canonical MKP-1 target previously associated with maintenance of tumor dormancy. These results elucidate a novel angiogenesis-driven mechanism involving the Notch and MAPK pathways that controls tumor dormancy. More in general, angiogenic EC could form part of the vascular niche, a specialized microenvironment which appears to regulate metastatic outgrowth and future studies are needed to clarify the contribution of EC in the regulation of cancer stem cell behavior in the niche.The notion that EC could communicate signals to tumor cells raises questions about the possibility of achieving tumor dormancy by counteracting angiogenesis. In experimental tumors, anti-VEGF drugs typically prune the newly formed vasculature, thus reducing microvessel density, blood flow, and perfusion. These drugs eventually increase hypoxia and cause tumor necrosis but dormancy is rarely observed. Our group recently reported that anti-VEGF therapy causes a dramatic depletion of glucose and an exhaustion of ATP levels in tumors. Moreover, we found that the central metabolic checkpoint LKB1/AMPK-a cellular sensor of ATP levels that supports cell viability in response to energy stress-is activated by anti-VEGF therapy in experimental tumors and it has a key role in induction of sustained tumor regression. These functional links between activation of the LKB1/AMPK by anti-angiogenic therapy and tumor dormancy suggest a role for metabolism in the regulation of this phenomenon.
TAM receptors Tyro3 and Mer as novel targets in colorectal cancer.
Schmitz, Robin; Valls, Aida Freire; Yerbes, Rosario; von Richter, Sophie; Kahlert, Christoph; Loges, Sonja; Weitz, Jürgen; Schneider, Martin; Ruiz de Almodovar, Carmen; Ulrich, Alexis; Schmidt, Thomas
2016-08-30
CRC remains the third most common cancer worldwide with a high 5-year mortality rate in advanced cases. Combined with chemotherapy, targeted therapy is an additional treatment option. However as CRC still escapes targeted therapy the vigorous search for new targets is warranted to increase patients´ overall survival. In this study we describe a new role for Gas6/protein S-TAM receptor interaction in CRC. Gas6, expressed by tumor-infiltrating M2-like macrophages, enhances malignant properties of tumor cells including proliferation, invasion and colony formation. Upon chemotherapy macrophages increase Gas6 synthesis, which significantly attenuates the cytotoxic effect of 5-FU chemotherapy on tumor cells. The anti-coagulant protein S has similar effects as Gas6.In CRC patient samples Tyro3 was overexpressed within the tumor. In-vitro inhibition of Tyro3 and Mer reduces tumor cell proliferation and sensitizes tumor cells to chemotherapy. Moreover high expression of Tyro3 and Mer in tumor tissue significantly shortens CRC patients´ survival. Various in vitro models were used to investigate the role of Gas6 and its TAM receptors in human CRC cells, by stimulation (rhGas6) and knockdown (siRNA) of Axl, Tyro3 and Mer. In terms of a translational research, we additionally performed an expression analysis in human CRC tissue and analyzed the medical record of these patients. Tyro3 and Mer represent novel therapeutic targets in CRC and warrant further preclinical and clinical investigation in the future.
Abdelaziz, Hadeer M; Gaber, Mohamed; Abd-Elwakil, Mahmoud M; Mabrouk, Moustafa T; Elgohary, Mayada M; Kamel, Nayra M; Kabary, Dalia M; Freag, May S; Samaha, Magda W; Mortada, Sana M; Elkhodairy, Kadria A; Fang, Jia-You; Elzoghby, Ahmed O
2018-01-10
There is progressive evolution in the use of inhalable drug delivery systems (DDSs) for lung cancer therapy. The inhalation route offers many advantages, being non-invasive method of drug administration as well as localized delivery of anti-cancer drugs to tumor tissue. This article reviews various inhalable colloidal systems studied for tumor-targeted drug delivery including polymeric, lipid, hybrid and inorganic nanocarriers. The active targeting approaches for enhanced delivery of nanocarriers to lung cancer cells were illustrated. This article also reviews the recent advances of inhalable microparticle-based drug delivery systems for lung cancer therapy including bioresponsive, large porous, solid lipid and drug-complex microparticles. The possible strategies to improve the aerosolization behavior and maintain the critical physicochemical parameters for efficient delivery of drugs deep into lungs were also discussed. Therefore, a strong emphasis is placed on the approaches which combine the merits of both nanocarriers and microparticles including inhalable nanocomposites and nanoaggregates and on the optimization of such formulations using the proper techniques and carriers. Finally, the toxicological behavior and market potential of the inhalable anti-cancer drug delivery systems are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Targeted Immune Therapy of Ovarian Cancer
Knutson, Keith L.; Karyampudi, Lavakumar; Lamichhane, Purushottam; Preston, Claudia
2014-01-01
Clinical outcomes, such as recurrence free survival and overall survival, in ovarian cancer are quite variable, independent of common characteristics such as stage, response to therapy and grade. This disparity in outcomes warrants further exploration and therapeutic targeting into the interaction between the tumor and host. One compelling host characteristic that contributes both to the initiation and progression of ovarian cancer is the immune system. Hundreds of studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease. Recent studies also show that anti-tumor immunity is often negated by immune regulatory cells present in the tumor microenvironment. Regulatory immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological targets that influence ovarian cancer outcome as well as include an update on newer immunotherapeutic strategies. PMID:25544369
Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Yingfeng; Liu, Li; Zhao, Dongliang
Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less
Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2
Tu, Yingfeng; Liu, Li; Zhao, Dongliang; ...
2015-09-08
Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less
Mortara, Lorenzo; Balza, Enrica; Sassi, Francesca; Castellani, Patrizia; Carnemolla, Barbara; De Lerma Barbaro, Andrea; Fossati, Sara; Tosi, Giovanna; Accolla, Roberto S; Borsi, Laura
2007-12-01
Treatment of tumor-bearing mice with mouse (m)TNF-alpha, targeted to tumor vasculature by the anti-ED-B fibronectin domain antibody L19(scFv) and combined with melphalan, induces a therapeutic immune response. Upon treatment, a highly efficient priming of CD4+ T cells and consequent activation and maturation of CD8+ CTL effectors is generated, as demonstrated by in vivo depletion and adoptive cell transfer experiments. Immunohistochemical analysis of the tumor tissue demonstrated massive infiltration of CD4+ and CD8+ T cells 6 days after treatment and much earlier in the anamnestic response to tumor challenge in cured mice. In fact, the curative treatment with L19mTNF-alpha and melphalan resulted in long-lasting antitumor immune memory, accompanied by a mixed Th1/Th2-type response and significant in vitro tumor-specific cytolytic activity. Finally, the combined treatment reduced the percentage and absolute number of CD4+CD25+ regulatory T cells in the tumor-draining lymph nodes of mice responding to therapy, and this was associated with the establishment of protective immunity. These findings pave the way for alternative therapeutic strategies based on the targeted delivery of biological and pharmacological cytotoxic compounds that not only kill most of the tumor cells but, more importantly, trigger an effective and long-lasting antitumor adaptive immune response.
Campos, María; Prior, Celia; Warleta, Fernando; Zudaire, Isabel; Ruíz-Mora, Jesús; Catena, Raúl; Calvo, Alfonso; Gaforio, José J.
2008-01-01
The presence of circulating tumor cells (CTCs) in breast cancer patients has been proven to have clinical relevance. Cytogenetic characterization of these cells could have crucial relevance for targeted cancer therapies. We developed a method that combines an immunomagnetic selection of CTCs from peripheral blood with the fluorescence immunophenotyping and interphase cytogenetics as a tool for investigation of neoplasm (FICTION) technique. Briefly, peripheral blood (10 ml) from healthy donors was spiked with a predetermined number of human breast cancer cells. Nucleated cells were separated by double density gradient centrifugation of blood samples. Tumor cells (TCs) were immunomagnetically isolated with an anti-cytokeratin antibody and placed onto slides for FICTION analysis. For immunophenotyping and genetic characterization of TCs, a mixture of primary monoclonal anti-pancytokeratin antibodies was used, followed by fluorescent secondary antibodies, and finally hybridized with a TOP2A/HER-2/CEP17 multicolor probe. Our results show that TCs can be efficiently isolated from peripheral blood and characterized by FICTION. Because genetic amplification of TOP2A and ErbB2 (HER-2) in breast cancer correlates with response to anthracyclines and herceptin therapies, respectively, this novel methodology could be useful for a better classification of patients according to the genetic alterations of CTCs and for the application of targeted therapies. (J Histochem Cytochem 56:667–675, 2008) PMID:18413646
Molecular targets and anti-cancer potential of escin.
Cheong, Dorothy H J; Arfuso, Frank; Sethi, Gautam; Wang, Lingzhi; Hui, Kam Man; Kumar, Alan Prem; Tran, Thai
2018-05-28
Escin is a mixture of triterpenoid saponins extracted from the horse chestnut tree, Aesculus hippocastanum. Its potent anti-inflammatory and anti-odematous properties makes it a choice of therapy against chronic venous insufficiency and odema. More recently, escin is being actively investigated for its potential activity against diverse cancers. It exhibits anti-cancer effects in many cancer cell models including lung adenocarcinoma, hepatocellular carcinoma and leukemia. Escin also attenuates tumor growth and metastases in various in vivo models. Importantly, escin augments the effects of existing chemotherapeutic drugs, thereby supporting the role of escin as an adjunct or alternative anti-cancer therapy. The beneficial effects of escin can be attributed to its inhibition of proliferation and induction of cell cycle arrest. By regulating transcription factors/growth factors mediated oncogenic pathways, escin also potentially mitigates chronic inflammatory processes that are linked to cancer survival and resistance. This review provides a comprehensive overview of the current knowledge of escin and its potential as an anti-cancer therapy through its anti-proliferative, pro-apoptotic, and anti-inflammatory effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Tumor-related interleukins: old validated targets for new anti-cancer drug development.
Setrerrahmane, Sarra; Xu, Hanmei
2017-09-19
In-depth knowledge of cancer molecular and cellular mechanisms have revealed a strong regulation of cancer development and progression by the inflammation which orchestrates the tumor microenvironment. Immune cells, residents or recruited, in the inflammation milieu can have rather contrasting effects during cancer development. Accumulated clinical and experimental data support the notion that acute inflammation could exert an immunoprotective effect leading to tumor eradication. However, chronic immune response promotes tumor growth and invasion. These reactions are mediated by soluble mediators or cytokines produced by either host immune cells or tumor cells themselves. Herein, we provide an overview of the current understanding of the role of the best-validated cytokines involved in tumor progression, IL-1, IL-4 and IL-6; in addition to IL-2 cytokines family, which is known to promote tumor eradication by immune cells. Furthermore, we summarize the clinical attempts to block or bolster the effect of these tumor-related interleukins in anti-cancer therapy development.
Li, Hua-Jung; Everts, Maaike; Pereboeva, Larisa; Komarova, Svetlana; Idan, Anat; Curiel, David T; Herschman, Harvey R
2007-06-01
Adenovirus vectors have a number of advantages for gene therapy. However, because of their lack of tumor tropism and their preference for liver infection following systemic administration, they cannot be used for systemic attack on metastatic disease. Many epithelial tumors (e.g., colon, lung, and breast) express carcinoembryonic antigen (CEA). To block the natural hepatic tropism of adenovirus and to "retarget" the virus to CEA-expressing tumors, we used a bispecific adapter protein (sCAR-MFE), which fuses the ectodomain of the coxsackie/adenovirus receptor (sCAR) with a single-chain anti-CEA antibody (MFE-23). sCAR-MFE untargets adenovirus-directed luciferase transgene expression in the liver by >90% following systemic vector administration. Moreover, sCAR-MFE can "retarget" adenovirus to CEA-positive epithelial tumor cells in cell culture, in s.c. tumor grafts, and in hepatic tumor grafts. The sCAR-MFE bispecific adapter should, therefore, be a powerful agent to retarget adenovirus vectors to epithelial tumor metastases.
Mosafer, Jafar; Abnous, Khalil; Tafaghodi, Mohsen; Mokhtarzadeh, Ahad; Ramezani, Mohammad
2017-04-01
A superparamagnetic iron oxide nanoparticles (SPIONs)/doxorubicin (Dox) co-loaded poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles targeted with AS1411 aptamer (Apt) against murine C26 colon carcinoma cells is successfully developed via a modified multiple emulsion solvent evaporation method for theranostic purposes. The mean size of SPIO/Dox-NPs (NPs) was 130nm with a narrow particle size distribution and Dox loading of 3.0%. The SPIO loading of 16.0% and acceptable magnetic properties are obtained and analyzed using thermogravimetric and vibration simple magnetometer analysis, respectively. The best release profile from NPs was observed in PBS at pH 7.4, in which very low burst release was observed. Nucleolin is a targeting ligand to facilitate anti-tumor delivery of AS1411-targeted NPs. The Apt conjugation to NPs (Apt-NPs) enhanced cellular uptake of Dox in C26 cancer cells. Apt-NPs enhance the cytotoxicity effect of Dox followed by a significantly higher tumor inhibition and prolonged animal survival in mice bearing C26 colon carcinoma xenografts. Furthermore, Apt-NPs enhance the contrast of magnetic resonance images in tumor site. Altogether, these Apt-NPs could be considered as a powerful tumor-targeted delivery system for their potential as dual therapeutic and diagnostic applications in cancers. Copyright © 2016 Elsevier B.V. All rights reserved.
Androgen receptor activation: a prospective therapeutic target for bladder cancer?
Mizushima, Taichi; Tirador, Kathleen A; Miyamoto, Hiroshi
2017-03-01
Patients with non-muscle-invasive or muscle-invasive bladder cancer undergoing surgery and currently available conventional therapy remain having a high risk of tumor recurrence or progression, respectively. Novel targeted molecular therapy is therefore expected to improve patient outcomes. Meanwhile, substantially higher incidence of bladder cancer in men has prompted research on androgen-mediated androgen receptor (AR) signaling in this malignancy. Indeed, preclinical evidence has suggested that AR signaling plays an important role in urothelial carcinogenesis and tumor outgrowth as well as resistance to some of the currently available conventional non-surgical therapies. Areas covered: We summarize and discuss available data suggesting the involvement of AR and its potential downstream targets in the development and progression of bladder cancer. Associations between AR signaling and sensitivity to cisplatin/doxorubicin or bacillus Calmette-Guérin treatment are also reviewed. Expert opinion: AR activation is likely to correlate with the promotion of urothelial carcinogenesis and cancer outgrowth as well as resistance to conventional therapies. Molecular therapy targeting the AR may thus provide effective chemopreventive and therapeutic approaches for urothelial cancer. Accordingly, bladder cancer can now be considered as an endocrine-related neoplasm. Clinical application of various anti-AR therapies available for AR-dependent prostate cancer to bladder cancer patients is anticipated.
Neschadim, Anton; Pritzker, Laura B; Pritzker, Kenneth P H; Branch, Donald R; Summerlee, Alastair J S; Trachtenberg, John; Silvertown, Joshua D
2014-06-01
Androgen hormones and the androgen receptor (AR) pathway are the main targets of anti-hormonal therapies for prostate cancer. However, resistance inevitably develops to treatments aimed at the AR pathway resulting in androgen-independent or hormone-refractory prostate cancer (HRPC). Therefore, there is a significant unmet need for new, non-androgen anti-hormonal strategies for the management of prostate cancer. We demonstrate that a relaxin hormone receptor antagonist, AT-001, an analog of human H2 relaxin, represents a first-in-class anti-hormonal candidate treatment designed to significantly curtail the growth of androgen-independent human prostate tumor xenografts. Chemically synthesized AT-001, administered subcutaneously, suppressed PC3 xenograft growth by up to 60%. AT-001 also synergized with docetaxel, standard first-line chemotherapy for HRPC, to suppress tumor growth by more than 98% in PC3 xenografts via a mechanism involving the downregulation of hypoxia-inducible factor 1 alpha and the hypoxia-induced response. Our data support developing AT-001 for clinical use as an anti-relaxin hormonal therapy for advanced prostate cancer.
Paclitaxel targets VEGF-mediated angiogenesis in ovarian cancer treatment
Ai, Bin; Bie, Zhixin; Zhang, Shuai; Li, Ailing
2016-01-01
Ovarian cancer is one of the gynecologic cancers with the highest mortality, wherein vascular endothelial growth factor (VEGF) is involved in regulating tumor vascularization, growth, migration, and invasion. VEGF-mediated angiogenesis in tumors has been targeted in various cancer treatments, and anti-VEGF therapy has been used clinically for treatment of several types of cancer. Paclitaxel is a natural antitumor agent in the standard front-line treatment that has significant efficiency to treat advanced cancers, including ovarian cancer. Although platinum/paclitaxel-based chemotherapy has good response rates, most patients eventually relapse because the disease develops drug resistance. We aim to review the recent advances in paclitaxel treatment of ovarian cancer via antiangiogenesis. Single-agent therapy may be used in selected cases of ovarian cancer. However, to prevent drug resistance, drug combinations should be identified for optimal effectiveness and existing therapies should be improved. PMID:27648354
Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu
2016-02-17
Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn't showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody-drug conjugates (ADC) or immunotoxins.
A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix
Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu
2016-01-01
Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn’t showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody–drug conjugates (ADC) or immunotoxins. PMID:26883295
Research Advances in CKLFSF-like MARVEL Transmembrane Domain Containing Member 3.
Hu, Feng-zhan; Sheng, Zheng-zuo; Qin, Cai-peng; Xu, Tao
2016-06-10
CKLF-like MARVEL transmembrane domain containing member/chemokine-like factor super family member (CKLFSF/CMTM) is a novel tumor suppressor gene. CMTM3 is broadly expressed in normal human tissues and evolutionary conserved,especially in testis,spleen,and some cells of peripheral blood mononuclear cells. However,its expression is undetectable or down-regulated in most carcinoma cell lines and tissues. Restoration of CMTM3 may inhibit the proliferation,migration,and invasion of carcinoma cells. Although the exact mechanism of its anti-tumor activity remains unclear,CKLFSF3/CMTM3 is closely connected with immune system and associated with sex during tumorigenesis. The study advances of CKLFSF3/CMTM3 are elaborated in this review as CMTM3 may be a new target in the gene therapies for tumors,especially genitourinary tumors,while further studies on CMTM3 and its anti-tumor mechanisms are warranted.
NASA Astrophysics Data System (ADS)
Hu, Kelei; Zhou, Huige; Liu, Ying; Liu, Zhu; Liu, Jing; Tang, Jinglong; Li, Jiayang; Zhang, Jiakun; Sheng, Wang; Zhao, Yuliang; Wu, Yan; Chen, Chunying
2015-04-01
Cancer stem cells (CSCs) have the ability to transform into bulk cancer cells, to promote tumor growth and establish tumor metastasis. To effectively inhibit tumor growth and prevent metastasis, treatments with conventional chemotherapy drugs should be combined with CSC targeted drugs. In this study, we describe the synthesis and characterization of a new amphiphilic polymer, hyaluronic acid-cystamine-polylactic-co-glycolic acid (HA-SS-PLGA), composed of a hydrophobic PLGA head and a hydrophilic HA segment linked by a bioreducible disulfide bond. With a double emulsion method, a nano delivery system was constructed to deliver doxorubicin (DOX) and cyclopamine (CYC, a primary inhibitor of the hedgehog signaling pathway of CSCs) to both a CD44-overexpressing breast CSC subpopulation and bulk breast cancer cells and allow an on-demand release. The resulting drug-loaded NPs exhibited a redox-responsive drug release profile. Dual drug-loaded particles potently diminished the number and size of tumorspheres and HA showed a targeting effect towards breast CSCs. In vivo combination therapy further demonstrated a remarkable synergistic anti-tumor effect and prolonged survival compared to mono-therapy using the orthotopic mammary fat pad tumor growth model. The co-delivery of drug and the CSC specific inhibitor towards targeted cancer chemotherapeutics provides an insight into anticancer strategy with facile control and high efficacy.Cancer stem cells (CSCs) have the ability to transform into bulk cancer cells, to promote tumor growth and establish tumor metastasis. To effectively inhibit tumor growth and prevent metastasis, treatments with conventional chemotherapy drugs should be combined with CSC targeted drugs. In this study, we describe the synthesis and characterization of a new amphiphilic polymer, hyaluronic acid-cystamine-polylactic-co-glycolic acid (HA-SS-PLGA), composed of a hydrophobic PLGA head and a hydrophilic HA segment linked by a bioreducible disulfide bond. With a double emulsion method, a nano delivery system was constructed to deliver doxorubicin (DOX) and cyclopamine (CYC, a primary inhibitor of the hedgehog signaling pathway of CSCs) to both a CD44-overexpressing breast CSC subpopulation and bulk breast cancer cells and allow an on-demand release. The resulting drug-loaded NPs exhibited a redox-responsive drug release profile. Dual drug-loaded particles potently diminished the number and size of tumorspheres and HA showed a targeting effect towards breast CSCs. In vivo combination therapy further demonstrated a remarkable synergistic anti-tumor effect and prolonged survival compared to mono-therapy using the orthotopic mammary fat pad tumor growth model. The co-delivery of drug and the CSC specific inhibitor towards targeted cancer chemotherapeutics provides an insight into anticancer strategy with facile control and high efficacy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01084e
NASA Astrophysics Data System (ADS)
Harpel, Kaitlin; Leung, Sarah; Faith Rice, Photini; Jones, Mykella; Barton, Jennifer K.; Bommireddy, Ramireddy
2016-02-01
The development of colorectal cancer in the azoxymethane-induced mouse model can be observed by using a miniaturized optical coherence tomography (OCT) imaging system. This system is uniquely capable of tracking disease development over time, allowing for the monitoring of morphological changes in the distal colon due to tumor development and the presence of lymphoid aggregates. By using genetically engineered mouse models deficient in Interleukin 6 (IL-6) and Smad family member 3 (Smad3), the role of inflammation on tumor development and the immune system can be elucidated. Smad3 knockout mice develop inflammatory response, wasting, and colitis associated cancer while deficiency of proinflammatory cytokine IL-6 confers resistance to tumorigenesis. We present pilot data showing that the Smad3 knockout group had the highest tumor burden, highest spleen weight, and lowest thymus weight. The IL-6 deficiency in Smad3 knockout mice prevented tumor development, splenomegaly, and thymic atrophy. This finding suggests that agents that inhibit IL-6 (e.g. anti-IL-6 antibody, non-steroidal anti-inflammatory drugs [NSAIDs], etc.) could be used as novel therapeutic agents to prevent disease progression and increase the efficacy of anti-cancer agents. OCT can also be useful for initiating early therapy and assessing the benefit of combination therapy targeting inflammation.
Epstein-Barr virus infection and nasopharyngeal carcinoma: the other side of the coin.
Perri, Francesco; Della Vittoria Scarpati, Giuseppina; Giuliano, Mario; D'Aniello, Carmine; Gnoni, Antonio; Cavaliere, Carla; Licchetta, Antonella; Pisconti, Salvatore
2015-11-01
Oncogenic viruses may have a significant impact on the therapeutic management of several malignancies besides their well-known role in tumor pathogenesis. Epstein-Barr virus (EBV) induces neoplastic transformation of epithelial cells of the nasopharynx by various molecular mechanisms mostly involving activation of oncogenes and inactivation of tumor-suppressor genes. EBV infection can also induce the expression of several immunogenic peptides on the plasma membrane of the infected cells. Importantly, these virus-related antigens may be used as targets for antitumor immunotherapy-based treatment strategies. Two different immunotherapy strategies, namely adoptive and active immunotherapy, have been developed and strongly improved in the recent years. Furthermore, EBV infection may influence the use of targeted therapies for nasopharyngeal carcinoma (NPC) considering that the presence of EBV can induce important modifications in cell signaling. As an example, latent membrane protein type 1 is a viral transmembrane protein mainly involved in the cancerogenesis process, which can also mediate overexpression of the epidermal growth factor receptor (EGFR) in NPC cells, rendering them more sensitive to anti-EGFR therapy. Finally, EBV may induce epigenetic changes in the infected cells, such as DNA hypermethylation and histone deacetylation, that can sustain tumor growth and can thus be considered potential targets for novel therapies. In conclusion, EBV infection can modify important biological features of NPC cells, rendering them more vulnerable to both immunotherapy and targeted therapy.
Alginate hydrogel improves anti-angiogenic bevacizumab activity in cancer therapy.
Ferreira, Natália N; M B Ferreira, Leonardo; Miranda-Gonçalves, Vera; Reis, Rui M; Seraphim, Thiago V; Borges, Júlio César; Baltazar, Fátima; Gremião, Maria Palmira D
2017-10-01
Anti-vascular endothelial growth factor (anti-VEGF) therapy applied to solid tumors is a promising strategy, yet, the challenge to deliver these agents at high drug concentrations together with the maintenance of therapeutic doses locally, at the tumor site, minimizes its benefits. To overcome these obstacles, we propose the development of a bevacizumab-loaded alginate hydrogel by electrostatic interactions to design a delivery system for controlled and anti-angiogenic therapy under tumor microenvironmental conditions. The tridimensional hydrogel structure produced provides drug stability and a system able to be introduced as a flowable solution, stablishing a depot after local administration. Biological performance by the chick embryo chorioallantoic membrane (CAM) assay indicated a pH-independent improved anti-angiogenic activity (∼50%) compared to commercial available anti-VEGF drug. Moreover, there was a considerable regression in tumor size when treated with this system. Immunohistochemistry highlighted a reduced number and disorganization of microscopic blood vessels resulting from applied therapy. These results suggest that the developed hydrogel is a promising approach to create an innovative delivery system that offers the possibility to treat different solid tumors by intratumoral administration. Copyright © 2017 Elsevier B.V. All rights reserved.
Kearl, Tyce J; Jing, Weiqing; Gershan, Jill A; Johnson, Bryon D
2013-06-01
Early phase clinical trials targeting the programmed death receptor-1/ligand-1 (PD-1/PD-L1) pathway to overcome tumor-mediated immunosuppression have reported promising results for a variety of cancers. This pathway appears to play an important role in the failure of immune reactivity to malignant plasma cells in multiple myeloma patients, as the tumor cells express relatively high levels of PD-L1, and T cells show increased PD-1 expression. In the current study, we demonstrate that PD-1/PD-L1 blockade with a PD-L1-specific Ab elicits rejection of a murine myeloma when combined with lymphodepleting irradiation. This particular combined approach by itself has not previously been shown to be efficacious in other tumor models. The antitumor effect of lymphodepletion/anti-PD-L1 therapy was most robust when tumor Ag-experienced T cells were present either through cell transfer or survival after nonmyeloablative irradiation. In vivo depletion of CD4 or CD8 T cells completely eliminated antitumor efficacy of the lymphodepletion/anti-PD-L1 therapy, indicating that both T cell subsets are necessary for tumor rejection. Elimination of myeloma by T cells occurs relatively quickly as tumor cells in the bone marrow were nearly nondetectable by 5 d after the first anti-PD-L1 treatment, suggesting that antimyeloma reactivity is primarily mediated by preactivated T cells, rather than newly generated myeloma-reactive T cells. Anti-PD-L1 plus lymphodepletion failed to improve survival in two solid tumor models, but demonstrated significant efficacy in two hematologic malignancy models. In summary, our results support the clinical testing of lymphodepletion and PD-1/PD-L1 blockade as a novel approach for improving the survival of patients with multiple myeloma.
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy. PMID:28638483
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.
Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J; Patz, Edward F; Li, Shi-You; He, You-Wen
2016-09-01
In contrast to its inhibitory effects on many cells, IL10 activates CD8(+) tumor-infiltrating lymphocytes (TIL) and enhances their antitumor activity. However, CD8(+) TILs do not routinely express IL10, as autocrine complement C3 inhibits IL10 production through complement receptors C3aR and C5aR. CD8(+) TILs from C3-deficient mice, however, express IL10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T-cell- and IL10-dependent manner; human TILs expanded with IL2 plus IL10 increase the killing of primary tumors in vitro compared with IL2-treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8(+) TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. Our data suggest novel strategies to enhance immunotherapies: a combined blockade of complement signaling by antagonists to C3aR, C5aR, and anti-PD-1 to enhance anti-PD-1 efficacy; a targeted IL10 delivery to CD8(+) TILs using anti-PD-1-IL10 or anti-CTLA4-IL10 fusion proteins; and the addition of IL10 in TIL expansion for adoptive cellular therapy. Cancer Discov; 6(9); 1022-35. ©2016 AACR.See related commentary by Peng et al., p. 953This article is highlighted in the In This Issue feature, p. 932. ©2016 American Association for Cancer Research.
Yang, Yuhan; He, Lili; Liu, Yongmei; Xia, Shan; Fang, Aiping; Xie, Yafei; Gan, Li; He, Zhiyao; Tan, Xiaoyue; Jiang, Chunling; Tong, Aiping; Song, Xiangrong
2016-08-31
Cervical cancer presents extremely low PEDF expression which is associated with tumor progression and poor prognosis. In this study, folate receptor α (FRα)-targeted nano-liposomes (FLP) were designed to enhance the anti-tumor effect by targeting delivery of exogenous PEDF gene to cervical cancer cells. The targeting molecule F-PEG-Chol was firstly synthesized by a novel simpler method. FLP encapsulating PEDF gene (FLP/PEDF) with a typical lipid-membrane structure were prepared by a film dispersion method. The transfection experiment found FLP could effectively transfect human cervical cancer cells (HeLa cells). FLP/PEDF significantly inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC cells) and suppressed adhension, invasion and migration of HeLa cells in vitro. In the abdominal metastatic tumor model of cervical cancer, FLP/PEDF administered by intraperitoneal injection exhibited a superior anti-tumor effect probably due to the up-regulated PEDF. FLP/PEDF could not only sharply reduce the microvessel density but also dramatically inhibit proliferation and markedly induce apoptosis of tumor cells in vivo. Moreover, the preliminary safety investigation revealed that FLP/PEDF had no obvious toxicity. These results clearly showed that FLP were desired carriers for PEDF gene and FLP/PEDF might represent a potential novel strategy for gene therapy of cervical cancer.
Yang, Yuhan; He, Lili; Liu, Yongmei; Xia, Shan; Fang, Aiping; Xie, Yafei; Gan, Li; He, Zhiyao; Tan, Xiaoyue; Jiang, Chunling; Tong, Aiping; Song, Xiangrong
2016-01-01
Cervical cancer presents extremely low PEDF expression which is associated with tumor progression and poor prognosis. In this study, folate receptor α (FRα)-targeted nano-liposomes (FLP) were designed to enhance the anti-tumor effect by targeting delivery of exogenous PEDF gene to cervical cancer cells. The targeting molecule F-PEG-Chol was firstly synthesized by a novel simpler method. FLP encapsulating PEDF gene (FLP/PEDF) with a typical lipid-membrane structure were prepared by a film dispersion method. The transfection experiment found FLP could effectively transfect human cervical cancer cells (HeLa cells). FLP/PEDF significantly inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC cells) and suppressed adhension, invasion and migration of HeLa cells in vitro. In the abdominal metastatic tumor model of cervical cancer, FLP/PEDF administered by intraperitoneal injection exhibited a superior anti-tumor effect probably due to the up-regulated PEDF. FLP/PEDF could not only sharply reduce the microvessel density but also dramatically inhibit proliferation and markedly induce apoptosis of tumor cells in vivo. Moreover, the preliminary safety investigation revealed that FLP/PEDF had no obvious toxicity. These results clearly showed that FLP were desired carriers for PEDF gene and FLP/PEDF might represent a potential novel strategy for gene therapy of cervical cancer. PMID:27576898
Chondroitin sulfate-functionalized polyamidoamine as a tumor-targeted carrier for miR-34a delivery.
Chen, Wenqi; Liu, Yong; Liang, Xiao; Huang, Yu; Li, Quanshun
2017-07-15
Chondroitin sulfate (CS) was modified on a polyamidoamine dendrimer (PAMAM) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The derivative CS-PAMAM was demonstrated to achieve an efficient cellular uptake of miR-34a in a CD44-dependent endocytosis way and further facilitate the endosomal escape of miR-34a after 4h. Through the miR-34a delivery, obvious inhibition of cell proliferation could be detected which was attributed to the enhancement of cell apoptosis and cell cycle arrest, and meanwhile the cell migration and invasion has been observed to be inhibited. Finally, the intravenous injection of CS-PAMAM/miR-34a formulation into mice bearing human lung adenocarcinoma cell A549 xenografts could efficiently inhibit the tumor growth and induce the tumor apoptosis owing to the enhanced accumulation of miR-34a in tumor tissue. Overall, CS-PAMAM is potential to be used as a tumor-targeted oligonucleotide carrier for achieving tumor gene therapy. The cationic dendrimer PAMAM was modified by chondroitin sulfate (CS) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The introduction of CS could achieve an efficient cellular uptake and intracellular transfection of miR-34a in a CD44-dependent endocytosis manner. The miR-34a delivery could execute the anti-proliferation activity by simultaneously inducing cell apoptosis and cell cycle arrest, and also the anti-migration activity. The CS-PAMAM-mediated systemic delivery of miR-34a showed significant inhibition of tumor growth and induction of tumor apoptosis using a mice model of subcutaneously implanted tumors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra
2013-12-15
Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumormore » growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. - Highlights: • The oncolytic parvovirus H-1PV can target endothelial cells. • Abortive viral cycle upon infection of endothelial cells with H-1PV. • Inhibition of VEGF expression and KS-IMM tumor growth by H-1PV.« less
Lu, Zhihe; Su, Jingrong; Li, Zhengrong; Zhan, Yuzhu; Ye, Decai
2017-01-01
Gemcitabine (GEM) and Baicalein (BCL) are reported to have anti-tumor effects including pancreatic cancer. Hyaluronic acid (HA) can bind to over-expressed receptors in various kinds of cancer cells. The aim of this study is to develop prodrugs containing HA, BCL and GEM, and construct nanomedicine incorporate GEM and BCL in the core and HA on the surface. This system could target the cancer cells and co-deliver the drugs. GEM-stearic acid lipid prodrug (GEM-SA) and hyaluronic acid-amino acid-baicalein prodrug (HA-AA-BCL) were synthesized. Then, GEM and BCL prodrug-based targeted nanostructured lipid carriers (HA-GEM-BCL NLCs) were prepared by the nanoprecipitation technique. The in vitro cytotoxicity studies of the NLCs were evaluated on AsPC1 pancreatic cancer cell line. In vivo anti-tumor effects were observed on the murine-bearing pancreatic cancer model. HA-GEM-BCL NLCs were effective in entering pancreatic cancer cells over-expressing HA receptors, and showed cytotoxicity of tumor cells in vitro. In vivo study revealed significant tumor growth inhibition ability of HA-GEM-BCL NLCs in murine pancreatic cancer model. It could be concluded that HA-GEM-BCL NLCs could be featured as promising co-delivery, tumor-targeted nanomedicine for the treatment of cancers.
Eliminating Cancer Stem Cells by Targeting Embryonic Signaling Pathways.
Oren, Ohad; Smith, B Douglas
2017-02-01
Dramatic advances have been made in the understanding of cancer over the past decade. Prime among those are better appreciation of the biology of cancer and the development of targeted therapies. Despite these improvements, however, most tumors remain refractory to anti-cancer medications and frequently recur. Cancer Stem Cells (CSCs), which in some cases express markers of pluripotency (e.g., Oct-4), share many of the molecular features of normal stem cells. These cells have been hypothesised to play a role in tumor resistance and relapse. They exhibit dependence on many primitive regulatory pathways and may be best viewed in the context of embryonic signaling pathways. In this article, we review important embryonic signaling cascades and their differential expression in CSCs. We also discuss these pathways as actionable targets for novel therapies in hopes that eliminating cancer stem cells will lead to an improvement in overall survival for patients.
The anti-tumor activity of E1A and its implications in cancer therapy.
Chang, Yi-Wen; Hung, Mien-Chie; Su, Jen-Liang
2014-06-01
The adenovirus type 5 E1A protein (E1A) plays a critical role in anti-cancer gene therapy and has been tested in clinical trials. The expression of E1A significantly reduces tumorigenesis, promotes cell death, and inhibits cancer cell mobility. Chemosensitization is one of the anti-tumor effects of E1A, increasing in vitro and in vivo sensitization of anti-cancer drugs, including cisplatin, gemcitabine, etoposide, doxorubicin, paclitaxel, and tumor necrosis factor-related apoptosis-inducing ligand and histone deacetylase inhibitors in different types of cancer cells. E1A also demonstrates anti-metastasis activity through various molecular mechanisms such as the repression of protease expression, suppression of HER2/neu and downregulation of microRNA (miR-520h). Moreover, E1A has been reported to reprogram transcription in tumor cells and stabilize tumor suppressors such as PP2A/C, p21 and p53. Because E1A plays a potentially significant role in anti-tumor therapy, there exists an urgent need to study the anti-cancer activities of E1A. This paper presents a review of our current understanding of the tumor-suppressive functions and molecular regulation of E1A, as well as the potential clinical applications of E1A.
Sequential cancer immunotherapy: targeted activity of dimeric TNF and IL-8
Adrian, Nicole; Siebenborn, Uta; Fadle, Natalie; Plesko, Margarita; Fischer, Eliane; Wüest, Thomas; Stenner, Frank; Mertens, Joachim C.; Knuth, Alexander; Ritter, Gerd; Old, Lloyd J.; Renner, Christoph
2009-01-01
Polymorphonuclear neutrophils (PMNs) are potent effectors of inflammation and their attempts to respond to cancer are suggested by their systemic, regional and intratumoral activation. We previously reported on the recruitment of CD11b+ leukocytes due to tumor site-specific enrichment of TNF activity after intravenous administration of a dimeric TNF immunokine with specificity for fibroblast activation protein (FAP). However, TNF-induced chemo-attraction and extravasation of PMNs from blood into the tumor is a multistep process essentially mediated by interleukin 8. With the aim to amplify the TNF-induced and IL-8-mediated chemotactic response, we generated immunocytokines by N-terminal fusion of a human anti-FAP scFv fragment with human IL-8 (IL-872) and its N-terminally truncated form IL-83-72. Due to the dramatic difference in chemotaxis induction in vitro, we favored the mature chemokine fused to the anti-FAP scFv for further investigation in vivo. BALB/c nu/nu mice were simultaneously xenografted with FAP-positive or -negative tumors and extended chemo-attraction of PMNs was only detectable in FAP-expressing tissue after intravenous administration of the anti-FAP scFv-IL-872 construct. As TNF-activated PMNs are likewise producers and primary targets for IL-8, we investigated the therapeutic efficacy of co-administration of both effectors: Sequential application of scFv-IL-872 and dimeric IgG1-TNF fusion proteins significantly enhanced anti-tumor activity when compared either to a single effector treatment regimen or sequential application of non-targeted cytokines, indicating that the tumor-restricted sequential application of IL-872 and TNF is a promising approach for cancer therapy. PMID:19267427
Coffey, M Justin; Cooper, Joseph J
2016-12-01
There is a growing scientific literature describing the neuropsychiatric symptoms of anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, including the use of electroconvulsive therapy (ECT) to treat those symptoms. We sought to consolidate this literature into a review that highlights its relevance to ECT practitioners. We performed a PubMed search using the terms electroconvulsive therapy and encephalitis, autoimmune encephalitis, or anti-NMDA receptor encephalitis. We reviewed all relevant studies in detail, cross-referenced all bibliographies, and collected key clinical information related to the practice of ECT. We identified 6 studies offering patient-level descriptions of the use of ECT in patients with anti-NMDA receptor encephalitis. In all cases ECT was used to target symptoms of catatonia. Electroconvulsive therapy was delivered safely and effectively irrespective of the timing of diagnosis, tumor removal, or immunotherapy. There are no controlled data on the use of ECT in anti-NMDA receptor encephalitis. Further investigation is needed to determine whether ECT has a disease-modifying effect on this form of autoimmune encephalitis.
Cancer terminator viruses (CTV): A better solution for viral-based therapy of cancer.
Emdad, Luni; Das, Swadesh K; Wang, Xiang-Yang; Sarkar, Devanand; Fisher, Paul B
2018-08-01
In principle, viral gene therapy holds significant potential for the therapy of solid cancers. However, this promise has not been fully realized and systemic administration of viruses has not proven as successful as envisioned in the clinical arena. Our research is focused on developing the next generation of efficacious viruses to specifically treat both primary cancers and a major cause of cancer lethality, metastatic tumors (that have spread from a primary site of origin to other areas in the body and are responsible for an estimated 90% of cancer deaths). We have generated a chimeric tropism-modified type 5 and 3 adenovirus that selectively replicates in cancer cells and simultaneously produces a secreted anti-cancer toxic cytokine, melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24), referred to as a Cancer Terminator Virus (CTV) (Ad.5/3-CTV). In preclinical animal models, injection into a primary tumor causes selective cell death and therapeutic activity is also observed in non-injected distant tumors, that is, "bystander anti-tumor activity." To enhance the impact and therapeutic utility of the CTV, we have pioneered an elegant approach in which viruses are encapsulated in microbubbles allowing "stealth delivery" to tumor cells that when treated with focused ultrasound causes viral release killing tumor cells through viral replication, and producing and secreting MDA-7/IL-24, which stimulates the immune system to attack distant cancers, inhibits tumor angiogenesis and directly promotes apoptosis in distant cancer cells. This strategy is called UTMD (ultrasound-targeted microbubble-destruction). This novel CTV and UTMD approach hold significant promise for the effective therapy of primary and disseminated tumors. © 2017 Wiley Periodicals, Inc.
Foo, Jasmine; Michor, Franziska
2009-01-01
The discovery of small molecules targeted to specific oncogenic pathways has revolutionized anti-cancer therapy. However, such therapy often fails due to the evolution of acquired resistance. One long-standing question in clinical cancer research is the identification of optimum therapeutic administration strategies so that the risk of resistance is minimized. In this paper, we investigate optimal drug dosing schedules to prevent, or at least delay, the emergence of resistance. We design and analyze a stochastic mathematical model describing the evolutionary dynamics of a tumor cell population during therapy. We consider drug resistance emerging due to a single (epi)genetic alteration and calculate the probability of resistance arising during specific dosing strategies. We then optimize treatment protocols such that the risk of resistance is minimal while considering drug toxicity and side effects as constraints. Our methodology can be used to identify optimum drug administration schedules to avoid resistance conferred by one (epi)genetic alteration for any cancer and treatment type. PMID:19893626
Chen, Guoli; Yang, Zhaohai; Eshleman, James R; Netto, George J; Lin, Ming-Tseh
2016-01-01
Precision medicine, a concept that has recently emerged and has been widely discussed, emphasizes tailoring medical care to individuals largely based on information acquired from molecular diagnostic testing. As a vital aspect of precision cancer medicine, targeted therapy has been proven to be efficacious and less toxic for cancer treatment. Colorectal cancer (CRC) is one of the most common cancers and among the leading causes for cancer related deaths in the United States and worldwide. By far, CRC has been one of the most successful examples in the field of precision cancer medicine, applying molecular tests to guide targeted therapy. In this review, we summarize the current guidelines for anti-EGFR therapy, revisit the roles of pathologists in an era of precision cancer medicine, demonstrate the transition from traditional "one test-one drug" assays to multiplex assays, especially by using next-generation sequencing platforms in the clinical diagnostic laboratories, and discuss the future perspectives of tumor heterogeneity associated with anti-EGFR resistance and immune checkpoint blockage therapy in CRC.
Expression of Cat Podoplanin in Feline Squamous Cell Carcinomas.
Itai, Shunsuke; Yamada, Shinji; Kaneko, Mika K; Harada, Hiroyuki; Kagawa, Yumiko; Konnai, Satoru; Kato, Yukinari
2017-12-01
Oral squamous cell carcinoma is an aggressive tumor in cats; however, molecular-targeted therapies against this tumor, including antibody therapy, have not been developed. Sensitive and specific monoclonal antibodies (mAbs) against highly expressed membrane proteins are needed to develop antibody therapies. Podoplanin, a type I transmembrane glycoprotein, is expressed in many human malignant tumors, including brain tumor, esophageal cancer, lung cancer, mesothelioma, and oral cancer. Podoplanin binds to C-type lectin-like receptor-2 (CLEC-2) and activates platelet aggregation, which is involved in cancer metastasis. Until now, we have established several mAbs against podoplanin in humans, mice, rats, rabbits, dogs, cattle, and cats. We have reported podoplanin expression in canine melanoma and squamous cell carcinomas using an anti-dog podoplanin mAb PMab-38. In this study, we investigated podoplanin expression in 40 feline squamous cell carcinomas (14 cases of mouth floor, 13 of skin, 9 of ear, and 4 of tongue) by immunohistochemical analysis using an anti-cat podoplanin mAb PMab-52, which we recently developed by cell-based immunization and screening (CBIS) method. Of the total 40 cases, 38 (95%) showed positive staining for PMab-52. In particular, 12 cases (30%) showed a strong membrane-staining pattern of squamous cell carcinoma cells. PMab-52 can be useful for antibody therapy against feline podoplanin-expressing squamous cell carcinomas.
EphB4 as a therapeutic target in mesothelioma
2013-01-01
Background Malignant pleural mesothelioma (MPM) often develops decades following exposure to asbestos. Current best therapy produces a response in only half of patients, and the median survival with this therapy remains under a year. A search for novel targets and therapeutics is underway, and recently identified targets include VEGF, Notch, and EphB4-Ephrin-B2. Each of these targets has dual activity, promoting tumor cell growth as well as tumor angiogenesis. Methods We investigated EphB4 expression in 39 human mesothelioma tissues by immunohistochemistry. Xenograft tumors established with human mesothelioma cells were treated with an EphB4 inhibitor (monomeric soluble EphB4 fused to human serum albumin, or sEphB4-HSA). The combinatorial effect of sEphB4-HSA and biologic agent was also studied. Results EphB4 was overexpressed in 72% of mesothelioma tissues evaluated, with 85% of epithelioid and 38% of sarcomatoid subtypes demonstrating overexpression. The EphB4 inhibitor sEphB4-HSA was highly active as a single agent to inhibit tumor growth, accompanied by tumor cell apoptosis and inhibition of PI3K and Src signaling. Combination of sEphB4-HSA and the anti-VEGF antibody (Bevacizumab) was superior to each agent alone and led to complete tumor regression. Conclusion EphB4 is a potential therapeutic target in mesothelioma. Clinical investigation of sEphB4-HSA as a single agent and in combination with VEGF inhibitors is warranted. PMID:23721559
On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies
NASA Astrophysics Data System (ADS)
Starkov, Konstantin E.
2018-02-01
In this paper ultimate dynamics of the five-dimensional cancer tumor growth model at the angiogenesis phase is studied. This model elaborated by Pinho et al. in 2014 describes interactions between normal/cancer/endothelial cells under chemotherapy/anti-angiogenic agents in tumor growth process. The author derives ultimate upper bounds for normal/tumor/endothelial cells concentrations and ultimate upper and lower bounds for chemical/anti-angiogenic concentrations. Global asymptotic tumor clearance conditions are obtained for two versions: the use of only chemotherapy and the combined application of chemotherapy and anti-angiogenic therapy. These conditions are established as the attraction conditions to the maximum invariant set in the tumor free plane, and furthermore, the case is examined when this set consists only of tumor free equilibrium points.
Zolkind, Paul; Przybylski, Dariusz; Marjanovic, Nemanja; Nguyen, Lan; Lin, Tianxiang; Johanns, Tanner; Alexandrov, Anton; Zhou, Liye; Allen, Clint T.; Miceli, Alexander P.; Schreiber, Robert D.; Artyomov, Maxim; Dunn, Gavin P.; Uppaluri, Ravindra
2018-01-01
Head and neck squamous cell carcinomas (HNSCC) are an ideal immunotherapy target due to their high mutation burden and frequent infiltration with lymphocytes. Preclinical models to investigate targeted and combination therapies as well as defining biomarkers to guide treatment represent an important need in the field. Immunogenomics approaches have illuminated the role of mutation-derived tumor neoantigens as potential biomarkers of response to checkpoint blockade as well as representing therapeutic vaccines. Here, we aimed to define a platform for checkpoint and other immunotherapy studies using syngeneic HNSCC cell line models (MOC2 and MOC22), and evaluated the association between mutation burden, predicted neoantigen landscape, infiltrating T cell populations and responsiveness of tumors to anti-PD1 therapy. We defined dramatic hematopoietic cell transcriptomic alterations in the MOC22 anti-PD1 responsive model in both tumor and draining lymph nodes. Using a cancer immunogenomics pipeline and validation with ELISPOT and tetramer analysis, we identified the H-2Kb-restricted ICAM1P315L (mICAM1) as a neoantigen in MOC22. Finally, we demonstrated that mICAM1 vaccination was able to protect against MOC22 tumor development defining mICAM1 as a bona fide neoantigen. Together these data define a pre-clinical HNSCC model system that provides a foundation for future investigations into combination and novel therapeutics. PMID:29423108
Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing
2010-12-01
Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.
TNF-related apoptosis-inducing ligand (TRAIL): A new path to anti-cancer therapies
Holoch, Peter A.; Griffith, Thomas S.
2009-01-01
Since its discovery in 1995, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor super family, has been under intense focus because of its remarkable ability to induce apoptosis in malignant human cells while leaving normal cells unscathed. Consequently, activation of the apoptotic signaling pathway from the death-inducing TRAIL receptors provides an attractive, biologically-targeted approach to cancer therapy. A great deal of research has focused on deciphering the TRAIL receptor signaling cascade and intracellular regulation of this pathway, as many human tumor cells possess mechanisms of resistance to TRAIL-induced apoptosis. This review focuses on the currently state of knowledge regarding TRAIL signaling and resistance, the preclinical development of therapies targeted at TRAIL receptors and modulators of the pathway, and the results of clinical trials for cancer treatment that have emerged from this base of knowledge. TRAIL-based approaches to cancer therapy vary from systemic administration of recombinant, soluble TRAIL protein with or without the combination of traditional chemotherapy, radiation or novel anticancer agents to agonistic monoclonal antibodies directed against functional TRAIL receptors to TRAIL gene transfer therapy. A better understanding of TRAIL resistance mechanisms may allow for the development of more effective therapies that exploit this cell-mediated pathway to apoptosis. PMID:19836385
Choi, Jae-Hyeog; Kim, Ki Hyang; Roh, Kug-Hwan; Jung, Hana; Lee, Anbok; Lee, Ji-Young; Song, Joo Yeon; Park, Seung Jae; Kim, Ilhwan; Lee, Won-Sik; Seo, Su-Kil; Choi, Il-Whan; Fu, Yang-Xin; Yea, Sung Su; Park, SaeGwang
2018-01-01
Combination therapies with phosphoinositide 3-kinase (PI3K) inhibitors and trastuzumab (anti-human epidermal growth factor receptor [HER]2/neu antibody) are effective against HER2+ breast cancer. Isoform-selective PI3K inhibitors elicit anti-tumor immune responses that are distinct from those induced by inhibitors of class I PI3K isoforms (pan-PI3K inhibitors). The present study investigated the therapeutic effect and potential for stimulating anti-tumor immunity of combined therapy with an anti-HER2/neu antibody and pan-PI3K inhibitor (GDC-0941) or a PI3K p110α isoform-selective inhibitor (A66) in mouse models of breast cancer. The anti-neu antibody inhibited tumor growth and enhanced anti-tumor immunity in HER2/neu+ breast cancer TUBO models, whereas GDC-0941 or A66 alone did not. Anti-neu antibody and PI3K inhibitor synergistically promoted anti-tumor immunity by increasing functional T cell production. In the presence of the anti-neu antibody, A66 was more effective than GDC-0941 at increasing the fraction of CD4 + , CD8 + , and IFN-γ + CD8 + T cells in the tumor-infiltrating lymphocyte population. Detection of IFN-γ levels by enzyme-linked immunospot assay showed that the numbers of tumor-specific T cells against neu and non-neu tumor antigens were increased by combined PI3K inhibitor plus anti-neu antibody treatment, with A66 exhibiting more potent effects than GDC-0941. In a TUBO (neu+) and TUBO-P2J (neu-) mixed tumor model representing immunohistochemistry 2+ tumors, A66 suppressed tumor growth and prolonged survival to a greater extent than GDC-0941 when combined with anti-neu antibody. These results demonstrate that a PI3K p110α-isoform-selective inhibitor is an effective adjunct to trastuzumab in the treatment of HER2-positive breast cancer.
Liang, Yayun; Mafuvadze, Benford; Besch-Williford, Cynthia; Hyder, Salman M
2018-01-01
Background Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53) lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood vessels, which serve as the major route for tumor metastasis, in tumor xenografts compared with either agent alone. Conclusion Based on our findings, we contend that breast tumor growth might effectively be controlled by simultaneous targeting of mtp53 protein and tumor blood vessels in mtp53-expressing cancers. PMID:29606888
Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets.
Szebeni, Gabor J; Vizler, Csaba; Nagy, Lajos I; Kitajka, Klara; Puskas, Laszlo G
2016-11-23
Since the observation of Virchow, it has long been known that the tumor microenvironment constitutes the soil for the infiltration of inflammatory cells and for the release of inflammatory mediators. Under certain circumstances, inflammation remains unresolved and promotes cancer development. Here, we review some of these indisputable experimental and clinical evidences of cancer related smouldering inflammation. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth by several mechanisms, including their inherent immunosuppressive activity, promotion of neoangiogenesis, mediation of epithelial-mesenchymal transition and alteration of cellular metabolism. The pro-tumoral functions of TAMs and MDSCs are further enhanced by their cross-talk offering a myriad of potential anti-cancer therapeutic targets. We highlight these main pro-tumoral mechanisms of myeloid cells and give a general overview of their phenotypical and functional diversity, offering examples of possible therapeutic targets. Pharmacological targeting of inflammatory cells and molecular mediators may result in therapies improving patient condition and prognosis. Here, we review experimental and clinical findings on cancer-related inflammation with a major focus on creating an inventory of current small molecule-based therapeutic interventions targeting cancer-related inflammatory cells: TAMs and MDSCs.
Seeking new anti-cancer agents from autophagy-regulating natural products.
Hua, Fang; Shang, Shuang; Hu, Zhuo-Wei
2017-04-01
Natural products are an important original source of many widely used drugs, including anti-cancer drugs. Early research efforts for seeking anti-cancer therapy from the natural products are mainly focused on the compounds with cytotoxicity capability. The good examples include vinblastine, vincristine, the camptothecin derivatives; topotecan, irinotecan, epipodophyllotoxin derivatives and paclitaxel. In a recent decade, the fundamental progression has been made in the understanding of molecular and cellular mechanisms regarding tumor initiation, metastasis, therapeutic resistance, immune escape, and relapse, which provide a great opportunity for the development of new mechanism-based anticancer drugs, especially drugs against new molecular and cellular targets. Autophagy, a critical cell homeostasis mechanism and promising drug target involved in a verity of human diseases including cancer, can be modulated by many compounds derived from natural products. In this review, we'll give a short introduction of autophagy and discuss the roles of autophagy in the tumorigenesis and progression. And then, we summarize the accumulated evidences to show the anti-tumor effects of several compounds derived from natural products through modulation of autophagy activity.
Zhu, Bo; Tang, Liming; Chen, Shuyang; Yin, Chengqian; Peng, Shiguang; Li, Xin; Liu, Tongzheng; Liu, Wei; Han, Changpeng; Stawski, Lukasz; Xu, Zhi-Xiang; Zhou, Guangbiao; Chen, Xiang; Gao, Xiumei; Goding, Colin R; Xu, Nan; Cui, Rutao; Cao, Peng
2018-05-22
Programmed cell death ligand 1 (PD-L1) interacts with programmed cell death protein-1 (PD-1) as an immune checkpoint. Reactivating the immune response by inhibiting PD-L1 using therapeutic antibodies provides substantial clinical benefits in many, though not all, melanoma patients. However, transcriptional suppression of PD-L1 expression as an alternative therapeutic anti-melanoma strategy has not been exploited. Here we provide biochemical evidence demonstrating that ultraviolet radiation (UVR) induction of PD-L1 in skin is directly controlled by nuclear factor E2-related transcription factor 2 (NRF2). Depletion of NRF2 significantly induces tumor infiltration by both CD8 + and CD4 + T cells to suppress melanoma progression, and combining NRF2 inhibition with anti-PD-1 treatment enhanced its anti-tumor function. Our studies identify a critical and targetable PD-L1 upstream regulator and provide an alternative strategy to inhibit the PD-1/PD-L1 signaling in melanoma treatment.
Wong, Patty; Li, Lin; Chea, Junie; Delgado, Melissa K.; Crow, Desiree; Poku, Erasmus; Szpikowska, Barbara; Bowles, Nicole; Channappa, Divya; Colcher, David; Wong, Jeffrey Y.C.; Shively, John E.; Yazaki, Paul J.
2017-01-01
Introduction Single chain (scFv) antibodies are ideal targeting ligands due to their modular structure, high antigen specificity and affinity. These monovalent ligands display rapid tumor targeting but have limitations due to their fast urinary clearance. Methods An anti-prostate membrane antigen (PSMA) scFv with a site-specific cysteine was expressed and evaluated in a prostate cancer xenograft model by Cu-64 PET imaging. To enhance tumor accumulation, the scFv-cys was conjugated to the co-polymer DSPE-PEG-maleimide that spontaneously assembled into a homogeneous multivalent lipid nanoparticle (LNP). Results The targeted LNP exhibited a 2-fold increase in tumor uptake compared to the scFv alone using two different thiol ester chemistries. The anti-PSMA scFv-LNP exhibited a 1.6 fold increase in tumor targeting over the untargeted LNP. Conclusions The targeted anti-PSMA scFv-LNP showed enhanced tumor accumulation over the scFv alone or the untargeted DOTA-micelle providing evidence for the development of this system for drug delivery. Advances in Knowledge and implications for patient care Anti-tumor scFv antibody fragments have not achieved their therapeutic potential due to their fast blood clearance. Conjugation to a LNP enables multivalency to the tumor antigen as well as increased molecular size for chemotherapy drug delivery. PMID:28126683
Tummala, Shashank; Gowthamarajan, K; Satish Kumar, M N; Wadhwani, Ashish
2016-06-01
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) proved to be a promising new target for colorectal cancer treatment. Elevated expression of TRAIL protein in tumor cells distinguishes it from healthy cells, thereby delivering the drug at the specific site. Here, we formulated oxaliplatin immunohybrid nanoparticles (OIHNPs) to deliver oxaliplatin and anti-TRAIL for colorectal cancer treatment in xenograft tumor models. The polymeric chitosan layer binds to the lipid film with the mixture of phospholipids by an ultra sound method followed by conjugating with thiolated antibody using DSPE-PEG-mal3400, resulting in the formation of OIHNPs. The polymer layer helps in more encapsulation of the drug (71 ± 0.09%) with appreciable particle size (95 ± 0.01 nm), and lipid layer prevents degradation of the drug in serum by preventing nanoparticle aggregation. OIHNPs have shown a 4-fold decrease in the IC50 value compared to oxaliplatin in HT-29 cells by the MTT assay. These immuno-nanoparticles represent the successful uptake and internalization of oxaliplatin in HT-29 cells rather than in MCF-7 cells determined by triple fluorescence method. Apoptotic activity in vitro of OIHNPs was determined by the change in the mitochondria membrane potential that further elevates its anti-tumor property. Furthermore, the conjugated nanoparticles can effectively deliver the drug to the tumor sites, which can be attributed to its ability in reducing tumor mass and tumor volume in xenograft tumor models in vivo along with sustaining its release in vitro. These findings indicated that the oxaliplatin immuno-hybrid nanoparticles would be a promising nano-sized active targeted formulation for colorectal-tumor targeted therapy.
Modulation of GITR for cancer immunotherapy
Schaer, David A; Murphy, Judith T; Wolchok, Jedd D
2012-01-01
Modulation of co-inhibitory and co-stimulatory receptors of the immune system has become a promising new approach for immunotherapy of cancer. With the recent FDA approval of CTLA-4 blockade serving as an important proof of principal, many new targets are now being translated into the clinic. Preclinical research has demonstrated that targeting glucocorticoid-induced tumor necrosis factor (TNF) receptor related gene (GITR), a member of TNF receptor superfamily, by agonist antibodies or natural ligand, can serve as an effective anti-tumor therapy. In this review, we will cover this research and the rationale that has led to initiation of two phase 1 clinical trials targeting GITR as a new immunotherapeutic approach for cancer. PMID:22245556
Chen, Feng; Hong, Hao; Zhang, Yin; Valdovinos, Hector F.; Shi, Sixiang; Kwon, Glen S.; Theuer, Charles P.; Barnhart, Todd E.; Cai, Weibo
2013-01-01
Since the first use of biocompatible mesoporous silica (mSiO2) nanoparticles as drug delivery vehicles, in vivo tumor targeted imaging and enhanced anti-cancer drug delivery has remained a major challenge. In this work, we describe the development of functionalized mSiO2 nanoparticles for actively targeted positron emission tomography (PET) imaging and drug delivery in 4T1 murine breast tumor-bearing mice. Our structural design involves the synthesis, surface functionalization with thiol groups, PEGylation, TRC105 antibody (specific for CD105/endoglin) conjugation, and 64Cu-labeling of uniform 80 nm sized mSiO2 nanoparticles. Systematic in vivo tumor targeting studies clearly demonstrated that 64Cu-NOTA-mSiO2-PEG-TRC105 could accumulate prominently at the 4T1 tumor site via both the enhanced permeability and retention effect and TRC105-mediated binding to tumor vasculature CD105. As a proof-of-concept, we also demonstrated successful enhanced tumor targeted delivery of doxorubicin (DOX) in 4T1 tumor-bearing mice after intravenous injection of DOX-loaded NOTA-mSiO2-PEG-TRC105, which holds great potential for future image-guided drug delivery and targeted cancer therapy. PMID:24083623
[Anti-FGF23 antibody therapy for patients with tumor-induced osteomalacia].
Kinoshita, Yuka; Fukumoto, Seiji
2014-08-01
Tumor-induced osteomalacia (TIO) is a disease caused by fibroblast growth factor 23 (FGF23) secreted from the causative tumor. This disease is cured by complete surgical removal of the tumor. However, there are several difficult cases in which the responsible tumors cannot be found, are incompletely removed, or relapse after the surgery. Anti-FGF23 antibody is being studied as a novel therapy for FGF23-related hypophosphatemic diseases. The efficacy of anti-FGF23 antibodies were confirmed using a murine model of X-linked hypophosphatemic rickets (XLHR) , which is the most common heritable form of FGF23-related hypophosphatemic disease. In addition, results of phase I study of single injection of humanized anti-FGF23 antibody for adult patients with XLHR were recently published and the safety and effectiveness of this antibody was shown. This antibody therapy may be useful for patients with TIO with similar pathogenesis to that of XLHR.
CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer.
Svensson, Susanne; Abrahamsson, Annelie; Rodriguez, Gabriela Vazquez; Olsson, Anna-Karin; Jensen, Lasse; Cao, Yihai; Dabrosin, Charlotta
2015-08-15
Novel therapeutic targets of estrogen receptor (ER)-positive breast cancers are urgently needed because current antiestrogen therapy causes severe adverse effects, nearly 50% of patients are intrinsically resistant, and the majority of recurrences have maintained ER expression. We investigated the role of estrogen-dependent chemokine expression and subsequent cancer growth in human tissues and experimental breast cancer models. For in vivo sampling of human chemokines, microdialysis was used in breast cancers of women or normal human breast tissue before and after tamoxifen therapy. Estrogen exposure and targeted therapies were assessed in immune competent PyMT murine breast cancer, orthotopic human breast cancers in nude mice, cell culture of cancer cells, and freshly isolated human macrophages. Cancer cell dissemination was investigated using zebrafish. ER(+) cancers in women produced high levels of extracellular CCL2 and CCL5 in vivo, which was associated with infiltration of tumor-associated macrophages. In experimental breast cancer, estradiol enhanced macrophage influx and angiogenesis through increased release of CCL2, CCL5, and vascular endothelial growth factor. These effects were inhibited by anti-CCL2 or anti-CCL5 therapy, which resulted in potent inhibition of cancer growth. In addition, estradiol induced a protumorigenic activation of the macrophages. In a zebrafish model, macrophages increased cancer cell dissemination via CCL2 and CCL5 in the presence of estradiol, which was inhibited with anti-CCL2 and anti-CCL5 treatment. Our findings shed new light on the mechanisms underlying the progression of ER(+) breast cancer and indicate the potential of novel therapies targeting CCL2 and CCL5 pathways. ©2015 American Association for Cancer Research.
Pirfenidone normalizes the tumor microenvironment to improve chemotherapy
Papageorgis, Panagiotis; Voutouri, Chrysovalantis; Stylianopoulos, Triantafyllos
2017-01-01
Normalization of the tumor microenvironment by selectively targeting components of the tumor extracellular matrix has been recently proposed to have the potential to decompress tumor blood vessels, increase vessel perfusion and thus, improve drug delivery and the efficacy of cancer therapy. Therefore, we now need to identify safe and well tolerated pharmaceutical agents that are able to remodel the microenvironment of solid tumors and enhance chemotherapy. In this study, we repurposed Pirfenidone, a clinically approved anti-fibrotic drug for the treatment of idiopathic pulmonary fibrosis, to investigate its possible role on tumor microenvironment normalization. Using two orthotopic mammary tumor models we demonstrate that Pirfenidone reduces collagen and hyaluronan levels and, as a result, significantly increases blood vessel functionality and perfusion and improves the anti-tumor efficacy of doxorubicin. Reduction of extracellular matrix components were mediated via TGFβ signaling pathway inhibition due to downregulation of TGFβ1, COL1A1, COL3A1, HAS2, HAS3 expression levels. Our findings provide evidence that repurposing Pirfenidone could be used as a promising strategy to enhance drug delivery to solid tumors by normalizing the tumor microenvironment. PMID:28445938
Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells
Whang, Katherine A.; LeGall, Camille; Cragnolini, Juan J.; Bierie, Brian; Gostissa, Monica; Grotenbreg, Gijsbert M.; Bhan, Atul; Weinberg, Robert A.
2017-01-01
Immunotherapy using checkpoint-blocking antibodies against targets such as CTLA-4 and PD-1 can cure melanoma and non–small cell lung cancer in a subset of patients. The presence of CD8 T cells in the tumor correlates with improved survival. We show that immuno–positron emission tomography (immuno-PET) can visualize tumors by detecting infiltrating lymphocytes and, through longitudinal observation of individual animals, distinguish responding tumors from those that do not respond to therapy. We used 89Zr-labeled PEGylated single-domain antibody fragments (VHHs) specific for CD8 to track the presence of intratumoral CD8+ T cells in the immunotherapy-susceptible B16 melanoma model in response to checkpoint blockade. A 89Zr-labeled PEGylated anti-CD8 VHH detected thymus and secondary lymphoid structures as well as intratumoral CD8 T cells. Animals that responded to CTLA-4 therapy showed a homogeneous distribution of the anti-CD8 PET signal throughout the tumor, whereas more heterogeneous infiltration of CD8 T cells correlated with faster tumor growth and worse responses. To support the validity of these observations, we used two different transplantable breast cancer models, yielding results that conformed with predictions based on the antimelanoma response. It may thus be possible to use immuno-PET and monitor antitumor immune responses as a prognostic tool to predict patient responses to checkpoint therapies. PMID:28666979
Chen, Li-Tzong; Oh, Do-Youn; Ryu, Min-Hee; Yeh, Kun-Huei; Yeo, Winnie; Carlesi, Roberto; Cheng, Rebecca; Kim, Jongseok; Orlando, Mauro; Kang, Yoon-Koo
2017-01-01
Despite advancements in therapy for advanced gastric and gastroesophageal junction cancers, their prognosis remains dismal. Tumor angiogenesis plays a key role in cancer growth and metastasis, and recent studies indicate that pharmacologic blockade of angiogenesis is a promising approach to therapy. In this systematic review, we summarize current literature on the clinical benefit of anti-angiogenic agents in advanced gastric cancer. We conducted a systematic search of PubMed and conference proceedings including the American Society of Clinical Oncology, the European Society for Medical Oncology, and the European Cancer Congress. Included studies aimed to prospectively evaluate the efficacy and safety of anti-angiogenic agents in advanced gastric or gastroesophageal junction cancer. Each trial investigated at least one of the following endpoints: overall survival, progression-free survival/time to progression, and/or objective response rate. Our search yielded 139 publications. Forty-two met the predefined inclusion criteria. Included studies reported outcomes with apatinib, axitinib, bevacizumab, orantinib, pazopanib, ramucirumab, regorafenib, sorafenib, sunitinib, telatinib, and vandetanib. Second-line therapy with ramucirumab and third-line therapy with apatinib are the only anti-angiogenic agents so far shown to significantly improve survival of patients with advanced gastric cancer. Overall, agents that specifically target the vascular endothelial growth factor ligand or receptor have better safety profile compared to multi-target tyrosine kinase inhibitors. PMID:28052652
Chen, Li-Tzong; Oh, Do-Youn; Ryu, Min-Hee; Yeh, Kun-Huei; Yeo, Winnie; Carlesi, Roberto; Cheng, Rebecca; Kim, Jongseok; Orlando, Mauro; Kang, Yoon-Koo
2017-10-01
Despite advancements in therapy for advanced gastric and gastroesophageal junction cancers, their prognosis remains dismal. Tumor angiogenesis plays a key role in cancer growth and metastasis, and recent studies indicate that pharmacologic blockade of angiogenesis is a promising approach to therapy. In this systematic review, we summarize current literature on the clinical benefit of anti-angiogenic agents in advanced gastric cancer. We conducted a systematic search of PubMed and conference proceedings including the American Society of Clinical Oncology, the European Society for Medical Oncology, and the European Cancer Congress. Included studies aimed to prospectively evaluate the efficacy and safety of anti-angiogenic agents in advanced gastric or gastroesophageal junction cancer. Each trial investigated at least one of the following endpoints: overall survival, progression-free survival/time to progression, and/or objective response rate. Our search yielded 139 publications. Forty-two met the predefined inclusion criteria. Included studies reported outcomes with apatinib, axitinib, bevacizumab, orantinib, pazopanib, ramucirumab, regorafenib, sorafenib, sunitinib, telatinib, and vandetanib. Second-line therapy with ramucirumab and third-line therapy with apatinib are the only anti-angiogenic agents so far shown to significantly improve survival of patients with advanced gastric cancer. Overall, agents that specifically target the vascular endothelial growth factor ligand or receptor have better safety profile compared to multi-target tyrosine kinase inhibitors.
Iron oxide and gold nanoparticles in cancer therapy
NASA Astrophysics Data System (ADS)
Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.
2016-08-01
Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.
Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy
Baird, Jason R.; Savage, Talicia; Cottam, Benjamin; Friedman, David; Bambina, Shelly; Messenheimer, David J.; Fox, Bernard; Newell, Pippa; Bahjat, Keith S.; Gough, Michael J.; Crittenden, Marka R.
2016-01-01
The anecdotal reports of promising results seen with immunotherapy and radiation in advanced malignancies have prompted several trials combining immunotherapy and radiation. However, the ideal timing of immunotherapy with radiation has not been clarified. Tumor bearing mice were treated with 20Gy radiation delivered only to the tumor combined with either anti-CTLA4 antibody or anti-OX40 agonist antibody. Immunotherapy was delivered at a single timepoint around radiation. Surprisingly, the optimal timing of these therapies varied. Anti-CTLA4 was most effective when given prior to radiation therapy, in part due to regulatory T cell depletion. Administration of anti-OX40 agonist antibody was optimal when delivered one day following radiation during the post-radiation window of increased antigen presentation. Combination treatment of anti-CTLA4, radiation, and anti-OX40 using the ideal timing in a transplanted spontaneous mammary tumor model demonstrated tumor cures. These data demonstrate that the combination of immunotherapy and radiation results in improved therapeutic efficacy, and that the ideal timing of administration with radiation is dependent on the mechanism of action of the immunotherapy utilized. PMID:27281029
Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and challenges.
Nallar, Shreeram C; Xu, De-Qi; Kalvakolanu, Dhan V
2017-01-01
Bacteria act as pro- or anti- tumorigenic agents. Whole bacteria or cytotoxic or immunogenic peptides carried by them exert potent anti-tumor effects in the experimental models of cancer. The use of attenuated microorganism(s) e.g., BCG to treat human urinary bladder cancer was found to be superior compared to standard chemotherapy. Although the phase-I clinical trials with Salmonella enterica serovar Typhimurium, has shown limited benefits in human subjects, a recent pre-clinical trial in pet dogs with tumors reported some subjects benefited from this treatment strain. In addition to the attenuated host strains derived by conventional mutagenesis, recombinant DNA technology has been applied to a few microorganisms that have been evaluated in the context of tumor colonization and eradication using mouse models. There is an enormous surge in publications describing bacterial anti-cancer therapies in the past 15years. Vectors for delivering shRNAs that target oncogenic products, express tumor suppressor genes and immunogenic proteins have been developed. These approaches have showed promising anti-tumor activity in mouse models against various tumors. These can be potential therapeutics for humans in the future. In this review, some conceptual and practical issues on how to improve these agents for human applications are discussed. Copyright © 2016. Published by Elsevier Ltd.
Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells.
Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V; Guha, Sushovan; Pautler, Robia G; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit
2014-01-01
We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase-associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the near-infrared (NIR) dye indocyanine green, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Anti-NGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2-weighted MRI with higher tumor contrast than can be obtained using long-circulating, but nontargeted, PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. TGNS with embedded NIR and magnetic resonance contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy.
Current and emerging biologics for ulcerative colitis.
Park, Sung Chul; Jeen, Yoon Tae
2015-01-01
Conventional medical treatment for ulcerative colitis can have limited efficacy or severe adverse reactions requiring additional treatment or colectomy. Hence, different biological agents that target specific immunological pathways are be-ing investigated for treating ulcerative colitis. Anti-tumor necrosis factor (TNF) agents were the first biologics to be used for treating inflammatory bowel disease. For example, infliximab and adalimumab, which are anti-TNF agents, are be-ing used for treating ulcerative colitis. Recently, golimumab, another anti-TNF agent, and vedolizumab, an anti-adhesion therapy, have been approved for ulcerative colitis by the U.S. Food and Drug Administration. In addition, new medications such as tofacitinib, a Janus kinase inhibitor, and etrolizumab, another anti-adhesion therapy, are emerging as therapeutic agents. Therefore, there is a need for further studies to select appropriate patient groups for these biologics and to improve the outcomes of ulcerative colitis treatment through appropriate medical usage.
Current and Emerging Biologics for Ulcerative Colitis
Park, Sung Chul; Jeen, Yoon Tae
2015-01-01
Conventional medical treatment for ulcerative colitis can have limited efficacy or severe adverse reactions requiring additional treatment or colectomy. Hence, different biological agents that target specific immunological pathways are being investigated for treating ulcerative colitis. Anti-tumor necrosis factor (TNF) agents were the first biologics to be used for treating inflammatory bowel disease. For example, infliximab and adalimumab, which are anti-TNF agents, are being used for treating ulcerative colitis. Recently, golimumab, another anti-TNF agent, and vedolizumab, an anti-adhesion therapy, have been approved for ulcerative colitis by the U.S. Food and Drug Administration. In addition, new medications such as tofacitinib, a Janus kinase inhibitor, and etrolizumab, another anti-adhesion therapy, are emerging as therapeutic agents. Therefore, there is a need for further studies to select appropriate patient groups for these biologics and to improve the outcomes of ulcerative colitis treatment through appropriate medical usage. PMID:25547087
IL-15 Deficient Tax Mice Reveal a Role for IL-1α in Tumor Immunity
Rauch, Daniel A.; Harding, John C.; Ratner, Lee
2014-01-01
IL-15 is recognized as a promising candidate for tumor immunotherapy and has been described as both a promoter of cancer and a promoter of anti-cancer immunity. IL-15 was discovered in cells transformed by HTLV-1, the etiologic agent of adult T cell leukemia/lymphoma (ATL) and the human retrovirus that carries the Tax oncogene. We have developed the TAX-LUC mouse model of ATL in which Tax expression drives both malignant transformation and luciferase expression, enabling non-invasive imaging of tumorigenesis in real time. To identify the role of IL-15 in spontaneous development of lymphoma in vivo, an IL-15−/− TAX-LUC strain was developed and examined. The absence of IL-15 resulted in aggressive tumor growth and accelerated mortality and demonstrated that IL-15 was not required for Tax-mediated lymphoma but was essential for anti-tumor immunity. Further analysis revealed a unique transcriptional profile in tumor cells that arise in the absence of IL-15 that included a significant increase in the expression of IL-1α and IL-1α-regulated cytokines. Moreover, anti-IL-1α antibodies and an IL-1 receptor antagonist (Anakinra) were used to interrogate the potential of IL-1α targeted therapies in this model. Taken together, these findings identify IL-15 and IL-1α as therapeutic targets in lymphoma. PMID:24416335
Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy
Chen, Can; Tan, Wee-Kiat; Chi, Zhixia; Xu, Xue-Hu; Wang, Shu
2016-01-01
Gamma delta (γδ) T cells and cytokine-induced killer (CIK) cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT) cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs) using Zometa, interferon-gamma (IFN-γ), interleukin 2 (IL-2), anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR), anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer. PMID:27598655
Breast and gastrointestinal cancer updates from ASCO 2015.
Dawood, Shaheenah
2015-01-01
This review focuses on the updates presented at the ASCO 2015 symposium in breast and gastrointestinal malignancies. Some were practice changing while others gave us an exciting glimpse into what's to come in the very near future. Immunotherapy was the buzz word this year with data presented on every tumor site. Data on the efficacy of anti PD-1 agents in colorectal, hepatocellular and gastric cancer were presented. In breast cancer we saw data on a new and exciting therapeutic target in the form of androgen receptor among triple receptor negative breast tumors presented. Positive results of the PALOMA 3 trial were presented that has given women with hormone receptor positive metastatic breast cancer another therapeutic option. Furthermore data on strategies to further improve anti her2 therapy, optimizing of chemotherapy in the early and advanced stage and various strategies to improve endocrine therapy among patients with breast cancer were presented.
Han, Weidong; Wang, Xian; Fang, Yong; Li, Da; Pan, Hongming; Zhang, Li
2015-01-01
The programmed death-1 (PD-1), a coinhibitory receptor expressed on activated T cells and B cells, is demonstrated to induce an immune-mediated response and play a critical role in tumor initiation and development. The cancer patients harboring PD-1 or PD ligand 1 (PD-L1) protein expression have often a poor prognosis and clinical outcome. Currently, targeting PD-1 pathway as a potential new anticancer strategy is attracting more and more attention in cancer treatment. Several monoclonal antibodies against PD-1 or PD-L1 have been reported to enhance anticancer immune responses and induce tumor cell death. Nonetheless, the precise molecular mechanisms by which PD-1 affects various cancers remain elusive. Moreover, this therapy is not effective for all the cancer patients and only a fraction of patients respond to the antibodies targeting PD-1 or PD-L1, indicating these antibodies may only works in a subset of certain cancers. Thus, understanding the novel function of PD-1 and genetic determinants of response to anti-PD-1 therapy will allow us to develop a more effective and individualized immunotherapeutic strategy for cancer. PMID:26305724
Yu, Hongliang; He, Jian; Lu, Qian; Huo, Da; Yuan, Shanmei; Zhou, Zhengyang; Xu, Peipei; Hu, Yong
2016-11-09
Emerging evidence suggest that the introduction of Fas ligand (FasL) can enhance the Fas-dependent apoptosis and induce durable immune responses against tumor. However, selective triggering of apoptosis in tumor cells while sparing normal cells remains a great challenge for the application of FasL-based therapeutic strategies. Herein, smart nanoparticles (NPs) with a sandwich structure were fabricated. These NPs consist of a matrix metalloproteinase (MMP) cleavable PEG outer layer, an anti-Fas antibody middle layer, and a camptothecin (CPT)-loaded inner core. They could accumulate at a tumor site by the enhanced permeability and retention (EPR) effect. The removable PEG layer protects the cytotoxic anti-Fas antibody from premature contact with normal tissues, thus avoiding the unexpected lethal side effect before they reach the tumor site. Due to the high level of MMP expressed by tumor cells inside the tumor tissue, these NPs would shed their PEG layers, resulting in the exposure of anti-Fas antibody to bind the Fas receptor and triggering the apoptosis of tumor cells. Results of Western blot confirmed that these NPs could mimic the function of activated cytotoxic lymphocyte (CTL) to activate the Fas-FasL apoptosis pathway of tumor cells. With the aid of CPT payload, these anti-Fas antibody conjugated NPs achieved a high tumor inhibition in the B16 allograft tumor animal model. The design of these NPs provides a method for delivering cytotoxic ligand to targeting tissue, which may be valuable in cancer therapy.
Blockade of cytotoxic T-lymphocyte antigen-4 as a novel therapeutic approach for advanced melanoma
Wang, Xiang-Yang; Zuo, Daming; Sarkar, Devanand; Fisher, Paul B.
2012-01-01
Introduction The incidence of melanoma continues to rise and prognosis in patients with metastatic melanoma remains poor. The cytotoxic T-lymphocyte antigen-4 (CTLA-4) serves as one of the primary immune checkpoints and downregulates T cell activation pathways. Enhancing T cell activation by antibody blockade of the CTLA-4 provides a novel approach to overcome tumor-induced immune tolerance. Recently, anti-CTLA-4 therapy demonstrated significant clinical benefit in patients with metastatic melanoma, which led to the approval of ipilimumab by the Food and Drug Administration in early 2011. Areas covered The fundamental concepts underlying CTLA-4 blockade-potentiated immune activation, the scientific rationale for and the preclinical evidence supporting CTLA-4-targeted cancer immunotherapy are presented. We also provide an update on clinical trials with anti-CTLA-4 inhibitors and discuss the associated autoimmune toxicity. Expert opinion Given that overall survival is the only validated endpoint for the anti-CTLA-4 therapy, the clinical implications of the antigen or tumor-specific immunity in patients remain to be clarified. Additional research is necessary to elucidate the prognostic significance of immune-related side effects and significantly optimize the treatment regimens. An improved understanding of the mechanisms of action of CTLA-4 antibodies may also culminate in wide-ranging clinical applications of this novel therapy for other tumor types. PMID:22077831
Translational development of difluoromethylornithine (DFMO) for the treatment of neuroblastoma
Bassiri, Hamid; Benavides, Adriana; Haber, Michelle; Gilmour, Susan K.; Norris, Murray D.
2015-01-01
Neuroblastoma is a childhood tumor in which MYC oncogenes are commonly activated to drive tumor progression. Survival for children with high-risk neuroblastoma remains poor despite treatment that incorporates high-dose chemotherapy, stem cell support, surgery, radiation therapy and immunotherapy. More effective and less toxic treatments are sought and one approach under clinical development involves re-purposing the anti-protozoan drug difluoromethylornithine (DFMO; Eflornithine) as a neuroblastoma therapeutic. DFMO is an irreversible inhibitor of ornithine decarboxylase (Odc), a MYC target gene, bona fide oncogene, and the rate-limiting enzyme in polyamine synthesis. DFMO is approved for the treatment of Trypanosoma brucei gambiense encephalitis (“African sleeping sickness”) since polyamines are essential for the proliferation of these protozoa. However, polyamines are also critical for mammalian cell proliferation and the finding that MYC coordinately regulates all aspects of polyamine metabolism suggests polyamines may be required to support cancer promotion by MYC. Pre-emptive blockade of polyamine synthesis is sufficient to block tumor initiation in an otherwise fully penetrant transgenic mouse model of neuroblastoma driven by MYCN, underscoring the necessity of polyamines in this process. Moreover, polyamine depletion regimens exert potent anti-tumor activity in pre-clinical models of established neuroblastoma as well, in combination with numerous chemotherapeutic agents and even in tumors with unfavorable genetic features such as MYCN, ALK or TP53 mutation. This has led to the testing of DFMO in clinical trials for children with neuroblastoma. Current trial designs include testing lower dose DFMO alone (2,000 mg/m2/day) starting at the completion of standard therapy, or higher doses combined with chemotherapy (up to 9,000 mg/m2/day) for patients with relapsed disease that has progressed. In this review we will discuss important considerations for the future design of DFMO-based clinical trials for neuroblastoma, focusing on the need to better define the principal mechanisms of anti-tumor activity for polyamine depletion regimens. Putative DFMO activities that are both cancer cell intrinsic (targeting the principal oncogenic driver, MYC) and cancer cell extrinsic (altering the tumor microenvironment to support anti-tumor immunity) will be discussed. Understanding the mechanisms of DFMO activity are critical in determining how it might be best leveraged in upcoming clinical trials. This mechanistic approach also provides a platform by which iterative pre-clinical testing using translational tumor models may complement our clinical approaches. PMID:26835380
Suarez, Eloah Rabello; Chang, De Kuan; Sun, Jiusong; Sui, Jianhua; Freeman, Gordon J; Signoretti, Sabina; Zhu, Quan; Marasco, Wayne A
2016-06-07
Advances in the treatment of metastatic clear cell renal cell carcinoma (ccRCC) have led to improved progression-free survival of many patients; however the therapies are toxic, rarely achieve durable long-term complete responses and are not curative. Herein we used a single bicistronic lentiviral vector to develop a new combination immunotherapy that consists of human anti-carbonic anhydrase IX (CAIX)-targeted chimeric antigen receptor (CAR) T cells engineered to secrete human anti-programmed death ligand 1 (PD-L1) antibodies at the tumor site. The local antibody delivery led to marked immune checkpoint blockade. Tumor growth diminished 5 times and tumor weight reduced 50-80% when compared with the anti-CAIX CAR T cells alone in a humanized mice model of ccRCC. The expression of PD-L1 and Ki67 in the tumors decreased and an increase in granzyme B levels was found in CAR T cells. The anti-PD-L1 IgG1 isotype, which is capable of mediating ADCC, was also able to recruit human NK cells to the tumor site in vivo. These armed second-generation CAR T cells empowered to secrete human anti-PD-L1 antibodies in the ccRCC milieu to combat T cell exhaustion is an innovation in this field that should provide renewed potential for CAR T cell immunotherapy of solid tumors where limited efficacy is currently seen.
Cho, Seulki; Lee, Tae Sup; Song, In Ho; Kim, A-Ram; Lee, Yoon-Jin; Kim, Haejung; Hwang, Haein; Jeong, Mun Sik; Kang, Seung Goo; Hong, Hyo Jeong
2017-01-01
Cholangiocarcinoma has a poor prognosis and is refractory to conventional chemotherapy and radiation therapy. Improving survival of patients with advanced cholangiocarcinoma urgently requires the development of new effective targeted therapies in combination with chemotherapy. We previously developed a human monoclonal antibody (mAb) Ab417 that binds to both the human and mouse L1 cell adhesion molecule (L1CAM) with high affinities. In the present study, we observed that Ab417 exhibited tumor targeting ability in biodistribution studies and dose-dependent tumor growth inhibition in an intrahepatic cholangiocarcinoma (Choi-CK) xenograft mouse model. Regarding the mechanism of action, Ab417 was internalized into the tumor cells and thereby down-regulated membrane L1CAM, and inhibited tumor growth by reducing tumor cell proliferation in vivo. Gemcitabine inhibited the tumor growth in a dose-dependent manner in the Choi-CK xenograft model. However, cisplatin inhibited the tumor growth moderately and not in a dose-dependent way, suggesting that the tumors may have developed resistance to apoptosis induced by cisplatin. Combined treatment with Ab417 and gemcitabine or cisplatin exerted enhanced tumor growth inhibition compared to treatment with antibody or drug alone. The results suggest that Ab417 in combination with chemotherapy may have potential as a new therapeutic regimen for cholangiocarcinoma. Our study is the first to show an enhanced therapeutic effect of a therapeutic antibody targeting L1CAM in combination with chemotherapy in cholangiocarcinoma models.
[Brain tumor immunotherapy: Illusion or hope?
Migliorini, Denis; Dutoit, Valérie; Walker, Paul R; Dietrich, Pierre-Yves
2017-05-01
Immunotherapy has proven efficient for many tumors and is now part of standard of care in many indications. What is the picture for brain tumors? The recent development of anti-CTLA-4 and PD1 immune checkpoint inhibitors, which have the ability to restore T lymphocytes activity, has gathered enthusiasm and is now paving the way towards more complex models of immune system manipulation. These models include, among others, vaccination and adoptive T cell transfer technologies. Complementary to those strategies, molecules capable of reshaping the immune tumor microenvironment are currently being investigated in early phase trials. Indeed, the tumor bed is hostile to anti-tumor immune responses due to many escape mechanisms, and this is particularly true in the context of brain tumors, a master in eliciting immunosuppressive cells and molecules. The goal of this review is to describe the hopes and challenges of brain tumors immunotherapy and to propose an inventory of the current clinical research with specific focus on the therapies targeting the tumor microenvironment. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Ho, Yi-Ju; Yeh, Chih-Kuang
2017-02-01
Drug-loaded nanodroplets (NDs) can be converted into gas bubbles through ultrasound (US) stimulation, termed acoustic droplet vaporization (ADV), which provides a potential strategy to simultaneously induce vascular disruption and release drugs for combined physical anti-vascular therapy and chemotherapy. Doxorubicin-loaded NDs (DOX-NDs) with a mean size of 214nm containing 2.48mg DOX/mL were used in this study. High-speed images displayed bubble formation and cell debris, demonstrating the reduction in cell viability after ADV. Intravital imaging provided direct visualization of disrupted tumor vessels (vessel size <30μm), the extravasation distance was 12μm in the DOX-NDs group and increased over 100μm in the DOX-NDs+US group. Solid tumor perfusion on US imaging was significantly reduced to 23% after DOX-NDs vaporization, but gradually recovered to 41%, especially at the tumor periphery after 24h. Histological images of the DOX-NDs+US group revealed tissue necrosis, a large amount of drug extravasation, vascular disruption, and immune cell infiltration at the tumor center. Tumor sizes decreased 22%, 36%, and 68% for NDs+US, DOX-NDs, and DOX-NDs+US, respectively, to prolong the survival of tumor-bearing mice. Therefore, this study demonstrates that the combination of physical anti-vascular therapy and chemotherapy with DOX-NDs vaporization promotes uniform treatment to improve therapeutic efficacy. Tumor vasculature plays an important role for tumor cell proliferation by transporting oxygen and nutrients. Previous studies combined anti-vascular therapy and drug release to inhibit tumor growth by ultrasound-stimulated microbubble destruction or acoustic droplet vaporization. Although the efficacy of combined therapy has been demonstrated; the relative spatial distribution of vascular disruption, drug delivery, and accompanied immune responses within solid tumors was not discussed clearly. Herein, our study used drug-loaded nanodroplets to combined physical anti-vascular and chemical therapy. The in vitro cytotoxicity, intravital imaging, and histological assessment were used to evaluate the temporal and spatial cooperation between physical and chemical effect. These results revealed some evidences for complementary action to explain the high efficacy of tumor inhibition by combined therapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Vergne, Florence; Quéré, Gilles; Andrieu-Key, Sophie; Descourt, Renaud; Quintin-Roué, Isabelle; Talagas, Matthieu; De Braekeleer, Marc; Marcorelles, Pascale; Uguen, Arnaud
2016-01-01
ALK-rearrangements are mainly encountered in lung adenocarcinomas and allow treating patients with anti-ALK targeted therapy. ALK-rearranged squamous cell lung carcinomas are rare tumors that can also respond to anti-ALK-targeted therapy. Nevertheless, ALK screening is not always performed in patients with squamous cell lung carcinomas making the identification and treatment of this molecular tumor subtype challenging. We intend to report a rare case of ALK-rearranged lung squamous cell carcinoma with response to crizotinib therapy. We report clinical, pathological, immunohistochemical and fluorescent in situ hybridization data concerning a patient having an ALK-rearranged squamous cell lung cancer diagnosed in our institution. The patient was a 58-year old woman with a metastatic-stage lung cancer. Histopathological and immunohistochemical analyses were performed on a bronchial biopsy sample and concluded in a non-keratinizing squamous cell lung carcinoma expressing strongly cytokeratin 5/6, p63 and p40, which are classic hallmarks of lung squamous cell carcinomas, but also cytokeratin 7 which is more commonly expressed in lung adenocarcinomas. The tumor did not express thyroid transcription factor-1. ALK rearrangement was searched because of the never-smoker status of the patient and resulted in strong positive fluorescent in situ hybridization test and ALK/p80 immunohistochemistry. The patient responded to crizotinib therapy during 213 days. Our observation points out the interest of considering ALK screening in patients with metastatic lung squamous cell carcinomas, especially in patients lacking a usual heavy-smoker clinical history. The histopathological and immunohistochemical features of this particular tumor highlighting the overlapping criteria between lung adenocarcinomas and rare ALK-rearranged squamous cell lung carcinomas could also be relevant to extend ALK screening to tumors with intermediate phenotypes between squamous cell carcinomas and adenocarcinomas and/or arising in non-smokers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Mechanisms of Heparanase Inhibitors in Cancer Therapy
Heyman, Benjamin; Yang, Yiping
2016-01-01
Heparanase is an endo-β-D-glucuronidase capable of cleaving heparan sulfate (HS) side chains contributing to break down of the extracellular matrix. Increased expression of heparanase has been found in numerous malignancies, and is associated with a poor prognosis. It has generated significant interest as a potential anti-neoplastic target because of the multiple roles it plays in tumor growth and metastasis. The pro-tumorigenic effects of heparanase are enhanced by the release of HS side chains, with subsequent increase in bioactive fragments and increased cytokine levels; both promoting tumor invasion, angiogenesis and metastasis. Preclinical experiments have shown heparanase inhibitors to substantially reduce tumor growth and metastasis leading to clinical trials with heparan sulfate mimetics. In this review we will examine heparanase’s role in tumor biology, its interaction with heparan surface proteoglycans, specifically syndecan-1; as well as the mechanism of action for heparanase inhibitors developed as anti-neoplastic therapeutics. PMID:27576132
Zhang, Wen; Li, Changzheng; Shen, Chengwu; Liu, Yuguo; Zhao, Xiaoting; Liu, Ying; Zou, Dongna; Gao, Zhenfa; Yue, Chunwen
2016-09-01
Paclitaxel (PTX) and carboplatin (CBP) are widely used for the combined chemotherapy of non-small cell lung cancer (NSCLC). However, the development of multidrug resistance of cancer cells, as well as systemic toxic side effects resulting from nonspecific localization of anticancer drugs to non-tumor areas are major obstacles to the success of chemotherapy in treating cancers. This study aimed to engineer a prodrug-based nano-drug delivery system for co-encapsulate hydrophilic (CBP) and hydrophobic anti-tumor drugs (PTX). This system was expected to resolve the multidrug resistance cause by single drug, and the dual-drug-loaded liposome was also planned to specifically target the cancer cells without obvious influence on normal cells and tissues. In this paper, PLGA-PEG-CBP was synthesized by the conjugation between the carboxylic group of PLGA-PEG-COOH and the amino group of CBP. Then, self-assembled nanoparticles for combination delivery of PTX and PLGA-PEG-CBP (PTX/CBP NPs) were prepared by solvent displacement technique. The in vitro and in vivo anti-tumor efficacy was assessed in NCL-H460 human non-small cell lung carcinoma cell line. PTX/CBP NPs achieved the highest cytotoxic effect among all formulations in vitro, as compared with single drug delivery NPs. In vivo investigation on NSCLC animal models showed that co-delivery of PTX and CBP possessed high tumor-targeting capacity and strong anti-tumor activity. The PTX/CBP NPs constructed in this research offers an effective strategy for targeted combinational lung cancer therapy.
Choueiri, Toni K.; Lim, Zita Dubauskas; Hirsch, Michelle S.; Tamboli, Pheroze; Jonasch, Eric; McDermott, David F.; Cin, Paola Dal; Corn, Paul; Vaishampayan, Ulka; Heng, Daniel Y.C.; Tannir, Nizar M.
2015-01-01
Introduction Adult “translocation” renal cell carcinoma (RCC), bearing TFE3 gene fusions at Xp11.2, is a recently recognized unique entity for which prognosis and therapy remain poorly understood. We investigated the effect of vascular-endothelial growth factor (VEGF)-targeted therapy in this distinct subtype of RCC. Patients and Methods We conducted a retrospective review to describe the clinical characteristics and outcome of adult patients with metastatic Xp11.2 RCC, who had strong TFE-3 nuclear immunostaining, and received anti-VEGF therapy. Tumor response to anti-VEGF therapy was evaluated by RECIST. Kaplan-Meier methods were used to estimate progression-free survival (PFS) and overall survival (OS) distributions. Results Fifteen patients were identified of which 10, 3, and 2 received sunitinib, sorafenib and monoclonal anti-VEGF antibodies, respectively. The median follow-up was 19.1 months, the median age of the patients was 41 years, and the female:male ratio was 4:1. Initial histologic description included clear cell (n=8), papillary (n=1) or mixed clear cell/papillary RCC (n=6). Five patients had prior systemic therapy. Five patients had FISH analysis and all demonstrated a translocation involving chromosome Xp11.2. When treated with VEGF-targeted therapy, 3 patients had a partial response, 7 patients had stable disease and 5 patients had progressive disease. The median PFS and OS of the entire cohort were 7.1 months and 14.3 months respectively. Conclusion Adult-onset translocation-associated metastatic RCC is an aggressive disease that affects a younger population of patients with a female predominance. VEGF-targeted agents demonstrated some efficacy in this small retrospective series. PMID:20665500
NASA Astrophysics Data System (ADS)
Wankhede, Mamta
Functional vasculature is vital for tumor growth, proliferation, and metastasis. Many tumor-specific vascular targeting agents (VTAs) aim to destroy this essential tumor vasculature to induce indirect tumor cell death via oxygen and nutrition deprivation. The tumor angiogenesis-inhibiting anti-angiogenics (AIs) and the established tumor vessel targeting vascular disrupting agents (VDAs) are the two major players in the vascular targeting field. Combination of VTAs with conventional therapies or with each other, have been shown to have additive or supra-additive effects on tumor control and treatment. Pathophysiological changes post-VTA treatment in terms of structural and vessel function changes are important parameters to characterize the treatment efficacy. Despite the abundance of information regarding these parameters acquired using various techniques, there remains a need for a quantitative, real-time, and direct observation of these phenomenon in live animals. Through this research we aspired to develop a spectral imaging based mouse tumor system for real-time in vivo microvessel structure and functional measurements for VTA characterization. A model tumor system for window chamber studies was identified, and then combinatorial effects of VDA and AI were characterized in model tumor system. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
Transferrin receptors and the targeted delivery of therapeutic agents against cancer
Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.
2012-01-01
Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850
Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis
Borin, Thaiz F.; Angara, Kartik; Rashid, Mohammad H.; Achyut, Bhagelu R.; Arbab, Ali S.
2017-01-01
Metastatic breast cancer (BC) (also referred to as stage IV) spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4) family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE), an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis. PMID:29292756
Blagoev, Krastan B.; Wilkerson, Julia; Burotto, Mauricio; Kim, Chul; Espinal-Domínguez, Edward; García-Alfonso, Pilar; Alimchandani, Meghna; Miettinen, Markku; Blanco-Codesido, Montserrat
2017-01-01
Emergence of tumor resistance to an anti-cancer therapy directed against a putative target raises several questions including: (1) do mutations in the target/pathway confer resistance? (2) Are these mutations pre-existing? (3) What is the relative fitness of cells with/without the mutation? We addressed these questions in patients with metastatic colorectal cancer (mCRC). We conducted an exhaustive review of published data to establish a median doubling time for CRCs and stained a cohort of CRCs to document mitotic indices. We analyzed published data and our own data to calculate rates of growth (g) and regression (d, decay) of tumors in patients with CRC correlating these results with the detection of circulating MT-KRAS DNA. Additionally we estimated mathematically the caloric burden of such tumors using data on mitotic and apoptotic indices. We conclude outgrowth of cells harboring intrinsic or acquired MT-KRAS cannot explain resistance to anti-EGFR (epidermal growth factor receptor) antibodies. Rates of tumor growth with panitumumab are unaffected by presence/absence of MT-KRAS. While MT-KRAS cells may be resistant to anti-EGFR antibodies, WT-KRAS cells also rapidly bypass this blockade suggesting inherent resistance mechanisms are responsible and a neutral evolution model is most appropriate. Using the above clinical data on tumor doubling times and mitotic and apoptotic indices we estimated the caloric intake required to support tumor growth and suggest it may explain in part cancer-associated cachexia. PMID:28981524
Blagoev, Krastan B; Wilkerson, Julia; Burotto, Mauricio; Kim, Chul; Espinal-Domínguez, Edward; García-Alfonso, Pilar; Alimchandani, Meghna; Miettinen, Markku; Blanco-Codesido, Montserrat; Fojo, Tito
2017-01-01
Emergence of tumor resistance to an anti-cancer therapy directed against a putative target raises several questions including: (1) do mutations in the target/pathway confer resistance? (2) Are these mutations pre-existing? (3) What is the relative fitness of cells with/without the mutation? We addressed these questions in patients with metastatic colorectal cancer (mCRC). We conducted an exhaustive review of published data to establish a median doubling time for CRCs and stained a cohort of CRCs to document mitotic indices. We analyzed published data and our own data to calculate rates of growth (g) and regression (d, decay) of tumors in patients with CRC correlating these results with the detection of circulating MT-KRAS DNA. Additionally we estimated mathematically the caloric burden of such tumors using data on mitotic and apoptotic indices. We conclude outgrowth of cells harboring intrinsic or acquired MT-KRAS cannot explain resistance to anti-EGFR (epidermal growth factor receptor) antibodies. Rates of tumor growth with panitumumab are unaffected by presence/absence of MT-KRAS. While MT-KRAS cells may be resistant to anti-EGFR antibodies, WT-KRAS cells also rapidly bypass this blockade suggesting inherent resistance mechanisms are responsible and a neutral evolution model is most appropriate. Using the above clinical data on tumor doubling times and mitotic and apoptotic indices we estimated the caloric intake required to support tumor growth and suggest it may explain in part cancer-associated cachexia.
Queirolo, Paola; Spagnolo, Francesco
2017-09-01
Anti-programmed death receptor 1 (PD-1) drugs nivolumab and pembrolizumab were recently approved for the treatment of advanced melanoma and other solid tumors. Atypical patterns of response (i.e. tumor shrinkage or stabilization after initial progression) were observed in about 10% of metastatic melanoma patients treated with anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) drug ipilimumab and were associated with improved survival; however, the rate of atypical response patterns to anti-PD-1 therapy is not clear. An electronic search was performed to identify clinical trials evaluating response to anti-PD-1 therapy with nivolumab and pembrolizumab in patients with advanced solid tumors. Thirty-eight studies were included in our analysis for a total of 7069 patients with advanced cancer treated with anti-PD-1 therapy. Responses were evaluated by unconventional response criteria in 19 trials and were observed for all cancer types but tumors with mismatch-repair deficiency and head and neck squamous cell carcinoma. Overall, 151 atypical responses were observed in 2400 patients (6%) evaluated by unconventional response criteria. The results of our systematic review highlight the clinical relevance of unconventional responses to anti-PD-1 therapy and support further investigation into the development of tools that may assist evaluation of the antitumor activity of immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Loo, Kimberly; Daud, Adil I
Immense progress in the field of cancer immunotherapy has garnered several novel and successful treatments for metastatic melanoma. Beginning with therapies targeting cytotoxic T lymphocyte antigen 4 (CTLA-4), objective response rates, overall survival, and long-term survival were significantly increased when compared with glycoprotein 100 vaccine therapies. Expanding the breadth of therapies aimed to "release the breaks" on the active immune system, anti-programmed death 1 (PD-1) and anti-programmed death 1 ligand (PD-L1) therapies further improved overall survival, progression-free survival, and objective tumor response while exhibiting more favorable safety profiles compared with ipilimumab and to chemotherapy agents. Given the power of these agents as monotherapies, a combination approach sought to combine the anti-CTLA agent ipilimumab and anti-PD-1 agent, nivolumab, to form a double-pronged attack and target several mechanisms within the active immune system. Given the promise in elevated response rates and progression-free survival, the future appears promising along the immunotherapy front. Continuing the push for progress, biomarkers to uncover the profile of responders to the various therapies will become vital in the treatment of metastatic melanoma patients. Here, we highlight the advances of CTLA-4 and PD-1/PD-L1 inhibitors in the metastatic melanoma setting and discuss future directions for uncovering the full potential of these therapies.
Yu, Bin; Yang, Mei; Shi, Lei; Yao, Yandan; Jiang, Qinqin; Li, Xuefei; Tang, Lei-Han; Zheng, Bo-Jian; Yuen, Kwok-Yung; Smith, David K.; Song, Erwei; Huang, Jian-Dong
2012-01-01
Using bacteria as therapeutic agents against solid tumors is emerging as an area of great potential in the treatment of cancer. Obligate and facultative anaerobic bacteria have been shown to infiltrate the hypoxic regions of solid tumors, thereby reducing their growth rate or causing regression. However, a major challenge for bacterial therapy of cancer with facultative anaerobes is avoiding damage to normal tissues. Consequently the virulence of bacteria must be adequately attenuated for therapeutic use. By placing an essential gene under a hypoxia conditioned promoter, Salmonella Typhimurium strain SL7207 was engineered to survive only in anaerobic conditions (strain YB1) without otherwise affecting its functions. In breast tumor bearing nude mice, YB1 grew within the tumor, retarding its growth, while being rapidly eliminated from normal tissues. YB1 provides a safe bacterial vector for anti-tumor therapies without compromising the other functions or tumor fitness of the bacterium as attenuation methods normally do. PMID:22666539
The mechanism involved in the loss of PTEN expression in NSCLC tumor cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Gang; Zhao, Jingfeng; Peng, Xianjing
2012-02-17
Highlights: Black-Right-Pointing-Pointer Radiation stimulates PTEN reexpression in NSCLC independent of p53 activation. Black-Right-Pointing-Pointer PTEN reexpression is mediated by miR-29b overexpression. Black-Right-Pointing-Pointer miR-29b regulates Dnmts expression in NSCLC tumor cells. Black-Right-Pointing-Pointer Target therapy could be established by overexpressing miR-29b expression. -- Abstract: Loss of PTEN expression is observed in most non-small cell lung cancers (NSCLC). However, the mechanism by which PTEN expression is regulated in NSCLC has not been fully elucidated. In this study, we investigated the role of DNA methyltransferases (Dnmts), microRNA-29b (miR-29b), and anti-miR-29b inhibitor in PTEN promoter methylation and PTEN gene expression in H358 NSCLC cells in vitromore » and in vivo. PTEN mRNA was measured by RT-PCR. PTEN and Dnmts protein levels were measured by Western blot. miR-29b expression was detected by Northern blot. A xenograft H358 tumor mouse model was established by subcutaneously inoculating H358 cells into the right hind limbs of nude mice. We found that radiation induced cell apoptosis and hypomethylation in PTEN promoter, PTEN and miR-29b expression, and downregulation of Dnmt1, 3a and 3b expression in H358 tumor cells. The effect of radiation on gene expression and apoptosis was blocked by anti-miR-29b inhibitor. In the xenograft H358 tumor model, anti-miR-29b inhibitor reversed radiation-induced tumor growth delay, PTEN reexpression and downregulation of Dnmts expression. Our study suggested that miR-29b is an upstream molecule of PTEN. miR-29b regulates PTEN gene expression through downregulating Dnmts expression and subsequently induces hypomethylation in PTEN promoter. Targeting therapy could be established in NSCLC by upregulating miR-29b expression.« less
Adusumilli, Prasad S.; Cherkassky, Leonid; Villena-Vargas, Jonathan; Colovos, Christos; Servais, Elliot; Plotkin, Jason; Jones, David R.; Sadelain, Michel
2015-01-01
Translating the recent success of chimeric antigen receptor (CAR) T cell therapy for hematological malignancies to solid tumors will necessitate overcoming several obstacles, including inefficient T cell tumor infiltration and insufficient functional persistence. Taking advantage of an orthotopic model that faithfully mimics human pleural malignancy, we evaluated two routes of administration of mesothelin-targeted T cells using the M28z CAR. We found that intra-pleurally administered CAR T cells vastly out-performed systemically infused T cells, requiring 30-fold fewer M28z T cells to induce long-term complete remissions. Following intrapleural T cell administration, prompt in vivo antigen-induced T cell activation allowed robust CAR T cell expansion and effector differentiation, resulting in enhanced anti-tumor efficacy and functional T cell persistence for 200 days. Regional T cell administration also promoted efficient elimination of extrathoracic tumor sites. This therapeutic efficacy was dependent on early CD4+ T cell activation associated with a higher intra-tumoral CD4/CD8 cell ratios and CD28-dependent CD4+ T cell-mediated cytotoxicity. In contrast, intravenously delivered CAR T cells, even when accumulated at equivalent numbers in the pleural tumor, did not achieve comparable activation, tumor eradication or persistence. The remarkable ability of intrapleurally administered T cells to circulate and persist supports the concept of delivering optimal CAR T cell therapy through “regional distribution centers.” Based on these results, we are opening a phase I clinical trial to evaluate the safety of intrapleural administration of mesothelin-targeted CAR T cells in patients with primary or secondary pleural malignancies. PMID:25378643
Anti-EGFR monoclonal antibody in cancer treatment: in vitro and in vivo evidence
Quatrale, Anna Elisa; Petriella, Daniela; Porcelli, Letizia; Tommasi, Stefania; Silvestris, Nicola; Colucci, Giuseppe; Angelo, Angelo; Azzariti, Amalia
2011-01-01
The complexity of EGFR signaling network suggests that the receptor could be promising targets for new personalised therapy. In clinical practice two strategies targeting the receptor are available; they utilise monoclonal antibodies, directed towards the extracellular domain of EGFR, and small molecule tyrosine kinase inhibitors, which bind the catalytic kinase domain of the receptor. In this review, we summarise currently known pre-clinical data on the antitumor effects of monoclonal antibodies, which bind to EGFR in its inactive configuration, competing for ligand binding and thereby blocking ligand-induced EGFR tyrosine kinase activation. As a consequence of treatment, key EGFR-dependent intracellular signals in cancer cells are affected. Data explaining the mechanisms of action of anti-EGFR monoclonal antibodies, currently used in clinical setting and under development for the treatment of solid tumors, are revised with the aim to provide an overview of the most important preclinical studies showing the impact of this class of EGFR targeted agents on tumor biology.
Fattouh, Kinda; Collet-Benzaquen, Diane; Provensal, Anne M; Desseigne, Françoise; Castillo, Christine; Combemale, Patrick; de la Fouchardière, Arnaud
2017-10-01
Necrotizing Infundibular Crystalline Folliculitis (NICF) is rare entity of unknown pathogenesis presenting as follicular crystalline papules arising in seborrheic areas. We report 2 cases of NICF in patients under targeted therapy for metastatic adenocarcinoma. In one case, the lesions reappeared cyclically every 3 weeks after each injection and in the other case, lesions persisted until disruption of the continuous oral therapy. Punch-biopsies demonstrated folliculitis with a plugging crystalline material associated with either bacteria or yeast. These are the first descriptions of drug-induced NICF.
ErbB activation signatures as potential biomarkers for anti-ErbB3 treatment in HNSCC.
Alvarado, Diego; Ligon, Gwenda F; Lillquist, Jay S; Seibel, Scott B; Wallweber, Gerald; Neumeister, Veronique M; Rimm, David L; McMahon, Gerald; LaVallee, Theresa M
2017-01-01
Head and neck squamous cell carcinoma (HNSCC) accounts for 3-5% of all tumor types and remains an unmet medical need with only two targeted therapies approved to date. ErbB3 (HER3), the kinase-impaired member of the EGFR/ErbB family, has been implicated as a disease driver in a number of solid tumors, including a subset of HNSCC. Here we show that the molecular components required for ErbB3 activation, including its ligand neuregulin-1 (NRG1), are highly prevalent in HNSCC and that HER2, but not EGFR, is the major activating ErbB3 kinase partner. We demonstrate that cetuximab treatment primarily inhibits the ERK signaling pathway and KTN3379, an anti-ErbB3 monoclonal antibody, inhibits the AKT signaling pathway, and that dual ErbB receptor inhibition results in enhanced anti-tumor activity in HNSCC models. Surprisingly, we found that while NRG1 is required for ErbB3 activation, it was not sufficient to fully predict for KTN3379 activity. An evaluation of HNSCC patient samples demonstrated that NRG1 expression was significantly associated with expression of the EGFR ligands amphiregulin (AREG) and transforming growth factor α (TGFα). Furthermore, NRG1-positive HNSCC cell lines that secreted high levels of AREG and TGFα or contained high levels of EGFR homodimers (H11D) demonstrated a better response to KTN3379. Although ErbB3 and EGFR activation are uncoupled at the receptor level, their respective signaling pathways are linked through co-expression of their respective ligands. We propose that NRG1 expression and EGFR activation signatures may enrich for improved efficacy of anti-ErbB3 therapeutic mAb approaches when combined with EGFR-targeting therapies in HNSCC.
Tumor surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy
Sitohy, Basel; Nagy, Janice A.; Shih, Shou-Ching; Dvorak, Harold F.
2011-01-01
Anti-vascular therapy directed against VEGF or its receptors has been successful when administered at early stages of tumor vessel growth, but is less effective when administered later. Tumor blood vessels are heterogeneous, so vessel subpopulations may differ in their requirements for tumor cell-secreted VEGF and in their susceptibility to anti-VEGF/VEGFR therapy. Human cancers contain several distinct blood vessel types, including mother vessels (MV), glomeruloid microvascular proliferations (GMP), vascular malformations (VM), feeding arteries (FA) and draining veins (DV), all of which can be generated in mice in the absence of tumor cells using expression vectors for VEGF-A164. In this study, we investigated the sensitivity of each of these vessel types to anti-VEGF therapy with aflibercept ® (VEGF Trap), a potent inhibitor of VEGF-A164. Administering VEGF Trap treatment before or shortly after injection of a recombinant VEGF-A164 expressing adenovirus could prevent or regress tumor-free neovasculature, but it was progressively less effective if initiated at later times. Early-forming MVs and GMPs in which the lining endothelial cells expressed high levels of VEGFR-2 were highly susceptible to blockade by VEGF Trap. In contrast, late-forming VMs, FAs, and DVs that expressed low levels of VEGFR-2 were largely resistant. Together, our findings define the susceptibility of different blood vessel subtypes to anti-VEGF therapy, offering a possible explanation for the limited effectiveness of anti-VEGF-A/VEGFR treatment of human cancers, which are typically present for months to years before discovery and are largely populated by late-forming blood vessels. PMID:21937680
Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers.
Govindan, Serengulam V; Cardillo, Thomas M; Sharkey, Robert M; Tat, Fatma; Gold, David V; Goldenberg, David M
2013-06-01
CD74 is an attractive target for antibody-drug conjugates (ADC), because it internalizes and recycles after antibody binding. CD74 mostly is associated with hematologic tumors but is expressed also in solid cancers. Therefore, ADCs of the humanized anti-CD74 antibody, milatuzumab, were examined for the therapy of CD74-expressing solid tumors. Milatuzumab-doxorubicin and two milatuzumab-SN-38 conjugates with cleavable linkers, differing in their stability in serum and how they release SN-38 in the lysosome, were prepared. CD74 expression was determined by flow cytometry and immunohistology. In vitro cytotoxicity and in vivo therapeutic studies were conducted in the human cancer cell lines A-375 (melanoma), HuH-7 and Hep-G2 (hepatoma), Capan-1 (pancreatic), NCI-N87 (gastric), and Raji Burkitt lymphoma. The milatuzumab-SN-38 ADC was compared with SN-38 ADCs prepared with anti-Trop-2 and anti-CEACAM6 antibodies in xenografts expressing their target antigens. Milatuzumab-doxorubicin was most effective in the lymphoma model, whereas in A-375 and Capan-1 solid tumors, only milatuzumab-SN-38 showed a therapeutic benefit. Despite much lower surface expression of CD74 than Trop-2 or CEACAM6, milatuzumab-SN-38 had similar efficacy in Capan-1 as anti-Trop-2-SN-38, but in NCI-N87, anti-CEACAM6 and anti-Trop-2 conjugates were superior. Studies in two hepatoma lines at a single dose level showed significant benefit over saline controls but not against an irrelevant immunoglobulin G conjugate. CD74 is a suitable target for ADCs in some solid tumor xenografts, with efficacy largely influenced by uniformity of CD74 expression and with SN-38 conjugates providing the best therapeutic responses; SN-38 conjugates were preferable in solid cancers, whereas doxorubicin ADC was better in lymphoma tested. ©2013 AACR
Advances of Immune Checkpoint Inhibitors in Tumor Immunotherapy
NASA Astrophysics Data System (ADS)
Guo, Qiao
2018-01-01
Immune checkpoints are cell surface molecules that can fine-tune the immune responses, they are crucial for modulating the duration and amplitude of immune reactions while maintaining self-tolerance in order to minimize autoimmune responses. Numerous studies have demonstrated that tumors cells can directly express immune-checkpoint molecules, or induce many inhibitory molecules expression in the tumor microenvironment to inhibit the anti-tumor immunity. Releasing these brakes has emerged as an exciting strategy to cure cancer. In the past few years, clinical trials with therapeutic antibodies targeting to the checkpoint molecules CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. In contrast to the conventional treatment, checkpoint inhibitors induce broad and durable antitumor responses. In the future, treatment may involve combination therapy to target different checkpoint molecules and stages of the adaptive immune responses. In this review, we summarized the recent advances of the study and development of other checkpoint molecules in tumor immunotherapy.
Coon, Brian G.; Crist, Scott; González-Bonet, Andrés M.; Kim, Hee-Kwon; Sowa, Jennifer; Thompson, David H.; Ratliff, Timothy L.; Aguilar, R. Claudio
2011-01-01
The adjuvant therapy of choice for superficial bladder cancer is the intravesical instillation of live Mycobacterium bovis Bacillus Calmette-Guerin (BCG). In spite of the fact that this therapy is the most effective treatment for superficial bladder cancer, intravesical administration of BCG is associated with high local morbidity and the potential for systemic infection. Therefore, there is a need for the development of safer, less toxic approaches to fight this disease. Since fibronectin attachment protein (FAP) is a key element in BCG retention and targeting to cells, we hypothesize that this protein can be used as targeting agent to deliver cytotoxic cargo for the treatment of bladder tumors. Here we evaluated the ability of bladder tumor cells to bind and endocytose FAP via fibronectin-integrin complexes. We found that microaggregation induced by an anti-FAP polyclonal antibody accelerated FAP uptake by T24 bladder tumor cells. FAP was determined to be internalized via a clathrin-independent, caveolae-dependent mechanism. Further, once within the endosomal compartment, FAP was targeted to the lysosomal compartment with negligible recycling to the plasma membrane. Importantly, we demonstrated that FAP microaggregation and internalization could also be triggered by multivalent Ni2+NTA-bearing liposomes. Overall, our studies validate the use of FAP as a targeting vector and provide the foundation for the design of more effective, less toxic bladder cancer therapeutics. PMID:21901746
Lee, Jaewoo; Lee, Youngju; Xu, Li; White, Rebekah; Sullenger, Bruce A
2017-06-07
Activation of the RNA-sensing pattern recognition receptor (PRR) in cancer cells leads to cell death and cytokine expression. This cancer cell death releases tumor antigens and damage-associated molecular patterns (DAMPs) that induce anti-tumor immunity. However, these cytokines and DAMPs also cause adverse inflammatory and thrombotic complications that can limit the overall therapeutic benefits of PRR-targeting anti-cancer therapies. To overcome this problem, we generated and evaluated two novel and distinct ssRNA molecules (immunogenic cell-killing RNA [ICR]2 and ICR4). ICR2 and ICR4 differentially stimulated cell death and PRR signaling pathways and induced different patterns of cytokine expression in cancer and innate immune cells. Interestingly, DAMPs released from ICR2- and ICR4-treated cancer cells had distinct patterns of stimulation of innate immune receptors and coagulation. Finally, ICR2 and ICR4 inhibited in vivo tumor growth as effectively as poly(I:C). ICR2 and ICR4 are potential therapeutic agents that differentially induce cell death, immune stimulation, and coagulation when introduced into tumors. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Moon, Edmund K; Wang, Liang-Chuan S; Bekdache, Kheng; Lynn, Rachel C; Lo, Albert; Thorne, Stephen H; Albelda, Steven M
2018-01-01
T cell trafficking into tumors depends on a "match" between chemokine receptors on effector cells (e.g., CXCR3 and CCR5) and tumor-secreted chemokines. There is often a chemokine/chemokine receptor "mismatch", with tumors producing minute amounts of chemokines, resulting in inefficient targeting of effectors to tumors. We aimed to alter tumors to produce higher levels of CXCL11, a CXCR3 ligand, to attract more effector cells following immunotherapy. Mice bearing established subcutaneous tumors were studied. In our first approach, we used modified chimeric antigen receptor (CAR)-transduced human T cells to deliver CXCL11 (CAR/CXCL11) into tumors. In our second approach, we intravenously (iv) administered a modified oncolytic vaccinia virus (VV) engineered to produce CXCL11 (VV.CXCL11). The effect of these treatments on T cell trafficking into the tumors and anti-tumor efficacy after subsequent CAR T cell injections or anti-tumor vaccines was determined. CAR/CXCL11 and VV.CXCL11 significantly increased CXCL11 protein levels within tumors. For CAR/CXCL11, injection of a subsequent dose of CAR T cells did not result in increased intra-tumoral trafficking, and appeared to decrease the function of the injected CAR T cells. In contrast, VV.CXCL11 increased the number of total and antigen-specific T cells within tumors after CAR T cell injection or vaccination and significantly enhanced anti-tumor efficacy. Both approaches were successful in increasing CXCL11 levels within the tumors; however, only the vaccinia approach was successful in recruiting T cells and augmenting anti-tumor efficacy. VV.CXCL11 should be considered as a potential approach to augment adoptive T cell transfer or vaccine immunotherapy.
Caso, Francesco; Costa, Luisa; Del Puente, Antonio; Di Minno, Matteo Nicola Dario; Lupoli, Gelsy; Scarpa, Raffaele; Peluso, Rosario
2015-01-01
Spondyloarthritis represents a heterogeneous group of articular inflammatory diseases that share common genetic, clinical and radiological features. The therapy target of spondyloarthritis relies mainly in improving patients’ quality of life, controlling articular inflammation, preventing the structural joints damage and preserving the functional abilities, autonomy and social participation of patients. Among these, traditional disease-modifying antirheumatic drugs have been demonstrated to be effective in the management of peripheral arthritis; moreover, in the last decade, biological therapies have improved the approach to spondyloarthritis. In patients with axial spondyloarthritis, tumor necrosis factor α inhibitors are currently the only effective therapy in patients for whom conventional therapy with nonsteroidal anti-inflammatory drugs has failed. The aim of this review is to summarize the current experience and evidence about the pharmacological approach in spondyloarthritis patients. PMID:26568809
Kim, Yun-Hee; Kim, Kyung Tae; Lee, Sang-Jin; Hong, Seung-Hee; Moon, Ju Young; Yoon, Eun Kyung; Kim, Sukyoung; Kim, Eun Ok; Kang, Se Hun; Kim, Seok Ki; Choi, Sun Il; Goh, Sung Ho; Kim, Daehong; Lee, Seong-Wook; Ju, Mi Ha; Jeong, Jin Sook; Kim, In-Hoo
2016-01-01
Trans-splicing ribozyme enables to sense and reprogram target RNA into therapeutic transgene and thereby becomes a good sensing device for detection of cancer cells, judging from transgene expression. Previously we proposed PEPCK-Rz-HSVtk (PRT), hTERT targeting trans-splicing ribozyme (Rz) driven by liver-specific promoter phosphoenolpyruvate carboxykinase (PEPCK) with downstream suicide gene, herpes simplex virus thymidine kinase (HSVtk) for hepatocellular carcinoma (HCC) gene therapy. Here, we describe success of a re-engineered adenoviral vector harboring PRT in obtaining greater antitumor activity with less off-target effect for clinical application as a theranostics. We introduced liver-selective apolipoprotein E (ApoE) enhancer to the distal region of PRT unit to augment activity and liver selectivity of PEPCK promoter, and achieved better transduction into liver cancer cells by replacement of serotype 35 fiber knob on additional E4orf1-4 deletion of E1&E3-deleted serotype 5 back bone. We demonstrated that our refined adenovirus harboring PEPCK/ApoE-Rz-HSVtk (Ad-PRT-E) achieved great anti-tumor efficacy and improved ability to specifically target HCC without damaging normal hepatocytes. We also showed noninvasive imaging modalities were successfully employed to monitor both how well a therapeutic gene (HSVtk) was expressed inside tumor and how effectively a gene therapy took an action in terms of tumor growth. Collectively, this study suggests that the advanced therapeutic adenoviruses Ad-PRT-E and its image-aided evaluation system may lead to the powerful strategy for successful clinical translation and the development of clinical protocols for HCC therapy.
Liu, Suxing; Bishop, W Robert; Liu, Ming
2003-08-01
p21(WAF1/Cip1) was initially identified as a cell cycle regulatory protein that can cause cell cycle arrest. It is induced by both p53-dependent and p53-independent mechanisms. This mini-review briefly discusses its currently known functions in apoptosis and drug sensitivity. As an inhibitor of cell proliferation, p21(WAF1/Cip1) plays an important role in drug-induced tumor suppression. Nevertheless, a number of recent studies have shown that p21(WAF1/Cip1) can assume both pro- or anti-apoptotic functions in response to anti-tumor agents depending on cell type and cellular context. This dual role of p21(WAF1/Cip1) in cancer cells complicates using p21(WAF1/Cip1) status to predict response to anti-tumor agents. However, it is possible to develop p21(WAF1/Cip1)-targeted reagents or p21(WAF1/Cip1) gene transfer techniques to have a beneficial effect within a well-defined therapeutic context. Better understanding of the roles of p21(WAF1/Cip1) in tumors should enable a more rational approach to anti-tumor drug design and therapy.
Lim, Li Ying; Koh, Pei Yin; Somani, Sukrut; Al Robaian, Majed; Karim, Reatul; Yean, Yi Lyn; Mitchell, Jennifer; Tate, Rothwelle J.; Edrada-Ebel, RuAngelie; Blatchford, David R.; Mullin, Margaret; Dufès, Christine
2015-01-01
The possibility of using gene therapy for the treatment of cancer is limited by the lack of safe, intravenously administered delivery systems able to selectively deliver therapeutic genes to tumors. In this study, we investigated if the conjugation of the polypropylenimine dendrimer to lactoferrin and lactoferricin, whose receptors are overexpressed on cancer cells, could result in a selective gene delivery to tumors and a subsequently enhanced therapeutic efficacy. The conjugation of lactoferrin and lactoferricin to the dendrimer significantly increased the gene expression in the tumor while decreasing the non-specific gene expression in the liver. Consequently, the intravenous administration of the targeted dendriplexes encoding TNFα led to the complete suppression of 60% of A431 tumors and up to 50% of B16-F10 tumors over one month. The treatment was well tolerated by the animals. These results suggest that these novel lactoferrin- and lactoferricin-bearing dendrimers are promising gene delivery systems for cancer therapy. From the Clinical Editor Specific targeting of cancer cells should enhance the delivery of chemotherapeutic agents. This is especially true for gene delivery. In this article, the authors utilized a dendrimer-based system and conjugated this with lactoferrin and lactoferricin to deliver anti-tumor genes. The positive findings in animal studies should provide the basis for further clinical studies. PMID:25933695
Chatalic, Kristell L S; Veldhoven-Zweistra, Joke; Bolkestein, Michiel; Hoeben, Sander; Koning, Gerben A; Boerman, Otto C; de Jong, Marion; van Weerden, Wytske M
2015-07-01
Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer (PCa) and a promising target for molecular imaging and therapy. Nanobodies (single-domain antibodies, VHH) are the smallest antibody-based fragments possessing ideal molecular imaging properties, such as high target specificity and rapid background clearance. We developed a novel anti-PSMA Nanobody (JVZ-007) for targeted imaging and therapy of PCa. Here, we report on the application of the (111)In-radiolabeled Nanobody for SPECT/CT imaging of PCa. A Nanobody library was generated by immunization of a llama with 4 human PCa cell lines. Anti-PSMA Nanobodies were captured by biopanning on PSMA-overexpressing cells. JVZ-007 was selected for evaluation as an imaging probe. JVZ-007 was initially produced with a c-myc-hexahistidine (his) tag allowing purification and detection. The c-myc-his tag was subsequently replaced by a single cysteine at the C terminus, allowing site-specific conjugation of chelates for radiolabeling. JVZ-007-c-myc-his was conjugated to 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-DTPA) via the lysines, whereas JVZ-007-cys was conjugated to maleimide-DTPA via the C-terminal cysteine. PSMA targeting was analyzed in vitro by cell-binding experiments using flow cytometry, autoradiography, and internalization assays with various PCa cell lines and patient-derived xenografts (PDXs). The targeting properties of radiolabeled Nanobodies were evaluated in vivo in biodistribution and SPECT/CT imaging experiments, using nude mice bearing PSMA-positive PC-310 and PSMA-negative PC-3 tumors. JVZ-007 was successfully conjugated to DTPA for radiolabeling with (111)In at room temperature. (111)In-JVZ007-c-myc-his and (111)In-JVZ007-cys internalized in LNCaP cells and bound to PSMA-expressing PDXs and, importantly, not to PSMA-negative PDXs and human kidneys. Good tumor targeting and fast blood clearance were observed for (111)In-JVZ-007-c-myc-his and (111)In-JVZ-007-cys. Renal uptake of (111)In-JVZ-007-c-myc-his was initially high but was efficiently reduced by coinjection of gelofusine and lysine. The replacement of the c-myc-his tag by the cysteine contributed to a further reduction of renal uptake without loss of targeting. PC-310 tumors were clearly visualized by SPECT/CT with both tracers, with low renal uptake (<4 percentage injected dose per gram) for (111)In-JVZ-007-cys already at 3 h after injection. We developed an (111)In-radiolabeled anti-PSMA Nanobody, showing good tumor targeting, low uptake in nontarget tissues, and low renal retention, allowing excellent SPECT/CT imaging of PCa within a few hours after injection. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei
2015-10-01
Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency.
Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei
2015-10-28
Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency.
Carcinomatous meningitis: Leptomeningeal metastases in solid tumors
Le Rhun, Emilie; Taillibert, Sophie; Chamberlain, Marc C.
2013-01-01
Leptomeningeal metastasis (LM) results from metastatic spread of cancer to the leptomeninges, giving rise to central nervous system dysfunction. Breast cancer, lung cancer, and melanoma are the most frequent causes of LM among solid tumors in adults. An early diagnosis of LM, before fixed neurologic deficits are manifest, permits earlier and potentially more effective treatment, thus leading to a better quality of life in patients so affected. Apart from a clinical suspicion of LM, diagnosis is dependent upon demonstration of cancer in cerebrospinal fluid (CSF) or radiographic manifestations as revealed by neuraxis imaging. Potentially of use, though not commonly employed, today are use of biomarkers and protein profiling in the CSF. Symptomatic treatment is directed at pain including headache, nausea, and vomiting, whereas more specific LM-directed therapies include intra-CSF chemotherapy, systemic chemotherapy, and site-specific radiotherapy. A special emphasis in the review discusses novel agents including targeted therapies, that may be promising in the future management of LM. These new therapies include anti-epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors erlotinib and gefitinib in nonsmall cell lung cancer, anti-HER2 monoclonal antibody trastuzumab in breast cancer, anti-CTLA4 ipilimumab and anti-BRAF tyrosine kinase inhibitors such as vermurafenib in melanoma, and the antivascular endothelial growth factor monoclonal antibody bevacizumab are currently under investigation in patients with LM. Challenges of managing patients with LM are manifold and include determining the appropriate patients for treatment as well as the optimal route of administration of intra-CSF drug therapy. PMID:23717798
Overholser, Jay; Ambegaokar, Kristen Henkins; Eze, Siobhan M; Sanabria-Figueroa, Eduardo; Nahta, Rita; Bekaii-Saab, Tanios; Kaumaya, Pravin T P
2015-07-06
Despite the promise of targeted therapies, there remains an urgent need for effective treatment for esophageal cancer (EC) and triple-negative breast cancer (TNBC). Current FDA-approved drugs have significant problems of toxicity, safety, selectivity, efficacy and development of resistance. In this manuscript, we demonstrate that rationally designed peptide vaccines/mimics are a viable therapeutic strategy for blocking aberrant molecular signaling pathways with high affinity, specificity, potency and safety. Specifically, we postulate that novel combination treatments targeting members of the EGFR family and IGF-1R will yield significant anti-tumor effects in in vitro models of EC and TNBC possibly overcoming mechanisms of resistance. We show that the combination of HER-1 and HER-2 or HER-1 and IGF-1R peptide mimics/vaccine antibodies exhibited enhanced antitumor properties with significant inhibition of tumorigenesis in OE19 EC and MDA-MB-231 TNBC cell lines. Our work elucidates the mechanisms of HER-1/IGF-1R and HER-1/HER-2 signaling in these cancer cell lines, and the promising results support the rationale for dual targeting with HER-1 and HER-2 or IGF-1R as an improved treatment regimen for advanced therapy tailored to difference types of cancer.
Male contraceptive Adjudin is a potential anti-cancer drug
Xie, Qian Reuben; Liu, Yewei; Shao, Jiaxiang; Yang, Jian; Liu, Tengyuan; Zhang, Tingting; Wang, Boshi; Mruk, Dolores D.; Silvestrini, Bruno; Cheng, C. Yan; Xia, Weiliang
2014-01-01
Adjudin, also known as AF-2364 and an analog of lonidamine (LND), is a male contraceptive acting through the induction of premature sperm depletion from the seminiferous epithelium when orally administered to adult rats, rabbits or dogs. It is also known that LND can target mitochondria and block energy metabolism in tumor cells. However, whether Adjudin exhibits any anti-cancer activity remains to be elucidated. Herein we described the anti-proliferative activity of Adjudin on cancer cells in vitro and on lung and prostate tumors inoculated in nude mice. We found that Adjudin induced apoptosis in cancer cells through a Caspase-3-dependent pathway. Further experiments revealed that Adjudin could trigger mitochondrial dysfunction in cancer cells, apparently affecting the mitochondrial mass, inducing the loss of mitochondrial membrane potential and reducing cellular ATP levels. Intraperitoneal administration of Adjudin to tumor-bearing athymic nude mice also significantly suppressed the lung and prostate tumor growth. When used in combination with cisplatin, Adjudin enhances the sensitivity to cisplatin-induced cancer cell cytotoxicity. Taken together, these findings have demonstrated that Adjudin may be a potential drug for cancer therapy. PMID:23178657
Hesketh, Anthony J; Maloney, Caroline; Behr, Christopher A; Edelman, Morris C; Glick, Richard D; Al-Abed, Yousef; Symons, Marc; Soffer, Samuel Z; Steinberg, Bettie M
2015-01-01
Metastatic Ewing Sarcoma carries a poor prognosis, and novel therapeutics to prevent and treat metastatic disease are greatly needed. Recent evidence demonstrates that tumor-associated macrophages in Ewing Sarcoma are associated with more advanced disease. While some macrophage phenotypes (M1) exhibit anti-tumor activity, distinct phenotypes (M2) may contribute to malignant progression and metastasis. In this study, we show that M2 macrophages promote Ewing Sarcoma invasion and extravasation, pointing to a potential target of anti-metastatic therapy. CNI-1493 is a selective inhibitor of macrophage function and has shown to be safe in clinical trials as an anti-inflammatory agent. In a xenograft mouse model of metastatic Ewing Sarcoma, CNI-1493 treatment dramatically reduces metastatic tumor burden. Furthermore, metastases in treated animals have a less invasive morphology. We show in vitro that CNI-1493 decreases M2-stimulated Ewing Sarcoma tumor cell invasion and extravasation, offering a functional mechanism through which CNI-1493 attenuates metastasis. These data indicate that CNI-1493 may be a safe and effective adjuvant agent for the prevention and treatment of metastatic Ewing Sarcoma.
Wu, Jianzhang; Wu, Shoubiao; Shi, Lingyi; Zhang, Shanshan; Ren, Jiye; Yao, Song; Yun, Di; Huang, Lili; Wang, Jiabing; Li, Wulan; Wu, Xiaoping; Qiu, Peihong; Liang, Guang
2017-01-05
The nuclear factor-kappa B (NF-κB) signaling pathway has been targeted for the therapy of various cancers, including lung cancer. EF24 was considered as a potent inhibitor of NF-κB signaling pathway. In this study, a series of asymmetric EF24 analogues were synthesized and evaluated for their anti-cancer activity against three lung cancer cell lines (A549, LLC, H1650). Most of the compounds exhibited good anti-tumor activity. Among them, compound 81 showed greater cytotoxicity than EF24. Compound 81 also possessed a potent anti-migration and anti-proliferative ability against A549 cells in a concentration-dependent manner. Moreover, compound 81 induced lung cancer cells death by inhibiting NF-κB signaling pathway, and activated the JNK-mitochondrial apoptotic pathway by increasing reactive oxygen species (ROS) generation resulting in apoptosis. In summary, compound 81 is a valuable candidate for anti-lung cancer therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Adipose tissue immunity and cancer
Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema
2013-01-01
Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs. PMID:24106481
Langley, Robert R.; Fidler, Isaiah J.
2011-01-01
The fact that certain tumors exhibit a predilection for metastasis to specific organs has been recognized for well over a century now. An extensive body of clinical data and experimental research has confirmed Stephen Paget's original “seed and soil” hypothesis that proposed the organ-preference patterns of tumor metastasis are the product of favorable interactions between metastatic tumor cells (the “seed”) and their organ microenvironment (the “soil”). Indeed, many of first-line therapeutic regimens currently in use for the treatment of human cancer are designed to target cancer cells (such as chemotherapy) and also to modulate the tumor microenvironment (such as anti-angiogenic therapy). While some types of tumors are capable of forming metastases in virtually every organ in the body, the most frequent target organs of metastasis are bone, brain, liver, and the lung. In this review, we discuss how tumor-stromal interactions influence metastasis in each of these organs. PMID:21365651
Killing cancer cells by targeted drug-carrying phage nanomedicines
Bar, Hagit; Yacoby, Iftach; Benhar, Itai
2008-01-01
Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177
Establishment of anti-tumor memory in humans using in vitro-educated CD8+ T cells
Butler, Marcus O.; Friedlander, Philip; Milstein, Matthew I.; Mooney, Mary M.; Metzler, Genita; Murray, Andrew P.; Tanaka, Makito; Berezovskaya, Alla; Imataki, Osamu; Drury, Linda; Brennan, Lisa; Flavin, Marisa; Neuberg, Donna; Stevenson, Kristen; Lawrence, Donald; Hodi, F. Stephen; Velazquez, Elsa F.; Jaklitsch, Michael T.; Russell, Sara E.; Mihm, Martin; Nadler, Lee M.; Hirano, Naoto
2013-01-01
While advanced stage melanoma patients have a median survival of less than a year, adoptive T cell therapy can induce durable clinical responses in some patients. Successful adoptive T cell therapy to treat cancer requires engraftment of anti-tumor T lymphocytes that not only retain specificity and function in vivo but also display an intrinsic capacity to survive. To date, adoptively transferred anti-tumor CD8+ T lymphocytes (CTL) have had limited life spans unless the host has been manipulated. To generate CTL that possess an intrinsic capacity to persist in vivo, we developed a human artificial antigen presenting cell system that can educate anti-tumor CTL to acquire both a central memory and effector memory phenotype as well as the capacity to survive in culture for prolonged periods of time. In the present report, we examined whether anti-tumor CTL generated using this system could function and persist in patients. Here, we showed that MART1-specific CTL, educated and expanded using our artificial antigen presenting cell system, could survive for prolonged periods in advanced stage melanoma patients without previous conditioning or cytokine treatment. Moreover, these CTL trafficked to the tumor, mediated biological and clinical responses, and established anti-tumor immunologic memory. Therefore, this approach may broaden the availability of adoptive cell therapy to patients both alone and in combination with other therapeutic modalities. PMID:21525398
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il; Tomsk Polytechnic University, Tomsk, 634050
Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) andmore » in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.« less
Biologic Therapy for HLA-B27-associated Ocular Disorders.
Gueudry, Julie; Thorne, Jennifer E; Bansie, Rakesh; Braun, Juergen; van Hagen, P Martin; Bodaghi, Bahram
2017-04-01
The treatment of articular and extra-articular manifestations associated with HLA-B27 has undergone dramatic changes over the past two decades, mainly as a consequence of the introduction of biologic agents and in particular anti-tumor necrosis factor α (anti-TNFα) agents. Uveitis is known to be the most frequent extra-articular feature in HLA-B27-associated spondyloarthritides. Topical corticosteroids and cycloplegic agents remain the cornerstones of treatment. However, biologic therapy may be effective in the management of refractory or recurrent forms of uveitis. This review gives an update on the management of HLA-B27-associated ocular disorders with biologics, including anti-TNFα agents and non-anti-TNFα biologic modifier drugs. There is an emerging role for newer biologics targeting interleukin-12/23 and interleukin-17 for the treatment of spondyloarthritides but data on their efficacy on anterior uveitis are sparse.
Cancer vaccine development: Designing tumor cells for greater immunogenicity
Bozeman, Erica N.; Shashidharamurthy, Rangaiah; Paulos, Simon A.; Palaniappan, Ravi; D’Souza, Martin; Selvaraj, Periasamy
2014-01-01
Cancer vaccine development is one of the most hopeful and exhilarating areas in cancer research. For this reason, there has been a growing interest in the development and application of novel immunotherapies for the treatment of cancer with the focus being on stimulating the immune system to target tumor cells specifically while leaving normal cells unharmed. From such research has emerged a host of promising immunotherapies such as dendritic cell-based vaccines, cytokine therapies and gene transfer technology. These therapies seek to counteract the poor immunogenicity of tumors by augmenting the host’s immune system with a variety of immunostimulatory proteins such as cytokines and costimulatory molecules. While such therapies have proven effective in the induction of anti-tumor immunity in animal models, they are less than optimal and pose a high risk of clinical infeasibility. Herein, we further discuss these immunotherapies as well as a feasible and efficient alternative that, in pre-clinical animal models, allows for the expression of specific immunostimulatory molecules on the surface of tumor cells by a novel protein transfer technology. PMID:20036822
Fallon, Jonathan K; Vandeveer, Amanda J; Schlom, Jeffrey; Greiner, John W
2017-03-28
The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γâdependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1âexpressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies.
Fallon, Jonathan K.; Vandeveer, Amanda J.
2017-01-01
The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γ‒dependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1‒expressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies. PMID:28423552
Josefsson, Anders; Nedrow, Jessie R.; Park, Sunju; Banerjee, Sangeeta Ray; Rittenbach, Andrew; Jammes, Fabien; Tsui, Benjamin; Sgouros, George
2015-01-01
The programmed cell death ligand 1 (PD-L1) participates in an immune checkpoint system involved in preventing autoimmunity. PD-L1 is expressed on tumor cells, tumor-associated macrophages, and other cells in the tumor microenvironment. Anti-PD-L1 antibodies are active against a variety of cancers, and combined anti-PD-L1 therapy with external beam radiotherapy has been shown to increase therapeutic efficacy. PD-L1 expression status is an important indicator of prognosis and therapy responsiveness, but methods to precisely capture the dynamics of PD-L1 expression in the tumor microenvironment are still limited. In this study, we developed a murine anti-PD-L1 antibody conjugated to the radioactive isotope Indium-111 (111In) for imaging and biodistribution studies in an immune-intact mouse model of breast cancer. The distribution of 111In-DTPA-anti-PD-L1 in tumors as well as the spleen, liver, thymus, heart, and lungs peaked 72 hours after injection. Co-injection of labeled and 100-fold unlabeled antibody significantly reduced spleen uptake at 24 hours, indicating that an excess of unlabeled antibody effectively blocked PD-L1 sites in the spleen, thus shifting the concentration of 111In-DTPA-anti-PD-L1 into the blood stream and potentially increasing tumor uptake. Clearance of 111In-DTPA-anti-PD-L1 from all organs occurred at 144 hours. Moreover, dosimetry calculations revealed that radionuclide-labeled anti-PD-L1 antibody yielded tolerable projected marrow doses, further supporting its use for radiopharmaceutical therapy. Taken together, these studies demonstrate the feasibility of using anti-PD-L1 antibody for radionuclide imaging and radioimmunotherapy, and highlight a new opportunity to optimize and monitor the efficacy of immune checkpoint inhibition therapy. PMID:26554829
Kim, Sang-Soo; Rait, Antonina; Kim, Eric; DeMarco, James; Pirollo, Kathleen F; Chang, Esther H
2015-12-01
Although temozolomide (TMZ) is the current first-line chemotherapy for glioblastoma multiforme (GBM), most patients either do not respond or ultimately fail TMZ treatment. Both intrinsic tumor resistance and limited access of TMZ to brain tumors as a result of the blood-brain barrier (BBB) contribute to poor response and ultimately to poor prognosis for GBM patients. We have developed a "dual-targeting" nanomedicine that both actively crosses the BBB and actively targets cancer cells once in the brain parenchyma. This nanomedicine (termed scL-TMZ) is sized ~40 nm and comprised of a cationic liposome (DOTAP:DOPE) encapsulating TMZ. The surface of liposome is decorated with anti-transferrin receptor single-chain antibody fragments to facilitate the crossing of the BBB by the scL-TMZ in addition to targeting GBM in the brain. This novel formulation was found to be markedly more effective than standard TMZ in both TMZ-resistant and TMZ-sensitive GBM. Encapsulation of TMZ also markedly enhanced its efficacy in killing a variety of non-GBM tumor cells. The scL-TMZ nanocomplex was shown to target cancer stem cells, which have been linked to both drug resistance and recurrence in GBM. Most significantly, systemically administered scL-TMZ significantly prolonged survival in mice bearing intracranial GBM tumors. The improved efficacy of scL-TMZ compared to standard TMZ was accompanied by reduced toxicity, so we conclude that the scL-TMZ nanomedicine holds great promise as a more effective therapy for GBM and other tumor types. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Bellaye, P-S; Moreau, M; Raguin, O; Oudot, A; Bernhard, C; Vrigneaud, J-M; Dumont, L; Vandroux, D; Denat, F; Cochet, A; Brunotte, F; Collin, B
2018-05-17
This study aimed to investigate theranostic strategies in colorectal and skin cancer based on fragments of cetuximab, an anti-EGFR mAb, labeled with radionuclide with imaging and therapeutic properties, 111 In and 177 Lu, respectively. We designed F(ab') 2 -fragments of cetuximab radiolabeled with 111 In and 177 Lu. 111 In-F(ab') 2 -cetuximab tumor targeting and biodistribution were evaluated by SPECT in BalbC nude mice bearing primary colorectal tumors. The efficacy of 111 In-F(ab') 2 -cetuximab to assess therapy efficacy was performed on BalbC nude mice bearing colorectal tumors receiving 17-DMAG, an HSP90 inhibitor. Therapeutic efficacy of the radioimmunotherapy based on 177 Lu-F(ab') 2 -cetuximab was evaluated in SWISS nude mice bearing A431 tumors. Radiolabeling procedure did not change F(ab') 2 -cetuximab and cetuximab immunoreactivity nor affinity for HER1 in vitro. 111 In-DOTAGA-F(ab') 2 -cetuximab exhibited a peak tumor uptake at 24 h post-injection and showed a high tumor specificity determined by a significant decrease in tumor uptake after the addition of an excess of unlabeled-DOTAGA-F(ab') 2 -cetuximab. SPECT imaging of 111 In-DOTAGA-F(ab') 2 -cetuximab allowed an accurate evaluation of tumor growth and successfully predicted the decrease in tumor growth induced by 17-DMAG. Finally, 177 Lu-DOTAGA-F(ab') 2 -cetuximab radioimmunotherapy showed a significant reduction of tumor growth at 4 and 8 MBq doses. 111 In-DOTAGA-F(ab') 2 -cetuximab is a reliable and stable tool for specific in vivo tumor targeting and is suitable for therapy efficacy assessment. 177 Lu-DOTAGA-F(ab') 2 -cetuximab is an interesting theranostic tool allowing therapy and imaging.
Li, Xin; Zhu, Xiumei; Qiu, Liyan
2016-04-15
Polymersomes represent a promising pharmaceutical vehicle for the delivery of hydrophilic therapeutic agents. However, modification of polymersomes with molecules that confer targeting functions remains challenging because of the strict requirements regarding the weight fractions of the hydrophilic and hydrophobic block polymers. In this study, based on the compatibility between cholesterol and polymeric carriers, polymersomes self-assembled by amphiphilic graft polyphosphazenes were endowed with a targeting function by incorporating the cholesterol-linked aptamer through a simple dialysis method. The aqueous interior of the polymersomes was employed to encapsulate water-soluble doxorubicin hydrochloride. In vivo experiments in tumor-bearing mice showed that the aptamer-anchored vesicle targeted accumulation at the tumor site, favorable penetration through tumor tissue, and incremental endocytosis into tumor cells. Correspondingly, the aptamer-anchored vesicle decreased systemic toxicity and effectively suppressed the growth of subcutaneous MCF-7 xenografts. These findings suggested that vesicles modified with targeted groups via hydrophobic supermolecular interactions could provide a platform for selective delivery of hydrophilic drug. Polymersomes have represented a promising type of pharmaceutical vehicles due to their predominant physical properties. However, it is still a challenge to endow polymersomes with active target function because of strict requirements of the weight fractions of hydrophilic polymer block to hydrophobic one. In this research, by taking advantage of the supermolecular interactions between amphiphilic graft polyphosphazene and cholesterol which was linked to aptamer AS1411, we prepared a targeted functional polymersome (PEP-DOX·HCl-Ap) through a simple method with high loading of water soluble anti-cancer drug doxorubicin hydrochloride. The in vivo experiments in MCF-7 tumor-bearing mice demonstrated several advantages of PEP-DOX·HCl-Ap vesicle such as prolonged circulation time in blood, targeted accumulation at tumor site, permeation through the tumor tissue and incremental endocytosis by tumor cells, which consequently resulted in the significantly improved anti-cancer efficacy. Moreover, this novel polymersome designed in this study has built a research platform to achieve targeted delivery of hydrophilic chemotherapeutics for cancer therapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
XIN, XIAOYAN; SHA, HUIZI; SHEN, JINGTAO; ZHANG, BING; ZHU, BIN; LIU, BAORUI
2016-01-01
Recombinant anti-epidermal growth factor receptor-internalizing arginine-glycine-aspartic acid (anti-EGFR single-domain antibody fused with iRGD peptide) protein efficiently targets the EGFR extracellular domain and integrin αvβ/β5, and shows a high penetration into cells. Thus, this protein may improve penetration of conjugated drugs into the deep zone of gastric cancer multicellular 3D spheroids. In the present study, a novel tumor-targeting contrast agent for magnetic resonance imaging (MRI) was developed, by coupling gadolinium-diethylene triamine pentaacetate (Gd-DTPA) with the bispecific recombinant anti-EGFR-iRGD protein. The anti-EGFR-iRGD protein was extracted from Escherichia coli and Gd was loaded onto the recombinant protein by chelation using DTPA anhydride. Single-targeting agent anti-EGFR-DTPA-Gd, which served as the control, was also prepared. The results of the present study showed that anti-EGFR-iRGD-DTPA-Gd exhibited no significant cyto toxicity to human gastric carcinoma cells (BGC-823) under the experimental conditions used. Compared with a conventional contrast agent (Magnevist), anti-EGFR-iRGD-DTPA-Gd showed higher T1 relaxivity (10.157/mM/sec at 3T) and better tumor-targeting ability. In addition, the signal intensity and the area under curve for the enhanced signal time in tumor, in vivo, were stronger than Gd-DTPA alone or the anti-EGFR-Gd control. Thus, Gd-labelled anti-EGFR-iRGD has potential as a tumor-targeting contrast agent for improved MRI. PMID:27035336
Hardy, Katharine M.; Strizzi, Luigi; Margaryan, Naira V.; Gupta, Kanika; Murphy, George F.; Scolyer, Richard A.; Hendrix, Mary J.C.
2015-01-01
Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. Despite a complete response in fewer than 5% of patients, the chemotherapeutic agent Dacarbazine (DTIC) remains the reference drug after almost 40 years. More recently FDA approved drugs have shown promise but patient outcome remains modest, predominantly due to drug resistance. As such, combinatorial targeting has received increased attention, and will advance with the identification of new molecular targets. One attractive target for improving melanoma therapy is the growth factor Nodal, whose normal expression is largely restricted to embryonic development, but is reactivated in metastatic melanoma. In this study, we sought to determine how Nodal-positive human melanoma cells respond to DTIC treatment and to ascertain if targeting Nodal in combination with DTIC would be more effective than monotherapy. A single treatment with DTIC inhibited cell growth but did not induce apoptosis. Rather than reducing Nodal expression, DTIC increased the size of the Nodal-positive subpopulation, an observation coincident with increased cellular invasion. Importantly, clinical tissue specimens from patients with melanomas refractory to DTIC therapy stained positive for Nodal expression, both in pre- and post-DTIC tumors, underscoring the value of targeting Nodal. In vitro, anti-Nodal antibodies alone had some adverse effects on proliferation and apoptosis, but combining DTIC treatment with anti-Nodal antibodies decreased cell growth and increased apoptosis synergistically, at concentrations incapable of producing meaningful effects as monotherapy. Implications Targeting Nodal in combination with DTIC therapy holds promise for the treatment of metastatic melanoma. PMID:25767211
Garetto, Stefano; Sardi, Claudia; Martini, Elisa; Roselli, Giuliana; Morone, Diego; Angioni, Roberta; Cianciotti, Beatrice Claudia; Trovato, Anna Elisa; Franchina, Davide Giuseppe; Castino, Giovanni Francesco; Vignali, Debora; Erreni, Marco; Marchesi, Federica; Rumio, Cristiano; Kallikourdis, Marinos
2016-07-12
In recent years, tumor Adoptive Cell Therapy (ACT), using administration of ex vivo-enhanced T cells from the cancer patient, has become a promising therapeutic strategy. However, efficient homing of the anti-tumoral T cells to the tumor or metastatic site still remains a substantial hurdle. Yet the tumor site itself attracts both tumor-promoting and anti-tumoral immune cell populations through the secretion of chemokines. We attempted to identify these chemokines in a model of spontaneous metastasis, in order to "hijack" their function by expressing matching chemokine receptors on the cytotoxic T cells used in ACT, thus allowing us to enhance the recruitment of these therapeutic cells. Here we show that this enabled the modified T cells to preferentially home into spontaneous lymph node metastases in the TRAMP model, as well as in an inducible tumor model, E.G7-OVA. Due to the improved homing, the modified CD8+ T cells displayed an enhanced in vivo protective effect, as seen by a significant delay in E.G7-OVA tumor growth. These results offer a proof of principle for the tailored application of chemokine receptor modification as a means of improving T cell homing to the target tumor, thus enhancing ACT efficacy. Surprisingly, we also uncover that the formation of the peri-tumoral fibrotic capsule, which has been shown to impede T cell access to tumor, is partially dependent on host T cell presence. This finding, which would be impossible to observe in immunodeficient model studies, highlights possible conflicting roles that T cells may play in a therapeutic context.
NASA Astrophysics Data System (ADS)
Laifa, Oumeima; Le Guillou-Buffello, Delphine; Racoceanu, Daniel
2017-11-01
The fundamental role of vascular supply in tumor growth makes the evaluation of the angiogenesis crucial in assessing effect of anti-angiogenic therapies. Since many years, such therapies are designed to inhibit the vascular endothelial growth factor (VEGF). To contribute to the assessment of anti-angiogenic agent (Pazopanib) effect on vascular and cellular structures, we acquired data from tumors extracted from a murine tumor model using Multi- Fluorescence Scanning. In this paper, we implemented an unsupervised algorithm combining the Watershed segmentation and Markov Random Field model (MRF). This algorithm allowed us to quantify the proportion of apoptotic endothelial cells and to generate maps according to cell density. Stronger association between apoptosis and endothelial cells was revealed in the tumors receiving anti-angiogenic therapy (n = 4) as compared to those receiving placebo (n = 4). A high percentage of apoptotic cells in the tumor area are endothelial. Lower density cells were detected in tumor slices presenting higher apoptotic endothelial areas.
Wang, Tzu-Wei; Yeh, Chia-Wei; Kuan, Chen-Hsiang; Wang, Li-Wen; Chen, Liang-Hsin; Wu, Hsi-Chin; Sun, Jui-Shen
2017-08-01
Breast cancer has become the second leading cause of cancer-related mortality in female wherein more than 90% of breast cancer-related death results from cancer metastasis to distant organs at advanced stage. The purpose of this study is to develop biodegradable nanoparticles composed of natural polypeptides and calcium phosphate (CaP) with sequential pH-responsivity to tumor microenvironments for active targeted drug delivery. Two different amphiphilic copolymers, poly(ethylene glycol) 3400 -aconityl linkage-poly(l-glutamic acid) 15 -poly(l-histidine) 10 -poly(l-leucine) 10 and LyP1-poly(ethylene glycol) 1100 -poly(l-glutamic acid) 15 -poly(l-histidine) 10 -poly(l-leucine) 10 , were exploited to self-assemble into micelles in aqueous phase. The bio-stable nanoparticles provide three distinct functional domains: the anionic PGlu shell for CaP mineralization, the protonation of PHis segment for facilitating anticancer drug release at target site, and the hydrophobic core of PLeu for encapsulation of anticancer drugs. Furthermore, the hydrated PEG outer corona is used for prolonging circulation time, while the active targeting ligand, LyP-1, is served to bind to breast cancer cells and lymphatic endothelial cells in tumor for inhibiting metastasis. Mineralized DOX-loaded nanoparticles (M-DOX NPs) efficiently prevent the drug leakage at physiological pH value and facilitate the encapsulated drug release at acidic condition when compared to DOX-loaded nanoparticles (DOX NPs). M-DOX NPs with LyP-1 targeting ligand effectively accumulated in MDA-MB-231 breast cancer cells. The inhibition effect on cell proliferation also enhances with time, illustrating the prominent anti-tumor efficacy. Moreover, the in vitro metastatic inhibition model shows the profound inhibition effect of inhibitory nanoparticles. In brief, this self-assembling peptide-based drug delivery nanocarrier with multifunctionality and programmable pH-sensitivity is of great promise and potential for anti-cancer therapy. This tailored-design polypeptide-based nanoparticles with self-assembling and programmable stimulus-responsive properties enable to 1) have stable pH in physiological value with a low level of drug loss and effectively release the encapsulated drug with pH variations according to the tumor microenvironment, 2) enhance targeting ability to hard-to-treat breast cancer cells and activate endothelial cells (tumor region), 3) significantly inhibit the growth and prevent from malignant metastasis of cancer cells in consonance with promising anti-tumor efficacy, and 4) make tumors stick to localized position so that these confined solid tumors can be more accessible by different treatment modalities. This work contributes to designing a programmable pH-responsive drug delivery system based on the tailor-designed polypeptides. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Shi, Lei; Yu, Bin; Cai, Chun-Hui; Huang, Jian-Dong
2016-12-01
Despite of a growing number of bacterial species that apparently exhibit intrinsic tumor-targeting properties, no bacterium is able to inhibit tumor growth completely in the immunocompetent hosts, due to its poor dissemination inside the tumors. Oxygen and inflammatory reaction form two barriers and restrain the spread of the bacteria inside the tumors. Here, we engineered a Salmonella typhimurium strain named ST8 which is safe and has limited ability to spread beyond the anaerobic regions of tumors. When injected systemically to tumor-bearing immunocompetent mice, ST8 accumulated in tumors at levels at least 100-fold greater than parental obligate anaerobic strain ST4. ST8/pSEndo harboring therapeutic plasmids encoding Endostatin fused with a secreted protein SopA could target vasculature at the tumor periphery, can stably maintain and safely deliver a therapeutic vector, release angiogenic inhibitors through a type III secretion system (T3SS) to interfere with the pro-angiogenic action of growth factors in tumors. Mice with murine CT26 colon cancer that had been injected with ST8/pSEndo showed efficient tumor suppression by inducing more severe necrosis and inhibiting blooding vessel density within tumors. Our findings provide a therapeutic platform for indirectly acting therapeutic strategies such as anti-angiogenesis and immune therapy.
CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma
Bhatt, Shruti; Ashlock, Brittany M.; Natkunam, Yasodha; Sujoy, Victoria; Chapman, Jennifer Rose; Ramos, Juan Carlos; Mesri, Enrique A.; Lossos, Izidore S.
2013-01-01
Primary effusion lymphoma (PEL) is an aggressive subtype of non-Hodgkin lymphoma characterized by short survival with current therapies, emphasizing the urgent need to develop new therapeutic approaches. Brentuximab vedotin (SGN-35) is an anti-CD30 monoclonal antibody (cAC10) conjugated by a protease-cleavable linker to a microtubule-disrupting agent, monomethyl auristatin E. Brentuximab vedotin is an effective treatment of relapsed CD30-expressing Classical Hodgkin and systemic anaplastic large cell lymphomas. Herein, we demonstrated that PEL cell lines and primary tumors express CD30 and thus may serve as potential targets for brentuximab vedotin therapy. In vitro treatment with brentuximab vedotin decreased cell proliferation, induced cell cycle arrest, and triggered apoptosis of PEL cell lines. Furthermore, in vivo brentuximab vedotin promoted tumor regression and prolonged survival of mice bearing previously reported UM-PEL-1 tumors as well as UM-PEL-3 tumors derived from a newly established and characterized Kaposi’s sarcoma-associated herpesvirus- and Epstein-Barr virus-positive PEL cell line. Overall, our results demonstrate for the first time that brentuximab vedotin may serve as an effective therapy for PEL and provide strong preclinical indications for evaluation of brentuximab vedotin in clinical studies of PEL patients. PMID:23838350
Management of salivary gland tumors.
Andry, Guy; Hamoir, Marc; Locati, Laura D; Licitra, Lisa; Langendijk, Johannes A
2012-09-01
Surgery after proper imaging (MRI or CT scan) is the main stay of treatment for salivary gland tumors. Although excision margins should be ≥5 mm for malignant tumors in cases of parotid gland carcinoma, the facial nerve should be preserved whenever it is not infiltrated. Adjuvant external radiation is indicated for malignant tumors with high-risk features such as close (or invaded) margins, perineural speed, lymphatic and/or vascular invasion, lymph-node involvement and high-grade histology. A Phase II trial testing adjuvant concomitant cisplatin plus radiation therapy versus adjuvant radiation therapy alone after surgery is currently under investigation for high-risk salivary gland cancer. For inoperable cancers, photons combined with proton boost seem to be a valuable option. Even if protons or carbon ions are promising, access to the latter is limited for usual treatment. For recurrent and/or metastatic cancer, polychemotherapy (cisplatin based) gives a 25% response rate in adenoid cystic carcinoma and should be used when the disease is overtly in progression. Targeted therapies with anti-EGF receptor molecules, antiangiogenic agents and tyrosine kinase inhibitors are ongoing, but more trials are needed to establish their efficacy, as is the use of bortezomib followed by doxorubicin. The products of fusion oncogenes, which have a pathogenic role in some adenoid cystic carcinoma and mucoepidermoid carcinomas, are of interest as potential therapeutic targets.
Zhang, Huijuan; Hou, Lin; Jiao, Xiaojing; Ji, Yandan; Zhu, Xiali; Zhang, Zhenzhong
2015-01-01
Artesunate (AS) is an iron-dependent drug, which has been used extensively as anti-malarial drugs worldwide with no obvious side effects. Recently, studies have shown that AS also possess profound cytotoxicity against tumor cells. However, simultaneous delivery of hydrophobic AS and Fe(2+) into tumor cells remains a major challenge. Herein, we report a new kind of active-targeting preparations which could not only specially target to tumor cells but also synchronously transfer AS and irons into tumor tissue. In this study, hyaluronic acid (HA) was grafted onto fullerene to get a water-soluble biomaterial (HA-C60) with excellent biocompatibility, and then combined with transferrin (Tf) to obtain a multi-functional drug delivery system (HA-C60-Tf) with significant tumor-targeting efficacy and powerful photodynamic therapy capacity. Finally, AS was adsorbed on HA-C60-Tf with a high loading efficacy of 162.4% (weight ratio of AS: HA-C60-Tf). Compared with free AS, remarkably enhanced antitumor efficacy of AS-loaded HA-C60-Tf nanoparticles was realized both in a cultured MCF-7 cells in vitro and in a tumor-bearing murine model in vivo, due to increased intracellular accumulation of AS in tumor and activated mechanism by co-delivery of Tf and AS analogs. Furthermore, with laser irradiation in vivo, the relative tumor volume (V/V0) of HA-C60-Tf/AS declined by half, from 1.72 ± 0.12 to 0.84 ± 0.07, suggesting a new way with multi-mechanism for tumor treatment was developed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Targeting of Pancreatic Cancer with Magneto-Fluorescent Theranostic Gold Nanoshells
Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C.; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V.; Guha, Sushovan; Pautler, Robia G.; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit
2014-01-01
Aim We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Materials and Methods Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the NIR dye ICG, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Results AntiNGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2 weighted MR imaging with higher tumor contrast than can be obtained using long-circulating but non-targeted PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. Conclusions Theranostic gold nanoshells with embedded NIR and MR contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy. PMID:24063415
VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy.
Lines, J Louise; Sempere, Lorenzo F; Broughton, Thomas; Wang, Li; Noelle, Randolph
2014-06-01
In the past few years, the field of cancer immunotherapy has made great progress and is finally starting to change the way cancer is treated. We are now learning that multiple negative checkpoint regulators (NCR) restrict the ability of T-cell responses to effectively attack tumors. Releasing these brakes through antibody blockade, first with anti-CTLA4 and now followed by anti-PD1 and anti-PDL1, has emerged as an exciting strategy for cancer treatment. More recently, a new NCR has surfaced called V-domain immunoglobulin (Ig)-containing suppressor of T-cell activation (VISTA). This NCR is predominantly expressed on hematopoietic cells, and in multiple murine cancer models is found at particularly high levels on myeloid cells that infiltrated the tumors. Preclinical studies with VISTA blockade have shown promising improvement in antitumor T-cell responses, leading to impeded tumor growth and improved survival. Clinical trials support combined anti-PD1 and anti-CTLA4 as safe and effective against late-stage melanoma. In the future, treatment may involve combination therapy to target the multiple cell types and stages at which NCRs, including VISTA, act during adaptive immune responses. ©2014 American Association for Cancer Research.
Targeting Inflammation in Cancer Prevention and Therapy.
Todoric, Jelena; Antonucci, Laura; Karin, Michael
2016-12-01
Inflammation is associated with the development and malignant progression of most cancers. As most of the cell types involved in cancer-associated inflammation are genetically stable and thus are not subjected to rapid emergence of drug resistance, the targeting of inflammation represents an attractive strategy both for cancer prevention and for cancer therapy. Tumor-extrinsic inflammation is caused by many factors, including bacterial and viral infections, autoimmune diseases, obesity, tobacco smoking, asbestos exposure, and excessive alcohol consumption, all of which increase cancer risk and stimulate malignant progression. In contrast, cancer-intrinsic or cancer-elicited inflammation can be triggered by cancer-initiating mutations and can contribute to malignant progression through the recruitment and activation of inflammatory cells. Both extrinsic and intrinsic inflammation can result in immunosuppression, thereby providing a preferred background for tumor development. In clinical trials, lifestyle modifications including healthy diet, exercise, alcohol, and smoking cessation have proven effective in ameliorating inflammation and reducing the risk of cancer-related deaths. In addition, consumption of certain anti-inflammatory drugs, including aspirin, can significantly reduce cancer risk, suggesting that common nonsteroidal anti-inflammatory drugs (NSAID) and more specific COX2 inhibitors can be used in cancer prevention. In addition to being examined for their preventative potential, both NSAIDs and more potent anti-inflammatory antibody-based drugs need to be tested for their ability to augment the efficacy of more conventional therapeutic approaches on the basis of tumor resection, radiation, and cytotoxic chemicals. Cancer Prev Res; 9(12); 895-905. ©2016 AACR. ©2016 American Association for Cancer Research.
Chen, Guoli; Yang, Zhaohai; Eshleman, James R.; Netto, George J.
2016-01-01
Precision medicine, a concept that has recently emerged and has been widely discussed, emphasizes tailoring medical care to individuals largely based on information acquired from molecular diagnostic testing. As a vital aspect of precision cancer medicine, targeted therapy has been proven to be efficacious and less toxic for cancer treatment. Colorectal cancer (CRC) is one of the most common cancers and among the leading causes for cancer related deaths in the United States and worldwide. By far, CRC has been one of the most successful examples in the field of precision cancer medicine, applying molecular tests to guide targeted therapy. In this review, we summarize the current guidelines for anti-EGFR therapy, revisit the roles of pathologists in an era of precision cancer medicine, demonstrate the transition from traditional “one test-one drug” assays to multiplex assays, especially by using next-generation sequencing platforms in the clinical diagnostic laboratories, and discuss the future perspectives of tumor heterogeneity associated with anti-EGFR resistance and immune checkpoint blockage therapy in CRC. PMID:27699178
Okkenhaug, Klaus; Graupera, Mariona; Vanhaesebroeck, Bart
2017-01-01
The PI3K pathway is hyperactivated in most cancers, yet the capacity of PI3K inhibitors to induce tumor cell death is limited. The efficacy of PI3K inhibition can also derive from interference with the cancer cells’ ability to respond to stromal signals, as illustrated by the approved PI3Kδ inhibitor Idelalisib in B-cell malignancies. Inhibition of the leukocyte-enriched PI3Kδ or PI3Kγ may unleash more potent anti-tumor T-cell responses, by inhibiting regulatory T-cells and immune-suppressive myeloid cells. Moreover, tumor angiogenesis may be targeted by PI3K inhibitors to enhance cancer therapy. Future work should therefore focus on the effects of PI3K inhibitors on the stroma, in addition to their direct effects on tumors. Significance The PI3K pathway extends beyond the direct regulation of cancer cell proliferation and survival. In B-cell malignancies, targeting PI3K purges the tumor cells from their protective microenvironment. Moreover, we propose that PI3K isoform-selective inhibitors may be exploited in the context of cancer immunotherapy and by targeting angiogenesis to improve drug and immune cell delivery. PMID:27655435
Advances in personalized cancer immunotherapy.
Kakimi, Kazuhiro; Karasaki, Takahiro; Matsushita, Hirokazu; Sugie, Tomoharu
2017-01-01
There are currently three major approaches to T cell-based cancer immunotherapy, namely, active vaccination, adoptive cell transfer therapy and immune checkpoint blockade. Recently, this latter approach has demonstrated remarkable clinical benefits, putting cancer immunotherapy under the spotlight. Better understanding of the dynamics of anti-tumor immune responses (the "Cancer-Immunity Cycle") is crucial for the further development of this form of treatment. Tumors employ multiple strategies to escape from anti-tumor immunity, some of which result from the selection of cancer cells with immunosuppressive activity by the process of cancer immunoediting. Apart from this selective process, anti-tumor immune responses can also be inhibited in multiple different ways which vary from patient to patient. This implies that cancer immunotherapy must be personalized to (1) identify the rate-limiting steps in any given patient, (2) identify and combine strategies to overcome these hurdles, and (3) proceed with the next round of the "Cancer-Immunity Cycle". Cancer cells have genetic alterations which can provide the immune system with targets by which to recognize and eradicate the tumor. Mutated proteins expressed exclusively in cancer cells and recognizable by the immune system are known as neoantigens. The development of next-generation sequencing technology has made it possible to determine the genetic landscape of human cancer and facilitated the utilization of genomic information to identify such candidate neoantigens in individual cancers. Future immunotherapies will need to be personalized in terms of the identification of both patient-specific immunosuppressive mechanisms and target neoantigens.
A versatile nanoplatform for synergistic combination therapy to treat human esophageal cancer.
Wang, Xin-Shuai; Kong, De-Jiu; Lin, Tzu-Yin; Li, Xiao-Cen; Izumiya, Yoshihiro; Ding, Xue-Zhen; Zhang, Li; Hu, Xiao-Chen; Yang, Jun-Qiang; Gao, She-Gan; Lam, Kit S; Li, Yuan-Pei
2017-06-01
One of the major goals of precision oncology is to promote combination therapy to improve efficacy and reduce side effects of anti-cancer drugs based on their molecular mechanisms. In this study, we aimed to develop and validate new nanoformulations of docetaxel (DTX) and bortezomib (BTZ) for targeted combination therapy to treat human esophageal cancer. By leveraging our versatile disulfide cross-linked micelles (DCMs) platform, we developed nanoformulations of DTX and BTZ (named DTX-DCMs and BTZ-DCMs). Their physical properties were characterized; their anti-cancer efficacies and mechanisms of action were investigated in a human esophageal cancer cell line in vitro. Furthermore, the in vitro anti-tumor activities of combination therapies (concurrent drug treatment, sequential drug treatment, and treatment using different ratios of the drugs) were examined in comparison with the single drug treatment and free drug strategies. These drug-loaded nanoparticles were spherical in shape and relatively small in size of approximately 20-22 nm. The entrapment efficiencies of DTX and BTZ into nanoparticles were 82.4% and 84.1%, respectively. The drug release rates of DTX-DCMs and BTZ-DCMs were sustained, and greatly increased in the presence of GSH. These nanodrugs were effectively internalized by KYSE30 esophageal cancer cells, and dose-dependently induced cell apoptosis. We further revealed a strong synergistic effect between DTX-DCMs and BTZ-DCMs against KYSE30 esophageal cancer cells. Sequential combination therapy with DTX-DCMs followed by BTZ-DCMs exhibited the best anti-tumor efficacy in vitro. This study demonstrates that DTX and BTZ could be successfully nanoformulated into disulfide cross-linked micelles. The nanoformulations of DTX and BTZ demonstrate an immense potential for synergistic combination therapy to treat human esophageal cancer.
[Current Possibilities for Predicting Responses to EGFR Blockade in Metastatic Colorectal Cancer].
Němeček, R; Svoboda, M; Slabý, O
2016-01-01
The combination of modern systemic chemotherapy and anti-EGFR monoclonal antibodies improves overall survival and quality of life for patients with metastatic colorecal cancer. By contrast, the addition of anti-EGFR therapy to the treatment regime of resistant patients may lead to worse progression-free survival and overall survival. Therefore, identifying sensitive and resistant patients prior to targeted therapy of metastatic colorecal cancer is a key point during the initial decision making process. Previous research shows that primary resistance to EGFR blockade is in most cases caused by constitutive activation of signaling pathways downstream of EGFR. Of all relevant factors (mutation of KRAS, NRAS, BRAF, and PIK3CA oncogenes, inactivation of tumor suppressors PTEN and TP53, amplification of EGFR and HER2, and expression of epiregulin and amphiregulin, mikroRNA miR-31-3p, and miR-31-5p), only evaluation of KRAS and NRAS mutations has entered routine clinical practice. The role of the other markers still needs to be validated. The ongoing benefit of anti-EGFR therapy could be indicated by specific clinical parameters measured after the initiation of targeted therapy, including early tumor shrinkage, the deepness of the response, or hypomagnesemia. The accuracy of predictive dia-gnostic tools could be also increased by examining a combination of predictive markers using next generation sequencing methods. However, unjustified investigation of many molecular markers should be resisted as this may complicate interpretation of the results, particularly in terms of their specific clinical relevance. The aim of this review is to describe current possibilities with respect to predicting responses to EGFR blockade in the context of the EGFR pathway, and the utilization of such results in routine clinical practice.
Wang, W; Ma, Y; Li, J; Shi, H-S; Wang, L-Q; Guo, F-C; Zhang, J; Li, D; Mo, B-H; Wen, F; Liu, T; Liu, Y-T; Wang, Y-S; Wei, Y-Q
2013-10-01
Immunotherapy that is based on adoptive transfer of T lymphocytes, which are genetically modified to express chimeric antigen receptors (CARs) that recognize tumor-associated antigens, has been demonstrated to be an efficient cancer therapy. Vascular endothelial growth factor receptor-1 (VEGFR-1), a vital molecule involved in tumor growth and angiogenesis, has not been targeted by CAR-modified T lymphocytes. In this study, we generated CAR-modified T lymphocytes with human VEGFR-1 specificity (V-1 CAR) by electroporation. V-1 CAR-modified T lymphocytes were demonstrated to elicit lytic cytotoxicity to target cells in a VEGFR-1-dependent manner. The adoptive transfer of V-1 CAR T lymphocytes delayed tumor growth and formation and inhibited pulmonary metastasis in xenograft models and such efficacies were enhanced by cotransfer of T lymphocytes that expressed interleukin-15 (IL-15). Moreover, V-1 CAR-modified T lymphocytes lysed primary endothelial cells and impaired tube formation, in vitro. These data demonstrated the antitumor and anti-angiogenesis ability of V-1 CAR-modified T lymphocytes. Our study provides the rationale for the clinical translation of CAR-modified T lymphocytes with VEGFR-1 specificity.
Buatois, Vanessa; Johnson, Zoë; Salgado-Pires, Susana; Papaïoannou, Anne; Hatterer, Eric; Chauchet, Xavier; Richard, Françoise; Barba, Leticia; Daubeuf, Bruno; Cons, Laura; Broyer, Lucile; D'Asaro, Matilde; Matthes, Thomas; LeGallou, Simon; Fest, Thierry; Tarte, Karin; Clarke Hinojosa, Robert K; Genescà Ferrer, Eulàlia; Ribera, José María; Dey, Aditi; Bailey, Katharine; Fielding, Adele K; Eissenberg, Linda; Ritchey, Julie; Rettig, Michael; DiPersio, John F; Kosco-Vilbois, Marie H; Masternak, Krzysztof; Fischer, Nicolas; Shang, Limin; Ferlin, Walter G
2018-05-09
CD47, a ubiquitously expressed innate immune checkpoint receptor that serves as a universal "don't eat me" signal of phagocytosis, is often up-regulated by hematological and solid cancers to evade immune surveillance. Development of CD47-targeted modalities is hindered by the ubiquitous expression of the target, often leading to rapid drug elimination and hemotoxicity including anemia. To overcome such liabilities, we have developed a fully human bispecific antibody, NI-1701, designed to co-engage CD47 and CD19 selectively on B cells. NI-1701 demonstrates favorable elimination kinetics with no deleterious effects seen on hematological parameters following single or multiple administrations to non-human primates. Potent in vitro and in vivo activity is induced by NI-1701 to kill cancer cells across a plethora of B cell malignancies and control tumor growth in xenograft mouse models. The mechanism affording maximal tumor growth inhibition by NI-1701 is dependent on the co-engagement of CD47/CD19 on B cells inducing potent antibody dependent cellular phagocytosis of the targeted cells. NI-1701-induced control of tumor growth in immunodeficient NOD/SCID mice was more effective than that achieved with the anti-CD20 targeted antibody, rituximab. Interestingly, a synergistic effect was seen when tumor-implanted mice were co-administered NI-1701 and rituximab leading to significantly improved tumor growth inhibition and regression in some animals. We describe herein, a novel bispecific antibody approach aimed at sensitizing B cells to become more readily phagocytosed and eliminated thus offering an alternative or adjunct therapeutic option to patients with B cell malignancies refractory/resistant to anti-CD20 targeted therapy. Copyright ©2018, American Association for Cancer Research.
Stagg, John; Loi, Sherene; Divisekera, Upulie; Ngiow, Shin Foong; Duret, Helene; Yagita, Hideo; Teng, Michele W; Smyth, Mark J
2011-04-26
Trastuzumab, a monoclonal antibody targeting human epidermal growth factor receptor-2 (HER2/ErbB-2), has become the mainstay of treatment for HER2-positive breast cancer. Nevertheless, its exact mechanism of action has not been fully elucidated. Although several studies suggest that Fc receptor-expressing immune cells are involved in trastuzumab therapy, the relative contribution of lymphocyte-mediated cellular cytotoxicity and antitumor cytokines remains unknown. We report here that anti-ErbB-2 mAb therapy is dependent on the release of type I and type II IFNs but is independent of perforin or FasL. Our study thus challenges the notion that classical antibody-dependent, lymphocyte-mediated cellular cytotoxicity is important for trastuzumab. We demonstrate that anti-ErbB-2 mAb therapy of experimental tumors derived from MMTV-ErbB-2 transgenic mice triggers MyD88-dependent signaling and primes IFN-γ-producing CD8+ T cells. Adoptive cell transfer of purified T cell subsets confirmed the essential role of IFN-γ-producing CD8+ T cells. Notably, anti-ErbB-2 mAb therapy was independent of IL-1R or IL-17Ra signaling. Finally, we investigated whether immunostimulatory approaches with antibodies against programmed death-1 (PD-1) or 41BB (CD137) could be used to capitalize on the immune-mediated effects of trastuzumab. We demonstrate that anti-PD-1 or anti-CD137 mAb can significantly improve the therapeutic activity of anti-ErbB-2 mAb in immunocompetent mice.
Fernandes, Carlos; Allocca, Mariangela; Danese, Silvio; Fiorino, Gionata
2015-01-01
Anti-tumor necrosis factor (TNF) therapy is a valid, effective and increasingly used option in inflammatory bowel disease management. Nevertheless, further knowledge and therapeutic indications regarding these drugs are still evolving. Anti-TNF therapy may be essential to achieve recently proposed end points, namely mucosal healing, prevention of bowel damage and prevention of patient's disability. Anti-TNF drugs are also suggested to be more effective in early disease, particularly in early Crohn's disease. Moreover, its efficacy for prevention of postoperative recurrence in Crohn's disease is still debated. Costs and adverse effects, the relevance of drug monitoring and the possibility of anti-TNF therapy withdrawal in selected patients are still debated issues. This review aimed to describe and discuss the most relevant data about the progress with anti-TNF therapy for the management of inflammatory bowel disease.
HDAC inhibitors as epigenetic regulators for cancer immunotherapy.
Conte, Mariarosaria; De Palma, Raffaele; Altucci, Lucia
2018-05-01
In recent years, anti-tumor immunotherapy has shown promising results, and immune-oncology is now emerging as the fourth major wave in the treatment of tumors after radiotherapy, chemotherapy and molecular targeted therapy. Understanding the impact of the immune system on neoplastic cells is crucial to improve its effectiveness against cancer. The stratification of patients who might benefit from immunotherapy as well as the personalization of medicine have contributed to the discovery of new immunotherapeutic targets and molecules. In the present review, we discuss the mechanistic role of histone deacetylase inhibitors (HDACi) as potential immunomodulating agents to treat cancer. Our current understanding of the use of HDACi in combination with various immunotherapeutic approaches, such as immunomodulating agents and cancer vaccines, is also addressed. The potential clinical applications of the growing number of novel epigenetic drugs for cancer immunotherapy are widening, and some of these therapies are already in clinical trials. Copyright © 2018 Elsevier Ltd. All rights reserved.
BRAF V600E mutations in papillary craniopharyngioma
Brastianos, Priscilla K.; Santagata, Sandro
2016-01-01
Papillary craniopharyngioma is an intracranial tumor that results in high levels of morbidity. We recently demonstrated that the vast majority of these tumors harbor the oncogenic BRAF V600E mutation. The pathologic diagnosis of papillary craniopharyngioma can now be confirmed using mutation specific immunohistochemistry and targeted genetic testing. Treatment with targeted agents is now also a possibility in select situations. We recently reported a patient with a multiply recurrent papillary craniopharyngioma in whom targeting both BRAF and MEK resulted in a dramatic therapeutic response with a marked anti-tumor immune response. This work shows that activation of the MAPK pathway is the likely principal oncogenic driver of these tumors. We will now investigate the efficacy of this approach in a multicenter phase II clinical trial. Post-treatment resection samples will be monitored for the emergence of resistance mechanisms. Further advances in the non-invasive diagnosis of papillary craniopharyngioma by radiologic criteria and by cell-free DNA testing could someday allow neo-adjuvant therapy for this disease in select patient populations. PMID:26563980
Rüger, Ronny; Tansi, Felista L; Rabenhold, Markus; Steiniger, Frank; Kontermann, Roland E; Fahr, Alfred; Hilger, Ingrid
2014-07-28
Molecular and cellular changes that precede the invasive growth of solid tumors include the release of proteolytic enzymes and peptides in the tumor stroma, the recruitment of phagocytic and lymphoid infiltrates and alteration of the extracellular matrix. The reactive tumor stroma consists of a large number of myofibroblasts, characterized by high expression of fibroblast activation protein alpha (FAP). FAP, a type-II transmembrane sialoglycoprotein is an attractive target in diagnosis and therapy of several pathologic disorders especially cancer. In the underlying work, a fluorescence-activatable liposome (fluorescence-quenched during circulation and fluorescence activation upon cellular uptake), bearing specific single-chain Fv fragments directed against FAP (scFv'FAP) was developed, and its potential for use in fluorescence diagnostic imaging of FAP-expressing tumor cells was evaluated by whole body fluorescence imaging. The liposomes termed anti-FAP-IL were prepared via post-insertion of ligand-phospholipid-conjugates into preformed DY-676-COOH-containing liposomes. The anti-FAP-IL revealed a homogeneous size distribution and showed specific interaction and binding with FAP-expressing cells in vitro. The high level of fluorescence quenching of the near-infrared fluorescent dye sequestered in the aqueous interior of the liposomes enables fluorescence imaging exclusively upon uptake and degradation by cells, which results in fluorescence activation. Only FAP-expressing cells were able to take up and activate fluorescence of anti-FAP-IL in vitro. Furthermore, anti-FAP-IL accumulated selectively in FAP-expressing xenograft models in vivo, as demonstrated by blocking experiments using free scFv'FAP. The local tumor fluorescence intensities were in agreement with the intrinsic degree of FAP-expression in different xenograft models. Thus, anti-FAP-IL can serve as a suitable in vivo diagnostic tool for pathological disorders accompanied by high FAP-expression. Copyright © 2014 Elsevier B.V. All rights reserved.
Bi, Jiangang; Zeng, Xiaowei; Mei, Lin; Bao, Shiyun; He, Lisheng; Shan, Aijun; Zhang, Yue; Yu, Xiaofang
2018-01-01
Introduction MicroRNA-155 (miR-155) is an oncogenic microRNA, which is upregulated in many human cancers including colorectal cancer (CRC). Overexpression of miR-155 has been found to regulate several cancer-related pathways, and therefore, targeting miR-155 may be an effective strategy for cancer therapy. However, effective and safe delivery of anti-miR-155 to tumors remains challenging for the clinical applications of anti-miR-155-based therapeutics. Methods In this study, we explored the expression of miR-155 and the transcription factor nuclear factor kappa B (NF-κB) in CRC tissues and cell lines, and the possible relationship between miR-155 and NF-κB. We further report on anti-miR-155-loaded mesoporous silica nanoparticles (MSNs) modified with polymerized dopamine (PDA) and AS1411 aptamer (MSNs-anti-miR-155@PDA-Apt) for the targeted treatment of CRC. Results Results showed that miR-155 is overexpressed in CRC tissues and cell lines, and there is a positive feedback loop between NF-κB and miR-155. Compared to the control groups, MSNs-anti-miR-155@PDA-Apt could efficiently downregulate miR-155 expression in SW480 cells and achieve significantly high targeting efficiency and enhanced therapeutic effects in both in vivo and in vitro experiments. Furthermore, inhibition of miR-155 by MSNs-anti-miR-155@PDA-Apt can enhance the sensitivity of SW480 to 5-fluorouracil chemotherapy. Conclusion Thus, our results suggested that MSNs-anti-miR-155@PDA-Apt is a promising nanoformulation for CRC treatment. PMID:29535520
Zhang, Xuemei; Zheng, Yuanyi; Wang, Zhigang; Huang, Shuai; Chen, Yu; Jiang, Wei; Zhang, Hua; Ding, Mingxia; Li, Qingshu; Xiao, Xiaoqiu; Luo, Xin; Wang, Zhibiao; Qi, Hongbo
2014-06-01
High intensity focused ultrasound (HIFU) has attracted the great attention in tumor ablation due to its non-invasive, efficient and economic features. However, HIFU ablation has its intrinsic limitations for removing the residual tumor cells, thus the tumor recurrence and metastasis cannot be avoided in this case. Herein, we developed a multifunctional targeted poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs), which not only function as an efficient ultrasound contrast agent for tumor imaging, but also a targeted anticancer drug carrier and excellent synergistic agent for enhancing the therapeutic efficiency of HIFU ablation. Methotrexate (MTX)-loaded NBs were synthesized and filled with perfluorocarbon gas subsequently using a facile but general double emulsion evaporation method. The active tumor-targeting monoclonal anti-HLA-G antibodies (mAbHLA-G) were further conjugated onto the surface of nanobubbles. The mAbHLA-G/MTX/PLGA NBs could enhance the ultrasound imaging both in vitro and in vivo, and the targeting efficiency to HLA-G overexpressing JEG-3 cells has been demonstrated. The elaborately designed mAbHLA-G/MTX/PLGA NBs can specifically target to the tumor cells both in vitro and in vivo, and their blood circulation time in vivo was much longer than non-targeted MTX/PLGA NBs. Further therapeutic evaluations showed that the targeted NBs as a synergistic agent can significantly improve the efficiency of HIFU ablation by changing the acoustic environment, and the focused ultrasound can promote the on-demand MTX release both in vitro and in vivo. The in vivo histopathology test and immunohistochemical analysis showed that the mAbHLA-G/MTX/PLGA NBs plus HIFU group presented most serious coagulative necrosis, the lowest proliferation index and the highest apoptotic index. Therefore, the successful introduction of targeted mAbHLA-G/MTX/PLGA NBs provides an excellent platform for the highly efficient, imaging-guided and non-invasive HIFU synergistic therapy of cancer with the supplementary functions of killing residual tumor cells and preventing tumor recurrence/metastasis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gx1-conjugated endostar nanoparticle: a new drug delivery system for anti-colorectal cancer in vivo
NASA Astrophysics Data System (ADS)
Zhang, Qian; Du, Yang; Li, Yaqian; Liang, Xiaolong; Yang, Xin; Tian, Jie
2014-03-01
In this study we describe a new theranostic nanostytem to combine those functions together. GX1, the peptide identified by phage display technology, is a tumor vasculature endothelium specific ligand. Endostar, a novel recombinant human endostatin, has been proved to inhibit tumor angiogenesis. In this study, Endostar-loaded PLA nanoparticles (EPNPs) were first prepared, and then GX1 was coupled to the surface of EPNPs for targeting therapy, last a near infrared (NIR) dye IRDye 800CW was conjugated to the surface of EPNPs for monitoring the biodistributon. This GX1-EPNPs-NIR dye IRDye 800CW (GEN) multifunction drug delivery system not only facilitates efficient delivery of chemotherapeutic agents to tumor site, while minimizing systemic toxicity and side effects, but also enables to real time monitor tumor targeting in vivo. Compare to the Endostar and EPNPs, the GEN inhibited the subcutaneous colon tumor more obviously both in tumor volume and bioluminescence imaging (BLI) light intensity during the 10 days drug treatment.
Advances in cancer stem cell targeting: How to strike the evil at its root.
Pützer, Brigitte M; Solanki, Manish; Herchenröder, Ottmar
2017-10-01
Cancer progression to metastatic stages is still unmanageable and the promise of effective anti-metastatic therapy remains largely unmet, emphasizing the need to develop novel therapeutics. The special focus here is on cancer stem cells (CSC) as the seed of tumor initiation, epithelial-mesenchymal transition, chemoresistance and, as a consequence, drivers of metastatic dissemination. We report on targeted therapies gearing towards the CSC's internal and membrane-anchored markers using agents such as antibody derivatives, nucleic therapeutics, small molecules and genetic payloads. Another emphasis lies on novel proceedings envisaged to deliver current and prospective therapies to the target sites using newest viral and non-viral vector technologies. In this review, we summarize recent progress and remaining challenges in therapeutic strategies to combat CSC. Copyright © 2017 Elsevier B.V. All rights reserved.
Can Nanomedicines Kill Cancer Stem Cells?
Zhao, Yi; Alakhova, Daria Y.; Kabanov, Alexander V.
2014-01-01
Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs. PMID:24120657
Nagane, Motoo; Shimizu, Saki; Mori, Eiji; Kataoka, Shiro; Shiokawa, Yoshiaki
2010-01-01
Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL/Apo2 L) preferentially induces apoptosis in human tumor cells through its cognate death receptors DR4 or DR5, thereby being investigated as a potential agent for cancer therapy. Here, we applied fully human anti-human TRAIL receptor monoclonal antibodies (mAbs) to specifically target one of death receptors for TRAIL in human glioma cells, which could also reduce potential TRAIL-induced toxicity in humans. Twelve human glioma cell lines treated with several fully human anti-human TRAIL receptor mAbs were sensitive to only anti-DR5 mAbs, whereas they were totally insensitive to anti-DR4 mAb. Treatment with anti-DR5 mAbs exerted rapid cytotoxicity and lead to apoptosis induction. The cellular sensitivity was closely associated with cell-surface expression of DR5. Expression of c-FLIPL, Akt, and Cyclin D1 significantly correlated with sensitivity to anti-DR5 mAbs. Primary cultures of glioma cells were also relatively resistant to anti-DR5 mAbs, exhibiting both lower DR5 and higher c-FLIPL expression. Downregulation of c-FLIPL expression resulted in the sensitization of human glioma cells to anti-DR5 mAbs, whereas overexpression of c-FLIPL conferred resistance to anti-DR5 mAb. Treatment of tumor-burden nude mice with the direct agonist anti-DR5 mAb KMTR2 significantly suppressed growth of subcutaneous glioma xenografts leading to complete regression. Similarly, treatment of nude mice bearing intracerebral glioma xenografts with KMTR2 significantly elongated lifespan without tumor recurrence. These results suggest that DR5 is the predominant TRAIL receptor mediating apoptotic signals in human glioma cells, and sensitivity to anti-DR5 mAbs was determined at least in part by the expression level of c-FLIPL and Akt. Specific targeting of death receptor pathway through DR5 using fully human mAbs might provide a novel therapeutic strategy for intractable malignant gliomas. PMID:20511188
Engineering Chimeric Antigen Receptors
Kulemzin, S. V.; Kuznetsova, V. V.; Mamonkin, M.; Taranin, A. V.; Gorchakov, A. A.
2017-01-01
Chimeric antigen receptors (CARs) are recombinant protein molecules that redirect cytotoxic lymphocytes toward malignant and other target cells. The high feasibility of manufacturing CAR-modified lymphocytes for the therapy of cancer has spurred the development and optimization of new CAR T cells directed against a broad range of target antigens. In this review, we describe the main structural and functional elements constituting a CAR, discuss the roles of these elements in modulating the anti-tumor activity of CAR T cells, and highlight alternative approaches to CAR engineering. PMID:28461969
Renaissance in tumor immunotherapy: possible combination with phototherapy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hamblin, Michael R.
2016-03-01
Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce highly toxic reactive oxygen species that destroy tumors. The ideal cancer treatment should target both the primary tumor and the metastases with minimal toxicity. This is best accomplished by educating the body's immune system to recognize the tumor as foreign so that after the primary tumor is destroyed, distant metastases will also be eradicated. PDT may accomplish this feat and stimulate long-term, specific anti-tumor immunity. PDT causes an acute inflammatory response, the rapid induction of large amounts of necrotic and apoptotic tumor cells, induction of damage-associated molecular patterns (DAMPS) including heat-shock proteins, stimulates tumor antigen presentation to naïve T-cells, and generation of cytotoxic T-cells that can destroy distant tumor metastases. By using various syngeneic mouse tumors in immunocompetent mice, we have studied specific PDT regimens related to tumor type as well as mouse genotype and phenotype. We have investigated the role of tumor-associated antigens in PDT-induced immune response by choosing mouse tumors that express: model defined antigen, naturally-occurring cancer testis antigen, and oncogenic virus-derived antigen. We studied the synergistic combination of low-dose cyclophosphamide and PDT that unmasks the PDT-induced immune response by depleting the immunosuppressive T-regulatory cells. PDT combined with immunostimulants (toll-like receptor ligands) can synergistically maximize the generation of anti-tumor immunity by activating dendritic cells and switching immunosuppressive macrophages to a tumor rejection phenotype. Tumors expressing defined tumor-associated antigens with known MHC class I peptides allows anti-tumor immunity to be quantitatively compared.
Supersonic Shear Wave Elastography of Response to Anti-cancer Therapy in a Xenograft Tumor Model.
Chamming's, Foucauld; Le-Frère-Belda, Marie-Aude; Latorre-Ossa, Heldmuth; Fitoussi, Victor; Redheuil, Alban; Assayag, Franck; Pidial, Laetitia; Gennisson, Jean-Luc; Tanter, Mickael; Cuénod, Charles-André; Fournier, Laure S
2016-04-01
Our objective was to determine if supersonic shear wave elastography (SSWE) can detect changes in stiffness of a breast cancer model under therapy. A human invasive carcinoma was implanted in 22 mice. Eleven were treated with an anti-angiogenic therapy and 11 with glucose for 24 d. Tumor volume and stiffness were assessed during 2 wk before treatment and 0, 7, 12, 20 and 24 d after the start of therapy using SSWE. Pathology was assessed after 12 and 24 d of treatment. We found that response to therapy was associated with early softening of treated tumors only, resulting in a significant difference from non-treated tumors after 12 d of treatment (p = 0.03). On pathology, large areas of necrosis were observed at 12 d in treated tumors. Although treatment was still effective, treated tumors subsequently stiffened during a second phase of the treatment (days 12-24), with a small amount of necrosis observed on pathology on day 24. In conclusion, SSWE was able to measure changes in the stiffness of tumors in response to anti-cancer treatment. However, stiffness changes associated with good response to treatment may change over time, and increased stiffness may also reflect therapy efficacy. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.
2016-06-01
Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.
Grusch, M.; Petz, M.; Metzner, T.; Öztürk, D.; Schneller, D.; Mikulits, W.
2010-01-01
Both RAS and transforming growth factor (TGF)-β signaling cascades are central in tumorigenesis and show synergisms depending on tumor stage and tissue context. In this review we focus on the interaction of RAS subeffector proteins with signaling components of the TGF-β family including those of TGF-βs, activins and bone morphogenic proteins. Compelling evidence indicates that RAS signaling is essentially involved in the switch from tumor-suppressive to tumor-promoting functions of the TGF-β family leading to enhanced cancer growth and metastatic dissemination of primary tumors. Thus, the interface of these signaling cascades is considered as a promising target for the development of novel cancer therapeutics. The current pharmacological anti-cancer concepts combating the molecular cooperation between RAS and TGF-β family signaling during carcinoma progression are critically discussed. PMID:20718708
BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunetto de Farias, Caroline; Children's Cancer Institute, 90420-140 Porto Alegre, RS; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS
2012-08-24
Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling canmore » protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.« less
Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets.
Seyfried, Thomas N; Kiebish, Michael; Mukherjee, Purna; Marsh, Jeremy
2008-11-01
Information is presented on the calorically restricted ketogenic diet (CRKD) as an alternative therapy for brain cancer. In contrast to normal neurons and glia, which evolved to metabolize ketone bodies as an alternative fuel to glucose under energy-restricted conditions, brain tumor cells are largely glycolytic due to mitochondrial defects and have a reduced ability to metabolize ketone bodies. The CRKD is effective in managing brain tumor growth in animal models and in patients, and appears to act through antiangiogenic, anti-inflammatory, and proapoptotic mechanisms.
EphB4-targeted imaging with antibody h131, h131-F(ab′)2 and h131-Fab
Li, Dan; Liu, Shuanglong; Liu, Ren; Zhou, Yue; Park, Ryan; Naga, Kranthi; Krasnoperov, Valery; Gill, Parkash S.; Li, Zibo; Shan, Hong; Conti, Peter S.
2013-01-01
Accumulating evidence suggests that overexpression of the tyrosine kinase receptor EphB4, a mediator of vascular development, is a novel target for tumor diagnosis, prognosis and therapy. Noninvasive imaging of EphB4 expression could therefore be valuable for evaluating disease course and therapeutic efficacy at the earliest stages of anti-EphB4 treatment. In this study, we systematically investigated the use of anti-EphB4 antibody h131 (150 kD) and its fragments (h131-F(ab′)2, 110 kD; h131-Fab, 50 kD) for near-infrared fluorescence (NIRF) imaging of EphB4 expression in vivo. h131-F(ab′)2 and h131-Fab were produced through pepsin and papain digestion of h131 respectively, whose purity was confirmed by FPLC and SDS-PAGE. After conjugation with Cy5.5, in vivo characteristics of h131, h131-F(ab′)2 and h131-Fab were evaluated in EphB4-positive HT29 tumor model. Although h131-Cy5.5 demonstrated highest tumor uptake among these probes, its optimal tumor uptake level was obtained at 2 d post injection (p.i.). For h131-Fab-Cy5.5, maximum tumor uptake was achieved at 4 h p.i.. However, no significant difference was observed between h131-Fab-Cy5.5 and hIgG-Fab-Cy5.5, indicating the tumor accumulation was mainly caused by passive targeting. In contrast, h131-F(ab′)2-Cy5.5 demonstrated prominent tumor uptake at 6 h p.i. The target specificity was confirmed by hIgG-F(ab′)2-Cy5.5 control and immunofluorescent staining. Collectively, h131-F(ab′)2 exhibited prominent and specific tumor uptake at early time points, which suggests it is a promising agent for EphB4-targeted imaging. PMID:24147882
Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L
2010-01-01
The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.
A novel anti-PSMA human scFv has the potential to be used as a diagnostic tool in prostate cancer
Han, Yueheng; Wei, Ming; Han, Sen; Lin, Ruihe; Sun, Ziyong; Yang, Fa; Jiao, Dian; Xie, Pin; Zhang, Lingling; Yang, An-Gang; Zhao, Aizhi; Wen, Weihong; Qin, Weijun
2016-01-01
Prostate cancer (PCa) is the most commonly diagnosed malignancy and the second leading cause of cancer related death in men. The early diagnosis and treatment of PCa are still challenging due to the lack of efficient tumor targeting agents in traditional managements. Prostate specific membrane antigen (PSMA) is highly expressed in PCa, while only has limited expression in other organs, providing an ideal target for the diagnosis and therapy of PCa. The antibody library technique has opened the avenue for the discovery of novel antibodies to be used in the diagnosis and therapy of cancer. In this paper, by screening a large yeast display naive human single chain antibody fragment (scFv) library, we obtained a high affinity scFv targeting PSMA, called gy1. The gy1 scFv was expressed in E.coli and purified via a C terminal 6His tag. The binding affinity of gy1 was shown to be at the nanomolar level and gy1 can specifically bind with PSMA positive cancer cells, and binding triggers its rapid internalization through the endosome-lysosome pathway. The specific targeting of gy1 to PSMA positive tumor tissues was also evaluated in vivo. We showed that the IRDye800CW labeled gy1 can efficiently target and specifically distribute in PSMA positive tumor tissues after being injected into xenograft nude mice. This study indicated that the novel antibody gy1 could be used as a great tool for the development of PSMA targeted imaging and therapy agents for PCa. PMID:27448970
Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy
Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin
2016-01-01
The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT. PMID:27191269
Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy.
Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin
2016-07-12
The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT.
Stagg, John; Allard, Bertrand
2013-05-01
Triple-negative breast cancer (TNBC), as defined by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression, is a challenging disease with the poorest prognosis of all breast cancer subtypes. Importantly, there are currently no known molecular targets for this subgroup of patients. Recent advances in genomics and gene expression profiling have shed new light on the molecule heterogeneity of TNBC. We present an overview of the scientific evidence suggesting that clinical outcome in TNBC is affected by tumor-infiltrating immune cells. We also describe tumor-associated antigens recently identified in TNBC. Finally, we review the current literature on promising immunotherapies for TNBC, including tumor vaccine approaches, immune-checkpoint inhibitors, antagonists of immunosuppressive molecules and adoptive cell therapies. It is our contention that selected patients with TNBC with lymphocytic tumor infiltrates at diagnosis may benefit from immune-based therapies and that these immunotherapies will be most beneficial in combination with cytotoxic drugs that potentiate adaptive anti-tumor immunity.
Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma.
Nakaoka, Toshiaki; Saito, Yoshimasa; Saito, Hidetsugu
2017-05-23
Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1 , p14 , p16 , death-associated protein kinase ( DAPK ), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response.
Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma
Nakaoka, Toshiaki; Saito, Yoshimasa; Saito, Hidetsugu
2017-01-01
Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1, p14, p16, death-associated protein kinase (DAPK), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response. PMID:28545228
Martinez-Outschoorn, Ubaldo E; Whitaker-Menezes, Diana; Pavlides, Stephanos; Chiavarina, Barbara; Bonuccelli, Gloria; Casey, Trimmer; Tsirigos, Aristotelis; Migneco, Gemma; Witkiewicz, Agnieszka; Balliet, Renee; Mercier, Isabelle; Wang, Chengwang; Flomenberg, Neal; Howell, Anthony; Lin, Zhao; Caro, Jaime; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P
2010-11-01
The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the "Autophagy Paradox". We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm "The Autophagic Tumor Stroma Model of Cancer Cell Metabolism" or "Battery-Operated Tumor Growth". In this sense, autophagy in the tumor stroma serves as a "battery" to fuel tumor growth, progression and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients-both effectively "starving" cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy, by the upregulation of natural endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy, by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an anti-cancer therapy that combines the alternating use of both autophagy promoters and autophagy inhibitors would be expected to prevent the onset of drug resistance. We also discuss why anti-angiogenic therapy has been found to promote tumor recurrence, progression and metastasis. More specifically, anti-angiogenic therapy would induce autophagy in the tumor stroma via the induction of stromal hypoxia, thereby converting a non-aggressive tumor type to a "lethal" aggressive tumor phenotype. Thus, uncoupling the metabolic parasitic relationship between cancer cells and an autophagic tumor stroma may hold great promise for anti-cancer therapy. Finally, we believe that autophagy in the tumor stroma is the local microscopic counterpart of systemic wasting (cancer-associated cachexia), which is associated with advanced and metastatic cancers. Cachexia in cancer patients is not due to decreased energy intake, but instead involves an increased basal metabolic rate and increased energy expenditures, resulting in a negative energy balance. Importantly, when tumors were surgically excised, this increased metabolic rate returned to normal levels. This view of cachexia, resulting in energy transfer to the tumor, is consistent with our hypothesis. So, cancer-associated cachexia may start locally as stromal autophagy, and then spread systemically. As such, stromal autophagy may be the requisite precursor of systemic cancer-associated cachexia.
Taranta, Monia; Naldi, Ilaria
2011-01-01
Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy. PMID:21373641
Basal cell carcinoma: PD-L1/PD-1 checkpoint expression and tumor regression after PD-1 blockade.
Lipson, Evan J; Lilo, Mohammed T; Ogurtsova, Aleksandra; Esandrio, Jessica; Xu, Haiying; Brothers, Patricia; Schollenberger, Megan; Sharfman, William H; Taube, Janis M
2017-01-01
Monoclonal antibodies that block immune regulatory proteins such as programmed death-1 (PD-1) have demonstrated remarkable efficacy in controlling the growth of multiple tumor types. Unresectable or metastatic basal cell carcinoma, however, has largely gone untested. Because PD-Ligand-1 (PD-L1) expression in other tumor types has been associated with response to anti-PD-1, we investigated the expression of PD-L1 and its association with PD-1 expression in the basal cell carcinoma tumor microenvironment. Among 40 basal cell carcinoma specimens, 9/40 (22%) demonstrated PD-L1 expression on tumor cells, and 33/40 (82%) demonstrated PD-L1 expression on tumor-infiltrating lymphocytes and associated macrophages. PD-L1 was observed in close geographic association to PD-1+ tumor infiltrating lymphocytes. Additionally, we present, here, the first report of an objective anti-tumor response to pembrolizumab (anti-PD-1) in a patient with metastatic PD-L1 (+) basal cell carcinoma, whose disease had previously progressed through hedgehog pathway-directed therapy. The patient remains in a partial response 14 months after initiation of therapy. Taken together, our findings provide a rationale for testing anti-PD-1 therapy in patients with advanced basal cell carcinoma, either as initial treatment or after acquired resistance to hedgehog pathway inhibition.
Cramer, Paula; von Tresckow, Julia; Bahlo, Jasmin; Engelke, Anja; Langerbeins, Petra; Fink, Anna-Maria; Fischer, Kirsten; Wendtner, Clemens-Martin; Kreuzer, Karl-Anton; Stilgenbauer, Stephan; Böttcher, Sebastian; Eichhorst, Barbara; Hallek, Michael
2018-03-01
Four Phase II trials (clinical trials numbers: NCT02345863, NCT02401503, NCT02445131 and NCT02689141) evaluate a different combination of targeted agents in an all-comer population of approximately 60 patients with chronic lymphocytic leukemia irrespective of prior treatment, physical fitness and genetic risk factors. Patients with a higher tumor load start with a debulking treatment with bendamustine. The subsequent induction and maintenance treatment with an anti-CD20 antibody (obinutuzumab or ofatumumab) and a targeted oral agent (ibrutinib, idelalisib or venetoclax) are continued until achievement of a complete response and minimal residual disease negativity. This strategy represents a new era of chronic lymphocytic leukemia therapy where chemotherapy is increasingly replaced by targeted agents and treatment duration is tailored to the patient's individual tumor load and response.
Ueda, Masashi; Hisada, Hayato; Temma, Takashi; Shimizu, Yoichi; Kimura, Hiroyuki; Ono, Masahiro; Nakamoto, Yuji; Togashi, Kaori; Saji, Hideo
2015-02-01
We aimed to develop a gallium-68 (Ga-68)-labeled single-chain variable fragment (scFv) targeting the human epidermal growth factor receptor 2 (HER2) to rapidly and noninvasively evaluate the status of HER2 expression. Anti-HER2 scFv was labeled with Ga-68 by using deferoxamine (Df) as a bifunctional chelate. Biodistribution of [(68)Ga]Df-anti-HER2 scFv was examined with tumor-bearing mice and positron emission tomography (PET) imaging was performed. The changes in HER2 expression after anti-HER2 therapy were monitored by PET imaging. [(68)Ga]Df-anti-HER2 scFv was obtained with high radiochemical yield after only a 5-min reaction at room temperature. The probe showed high accumulation in HER2-positive xenografts and the intratumoral distribution of radioactivity coincided with HER2-positive regions. Furthermore, [(68)Ga]Df-anti-HER2 scFv helped visualize HER2-positive xenografts and monitor the changes in HER2 expression after anti-HER2 therapy. [(68)Ga]Df-anti-HER2 scFv could be a promising probe to evaluate HER2 status by in vivo PET imaging, unless trastuzumab is prescribed as part of the therapy.
Brichard, Vincent G; Lejeune, Diane
2007-09-27
From the first evidence that the immune system could recognize tumors, different types of tumor antigens have been identified and deeply characterized. Several different approaches aimed at targeting these antigens have already been the subject of clinical studies. In this field, the GSK Biologicals' approach relying on recombinant proteins combined with an immunological Adjuvant System in a specific clinical setting, has entertained hopes of developing a new class of well tolerated anti-cancer therapy. This methodology led to promising advances with MAGE-A3 immunotherapy in NSCLC and has the potential to be applied to all tumor types.
Thakur, Ravi; Mishra, Durga Prasad
2016-12-01
Matricellular proteins (MCPs) are the non-structural extracellular matrix (ECM) proteins with various regulatory functions. MCPs are critical regulators of ECM homeostasis and are often found dysregulated in various malignancies. They interact with various proteins like ECM structural proteins, integrins, growth factor receptors and growth factors to modulate their availability and activity. Cancer-supporting MCPs are known to induce proliferation, migration and invasion of cancer cells. MCPs also support cancer stem (like) cell growth and induce a drug-resistant state. Apart from their direct effects on cancer cells, they play key roles in angiogenesis, immunomodulation, stromal cell infiltration, stromal proliferation and matrix remodeling. High expression of various MCPs belonging to the tenascin, CCN and SIBLING families is often associated with aggressive tumors and poor patient prognosis. Due to their differential expression and distinct functional role, these MCPs are perceived as attractive therapeutic targets in cancer. Studies on preclinical models have indicated that targeting tumor-supportive MCPs could be a potent avenue for developing anti-cancer therapies. The MCP receptors, like integrins and some associated growth factor receptors, are already being targeted using pharmacological inhibitors and neutralizing antibodies. Neutralizing antibodies against CCNs, tenascins and SIBLINGs have shown promising results in preclinical cancer models, suggesting an opportunity to develop anti-MCP therapies to target cancer. Peptides derived from anti-cancer MCPs could also serve as therapeutic entities. In the present review, in continuation with the expanding horizon of MCP functions and disease association, we focus on (i) their unique domain arrangement, (ii) their association with cancer hallmarks and (iii) available and possible therapeutic interventions. Copyright © 2016 Elsevier Inc. All rights reserved.
Eph receptor A10 has a potential as a target for a prostate cancer therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagano, Kazuya; Yamashita, Takuya; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871
2014-07-18
Highlights: • EphA10 mRNA is overexpressed in breast, prostate and colon cancer cell lines. • EphA10 is overexpressed in clinical prostate tumors at mRNA and protein levels. • Anti-EphA10 antibodies were cytotoxic on EphA10-positive prostate cancer cells. - Abstract: We recently identified Eph receptor A10 (EphA10) as a novel breast cancer-specific protein. Moreover, we also showed that an in-house developed anti-EphA10 monoclonal antibody (mAb) significantly inhibited proliferation of breast cancer cells, suggesting EphA10 as a promising target for breast cancer therapy. However, the only other known report for EphA10 was its expression in the testis at the mRNA level. Therefore,more » the potency of EphA10 as a drug target against cancers other than the breast is not known. The expression of EphA10 in a wide variety of cancer cells was studied and the potential of EphA10 as a drug target was evaluated. Screening of EphA10 mRNA expression showed that EphA10 was overexpressed in breast cancer cell lines as well as in prostate and colon cancer cell lines. Thus, we focused on prostate cancers in which EphA10 expression was equivalent to that in breast cancers. As a result, EphA10 expression was clearly shown in clinical prostate tumor tissues as well as in cell lines at the mRNA and protein levels. In order to evaluate the potential of EphA10 as a drug target, we analyzed complement-dependent cytotoxicity effects of anti-EphA10 mAb and found that significant cytotoxicity was mediated by the expression of EphA10. Therefore, the idea was conceived that the overexpression of EphA10 in prostate cancers might have a potential as a target for prostate cancer therapy, and formed the basis for the studies reported here.« less
Yi, Eui-Yeun; Han, Kyung-Suk; Kim, Yung-Jin
2014-01-01
Angiogenesis is important processes for tumor growth and metastasis. Anti-angiogenesis target therapy has recently been known to be new anti-cancer therapeutic strategies. Natural products such as traditional medicine comprise a major source of angiogenesis inhibitors. Artemisia lavandulaefolia has been known to use in the traditional medical practices. However, its molecular mechanism on the tumor protection and therapy was not clearly elucidated. In this study, we investigated the possibility that extract of A. lavandulaefolia inhibits in vitro angiogenesis. Therefore, we examined the effect of extract of A. lavandulaefolia on the vascular network formation of human umbilical vein endothelial cells (HUVECs). We found that the treatment of A. lavandulaefolia extract suppressed the tube formation of HUVECs without any influence on the viability of HUVECs. In addition, extract of A. lavandulaefolia inhibited the migration and invasion of HUVECs. These results suggest that extract of A. lavandulaefolia could be act for an angiogenic inhibitor. PMID:25574458
Li, Ning; Liu, Shaohui; Sun, Mingjiao; Chen, Wei; Xu, Xiaogang; Zeng, Zhu; Tang, Yemin; Dong, Yongquan; Chang, Alex H; Zhao, Qiong
2018-02-01
Erythropoietin-producing hepatocellular carcinoma A2 (EphA2) is overexpressed in more than 90% of non-small cell lung cancer (NSCLC) but not significantly in normal lung tissue. It is therefore an important tumor antigen target for chimeric antigen receptors (CAR)-T-based therapy in NSCLC. Here, we developed a specific CAR targeted to EphA2, and the anti-tumor effects of this CAR were investigated. A second generation CAR with co-stimulatory receptor 4-1BB targeted to EphA2 was developed. The functionality of EphA2-specific T cells in vitro was tested with flow cytometry and real-time cell electronic sensing system assays. The effect in vivo was evaluated in xenograft SCID Beige mouse model of EphA2 positive NSCLC. These EphA2-specifc T cells can cause tumor cell lysis by producing the cytokines IFN-γ when cocultured with EphA2-positive targets, and the cytotoxicity effects was specific in vitro. In vivo, the tumor signals of mice treated with EphA2-specifc T cells presented the tendency of decrease, and was much lower than the mice treated with non-transduced T cells. The anti-tumor effects of this CAR-T technology in vivo and vitro had been confirmed. Thus, EphA2-specific T-cell immunotherapy may be a promising approach for the treatment of EphA2-positive NSCLC. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Irradiation-induced angiosarcoma and anti-angiogenic therapy: A therapeutic hope?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azzariti, Amalia, E-mail: a.azzariti@oncologico.bari.it; Porcelli, Letizia; Mangia, Anita
2014-02-15
Angiosarcomas are rare soft-tissue sarcomas of endothelial cell origin. They can be sporadic or caused by therapeutic radiation, hence secondary breast angiosarcomas are an important subgroup of patients. Assessing the molecular biology of angiosarcomas and identify specific targets for treatment is challenging. There is currently great interest in the role of angiogenesis and of angiogenic factors associated with tumor pathogenesis and as targets for treatment of angiosarcomas. A primary cell line derived from a skin fragment of a irradiation-induced angiosarcoma patient was obtained and utilized to evaluate cell biomarkers CD31, CD34, HIF-1alpha and VEGFRs expression by immunocytochemistry and immunofluorescence, drugsmore » cytotoxicity by cell counting and VEGF release by ELISA immunoassay. In addition to previous biomarkers, FVIII and VEGF were also evaluated on tumor specimens by immunohistochemistry to further confirm the diagnosis. We targeted the VEGF–VEGFR-2 axis of tumor angiogenesis with two different class of vascular targeted drugs; caprelsa, the VEGFR-2/EGFR/RET inhibitor and bevacizumab the anti-VEGF monoclonal antibody. We found the same biomarkers expression either in tumor specimens and in the cell line derived from tumor. In vitro experiments demonstrated that angiogenesis plays a pivotal role in the progression of this tumor as cells displayed high level of VEGFR-2, HIF-1 alpha strongly accumulated into the nucleus and the pro-angiogenic factor VEGF was released by cells in culture medium. The evaluation of caprelsa and bevacizumab cytotoxicity demonstrated that both drugs were effective in inhibiting tumor proliferation. Due to these results, we started to treat the patient with pazopanib, which was the unique tyrosine kinase inhibitor available in Italy through a compassionate supply program, obtaining a long lasting partial response. Our data suggest that the study of the primary cell line could help physicians in choosing a therapeutic approach for patient that almost in vitro shows chances of success and that the anti-angiogenetic agents are a reliable therapeutic opportunity for angiosarcomas patients. - Highlights: • Characterization of a new AS cell line for VEGFR-2, HIF-1 alpha and VEGF. • Caprelsa and bevacizumab inhibit AS cells proliferation. • Anti-angiogenetic agents as a reliable therapeutic opportunity for AS patients.« less
Friedrichs, Björn; Heuser, Claudia; Guhlke, Stefan; Abken, Hinrich; Hombach, Andreas A.
2012-01-01
Successful immunotherapy of Hodgkin's disease is so far hampered by the striking unresponsiveness of lymphoma infiltrating immune cells. To mobilize both adoptive and innate immune cells for an anti-tumor attack we fused the pro-inflammatory cytokines IL2 and IL12 to an anti-CD30 scFv antibody in a dual cytokine fusion protein to accumulate both cytokines at the malignant CD30+ Hodgkin/Reed-Sternberg cells in the lymphoma lesion. The tumor-targeted IL12-IL2 fusion protein was superior in activating resting T cells to amplify and secrete pro-inflammatory cytokines compared to targeted IL2 or IL12 alone. NK cells were also activated by the dual cytokine protein to secrete IFN-γ and to lyse target cells. The tumor-targeted IL12-IL2, when applied by i.v. injection to immune-competent mice with established antigen-positive tumors, accumulated at the tumor site and induced tumor regression. Data demonstrate that simultaneous targeting of two cytokines in a spatial and temporal simultaneous fashion to pre-defined tissues is feasible by a dual-cytokine antibody fusion protein. In the case of IL12 and IL2, this produced superior anti-tumor efficacy implying the strategy to muster a broader immune cell response in the combat against cancer. PMID:23028547
Immunotherapy in ovarian cancer.
Odunsi, K
2017-11-01
Immunological destruction of tumors is a multistep, coordinated process that can be modulated or targeted at several critical points to elicit tumor rejection. These steps in the cancer immunity cycle include: (i) generation of sufficient numbers of effector T cells with high avidity recognition of tumor antigens in vivo; (ii) trafficking and infiltration into the tumor; (iii) overcoming inhibitory networks in the tumor microenvironment; (iv) direct recognition of tumor antigens and generation of an effector anti-tumor response; and (v) persistence of the anti-tumor T cells. In an effort to understand whether the immune system plays a role in controlling ovarian cancer, our group and others demonstrated that the presence of tumor infiltrating lymphocytes (TILs) is associated with improved clinical outcome in ovarian cancer patients. Recently, we hypothesized that the quality of infiltrating T cells could also be a critical determinant of outcome in ovarian cancer patients. In the past decade, several immune-based interventions have gained regulatory approval in many solid tumors and hematologic malignancies. These interventions include immune checkpoint blockade, cancer vaccines, and adoptive cell therapy. There are currently no approved immune therapies for ovarian cancer. Immunotherapy in ovarian cancer will have to consider the immune suppressive networks within the ovarian tumor microenvironment; therefore, a major direction is to develop biomarkers that would predict responsiveness to different types of immunotherapies, and allow for treatment selection based on the results. Moreover, such biomarkers would allow rational combination of immunotherapies, while minimizing toxicities. In this review, the current understanding of the host immune response in ovarian cancer patients will be briefly reviewed, progress in immune therapies, and future directions for exploiting immune based strategies for long lasting durable cure. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime
2014-08-01
Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications. © 2014 Japanese Dermatological Association.
Nelson, Sarah J
2011-07-01
MRI is routinely used for diagnosis, treatment planning and assessment of response to therapy for patients with glioma. Gliomas are spatially heterogeneous and infiltrative lesions that are quite variable in terms of their response to therapy. Patients classified as having low-grade histology have a median overall survival of 7 years or more, but need to be monitored carefully to make sure that their tumor does not upgrade to a more malignant phenotype. Patients with the most aggressive grade IV histology have a median overall survival of 12-15 months and often undergo multiple surgeries and adjuvant therapies in an attempt to control their disease. Despite improvements in the spatial resolution and sensitivity of anatomic images, there remain considerable ambiguities in the interpretation of changes in the size of the gadolinium-enhancing lesion on T(1) -weighted images as a measure of treatment response, and in differentiating between treatment effects and infiltrating tumor within the larger T(2) lesion. The planning of focal therapies, such as surgery, radiation and targeted drug delivery, as well as a more reliable assessment of the response to therapy, would benefit considerably from the integration of metabolic and physiological imaging techniques into routine clinical MR examinations. Advanced methods that have been shown to provide valuable data for patients with glioma are diffusion, perfusion and spectroscopic imaging. Multiparametric examinations that include the acquisition of such data are able to assess tumor cellularity, hypoxia, disruption of normal tissue architecture, changes in vascular density and vessel permeability, in addition to the standard measures of changes in the volume of enhancing and nonenhancing anatomic lesions. This is particularly critical for the interpretation of the results of Phase I and Phase II clinical trials of novel therapies, which are increasingly including agents that are designed to have anti-angiogenic and anti-proliferative properties as opposed to having a direct effect on tumor cell viability. Copyright © 2011 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo
CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulatingmore » the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.« less
Targeting Src in Mucinous Ovarian Carcinoma
Matsuo, Koji; Nishimura, Masato; Bottsford-Miller, Justin N.; Huang1, Jie; Komurov, Kakajan; Armaiz-Pena, Guillermo N.; Shahzad, Mian M. K.; Stone, Rebecca L.; Roh, Ju Won; Sanguino, Angela M.; Lu, Chunhua; Im, Dwight D.; Rosenshien, Neil B.; Sakakibara, Atsuko; Nagano, Tadayoshi; Yamasaki, Masato; Enomoto, Takayuki; Kimura, Tadashi; Ram, Prahlad T.; Schmeler, Kathleen M.; Gallick, Gary E.; Wong, Kwong K.; Frumovitz, Michael; Sood, Anil K.
2014-01-01
PURPOSE Mucinous ovarian carcinomas have a distinct clinical pattern compared to other subtypes of ovarian carcinoma. Here, we evaluated (i) stage-specific clinical significance of mucinous ovarian carcinomas in a large cohort and (ii) the functional role of src kinase in pre-clinical models of mucinous ovarian carcinoma. EXPERIMENTAL DESIGN 1302 ovarian cancer patients including 122 (9.4%) cases of mucinous carcinoma were evaluated for survival analyses. Biological effects of src kinase inhibition were tested in a novel orthotopic mucinous ovarian cancer model (RMUG-S-ip2) using dasatinib-based therapy. RESULTS Patients with advanced-stage mucinous ovarian cancer had significantly worse survival compared to those with serous histology: median overall survival, 1.67 versus 3.41 years, p=0.002; and median survival time after recurrence of 0.53 versus 1.66 years, p<0.0001. Among multiple ovarian cancer cell lines, RMUG-S-ip2 mucinous ovarian cancer cells showed the highest src kinase activity. Moreover, oxaliplatin treatment induced phosphorylation of src kinase. This induced activity by oxaliplatin therapy was inhibited by concurrent administration of dasatinib. Targeting src with dasatinib in vivo showed significant anti-tumor effects in the RMUG-S-ip2 model, but not in the serous ovarian carcinoma (SKOV3-TR) model. Combination therapy of oxaliplatin with dasatinib further demonstrated significant effects on reducing cell viability, increasing apoptosis, and in vivo anti-tumor effects in the RMUG-S-ip2 model. CONCLUSIONS Our results suggest that poor survival of women with mucinous ovarian carcinoma is associated with resistance to cytotoxic therapy. Targeting src kinase with combination of dasatinib and oxaliplatin may be an attractive approach in this disease. PMID:21737505
Faitschuk, Elena; Hombach, Andreas A; Frenzel, Lukas P; Wendtner, Clemens-Martin; Abken, Hinrich
2016-09-29
Adoptive cell therapy of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR)-modified T cells targeting CD19 induced lasting remission of this refractory disease in a number of patients. However, the treatment is associated with prolonged "on-target off-tumor" toxicities due to the targeted elimination of healthy B cells demanding more selectivity in targeting CLL cells. We identified the immunoglobulin M Fc receptor (FcμR), also known as the Fas apoptotic inhibitory molecule-3 or TOSO, as a target for a more selective treatment of CLL by CAR T cells. FcμR is highly and consistently expressed by CLL cells; only minor levels are detected on healthy B cells or other hematopoietic cells. T cells with a CAR specific for FcμR efficiently responded toward CLL cells, released a panel of proinflammatory cytokines and lytic factors, like soluble FasL and granzyme B, and eliminated the leukemic cells. In contrast to CD19 CAR T cells, anti-FcμR CAR T cells did not attack healthy B cells. T cells with anti-FcμR CAR delayed outgrowth of Mec-1-induced leukemia in a xenograft mouse model. T cells from CLL patients in various stages of the disease, modified by the anti-FcμR CAR, purged their autologous CLL cells in vitro without reducing the number of healthy B cells, which is the case with anti-CD19 CAR T cells. Compared with the currently used therapies, the data strongly imply a superior therapeutic index of anti-FcμR CAR T cells for the treatment of CLL. © 2016 by The American Society of Hematology.
Park, Jae H; Brentjens, Renier J
2010-04-01
Chemotherapy-resistant B-cell hematologic malignancies may be cured with allogeneic hematopoietic stem cell transplantation (HSCT), demonstrating the potential susceptibility of these tumors to donor T-cell mediated immune responses. However, high rates of transplant-related morbidity and mortality limit this approach. For this reason, there is an urgent need for less-toxic forms of immune-based cellular therapy to treat these malignancies. Adoptive transfer of autologous T cells genetically modified to express chimeric antigen receptors (CARs) targeted to specific tumor-associated antigens represents an attractive means of overcoming the limitations of conventional HSCT. To this end, investigators have generated CARs targeted to various antigens expressed by B-cell malignancies, optimized the design of these CARs to enhance receptor mediated T cell signaling, and demonstrated significant anti-tumor efficacy of the resulting CAR modified T cells both in vitro and in vivo mouse tumor models. These encouraging preclinical data have justified the translation of this approach to the clinical setting with currently 12 open clinical trials and one completed clinical trial treating various B-cell malignancies utilizing CAR modified T cells targeted to either the CD19 or CD20 B-cell specific antigens.
NASA Astrophysics Data System (ADS)
Munn, Lance
2009-11-01
``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure and function, provides a tool for identifying the structural and functional determinants of tumor vessel normalization.
Koehn, Tony A; Trimble, Lori L; Alderson, Kory L; Erbe, Amy K; McDowell, Kimberly A; Grzywacz, Bartosz; Hank, Jacquelyn A; Sondel, Paul M
2012-01-01
Disease recurrence is frequent in high-risk neuroblastoma (NBL) patients even after multi-modality aggressive treatment [a combination of chemotherapy, surgical resection, local radiation therapy, autologous stem cell transplantation, and cis-retinoic acid (CRA)]. Recent clinical studies have explored the use of monoclonal antibodies (mAbs) that bind to disialoganglioside (GD(2)), highly expressed in NBL, as a means to enable immune effector cells to destroy NBL cells via antibody-dependent cell-mediated cytotoxicity (ADCC). Preclinical data indicate that ADCC can be more effective when appropriate effector cells are activated by cytokines. Clinical studies have pursued this by administering anti-GD(2) mAb in combination with ADCC-enhancing cytokines (IL2 and GM-CSF), a regimen that has demonstrated improved cancer-free survival. More recently, early clinical studies have used a fusion protein that consists of the anti-GD(2) mAb directly linked to IL2, and anti-tumor responses were seen in the Phase II setting. Analyses of genes that code for receptors that influence ADCC activity and natural killer (NK) cell function [Fc receptor (FcR), killer immunoglublin-like receptor (KIR), and KIR-ligand (KIR-L)] suggest patients with anti-tumor activity are more likely to have certain genotype profiles. Further analyses will need to be conducted to determine whether these genotypes can be used as predictive markers for favorable therapeutic outcome. In this review, we discuss factors that affect response to mAb-based tumor therapies such as hu14.18-IL2. Many of our observations have been made in the context of NBL; however, we will also include some observations made with mAbs targeting other tumor types that are consistent with results in NBL. Therefore, we hypothesize that the NBL observations discussed here may also be relevant to mAb therapy for other cancers, in which ADCC is known to play a role.
Roberts, Patrick J; Stinchcombe, Thomas E; Der, Channing J; Socinski, Mark A
2010-11-01
In patients with metastatic colorectal cancer, the predictive value of KRAS mutational status in the selection of patients for treatment with anti-epidermal growth factor (EGFR) monoclonal antibodies is established. In patients with non-small-cell lung cancer (NSCLC), the utility of determining KRAS mutational status to predict clinical benefit to anti-EGFR therapies remains unclear. This review will provide a brief description of Ras biology, provide an overview of aberrant Ras signaling in NSCLC, and summarize the clinical data for using KRAS mutational status as a negative predictive biomarker to anti-EGFR therapies. Retrospective investigations of KRAS mutational status as a negative predictor of clinical benefit from anti-EGFR therapies in NSCLC have been performed; however, small samples sizes as a result of low prevalence of KRAS mutations and the low rate of tumor sample collection have limited the strength of these analyses. Although an association between the presence of KRAS mutation and lack of response to EGFR tyrosine kinase inhibitors (TKIs) has been observed, it remains unclear whether there is an association between KRAS mutation and EGFR TKI progression-free and overall survival. Unlike colorectal cancer, KRAS mutations do not seem to identify patients who do not benefit from anti-EGFR monoclonal antibodies in NSCLC. The future value of testing for KRAS mutational status may be to exclude the possibility of an EGFR mutation or anaplastic lymphoma kinase translocation or to identify a molecular subset of patients with NSCLC in whom to pursue a drug development strategy that targets the KRAS pathway.
Lim, Li Ying; Koh, Pei Yin; Somani, Sukrut; Al Robaian, Majed; Karim, Reatul; Yean, Yi Lyn; Mitchell, Jennifer; Tate, Rothwelle J; Edrada-Ebel, RuAngelie; Blatchford, David R; Mullin, Margaret; Dufès, Christine
2015-08-01
The possibility of using gene therapy for the treatment of cancer is limited by the lack of safe, intravenously administered delivery systems able to selectively deliver therapeutic genes to tumors. In this study, we investigated if the conjugation of the polypropylenimine dendrimer to lactoferrin and lactoferricin, whose receptors are overexpressed on cancer cells, could result in a selective gene delivery to tumors and a subsequently enhanced therapeutic efficacy. The conjugation of lactoferrin and lactoferricin to the dendrimer significantly increased the gene expression in the tumor while decreasing the non-specific gene expression in the liver. Consequently, the intravenous administration of the targeted dendriplexes encoding TNFα led to the complete suppression of 60% of A431 tumors and up to 50% of B16-F10 tumors over one month. The treatment was well tolerated by the animals. These results suggest that these novel lactoferrin- and lactoferricin-bearing dendrimers are promising gene delivery systems for cancer therapy. Specific targeting of cancer cells should enhance the delivery of chemotherapeutic agents. This is especially true for gene delivery. In this article, the authors utilized a dendrimer-based system and conjugated this with lactoferrin and lactoferricin to deliver anti-tumor genes. The positive findings in animal studies should provide the basis for further clinical studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Vascular endothelial growth factor (VEGF) inhibition--a critical review.
Moreira, Irina Sousa; Fernandes, Pedro Alexandrino; Ramos, Maria João
2007-03-01
Angiogenesis, or formation of new blood capillaries from preexisting vessels, plays both beneficial and damaging roles in the organism. It is a result of a complex balance of positive and negative regulators, and vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic factors involved in tumor angiogenesis. VEGF increases vascular permeability, which might facilitate tumor dissemination via the circulation causing a greater delivery of oxygen and nutrients; it recruits circulating endothelial precursor cells, and acts as a survival factor for immature tumor blood vessels. The endotheliotropic activities of VEGF are mediated through the VEGF-specific tyrosine-kinase receptors: VEGFR-1, VEGFR-2 and VEGFR-3. VEGF and its receptors play a central role in tumor angiogenesis, and therefore the blockade of this pathway is a promising therapeutic strategy for inhibiting angiogenesis and tumor growth. A number of different strategies to inhibit VEGF signal transduction are in development and they include the development of humanized neutralizing anti-VEGF monoclonal antibodies, receptor antagonists, soluble receptors, antagonistic VEGF mutants, and inhibitors of VEGF receptor function. These agents can be divided in two broad classes, namely agents designed to target the VEGF activity and agents designed to target the surface receptor function. The main purpose of this review is to summarize all the available information regarding the importance of the pro-angiogenic factor VEGF in cancer therapy. After an overview of the VEGF family and their respective receptors, we shall focus our attention on the different VEGF-inhibitors existent nowadays. Agents based upon anti-VEGF therapy have provided solid proofs about their success, and therefore we believe that a critical review is of the utmost importance to help researchers in their future work.
Moorthy, Madhappan S.; Zhang, Wei; Zeng, Ling; Kang, Mingyeong; Kwak, Minseok; Oh, Junghwan; Jin, Jun-O
2017-01-01
To meet the ultimate goal of cancer therapy, which is treating not only the primary tumor but also preventing metastatic cancer, the concept of combining immunotherapy with photothermal therapy (PTT) is gaining great interest. Here, we studied the new material, lipopolysaccharide (LPS) coated copper sulfide nanoparticles (LPS-CuS), for the immuno-photothermal therapy. We evaluated the effect of LPS-CuS for induction of apoptosis of CT26 cells and activation of dendritic cells. Moreover, the LPS-CuS and laser irradiation was examined anti-metastasis effect by liver metastasis model mouse in vivo. Through PTT, LPS-CuS induced elimination of CT26 tumor in BALB/c mice, which produced cancer antigens. In addition, released LPS and cancer antigen by PTT promoted dendritic cell activation in tumor draining lymph node (drLN), and consequently, enhanced the tumor antigen-specific immune responses. Finally, the primary tumor cured mice by LPS-CuS-mediated PTT completely resisted secondary tumor injection in the spleen and also prevented liver metastasis. Our results demonstrated the potential usage of LPS-CuS for the immuno-photothermal therapy against various types of cancer by showing the clear elimination of primary colon carcinoma with complete prevention of spleen and liver metastasis. PMID:29285274
Holst, Martin I.; Pietsch, Thorsten; Dilloo, Dagmar
2014-01-01
Regardless of the recent advances in cytotoxic therapies, 30% of children diagnosed with medulloblastoma. succumb to the disease. Therefore, novel therapeutic approaches are warranted. Here we demonstrate that Pazopanib a clinically approved multi-kinase angiogenesis inhibitor (MKI) inhibits proliferation and apoptosis in medulloblastoma cell lines. Moreover, Pazopanib profoundly attenuates medulloblastoma cell migration, a prerequisite for tumor invasion and metastasis. In keeping with the observed anti-neoplastic activity of Pazopanib, we also delineate reduced phosphorylation of the STAT3 protein, a key regulator of medulloblastoma proliferation and cell survival. Finally, we document profound in vivo activity of Pazopanib in an orthotopic mouse model of the most aggressive c-myc amplified human medulloblastoma variant. Pazopanib reduced the growth rate of intracranial growing medulloblastoma and significantly prolonged the survival. Furthermore, to put these results into a broader perspective we analysed Pazopanib side by side with the MKI Sorafenib. Both compounds share a similar target profile but display different pharmacodynamics and pharmacokinetics with distinct cytotoxic activity in different tumor entities. Thus, we identified Pazopanib as a new promising candidate for a rational clinical assessment for targeted paediatric medulloblastoma therapy. PMID:25216529
Stress-induced molecules MICA as potential target for radioimmunotherapy of cancer
NASA Astrophysics Data System (ADS)
Abakushina, E. V.; Anokhin, Yu N.; Abakushin, D. N.; Kaprin, A. D.
2017-01-01
Improving the treatment of cancer, increasing their effectiveness and safety is the main objective in the medicine. Molecular nuclear medicine plays an important role in the therapy of cancer. Radioimmunotherapy (RIT) involves the use of antibodies conjugated with therapeutic radionuclides. More often for RIT use the radiolabeled monoclonal antibodies against tumor-associated antigens. Encouraging results have been achieved with this technology in the management of hematologic malignancies. On the contrary, solid tumors have been less responsive. Despite these encouraging results, new potential target for radioimmunodetection and RIT should be found. It was found to increase the level of tumor-associated molecules MICA in the serum of cancer patients. Use of anti-MICA monoclonal antibodies capable a specifically attach to cancer cell via NKG2D ligands and destroy it, is a very promising direction, both therapeutic and diagnostic standpoint.
Sheen, Joon-Ho; Zoncu, Roberto; Kim, Dohoon; Sabatini, David M.
2011-01-01
SUMMARY Autophagy is of increasing interest as a target for cancer therapy. We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy. Hyperactivation of the RAS-MEK pathway, which is common in melanoma, prevents leucine deprivation from inhibiting mTORC1, the main repressor of autophagy under nutrient-rich conditions. In an in vivo tumor xenograft model, the combination of a leucine-free diet and an autophagy inhibitor synergistically suppresses the growth of human melanoma tumors and triggers widespread apoptosis of the cancer cells. Together, our study represents proof of principle that anti-cancer effects can be obtained with a combination of autophagy inhibition and strategies to deprive tumors of leucine. PMID:21575862
Osterman, Mark T; Haynes, Kevin; Delzell, Elizabeth; Zhang, Jie; Bewtra, Meenakshi; Brensinger, Colleen M; Chen, Lang; Xie, Fenglong; Curtis, Jeffrey R; Lewis, James D
2015-07-01
The benefit of continuing immunomodulators when "stepping up" to anti-tumor necrosis factor (anti-TNF) therapy for Crohn's disease (CD) is uncertain. This study assessed the effectiveness and safety of immunomodulators with anti-TNF therapy in CD. We conducted a retrospective cohort study of new users of anti-TNF therapy for CD in Medicare. Users of anti-TNF combination therapy with immunomodulators were matched to up to 3 users of anti-TNF monotherapy via propensity score and compared by using 3 metrics of effectiveness-surgery, hospitalization, and discontinuation of anti-TNF therapy or surgery-and 2 metrics of safety-serious infection and non-Candida opportunistic infection. Cox regression was used for all analyses. Among new users of infliximab, we matched 381 users of combination therapy to 912 users of monotherapy; among new users of adalimumab, we matched 196 users of combination therapy to 505 users of monotherapy. Combination therapy occurred predominantly as "step up" after thiopurine therapy. The rates of surgery (hazard ratio [HR], 1.20; 95% confidence interval, 0.73-1.96), hospitalization (HR, 0.82; 0.57-1.19), discontinuation of anti-TNF therapy or surgery (HR, 1.09; 0.88-1.34), and serious infection (HR, 0.93; 0.88-1.34) did not differ between users of anti-TNF combination therapy and monotherapy. However, the risks of opportunistic infection (HR, 2.64; 1.21-5.73) and herpes zoster (HR, 3.16; 1.25-7.97) were increased with combination therapy. We found that continuation of immunomodulators after "stepping up" to anti-TNF therapy did not improve outcomes but was associated with an increased risk of opportunistic infection. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Toi, Hirofumi; Tsujie, Masanori; Haruta, Yuro; Fujita, Kanako; Duzen, Jill; Seon, Ben K
2015-01-15
Endoglin (ENG) is a TGF-β coreceptor and essential for vascular development and angiogenesis. A chimeric antihuman ENG (hENG) monoclonal antibody (mAb) c-SN6j (also known as TRC105) shows promising safety and clinical efficacy features in multiple clinical trials of patients with various advanced solid tumors. Here we developed a novel genetically engineered mouse model to optimize the ENG-targeting clinical trials. We designed a new targeting vector that contains exons 4-8 of hENG gene to generate novel genetically engineered mice (GEMs) expressing functional human/mouse chimeric (humanized) ENG with desired epitopes. Genotyping of the generated mice confirmed that we generated the desired GEMs. Immunohistochemical analysis demonstrated that humanized ENG protein of the GEMs expresses epitopes defined by 7 of our 8 anti-hENG mAbs tested. Surprisingly the homozygous GEMs develop normally and are healthy. Established breast and colon tumors as well as metastasis and tumor microvessels in the GEMs were effectively suppressed by systemic administration of anti-hENG mAbs. Additionally, test result indicates that synergistic potentiation of antitumor efficacy can be induced by simultaneous targeting of two distinct epitopes by anti-hENG mAbs. Sorafenib and capecitabine also showed antitumor efficacy in the GEMs. The presented novel GEMs are the first GEMs that express the targetable humanized ENG. Test results indicate utility of the GEMs for the clinically relevant studies. Additionally, we generated GEMs expressing a different humanized ENG containing exons 5-6 of hENG gene, and the homozygous GEMs develop normally and are healthy. © 2014 UICC.
Dizeux, Alexandre; Payen, Thomas; Le Guillou-Buffello, Delphine; Comperat, Eva; Gennisson, Jean-Luc; Tanter, Mickael; Oelze, Michael; Bridal, S Lori
2017-09-01
Longitudinal imaging techniques are needed that can meaningfully probe the tumor microenvironment and its spatial heterogeneity. Contrast-enhanced ultrasound, shear wave elastography and quantitative ultrasound are ultrasound-based techniques that provide information on the vascular function and micro-/macroscopic tissue structure. Modifications of the tumor microenvironment induced by cytotoxic and anti-angiogenic molecules in ectopic murine Lewis lung carcinoma tumors were monitored. The most heterogenous structures were found in tumors treated with anti-angiogenic drug that simultaneously accumulated the highest levels of necrosis and fibrosis. The anti-angiogenic group presented the highest number of correlations between parameters related to vascular function and those related to the micro-/macrostructure of the tumor microenvironment. Results suggest how patterns of multiparametric ultrasound modifications can be related to provide a more insightful marker of changes occurring within tumors during therapy. Copyright © 2017. Published by Elsevier Inc.
Cuneo, Kyle C.; Nyati, Mukesh K.; Ray, Dipankar; Lawrence, Theodore S.
2015-01-01
The epidermal growth factor receptor (EGFR) plays an important role in tumor progression and treatment resistance for many types of malignancies including head and neck, colorectal, and nonsmall cell lung cancer. Several EGFR targeted therapies are efficacious as single agents or in combination with chemotherapy. Given the toxicity associated with chemoradiation and poor outcomes seen in several types of cancers, combinations of EGFR targeted agents with or without chemotherapy have been tested in patients receiving radiation. To date, the only FDA approved use of an anti-EGFR therapy in combination with radiation therapy is for locally advanced head and neck cancer. Given the important role EGFR plays in lung and colorectal cancer and the benefit of EGFR inhibition combined with chemotherapy in these disease sites, it is perplexing why EGFR targeted therapies in combination with radiation or chemoradiation have not been more successful. In this review we summarize the clinical findings of EGFR targeted therapies combined with radiation and chemoradiation regimens. We then discuss the interaction between EGFR and radiation including radiation induced EGFR signaling, the effect of EGFR on DNA damage repair, and potential mechanisms of radiosensitization. Finally, we examine the potential pitfalls with scheduling EGFR targeted therapies with chemoradiation and the use of predictive biomarkers to improve patient selection. PMID:26205191
Kemp, Jessica A; Shim, Min Suk; Heo, Chan Yeong; Kwon, Young Jik
2016-03-01
The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches. Copyright © 2015 Elsevier B.V. All rights reserved.
LI, MINGYUE; XING, SHUGANG; ZHANG, HAIYING; SHANG, SIQI; LI, XIANGXIANG; REN, BO; LI, GAIYUN; CHANG, XIAONA; LI, YILEI; LI, WEI
2016-01-01
Anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) treatment is effective for the treatment of primary tumors, but not sufficient for the treatment of metastatic tumors, likely owing to the effects of the tumor microenvironment. In this study, we aimed to determine the therapeutic effects of combined treatment with a matrix metalloproteinase (MMP) inhibitor (MMPI) and anti-CTLA-4 antibody in a breast cancer model in mice. Interestingly, combined treatment with MMPI and anti-CTLA-4 antibody delayed tumor growth and reduced lung and liver metastases compared with anti-CTLA-4 alone or vehicle treatment. The functions of the liver and kidney in mice in the different groups did not differ significantly compared with that in normal mice. The CD8+/CD4+ ratio in T cells in the spleen and tumor were increased after monotherapy or combined anti-CTLA-4 antibody plus MMPI therapy compared with that in vehicle-treated mice. Anti-CTLA-4 antibody plus MMPI therapy reduced the percentage of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and decreased the Treg/Th17 cell ratio in the spleen compared with those in the vehicle-treated group. Additionally, anti-CTLA-4 antibody plus MMPI therapy reduced the percentages of regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and Th17 cells in tumors compared with that in the vehicle-treated group. Moreover, combined treatment with MMPI and anti-CTLA-4 antibody reduced the microvessel density (MVD) in tumors compared with that in vehicle or MMPI-treated mice. There was a negative correlation between MVD and the CD8+ T cell percentage, CD4+ T cell percentage, and CD8+/CD4+ T cell ratio, but a positive correlation with Tregs, Th17 cells, Treg/Th17 cell ratio, and MDSCs. Thus, these data demonstrated that addition of MMPI enhanced the effects of anti-CTLA-4 antibody treatment in a mouse model of breast cancer by delaying tumor growth and reducing metastases. PMID:26752000
Dendrimer-based nanoparticles for cancer therapy.
Baker, James R
2009-01-01
Recent work has suggested that nanoparticles in the form of dendrimers may be a keystone in the future of therapeutics. The field of oncology could soon be revolutionized by novel strategies for diagnosis and therapy employing dendrimer-based nanotherapeutics. Several aspects of cancer therapy would be involved. Diagnosis using imaging techniques such as MRI will be improved by the incorporation of dendrimers as advanced contrast agents. This might involve novel contrast agents targeted specifically to cancer cells. Dendrimers can also be being applied to a variety of cancer therapies to improve their safety and efficacy. A strategy, somewhat akin to the "Trojan horse," involves targeting anti-metabolite drugs via vitamins or hormones that tumors need for growth. Further applications of dendrimers in photodynamic therapy, boron neutron capture therapy, and gene therapy for cancer are being examined. This presentation will cover the fundamentals of research utilizing dendrimers for cancer diagnosis and therapy. An evaluation of this new technologies will detail what advantage dendrimer based therapeutics might have over conventional cancer drugs.
Cancer stem cells and personalized cancer nanomedicine.
Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo
2016-02-01
Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.
Carroll, Molly J; Fogg, Kaitlin C; Patel, Harin A; Krause, Harris B; Mancha, Anne-Sophie; Patankar, Manish S; Weisman, Paul S; Barroilhet, Lisa; Kreeger, Pamela K
2018-05-08
Peritoneal metastasis of high-grade serous ovarian cancer (HGSOC) occurs when tumor cells suspended in ascites adhere to mesothelial cells. Despite the strong relationship between metastatic burden and prognosis in HGSOC, there are currently no therapies specifically targeting the metastatic process. We utilized a co-culture model and multivariate analysis to examine how interactions between tumor cells, mesothelial cells, and alternatively-activated macrophages (AAMs) influence the adhesion of tumor cells to mesothelial cells. We found that AAM-secreted MIP-1β activates CCR5/PI3K signaling in mesothelial cells, resulting in expression of P-selectin on the mesothelial cell surface. Tumor cells attached to this de novo P-selectin through CD24, resulting in increased tumor cell adhesion in static conditions and rolling under flow. C57/BL6 mice treated with MIP-1β exhibited increased P-selectin expression on mesothelial cells lining peritoneal tissues, which enhanced CaOV3 adhesion ex vivo and ID8 adhesion in vivo. Analysis of samples from HGSOC patients confirmed increased MIP-1β and P-selectin, suggesting that this novel multi-cellular mechanism could be targeted to slow or stop metastasis in HGSOC by repurposing anti- CCR5 and P-selectin therapies developed for other indications. Copyright ©2018, American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Zhang, Ran; Wang, Shi-Bin; Wu, Wen-Guo; Kankala, Ranjith Kumar; Chen, Ai-Zheng; Liu, Yuan-Gang; Fan, Jing-Qian
2017-06-01
Recently, targeted drug delivery systems (TDDS) have offered a great potential and benefits towards the anti-tumor drug delivery. In this work, we designed the TDDS using a biocompatible poly(ethylene glycol)-poly( β-amino esters) amphiphilic block copolymer (PEG-PAEs) synthesized by Michael addition polymerization for combinatorial therapy. Further, the chemotherapeutic agents' doxorubicin (DOX) and AS1411 DNA aptamer (Apt) are encapsulated in the PEG-PAEs NPs (PDANs) for co-delivery therapeutics. PDANs have shown the monodisperse spherical shape, smooth surface with a net positive charge (average diameter—183.1 ± 27.2 nm, zeta potential—31.2 ± 6.3 mV), and good colloidal stability (critical micelle concentration of PEG-PAEs is about 6.3 μg/mL). The pH-sensitive PAEs endowed PDANs both pH-triggered drug release characteristics and enhanced endo/lysosomal escape ability, thus improving the localization and cytotoxicity of DOX. AS1411 Apt conjugated PDANs precisely targeted nucleolin and their uptake correlates to a significant activity enhancement only in tumor cells (MCF-7) but not in normal cells (MCF-10A). Thus, PDANs can be a very promising targeted drug delivery platform for effective breast cancer therapy.
Li, Man; Shi, Kairong; Tang, Xian; Wei, Jiaojie; Cun, Xingli; Long, Yang; Zhang, Zhirong; He, Qin
2018-05-22
Cancer associated fibroblasts (CAFs) which shape the tumor microenvironment (TME) and the presence of blood brain barrier (BBB) remain great challenges in targeting breast cancer and its brain metastasis. Herein, we reported a strategy using PTX-loaded liposome co-modified with acid-cleavable folic acid (FA) and BBB transmigrating cell penetrating peptide dNP2 peptide (cFd-Lip/PTX) for enhanced delivery to orthotopic breast cancer and its brain metastasis. Compared with single ligand or non-cleavable Fd modified liposomes, cFd-Lip exhibited synergistic TME targeting and BBB transmigration. Moreover, upon arrival at the TME, the acid-cleavable cFd-Lip/PTX showed sensitive cleavage of FA, which reduced the hindrance effect and maximized the function of both FA and dNP2 peptide. Consequently, efficient targeting of folate receptor (FR)-positive tumor cells and FR-negative CAFs was achieved, leading to enhanced anti-tumor activity. This strategy provides a feasible approach to the cascade targeting of TME and BBB transmigration in orthotopic and metastatic cancer treatment. Copyright © 2018. Published by Elsevier Inc.
ERBB oncogene proteins as targets for monoclonal antibodies.
Polanovski, O L; Lebedenko, E N; Deyev, S M
2012-03-01
General properties of the family of tyrosine kinase ERBB receptors are considered in connection with their role in the generation of cascades of signal transduction in normal and tumor cells. Causes of acquisition of oncogene features by genes encoding these receptors and their role in tumorigenesis are analyzed. Anti-ERBB monoclonal antibodies approved for therapy are described in detail, and mechanisms of their antitumor activity and development of resistance to them are reviewed. The existing and the most promising strategies for creating and using monoclonal antibodies and their derivatives for therapy of cancer are discussed.
Borcherding, Nicholas; Kolb, Ryan; Gullicksrud, Jodi; Vikas, Praveen; Zhu, Yuwen; Zhang, Weizhou
2018-07-06
Immune checkpoints are a diverse set of inhibitory signals to the immune system that play a functional role in adaptive immune response and self-tolerance. Dysregulation of these pathways is a vital mechanism in the avoidance of immune destruction by tumor cells. Immune checkpoint blockade (ICB) refers to targeted strategies to disrupt the tumor co-opted immune suppression to enhance anti-tumor immunity. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1) are two immune checkpoints that have the widest range of antibody-based therapies. These therapies have gone from promising approaches to Food and Drug Administration-approved first- and second-line agents for a number of immunogenic cancers. The burgeoning investigations of ICB efficacy in blood and solid cancers have underscored the importance of identifying the predictors of response and resistance to ICB. Identification of response correlates is made complicated by the observations of mixed reactions, or different responses in multiple lesions from the same patient, and delayed responses that can occur over a year after the induction therapy. Factors that can influence response and resistance in ICB can illuminate underlying molecular mechanisms of immune activation and suppression. These same response predictors can guide the identification of patients who would benefit from ICB, reduce off-target immune-relate adverse events, and facilitate the use of combinatorial therapies to increase efficacy. Here we review the underlying principles of immune checkpoint therapy and results of single-agent ICB clinical trials, and summarize the predictors of response and resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Felgner, Sebastian; Kocijancic, Dino; Frahm, Michael; Heise, Ulrike; Rohde, Manfred; Zimmermann, Kurt; Falk, Christine; Weiss, Siegfried
2018-01-01
ABSTRACT Cancer is one of the leading causes of death in the industrialized world and represents a tremendous social and economic burden. As conventional therapies fail to provide a sustainable cure for most cancer patients, the emerging unique immune therapeutic approach of bacteria-mediated tumor therapy (BMTT) is marching towards a feasible solution. Although promising results have been obtained with BMTT using various preclinical tumor models, for advancement a major concern is immunity against the bacterial vector itself. Pre-exposure to the therapeutic agent under field conditions is a reasonable expectation and may limit the therapeutic efficacy of BMTT. In the present study, we investigated the therapeutic potential of Salmonella and E. coli vector strains in naïve and immunized tumor bearing mice. Pre-exposure to the therapeutic agent caused a significant aberrant phenotype of the microenvironment of colonized tumors and limited the in vivo efficacy of established BMTT vector strains Salmonella SL7207 and E. coli Symbioflor-2. Using targeted genetic engineering, we generated the optimized auxotrophic Salmonella vector strain SF200 (ΔlpxR9 ΔpagL7 ΔpagP8 ΔaroA ΔydiV ΔfliF) harboring modifications in Lipid A and flagella synthesis. This combination of mutations resulted in an increased immune-stimulatory capacity and as such the strain was able to overcome the efficacy-limiting effects of pre-exposure. Thus, we conclude that any limitations of BMTT concerning anti-bacterial immunity may be countered by strategies that optimize the immune-stimulatory capacity of the attenuated vector strains. PMID:29308303
Hesketh, Anthony J.; Maloney, Caroline; Behr, Christopher A.; Edelman, Morris C.; Glick, Richard D.; Al-Abed, Yousef; Symons, Marc; Soffer, Samuel Z.; Steinberg, Bettie M.
2015-01-01
Metastatic Ewing Sarcoma carries a poor prognosis, and novel therapeutics to prevent and treat metastatic disease are greatly needed. Recent evidence demonstrates that tumor-associated macrophages in Ewing Sarcoma are associated with more advanced disease. While some macrophage phenotypes (M1) exhibit anti-tumor activity, distinct phenotypes (M2) may contribute to malignant progression and metastasis. In this study, we show that M2 macrophages promote Ewing Sarcoma invasion and extravasation, pointing to a potential target of anti-metastatic therapy. CNI-1493 is a selective inhibitor of macrophage function and has shown to be safe in clinical trials as an anti-inflammatory agent. In a xenograft mouse model of metastatic Ewing Sarcoma, CNI-1493 treatment dramatically reduces metastatic tumor burden. Furthermore, metastases in treated animals have a less invasive morphology. We show in vitro that CNI-1493 decreases M2-stimulated Ewing Sarcoma tumor cell invasion and extravasation, offering a functional mechanism through which CNI-1493 attenuates metastasis. These data indicate that CNI-1493 may be a safe and effective adjuvant agent for the prevention and treatment of metastatic Ewing Sarcoma. PMID:26709919
Male contraceptive Adjudin is a potential anti-cancer drug.
Xie, Qian Reuben; Liu, Yewei; Shao, Jiaxiang; Yang, Jian; Liu, Tengyuan; Zhang, Tingting; Wang, Boshi; Mruk, Dolores D; Silvestrini, Bruno; Cheng, C Yan; Xia, Weiliang
2013-02-01
Adjudin, also known as AF-2364 and an analog of lonidamine (LND), is a male contraceptive acting through the induction of premature sperm depletion from the seminiferous epithelium when orally administered to adult rats, rabbits or dogs. It is also known that LND can target mitochondria and block energy metabolism in tumor cells. However, whether Adjudin exhibits any anti-cancer activity remains to be elucidated. Herein we described the anti-proliferative activity of Adjudin on cancer cells in vitro and on lung and prostate tumors inoculated in nude mice. We found that Adjudin induced apoptosis in cancer cells through a Caspase-3-dependent pathway. Further experiments revealed that Adjudin could trigger mitochondrial dysfunction in cancer cells, apparently affecting the mitochondrial mass, inducing the loss of mitochondrial membrane potential and reducing cellular ATP levels. Intraperitoneal administration of Adjudin to tumor-bearing athymic nude mice also significantly suppressed the lung and prostate tumor growth. When used in combination with cisplatin, Adjudin enhances the sensitivity to cisplatin-induced cancer cell cytotoxicity. Taken together, these findings have demonstrated that Adjudin may be a potential drug for cancer therapy. Copyright © 2012 Elsevier Inc. All rights reserved.
Targeting cancer by binding iron: Dissecting cellular signaling pathways
Lui, Goldie Y.L.; Kovacevic, Zaklina; Richardson, Vera; Merlot, Angelica M.; Kalinowski, Danuta S.; Richardson, Des R.
2015-01-01
Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer. PMID:26125440
Glaser, Rachel L.; Goldbach-Mansky, Raphaela
2009-01-01
Monogenic autoinflammatory diseases encompass a distinct and growing clinical entity of multisystem inflammatory diseases with known genetic defects in the innate immune system. The diseases present clinically with episodes of seemingly unprovoked inflammation (fever, rashes, and elevation of acute phase reactants). Understanding the genetics has led to discovery of new molecules involved in recognizing exogenous and endogenous danger signals, and the inflammatory response to these stimuli. These advances have furthered understanding of innate inflammatory pathways and spurred collaborative research in rheumatology and infectious diseases. The pivotal roles of interleukin (IL)-1β in cryopyrin-associated periodic syndromes, tumor necrosis factor (TNF) in TNF receptor-associated periodic syndrome, and links to inflammatory cytokine dysregulation in other monogenic autoinflammatory diseases have resulted in effective therapies targeting proinflammatory cytokines IL-1β and TNF and uncovered other new potential targets for anti-inflammatory therapies. PMID:18606080
D’Souza, Jimson W.; Shchaveleva, Irina; Marks, James D.; Litwin, Samuel; Robinson, Matthew K.
2014-01-01
Background Inappropriate signaling through the epidermal growth factor receptor family (EGFR1/ERBB1, ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4) of receptor tyrosine kinases leads to unregulated activation of multiple downstream signaling pathways that are linked to cancer formation and progression. In particular, ERBB3 plays a critical role in linking ERBB signaling to the phosphoinositide 3-kinase and Akt signaling pathway and increased levels of ERBB3-dependent signaling is also increasingly recognized as a mechanism for acquired resistance to ERBB-targeted therapies. Methods We had previously reported the isolation of a panel of anti-ERBB3 single-chain Fv antibodies through use of phage-display technology. In the current study scFv specific for domain I (F4) and domain III (A5) were converted into human IgG1 formats and analyzed for efficacy. Results Treatment of cells with an oligoclonal mixture of the A5/F4 IgGs appeared more effective at blocking both ligand-induced and ligand-independent signaling through ERBB3 than either single IgG alone. This correlated with improved ability to inhibit the cell growth both as a single agent and in combination with other ERBB-targeted therapies. Treatment of NCI-N87 tumor xenografts with the A5/F4 oligoclonal led to a statistically significant decrease in tumor growth rate that was further enhanced in combination with trastuzumab. Conclusion These results suggest that an oligoclonal antibody mixture may be a more effective approach to downregulate ERBB3-dependent signaling. PMID:25386657
Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy.
Schadler, Keri L; Thomas, Nicholas J; Galie, Peter A; Bhang, Dong Ha; Roby, Kerry C; Addai, Prince; Till, Jacob E; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S; Ryeom, Sandra
2016-10-04
Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.
Yang, Yi; Zhao, Hang; Jia, YanPeng; Guo, QingFa; Qu, Ying; Su, Jing; Lu, XiaoLing; Zhao, YongXiang; Qian, ZhiYong
2016-01-01
Local anti-oncogene delivery providing high local concentration of gene, increasing antitumor effect and decreasing systemic side effects is currently attracting interest in cancer therapy. In this paper, a novel local sustained anti-oncogene delivery system, PECE thermoresponsive hydrogel containing folate-poly (ester amine) (FA-PEA) polymer/DNA (tumor suppressor) complexes, is demonstrated. First, a tumor-targeted biodegradable folate-poly (ester amine) (FA-PEA) polymer based on low-molecular-weight polyethyleneimine (PEI) was synthesized and characterized, and the application for targeted gene delivery was investigated. The polymer had slight cytotoxicity and high transfection efficiency in vitro compared with PEI 25k, which indicated that FA-PEA was a potential vector for targeted gene delivery. Meanwhile, we successfully prepared a thermoresponsive PECE hydrogel composite containing FA-PEA/DNA complexes which could contain the genes and slowly release the genes into cells. We concluded the folate-poly (ester amine) (FA-PEA) polymer would be useful for targeted gene delivery, and the novel gene delivery composite based on biodegradable folate-poly (ester amine) polymer and thermosensitive PECE hydrogel showed potential for sustained gene release. PMID:26883682
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenming; Meng, Mei; Zhang, Bin
Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantlymore » suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.« less
Yin, Tinghui; Wang, Ping; Li, Jingguo; Wang, Yiru; Zheng, Bowen; Zheng, Rongqin; Cheng, Du; Shuai, Xintao
2014-07-01
Drug resistance is a big problem in systemic chemotherapy of hepatocellular carcinoma (HCC), and nanomedicines loaded with both chemotherapeutic agents (e.g. paclitaxel, PTX) and siRNA's targeting antiapoptosis genes (e.g. BCL-2) possess the advantages to simultaneously overcome the efflux pump-mediated drug resistance and antiapoptosis-related drug resistance. However, tumor-penetrating drug delivery with this type of nanomedicines is extremely difficult due to their relatively big size compared to the single drug-loaded nanomedicines. Aiming at address this problem, US-responsive nanobubbles encapsulating both anti-cancer drug paclitaxel (PTX) and siRNA (PTX-NBs/siRNA) for HCC treatment were developed by hetero-assembly of polymeric micelles and liposomes in the present study. Utilizing an external low-frequency US force imposed to the tumor site, effective tumor-penetrating codelivery of siRNA and PTX was achieved via tail vein injection of PTX-NBs/siRNA into nude mice bearing human HepG2 xerografts. Consequently, the PTX treatment-inducible antiapoptosis in HepG2 cells was effectively suppressed by the codelivered siRNA targeting an antiapoptosis gene (BCL-2 siRNA) during chemotherapy. Owing to the synergistic anti-cancer effect of two therapeutic agents, tumor growth was completely inhibited using low-dose PTX in animal study. Our results highlight the great potential of this type of US-responsive hetero-assemblies carrying both anti-cancer drug and siRNA as an effective nanomedicinal system for HCC therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cohen, Sarit; Pellach, Michal; Kam, Yossi; Grinberg, Igor; Corem-Salkmon, Enav; Rubinstein, Abraham; Margel, Shlomo
2013-03-01
Near IR (NIR) fluorescent human serum albumin (HSA) nanoparticles hold great promise as contrast agents for tumor diagnosis. HSA nanoparticles are considered to be biocompatible, non-toxic and non-immunogenic. In addition, NIR fluorescence properties of these nanoparticles are important for in vivo tumor diagnostics, with low autofluorescence and relatively deep penetration of NIR irradiation due to low absorption of biomatrices. The present study describes the synthesis of new NIR fluorescent HSA nanoparticles, by entrapment of a NIR fluorescent dye within the HSA nanoparticles, which also significantly increases the photostability of the dye. Tumor-targeting ligands such as peanut agglutinin (PNA) and anti-carcinoembryonic antigen antibodies (anti-CEA) were covalently conjugated to the NIR fluorescent albumin nanoparticles, increasing the potential fluorescent signal in tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent HSA nanoparticles was demonstrated in a chicken embryo model and a rat model. In future work we also plan to encapsulate cancer drugs such as doxorubicin within the NIR fluorescent HSA nanoparticles for both colon cancer imaging and therapy. Copyright © 2012 Elsevier B.V. All rights reserved.
Inhibition of CSF1 Receptor Improves the Anti-tumor Efficacy of Adoptive Cell Transfer Immunotherapy
Tsui, Christopher; Xu, Jingying; Robert, Lídia; Wu, Lily; Graeber, Thomas; West, Brian L.; Bollag, Gideon; Ribas, Antoni
2013-01-01
Colony stimulating factor-1 (CSF-1) recruits tumor-infiltrating myeloid cells (TIMs) that suppress tumor immunity, including M2 macrophages and myeloid derived suppressor cells (MDSC). The CSF-1 receptor (CSF-1R) is a tyrosine kinase that is targetable by small molecule inhibitors such as PLX3397. In this study, we used a syngeneic mouse model of BRAFV600E-driven melanoma to evaluate the ability of PLX3397 to improve the efficacy of adoptive T-cell therapy (ACT). In this model, we found that combined treatment produced superior anti-tumor responses compared with single treatments. In mice receiving the combined treatment, a dramatic reduction of TIMs and a skewing of MHCIIlow to MHCIIhi macrophages was observed. Further, mice receiving the combined treatment exhibited an increase in tumor-infiltrating lymphocytes (TILs) and T cells, as revealed by real-time imaging in vivo. In support of these observations, TILs from these mice released higher levels of IFN-γ. In conclusion, CSF-1R blockade with PLX3397 improved the efficacy of ACT immunotherapy by inhibiting the intratumoral accumulation of immune suppressive macrophages. PMID:24247719
Durable antitumor responses to CD47 blockade require adaptive immune stimulation
Sockolosky, Jonathan T.; Dougan, Michael; Ingram, Jessica R.; Ho, Chia Chi M.; Kauke, Monique J.; Almo, Steven C.; Ploegh, Hidde L.; Garcia, K. Christopher
2016-01-01
Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47–SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy. PMID:27091975
Fantini, Massimo; Heery, Christopher R.; Gulley, James L.; Tsang, Kwong Yok; Schlom, Jeffrey
2015-01-01
Several anti-PD1/PD-L1 monoclonal antibodies (MAb) are currently providing evidence of clinical benefit in subsets of cancer patients. The mode of action of these MAbs is to inhibit PD1 on immune cells interacting with PD-L1 on tumor cells. These MAbs are either designed or engineered to eliminate antibody-dependent cell-mediated cytotoxicity (ADCC), which, however, has been implicated as an important mechanism in several highly effective MAb-mediated cancer therapies. A fully human anti-PD-L1 MAb would potentially be able to block PD-L1/PD1 interactions and also mediate the ADCC lysis of tumor cells. MSB0010718C (designated avelumab) is a fully human IgG1 anti-PD-L1 MAb. The studies reported here demonstrate (a) the ability of avelumab to lyse a range of human tumor cells in the presence of PBMC or NK effectors; (b) IFNγ can enhance tumor cell PD-L1 expression and in some cases enhance ADCC tumor cell lysis; (c) purified NK cells are potent effectors for avelumab; (d) similar levels of avelumab-mediated ADCC lysis of tumor cells are seen using purified NK as effectors from either healthy donors or cancer patients; (e) very low levels of avelumab-mediated lysis are seen using whole PBMCs as targets; this finding complements results seen in analyses of PBMC subsets of patients receiving avelumab; and (f) the addition of IL12 to NK cells greatly enhances avelumab-mediated ADCC. These studies thus provide an additional mode of action for an anti-PD-L1 MAb and support the rationale for further studies to enhance avelumab-mediated ADCC activity. PMID:26014098
Boyerinas, Benjamin; Jochems, Caroline; Fantini, Massimo; Heery, Christopher R; Gulley, James L; Tsang, Kwong Yok; Schlom, Jeffrey
2015-10-01
Several anti-PD-1/PD-L1 monoclonal antibodies (mAb) are currently providing evidence of clinical benefit in subsets of cancer patients. The mode of action of these mAbs is to inhibit PD-1 on immune cells interacting with PD-L1 on tumor cells. These mAbs are either designed or engineered to eliminate antibody-dependent cell-mediated cytotoxicity (ADCC), which, however, has been implicated as an important mechanism in several highly effective mAb-mediated cancer therapies. A fully human anti-PD-L1 mAb would potentially be able to block PD-1/PD-L1 interactions and also mediate the ADCC lysis of tumor cells. MSB0010718C (designated avelumab) is a fully human IgG1 anti-PD-L1 mAb. The studies reported here demonstrate (i) the ability of avelumab to lyse a range of human tumor cells in the presence of PBMC or NK effectors; (ii) IFNγ can enhance tumor cell PD-L1 expression and, in some cases, enhance ADCC tumor cell lysis; (iii) purified NK cells are potent effectors for avelumab; (iv) similar levels of avelumab-mediated ADCC lysis of tumor cells are seen using purified NK as effectors from either healthy donors or cancer patients; (v) very low levels of avelumab-mediated lysis are seen using whole PBMCs as targets; this finding complements results seen in analyses of PBMC subsets of patients receiving avelumab; and (vi) the addition of IL12 to NK cells greatly enhances avelumab-mediated ADCC. These studies thus provide an additional mode of action for an anti-PD-L1 mAb and support the rationale for further studies to enhance avelumab-mediated ADCC activity. ©2015 American Association for Cancer Research.
Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies.
Angara, Kartik; Rashid, Mohammad H; Shankar, Adarsh; Ara, Roxan; Iskander, Asm; Borin, Thaiz F; Jain, Meenu; Achyut, Bhagelu R; Arbab, Ali S
2017-09-01
Glioblastoma (GBM) is one hypervascular and hypoxic tumor known among solid tumors. Antiangiogenic therapeutics (AATs) have been tested as an adjuvant to normalize blood vessels and control abnormal vasculature. Evidence of relapse exemplified in the progressive tumor growth following AAT reflects development of resistance to AATs. Here, we identified that GBM following AAT (Vatalanib) acquired an alternate mechanism to support tumor growth, called vascular mimicry (VM). We observed that Vatalanib induced VM vessels are positive for periodic acid-Schiff (PAS) matrix but devoid of any endothelium on the inner side and lined by tumor cells on the outer-side. The PAS+ matrix is positive for basal laminae (laminin) indicating vascular structures. Vatalanib treated GBM displayed various stages of VM such as initiation (mosaic), sustenance, and full-blown VM. Mature VM structures contain red blood cells (RBC) and bear semblance to the functional blood vessel-like structures, which provide all growth factors to favor tumor growth. Vatalanib treatment significantly increased VM especially in the core of the tumor, where HIF-1α was highly expressed in tumor cells. VM vessels correlate with hypoxia and are characterized by co-localized MHC-1+ tumor and HIF-1α expression. Interestingly, 20-HETE synthesis inhibitor HET0016 significantly decreased GBM tumors through decreasing VM structures both at the core and at periphery of the tumors. In summary, AAT induced resistance characterized by VM is an alternative mechanism adopted by tumors to make functional vessels by transdifferentiation of tumor cells into endothelial-like cells to supply nutrients in the event of hypoxia. AAT induced VM is a potential therapeutic target of the novel formulation of HET0016. Our present study suggests that HET0016 has a potential to target therapeutic resistance and can be combined with other antitumor agents in preclinical and clinical trials.
Epithelial Membrane Protein-2 is a Novel Therapeutic Target in Ovarian Cancer
Fu, Maoyong; Maresh, Erin L.; Soslow, Robert A.; Alavi, Mohammad; Mah, Vei; Zhou, Qin; Iasonos, Alexia; Goodglick, Lee; Gordon, Lynn K.; Braun, Jonathan; Wadehra, Madhuri
2010-01-01
Purpose The tetraspan protein epithelial membrane protein-2 (EMP2) has been shown to regulate the surface display and signaling from select integrin pairs, and it was recently identified as a prognostic biomarker in human endometrial cancer. In this study, we assessed the role of EMP2 in human ovarian cancer. Experimental Design We examined the expression of EMP2 within a population of women with ovarian cancer using tissue microarray assay technology. We evaluated the efficacy of EMP2-directed antibody therapy using a fully human recombinant bivalent antibody fragment (diabody) in vitro and ovarian cancer xenograft models in vivo. Results EMP2 was found to be highly expressed in over 70% of serous and endometrioid ovarian tumors compared to non-malignant ovarian epithelium using a human ovarian cancer tissue microarray. Using anti-EMP2 diabody, we evaluated the in vitro response of 9 human ovarian cancer cell lines with detectable EMP2 expression. Treatment of human ovarian cancer cell lines with anti-EMP2 diabodies induced cell death and retarded cell growth, and these response rates correlated with cellular EMP2 expression. We next assessed the effects of anti-EMP2 diabodies in mice bearing xenografts from the ovarian endometrioid carcinoma cell line OVCAR5. Anti-EMP2 diabodies significantly suppressed tumor growth and induced cell death in OVCAR5 xenografts. Conclusions These findings indicate that EMP2 is expressed in the majority of ovarian tumors and it may be a feasible target in vivo. PMID:20670949
Oncolytic Herpes Simplex Viral Therapy: A Stride toward Selective Targeting of Cancer Cells.
Sanchala, Dhaval S; Bhatt, Lokesh K; Prabhavalkar, Kedar S
2017-01-01
Oncolytic viral therapy, which makes use of replication-competent lytic viruses, has emerged as a promising modality to treat malignancies. It has shown meaningful outcomes in both solid tumor and hematologic malignancies. Advancements during the last decade, mainly genetic engineering of oncolytic viruses have resulted in improved specificity and efficacy of oncolytic viruses in cancer therapeutics. Oncolytic viral therapy for treating cancer with herpes simplex virus-1 has been of particular interest owing to its range of benefits like: (a) large genome and power to infiltrate in the tumor, (b) easy access to manipulation with the flexibility to insert multiple transgenes, (c) infecting majority of the malignant cell types with quick replication in the infected cells and (d) as Anti-HSV agent to terminate HSV replication. This review provides an exhaustive list of oncolytic herpes simplex virus-1 along with their genetic alterations. It also encompasses the major developments in oncolytic herpes simplex-1 viral therapy and outlines the limitations and drawbacks of oncolytic herpes simplex viral therapy.
PD-L1 Promotes Self-Renewal and Tumorigenicity of Malignant Melanoma Initiating Cells
Dang, Jianzhong; Zha, Hui; Zhang, Bingyu; Lin, Ming
2017-01-01
Recent studies have indicated that therapeutic antibodies targeting PD-L1 show remarkable efficacy in clinical trials in multiple tumors and that a melanoma cell-intrinsic PD-1: PD-L1 axis promotes tumor growth. However, few studies have shown tumor-intrinsic PD-L1 effects in malignant melanoma initiating cells (MMICs). Here, we aim to determine the possible regulatory effects of PD-L1 on MMICs. The ALDEFLUOR kit was used to identify ALDH+ MMICs. Flow cytometry was used to examine the expression of PD-L1 on ALDH+ MMICs. To determine the role of PD-L1 in MMICs self-renewal, we cultured melanoma cells with anti-PD-L1 and measured tumorsphere formation and apoptosis. In addition, the effects of anti-PD-L1 on tumorigenicity and residual ALDH+ MMICs in tumors were evaluated in vivo. We demonstrated that melanoma cell-intrinsic PD-L1 was expressed in ALDH+ MMICs. Blocking PD-L1 in melanoma cell lines impaired tumorsphere formation and induced the apoptosis of sphere cells. In addition, blocking PD-L1 inhibited tumor growth in vivo. We observed residual ALDH+ MMICs within the tumor. The results showed that blocking PD-L1 also significantly decreased the residual ALDH+ MMICs in the tumors. In conclusion, these results suggest a new mechanism underlying melanoma progression and PD-L1-targeted therapy, which is distinct from the immunomodulatory actions of PD-L1. PMID:29250533
van Wijngaarden, Jens; Snoeks, Thomas J A; van Beek, Ermond; Bloys, Henny; Kaijzel, Eric L; van Hinsbergh, Victor W M; Löwik, Clemens W G M
2010-01-08
In anti-cancer therapy, current investigations explore the possibility of two different strategies to target tumor vasculature; one aims at interfering with angiogenesis, the process involving the outgrowth of new blood vessels from pre-existing vessels, while the other directs at affecting the already established tumor vasculature. However, the majority of in vitro model systems currently available examine the process of angiogenesis, while the current focus in anti-vascular therapies moves towards exploring the benefit of targeting established vasculature as well. This urges the need for in vitro systems that are able to differentiate between the effects of compounds on angiogenesis as well as on established vasculature. To achieve this, we developed an in vitro model in which effects of compounds on different vascular targets can be studied specifically. Using this model, we examined the actions of the fumagillin derivate TNP-470, the MMP-inhibitor marimastat and the recently developed tubulin-binding agent Ang-510. We show that TNP-470 and marimastat solely inhibited angiogenesis, whereas Ang-510 potently inhibited angiogenesis and caused massive disruption of newly established vasculature. We show that the use of this in vitro model allows for specific and efficient screening of the effects of compounds on different vascular targets, which may facilitate the identification of agents with potential clinical benefit. The indicated differences in the mode of action between marimastat, TNP-470 and Ang-510 to target vasculature are illustrative for this approach. Copyright 2009 Elsevier Inc. All rights reserved.
Kim, Seungwon; Prichard, Christopher N.; Younes, Maher N.; Yazici, Yasemin D.; Jasser, Samar A.; Bekele, B. Nebiyou; Myers, Jeffrey N.
2006-01-01
Objective Anaplastic thyroid carcinoma (ATC) remains one of the most lethal known human cancers. Targeted molecular therapy with cetuximab, a monoclonal antibody against EGFR, offers new treatment potentials for patient with ATC. Cetuximab has also been reported to have synergistic effects when combined with irinotecan, a topoisomerase inhibitor. Therefore, we hypothesized that cetuximab and irinotecan would be effective in inhibiting the growth and progression of ATC in a murine orthotopic model. Design The in vitro anti-proliferative effects of cetuximab and irinotecan on ATC cell line ARO were examined. We also studied the in vivo effects of cetuximab and irinotecan on the growth, invasion, and metastasis of orthotopic ATC tumors in nude mice. The in vivo antitumor efficacy of cetuximab/irinotecan combination was also compared with that of doxorubicin. Results Cetuximab alone did not show any anti-proliferative or pro-apoptotic effect on this cell line. However, when combined with irinotecan, cetuximab potentiated the in vitro anti-proliferative and pro-apoptotic effect of irinotecan. Cetuximab, irinotecan, and cetuximab/irinotecan combination resulted in 77%, 79%, and 93% in vivo inhibition of tumor growth, respectively. Incidences of lymph node metastasis, laryngeal invasion, and tumor microvessel density were also significantly decreased in these treatment groups. Furthermore, the cetuximab/irinotecan combination was significantly more effective than doxorubicin in inhibiting the growth of orthotopic ATC xenografts. Conclusions Combination therapy with cetuximab/irinotecan inhibits the growth and progression of orthotopic ATC xenografts in nude mice. Given the lack of curative options for patients with ATC, combination therapy with cetuximab and irinotecan treatment warrants further study. PMID:16428506
Ardeshirpour, Yasaman; Chernomordik, Victor; Capala, Jacek; Hassan, Moinuddin; Zielinsky, Rafal; Griffiths, Gary; Achilefu, Samuel; Smith, Paul; Gandjbakhckhe, Amir
2013-01-01
The major goal in developing drugs targeting specific tumor receptors, such as Monoclonal AntiBodies (MAB), is to make a drug compound that targets selectively the cancer-causing biomarkers, inhibits their functionality, and/or delivers the toxin specifically to the malignant cells. Recent advances in MABs show that their efficacy depends strongly on characterization of tumor biomarkers. Therefore, one of the main tasks in cancer diagnostics and treatment is to develop non-invasive in-vivo imaging techniques for detection of cancer biomarkers and monitoring their down regulation during the treatment. Such methods can potentially result in a new imaging and treatment paradigm for cancer therapy. In this article we have reviewed fluorescence imaging approaches, including those developed in our group, to detect and monitor Human Epidermal Growth Factor 2 (HER2) receptors before and during therapy. Transition of these techniques from the bench to bedside is the ultimate goal of our project. Similar approaches can be used potentially for characterization of other cancer related cell biomarkers. PMID:22066595
AR copy number and AR signaling-directed therapies in castration-resistant prostate cancer.
Salvi, Samanta; Conteduca, Vincenza; Lolli, Cristian; Testoni, Sara; Casadio, Valentina; Zaccheroni, Andrea; Rossi, Lorena; Burgio, Salvatore Luca; Menna, Cecilia; Schepisi, Giuseppe; De Giorgi, Ugo
2017-11-22
Adaptive upregulation of androgen receptor (AR) is the most common event involved in the progression from hormone sensitive to castration-resistant prostate cancer (CRPC). AR signaling remains the main target of new AR signalling-directed therapies such as abiraterone and enzalutamide in CRPC patients. In this review, we discuss general mechanisms of resistance to AR-targeted therapies, with a focus on the role of AR copy number (CN). We reported methods and clinical applications of AR CN evaluation in tissue and liquid biopsy, thus to have a complete information regarding its role as predictive and prognostic biomarker. Outcomes of CRPC patients are reported to be highly variable as consequence of tumor heterogeneity. AR CN could contribute to patient selection and tumor monitoring in CRPC treated with new anti-cancer treatment as abiraterone and enzalutamide. Further studies to investigate AR CN effect to these agents and its potential combination with other prognostic or predictive clinical factors are necessary in the context of harmonized clinical trial design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Depleting tumor-specific Tregs at a single site eradicates disseminated tumors
Marabelle, Aurélien; Kohrt, Holbrook; Sagiv-Barfi, Idit; Ajami, Bahareh; Axtell, Robert C.; Zhou, Gang; Rajapaksa, Ranjani; Green, Michael R.; Torchia, James; Brody, Joshua; Luong, Richard; Rosenblum, Michael D.; Steinman, Lawrence; Levitsky, Hyam I.; Tse, Victor; Levy, Ronald
2013-01-01
Activation of TLR9 by direct injection of unmethylated CpG nucleotides into a tumor can induce a therapeutic immune response; however, Tregs eventually inhibit the antitumor immune response and thereby limit the power of cancer immunotherapies. In tumor-bearing mice, we found that Tregs within the tumor preferentially express the cell surface markers CTLA-4 and OX40. We show that intratumoral coinjection of anti–CTLA-4 and anti-OX40 together with CpG depleted tumor-infiltrating Tregs. This in situ immunomodulation, which was performed with low doses of antibodies in a single tumor, generated a systemic antitumor immune response that eradicated disseminated disease in mice. Further, this treatment modality was effective against established CNS lymphoma with leptomeningeal metastases, sites that are usually considered to be tumor cell sanctuaries in the context of conventional systemic therapy. These results demonstrate that antitumor immune effectors elicited by local immunomodulation can eradicate tumor cells at distant sites. We propose that, rather than using mAbs to target cancer cells systemically, mAbs could be used to target the tumor infiltrative immune cells locally, thereby eliciting a systemic immune response. PMID:23728179
van der Steen, Sophieke C H A; Raavé, René; Langerak, Sjoerd; van Houdt, Laurens; van Duijnhoven, Sander M J; van Lith, Sanne A M; Massuger, Leon F A G; Daamen, Willeke F; Leenders, William P; van Kuppevelt, Toin H
2017-04-01
Epithelial ovarian cancer is characterized by a high mortality rate and is in need for novel therapeutic avenues to improve patient outcome. The tumor's extracellular matrix ("stroma") offers new possibilities for targeted drug-delivery. Recently we identified highly sulfated chondroitin sulfate (CS-E) as a component abundantly present in the ovarian cancer extracellular matrix, and as a novel target for anti-cancer therapy. Here, we report on the functionalization of drug-loaded lyophilisomes (albumin-based biocapsules) to specifically target the stroma of ovarian carcinomas with the potential to eliminate cancer cells. To achieve specific targeting, we conjugated single chain antibodies reactive with CS-E to lyophilisomes using a two-step approach comprising sortase-mediated ligation and bioorthogonal click chemistry. Antibody-functionalized lyophilisomes specifically targeted the ovarian cancer stroma through CS-E. In a CS-E rich micro-environment in vitro lyophilisomes induced cell death by extracellular release of doxorubicin which localized to the nucleus. Immunohistochemistry identified CS-E rich stroma in a variety of solid tumors other than ovarian cancer, including breast, lung and colon cancer indicating the potential versatility of matrix therapy and the use of highly sulfated chondroitin sulfates in cancer stroma as a micro-environmental hook for targeted drug delivery. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Novel treatments for inflammatory bowel disease
Lee, Hyo Sun; Park, Soo-Kyung; Park, Dong Il
2018-01-01
Increased understanding of the immunopathology of inflammatory bowel disease (IBD) has led to the development of targeted therapies and has unlocked a new era in IBD treatment. The development of treatment options aimed at a variety of pathological mechanisms offers new hope for customized therapies. Beyond anti-tumor necrosis factor agents, selective lymphocyte trafficking inhibitors have been proposed as potent drugs for IBD. Among these, vedolizumab has recently been approved for both Crohn’s disease and ulcerative colitis. Numerous other agents for IBD treatment are currently under investigation, including Janus kinase inhibitors, anti-mucosal vascular addressin cell adhesion molecule-1 agents, an anti-SMAD7 antisense oligonucleotide, an anti-interleukin-12/23 monoclonal antibody, and a sphingosine-1-phosphate receptor-1 selective agonist. These agents will likely expand the treatment options available for the management of IBD patients in the future. In this review, we discuss the efficacy and safety of novel agents currently under investigation in IBD clinical trials. PMID:29223139
Park, Steven I; Shenoi, Jaideep; Pagel, John M; Hamlin, Don K; Wilbur, D Scott; Orgun, Nural; Kenoyer, Aimee L; Frayo, Shani; Axtman, Amanda; Bäck, Tom; Lin, Yukang; Fisher, Darrell R; Gopal, Ajay K; Green, Damian J; Press, Oliver W
2010-11-18
Radioimmunotherapy (RIT) with α-emitting radionuclides is an attractive approach for the treatment of minimal residual disease because the short path lengths and high energies of α-particles produce optimal cytotoxicity at small target sites while minimizing damage to surrounding normal tissues. Pretargeted RIT (PRIT) using antibody-streptavidin (Ab-SA) constructs and radiolabeled biotin allows rapid, specific localization of radioactivity at tumor sites, making it an optimal method to target α-emitters with short half-lives, such as bismuth-213 (²¹³Bi). Athymic mice bearing Ramos lymphoma xenografts received anti-CD20 1F5(scFv)(4)SA fusion protein (FP), followed by a dendrimeric clearing agent and [²¹³Bi]DOTA-biotin. After 90 minutes, tumor uptake for 1F5(scFv)₄SA was 16.5% ± 7.0% injected dose per gram compared with 2.3% ± .9% injected dose per gram for the control FP. Mice treated with anti-CD20 PRIT and 600 μ Ci [²¹³Bi]DOTA-biotin exhibited marked tumor growth delays compared with controls (mean tumor volume .01 ± .02 vs. 203.38 ± 83.03 mm³ after 19 days, respectively). The median survival for the 1F5(scFv)₄SA group was 90 days compared with 23 days for the control FP (P < .0001). Treatment was well tolerated, with no treatment-related mortalities. This study demonstrates the favorable biodistribution profile and excellent therapeutic efficacy attainable with ²¹³Bi-labeled anti-CD20 PRIT.
Sato, Yasufumi
2010-06-01
Angiogenesis or neovascularization, the formation of neo-vessels, is a physiological phenomenon endued in vasculature, but is involved in various pathological conditions. Angiogenesis is required for tumor growth and metastasis, and thus constitutes an important target for the control of tumor progression. Indeed, the recent development of bevacizumab, a neutralizing anti-VEGF monoclonal antibody as the first anti-angiogenic drug, legalized the clinical merit of anti-angiogenesis in cancers. Thereafter, various drugs targeting VEGF-mediated signals have been developed to control tumor angiogenesis. Thus, anti-angiogenic drugs are now recognized in the clinic as a major step forward for the treatment of cancers. This review focuses on the current status of antiangiogenesis treatment in cancers.