Sample records for targeted anticancer agents

  1. Renal toxicity of anticancer agents targeting HER2 and EGFR.

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Porta, Camillo

    2015-12-01

    EGFR and HER2 are found overexpressed and/or activated in many different human malignancies (e.g. breast and colon cancer), and a number of drugs specifically targeting these two tyrosine kinases have been developed over the years as anticancer agents. In the present review, the renal safety profile of presently available agents targeting either HER2 or EGFR will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, even though renal toxicity is not so common with these agents, it may nevertheless happen, especially when these agents are combined with traditional chemotherapeutic agents. As a whole, kidney impairment or dialysis should not be regarded per se as reasons not to administer or to stop an active anti-HER or anti-EGFR anticancer treatment, especially given the possibility of significantly improving the life expectancy of many cancer patients with the use of these agents.

  2. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

    PubMed

    Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

    2017-08-18

    The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Small mitochondria-targeting molecules as anti-cancer agents

    PubMed Central

    Wang, Feng; Ogasawara, Marcia A.; Huang, Peng

    2009-01-01

    Alterations in mitochondrial structure and functions have long been observed in cancer cells. Targeting mitochondria as a cancer therapeutic strategy has gained momentum in the recent years. The signaling pathways that govern mitochondrial function, apoptosis and molecules that affect mitochondrial integrity and cell viability have been important topics of the recent review in the literature. In this article, we first briefly summarize the rationale and biological basis for developing mitochondrial-targeted compounds as potential anticancer agents, and then provide key examples of small molecules that either directly impact mitochondria or functionally affect the metabolic alterations in cancer cells with mitochondrial dysfunction. The main focus is on the small molecular weight compounds with potential applications in cancer treatment. We also summarize information on the drug developmental stages of the key mitochondria-targeted compounds and their clinical trial status. The advantages and potential shortcomings of targeting the mitochondria for cancer treatment are also discussed. PMID:19995573

  4. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents.

    PubMed

    Galluzzi, Lorenzo; Buqué, Aitziber; Kepp, Oliver; Zitvogel, Laurence; Kroemer, Guido

    2015-12-14

    The tremendous clinical success of checkpoint blockers illustrates the potential of reestablishing latent immunosurveillance for cancer therapy. Although largely neglected in the clinical practice, accumulating evidence indicates that the efficacy of conventional and targeted anticancer agents does not only involve direct cytostatic/cytotoxic effects, but also relies on the (re)activation of tumor-targeting immune responses. Chemotherapy can promote such responses by increasing the immunogenicity of malignant cells, or by inhibiting immunosuppressive circuitries that are established by developing neoplasms. These immunological "side" effects of chemotherapy are desirable, and their in-depth comprehension will facilitate the design of novel combinatorial regimens with improved clinical efficacy. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Renal toxicity of anticancer agents targeting vascular endothelial growth factor (VEGF) and its receptors (VEGFRs).

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Liguigli, Wanda; Porta, Camillo

    2017-04-01

    Since angiogenesis plays a key role in tumor growth, progression and metastasization, anti-vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) agents have been developed over the years as anticancer agents, and have changed, for the better, the natural history of a number of cancer types. In the present review, the renal safety profile of presently available agents targeting either VEGF or VEGFRs will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, renal toxicity (especially, but not exclusively, hypertension and proteinuria) are quite commonly observed with these agents, and may be increased by the concomitant use of cytoxic chemotherapeutics. Despite all the above, kidney impairment or dialysis must not be regarded di per se as reasons not to administer or to stop an active anticancer treatment, especially considering the possibility of a significant survival improvement in many cancer patients treated with these agents.

  6. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases

    PubMed Central

    Jain, Chetan Kumar; Majumder, Hemanta Kumar; Roychoudhury, Susanta

    2017-01-01

    DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs. PMID:28503091

  7. A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes

    PubMed Central

    Yang, Xuewei; Yang, Shuang; Chai, Hongyu; Yang, Zhaogang; Lee, Robert J.; Liao, Weiwei; Teng, Lesheng

    2015-01-01

    We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation. PMID:26309138

  8. A screen to identify drug resistant variants to target-directed anti-cancer agents

    PubMed Central

    Azam, Mohammad; Raz, Tal; Nardi, Valentina; Opitz, Sarah L.

    2003-01-01

    The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec), a specific inhibitor of the Chronic Myeloid Leukemia (CML)-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair. PMID:14615817

  9. Quest for Efficacious Next-Generation Taxoid Anticancer Agents and Their Tumor-Targeted Delivery

    PubMed Central

    2018-01-01

    Paclitaxel and docetaxel are among the most widely used chemotherapeutic drugs against various types of cancer. However, these drugs cause undesirable side effects as well as drug resistance. Therefore, it is essential to develop next-generation taxoid anticancer agents with better pharmacological properties and improved activity especially against drug-resistant and metastatic cancers. The SAR studies by the authors have led to the development of numerous highly potent novel second- and third-generation taxoids with systematic modifications at the C-2, C-10, and C-3′ positions. The third-generation taxoids showed virtually no difference in potency against drug-resistant and drug-sensitive cell lines. Some of the next-generation taxoids also exhibited excellent potency against cancer stem cells. This account summarizes concisely investigations into taxoids over 25 years based on a strong quest for the discovery and development of efficacious next-generation taxoids. Discussed herein are SAR studies on different types of taxoids, a common pharmacophore proposal for microtubule-stabilizing anticancer agents and its interesting history, the identification of the paclitaxel binding site and its bioactive conformation, characteristics of the next-generation taxoids in cancer cell biology, including new aspects of their mechanism of action, and the highly efficacious tumor-targeted drug delivery of potent next-generation taxoids. PMID:29468872

  10. Recent Progress of Marine Polypeptides as Anticancer Agents

    PubMed

    Zheng, Lanhong; Xua, Yixin; Lin, Xiukun; Yuan, Zhixin; Liu, Minghua; Cao, Shousong; Zhang, Fuming; Linhardt, Robert J

    2018-04-29

    Marine environment constitutes an almost infinite resource for novel anticancer drugs discovery. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer peptides in the treatment of human cancer. Marine peptides represent a new opportunity to obtain lead compounds in biomedical field, particularly for cancer therapy. Providing an insight of the recent progress of patented marine peptides and presenting information about the structures and mechanistic mode of anticancer activities of these marine peptides. We reviewed recent progress on the patented anticancer peptides from marine organisms according to their targets on different signal pathways. This work focuses on relevant recent patents (2010-2018) that entail the anticancer activity with associated mechanism and related molecular diversity of marine peptides. The related cellular signaling pathways for novel peptides that induce apoptosis and affect tubulin-microtubule equilibrium, angiogenesis and kinase activity that are related to the anticancer and related pharmacological properties are also discussed. The recent patents (2010-2018) of marine peptides with anticancer activity were reviewed, and the anticancer activity of marine peptides with associated mechanism and related molecular diversity of marine peptides were also discussed. Marine peptides possess chemical diversity and displays potent anticancer activity via targeting different signal pathways. Some of the marine peptides are promising to be developed as novel anticancer agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Marine Mollusk‐Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance

    PubMed Central

    Lefranc, Florence; Carbone, Marianna; Mollo, Ernesto; Gavagnin, Margherita; Betancourt, Tania; Dasari, Ramesh

    2016-01-01

    Abstract The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as “chemotaxonomic markers” for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk‐derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen‐containing compounds. The “promise” of a mollusk‐derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk‐derived anticancer agents and solutions to their procurement in quantity. PMID:27925266

  12. Curcumin: a promising agent targeting cancer stem cells.

    PubMed

    Zang, Shufei; Liu, Tao; Shi, Junping; Qiao, Liang

    2014-01-01

    Cancer stem cells are a subset of cells that are responsible for cancer initiation and relapse. They are generally resistant to the current anticancer agents. Successful anticancer therapy must consist of approaches that can target not only the differentiated cancer cells, but also cancer stem cells. Emerging evidence suggested that the dietary agent curcumin exerted its anti-cancer activities via targeting cancer stem cells of various origins such as those of colorectal cancer, pancreatic cancer, breast cancer, brain cancer, and head and neck cancer. In order to enhance the therapeutic potential of curcumin, this agent has been modified or used in combination with other agents in the experimental therapy for many cancers. In this mini-review, we discussed the effect of curcumin and its derivatives in eliminating cancer stem cells and the possible underlying mechanisms.

  13. Promising Targets in Anti-cancer Drug Development: Recent Updates.

    PubMed

    Kumar, Bhupinder; Singh, Sandeep; Skvortsova, Ira; Kumar, Vinod

    2017-01-01

    Cancer is a multifactorial disease and its genesis and progression are extremely complex. The biggest problem in the anticancer drug development is acquiring of multidrug resistance and relapse. Classical chemotherapeutics directly target the DNA of the cell, while the contemporary anticancer drugs involve molecular-targeted therapy such as targeting the proteins possessing abnormal expression inside the cancer cells. Conventional strategies for the complete eradication of the cancer cells proved ineffective. Targeted chemotherapy was successful in certain malignancies however, the effectiveness has often been limited by drug resistance and side effects on normal tissues and cells. Since last few years, many promising drug targets have been identified for the effective treatment of cancer. The current review article describes some of these promising anticancer targets that include kinases, tubulin, cancer stem cells, monoclonal antibodies and vascular targeting agents. In addition, promising drug candidates under various phases of clinical trials are also described. Multi-acting drugs that simultaneously target different cancer cell signaling pathways may facilitate the process of effective anti-cancer drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Nitric oxide: cancer target or anticancer agent?

    PubMed

    Mocellin, Simone

    2009-03-01

    Despite the improved understanding of nitric oxide (NO) biology and the large amount of preclinical experiments testing its role in cancer development and progression, it is still debated whether NO should be considered a potential anticancer agent or instead a carcinogen. The complexity of NO effects within a cell and the variability of the final biological outcome depending upon NO levels makes it highly challenging to determine the therapeutic value of interfering with the activity of this intriguing gaseous messenger. This uncertainty has so far halted the clinical implementation of NO-based therapeutics in the field of oncology. Accordingly, only an in depth knowledge of the mechanisms leading to experimental tumor regression or progression in response to NO will allow us to exploit this molecule to fight cancer.

  15. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  16. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  17. p53-Mdm2 interaction inhibitors as novel nongenotoxic anticancer agents.

    PubMed

    Nayak, Surendra Kumar; Khatik, Gopal L; Narang, Rakesh; Monga, Vikramdeep; Chopra, Harish Kumar

    2017-06-23

    Cancer is a major global health problem with high mortality rate. Most of clinically used anticancer agents induce apoptosis through genotoxic stress at various stages of cell cycle and activation of p53. Acting as a tumor suppressor p53 plays a vital role in preventing tumor development. Tumor suppressor function of p53 is effectively antagonized by its direct interaction with murine double minute 2 (Mdm2) proteins via multiple mechanisms. Thus, p53-Mdm2 interaction has been found to be an important target for the development of novel anticancer agents. Currently, nutlin, spirooxindole, isoquilinone and piperidinone analogues inhibiting p53-Mdm2 interaction are found to be promising in the treatment of cancer. The current review focused to scrutinize the structural aspects of p53-Mdm2 interaction inhibitors. The present study provides a detailed collection of published information on different classes of inhibitors of p53-Mdm2 interaction as potential anticancer agents. The review highlighted the structural aspects of various reported p53-Mdm2 inhibitor for optimization. In the last few years, different classes of inhibitors of p53-Mdm2 have been designed and developed, and seven such compounds are being evaluated in clinical trials as new anticancer drugs. Further, to explore the role of p53 protein as a potential target for anticancer drug development, in this review, the mechanism of Mdm2 mediated inactivation of p53 and recent developments on p53-Mdm2 interactions inhibitors are discussed. Agents designed to block the p53-Mdm2 interaction may have a therapeutic potential for treatment of a subset of human cancers retaining wild-type p53. We review herein the recent advances in the design and development of potent small molecules as p53-Mdm2 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    PubMed

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Douziech-Eyrolles, Laurence; Marchais, Hervé; Hervé, Katel; Munnier, Emilie; Soucé, Martin; Linassier, Claude; Dubois, Pierre; Chourpa, Igor

    2007-01-01

    During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug. PMID:18203422

  20. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment

    DTIC Science & Technology

    2007-12-01

    used in detection, diagnosis, and treatment of cancer . When loaded with chemotherapeutic agents, nanoparticle delivery to cancerous tissues...Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment PRINCIPAL INVESTIGATOR: Colleen Feltmate, M.D. CONTRACTING ORGANIZATION...5a. CONTRACT NUMBER Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment 5b. GRANT NUMBER

  1. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, N.; Kumar, S.; Marlowe, T.

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS

  2. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.

    PubMed

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  3. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE PAGES

    Yadav, N.; Kumar, S.; Marlowe, T.; ...

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS

  4. Hyperglycaemia Induced by Novel Anticancer Agents: An Undesirable Complication or a Potential Therapeutic Opportunity?

    PubMed

    Shah, Rashmi R

    2017-03-01

    Signalling pathways involving protein kinase, insulin-like growth factor 1, insulin receptors and the phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) system are critical in promoting oncogenesis. The use of anticancer agents that inhibit these pathways frequently results in hyperglycaemia, an on-target effect of these drugs. Hyperglycaemia induced by these agents denotes optimal inhibition of the desired pharmacological target. As hyperglycaemia can be treated successfully and effectively with metformin, managing this complication by reducing the dose of or discontinuing the anticancer drug may be counterproductive, especially if it is otherwise effective and clinically tolerated. The use of metformin to treat hyperglycaemia induced by anticancer drugs provides a valuable therapeutic opportunity of potentiating their clinical anticancer effects. Although evidence from randomised controlled trials is awaited, extensive preclinical evidence and clinical observational studies suggest that metformin has anticancer properties that improve overall survival in patients with diabetes and a variety of cancers. Metformin has also been reported to reverse resistance to epidermal growth factor receptor (EGFR)-inhibiting tyrosine kinase inhibitors. This review summarises briefly the role of the above signalling pathways in oncogenesis, the causal association between inhibition of these pathways and hyperglycaemia, and the effect of metformin on clinical outcomes resulting from its anticancer properties. The evidence reviewed herein, albeit almost exclusively from observational studies, provides support for a greater use of metformin not only in patients with cancer and diabetes or drug-induced hyperglycaemia but also potentially as an anticancer drug. However, prospective randomised controlled studies are needed in all these settings to better assess the effect on clinical outcomes of adding metformin to ongoing anticancer therapy.

  5. Anticancer agents derived from natural cinnamic acids.

    PubMed

    Su, Ping; Shi, Yaling; Wang, Jinfeng; Shen, Xiuxiu; Zhang, Jie

    2015-01-01

    Cancer is the most dangerous disease that causes deaths all over the world. Natural products have afforded a rich source of drugs in a number of therapeutic fields including anticancer agents. Many significant drugs have been derived from natural sources by structural optimization of natural products. Cinnamic acid has gained great interest due to its antiproliferative, antioxidant, antiangiogenic and antitumorigenic potency. Currently it has been observed that cinnamic acid and its analogs such as caffeic acid, sinapic acid, ferulic acid, and isoferulic acid display various pharmacological activities, such as immunomodulation, anti-inflammation, anticancer and antioxidant. They have served to be the major sources of potential leading anticancer compounds. In this review, we focus on the anticancer potency of cinnamic acid derivatives and novel strategies to design these derivatives. We hope this review will be useful for researchers who are interested in developing anticancer agents.

  6. Carnosol: a promising anti-cancer and anti-inflammatory agent.

    PubMed

    Johnson, Jeremy J

    2011-06-01

    The Mediterranean diet and more specifically certain meats, fruits, vegetables, and olive oil found in certain parts of the Mediterranean region have been associated with a decreased cardiovascular and diabetes risk. More recently, several population based studies have observed with these lifestyle choices have reported an overall reduced risk for several cancers. One study in particular observed an inverse relationship between consumption of Mediterranean herbs such as rosemary, sage, parsley, and oregano with lung cancer. In light of these findings there is a need to explore and identify the anti-cancer properties of these medicinal herbs and to identify the phytochemicals therein. One agent in particular, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NFκB), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals. This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Taxane anticancer agents: a patent perspective

    PubMed Central

    Ojima, Iwao; Lichtenthal, Brendan; Lee, Siyeon; Wang, Changwei; Wang, Xin

    2016-01-01

    Introduction Paclitaxel and docetaxel were two epoch-making anticancer drugs and have been successfully used in chemotherapy for a variety of cancer types. In 2010, a new taxane, cabazitaxel, was approved by FDA for use in combination with prednisone for the treatment of metastatic hormone-refractory prostate cancer. Albumin-bound paclitaxel (nab™-paclitaxel; abraxane) nanodroplet formulation was another notable invention (FDA approval 2005 for refractory, metastatic, or relapsed breast cancer). Abraxane in combination with gemcitabine for the treatment of pancreatic cancer was approved by FDA in 2013. Accordingly, there have been a huge number of patent applications dealing with taxane anticancer agents in the last five years. Thus, it is a good time to review the progress in this area and find the next wave for new developments. Area covered This review article covers the patent literature from 2010 to early 2015 on various aspects of taxane-based chemotherapies and drug developments. Expert opinion Three FDA-approved taxane anticancer drugs will continue to expand their therapeutic applications, especially through drug combinations and new formulations. Inspired by the success of abraxane, new nano-formulations are emerging. Highly potent new-generation taxanes will play a key role in the development of efficacious tumor-targeted drug delivery systems. PMID:26651178

  8. Recent Development of Anticancer Therapeutics Targeting Akt

    PubMed Central

    Morrow, John K.; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J.; Mash, Eugene A.; Powis, Garth; Zhang, Shuxing

    2013-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches. PMID:21110830

  9. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents

    PubMed Central

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  10. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    PubMed

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  11. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways.

    PubMed

    Rengarajan, Thamaraiselvan; Yaacob, Nik Soriani

    2016-10-15

    Epidemiological studies show that consumption of diets rich in fruits and vegetables is associated with lower risks of cancer. This evidence has kindled interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds is fisetin (3,7,3,4-tetrahydroxyflavone), a flavonol that is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. Fisetin has been shown to inhibit or retard the growth of various cancer cells in culture and implanted tumors in vivo. Fisetin targets many components of intracellular signaling pathways including regulators of cell survival and apoptosis, tumor angiogenic and metastatic switches by modulating a distinct set of upstream kinases, transcription factors and their regulators. Current evidence supports the idea that fisetin is a promising agent for cancer treatment. This review summarizes reported anticancer effects of fisetin, and re-emphasizes its potential therapeutic role in the treatment of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Targeting Key Transporters in Tumor Glycolysis as a Novel Anticancer Strategy.

    PubMed

    Shi, Yunli; Liu, Shengnan; Ahmad, Shabir; Gao, Qingzhi

    2018-05-22

    Increased glycolysis has been one of the metabolic characteristics known as the Warburg effect. The functional and therapeutic importance of the Warburg effect in targeted therapy is scientifically recognized and the glucose metabolic pathway has become a desirable target of anticancer strategies. Glucose transporters (GLUTs) play an important role in cancer glycolysis to sustain cancer cell proliferation, metastasis and survival. Utilizing the knowledge of differential expression and biological functions of GLUTs offers us the possibility of designing and delivering chemotherapeutics toward targeted tumor tissues for improved cancer selectivity. Inhibition of glucose uptake or glycolysis may effectively kill hypoxic cancer cells. Facilitative drug uptake via active transportation provides the potential opportunity to circumvent the drug resistance in chemotherapy. GLUTs as the hallmarks and biotargets of cancer metabolism enable the design and development of novel targeted theranostic agents. In this updated review, we examine the current scenario of the GLUTs as strategic targets in cancer and the unique concepts for discovery and development of GLUTs-targeted anticancer agents. We highlight the recent progresses on structural biology and underlying mechanism studies of GLUTs, with a brief introduction to the computational approaches in GLUT-mediated drug transport and tumor targeting. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. The prince and the pauper. A tale of anticancer targeted agents.

    PubMed

    Dueñas-González, Alfonso; García-López, Patricia; Herrera, Luis Alonso; Medina-Franco, Jose Luis; González-Fierro, Aurora; Candelaria, Myrna

    2008-10-23

    Cancer rates are set to increase at an alarming rate, from 10 million new cases globally in 2000 to 15 million in 2020. Regarding the pharmacological treatment of cancer, we currently are in the interphase of two treatment eras. The so-called pregenomic therapy which names the traditional cancer drugs, mainly cytotoxic drug types, and post-genomic era-type drugs referring to rationally-based designed. Although there are successful examples of this newer drug discovery approach, most target-specific agents only provide small gains in symptom control and/or survival, whereas others have consistently failed in the clinical testing. There is however, a characteristic shared by these agents: -their high cost-. This is expected as drug discovery and development is generally carried out within the commercial rather than the academic realm. Given the extraordinarily high therapeutic drug discovery-associated costs and risks, it is highly unlikely that any single public-sector research group will see a novel chemical "probe" become a "drug". An alternative drug development strategy is the exploitation of established drugs that have already been approved for treatment of non-cancerous diseases and whose cancer target has already been discovered. This strategy is also denominated drug repositioning, drug repurposing, or indication switch. Although traditionally development of these drugs was unlikely to be pursued by Big Pharma due to their limited commercial value, biopharmaceutical companies attempting to increase productivity at present are pursuing drug repositioning. More and more companies are scanning the existing pharmacopoeia for repositioning candidates, and the number of repositioning success stories is increasing. Here we provide noteworthy examples of known drugs whose potential anticancer activities have been highlighted, to encourage further research on these known drugs as a means to foster their translation into clinical trials utilizing the more limited

  14. Management of pulmonary toxicity associated with targeted anticancer therapies.

    PubMed

    Teuwen, Laure-Anne; Van den Mooter, Tom; Dirix, Luc

    2015-01-01

    Targeted anticancer therapies act by interfering with defined molecular entities and/or biologic pathways. Because of their more specific mechanism of action, adverse events (AEs) on healthy tissues are intended to be minimal, resulting in a different toxicity profile from that observed with conventional cytotoxic chemotherapy. Pulmonary AEs are rare but potentially life-threatening and it is, therefore, critical to recognize early on and manage appropriately. In this review, we aim to offer an overview of both more frequent and rare pulmonary AEs caused by targeted anticancer therapies and discuss possible treatment algorithms. Anti-vascular endothelial growth factor, anti-human epidermal growth factor receptor and anti-CD20 therapy will be reviewed, as well as immune checkpoint inhibitors, anaplastic lymphoma kinase inhibitors and mammalian target of rapamycin inhibitors. Novel agents used in the treatment of cancer have specific side-effects, the result of allergic reactions, on-target and off-target effects. Clinical syndromes associated with pulmonary toxicity vary from bronchospasms, hypersensitivity reactions, pneumonitis, acute respiratory distress, lung bleeding, pleural effusion to pneumothorax. Knowledge of risk factors, a high index of suspicion and a complete diagnostic work-up are essential for limiting the risk of these events becoming life threatening. The development of treatment algorithms is extremely helpful in managing these events. It is probable that these toxicities will be even more frequent with the introduction of combination therapies with the obvious challenge of discerning the responsible agent.

  15. Ocular toxicities associated with targeted anticancer agents: an analysis of clinical data with management suggestions

    PubMed Central

    Fu, Chen; Gombos, Dan S; Lee, Jared; George, Goldy C; Hess, Kenneth; Whyte, Andrew; Hong, David S

    2017-01-01

    Ocular toxicities are among the most common adverse events resulting from targeted anticancer agents and are becoming increasingly relevant in the management of patients on these agents. The purpose of this study is to provide a framework for management of these challenging toxicities based on objective data from FDA labels and from analysis of the literature. All oncologic drugs approved by the FDA up to March 14, 2015, were screened for inclusion. A total of 16 drugs (12 small-molecule drugs and 4 monoclonal antibodies) were analyzed for ocular toxicity profiles based on evidence of ocular toxicity. Trials cited by FDA labels were retrieved, and a combination search in Medline, Google Scholar, the Cochrane database, and the NIH Clinical Trials Database was conducted. The majority of ocular toxicities reported were low severity, and the most common were conjunctivitis and “visual disturbances.” However, severe events including incidents of blindness, retinal vascular occlusion, and corneal ulceration occurred. The frequency and severity at which ocular toxicities occur merits a more multidisciplinary approach to managing patients with agents that are known to cause ocular issues. We suggest a standardized methodology for referral and surveillance of patients who are potentially at risk of severe ocular toxicity. PMID:28938590

  16. Investigating the cellular fate of a DNA-targeted platinum-based anticancer agent by orthogonal double-click chemistry

    PubMed Central

    Qiao, Xin; Ding, Song; Liu, Fang; Kucera, Gregory L.

    2014-01-01

    Confocal fluorescence microscopy was used to study a platinum-based anticancer agent in intact NCI-H460 lung cancer cells. Orthogonal copper-catalyzed azide–alkyne cycloaddition (click) reactions were used to simultaneously determine the cell-cycle-specific localization of the azide-functionalized platinum–acridine agent 1 and monitor its effects on nucleic acid metabolism. Copper-catalyzed postlabeling showed advantages over copper-free click chemistry using a dibenzocyclooctyne (DIBO)-modified reporter dye, which produced high background levels in microscopic images and failed to efficiently label platinum adducts in chromatin. Compound 1 was successfully labeled with the fluorophore DIBO to yield 1* (characterized by in-line high-performance liquid chromatography/electrospray mass spectrometry). 1 and 1* show a high degree of colocalization in the confocal images, but the ability of 1* to target the (compacted) chromatin was markedly reduced, most likely owing to the steric bulk introduced by the DIBO tag. Nuclear platinum levels correlated inversely with the ability of the cells to synthesize DNA and cause cell cycle arrest, as confirmed by bivariate flow cytometry analysis. In addition, a decrease in the level of cellular transcription, shrinkage of the nucleolar regions, and redistribution of RNA into the cytosol were observed. Postlabeling in conjunction with colocalization experiments is a useful tool for studying the cell killing mechanism of this type of DNA-targeted agent. PMID:24407462

  17. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment

    DTIC Science & Technology

    2007-12-01

    diagnosis, and treatment of cancer . When loaded with chemotherapeutic agents, nanoparticle delivery to cancerous tissues relative to healthy tissues may be...Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment PRINCIPAL INVESTIGATOR: Colleen Feltmate, M.D...Anticancer Drugs in Ovarian Cancer Treatment 5b. GRANT NUMBER W81XWH-06-1-0177 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Colleen

  18. Pharmacological management of anticancer agent extravasation: A single institutional guideline.

    PubMed

    Kimmel, Jaime; Fleming, Patrick; Cuellar, Sandra; Anderson, Jennifer; Haaf, Christina Mactal

    2018-03-01

    Although the risk of extravasation of a chemotherapy (anticancer) medication is low, the complications associated with these events can have a significant impact on morbidity and health care costs. Institutions that administer anticancer agents should ideally have a current guideline on the proper management of the inadvertent administration of these toxic medications into tissues surrounding blood vessels. It is imperative that the health care team involved in administering drugs used to treat cancer be educated on the risk factors, preventative strategies and treatment of anticancer extravasations, as well as practice safe and proper administration techniques. Anticancer agents are generally divided into classes based on their ability to cause tissue damage. The review of current published guidelines and available literature reveals a lack of consensus on how these medications should be classified. In addition, many recently approved drugs for the treatment of cancer may lack data to support their classification and management of extravasation events. The treatment of the majority of extravasations of anticancer agents involves nonpharmacological measures, potentially in the ambulatory care setting. Antidotes are available for the extravasation of a minority of vesicant agents in order to mitigate tissue damage. Due to the limited data and lack of consensus in published guidelines, a working group was established to put forth an institutional guideline on the management of anticancer extravasations.

  19. Novel epigallocatechin gallate analogs as potential anticancer agents: a patent review (2009 – present)

    PubMed Central

    Landis-Piwowar, Kristin; Chen, Di; Foldes, Robert; Chan, Tak-Hang; Dou, Qing Ping

    2013-01-01

    Introduction Over the past three years numerous patents and patent applications have been published relating to scientific advances in the use of the green tea polyphenol epigallocatechin gallate (EGCG) (the most abundant, and bioactive compound in green tea) and its analogs as anticancer agents. EGCG affects multiple molecular targets involved in cancer cell proliferation and survival; however, polyphenolic catechins, such as EGCG, generally exhibit poor oral bioavailability. Since the anticancer activity of polyphenols largely depends on their susceptibility to biotransformation reactions, numerous EGCG derivatives, analogs and prodrugs have been designed to improve the stability, bioavailability and anticancer potency of the native compound. Areas covered This review focuses on the applications of EGCG and its analogs, derivatives and prodrugs in the prevention and treatment of human cancers. A comprehensive description of patents related to EGCG and its derivatives, analogs and prodrugs and their uses as anticancer agents is included. Expert opinion EGCG targets multiple essential survival proteins and pathways in human cancer cells. Because it is unstable physiologically, numerous alterations to the EGCG molecule have been patented, either to improve the integrity of the native compound or to generate a more stable yet similarly efficacious molecule. EGCG and its derivatives, analogs and prodrugs could be developed into future drugs for chemoprevention, chemosensitization, radiosensitization and/or cancer interception. PMID:23230990

  20. Advances in systemic delivery of anti-cancer agents for the treatment of metastatic cancer.

    PubMed

    Grundy, Megan; Coussios, Constantin; Carlisle, Robert

    2016-07-01

    The successful treatment of metastatic cancer is refractory to strategies employed to treat confined, primary lesions, such as surgical resection and radiation therapy, and thus must be addressed by systemic delivery of anti-cancer agents. Conventional systemically administered chemotherapeutics are often ineffective and come with severe dose-limiting toxicities. This review focuses on the recent developments in systemic therapy for metastatic cancer. Firstly, the strategies employed to improve the efficacy of conventional chemotherapeutics by 'passively' and 'actively' targeting them to tumors are discussed. Secondly, recent advances in the use of biologics to better target cancer and to instigate anti-tumor immunity are reviewed. Under the label of 'biologics', antibody-therapies, T cell engaging therapies, oncolytic virotherapies and cell-based therapies are examined and evaluated. Improving specificity of action, and engaging the immune system appear to be key goals in the development of novel or reformulated anti-cancer agents for the treatment of metastatic cancer. One of the largest areas of opportunity in this field will be the identification of robust predictive biomarkers for use in conjunction with these agents. Treatment regimens that combine an agent to elicit an immune response (such as an oncolytic virus), and an agent to potentiate/mediate that immune response (such as immune checkpoint inhibitors) are predicted to be more effective than treatment with either agent alone.

  1. Matrix metalloproteinase inhibitors as anticancer agents.

    PubMed

    Konstantinopoulos, Panagiotis A; Karamouzis, Michalis V; Papatsoris, Athanasios G; Papavassiliou, Athanasios G

    2008-01-01

    The important role of matrix metalloproteinases (MMPs) in the process of carcinogenesis is well established. However, despite very promising activity in a plethora of preclinical models, MMP inhibitors (MMPIs) failed to demonstrate a statistically significant survival advantage in advanced stage clinical trials in most human malignancies. Herein, we review the implication of MMPs in carcinogenesis, outline the pharmacology and current status of various MMPIs as anticancer agents and discuss the etiologies for the discrepancy between their preclinical and clinical evaluation. Finally, strategies for effective incorporation of MMPIs in current anticancer therapies are proposed.

  2. Anti-cancer agents counteracting tumor glycolysis

    PubMed Central

    Granchi, Carlotta

    2012-01-01

    Can we consider cancer as a “metabolic disease”? Tumors are the result of a metabolic selection, forming tissues composed of heterogeneous cells that generally express an overactive metabolism as a common feature. In fact, cancer cells have to deal with increased needs for both energy and biosynthetic intermediates, in order to support their growth and invasiveness. However, their high proliferation rate often generates regions that are not sufficiently oxygenated. Therefore, their carbohydrate metabolism has to rely mostly on a glycolytic process that is uncoupled from oxidative phosphorylation. This metabolic switch, also known as the “Warburg Effect”, constitutes a fundamental adaptation of the tumor cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumor glycolysis may constitute an attractive target for cancer therapy. This approach has often raised concerns that anti-glycolytic agents may cause serious side effects on normal cells. Actually, the key for a selective action against cancer cells can be found in their hyperbolic addiction to glycolysis, which may be exploited to generate new anti-cancer drugs showing minimal toxicity. In fact, there is growing evidence that supports many glycolytic enzymes and transporters as suitable candidate targets for cancer therapy. Herein we review some of the most relevant anti-glycolytic agents that have been investigated so far for the treatment of cancer. PMID:22684868

  3. Xanthones from Mangosteen Extracts as Natural Chemopreventive Agents: Potential Anticancer Drugs

    PubMed Central

    Shan, T.; Ma, Q.; Guo, K.; Liu, J.; Li, W.; Wang, F.; Wu, E.

    2011-01-01

    Despite decades of research, the treatment and management of malignant tumors still remain a formidable challenge for public health. New strategies for cancer treatment are being developed, and one of the most promising treatment strategies involves the application of chemopreventive agents. The search for novel and effective cancer chemopreventive agents has led to the identification of various naturally occurring compounds. Xanthones, from the pericarp, whole fruit, heartwood, and leaf of mangosteen (Garcinia mangostana Linn., GML), are known to possess a wide spectrum of pharmacologic properties, including anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities. The potential chemopreventive and chemotherapeutic activities of xanthones have been demonstrated in different stages of carcinogenesis (initiation, promotion, and progression) and are known to control cell division and growth, apoptosis, inflammation, and metastasis. Multiple lines of evidence from numerous in vitro and in vivo studies have confirmed that xanthones inhibit proliferation of a wide range of human tumor cell types by modulating various targets and signaling transduction pathways. Here we provide a concise and comprehensive review of preclinical data and assess the observed anticancer effects of xanthones, supporting its remarkable potential as an anticancer agent. PMID:21902651

  4. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    PubMed

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  5. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  6. Helicases as Prospective Targets for Anti-Cancer Therapy

    PubMed Central

    Gupta, Rigu; Brosh, Robert M.

    2008-01-01

    It has been proposed that selective inactivation of a DNA repair pathway may enhance anti-cancer therapies that eliminate cancerous cells through the cytotoxic effects of DNA damaging agents or radiation. Given the unique and critically important roles of DNA helicases in the DNA damage response, DNA repair, and maintenance of genomic stability, a number of strategies currently being explored or in use to combat cancer may be either mediated or enhanced through the modulation of helicase function. The focus of this review will be to examine the roles of helicases in DNA repair that might be suitably targeted by cancer therapeutic approaches. Treatment of cancers with anti-cancer drugs such as small molecule compounds that modulate helicase expression or function is a viable approach to selectively kill cancer cells through the inactivation of helicase-dependent DNA repair pathways, particularly those associated with DNA recombination, replication restart, and cell cycle checkpoint. PMID:18473724

  7. Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents.

    PubMed

    Huang, Wei; Wu, Hualian; Li, Xiaoling; Chen, Tianfeng

    2016-08-19

    Nanorods have been utilized in targeted therapy, controlled release, molecular diagnosis, and molecule imaging owing to their large surface area and optical, magnetic, electronic, and structural properties. However, low stability and complex synthetic methods have substantially limited the application of tellurium nanorods for use as antioxidant and anticancer agents. Herein, a facile one-pot synthesis of functionalized tellurium nanorods (PTNRs) by using a hydrothermal synthetic system with a polysaccharide-protein complex (PTR), which was extracted from Pleurotus tuber-regium, as a capping agent is described. PTNRs remained stable in water and in phosphate-buffered saline and exhibited high hemocompatibility. Interestingly, these nanorods possessed strong antioxidant activity for scavenging 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(.+) ) and 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) free radicals and demonstrated novel anticancer activities. However, these nanorods exhibited low cytotoxicity toward normal human cells. In addition, the PTNRs effectively induced a decrease in the mitochondrial membrane potential in a dose-dependent manner, which indicated that mitochondrial dysfunction might play an important role in PTNR-induced apoptosis. Therefore, this study provides a one-pot strategy for the facile synthesis of tellurium nanorods with novel antioxidant and anticancer application potentials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polypharmacology of Approved Anticancer Drugs.

    PubMed

    Amelio, Ivano; Lisitsa, Andrey; Knight, Richard A; Melino, Gerry; Antonov, Alexey V

    2017-01-01

    The major drug discovery efforts in oncology have been concentrated on the development of selective molecules that are supposed to act specifically on one anticancer mechanism by modulating a single or several closely related drug targets. However, a bird's eye view on data from multiple available bioassays implies that most approved anticancer agents do, in fact, target many more proteins with different functions. Here we will review and systematize currently available information on the targets of several anticancer drugs along with revision of their potential mechanisms of action. Polypharmacology of the current antineoplastic agents suggests that drug clinical efficacy in oncology can be achieved only via modulation of multiple cellular mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  10. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review.

    PubMed

    Gan, Ren-You; Li, Hua-Bin; Sui, Zhong-Quan; Corke, Harold

    2018-04-13

    Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.

  11. The Impact of Skin Problems on the Quality of Life in Patients Treated with Anticancer Agents: A Cross-Sectional Study.

    PubMed

    Lee, Jaewon; Lim, Jin; Park, Jong Seo; Kim, Miso; Kim, Tae-Yong; Kim, Tae Min; Lee, Kyung-Hun; Keam, Bhumsuk; Han, Sae-Won; Mun, Je-Ho; Cho, Kwang Hyun; Jo, Seong Jin

    2017-12-14

    Patients treated with anticancer agents often experience a variety of treatment-related skin problems, which can impair their quality of life. In this cross-sectional study, Dermatology Life Quality Index (DLQI) and clinical information were evaluated in patients under active anticancer treatment using a questionnaire survey and their medical records review. Of 375 evaluated subjects with anticancer therapy, 136 (36.27%) and 114 (30.40%) were treated for breast cancer and colorectal cancer, respectively. We found that women, breast cancer, targeted agent use, and longer duration of anticancer therapy were associated with higher dermatology-specific QoL distraction. In addition, itching, dry skin, easy bruising, pigmentation, papulopustules on face, periungual inflammation, nail changes, palmoplantar lesions were associated with significantly higher DLQI scores. Periungual inflammation and palmoplantar lesions scored the highest DLQI. We believe our findings can be helpful to clinicians in counseling and managing the patients undergoing anticancer therapy.

  12. Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: A novel platform for targeting of anticancer agent.

    PubMed

    Ghorbani, Marjan; Hamishehkar, Hamed

    2017-12-01

    The aim of this study was to design and develop a new pH-responsive nano-platform for controlled and targeted delivery of anticancer drugs. Engineering of pH-responsive nanocarriers was prepared via decoration of gold nanoparticles (NPs) by thiolated (methoxy-poly(ethylene glycol)-b-poly((2-dimethylamino) ethyl methacrylate-co-itaconic acid) (mPEG-b-p(DMAEMA-co-IA) copolymer and fully characterized by various techniques and subsequently used for loading and targeted delivery of anticancer agent, methotrexate (MTX). By conjugation of MTX with the amino groups of polymeric shell of gold NPs (with the high loading capacity of 31%), since MTX is also the target ligand of folate receptors, the targeted performance of NPs examined through the cell uptake study. The results indicated that MTX-loaded NPs showed 1.3 times more cell internalization than MTX free NPs. Cell cytotoxicity studies pointed out ~1.5 and 3 times higher cell cytotoxicity after 24h for MTX-loaded nanoparticles than MTX in MTT assay and cell cycle arrest experiments, respectively. Additionally, mPEG was used as the outer shell of NPs which caused the long-term dispersibility of the NPs even under high ionic strength. The in-vitro pH-triggered drug release of MTX showed that MTX released more than three times in simulated cancerous tissue (40°C, pH5.3) than physiologic condition (37°C, pH7.4) during 48h. The results of various experiments determined that the developed smart nanocarrier proposed as a promising nanocarrier for active and passive targeting of anionic anti-cancer agents such as MTX. Copyright © 2017. Published by Elsevier B.V.

  13. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs.

    PubMed

    Marks, Paul A

    2010-09-01

    Histone deacetylase (HDAC) inhibitors are being developed as a new, targeted class of anticancer drugs. This review focuses on the mechanisms of action of the HDAC inhibitors, which selectively induce cancer cell death. There are 11 zinc-dependent HDACs in humans and the biological roles of these lysine deacetylases are not completely understood. It is clear that these different HDACs are not redundant in their activity. This review focuses on the mechanisms by which HDAC inhibitors can induce transformed cell growth arrest and cell death, inhibit cell mobility and have antiangiogenesis activity. There are more than a dozen HDAC inhibitors, including hydroxamates, cyclic peptides, benzamides and fatty acids, in various stages of clinical trials and many more compounds in preclinical development. The chemically different HDAC inhibitors may target different HDACs. There are extensive preclinical studies with transformed cells in culture and tumor-bearing animal models, as well as limited clinical studies reported to date, which indicate that HDAC inhibitors will be most useful when used in combination with cytotoxic or other targeted anticancer agents.

  14. Nano-Phytosome: A Developing Platform for Herbal Anti-Cancer Agents in Cancer Therapy.

    PubMed

    Babazadeh, Afshin; Zeinali, Mahdi; Hamishehkar, Hamed

    2018-01-01

    Cancer is one of the main causes of death in the world. It has not yet been cured in an efficient manner and has remained a major challenge for current chemotherapy. This review summarizes the latest investigations regarding the possible application of phytosome complexes for cancer therapy, their formulation techniques, and mechanism of transportation through phytosome. Nanotechnology opened a pioneer field in cancer therapy by modifying significant properties of drugs and their carriers. Nanotechnology utilizes various nanostructures to transport anti-cancer agents to the site of action. The greater stability of nanophytosomes is due to formation of chemical links between phospholipid molecules and phytoactive agents. Among several new drug delivery systems, phytosomes depict an advanced technology to deliver phytoactive compounds to the target site of action, and at present, several phytosome formulations are in clinical use. Potential anti-cancer properties of phytoconstituents are enhanced by phytosomal formulations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  16. Severe cutaneous adverse reactions induced by targeted anticancer therapies and immunotherapies

    PubMed Central

    Chen, Chun-Bing; Wu, Ming-Ying; Ng, Chau Yee; Lu, Chun-Wei; Wu, Jennifer; Kao, Pei-Han; Yang, Chan-Keng; Peng, Meng-Ting; Huang, Chen-Yang; Chang, Wen-Cheng; Hui, Rosaline Chung-Yee; Yang, Chih-Hsun; Yang, Shun-Fa; Chung, Wen-Hung; Su, Shih-Chi

    2018-01-01

    With the increasing use of targeted anticancer drugs and immunotherapies, there have been a substantial number of reports concerning life-threatening severe cutaneous adverse reactions (SCARs), including Stevens–Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug rash with eosinophilia and systemic symptoms, drug-induced hypersensitivity syndrome, and acute generalized exanthematous pustulosis. Although the potential risks and characteristics for targeted anticancer agent- and immunotherapy-induced SCAR were not well understood, these serious adverse reactions usually result in morbidity and sequela. As a treatment guideline for this devastating condition is still unavailable, prompt withdrawal of causative drugs is believed to be a priority of patient management. In this review, we outline distinct types of SCARs caused by targeted anticancer therapies and immunotherapies. Also, we discuss the clinical course, latency, concomitant medication, tolerability of rechallenge or alternatives, tumor response, and mortality associated with these devastating conditions. Imatinib, vemurafenib, and rituximab were the top three offending medications that most commonly caused SJS/TEN, while EGFR inhibitors were the group of drugs that most frequently induced SJS/TEN. For drug rash with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome and acute generalized exanthematous pustulosis, imatinib was also the most common offending drug. Additionally, we delineated 10 SCAR cases related to innovative immunotherapies, including PD1 and CTLA4 inhibitors. There was a wide range of latency periods: 5.5–91 days (median). Only eight of 16 reported patients with SCAR showed clinical responses. Targeted anticancer drugs and immunotherapies can lead to lethal SCAR (14 deceased patients were identified as suffering from SJS/TEN). The mortality rate of TEN was high: up to 52.4%. The information compiled herein will serve as a solid foundation to formulate

  17. Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs

    PubMed Central

    2013-01-01

    A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP–NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy. PMID:23663277

  18. Platinum-based anticancer agents: innovative design strategies and biological perspectives.

    PubMed

    Ho, Yee-Ping; Au-Yeung, Steve C F; To, Kenneth K W

    2003-09-01

    The impact of cisplatin on cancer chemotherapy cannot be denied. Over the past 20 years, much effort has been dedicated to discover new platinum-based anticancer agents that are superior to cisplatin or its analogue, carboplatin. Most structural modifications are based on changing one or both of the ligand types coordinated to platinum. Altering the leaving group can influence tissue and intracellular distribution of the drug, whereas the carrier ligand usually determines the structure of adducts formed with DNA. DNA-Pt adducts produced by cisplatin and many of its classical analogues are almost identical, and would explain their similar patterns of tumor sensitivity and susceptibility to resistance. Recently some highly innovative design strategies have emerged, aimed at overcoming platinum resistance and/or to introduce novel mechanisms of antitumor action. Platinum compounds bearing the 1,2-diaminocyclohexane carrier ligand; and those of multinuclear Pt complexes giving rise to radically different DNA-Pt adducts, have resulted in novel anticancer agents capable of circumventing cisplatin resistance. Other strategies have focused on integrating biologically active ligands with platinum moieties intended to selectively localizing the anticancer properties. With the rapid advance in molecular biology, combined with innovation, it is possible new Pt-based anticancer agents will materialize in the near future. Copyright 2003 Wiley Periodicals, Inc.

  19. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents

    PubMed Central

    Dinarvand, R; Sepehri, N; Manoochehri, S; Rouhani, H; Atyabi, F

    2011-01-01

    The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA), a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects. PMID:21720501

  20. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    PubMed

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.

  1. Quinazoline derivatives as potential anticancer agents: a patent review (2007 - 2010).

    PubMed

    Marzaro, Giovanni; Guiotto, Adriano; Chilin, Adriana

    2012-03-01

    Due to the increase in knowledge about cancer pathways, there is a growing interest in finding novel potential drugs. Quinazoline is one of the most widespread scaffolds amongst bioactive compounds. A number of patents and papers appear in the literature regarding the discovery and development of novel promising quinazoline compounds for cancer chemotherapy. Although there is a progressive decrease in the number of patents filed, there is an increasing number of biochemical targets for quinazoline compounds. This paper provides a comprehensive review of the quinazolines patented in 2007 - 2010 as potential anticancer agents. Information from articles published in international peer-reviewed journals was also included, to give a more exhaustive overview. From about 1995 to 2006, the anticancer quinazolines panorama has been dominated by the 4-anilinoquinazolines as tyrosine kinase inhibitors. The extensive researches conducted in this period could have caused the progressive reduction in the ability to file novel patents as shown in the 2007 - 2010 period. However, the growing knowledge of cancer-related pathways has recently highlighted some novel potential targets for therapy, with quinazolines receiving increasing attention. This is well demonstrated by the number of different targets of the patents considered in this review. The structural heterogeneity in the patented compounds makes it difficult to derive general pharmacophores and make comparisons among claimed compounds. On the other hand, the identification of multi-target compounds seems a reliable goal. Thus, it is reasonable that quinazoline compounds will be studied and developed for multi-target therapies.

  2. An expanded portfolio of survival metrics for assessing anticancer agents.

    PubMed

    Karweit, Jennifer; Kotapati, Srividya; Wagner, Samuel; Shaw, James W; Wolfe, Steffan W; Abernethy, Amy P

    2017-01-01

    With the introduction of more effective anticancer agents that prolong survival, there is a need for new methods to define the clinical value of treatments. The objective of this preliminary qualitative and quantitative analysis was to assess the utility of an expanded portfolio of survival metrics to differentiate the value of anticancer agents. A literature review was conducted of phase 3 trial data, reported in regulatory submissions within the last 10 years of agents for 6 metastatic cancers (breast cancer, colorectal cancer [CRC], melanoma, non-small cell lung cancer [NSCLC], prostate cancer [PC], and renal cell cancer [RCC]). A new, simplified cost-value analysis tool was applied using survival outcomes and total drug costs. Metrics included median overall survival (OS), mean OS, 1-year survival rate, and number needed to treat (NNT) to avoid 1 death at 1 year. Survival results were compiled and compared both within and across trials by tumor type. Total drug costs were calculated by multiplying each agent's cost per month (from October/November 2013, based on the database Price Rx/Medi-Span) by duration of therapy. Relative clinical value for each agent was not consistent across survival outcomes. In 3 tumor types, both the highest improvement in median OS and the highest improvement in mean OS occurred with the same anticancer agent (ipilimumab with melanoma, pemetrexed with NSCLC, and sunitinib with RCC); the highest improvement in the 1-year survival rate and the lowest NNT occurred together with the same anticancer agent in 5 tumor types (bevacizumab with CRC, ipilimumab with melanoma, erlotinib with NSCLC, abiraterone with PC, and temsirolimus with RCC). In the cost-value analysis, agents were inconsistent and achieved a high relative value with some survival outcomes, but not others. This analysis suggests that any 1 metric may not completely characterize the expected survival benefit of all patients. The cost-value analysis tool may be applied to

  3. Current concepts for the combined treatment modality of ionizing radiation with anticancer agents.

    PubMed

    Oehler, Christoph; Dickinson, Daniel J; Broggini-Tenzer, Angela; Hofstetter, Barbara; Hollenstein, Andreas; Riesterer, Oliver; Vuong, Van; Pruschy, Martin

    2007-01-01

    In current applied radiobiology, there exists a tremendous effort in basic and translational research to identify novel treatment modalities combining ionizing radiation with anticancer agents. This is mainly due to the highly improved molecular understanding of intrinsic radioresistance and the profiling of cellular stress responses to irradiation during recent years. Ionizing radiation not only damages DNA but also affects multiple cellular components that induce a multi-layered stress response. The treatment responses can be restricted to the individual cell level but might also be part of an intercellular stress communication network. Both DNA damage-induced signaling (which results in cell cycle arrest and induction of the DNA-repair machinery) and also ionizing radiation-induced signal transduction cascades, which are generated at cellular sites distant from and independent of DNA-damage, represent interesting targets for anticancer treatment modalities to sensitize for ionizing radiation. Due to the lack of molecular knowledge classic radiobiology assembled the cellular and tissue responses into four groups (4 R's of radiotherapy) which describe biological factors influencing the treatment response to fractionated radiotherapy. These classic 4 R's are Repair, Reassortment, Repopulation and Reoxygenation. With the tremendous progress in molecular oncology we now begin to understand theses factors on the molecular level. At the same time this classification may guide modern molecular radiobiologists to identify novel pharmaceuticals and antisignaling agents which can modulate the treatment response to irradiation. In this review we describe current approaches to sensitize tumor cells with novel anticancer agents along the lines of these 4 R's.

  4. Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2

    PubMed Central

    Fedier, A; Ruefenacht, U B; Schwarz, V A; Haller, U; Fink, D

    2002-01-01

    A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers. British Journal of Cancer (2002) 87, 1027–1033. doi:10.1038/sj.bjc.6600599 www.bjcancer.com © 2002 Cancer Research UK PMID:12434296

  5. Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents.

    PubMed

    Qin, Hua-Li; Leng, Jing; Youssif, Bahaa G M; Amjad, Muhammad Wahab; Raja, Maria Abdul Ghafoor; Hussain, Muhammad Ajaz; Hussain, Zahid; Kazmi, Syeda Naveed; Bukhari, Syed Nasir Abbas

    2017-09-01

    The incidence of cancer can be decreased by chemoprevention using either natural or synthetic agents. Apart from synthetic compounds, numerous natural products have exhibited promising potential to inhibit carcinogenesis in vivo. In this study, α, β-unsaturated carbonyl-based anticancer compounds were used as starting materials to synthesize new oxime analogs. The findings from the antiproliferative assay using seven different human cancer cell lines provided a clear picture of structure-activity relationship. The oxime analogs namely 7a and 8a showed strong antiproliferative activity against the cell lines. The mechanistic effects of compounds on EGFR-TK kinases and tubulin polymerization and BRAF V 600E were investigated. In addition, the efficacy of compounds in reversing the efflux-mediated resistance developed by cancer cells was also studied. The compounds 5a and 6a displayed potent activity on various targets such as BRAF V 600E and EGFR-TK kinases and also exhibited strong antiproliferative activity against different cell lines hence showing potential of multifunctional anticancer agents. © 2017 John Wiley & Sons A/S.

  6. Lysosomotropic properties of weakly basic anticancer agents promote cancer cell selectivity in vitro.

    PubMed

    Ndolo, Rosemary A; Luan, Yepeng; Duan, Shaofeng; Forrest, M Laird; Krise, Jeffrey P

    2012-01-01

    Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC(50) values of the inhibitors in normal fibroblasts to the IC(50) values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity.

  7. Lysosomotropic Properties of Weakly Basic Anticancer Agents Promote Cancer Cell Selectivity In Vitro

    PubMed Central

    Ndolo, Rosemary A.; Luan, Yepeng; Duan, Shaofeng; Forrest, M. Laird; Krise, Jeffrey P.

    2012-01-01

    Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC50 values of the inhibitors in normal fibroblasts to the IC50 values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity. PMID:23145164

  8. Inhibition of protein N-myristoylation: a therapeutic protocol in developing anticancer agents.

    PubMed

    Das, U; Kumar, S; Dimmock, J R; Sharma, R K

    2012-07-01

    N-myristoyltransferase (NMT) is an essential eukaryotic enzyme which catalyzes the transfer of the myristoyl group to the terminal glycine residue of a number of proteins including those involved in signal transduction and apoptotic pathways. Myristoylation is crucial for the cellular proliferation process and is required for the growth and development in a number of organisms including many human pathogens and viruses. Targeting the myristoylation process thus has emerged as a novel therapeutic strategy for anticancer drug design. The expression/activity of NMT is considerably elevated in a number of cancers originating in the colon, stomach, gallbladder, brain and breast and attenuation of NMT levels has been shown to induce apoptosis in cancerous cell lines and reduce tumor volume in murine xenograft models for cancer. A focus of current therapeutic interventions in novel cancer treatments is therefore directed at developing specific NMT inhibitors. The inhibition of the myristoyl lipidation process with respect to cancer drug development lies in the fact that many proteins involved in oncogenesis such as src and various kinases require myristoylation to perform their cellular functions. Inhibiting NMT functions to control malignancy is a novel approach in the area of anticancer drug design and there are rapidly expanding discoveries of synthetic NMT inhibitors as potential chemotherapeutic agents to be employed in the warfare against cancer. The current review focuses on developments of various chemical NMT inhibitors with potential roles as anticancer agents.

  9. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action.

    PubMed

    Wong, Yin Kwan; Xu, Chengchao; Kalesh, Karunakaran A; He, Yingke; Lin, Qingsong; Wong, W S Fred; Shen, Han-Ming; Wang, Jigang

    2017-11-01

    Artemisinin and its derivatives (collectively termed as artemisinins) are among the most important and effective antimalarial drugs, with proven safety and efficacy in clinical use. Beyond their antimalarial effects, artemisinins have also been shown to possess selective anticancer properties, demonstrating cytotoxic effects against a wide range of cancer types both in vitro and in vivo. These effects appear to be mediated by artemisinin-induced changes in multiple signaling pathways, interfering simultaneously with multiple hallmarks of cancer. Great strides have been taken to characterize these pathways and to reveal their anticancer mechanisms of action of artemisinin. Moreover, encouraging data have also been obtained from a limited number of clinical trials to support their anticancer property. However, there are several key gaps in knowledge that continue to serve as significant barriers to the repurposing of artemisinins as effective anticancer agents. This review focuses on important and emerging aspects of this field, highlighting breakthroughs in unresolved questions as well as novel techniques and approaches that have been taken in recent studies. We discuss the mechanism of artemisinin activation in cancer, novel and significant findings with regards to artemisinin target proteins and pathways, new understandings in artemisinin-induced cell death mechanisms, as well as the practical issues of repurposing artemisinin. We believe these will be important topics in realizing the potential of artemisinin and its derivatives as safe and potent anticancer agents. © 2017 Wiley Periodicals, Inc.

  10. Oral anticancer agent medication adherence by outpatients.

    PubMed

    Kimura, Michio; Usami, Eiseki; Iwai, Mina; Nakao, Toshiya; Yoshimura, Tomoaki; Mori, Hiromi; Sugiyama, Tadashi; Teramachi, Hitomi

    2014-11-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21-85 years) and 73 years (range, 30-90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3-3,585 days) and 219 days (24-3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4-5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence.

  11. Therapeutic strategies with oral fluoropyrimidine anticancer agent, S-1 against oral cancer.

    PubMed

    Harada, Koji; Ferdous, Tarannum; Ueyama, Yoshiya

    2017-08-01

    Oral cancer has been recognized as a tumor with low sensitivity to anticancer agents. However, introduction of S-1, an oral cancer agent is improving treatment outcome for patients with oral cancer. In addition, S-1, as a main drug for oral cancer treatment in Japan can be easily available for outpatients. In fact, S-1 exerts high therapeutic effects with acceptable side effects. Moreover, combined chemotherapy with S-1 shows higher efficacy than S-1 alone, and combined chemo-radiotherapy with S-1 exerts remarkable therapeutic effects. Furthermore, we should consider the combined therapy of S-1 and molecular targeting agents right now as these combinations were reportedly useful for oral cancer treatment. Here, we describe our findings related to S-1 that were obtained experimentally and clinically, and favorable therapeutic strategies with S-1 against oral cancer with bibliographic considerations.

  12. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    PubMed

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  13. Synthesis and cytotoxic evaluation of novel symmetrical taspine derivatives as anticancer agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Sicen; He, Langchon

    2011-07-01

    It has been demonstrated that taspine derivatives act as anticancer agents, thus we designed and synthesized a novel class of symmetrical biphenyl derivatives. We evaluated the cytotoxicity and antitumor activity of biphenyls against five human tumor and normal cell lines. The results indicated that the majority of the compounds exhibited anticancer activity equivalent to or greater than the positive control. Compounds (11) and (12) demonstrated the most potent cytotoxic activity with IC₅₀ values between 19.41 µM and 29.27 µM. The potent antiproliferative capabilities of these compounds against ECV304 human transformed endothelial cells indicated that these biphenyls could potentially serve as antiangiogenic agents. We also reviewed the relationship between structure and activity based on the experimental results. Our findings provide a good starting point for further development of symmetrical biphenyl derivatives as potential novel anticancer agents.

  14. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    PubMed Central

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  15. Anticancer Pyrroloquinazoline LBL1 Targets Nuclear Lamins.

    PubMed

    Li, Bingbing X; Chen, Jingjin; Chao, Bo; David, Larry L; Xiao, Xiangshu

    2018-05-18

    Target identification of bioactive compounds is critical for understanding their mechanism of action. We previously discovered a novel pyrroloquinazoline compound LBL1 with significant anticancer activity. However, its molecular targets remain to be established. Herein, we developed a clickable photoaffinity probe based on LBL1. Using extensive chemical, biochemical, and cellular studies with this probe and LBL1, we found that LBL1 targets nuclear lamins, which are type V intermediate filament (IF) proteins. Further studies showed that LBL1 binds to the coiled-coil domain of lamin A. These results revealed that IF proteins can also be targeted with appropriate small molecules besides two other cytoskeletal proteins actin filaments and microtubules, providing a novel avenue to investigate lamin biology and a novel strategy to develop distinct anticancer therapies.

  16. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed

    Gomes, Nelson G M; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-06-19

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  17. Adverse effects of anticancer agents that target the VEGF pathway.

    PubMed

    Chen, Helen X; Cleck, Jessica N

    2009-08-01

    Antiangiogenesis agents that target the VEGF/VEGF receptor pathway have become an important part of standard therapy in multiple cancer indications. With expanded clinical experience with this class of agents has come the increasing recognition of the diverse adverse effects related to disturbance of VEGF-dependent physiological functions and homeostasis in the cardiovascular and renal systems, as well as wound healing and tissue repair. Although most adverse effects of VEGF inhibitors are modest and manageable, some are associated with serious and life-threatening consequences, particularly in high-risk patients and in certain clinical settings. This Review examines the toxicity profiles of anti-VEGF antibodies and small-molecule inhibitors. The potential mechanisms of the adverse effects, risk factors, and the implications for selection of patients and management are discussed.

  18. Integrating virtual screening and biochemical experimental approach to identify potential anti-cancer agents from drug databank.

    PubMed

    Deka, Suman Jyoti; Roy, Ashalata; Manna, Debasis; Trivedi, Vishal

    2018-06-01

    Chemical libraries constitute a reservoir of pharmacophoric molecules to identify potent anti-cancer agents. Virtual screening of heterocyclic compound library in conjugation with the agonist-competition assay, toxicity-carcinogenicity analysis, and string-based structural searches enabled us to identify several drugs as potential anti-cancer agents targeting protein kinase C (PKC) as a target. Molecular modeling study indicates that Cinnarizine fits well within the PKC C2 domain and exhibits extensive interaction with the protein residues. Molecular dynamics simulation of PKC-Cinnarizine complex at different temperatures (300, 325, 350, 375, and 400[Formula: see text]K) confirms that Cinnarizine fits nicely into the C2 domain and forms a stable complex. The drug Cinnarizine was found to bind PKC with a dissociation constant Kd of [Formula: see text]M. The breast cancer cells stimulated with Cinnarizine causes translocation of PKC-[Formula: see text] to the plasma membrane as revealed by immunoblotting and immunofluorescence studies. Cinnarizine also dose dependently reduced the viability of MDAMB-231 and MCF-7 breast cancer cells with an IC[Formula: see text] of [Formula: see text] and [Formula: see text]g/mL, respectively. It is due to the disturbance of cell cycle of breast cancer cells with reduction of S-phase and accumulation of cells in G1-phase. It disturbs mitochondrial membrane potentials to release cytochrome C into the cytosol and activates caspase-3 to induce apoptosis in cancer cells. The cell death was due to induction of apoptosis involving mitochondrial pathway. Hence, the current study has assigned an additional role to Cinnarizine as an activator of PKC and potentials of the approach to identify new molecules for anti-cancer therapy. Thus, in silico screening along with biochemical experimentation is a robust approach to assign additional roles to the drugs present in the databank for anti-cancer therapy.

  19. Applications of Venom Proteins as Potential Anticancer agents.

    PubMed

    Ejaz, Samina; Hashmi, Fatima Bashir; Malik, Waqas Nazir; Ashraf, Muhammad; Nasim, Faiz Ul-Hassan; Iqbal, Muhammad

    2018-06-13

    Venoms, the secretions of venomous animals, are conventionally thought to be the source of toxic substances though the views about venoms in the recent era have been changed. Venoms are the proven source of many biologically and pharmacologically important useful molecules. Bioactive components present in different venoms are mainly proteins and peptides either enzymatic or non-enzymatic which have tremendous therapeutic potential and are being used for the treatment of variety of diseases including cancer. Many venoms proteins and peptides have been reported as potential anticancer agents. Venom proteins kill cancer cells through a variety of mechanisms which induce apoptosis and ultimately lead to cell death. Therefore, the understanding regarding sources and classification of venoms, biological role of venomous proteins, their anticancer potential and mechanisms to suppress/kill cancer cells needs to be addressed. The present review is an attempt to highlight the reported work and develop strategies to answer the key questions regarding the use of venomous proteins as therapeutic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. The Anticancer Agent Chaetocin Is a Competitive Substrate and Inhibitor of Thioredoxin Reductase

    PubMed Central

    Tibodeau, Jennifer D.; Benson, Linda M.; Isham, Crescent R.; Owen, Whyte G.

    2009-01-01

    Abstract We recently reported that the antineoplastic thiodioxopiperazine natural product chaetocin potently induces cellular oxidative stress, thus selectively killing cancer cells. In pursuit of underlying molecular mechanisms, we now report that chaetocin is a competitive and selective substrate for the oxidative stress mitigation enzyme thioredoxin reductase-1 (TrxR1) with lower Km than the TrxR1 native substrate thioredoxin (Trx; chaetocin Km = 4.6 ± 0.6 μM, Trx Km = 104.7 ± 26 μM), thereby attenuating reduction of the critical downstream ROS remediation substrate Trx at achieved intracellular concentrations. Consistent with a role for TrxR1 targeting in the anticancer effects of chaetocin, overexpression of the TrxR1 downstream effector Trx in HeLa cells conferred resistance to chaetocin-induced, but not to doxorubicin-induced, cytotoxicity. As the TrxR/Trx pathway is of central importance in limiting cellular reactive oxygen species (ROS)—and as chaetocin exerts its selective anticancer effects via ROS imposition—the inhibition of TrxR1 by chaetocin has potential to explain its selective anticancer effects. These observations have important implications not just with regard to the mechanism of action and clinical development of chaetocin and related thiodioxopiperazines, but also with regard to the utility of molecular targets within the thioredoxin reductase/thioredoxin pathway in the development of novel candidate antineoplastic agents. Antioxid. Redox Signal. 11, 1097–1106. PMID:18999987

  1. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy.

    PubMed

    Ganapathy-Kanniappan, S; Vali, M; Kunjithapatham, R; Buijs, M; Syed, L H; Rao, P P; Ota, S; Kwak, B K; Loffroy, R; Geschwind, J F

    2010-08-01

    The pyruvate analog, 3-bromopyruvate, is an alkylating agent and a potent inhibitor of glycolysis. This antiglycolytic property of 3-bromopyruvate has recently been exploited to target cancer cells, as most tumors depend on glycolysis for their energy requirements. The anticancer effect of 3-bromopyruvate is achieved by depleting intracellular energy (ATP) resulting in tumor cell death. In this review, we will discuss the principal mechanism of action and primary targets of 3-bromopyruvate, and report the impressive antitumor effects of 3-bromopyruvate in multiple animal tumor models. We describe that the primary mechanism of 3-bromopyruvate is via preferential alkylation of GAPDH and that 3-bromopyruvate mediated cell death is linked to generation of free radicals. Research in our laboratory also revealed that 3-bromopyruvate induces endoplasmic reticulum stress, inhibits global protein synthesis further contributing to cancer cell death. Therefore, these and other studies reveal the tremendous potential of 3-bromopyruvate as an anticancer agent.

  2. Resveratrol as an anti-cancer agent: A review.

    PubMed

    Rauf, Abdur; Imran, Muhammad; Butt, Masood Sadiq; Nadeem, Muhammad; Peters, Dennis G; Mubarak, Mohammad S

    2018-06-13

    Owing to their antimicrobial, antioxidant, and anti-inflammatory activity, grapes (Vitis vinifera L.) are the archetypal paradigms of fruits used not only for nutritional purposes, but also for exclusive therapeutics. Grapes are a prominent and promising source of phytochemicals, especially resveratrol, a phytoalexin antioxidant found in red grapes which has both chemopreventive and therapeutic effects against various ailments. Resveratrol's role in reducing different human cancers, including breast, cervical, uterine, blood, kidney, liver, eye, bladder, thyroid, esophageal, prostate, brain, lung, skin, gastric, colon, head and neck, bone, ovarian, and cervical, has been reviewed. This review covers the literature that deals with the anti-cancer mechanism of resveratrol with special reference to antioxidant potential. Furthermore, this article summarizes the literature pertaining to resveratrol as an anti-cancer agent.

  3. A translational study "case report" on the small molecule "energy blocker" 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside.

    PubMed

    Ko, Y H; Verhoeven, H A; Lee, M J; Corbin, D J; Vogl, T J; Pedersen, P L

    2012-02-01

    The small alkylating molecule, 3-bromopyruvate (3BP), is a potent and specific anticancer agent. 3BP is different in its action from most currently available chemo-drugs. Thus, 3BP targets cancer cells' energy metabolism, both its high glycolysis ("Warburg Effect") and mitochondrial oxidative phosphorylation. This inhibits/ blocks total energy production leading to a depletion of energy reserves. Moreover, 3BP as an "Energy Blocker", is very rapid in killing such cells. This is in sharp contrast to most commonly used anticancer agents that usually take longer to show a noticeable effect. In addition, 3BP at its effective concentrations that kill cancer cells has little or no effect on normal cells. Therefore, 3BP can be considered a member, perhaps one of the first, of a new class of anticancer agents. Following 3BP's discovery as a novel anticancer agent in vitro in the Year 2000 (Published in Ko et al. Can Lett 173:83-91, 2001), and also as a highly effective and rapid anticancer agent in vivo shortly thereafter (Ko et al. Biochem Biophys Res Commun 324:269-275, 2004), its efficacy as a potent anticancer agent in humans was demonstrated. Here, based on translational research, we report results of a case study in a young adult cancer patient with fibrolamellar hepatocellular carcinoma. Thus, a bench side discovery in the Department of Biological Chemistry at Johns Hopkins University, School of Medicine was taken effectively to bedside treatment at Johann Wolfgang Goethe University Frankfurt/Main Hospital, Germany. The results obtained hold promise for 3BP as a future cancer therapeutic without apparent cyto-toxicity when formulated properly.

  4. Synthesis of Rapamycin Derivatives Containing the Triazole Moiety Used as Potential mTOR-Targeted Anticancer Agents.

    PubMed

    Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong

    2016-06-01

    Rapamycin, a potent antifungal antibiotic, was approved as immunosuppressant, and lately its derivatives have been developed into mTOR targeting anticancer drugs. Structure modification was performed at the C-42 position of rapamycin, and a novel series of rapamycin triazole hybrids (4a-d, 5a-e, 8a-e, and 9a-e) was facilely synthesized via Huisgen's reaction. The anticancer activity of these compounds was evaluated against the Caski, H1299, MGC-803, and H460 human cancer cell lines. Some of the derivatives (8a-e, 9a-e) appeared to have stronger activity than that of rapamycin; however, 4a-d and 5a-e failed to show potential anticancer activity. Compound 9e with a (2,4-dichlorophenylamino)methyl moiety on the triazole ring was the most active anticancer compound, which showed IC50 values of 6.05 (Caski), 7.89 (H1299), 25.88 (MGC-803), and 8.60 μM (H460). In addition, research on the mechanism showed that 9e was able to cause cell morphological changes and to induce apoptosis in the Caski cell line. Most importantly, 9e can decrease the phosphorylation of mTOR and of its downstream key proteins, S6 and P70S6K1, indicating that 9e can effectively inhibit the mTOR signaling pathway. Thus, it may have the potential to become a new mTOR inhibitor against various cancers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents

    NASA Astrophysics Data System (ADS)

    Ghanbarimasir, Zahra; Bekhradnia, Ahmadreza; Morteza-Semnani, Katayoun; Rafiei, Alireza; Razzaghi-Asl, Nima; Kardan, Mostafa

    2018-04-01

    In a search for novel antiproliferative agents, a series of quinoxaline derivatives containing 2-aminoimidazole (8a-8x) were designed and synthesized. The structures of synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, Mass Spectroscopy and analyzed using HSQC, COSY, ROESY, HMBC techniques. The anticancer activity of all derivatives were evaluated for colon cancer and breast cancer cell lines by the MTT assay and acridine orange/ethidium bromide double staining method. The anti-cancer effect in human colon cancer (HCT-116) and breast cancer (MCF-7) cell lines exhibited that compounds 8a, 8s, 8t, 8w, 8x appeared as potent antiproliferative agents and especially inhibited the human colon cancer cell proliferation with percentage of inhibition by over 50%. The most active compound was (E)-4-phenyl-1-((quinoxalin-2-ylmethylene)amino)-1H-imidazol-2-amine (8a) with the highest inhibition for MCF-7 (83.3%) and HCT-116 (70%) cell lines after 48 and 24 h, respectively. Molecular docking studies of these derivatives within c-kit active site as a validated target might be suggested them as appropriate candidates for further efforts toward more potent anticancer compounds.

  6. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications

    PubMed Central

    Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng

    2013-01-01

    Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely 131I-hypericin (131I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications. PMID:23412554

  7. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications.

    PubMed

    Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng

    2013-01-01

    Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely (131)I-hypericin ((131)I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications.

  8. Targeting tumor glycolysis by a mitotropic agent.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-01

    Metabolic reprogramming is one of the hallmarks of cancer. Altered metabolism in cancer cells is exemplified by enhanced glucose utilization, a biochemical signature that is clinically exploited for cancer diagnosis using positron-emission tomography and computed tomography imaging. Accordingly, disrupting the glucose metabolism of cancer cells has been contemplated as a potential therapeutic strategy against cancer. Experimental evidences indicate that targeting glucose metabolism by inhibition of glycolysis or oxidative phosphorylation promotes anticancer effects. Yet, successful clinical translation of antimetabolites or energy blockers to treat cancer remains a challenge, primarily due to lack of efficacy and/or systemic toxicity. Recently, using nanotechnology, Marrache and Dhar have documented the feasibility of delivering a glycolytic inhibitor through triphenylphosphonium (TPP), a mitotropic agent that selectively targets mitochondria based on membrane potential. Furthermore, by utilizing gold nanoparticles the investigators also demonstrated the potential for simultaneous induction of photothermal therapy, thus facilitating an additional line of attack on cancer cells. The report establishes that specific inhibition of tumor glycolysis is achievable through TPP-dependent selective targeting of cancer cells. This nanotechnological approach involving TPP-guided selective delivery of an antiglycolytic agent complemented with photothermal therapy provides a new window of opportunity for effective and specific targeting of tumor glycolysis.

  9. Discovery of new anticancer agents from higher plants

    PubMed Central

    Pan, Li; Chai, Hee-Byung; Kinghorn, A. Douglas

    2012-01-01

    1. ABSTRACT Small organic molecules derived from higher plants have been one of the mainstays of cancer chemotherapy for approximately the past half a century. In the present review, selected single chemical entity natural products of plant origin and their semi-synthetic derivatives currently in clinical trials are featured as examples of new cancer chemotherapeutic drug candidates. Several more recently isolated compounds obtained from plants showing promising in vivo biological activity are also discussed in terms of their potential as anticancer agents, with many of these obtained from species that grow in tropical regions. Since extracts of only a relatively small proportion of the ca. 300,000 higher plants on earth have been screened biologically to date, bioactive compounds from plants should play an important role in future anticancer drug discovery efforts. PMID:22202049

  10. Natural flora and anticancer regime: milestones and roadmap.

    PubMed

    Bhatnagar, Ira; Thomas, Noel Vinay; Kim, Se-Kwon

    2013-07-01

    Cancer has long been an area of extensive research both at the molecular as well as pharmaceutical level. However, lack of understanding of the underlying molecular signalling and the probable targets of therapeutics is a major concern in successful treatment of cancer. The situation becomes even worse, with the increasing side effects of the existing synthetic commercial drugs. Natural compounds especially those derived from plants have been best explored for their anticancer properties and most of them have been efficient against the known molecular targets of cancer. However, advent of biotechnology and resulting advances in medical arena have let to the increasing knowledge of newer carcinogenic signaling agents which has made the anticancer drug discovery even more demanding. The present review aims to bring forward the molecular mediators of cancer and compiles the plant derived anticancer agents with special emphasis on their clinical status. Since marine arena has proved to be a tremendous source of pharmaceutical agents, this review also focuses on the anticancer potential of marine plants especially algae. This is a comprehensive review covering major aspects of cancer mediation and utilization of marine flora for remediation of this deadly disease.

  11. Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents

    PubMed Central

    Zhang, Lin; Shan, Yuanyuan; Ji, Xingyue; Zhu, Mengyuan; Li, Chuansheng; Sun, Ying; Si, Ru; Pan, Xiaoyan; Wang, Jinfeng; Ma, Weina; Dai, Bingling; Wang, Binghe; Zhang, Jie

    2017-01-01

    Receptor tyrosine kinases (RTKs), especially VEGFR-2, TIE-2, and EphB4, play a crucial role in both angiogenesis and tumorigenesis. Moreover, complexity and heterogeneity of angiogenesis make it difficult to treat such pathological traits with single-target agents. Herein, we developed two classes of multi-target RTK inhibitors (RTKIs) based on the highly conserved ATP-binding pocket of VEGFR-2/TIE-2/EphB4, using previously reported BPS-7 as a lead compound. These multi-target RTKIs exhibited considerable potential as novel anti-angiogenic and anticancer agents. Among them, QDAU5 displayed the most promising potency and selectivity. It significantly suppressed viability of EA.hy926 and proliferation of several cancer cells. Further investigations indicated that QDAU5 showed high affinity to VEGFR-2 and reduced the phosphorylation of VEGFR-2. We identified QDAU5 as a potent multiple RTKs inhibitor exhibiting prominent anti-angiogenic and anticancer potency both in vitro and in vivo. Moreover, quinazolin-4(3H)-one has been identified as an excellent hinge binding moiety for multi-target inhibitors of angiogenic VEGFR-2, Tie-2, and EphB4. PMID:29285210

  12. Potential drug-drug interactions between anti-cancer agents and community pharmacy dispensed drugs.

    PubMed

    Voll, Marsha L; Yap, Kim D; Terpstra, Wim E; Crul, Mirjam

    2010-10-01

    To identify the prevalence of potential drug-drug interactions between hospital pharmacy dispensed anti-cancer agents and community pharmacy dispensed drugs. A retrospective cohort study was conducted on the haematology/oncology department of the internal medicine ward in a large teaching hospital in Amsterdam, the Netherlands. Prescription data from the last 100 patients treated with anti-cancer agents were obtained from Paracelsus, the chemotherapy prescribing system in the hospital. The community pharmacy dispensed drugs of these patients were obtained by using OZIS, a system that allows regionally linked pharmacies to call up active medication on any patient. Both medication lists were manually screened for potential drug-drug interactions by using several information sources on interactions, e.g. Pubmed, the Flockhart P450 table, Micromedex and Dutch reference books. Prevalence of potential drug-drug interactions between anti-cancer agents provided by the hospital pharmacy and drugs dispensed by the community pharmacy. Ninety-one patients were included in the study. A total of 31 potential drug-drug interactions were found in 16 patients, of which 15 interactions were clinically relevant and would have required an intervention. Of these interactions 1 had a level of severity ≥ D, meaning the potential drug-drug interaction could lead to long lasting or permanent damage, or even death. The majority of the interactions requiring an intervention (67%) had a considerable level of evidence (≥ 2) and were based on well-documented case reports or controlled interaction studies. Most of the potential drug-drug interactions involved the antiretroviral drugs (40%), proton pump inhibitors (20%) and antibiotics (20%). The anti-cancer drug most involved in the drug-drug interactions is methotrexate (33%). This study reveals a high prevalence of potential drug-drug interactions between anti-cancer agents provided by the hospital pharmacy and drugs dispensed by the

  13. Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms

    PubMed Central

    Gupta, Parul; Wright, Stephen E.; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent. PMID:25152445

  14. Arsenic compounds as anticancer agents.

    PubMed

    Wang, Z Y

    2001-08-01

    In this paper the use of arsenic compounds as anticancer agents in clinical trials and in in vitro investigations is reviewed, including the experience at our institute. Treatment of newly diagnosed and relapsed patients with acute promyelocytic leukemia (APL) with arsenic trioxide (As2O3) has been found to result in complete remission (CR) rates of 85-93% when given by intravenous infusion for 2-3 h at a dose of 10 mg/day diluted in 5% glucose saline solution. Patients exhibit a response in 28-42 days. CR rates after administration of Composite Indigo Naturalis tablets containing arsenic sulfide and of pure tetraarsenic tetrasulfide reached 98% and 84.9%, respectively. At higher concentrations (1-2 microM), arsenic induced apoptosis, while at lower concentrations (0.1-0.5 microM), it triggered cell differentiation in vitro. As2O3-induced apoptosis has been observed in many cancer cell lines, including esophageal carcinoma, gastric cancer, neuroblastoma, lymphoid malignancies, and multiple myeloma. Its effectiveness was confirmed in the treatment of multiple myeloma. Arsenic compounds are effective agents in the treatment of APL and their activity against other types of cancer requires further investigation.

  15. T-oligo as an anticancer agent in colorectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojdyla, Luke; Stone, Amanda L.; Sethakorn, Nan

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo,more » an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.« less

  16. Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature.

    PubMed

    Negi, Beena; Kumar, Deepak; Rawat, Diwan S

    2017-01-01

    In the search of bioactive molecules, nature has always been an important source and most of the drugs in clinic are either natural products or derived from natural products. The ocean has played significant role as thousands of molecules and their metabolites with different types of biological activity such as antimicrobial, anti-inflammatory, anti-malarial, antioxidant, anti HIV and anticancer activity have been isolated from marine organisms. In particular, marine peptides have attracted much attention due to their high specificity against cancer cell lines that may be attributed to the various unusual amino acid residues and their sequences in the peptide chain. This review aims to identify the various anticancer agents isolated from the marine system and their anticancer potential. We did literature search for the anticancer peptides isolated from the different types of microorganism found in the marine system. Total one eighty eight papers were reviewed concisely and most of the important information from these papers were extracted and kept in the present manuscript. This review gives details about the isolation, anticancer potential and mechanism of action of the anticancer peptides of the marine origin. Many of these molecules such as aplidine, dolastatin 10, didemnin B, kahalalide F, elisidepsin (PM02734) are in clinical trials for the treatment of various cancers. With the interdisciplinary and collaborative research and technical advancements we can search more promising and affordable anticancer drugs in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure.

    PubMed

    Keskin, O; Bahar, I; Jernigan, R L; Beutler, J A; Shoemaker, R H; Sausville, E A; Covell, D G

    2000-04-01

    An analysis of the growth inhibitory potency of 122 anticancer agents available from the National Cancer Institute anticancer drug screen is presented. Methods of singular value decomposition (SVD) were applied to determine the matrix of distances between all compounds. These SVD-derived dissimilarity distances were used to cluster compounds that exhibit similar tumor growth inhibitory activity patterns against 60 human cancer cell lines. Cluster analysis divides the 122 standard agents into 25 statistically distinct groups. The first eight groups include structurally diverse compounds with reactive functionalities that act as DNA-damaging agents while the remaining 17 groups include compounds that inhibit nucleic acid biosynthesis and mitosis. Examination of the average activity patterns across the 60 tumor cell lines reveals unique 'fingerprints' associated with each group. A diverse set of structural features are observed for compounds within these groups, with frequent occurrences of strong within-group structural similarities. Clustering of cell types by their response to the 122 anticancer agents divides the 60 cell types into 21 groups. The strongest within-panel groupings were found for the renal, leukemia and ovarian cell panels. These results contribute to the basis for comparisons between log(GI(50)) screening patterns of the 122 anticancer agents and additional tested compounds.

  18. Seeking new anti-cancer agents from autophagy-regulating natural products.

    PubMed

    Hua, Fang; Shang, Shuang; Hu, Zhuo-Wei

    2017-04-01

    Natural products are an important original source of many widely used drugs, including anti-cancer drugs. Early research efforts for seeking anti-cancer therapy from the natural products are mainly focused on the compounds with cytotoxicity capability. The good examples include vinblastine, vincristine, the camptothecin derivatives; topotecan, irinotecan, epipodophyllotoxin derivatives and paclitaxel. In a recent decade, the fundamental progression has been made in the understanding of molecular and cellular mechanisms regarding tumor initiation, metastasis, therapeutic resistance, immune escape, and relapse, which provide a great opportunity for the development of new mechanism-based anticancer drugs, especially drugs against new molecular and cellular targets. Autophagy, a critical cell homeostasis mechanism and promising drug target involved in a verity of human diseases including cancer, can be modulated by many compounds derived from natural products. In this review, we'll give a short introduction of autophagy and discuss the roles of autophagy in the tumorigenesis and progression. And then, we summarize the accumulated evidences to show the anti-tumor effects of several compounds derived from natural products through modulation of autophagy activity.

  19. The Design and Development of Potent Small Molecules as Anticancer Agents Targeting EGFR TK and Tubulin Polymerization

    PubMed Central

    Ihmaid, Saleh; Ahmed, Hany E. A.; Zayed, Mohamed F.

    2018-01-01

    Some novel anthranilate diamides derivatives 4a–e, 6a–c and 9a–d were designed and synthesized to be evaluated for their in vitro anticancer activity. Structures of all newly synthesized compounds were confirmed by infra-red (IR), high-resolution mass (HR-MS) spectra, 1H nuclear magnetic resonance (NMR) and 13C nuclear magnetic resonance (NMR) analyses. Cytotoxic screening was performed according to (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium (MTT) assay method using erlotinib as a reference drug against two different types of breast cancer cells. The molecular docking study was performed for representative compounds against two targets, epidermal growth factor receptor (EGFR) and tubulin in colchicine binding site to assess their binding affinities in order to rationalize their anticancer activity in a qualitative way. The data obtained from the molecular modeling was correlated with that obtained from the biological screening. These data showed considerable anticancer activity for these newly synthesized compounds. Biological data for most of the anthranilate diamide showed excellent activity with nanomolar or sub nanomolar half maximal inhibitory concentration (IC50) values against tumor cells. EGFR tyrosine kinase (TK) inhibition assay, tubulin inhibition assay and apoptosis analysis were performed for selected compounds to get more details about their mechanism of action. Extensive structure activity relationship (SAR) analyses were also carried out. PMID:29385728

  20. The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside.

    PubMed

    Azevedo-Silva, J; Queirós, O; Baltazar, F; Ułaszewski, S; Goffeau, A; Ko, Y H; Pedersen, P L; Preto, A; Casal, M

    2016-08-01

    At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP's selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches. These studies clearly demonstrate 3BP's broad action against multiple cancer types. Clinical trials using 3BP are needed to further support its anticancer efficacy against multiple cancer types thus making it available to more than 30 million patients living with cancer worldwide. This review discusses current knowledge about 3BP related to cancer and discusses also the possibility of its use in future clinical applications as it relates to safety and treatment issues.

  1. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  2. Newly Engineered Magnetic Erythrocytes for Sustained and Targeted Delivery of Anti-Cancer Therapeutic Compounds

    PubMed Central

    Taranta, Monia; Naldi, Ilaria

    2011-01-01

    Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy. PMID:21373641

  3. A monofunctional platinum(II)-based anticancer agent from a salicylanilide derivative: Synthesis, antiproliferative activity, and transcription inhibition.

    PubMed

    Wang, Beilei; Wang, Zhigang; Ai, Fujin; Tang, Wai Kin; Zhu, Guangyu

    2015-01-01

    Cationic monofunctional platinum(II)-based anticancer agents with a general formula of cis-[Pt(NH3)2(N-donor)Cl](+) have recently drawn significant attention due to their unique mode of action, distinctive anticancer spectrum, and promising antitumor activity both in vitro and in vivo. Understanding the mechanism of action of novel monofunctional platinum compounds through rational drug design will aid in the further development of active agents. In this study, we synthesized and evaluated a monofunctional platinum-based anticancer agent SA-Pt containing a bulky salicylanilide moiety. The antiproliferative activity of SA-Pt was close to that of cisplatin. Mechanism studies revealed that SA-Pt entered HeLa cells more efficiently than cisplatin, blocked the cell cycle at the S-phase, and induced apoptosis. The compound bound to DNA as effectively as cisplatin, but did not block RNA polymerase II-mediated transcription as strongly as cisplatin, indicating that once the compound formed Pt-DNA lesions, the salicylanilide group was more easily recognized and removed. This study not only enriches the family of monofunctional platinum-based anticancer agents but also guides the design of more potent monofunctional platinum complexes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic.

    PubMed

    Pace, Jennifer R; DeBerardinis, Albert M; Sail, Vibhavari; Tacheva-Grigorova, Silvia K; Chan, Kelly A; Tran, Raymond; Raccuia, Daniel S; Wechsler-Reya, Robert J; Hadden, M Kyle

    2016-04-28

    Itraconazole (ITZ) is an FDA-approved member of the triazole class of antifungal agents. Two recent drug repurposing screens identified ITZ as a promising anticancer chemotherapeutic that inhibits both the angiogenesis and hedgehog (Hh) signaling pathways. We have synthesized and evaluated first- and second-generation ITZ analogues for their anti-Hh and antiangiogenic activities to probe more fully the structural requirements for these anticancer properties. Our overall results suggest that the triazole functionality is required for ITZ-mediated inhibition of angiogenesis but that it is not essential for inhibition of Hh signaling. The synthesis and evaluation of stereochemically defined des-triazole ITZ analogues also provides key information as to the optimal configuration around the dioxolane ring of the ITZ scaffold. Finally, the results from our studies suggest that two distinct cellular mechanisms of action govern the anticancer properties of the ITZ scaffold.

  5. Design, Synthesis and Biological Evaluation of (E)-N-Aryl-2-arylethene-sulfonamide Analogues as Potent and Orally Bioavailable Microtubule-targeted Anticancer Agents

    PubMed Central

    Ramana Reddy, M. V.; Mallireddigari, Muralidhar R.; Pallela, Venkat R.; Cosenza, Stephen C.; Billa, Vinay K.; Akula, Balaiah; Venkata Subbaiah, D. R. C.; Bharathi, E. Vijaya; Padgaonkar, Amol; Lv, Hua; Gallo, James M.; Reddy, E. Premkumar

    2013-01-01

    A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC50 values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-Amino-4-methoxyphenyl)-2-(2′,4′,6′-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size indicating their in vivo potential as anticancer agents. A preliminary drug development study with compound 6t is predicted to have increased blood-brain barrier permeability relative to many clinically used anti-mitotic agents. Mechanistic studies indicate that 6t and some other analogs disrupted microtubule formation, formation of mitotic spindles and arrest of cells in mitotic phase. Compound 6t inhibited purified tubulin polymerization in vitro and in vivo and circumvented drug resistance mediated by P-glycoprotein. Compound 6t specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin indicating its binding site on tubulin. PMID:23750455

  6. Inner conflict in patients receiving oral anticancer agents: a qualitative study.

    PubMed

    Yagasaki, Kaori; Komatsu, Hiroko; Takahashi, Tsunehiro

    2015-04-14

    To explore the experiences of patients receiving oral anticancer agents. A qualitative study using semistructured interviews with a grounded theory approach. A university hospital in Japan. 14 patients with gastric cancer who managed their cancer with oral anticancer agents. Patients with cancer experienced inner conflict between rational belief and emotional resistance to taking medication due to confrontation with cancer, doubt regarding efficacy and concerns over potential harm attached to use of the agent. Although they perceived themselves as being adherent to medication, they reported partial non-adherent behaviours. The patients reassessed their lives through the experience of inner conflict and, ultimately, they recognised their role in medication therapy. Patients with cancer experienced inner conflict, in which considerable emotional resistance to taking their medication affected their occasional non-adherent behaviours. In patient-centred care, it is imperative that healthcare providers understand patients' inner conflict and inconsistency between their subjective view and behaviour to support patient adherence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Design of Enzymatically Cleavable Prodrugs of a Potent Platinum-Containing Anticancer Agent

    PubMed Central

    Ding, Song; Pickard, Amanda J.; Kucera, Gregory L.

    2014-01-01

    Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum–acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the pro-drug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification. PMID:25303639

  8. The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review.

    PubMed

    Haque, Inamul; Subramanian, Arvind; Huang, Chao H; Godwin, Andrew K; Van Veldhuizen, Peter J; Banerjee, Snigdha; Banerjee, Sushanta K

    2017-12-31

    Renal Cell Carcinoma (RCC) is the most prominent kidney cancer derived from renal tubules and accounts for roughly 85% of all malignant kidney cancer. Every year, over 60,000 new cases are registered, and about 14,000 people die from RCC. The incidence of this has been increasing significantly in the U.S. and other countries. An increased understanding of molecular biology and the genomics of RCC has uncovered several signaling pathways involved in the progression of this cancer. Significant advances in the treatment of RCC have been reported from agents approved by the Food and Drug Administration (FDA) that target these pathways. These agents have become drugs of choice because they demonstrate clinical benefit and increased survival in patients with metastatic disease. However, the patients eventually relapse and develop resistance to these drugs. To improve outcomes and seek approaches for producing long-term durable remission, the search for more effective therapies and preventative strategies are warranted. Treatment of RCC using natural products is one of these strategies to reduce the incidence. However, recent studies have focused on these chemoprevention agents as anti-cancer therapies given they can inhibit tumor cell grow and lack the severe side effects common to synthetic compounds. This review elaborates on the current understanding of natural products and their mechanisms of action as anti-cancer agents. The present review will provide information for possible use of these products alone or in combination with chemotherapy for the prevention and treatment of RCC.

  9. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed Central

    Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-01-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  10. The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran.

    PubMed

    Sanjeewa, K K Asanka; Lee, Jung-Suck; Kim, Won-Suck; Jeon, You-Jin

    2017-12-01

    In recent decades, attention to cancer-preventive treatments and studies on the development of anticancer drugs have sharply increased owing to the increase in cancer-related death rates in every region of the world. However, due to the adverse effects of synthetic drugs, much attention has been given to the development of anticancer drugs from natural sources because of fewer side effects of natural compounds than those of synthetic drugs. Recent studies on compounds and crude extracts from marine algae have shown promising anticancer properties. Among those compounds, polysaccharides extracted from brown seaweeds play a principal role as anticancer agents. Especially, a number of studies have revealed that polysaccharides isolated from brown seaweeds, such as fucoidan and laminaran, have promising effects against different cancer cell types in vitro and in vivo. Herein, we reviewed in vitro and in vivo anticancer properties reported for fucoidan and laminaran toward various cancer cells from 2013 to 2016. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Plant-derived anticancer agents - curcumin in cancer prevention and treatment.

    PubMed

    Creţu, Elena; Trifan, Adriana; Vasincu, Al; Miron, Anca

    2012-01-01

    Nowadays cancer is still a major public health issue. Despite all the progresses made in cancer prevention, diagnosis and treatment, mortality by cancer is on the second place after the one caused by cardiovascular diseases. The high mortality and the increasing incidence of certain cancers (lung, prostate, colorectal) justify a growing interest for the identification of new pharmacological agents efficient in cancer prevention and treatment. In the last fifty years many plant-derived agents (vinblastine, vincristine, vindesine, paclitaxel, docetaxel, topotecan, irinotecan, elliptinium) played a major role in cancer treatment. Other very promising plant-derived anticancer agents (combrestatins, betulinic acid, roscovitine, purvalanols, indirubins) are in clinical or preclinical trials. Curcumin, a liposoluble polyphenolic pigment isolated from the rhizomes of Curcuma longa L. (Zingiberaceae), is another potential candidate for new anticancer drug development. Curcumin has been reported to influence many cell-signaling pathways involved in tumor initiation and proliferation. Curcumin inhibits COX-2 activity, cyclin D1 and MMPs overexpresion, NF-kB, STAT and TNF-alpha signaling pathways and regulates the expression of p53 tumor suppressing gene. Curcumin is well-tolerated but has a reduced systemic bioavailability. Polycurcumins (PCurc 8) and curcumin encapsulated in biodegradable polymeric nanoparticles (NanoCurc) showed higher bioavailability than curcumin together with a significant tumor growth inhibition in both in vitro and in vivo studies. BILITY.

  12. Essential Oils and Their Constituents as Anticancer Agents: A Mechanistic View

    PubMed Central

    Mantha, Anil K.

    2014-01-01

    Exploring natural plant products as an option to find new chemical entities as anticancer agents is one of the fastest growing areas of research. Recently, in the last decade, essential oils (EOs) have been under study for their use in cancer therapy and the present review is an attempt to collect and document the available studies indicating EOs and their constituents as anticancer agents. This review enlists nearly 130 studies of EOs from various plant species and their constituents that have been studied so far for their anticancer potential and these studies have been classified as in vitro and in vivo studies for EOs and their constituents. This review also highlights in-depth various mechanisms of action of different EOs and their constituents reported in the treatment strategies for different types of cancer. The current review indicates that EOs and their constituents act by multiple pathways and mechanisms involving apoptosis, cell cycle arrest, antimetastatic and antiangiogenic, increased levels of reactive oxygen and nitrogen species (ROS/RNS), DNA repair modulation, and others to demonstrate their antiproliferative activity in the cancer cell. The effect of EOs and their constituents on tumour suppressor proteins (p53 and Akt), transcription factors (NF-κB and AP-1), MAPK-pathway, and detoxification enzymes like SOD, catalase, glutathione peroxidase, and glutathione reductase has also been discussed. PMID:25003106

  13. Mitochondrial Targeting of Vitamin E Succinate Enhances Its Pro-apoptotic and Anti-cancer Activity via Mitochondrial Complex II*

    PubMed Central

    Dong, Lan-Feng; Jameson, Victoria J. A.; Tilly, David; Cerny, Jiri; Mahdavian, Elahe; Marín-Hernández, Alvaro; Hernández-Esquivel, Luz; Rodríguez-Enríquez, Sara; Stursa, Jan; Witting, Paul K.; Stantic, Bela; Rohlena, Jakub; Truksa, Jaroslav; Kluckova, Katarina; Dyason, Jeffrey C.; Ledvina, Miroslav; Salvatore, Brian A.; Moreno-Sánchez, Rafael; Coster, Mark J.; Ralph, Stephen J.; Smith, Robin A. J.; Neuzil, Jiri

    2011-01-01

    Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhibited the succinate dehydrogenase (SDH) activity of CII with IC50 of 80 μm, whereas the electron transfer from CII to CIII was inhibited with IC50 of 1.5 μm. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1α fused to GFP, indicating promotion of the state of pseudohypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation, and SDH activity. Mutation of the UbQ-binding Ser68 within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix, optimizing its biological effects as an anti-cancer drug. PMID:21059645

  14. Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs.

    PubMed

    Sarkar, Fazlul H; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash

    2010-06-01

    In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies.

  15. Lesson Learned from Nature for the Development of Novel Anti-Cancer Agents: Implication of Isoflavone, Curcumin, and their Synthetic Analogs

    PubMed Central

    Sarkar, Fazlul H.; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash

    2011-01-01

    In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies. PMID:20345353

  16. Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues.

    PubMed

    Tamura, Hirosumi; Higa, Arisa; Hoshi, Hirotaka; Hiyama, Gen; Takahashi, Nobuhiko; Ryufuku, Masae; Morisawa, Gaku; Yanagisawa, Yuka; Ito, Emi; Imai, Jun-Ichi; Dobashi, Yuu; Katahira, Kiyoaki; Soeda, Shu; Watanabe, Takafumi; Fujimori, Keiya; Watanabe, Shinya; Takagi, Motoki

    2018-06-18

    Patient-derived tumor xenograft models represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture; however, their use is low-throughput and costly. To overcome this limitation, patient-derived tumor organoids (PDOs) were established from human lung, ovarian and uterine tumor tissues, among others, to accurately and efficiently recapitulate the tissue architecture and function. PDOs were able to be cultured for >6 months, and formed cell clusters with similar morphologies to their source tumors. Comparative histological and comprehensive gene expression analyses proved that the characteristics of PDOs were similar to those of their source tumors, even following long-term expansion in culture. At present, 53 PDOs have been established by the Fukushima Translational Research Project, and were designated as Fukushima PDOs (F‑PDOs). In addition, the in vivo tumorigenesis of certain F‑PDOs was confirmed using a xenograft model. The present study represents a detailed analysis of three F‑PDOs (termed REME9, 11 and 16) established from endometrial cancer tissues. These were used for cell growth inhibition experiments using anticancer agents. A suitable high-throughput assay system, with 96- or 384‑well plates, was designed for each F‑PDO, and the efficacy of the anticancer agents was subsequently evaluated. REME9 and 11 exhibited distinct responses and increased resistance to the drugs, as compared with conventional cancer cell lines (AN3 CA and RL95-2). REME9 and 11, which were established from tumors that originated in patients who did not respond to paclitaxel and carboplatin (the standard chemotherapy for endometrial cancer), exhibited high resistance (half-maximal inhibitory concentration >10 µM) to the two agents. Therefore, assay systems using F‑PDOs may be utilized to evaluate anticancer agents using conditions that better reflect clinical conditions, compared with conventional methods

  17. The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review

    PubMed Central

    Haque, Inamul; Subramanian, Arvind; Huang, Chao H.; Godwin, Andrew K.; Van Veldhuizen, Peter J.; Banerjee, Snigdha; Banerjee, Sushanta K.

    2017-01-01

    Renal Cell Carcinoma (RCC) is the most prominent kidney cancer derived from renal tubules and accounts for roughly 85% of all malignant kidney cancer. Every year, over 60,000 new cases are registered, and about 14,000 people die from RCC. The incidence of this has been increasing significantly in the U.S. and other countries. An increased understanding of molecular biology and the genomics of RCC has uncovered several signaling pathways involved in the progression of this cancer. Significant advances in the treatment of RCC have been reported from agents approved by the Food and Drug Administration (FDA) that target these pathways. These agents have become drugs of choice because they demonstrate clinical benefit and increased survival in patients with metastatic disease. However, the patients eventually relapse and develop resistance to these drugs. To improve outcomes and seek approaches for producing long-term durable remission, the search for more effective therapies and preventative strategies are warranted. Treatment of RCC using natural products is one of these strategies to reduce the incidence. However, recent studies have focused on these chemoprevention agents as anti-cancer therapies given they can inhibit tumor cell grow and lack the severe side effects common to synthetic compounds. This review elaborates on the current understanding of natural products and their mechanisms of action as anti-cancer agents. The present review will provide information for possible use of these products alone or in combination with chemotherapy for the prevention and treatment of RCC. PMID:29301217

  18. Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents.

    PubMed

    Speck-Planche, Alejandro; Kleandrova, Valeria V; Luan, Feng; Cordeiro, M Natália D S

    2012-08-01

    The discovery of new and more potent anti-cancer agents constitutes one of the most active fields of research in chemotherapy. Colorectal cancer (CRC) is one of the most studied cancers because of its high prevalence and number of deaths. In the current pharmaceutical design of more efficient anti-CRC drugs, the use of methodologies based on Chemoinformatics has played a decisive role, including Quantitative-Structure-Activity Relationship (QSAR) techniques. However, until now, there is no methodology able to predict anti-CRC activity of compounds against more than one CRC cell line, which should constitute the principal goal. In an attempt to overcome this problem we develop here the first multi-target (mt) approach for the virtual screening and rational in silico discovery of anti-CRC agents against ten cell lines. Here, two mt-QSAR classification models were constructed using a large and heterogeneous database of compounds. The first model was based on linear discriminant analysis (mt-QSAR-LDA) employing fragment-based descriptors while the second model was obtained using artificial neural networks (mt-QSAR-ANN) with global 2D descriptors. Both models correctly classified more than 90% of active and inactive compounds in training and prediction sets. Some fragments were extracted from the molecules and their contributions to anti-CRC activity were calculated using mt-QSAR-LDA model. Several fragments were identified as potential substructural features responsible for the anti-CRC activity and new molecules designed from those fragments with positive contributions were suggested and correctly predicted by the two models as possible potent and versatile anti-CRC agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Carboxylate derivatives of tributyltin (IV) complexes as anticancer and antileishmanial agents.

    PubMed

    Waseem, Durdana; Butt, Arshad Farooq; Haq, Ihsan-Ul; Bhatti, Moazzam Hussain; Khan, Gul Majid

    2017-04-04

    significant antileishmanial and cytotoxic potential. These are promising compounds for the development of antileishmanial and anticancer drugs. Graphical Abstract Carboxylate derivatives of tributyltin (IV) complexes as anticancer and antileishmanial agents.

  20. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents.

    PubMed

    Maranhão, Raul C; Vital, Carolina G; Tavoni, Thauany M; Graziani, Silvia R

    2017-10-01

    The toxicity of chemotherapeutic agents, resulting from their low pharmacological index, introduces considerable discomfort and risk to cancer patients. Among several strategies to reduce the toxicity of chemotherapeutic agents, targeted drug delivery is the most promising one. Areas covered: Liposomes, micelles, albumin-based, polymeric, dendritic and lipid core nanoparticles have been used as carriers to concentrate anticancer drugs in neoplastic tissues, and clinical studies of those preparations are reviewed. In most clinical studies, drug delivery systems reduced drug toxicity. Lipid core nanoparticles (LDE) that bind to cell lipoprotein receptors have the ability to concentrate in neoplastic tissues and were the first artificial non-liposomal system shown in in vivo studies to possess targeting properties. The toxicity reduction achieved by LDE as vehicle of carmustine, etoposide and paclitaxel was singularly strong. Expert opinion: The reduced toxicity offered by drug delivery systems has expanded treatment population that may benefit from chemotherapy including feeble, overtreated and elderly patients that would otherwise be offered palliative therapy. Drug delivery systems may either prolong the duration of treatments or allow increases in drug dose.

  1. Newer cytotoxic agents: attacking cancer broadly.

    PubMed

    Teicher, Beverly A

    2008-03-15

    The plasticity and instability of the cancer genome is impressive and is characterized by gene amplifications and deletions, rearrangements, and many silent and active mutations. Although targeted therapeutics have had effect in some diseases, there remains a large role for new cytotoxic agents that have the potential to be broadly active across multiple cancers. Platinum-based regimens are the basis for treatment of several common tumors. Satraplatin and picoplatin are newer platinum complexes that form bulkier lesions in DNA than their forerunners. Microtubules are a key target for anticancer agents. Vinca alkaloid and similar compounds fragment these critical structures, whereas taxanes stabilize them. Vinflunine is a new fluorinated Vinca alkaloid derivative with vascular disrupting effects, as well as antitumor effects. Epothilones are a new class of microtubule stabilizers. Mitosis has been targeted directly and indirectly by many anticancer agents. The aurora kinases are new targets in this class. Inhibitors of aurora kinases are likely to be cytotoxic. Finally, protein regulation is essential for cellular integrity. With the approval of bortezomib (Velcade, PS-341), the proteosome, a master protein regulator, has been validated as an anticancer target. The five articles in this issue of CCR Focus present the current status of these next generation cytotoxic agents.

  2. PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties.

    PubMed

    Joseph, Manu M; Aravind, S R; Varghese, Sheeja; Mini, S; Sreelekha, T T

    2013-04-01

    Polysaccharide PST001, which is isolated from the seed kernels of Tamarindus indica (Ti), is an antitumor and immunomodulatory compound. Gold nanoparticles have been used for various applications in cancer. In the present report, a novel strategy for the synthesis and stabilization of gold nanoparticles using anticancer polysaccharide PST001 was employed and the nanoparticles' antitumor activity was evaluated. PST-Gold nanoparticles were prepared such that PST001 acted both as a reducing agent and as a capping agent. PST-Gold nanoparticles showed high stability, no obvious aggregation for months and a wide range of pH tolerance. PST-Gold nanoparticles not only retained the antitumor effect of PST001 but also showed an enhanced effect even at a low concentration. It was also found that the nanoparticles exerted their antitumor effects through the induction of apoptosis. In vivo assays on BALB/c mice revealed that PST-Gold nanoparticles exhibited immunomodulatory effects. Evaluation of biochemical, hematological and histopathological features of mice revealed that PST-Gold nanoparticles could be administered safely without toxicity. Using the polysaccharide PST001 for the reduction and stabilization of gold nanoparticles does not introduce any environmental toxicity or biological hazards, and these particles are more effective than the parent polysaccharide. Further studies should be employed to exploit these particles as anticancer agents with imaging properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Screening and evaluation of anticancer agents.

    PubMed

    Zee-Cheng, R K; Cheng, C C

    1988-02-01

    The screening and evaluation procedures for the development of anticancer agents indicated that the entire process is a rather difficult task. This is particularly true in choosing screening models and criteria for activity. If the criteria were set too low, then some clinically false-positive results may be faced; and if the criteria were set too high, some agents could be missed which might be effective against certain types of human cancer. Presently, active compounds are selected by prescreening and screening against transplanted mouse tumors and human tumor xenografts as well as by the in vitro systems. Xenografts of human tumor in athymic nude animals represent metabolic characteristics of human malignant disease which appear to be of value in the preclinical screening. Human tumor cloning assays have gained increased attention as a promising in vitro test system for the screening as well as for the prediction of patient responses. Application of chemosensitivity tests in the prediction of the responses of individuals to chemotherapy, especially in the identification of drug resistant tumors are, in general, quite reliable. Human tumor xenografts, human tumor cloning assays and chemosensitivity tests may be regarded as the major impetus in screening during the past decade. After promising agents are selected from the screening procedures, before the filing of an investigational new drug application, the preclinical toxicology and pharmacology should be completed. Information on the nature of toxicity, dose-response effects, and dose schedule are necessary for predicting the effects of the drug in man. The new drugs then go through three phases of clinical trials to assure safety, effectiveness, and reliability of the drugs. During the past fifteen years eight-three antineoplastic drugs were evaluated clinically under the NCI sponsorship and twenty-four are active in at least one disease. Among these active drugs, eleven possess novel clinical structure, the

  4. Targeting Heparan Sulfate Proteoglycans and their Modifying Enzymes to Enhance Anticancer Chemotherapy Efficacy and Overcome Drug Resistance.

    PubMed

    Lanzi, Cinzia; Zaffaroni, Nadia; Cassinelli, Giuliana

    2017-01-01

    Targeting heparan sulfate proteoglycans (HSPGs) and enzymes involved in heparan sulfate (HS) chain editing is emerging as a new anticancer strategy. The involvement of HSPGs in tumor cell signaling, inflammation, angiogenesis and metastasis indicates that agents able to inhibit aberrant HSPG functions can potentially act as multitarget drugs affecting both tumor cell growth and the supportive boost provided by the microenvironment. Moreover, accumulating evidence supports that an altered expression or function of HSPGs, or of the complex enzyme system regulating their activities, can also depress the tumor response to anticancer treatments in several tumor types. Thereby, targeting HSPGs or HSPG modifying enzymes appears an appealing approach to enhance chemotherapy efficacy. A great deal of effort from academia and industry has led to the development of agents mimicking HS, and/or inhibiting HSPG modifying enzymes. Inhibitors of Sulf-2, an endosulfatase that edits the HS sulfation pattern, and inhibitors of heparanase, the endoglycosidase that produces functional HS fragments, appear particularly promising. In fact, a Sulf-2 inhibitor (OKN-007), and two heparanase inhibitors/HS mimics (roneparstat, PG545) are currently under early clinical investigation. In this review, we summarized preclinical studies in experimental tumor models of the main chemical classes of Sulf-2 and heparanase inhibitors. We described examples of different mechanisms through which heparanase and HSPGs, often in cooperation, may impact tumor sensitivity to various antitumor agents. Finally, we reported a few preclinical studies showing increased antitumor efficacy obtained with the use of candidate clinical HS mimics in combination regimens. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Use of Charity Financial Assistance for Novel Oral Anticancer Agents.

    PubMed

    Olszewski, Adam J; Zullo, Andrew R; Nering, Christopher R; Huynh, Justin P

    2018-04-01

    Novel oral targeted drugs are increasingly used for cancer therapy, but their extreme cost, often exceeding $10,000 per month, poses a significant barrier for patients and insurers alike, leading to the potential breakdown of traditional cost-sharing strategies. Insured patients' routine use of charity assistance to supplement their coverage would indicate a major deficiency in the current health care policies. By using data from a specialty pharmacy affiliated with an academic center (1,557 prescriptions dispensed between January 2014 and March 2017), we examined sources of payment for novel oral anticancer agents, distinguishing contributions from health insurance, patients, and from charitable assistance organizations. Thirty-six percent of 211 patients received charity assistance, including 47% of patients who were 65 years old or older. Charity sources covered 4% of total drug costs and 64% of out-of-pocket expenditures. The proportion of patients receiving financial assistance ranged from 7% when the upfront out-of-pocket requirement was less than $100 to 67% when it exceeded $1,000. When patients' out-of-pocket requirement exceeded $1,000, the median direct cash contribution paradoxically fell to $0 because of extensive use of charity support. Receipt of upfront charity assistance was associated with a longer time to filling the first prescription (median 9 v 7 days; P = .011) and with longer overall duration of therapy (median, 261 v 134 days; P = .014). These findings indicate that high out-of-pocket burden for expensive novel oral anticancer drugs leads to widespread use of charity support in the United States and that a significant financial barrier disparately affects older Medicare beneficiaries.

  6. Anti-Cancer Drug Delivery Using Carbohydrate-Based Polymers.

    PubMed

    Ranjbari, Javad; Mokhtarzadeh, Ahad; Alibakhshi, Abbas; Tabarzad, Maryam; Hejazi, Maryam; Ramezani, Mohammad

    2018-02-12

    Polymeric drug delivery systems in the form of nanocarriers are the most interesting vehicles in anticancer therapy. Among different types of biocompatible polymers, carbohydrate-based polymers or polysaccharides are the most common natural polymers with complex structures consisting of long chains of monosaccharide or disaccharide units bound by glycosidic linkages. Their appealing properties such as availability, biocompatibility, biodegradability, low toxicity, high chemical reactivity, facile chemical modification and low cost led to their extensive applications in biomedical and pharmaceutical fields including development of nano-vehicles for delivery of anti-cancer therapeutic agents. Generally, reducing systemic toxicity, increasing short half-lives and tumor localization of agents are the top priorities for a successful cancer therapy. Polysaccharide-based or - coated nanosystems with respect to their advantageous features as well as accumulation in tumor tissue due to enhanced permeation and retention (EPR) effect can provide promising carrier systems for the delivery of noblest impressive agents. Most challenging factor in cancer therapy was the toxicity of anti-cancer therapeutic agents for normal cells and therefore, targeted delivery of these drugs to the site of action can be considered as an interesting therapeutic strategy. In this regard, several polysaccharides exhibited selective affinity for specific cell types, and so they can act as a targeting agent in drug delivery systems. Accordingly, different aspects of polysaccharide applications in cancer treatment or diagnosis were reviewed in this paper. In this regard, after a brief introduction of polysaccharide structure and its importance, the pharmaceutical usage of carbohydrate-based polymers was considered according to the identity of accompanying active pharmaceutical agents. It was also presented that the carbohydrate based polymers have been extensively considered as promising materials in

  7. Mitochondrial chaperones may be targets for anti-cancer drugs

    Cancer.gov

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  8. HS-133, a novel fluorescent phosphatidylinositol 3-kinase inhibitor as a potential imaging and anticancer agent for targeted therapy

    PubMed Central

    Lee, Hyunseung; Son, Mi Kwon; Yun, Sun-Mi; Ahn, Sung-Hoon; Lee, Kyeong-Ryoon; Lee, Soyoung; Kim, Donghee; Hong, Sungwoo; Hong, Soon-Sun

    2014-01-01

    As PI3K/Akt signaling is frequently deregulated in a wide variety of human tumors, PI3K inhibitors are an emerging class of drugs for cancer treatment. The monitoring of the drug behavior and distribution in the biological system can play an important role for targeted therapy and provide information regarding the response or resistance to available therapies. In this study, therefore, we have developed a family of xanthine derivatives, serving as a dual function exhibiting fluorescence, as well as inhibiting PI3K. Among them, HS-133 showed anti-proliferative effects and was monitored for its subcellular localization by a fluorescence microscopy. HS-133 suppressed the PI3K/Akt pathway and induced cell cycle arrest at the G0/G1 phase. The induction of apoptosis by HS-133 was confirmed by the increases of the cleaved PARP, caspase-3, and caspase-8. Furthermore, HS-133 decreased the protein expression of HIF-1α and VEGF, as well inhibited the tube formation and migration of the human umbilical vein endothelial cells. In vivo imaging also showed that tumors were visualized fluorescent with HS-133, and its oral administration significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Thus, we suggest that HS-133 may be used as a fluorescent anticancer agent against human breast cancer. PMID:25338206

  9. HS-133, a novel fluorescent phosphatidylinositol 3-kinase inhibitor as a potential imaging and anticancer agent for targeted therapy.

    PubMed

    Lee, Ju-Hee; Jung, Kyung Hee; Lee, Hyunseung; Son, Mi Kwon; Yun, Sun-Mi; Ahn, Sung-Hoon; Lee, Kyeong-Ryoon; Lee, Soyoung; Kim, Donghee; Hong, Sungwoo; Hong, Soon-Sun

    2014-10-30

    As PI3K/Akt signaling is frequently deregulated in a wide variety of human tumors, PI3K inhibitors are an emerging class of drugs for cancer treatment. The monitoring of the drug behavior and distribution in the biological system can play an important role for targeted therapy and provide information regarding the response or resistance to available therapies. In this study, therefore, we have developed a family of xanthine derivatives, serving as a dual function exhibiting fluorescence, as well as inhibiting PI3K. Among them, HS-133 showed anti-proliferative effects and was monitored for its subcellular localization by a fluorescence microscopy. HS-133 suppressed the PI3K/Akt pathway and induced cell cycle arrest at the G0/G1 phase. The induction of apoptosis by HS-133 was confirmed by the increases of the cleaved PARP, caspase-3, and caspase-8. Furthermore, HS-133 decreased the protein expression of HIF-1α and VEGF, as well inhibited the tube formation and migration of the human umbilical vein endothelial cells. In vivo imaging also showed that tumors were visualized fluorescent with HS-133, and its oral administration significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Thus, we suggest that HS-133 may be used as a fluorescent anticancer agent against human breast cancer.

  10. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents.

    PubMed

    Azad, Iqbal; Nasibullah, Malik; Khan, Tahmeena; Hassan, Firoj; Akhter, Yusuf

    2018-05-01

    This paper deals with in silico evaluation of newly proposed heterocyclic derivatives in search of potential anticancer activity. Best possible drug candidates have been proposed using a rational approach employing a pipeline of computational techniques namely MetaPrint2D prediction, molinspiration, cheminformatics, Osiris Data warrior, AutoDock and iGEMDOCK. Lazar toxicity prediction, AdmetSAR predictions, and targeted docking studies were also performed. 27 heterocyclic derivatives were selected for bioactivity prediction and drug likeness score on the basis of Lipinski's rule, Viber rule, Ghose filter, leadlikeness and Pan Assay Interference Compounds (PAINS) rule. Bufuralol, Sunitinib, and Doxorubicin were selected as reference standard drug for the comparison of molecular descriptors and docking. Bufuralol is a known non-selective adreno-receptor blocking agent. Studies showed that beta blockers are also used against different types of cancers. Sunitinib is well known Food and Drug administration (FDA) approved pyrrole containing tyrosine kinase inhibitor and our proposed molecules possess similarities with both drug and doxorubicin is another moiety having anticancer activity. All heterocyclic derivatives were found to obey the drug filters except standard drug Doxorubicin. Bioactivity score of the compounds was predicted for drug targets including enzymes, nuclear receptors, kinase inhibitors, G protein-coupled receptor (GPCR) ligands and ion channel modulators. Absorption, distribution, metabolism and toxicity (ADMET) prediction of all proposed compound showed good Blood-brain barrier (BBB) penetration, Human intestinal absorption (HIA), Caco-2 cell permeability except compound-11 and was found to have no AdmetSAR toxicity as well as carcinogenic effect. Compounds 1-9 were slightly mutagenic while compound 2, 11, 20 and 21 showed carcinogenic effect according to Lazar toxicity prediction. Rests of the compounds were predicted to have no side effect

  11. CancerHSP: anticancer herbs database of systems pharmacology

    NASA Astrophysics Data System (ADS)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  12. The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo

    PubMed Central

    2011-01-01

    Background The initial pharmacokinetic study of a new anticancer agent (OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum (IV) (LA-12) was complemented by proteomic screening of rat plasma. The objective of the study was to identify new LA-12 target proteins that serve as markers of LA-12 treatment, response and therapy monitoring. Methods Proteomic profiles were measured by surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS) in 72 samples of rat plasma randomized according to LA-12 dose and time from administration. Correlation of 92 peak clusters with platinum concentration was evaluated using Spearman correlation analysis. Results We identified Retinol-binding protein 4 (RBP4) whose level correlated with LA-12 level in treated rats. Similar results were observed in randomly selected patients involved in Phase I clinical trials. Conclusions RBP4 induction is in agreement with known RBP4 regulation by amantadine and cisplatin. Since retinol metabolism is disrupted in many cancers and inversely associates with malignancy, these data identify a potential novel mechanism for the action of LA-12 and other similar anti-cancer drugs. PMID:22040120

  13. Anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma

    PubMed Central

    Kwak, Tae Won; Shin, Hee Jae; Jeong, Young-Il; Han, Myoung-Eun; Oh, Sae-Ock; Kim, Hyun-Jung; Kim, Do Hyung; Kang, Dae Hwan

    2015-01-01

    Background The aim of this study is to investigate the anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma. Methods The anticancer activity of streptochlorin was evaluated in vitro in various cholangiocarcinoma cell lines for apoptosis, proliferation, invasiveness, and expression of various protein levels. A liver metastasis model was prepared by splenic injection of HuCC-T1 cholangiocarcinoma cells using a BALB/c nude mouse model to study the systemic antimetastatic efficacy of streptochlorin 5 mg/kg at 8 weeks. The antitumor efficacy of subcutaneously injected streptochlorin was also assessed using a solid tumor xenograft model of SNU478 cells for 22 days in the BALB/c nude mouse. Results Streptochlorin inhibited growth and secretion of vascular endothelial growth factor by cholangiocarcinoma cells in a dose-dependent manner and induced apoptosis in vitro. In addition, streptochlorin effectively inhibited invasion and migration of cholangiocarcinoma cells. Secretion of vascular endothelial growth factor and activity of matrix metalloproteinase-9 in cholangiocarcinoma cells were also suppressed by treatment with streptochlorin. Streptochlorin effectively regulated metastasis of HuCC-T1 cells in a mouse model of liver metastasis. In a tumor xenograft study using SNU478 cells, streptochlorin significantly inhibited tumor growth without changes in body weight when compared with the control. Conclusion These results reveal that streptochlorin is a promising chemotherapeutic agent to the treatment of cholangiocarcinoma. PMID:25931814

  14. Alkyne-substituted diminazene as G-quadruplex binders with anticancer activities.

    PubMed

    Wang, Changhao; Carter-Cooper, Brandon; Du, Yixuan; Zhou, Jie; Saeed, Musabbir A; Liu, Jinbing; Guo, Min; Roembke, Benjamin; Mikek, Clinton; Lewis, Edwin A; Lapidus, Rena G; Sintim, Herman O

    2016-08-08

    G-quadruplex ligands have been touted as potential anticancer agents, however, none of the reported G-quadruplex-interactive small molecules have gone past phase II clinical trials. Recently it was revealed that diminazene (berenil, DMZ) actually binds to G-quadruplexes 1000 times better than DNA duplexes, with dissociation constants approaching 1 nM. DMZ however does not have strong anticancer activities. In this paper, using a panel of biophysical tools, including NMR, FRET melting assay and FRET competition assay, we discovered that monoamidine analogues of DMZ bearing alkyne substitutes selectively bind to G-quadruplexes. The lead DMZ analogues were shown to be able to target c-MYC G-quadruplex both in vitro and in vivo. Alkyne DMZ analogues display respectable anticancer activities (single digit micromolar GI50) against ovarian (OVCAR-3), prostate (PC-3) and triple negative breast (MDA-MB-231) cancer cell lines and represent interesting new leads to develop anticancer agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Influence of companion diagnostics on efficacy and safety of targeted anti-cancer drugs: systematic review and meta-analyses

    PubMed Central

    Ocana, Alberto; Ethier, Josee-Lyne; Díez-González, Laura; Corrales-Sánchez, Verónica; Srikanthan, Amirrtha; Gascón-Escribano, María J.; Templeton, Arnoud J.; Vera-Badillo, Francisco; Seruga, Bostjan; Niraula, Saroj; Pandiella, Atanasio; Amir, Eitan

    2015-01-01

    Background Companion diagnostics aim to identify patients that will respond to targeted therapies, therefore increasing the clinical efficacy of such drugs. Less is known about their influence on safety and tolerability of targeted anti-cancer agents. Methods and findings Randomized trials evaluating targeted agents for solid tumors approved by the US Food and Drug Administration since year 2000 were assessed. Odds ratios (OR) and and 95% confidence intervals (CI) were computed for treatment-related death, treatment-discontinuation related to toxicity and occurrence of any grade 3/4 adverse events (AEs). The 12 most commonly reported individual AEs were also explored. ORs were pooled in a meta-analysis. Analysis comprised 41 trials evaluating 28 targeted agents. Seventeen trials (41%) utilized companion diagnostics. Compared to control groups, targeted drugs in experimental arms were associated with increased odds of treatment discontinuation, grade 3/4 AEs, and toxic death irrespective of whether they utilized companion diagnostics or not. Compared to drugs without available companion diagnostics, agents with companion diagnostics had a lower magnitude of increased odds of treatment discontinuation (OR = 1.12 versus 1.65, p < 0.001) and grade 3/4 AEs (OR = 1.09 versus 2.10, p < 0.001), but no difference in risk of toxic death (OR = 1.40 versus 1.27, p = 0.69). Differences between agents with and without companion diagnostics were greatest for diarrhea (OR = 1.29 vs. 2.43, p < 0.001), vomiting (OR = 0.86 vs. 1.44, p = 0.005), cutaneous toxicity (OR = 1.82 vs. 3.88, p < 0.001) and neuropathy (OR = 0.64 vs. 1.60, p < 0.001). Conclusions Targeted drugs with companion diagnostics are associated with improved safety, and tolerability. Differences were most marked for gastrointestinal, cutaneous and neurological toxicity. PMID:26446908

  16. Influence of companion diagnostics on efficacy and safety of targeted anti-cancer drugs: systematic review and meta-analyses.

    PubMed

    Ocana, Alberto; Ethier, Josee-Lyne; Díez-González, Laura; Corrales-Sánchez, Verónica; Srikanthan, Amirrtha; Gascón-Escribano, María J; Templeton, Arnoud J; Vera-Badillo, Francisco; Seruga, Bostjan; Niraula, Saroj; Pandiella, Atanasio; Amir, Eitan

    2015-11-24

    Companion diagnostics aim to identify patients that will respond to targeted therapies, therefore increasing the clinical efficacy of such drugs. Less is known about their influence on safety and tolerability of targeted anti-cancer agents. Randomized trials evaluating targeted agents for solid tumors approved by the US Food and Drug Administration since year 2000 were assessed. Odds ratios (OR) and and 95% confidence intervals (CI) were computed for treatment-related death, treatment-discontinuation related to toxicity and occurrence of any grade 3/4 adverse events (AEs). The 12 most commonly reported individual AEs were also explored. ORs were pooled in a meta-analysis. Analysis comprised 41 trials evaluating 28 targeted agents. Seventeen trials (41%) utilized companion diagnostics. Compared to control groups, targeted drugs in experimental arms were associated with increased odds of treatment discontinuation, grade 3/4 AEs, and toxic death irrespective of whether they utilized companion diagnostics or not. Compared to drugs without available companion diagnostics, agents with companion diagnostics had a lower magnitude of increased odds of treatment discontinuation (OR = 1.12 vs. 1.65, p < 0.001) and grade 3/4 AEs (OR = 1.09 vs. 2.10, p < 0.001), but no difference in risk of toxic death (OR = 1.40 vs. 1.27, p = 0.69). Differences between agents with and without companion diagnostics were greatest for diarrhea (OR = 1.29 vs. 2.43, p < 0.001), vomiting (OR = 0.86 vs. 1.44, p = 0.005), cutaneous toxicity (OR = 1.82 vs. 3.88, p < 0.001) and neuropathy (OR = 0.64 vs. 1.60, p < 0.001). Targeted drugs with companion diagnostics are associated with improved safety, and tolerability. Differences were most marked for gastrointestinal, cutaneous and neurological toxicity.

  17. The search for novel anticancer agents: a differentiation-based assay and analysis of a folklore product.

    PubMed

    Dinnen, R D; Ebisuzaki, K

    1997-01-01

    One alternative approach to the current use of cytotoxic anticancer drugs involves the use of differentiation-inducing agents. However, a wider application of this strategy would require the development of assays to search for new differentiation-inducing agents. In this report we describe an in vitro assay using the murine erythroleukemia (clone 3-1) cells. Tests for the efficacy of this assay for the analysis of antineoplastic activity in natural products led to studies on pau d'arco, a South American folklore product used in the treatment of cancer. Purification of the activity in aqueous extracts by solvent partition and thin layer chromatography (TLC) indicated the presence of two activities, one of which was identified as lapachol. The activity in the pau d'arco extracts and of lapachol was inhibited by vitamin K1. As a vitamin K antagonist, lapachol might target such vitamin K-dependent reactions as the activation of a ligand for the Axl receptor tyrosine kinase.

  18. Genotoxicity studies on DNA-interactive telomerase inhibitors with application as anti-cancer agents.

    PubMed

    Harrington, Dean J; Cemeli, Eduardo; Carder, Joanna; Fearnley, Jamie; Estdale, Sian; Perry, Philip J; Jenkins, Terence C; Anderson, Diana

    2003-01-01

    Telomerase-targeted strategies have aroused recent interest in anti-cancer chemotherapy, because DNA-binding drugs can interact with high-order tetraplex rather than double-stranded (duplex) DNA targets in tumour cells. However, the protracted cell-drug exposure times necessary for clinical application require that telomerase inhibitory efficacy must be accompanied by both low inherent cytotoxicity and the absence of mutagenicity/genotoxicity. For the first time, the genotoxicity of a number of structurally diverse DNA-interactive telomerase inhibitors is examined in the Ames test using six Salmonella typhimurium bacterial strains (TA1535, TA1537, TA1538, TA98, TA100, and TA102). DNA damage induced by each agent was also assessed using the Comet assay with human lymphocytes. The two assay procedures revealed markedly different genotoxicity profiles that are likely to reflect differences in metabolism and/or DNA repair between bacterial and mammalian cells. The mutational spectrum for a biologically active fluorenone derivative, shown to be mutagenic in the TA100 strain, was characterised using a novel and rapid assay method based upon PCR amplification of a fragment of the hisG46 allele, followed by RFLP analysis. Preliminary analysis indicates that the majority (84%) of mutations induced by this compound are C --> A transversions at position 2 of the missense proline codon of the hisG46 allele. However, despite its genotoxic bacterial profile, this fluorenone agent gave a negative response in the Comet assay, and demonstrates how unwanted systemic effects (e.g., cytotoxicity and genotoxicity) can be prevented or ameliorated through suitable molecular fine-tuning of a candidate drug in targeted human tumour cells. Copyright 2003 Wiley-Liss, Inc.

  19. Evaluation of Degradation Properties of Polyglycolide and Its Potential as Delivery Vehicle for Anticancer Agents

    NASA Astrophysics Data System (ADS)

    Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.

    2010-03-01

    Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.

  20. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Álvaro

    2014-06-01

    Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further

  1. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    PubMed Central

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  2. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.

    PubMed

    Banerjee, Samya; Chakravarty, Akhil R

    2015-07-21

    Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-κB besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and

  3. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid.

    PubMed

    Barahuie, Farahnaz; Saifullah, Bullo; Dorniani, Dena; Fakurazi, Sharida; Karthivashan, Govindarajan; Hussein, Mohd Zobir; Elfghi, Fawzi M

    2017-05-01

    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Myricetin arrests human telomeric G-quadruplex structure: a new mechanistic approach as an anticancer agent.

    PubMed

    Mondal, Soma; Jana, Jagannath; Sengupta, Pallabi; Jana, Samarjit; Chatterjee, Subhrangsu

    2016-07-19

    The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics. We have studied the interaction of myricetin, a plant flavonoid and a putative anticancer agent, with human telomeric G-quadruplex TTAGGG(TTAGGG)3 DNA. Reverse transcription PCR data revealed significant repression in hTERT expression in MCF-7 breast cancer cells upon increasing the concentration of myricetin. Further, we conducted a telomeric repeat amplification protocol assay to confirm the inhibition of telomerase by myricetin. Optical spectroscopic techniques like circular dichroism, UV spectroscopy and fluorescence spectroscopy revealed the formation of a stable myricetin-G-quadruplex complex. The thermodynamic parameters of myricetin-G-quadruplex complex formation, presented through isothermal titration calorimetry studies, indicate the binding process to be thermodynamically favorable. In addition, high resolution NMR spectroscopy in conjunction with molecular dynamics simulation is employed to provide detailed mechanistic insights into the binding in the myricetin-G-quadruplex complex at the atomic level. Our results thus propose a new mode of action of myricetin as an anticancer agent via arresting telomeric G-quadruplex structure.

  5. Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends towards Future Drugs.

    PubMed

    Khan, Haroon; Saeedi, Mina; Nabavi, Seyed Mohammad; Mubarak, Mohammad S; Bishayee, Anupam

    2018-04-03

    Cancer continues to be a global burden, despite the advancement of various technological and pharmaceutical improvements over the past two decades. Methods for treating cancer include surgery, radiotherapy and chemotherapy in addition to other specialized techniques. On the other hand, medicinal plants have been traditionally employed either as the complementary medicine or dietary agents in the treatment and management of cancer. Medicinal plants are a rich source of secondary metabolites with interesting biological and pharmacological activities. Among these metabolites, glycosides are naturally occurring substances and have outstanding therapeutic potential and clinical utility. Different medical research engines such GoogleScholar, PubMed, SpringerLink, ScienceDirect were used to collect related literature on the subject matter. In this regard, only peer reviewed journals were considered. Emerging results showed that numerous glycosides isolated from various plants possessed marked anticancer activity against a variety of cancer cell lines. Accordingly, the aim of the present review is to shed light on the anticancer effects of glycosides, analyze possible mechanisms of action, and highlight the role of these natural agents as complementary and alternative medicine in combating and managing cancer. The glycosides isolated from different plants demonstrated potent cytotoxic effects against various cancer cell lines in initial preclinical studies. The anticancer effect was mediated through multiple mechanisms; however further detail studies are needed to understand the full potential of glycosides for clinical utility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery.

    PubMed

    Chen, Rui; Xu, Liu; Fan, Qin; Li, Man; Wang, Jingjing; Wu, Li; Li, Weidong; Duan, Jinao; Chen, Zhipeng

    2017-11-01

    Inhalation administration, compared with intravenous administration, significantly enhances chemotherapeutic drug exposure to the lung tissue and may increase the therapeutic effect for pulmonary anticancer. However, further identification of cancer cells after lung deposition of inhaled drugs is necessary to avoid side effects on normal lung tissue and to maximize drug efficacy. Moreover, as the action site of the major drug was intracellular organelles, drug target to the specific organelle is the final key for accurate drug delivery. Here, we designed a novel multifunctional nanoparticles (MNPs) for pulmonary antitumor and the material was well-designed for hierarchical target involved lung tissue target, cancer cell target, and mitochondrial target. The biodistribution in vivo determined by UHPLC-MS/MS method was employed to verify the drug concentration overwhelmingly increasing in lung tissue through inhaled administration compared with intravenous administration. Cellular uptake assay using A549 cells proved the efficient receptor-mediated cell endocytosis. Confocal laser scanning microscopy observation showed the location of MNPs in cells was mitochondria. All results confirmed the intelligent material can progressively play hierarchical target functions, which could induce more cell apoptosis related to mitochondrial damage. It provides a smart and efficient nanocarrier platform for hierarchical targeting of pulmonary anticancer drug. So far, this kind of material for pulmonary mitochondrial-target has not been seen in other reports.

  7. Nano-Chitosan Particles in Anticancer Drug Delivery: An Up-to-Date Review.

    PubMed

    Kamath, Pooja R; Sunil, Dhanya

    2017-01-01

    Cancer is one of the most awful lethal diseases all over the world and the success of its current chemotherapeutic treatment strategies is limited due to several associated drawbacks. The exploration of cancer cell physiology and its microenvironment has exposed the potential of various classes of nanocarriers to deliver anticancer chemotherapeutic agents at the tumor target site. These nanocarriers must evade the immune surveillance system and achieve target selectivity. Besides, they must gain access into the interior of cancerous cells, evade endosomal entrapment and discharge the drugs in a sustained manner. Chitosan, the second naturally abundant polysaccharide is a biocompatible, biodegradable and mucoadhesive cationic polymer which has been exploited extensively in the last few years in the effective delivery of anticancer chemotherapeutics to the target tumor cells. Therapeutic agent-loaded surface modified chitosan nanoparticles are established to be more stable, permeable and bioactive. This review will provide an up-to-date evidence-based background on recent pharmaceutical advancements in the transformation of chitosan nanoparticles for smart anticancer therapeutic drug delivery. • Efforts to improve cancer chemotherapy by exploiting the intrinsic differences between normal and neoplastic cells to achieve maximum effective drug delivery to target cancer cells through bioengineered chitosan nano delivery vectors are discussed. • The easy manipulation of surface characteristics of chitosan based nanoparticles by various functionalization methods to achieve targeted drug delivery proves its potential to be an essential tool for the advancement of anticancer drug-delivery vectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. The curcumin analog EF24 targets NF-κB and miRNA-21, and has potent anticancer activity in vitro and in vivo.

    PubMed

    Yang, Chuan He; Yue, Junming; Sims, Michelle; Pfeffer, Lawrence M

    2013-01-01

    EF24 is a curcumin analog that has improved anticancer activity over curcumin, but its therapeutic potential and mechanism of action is unknown, which is important to address as curcumin targets multiple signaling pathways. EF24 inhibits the NF-κB but not the JAK-STAT signaling pathway in DU145 human prostate cancer cells and B16 murine melanoma cells. EF24 induces apoptosis in these cells apparently by inhibiting miR-21 expression, and also enhances the expression of several miR-21 target genes, PTEN and PDCD4. EF24 treatment significantly suppressed the growth of DU145 prostate cancer xenografts in immunocompromised mice and resulted in tumor regression. EF24 enhanced the expression of the miR-21 target PTEN in DU145 tumor tissue, but suppressed the expression of markers of proliferating cells (cyclin D1 and Ki67). In syngeneic mice injected with B16 cells, EF24 treatment inhibited the formation of lung metastasis, prolonged animal survival, inhibited miR-21 expression and increased the expression of miR-21 target genes. Expression profiling of miRNAs regulated by EF24 in vitro and in vivo showed that the antitumor activity of EF24 reflected the enhanced expression of potential tumor suppressor miRNAs as well as the suppressed expression of oncogenic miRNAs, including miR-21. Taken together, our data suggest that EF24 is a potent anticancer agent and selectively targets NF-κB signaling and miRNA expression, indicating that EF24 has significant potential as a therapeutic agent in various cancers.

  9. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products.

    PubMed

    Grossman, Elizabeth A; Ward, Carl C; Spradlin, Jessica N; Bateman, Leslie A; Huffman, Tucker R; Miyamoto, David K; Kleinman, Jordan I; Nomura, Daniel K

    2017-11-16

    Many natural products that show therapeutic activities are often difficult to synthesize or isolate and have unknown targets, hindering their development as drugs. Identifying druggable hotspots targeted by covalently acting anti-cancer natural products can enable pharmacological interrogation of these sites with more synthetically tractable compounds. Here, we used chemoproteomic platforms to discover that the anti-cancer natural product withaferin A targets C377 on the regulatory subunit PPP2R1A of the tumor-suppressor protein phosphatase 2A (PP2A) complex leading to activation of PP2A activity, inactivation of AKT, and impaired breast cancer cell proliferation. We developed a more synthetically tractable cysteine-reactive covalent ligand, JNS 1-40, that selectively targets C377 of PPP2R1A to impair breast cancer signaling, proliferation, and in vivo tumor growth. Our study highlights the utility of using chemoproteomics to map druggable hotspots targeted by complex natural products and subsequently interrogating these sites with more synthetically tractable covalent ligands for cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evolution in Medicinal Chemistry of Ursolic Acid Derivatives as Anticancer Agents

    PubMed Central

    Chen, Haijun; Gao, Yu; Wang, Ailan; Zhou, Xiaobin; Zheng, Yunquan; Zhou, Jia

    2015-01-01

    Currently, there is a renewed interest in common dietaries and plant-based traditional medicines for the prevention and treatment of cancer. In the search for potential anticancer agents from natural sources, ursolic acid (UA), a pentacyclic triterpenoid widely found in various medicinal herbs and fruits, exhibits powerful biological effects including its attractive anticancer activity against various types of cancer cells. However, the limited solubility, rapid metabolism and poor bioavailability of UA restricted its further clinical applications. In the past decade, with substantial progress toward the development of new chemical entities for the treatment of cancer, numerous UA derivatives have been designed and prepared to overcome its disadvantages. Despite extensive effort, discovery of effective UA derivatives has so far met with only limited success. This review summarizes the current status of the structural diversity and evolution in medicinal chemistry of UA analogues and provides a detailed discussion of future direction for further research in the chemical modifications of UA. PMID:25617694

  11. Rational Design, Synthesis, and Biological Evaluation of Third Generation α-Noscapine Analogues as Potent Tubulin Binding Anti-Cancer Agents

    PubMed Central

    Manchukonda, Naresh Kumar; Naik, Pradeep Kumar; Santoshi, Seneha; Lopus, Manu; Joseph, Silja; Sridhar, Balasubramanian; Kantevari, Srinivas

    2013-01-01

    Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔG bind) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents. PMID:24205049

  12. Gold-Containing Indoles as Anti-Cancer Agents that Potentiate the Cytotoxic Effects of Ionizing Radiation

    PubMed Central

    Craig, Sandra; Gao, Lei; Lee, Irene; Gray, Thomas; Berdis, Anthony J.

    2012-01-01

    This report describes the design and application of several distinct gold-containing indoles as anti-cancer agents. When used individually, all gold-bearing compounds display cytostatic effects against leukemia and adherent cancer cell lines. However, two gold-bearing indoles show unique behavior by increasing the cytotoxic effects of clinically relevant levels of ionizing radiation. Quantifying the amount of DNA damage demonstrates that each gold-indole enhances apoptosis by inhibiting DNA repair. Both Au(I)-indoles were tested for inhibitory effects against various cellular targets including thioredoxin reductase, a known target of several gold compounds, and various ATP-dependent kinases. While neither compound significantly inhibits the activity of thioreoxin reductase, both showed inhibitory effects against several kinases associated with cancer initiation and progression. The inhibition of these kinases provides a possible mechanism for the ability of these Au(I)-indoles potentiate the cytotoxic effects of ionizing radiation. Clinical applications of combining Au(I)-indoles with ionizing radiation are discussed as a new strategy to achieve chemosensitization of cancer cells. PMID:22289037

  13. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  14. Structure-Activity Relationships of Orotidine-5′-Monophosphate Decarboxylase Inhibitors as Anticancer Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, A.; Konforte, D; Poduch, E

    2009-01-01

    A series of 6-substituted and 5-fluoro-6-substituted uridine derivatives were synthesized and evaluated for their potential as anticancer agents. The designed molecules were synthesized from either fully protected uridine or the corresponding 5-fluorouridine derivatives. The mononucleotide derivatives were used for enzyme inhibition investigations against ODCase. Anticancer activities of all the synthesized derivatives were evaluated using the nucleoside forms of the inhibitors. 5-Fluoro-UMP was a very weak inhibitor of ODCase. 6-Azido-5-fluoro and 5-fluoro-6-iodo derivatives are covalent inhibitors of ODCase, and the active site Lys145 residue covalently binds to the ligand after the elimination of the 6-substitution. Among the synthesized nucleoside derivatives, 6-azido-5-fluoro,more » 6-amino-5-fluoro, and 6-carbaldehyde-5-fluoro derivatives showed potent anticancer activities in cell-based assays against various leukemia cell lines. On the basis of the overall profile, 6-azido-5-fluoro and 6-amino-5-fluoro uridine derivatives exhibited potential for further investigations.« less

  15. Hyaluronic acid for anticancer drug and nucleic acid delivery.

    PubMed

    Dosio, Franco; Arpicco, Silvia; Stella, Barbara; Fattal, Elias

    2016-02-01

    Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Synthesis of structurally diverse benzosuberene analogues and their biological evaluation as anti-cancer agents

    PubMed Central

    Tanpure, Rajendra P.; George, Clinton S.; Strecker, Tracy E.; Devkota, Laxman; Tidmore, Justin K.; Lin, Chen-Ming; Herdman, Christine A.; MacDonough, Matthew T.; Sriram, Madhavi; Chaplin, David J.; Trawick, Mary Lynn; Pinney, Kevin G.

    2014-01-01

    Diversely functionalized, fused aryl-alkyl ring systems hold a prominent position as well-established molecular frameworks for a variety of anti-cancer agents. The benzosuberene (6,7 fused, also referred to as dihydro-5H-benzo[7]annulene and benzocycloheptene) ring system has emerged as a valuable molecular core component for the development of inhibitors of tubulin assembly, which function as antiproliferative anti-cancer agents and, in certain cases, as vascular disrupting agents (VDAs). Both a phenolic-based analogue (known as KGP18, compound 39) and its corresponding amine-based congener (referred to as KGP156, compound 45), which demonstrate strong inhibition of tubulin assembly (low micromolar range) and potent cytotoxicity (picomolar range for KGP18 and nanomolar range for KGP156) are noteworthy examples of such benzosuberene-based compounds. In order to extend the structure-activity relationship (SAR) knowledge base related to benzosuberene anti-cancer agents, a series of eleven analogues (including KGP18) were prepared in which the methoxylation pattern on the pendant aryl ring as well as functional group incorporation on the fused aryl ring were varied. The synthetic approach to these compounds featured a sequential Wittig olefination, reduction, Eaton's reagent-mediated cyclization strategy to achieve the core benzosuberone intermediate, and represented a higher-yielding synthesis of KGP18 (which we prepared previously through a ring-expansion strategy). Incorporation of a fluorine or chlorine atom at the 1-position of the fused aryl ring or replacement of one of the methoxy groups with hydrogen (on the pendant aryl ring of KGP18) led to benzosuberene analogues that were both strongly inhibitory against tubulin assembly (IC50 approximately 1.0 M) and strongly cytotoxic against selected human cancer cell lines (for example, GI50 = 5.47 nM against NCI-H460 cells with fluorobenzosuberene analogue 37). A water-soluble phosphate prodrug salt of KGP18

  17. Targeting Histone Deacetylases in Malignant Melanoma: A Future Therapeutic Agent or Just Great Expectations?

    PubMed

    Garmpis, Nikolaos; Damaskos, Christos; Garmpi, Anna; Dimitroulis, Dimitrios; Spartalis, Eleftherios; Margonis, Georgios-Antonios; Schizas, Dimitrios; Deskou, Irini; Doula, Chrysoula; Magkouti, Eleni; Andreatos, Nikolaos; Antoniou, Efstathios A; Nonni, Afroditi; Kontzoglou, Konstantinos; Mantas, Dimitrios

    2017-10-01

    Malignant melanoma is the most aggressive type of skin cancer, with increasing frequency and mortality. Melanoma is characterized by rapid proliferation and metastases. Malignant transformation of normal melanocytes is associated with imbalance between oncogenes' action and tumor suppressor genes. Mutations or inactivation of these genes plays an important role in the pathogenesis of malignant melanoma. Many target-specific agents improved progression-free survival but unfortunately metastatic melanoma remains incurable, so new therapeutic strategies are needed. The balance of histones' acetylation affects cell cycle progression, differentiation and apoptosis. Histone deacetylases (HDAC) are associated with different types of cancer. Histone deacetylase inhibitors (HDACI) are enzymes that inhibit the action of HDAC, resulting in block of tumor cell proliferation. A small number of these enzymes has been studied regarding their anticancer effects in melanoma. The purpose of this article was to review the therapeutic effect of HDACI against malignant melanoma, enlightening the molecular mechanisms of their action. The MEDLINE database was used. The keywords/ phrases were; HDACI, melanoma, targeted therapies for melanoma. Our final conclusions were based on studies that didn't refer solely to melanoma due to their wider experimental data. Thirty-two articles were selected from the total number of the search's results. Only English articles published until March 2017 were used. Molecules, such as valproid acid (VPA), LBH589, LAQ824 (dacinostat), vorinostat, tubacin, sirtinol and tx-527, suberoyl bis-hydroxamic acid (SBHA), depsipeptide and Trichostatin A (TSA) have shown promising antineoplastic effects against melanoma. HDACI represent a promising agent for targeted therapy. More trials are required. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  19. Anticancer drug development from traditional cytotoxic to targeted therapies: evidence of shorter drug research and development time, and shorter drug lag in Japan.

    PubMed

    Kawabata-Shoda, E; Masuda, S; Kimura, H

    2012-10-01

    Concern about the drug lag, the delay in marketing approval between one country and another, for anticancer drugs has increased in Japan. Although a number of studies have investigated the drug lag, none has investigated it in relation to the transition of anticancer therapy from traditional cytotoxic drugs to molecularly targeted agents. Our aim was to investigate current trend in oncology drug lag between the US and Japan and identify oncology drugs approved in only one of the two countries. Publicly and commercially available data sources were used to identify drugs approved in the US and Japan as of 31 December 2010 and the data used to calculate the drug lag for individual drugs. Fifty-one drugs were approved in both the US and Japan, whereas 34 and 19 drugs were approved only in the US or Japan, respectively. Of the 19 drugs approved only in Japan, 12 had not been subject to development for a cancer indication in the US, and all were approved before 1996 in Japan. Of the 34 drugs approved only in the US, 20 had not been subject to development in Japan, and none was in the top 25 by annual US anticancer drug-class sales. For drugs approved in both countries, the mean approval lag of the molecularly targeted drugs (MTDs) was significantly shorter than that of the non-molecularly targeted drugs (non-MTDs) (3·3 vs. 5·4 years). Further, mean R&D time of the MTDs was significantly shorter than that of non-MTDs (10·0 vs. 13·7 years). The price of MTDs had increased on average by 6·6% annually in the US, whereas it had decreased on average by 4·3% biyearly in Japan. The emergence of new molecularly targeted agents has contributed to reducing the approval lag, most likely due to improvements in R&D strategy. © 2012 Blackwell Publishing Ltd.

  20. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives.

    PubMed

    Lazarević, Tatjana; Rilak, Ana; Bugarčić, Živadin D

    2017-12-15

    Metallodrugs offer potential for unique mechanism of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. Examples of metal compounds and chelating agents currently in clinical use, clinical trials or preclinical development are highlighted. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents.

    PubMed

    Matzno, Sumio; Yamaguchi, Yuka; Akiyoshi, Takeshi; Nakabayashi, Toshikatsu; Matsuyama, Kenji

    2008-06-01

    The possibility of vitamin K3 (VK3) as an anticancer agent was assessed. VK3 dose-dependently diminished the cell viability (measured as esterase activity) with IC50 of 13.7 microM and Hill coefficient of 3.1 in Hep G2 cells. It also decreased the population of S phase and arrested cell cycle in the G2/M phase in a dose-dependent manner. G2/M arrest was regulated by the increment of cyclin A/cdk1 and cyclin A/cdk2 complex, and contrasting cyclin B/cdk1 complex decrease. Finally, combined application demonstrated that VK3 significantly enhanced the cytotoxicity of etoposide, a G2 phase-dependent anticancer agent, whereas it reduced the cytotoxic activity of irinotecan, a S phase-dependent agent. These findings suggest that VK3 induces G2/M arrest by inhibition of cyclin B/cdk1 complex formation, and is thus useful as an enhancer of G2 phase-dependent drugs in hepatic cancer chemotherapy.

  2. Aristoforin, a novel stable derivative of hyperforin, is a potent anticancer agent.

    PubMed

    Gartner, Michael; Müller, Thomas; Simon, Jan C; Giannis, Athanassios; Sleeman, Jonathan P

    2005-01-01

    Hyperforin, a natural product of St. John's wort (Hypericum perforatum L.), has a number of pharmacological activities, including antidepressive and antibacterial properties. Furthermore, hyperforin has pronounced antitumor properties against different tumor cell lines, both in vitro and in vivo. Despite being a promising novel anticancer agent, the poor solubility and stability of hyperforin in aqueous solution limits its potential clinical application. In this study, we present the synthesis of hyperforin derivatives with improved pharmacological activity. The synthesized compounds were tested for their solubility and stability properties. They were also investigated for their antitumor properties, both in vitro and in vivo. One of these hyperforin derivatives, Aristoforin, is more soluble in aqueous solution than hyperforin and is additionally highly stable. Importantly, it retains the antitumor properties of the parental compound without inducing toxicity in experimental animals. These data strongly suggest that Aristoforin has potential as an anticancer drug.

  3. The Curcumin Analog EF24 Targets NF-κB and miRNA-21, and Has Potent Anticancer Activity In Vitro and In Vivo

    PubMed Central

    Yang, Chuan He; Yue, Junming; Sims, Michelle; Pfeffer, Lawrence M.

    2013-01-01

    EF24 is a curcumin analog that has improved anticancer activity over curcumin, but its therapeutic potential and mechanism of action is unknown, which is important to address as curcumin targets multiple signaling pathways. EF24 inhibits the NF-κB but not the JAK-STAT signaling pathway in DU145 human prostate cancer cells and B16 murine melanoma cells. EF24 induces apoptosis in these cells apparently by inhibiting miR-21 expression, and also enhances the expression of several miR-21 target genes, PTEN and PDCD4. EF24 treatment significantly suppressed the growth of DU145 prostate cancer xenografts in immunocompromised mice and resulted in tumor regression. EF24 enhanced the expression of the miR-21 target PTEN in DU145 tumor tissue, but suppressed the expression of markers of proliferating cells (cyclin D1 and Ki67). In syngeneic mice injected with B16 cells, EF24 treatment inhibited the formation of lung metastasis, prolonged animal survival, inhibited miR-21 expression and increased the expression of miR-21 target genes. Expression profiling of miRNAs regulated by EF24 in vitro and in vivo showed that the antitumor activity of EF24 reflected the enhanced expression of potential tumor suppressor miRNAs as well as the suppressed expression of oncogenic miRNAs, including miR-21. Taken together, our data suggest that EF24 is a potent anticancer agent and selectively targets NF-κB signaling and miRNA expression, indicating that EF24 has significant potential as a therapeutic agent in various cancers. PMID:23940701

  4. From old alkylating agents to new minor groove binders.

    PubMed

    Puyo, Stéphane; Montaudon, Danièle; Pourquier, Philippe

    2014-01-01

    Alkylating agents represent the oldest class of anticancer agents with the approval of mechloretamine by the FDA in 1949. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in the treatment of specific malignancies, sometimes representing the unique option for the treatment of refractory tumors. Here, we are reviewing the major classes of alkylating agents, with a particular focus on the latest generations of compounds that specifically target the minor groove of the DNA. These naturally occurring derivatives have a unique mechanism of action that explains the recent regain of interest in developing new classes of alkylating agents that could be used in combination with other anticancer drugs to enhance tumor response in the clinic. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure–Activity Relationships, and Molecular Mechanisms of Action

    PubMed Central

    Nag, Subhasree Ashok; Qin, Jiang-Jiang; Wang, Wei; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Conventional chemotherapeutic agents are often toxic not only to tumor cells but also to normal cells, limiting their therapeutic use in the clinic. Novel natural product anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Several pre-clinical and clinical studies have demonstrated the anticancer potential of Panax ginseng, a widely used traditional Chinese medicine. The anti-tumor efficacy of ginseng is attributed mainly to the presence of saponins, known as ginsenosides. In this review, we focus on how ginsenosides exert their anticancer effects by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (c-myc, EGFR, and vascular endothelial growth factor), tumor suppressors (p53 and p21), oncogenes (MDM2), cell death mediators (Bcl-2, Bcl-xL, XIAP, caspases, and death receptors), inflammatory response molecules (NF-κB and COX-2), and protein kinases (JNK, Akt, and AMP-activated protein kinase). We also discuss the structure–activity relationship of various ginsenosides and their potentials in the treatment of various human cancers. In summary, recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors. PMID:22403544

  6. Berberine as a promising safe anti-cancer agent - is there a role for mitochondria?

    PubMed

    Diogo, Catia V; Machado, Nuno G; Barbosa, Inês A; Serafim, Teresa L; Burgeiro, Ana; Oliveira, Paulo J

    2011-06-01

    Metabolic regulation is largely dependent on mitochondria, which play an important role in energy homeostasis. Imbalance between energy intake and expenditure leads to mitochondrial dysfunction, characterized by a reduced ratio of energy production (ATP production) to respiration. Due to the role of mitochondrial factors/events in several apoptotic pathways, the possibility of targeting that organelle in the tumor cell, leading to its elimination is very attractive, although the safety issue is problematic. Berberine, a benzyl-tetra isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been extensively used for many centuries, especially in the traditional Chinese and Native American medicine. Several evidences suggest that berberine possesses several therapeutic uses, including anti-tumoral activity. The present review supplies evidence that berberine is a safe anti-cancer agent, exerting several effects on mitochondria, including inhibition of mitochondrial Complex I and interaction with the adenine nucleotide translocator which can explain several of the described effects on tumor cells.

  7. Repurposing anticancer drugs for targeting necroptosis.

    PubMed

    Fulda, Simone

    2018-04-25

    Necroptosis represents a form of programmed cell death that can be engaged by various upstream signals, for example by ligation of death receptors, by viral sensors or by pattern recognition receptors. It depends on several key signaling proteins, including the kinases Receptor-Interacting Protein (RIP)1 and RIP3 and the pseudokinase mixed-lineage kinase domain-like protein (MLKL). Necroptosis has been implicated in a number of physiological and pathophysiological conditions and is disturbed in many human diseases. Thus, targeted interference with necroptosis signaling may offer new opportunities for the treatment of human diseases. Besides structure-based drug design, in recent years drug repositioning has emerged as a promising alternative to develop drug-like compounds. There is accumulating evidence showing that multi-targeting kinase inhibitors, for example Dabrafenib, Vemurafenib, Sorafenib, Pazopanib and Ponatinib, used for the treatment of cancer also display anti-necroptotic activity. This review summarizes recent evidence indicating that some anticancer kinase inhibitors also negatively affect necroptosis signaling. This implies that some cancer therapeutics may be repurposed for other pathologies, e.g. ischemic or inflammatory diseases.

  8. Systemic use of tumor necrosis factor alpha as an anticancer agent

    PubMed Central

    Roberts, Nicholas J.; Zhou, Shibin; Diaz, Luis A.; Holdhoff, Matthias

    2011-01-01

    Tumor necrosis factor-α (TNF-α) has been discussed as a potential anticancer agent for many years, however initial enthusiasm about its clinical use as a systemic agent was curbed due to significant toxicities and lack of efficacy. Combination of TNF-α with chemotherapy in the setting of hyperthermic isolated limb perfusion (ILP), has provided new insights into a potential therapeutic role of this agent. The therapeutic benefit from TNF-α in ILP is thought to be not only due to its direct anti-proliferative effect, but also due to its ability to increase penetration of the chemotherapeutic agents into the tumor tissue. New concepts for the use of TNF-α as a facilitator rather than as a direct actor are currently being explored with the goal to exploit the ability of this agent to increase drug delivery and to simultaneously reduce systemic toxicity. This review article provides a comprehensive overview on the published previous experience with systemic TNF-α. Data from 18 phase I and 10 phase II single agent as well as 18 combination therapy studies illustrate previously used treatment and dose schedules, response data as well as the most prominently observed adverse effects. Also discussed, based on recent preclinical data, is a potential future role of systemic TNF-α in combination with liposomal chemotherapy to facilitate increased drug uptake into tumors. PMID:22036896

  9. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery.

    PubMed

    Dheer, Divya; Arora, Divya; Jaglan, Sundeep; Rawal, Ravindra K; Shankar, Ravi

    2017-01-01

    Polysaccharides, an important class of biological polymers, are effectively bioactive, nontoxic, hydrophilic, biodegradable and offer a wide diversity in structure and properties. These can be easily modified chemically and biochemically to enhance the bioadhesion with biological tissues, better stability and can improve bioavailability of drugs. Most of the chemotherapeutic drugs have a narrow therapeutic index, slow drug delivery systems and poor water solubility that usually proves toxic to human bodies. The inherent biocompatibility of these biopolymers have shown enhancement of solubility of some chemotherapeutic drugs which also leads to the preparation of nanomaterials for the delivery of antibiotics, anticancer, proteins, peptides and nucleic acids using several routes of administration. Recently, synthesis and research on polysaccharides based nanomaterials have gained enormous attention as one of the most applicable resources in nanomedicine area. This review article will provide a specific emphasis on polysaccharides as natural biomaterials for targeted anticancer drug delivery system.

  10. Withaferin-A—A Natural Anticancer Agent with Pleitropic Mechanisms of Action

    PubMed Central

    Lee, In-Chul; Choi, Bu Young

    2016-01-01

    Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A. PMID:26959007

  11. Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action.

    PubMed

    Lee, In-Chul; Choi, Bu Young

    2016-03-04

    Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A.

  12. PEG conjugates in clinical development or use as anticancer agents: an overview.

    PubMed

    Pasut, Gianfranco; Veronese, Francesco M

    2009-11-12

    During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented.

  13. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    PubMed Central

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  14. Hyperglycemia Associated With Targeted Oncologic Treatment: Mechanisms and Management.

    PubMed

    Goldman, Jonathan W; Mendenhall, Melody A; Rettinger, Sarah R

    2016-07-29

    : Molecularly targeted cancer therapy has rapidly changed the landscape of oncologic care, often improving patients' prognosis without causing as substantial a quality-of-life decrement as cytotoxic chemotherapy does. Nevertheless, targeted agents can cause side effects that may be less familiar to medical oncologists and that require the attention and expertise of subspecialists. In this review, we focus on hyperglycemia, which can occur with use of new anticancer agents that interact with cell proliferation pathways. Key mediators of these pathways include the tyrosine kinase receptors insulin growth factor receptor 1 (IGF-1R) and epidermal growth factor receptor (EGFR), as well as intracellular signaling molecules phosphatidylinositol 3-kinase (PI3K), AKT, and mammalian target of rapamycin (mTOR). We summarize available information on hyperglycemia associated with agents that inhibit these molecules within the larger context of adverse event profiles. The highest incidence of hyperglycemia is observed with inhibition of IGF-1R or mTOR, and although the incidence is lower with PI3K, AKT, and EGFR inhibitors, hyperglycemia is still a common adverse event. Given the interrelationships between the IGF-1R and cell proliferation pathways, it is important for oncologists to understand the etiology of hyperglycemia caused by anticancer agents that target those pathways. We also discuss monitoring and management approaches for treatment-related hyperglycemia for some of these agents, with a focus on our experience during the clinical development of the EGFR inhibitor rociletinib. Treatment-related hyperglycemia is associated with several anticancer agents. Many cancer patients may also have preexisting or undiagnosed diabetes or glucose intolerance. Screening can identify patients at risk for hyperglycemia before treatment with these agents. Proper monitoring and management of symptoms, including lifestyle changes and pharmacologic intervention, may allow patients to

  15. Deorphaning the Macromolecular Targets of the Natural Anticancer Compound Doliculide.

    PubMed

    Schneider, Gisbert; Reker, Daniel; Chen, Tao; Hauenstein, Kurt; Schneider, Petra; Altmann, Karl-Heinz

    2016-09-26

    The cyclodepsipeptide doliculide is a marine natural product with strong actin-polymerizing and anticancer activities. Evidence for doliculide acting as a potent and subtype-selective antagonist of prostanoid E receptor 3 (EP3) is presented. Computational target prediction suggested that this membrane receptor is a likely macromolecular target and enabled immediate in vitro validation. This proof-of-concept study demonstrates the in silico deorphanization of phenotypic screening hits as a viable concept for future natural-product-inspired chemical biology and drug discovery efforts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Suprafenacine, an Indazole-Hydrazide Agent, Targets Cancer Cells Through Microtubule Destabilization

    PubMed Central

    Choi, Bo-Hwa; Chattopadhaya, Souvik; Thanh, Le Nguyen; Feng, Lin; Nguyen, Quoc Toan; Lim, Chuan Bian; Harikishore, Amaravadhi; Nanga, Ravi Prakash Reddy; Bharatham, Nagakumar; Zhao, Yan; Liu, Xuewei; Yoon, Ho Sup

    2014-01-01

    Microtubules are a highly validated target in cancer therapy. However, the clinical development of tubulin binding agents (TBA) has been hampered by toxicity and chemoresistance issues and has necessitated the search for new TBAs. Here, we report the identification of a novel cell permeable, tubulin-destabilizing molecule - 4,5,6,7-tetrahydro-1H-indazole-3-carboxylic acid [1p-tolyl-meth-(E)-ylidene]-hydrazide (termed as Suprafenacine, SRF). SRF, identified by in silico screening of annotated chemical libraries, was shown to bind microtubules at the colchicine-binding site and inhibit polymerization. This led to G2/M cell cycle arrest and cell death via a mitochondria-mediated apoptotic pathway. Cell death was preceded by loss of mitochondrial membrane potential, JNK - mediated phosphorylation of Bcl-2 and Bad, and activation of caspase-3. Intriguingly, SRF was found to selectively inhibit cancer cell proliferation and was effective against drug-resistant cancer cells by virtue of its ability to bypass the multidrug resistance transporter P-glycoprotein. Taken together, our results suggest that SRF has potential as a chemotherapeutic agent for cancer treatment and provides an alternate scaffold for the development of improved anti-cancer agents. PMID:25354194

  17. Interactome Analysis of Microtubule-targeting Agents Reveals Cytotoxicity Bases in Normal Cells.

    PubMed

    Gutiérrez-Escobar, Andrés Julián; Méndez-Callejas, Gina

    2017-12-01

    Cancer causes millions of deaths annually and microtubule-targeting agents (MTAs) are the most commonly-used anti-cancer drugs. However, the high toxicity of MTAs on normal cells raises great concern. Due to the non-selectivity of MTA targets, we analyzed the interaction network in a non-cancerous human cell. Subnetworks of fourteen MTAs were reconstructed and the merged network was compared against a randomized network to evaluate the functional richness. We found that 71.4% of the MTA interactome nodes are shared, which affects cellular processes such as apoptosis, cell differentiation, cell cycle control, stress response, and regulation of energy metabolism. Additionally, possible secondary targets were identified as client proteins of interphase microtubules. MTAs affect apoptosis signaling pathways by interacting with client proteins of interphase microtubules, suggesting that their primary targets are non-tumor cells. The paclitaxel and doxorubicin networks share essential topological axes, suggesting synergistic effects. This may explain the exacerbated toxicity observed when paclitaxel and doxorubicin are used in combination for cancer treatment. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Preclinical Investigations of PM01183 (Lurbinectedin) as a Single Agent or in Combination with Other Anticancer Agents for Clear Cell Carcinoma of the Ovary

    PubMed Central

    Takahashi, Ryoko; Mabuchi, Seiji; Kawano, Mahiru; Sasano, Tomoyuki; Matsumoto, Yuri; Kuroda, Hiromasa; Kozasa, Katsumi; Hashimoto, Kae; Sawada, Kenjiro; Kimura, Tadashi

    2016-01-01

    Objective The objective of this study was to evaluate the antitumor effects of lurbinectedin as a single agent or in combination with existing anticancer agents for clear cell carcinoma (CCC) of the ovary, which is regarded as an aggressive, chemoresistant, histological subtype. Methods Using human ovarian CCC cell lines, the antitumor effects of lurbinectedin, SN-38, doxorubicin, cisplatin, and paclitaxel as single agents were assessed using the MTS assay. Then, the antitumor effects of combination therapies involving lurbinectedin and 1 of the other 4 agents were evaluated using isobologram analysis to examine whether these combinations displayed synergistic effects. The antitumor activity of each treatment was also examined using cisplatin-resistant and paclitaxel-resistant CCC sublines. Finally, we determined the effects of mTORC1 inhibition on the antitumor activity of lurbinectedin-based chemotherapy. Results Lurbinectedin exhibited significant antitumor activity toward chemosensitive and chemoresistant CCC cells in vitro. An examination of mouse CCC cell xenografts revealed that lurbinectedin significantly inhibits tumor growth. Among the tested combinations, lurbinectedin plus SN-38 resulted in a significant synergistic effect. This combination also had strong synergistic effects on both the cisplatin-resistant and paclitaxel-resistant CCC cell lines. Everolimus significantly enhanced the antitumor activity of lurbinectedin-based chemotherapies. Conclusions Lurbinectedin, a new agent that targets active transcription, exhibits antitumor activity in CCC when used as a single agent and has synergistic antitumor effects when combined with irinotecan. Our results indicate that lurbinectedin is a promising agent for treating ovarian CCC, both as a first-line treatment and as a salvage treatment for recurrent lesions that develop after platinum-based or paclitaxel treatment. PMID:26986199

  19. Repurposing psychiatric drugs as anti-cancer agents.

    PubMed

    Huang, Jing; Zhao, Danwei; Liu, Zhixiong; Liu, Fangkun

    2018-04-10

    Cancer is a major public health problem and one of the leading contributors to the global disease burden. The high cost of development of new drugs and the increasingly severe burden of cancer globally have led to increased interest in the search and development of novel, affordable anti-neoplastic medications. Antipsychotic drugs have a long history of clinical use and tolerable safety; they have been used as good targets for drug repurposing. Being used for various psychiatric diseases for decades, antipsychotic drugs are now reported to have potent anti-cancer properties against a wide variety of malignancies in addition to their antipsychotic effects. In this review, an overview of repurposing various psychiatric drugs for cancer treatment is presented, and the putative mechanisms for the anti-neoplastic actions of these antipsychotic drugs are reviewed. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A New Method Without Organic Solvent to Targeted Nanodrug for Enhanced Anticancer Efficacy

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Yang, Xiangrui; Zou, Mingyuan; Hou, Zhenqing; Yan, Jianghua

    2017-06-01

    Since the hydrophobic group is always essential to the synthesis of the drug-loaded nanoparticles, a majority of the methods rely heavily on organic solvent, which may not be completely removed and might be a potential threat to the patients. In this study, we completely "green" synthesized 10-hydroxycamptothecine (HCPT) loaded, folate (FA)-modified nanoneedles (HFNDs) for highly efficient cancer therapy with high drug loading, targeting property, and imaging capability. It should be noted that no organic solvent was used in the preparation process. In vitro cell uptake study and the in vivo distribution study showed that the HFNDs, with FA on the surface, revealed an obviously targeting property and entered the HeLa cells easier than the chitosan-HCPT nanoneedles without FA modified (NDs). The cytotoxicity tests illustrated that the HFNDs possessed better killing ability to HeLa cells than the individual drug or the NDs in the same dose, indicating its good anticancer effect. The in vivo anticancer experiment further revealed the pronounced anticancer effects and the lower side effects of the HFNDs. This new method without organic solvent will lead to a promising sustained drug delivery system for cancer diagnosis and treatment.

  1. Post-marketing research and its outcome for novel anticancer agents approved by both the FDA and EMA between 2005 and 2010: A cross-sectional study.

    PubMed

    Zeitoun, Jean-David; Baron, Gabriel; Vivot, Alexandre; Atal, Ignacio; Downing, Nicholas S; Ross, Joseph S; Ravaud, Philippe

    2018-01-15

    Post-marketing research in oncology has rarely been described. We aimed to characterize post-marketing trials for a consistent set of anticancer agents over a long period. We performed a cross-sectional analysis of post-marketing trials registered at ClinicalTrials.gov through September 2014 for novel anticancer agents approved by both the US Food and Drug Administration and the European Medicines Agency between 2005 and 2010. All relevant post-marketing trials were classified according to indication, primary outcome, starting date, sponsors, and planned enrollment. Supplemental indications were retrieved from regulatory documents and publication rate was assessed by two different methods. Ten novel anticancer agents were eligible: five were indicated for hematologic malignancies and the remaining five for solid cancers (three for kidney cancer). We identified 2,345 post-marketing trials; 1,362 (58.1%) targeted an indication other than the originally approved one. We observed extreme variations among drugs in both number of post-marketing trials (range 8-530) and overall population to be enrolled per trial (1-8,381). Post-marketing trials assessed almost all types of cancers, the three most frequently studied cancers being leukemia, kidney cancer and myeloma. In all, 6.6% of post-marketing trials had a clinical endpoint as a primary outcome, and 35.9% and 54.1% had a safety or surrogate endpoint, respectively, as a primary outcome. Nine drugs obtained approval for supplemental indications. The publication rate at 10 years was 12.3 to 26.1% depending on the analysis method. In conclusion, we found that post-marketing research in oncology is highly heterogeneous and the publication rate of launched trials is low. © 2017 UICC.

  2. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment.

    PubMed

    Jain, Vikas; Jain, Shikha; Mahajan, S C

    2015-01-01

    Cancer is defined as an uncontrolled growth of abnormal cells. Current treatment strategies for cancer include combination of radiation, chemotherapy and surgery. The long-term use of conventional drug delivery systems for cancer chemotherapy leads to fatal damage of normal proliferate cells and this is particularly used for the management of solid tumors, where utmost tumor cells are not invaded quickly. A targeted drug delivery system (TDDS) is a system, which releases the drug at a preselected biosite in a controlled manner. Nanotechnology based delivery systems are making a significant impact on cancer treatment and the polymers play key role in the development of nanopraticlulate carriers for cancer therapy. Some important technological advantages of nanotherapeutic drug delivery systems (NDDS) include prolonged half-life, improved bio-distribution, increased circulation time of the drug, controlled and sustained release of the drug, versatility of route of administration, increased intercellular concentration of drug and many more. This review covers the current research on polymer based anticancer agents, the rationale for development of these polymer therapeutical systems and discusses the benefits and challenges of cancer nanomedicines including polymer-drug conjugates, micelles, dendrimers, immunoconjugates, liposomes, nanoparticles.

  3. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs.

    PubMed

    Feng, Shini; Zhang, Huijie; Yan, Ting; Huang, Dandi; Zhi, Chunyi; Nakanishi, Hideki; Gao, Xiao-Dong

    With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN) has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS) with receptor-mediated targeting. Folic acid (FA) was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 μg/mL. Then, doxorubicin hydrochloride (DOX), a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy.

  4. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs

    PubMed Central

    Feng, Shini; Zhang, Huijie; Yan, Ting; Huang, Dandi; Zhi, Chunyi; Nakanishi, Hideki; Gao, Xiao-Dong

    2016-01-01

    With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN) has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS) with receptor-mediated targeting. Folic acid (FA) was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 μg/mL. Then, doxorubicin hydrochloride (DOX), a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. PMID:27695318

  5. Development of a Combination Therapy for Prostate Cancer by Targeting Stat3 and HIF-1alpha

    DTIC Science & Technology

    2013-07-01

    inflammation-induced cancer, making it an attractive target (25-27). A3. Innovation 1. TEL03 is a novel anti-cancer agent from Chinese herbal medicine ...agents from Chinese herbal medicine (CHM) that targets HIF-1α /2α for prostate cancer therapy. Hypoxia orchestrated by HIF-1αis crucial for tumor...Stat3 for treatment of prostate and other cancers. TEL03, which is a novel anti-cancer agent derived from Chinese herbal medicine (CHM: Hypocrella

  6. PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery.

    PubMed

    Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok Kumar; Kesharwani, Prashant; Gupta, Lokesh; Iyer, Arun K; Gupta, Umesh

    2016-01-01

    Nanotechnological advancement has become a key standard for the diagnosis and treatment of several complex disorders such as cancer by utilizing the enhanced permeability and retention effect and tumor-specific targeting. Synthesis and designing the formulation of active agents in terms of their efficient delivery is of prime importance for healthcare. The use of nanocarriers has resolved the undesirable characteristics of anticancer drugs such as low solubility and poor permeability in cells. Several types of nanoparticles (NPs) have been designed with the use of various polymers along or devoid of surface engineering for targeting tumor cells. All NPs include polymers in their framework and, of these, polylactide-co-glycolide (PLGA) is biodegradable and Food and Drug Administration approved for human use. PLGA has been used extensively in the development of NPs for anticancer drug delivery. The extensive use of PLGA NPs is promising for cancer therapy, with higher efficiency and less adverse effects. The present review focused on recent developments regarding PLGA NPs, the methods used for their preparation, their characterization, and their utility in the delivery of chemotherapeutic agents.

  7. New perspectives of cobalt tris(bipyridine) system: anti-cancer effect and its collateral sensitivity towards multidrug-resistant (MDR) cancers

    PubMed Central

    Mok, Simon Wing Fai; Liu, Hauwei; Zeng, Wu; Han, Yu; Gordillo-Martinez, Flora; Chan, Wai-Kit; Wong, Keith Man-Chung; Wong, Vincent Kam Wai

    2017-01-01

    Platinating compounds including cisplatin, carboplatin, and oxaliplatin are common chemotherapeutic agents, however, patients developed resistance to these clinical agents after initial therapeutic treatments. Therefore, different approaches have been applied to identify novel therapeutic agents, molecular mechanisms, and targets for overcoming drug resistance. In this study, we have identified a panel of cobalt complexes that were able to specifically induce collateral sensitivity in taxol-resistant and p53-deficient cancer cells. Consistently, our reported anti-cancer functions of cobalt complexes 1–6 towards multidrug-resistant cancers have suggested the protective and non-toxic properties of cobalt metal-ions based compounds in anti-cancer therapies. As demonstrated in xenograft mouse model, our results also confirmed the identified cobalt complex 2 was able to suppress tumor growth in vivo. The anti-cancer effect of the cobalt complex 2 was further demonstrated to be exerted via the induction of autophagy, cell cycle arrest, and inhibition of cell invasion and P-glycoprotein (P-gp) activity. These data have provided alternative metal ion compounds for targeting drug resistance cancers in chemotherapies. PMID:28903398

  8. Characterization, catalyzed water oxidation and anticancer activities of a NIR BODIPY-Mn polymer

    NASA Astrophysics Data System (ADS)

    Lan, Ya-Quan; Xiao, Ke-Jing; Wu, Yun-Jie; Chen, Qiu-Yun

    2017-04-01

    To obtain near-IR absorbing biomaterials as fluorescence cellular imaging and anticancer agents for hypoxic cancer cell, a nano NIR fluorescence Mn(III/IV) polymer (PMnD) was spectroscopically characterized. The PMnD shows strong emission at 661 nm when excited with 643 nm. Furthermore, PMnD can catalyze water oxidation to generate dioxygen when irradiated by red LED light (10 W). In particular, the PMnD can enter into HepG-2 cells and mitochondria. Both anticancer activity and the inhibition of the expression of HIF-1α for PMnD were concentration dependent. Our results demonstrate that PMnD can be developed as mitochondria targeted imaging agents and new inhibitors for HIF-1 in hypoxic cancer cells.

  9. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    PubMed

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  10. Neurotoxicity Associated with Platinum-Based Anti-Cancer Agents: What are the Implications of Copper Transporters?

    PubMed

    Stojanovska, Vanesa; McQuade, Rachel; Rybalka, Emma; Nurgali, Kulmira

    2017-01-01

    Platinum-based anti-cancer agents, which include cisplatin, carboplatin and oxaliplatin, are an important class of drugs used in clinical setting to treat a variety of cancers. The cytotoxic efficacy of these drugs is mediated by the formation of inter-strand and intrastrand crosslinks, or platinum adducts on nuclear DNA. There is also evidence demonstrating that mitochondrial DNA is susceptible to platinum-adduct damage in dorsal root ganglia neurons. Although all platinum-based agents form similar DNA adducts, they are quite different in terms of activation, systemic toxicity and tolerance. Platinum-based agents are well known for their neurotoxicity and gastrointestinal side-effects which are major causes for dose limitation and treatment discontinuation compromising the efficacy of anti-cancer treatment. Accumulating evidence in non-neuronal cells shows that the copper transport system is associated with platinum drug sensitivity and resistance. There is minimal research concerning the role of copper transporters within the central and peripheral nervous systems. It is unclear whether neurons are more sensitive to platinum-based drugs, are insufficient in drug clearance, or whether platinum accumulation affects intracellular copper status and coppermediated functions. Understanding these mechanisms is important as neurotoxicity is the predominant side-effect of platinum-based chemotherapy. This review highlights the role of copper transpor ters in drug influx, differences in drug activation and side-effects caused by platinum-based agents, as well as their association with central and peripheral neuropathies and gastrointestinal toxicities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Development of Platinum(iv) Complexes as Anticancer Prodrugs: the Story so Far

    NASA Astrophysics Data System (ADS)

    Wong, Daniel Yuan Qiang; Ang, Wee Han

    2012-06-01

    The serendipitous discovery of the antitumor properties of cisplatin by Barnett Rosenberg some forty years ago brought about a paradigm shift in the field of medicinal chemistry and challenged conventional thinking regarding the role of potentially toxic heavy metals in drugs. Platinum(II)-based anticancer drugs have since become some of the most effective and widely-used drugs in a clinician's arsenal and have saved countless lives. However, they are limited by high toxicity, severe side-effects and the incidence of drug resistance. In recent years, attention has shifted to stable platinum(IV) complexes as anticancer prodrugs. By exploiting the unique chemical and structural attributes of their scaffolds, these platinum(IV) prodrugs offer new strategies of targeting and killing cancer cells. This review summarizes the development of anticancer platinum(IV) prodrugs to date and some of the exciting strategies that utilise the platinum(IV) construct as targeted chemotherapeutic agents against cancer.

  12. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release

    PubMed Central

    Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J. Frank W.; Hennink, Wim E.

    2010-01-01

    ABSTRACT Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a ‘magic bullet’ a major step forward. PMID:20725771

  13. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers.

    PubMed

    Van Goietsenoven, Gwendoline; Mathieu, Véronique; Lefranc, Florence; Kornienko, Alexander; Evidente, Antonio; Kiss, Robert

    2013-03-01

    The anticancer activity of Amaryllidaceae isocarbostyrils is well documented. At pharmacological concentrations, that is, approximately 1 μM in vitro and approximately 10 mg/kg in vivo, narciclasine displays marked proapoptotic and cytotoxic activity, as does pancratistatin, and significant in vivo anticancer effects in various experimental models, but it is also associated with severe toxic side effects. At physiological doses, that is, approximately 50 nM in vitro and approximately 1 mg/kg in vivo, narciclasine is not cytotoxic but cytostatic and displays marked anticancer activity in vivo in experimental models of brain cancer (including gliomas and brain metastases), but it is not associated with toxic side effects. The cytostatic activity of narciclasine involves the impairment of actin cytoskeleton organization by targeting GTPases, including RhoA and the elongation factor eEF1A. We have demonstrated that chronic treatments of narciclasine (1 mg/kg) significantly increased the survival of immunodeficient mice orthotopically xenografted with highly invasive human glioblastomas and apoptosis-resistant brain metastases, including melanoma- and non-small-cell-lung cancer- (NSCLC) related brain metastases. Thus, narciclasine is a potentially promising agent for the treatment of primary brain cancers and various brain metastases. To date, efforts to develop synthetic analogs with anticancer properties superior to those of narciclasine have failed; thus, research efforts are now focused on narciclasine prodrugs. © 2012 Wiley Periodicals, Inc.

  14. Anticancer Molecular Mechanisms of Resveratrol

    PubMed Central

    Varoni, Elena M.; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment. PMID:27148534

  15. Anticancer Molecular Mechanisms of Resveratrol.

    PubMed

    Varoni, Elena M; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment.

  16. Apoptin towards safe and efficient anticancer therapies.

    PubMed

    Backendorf, Claude; Noteborn, Mathieu H M

    2014-01-01

    The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.

  17. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells.

    PubMed

    Kim, Seong-Hoon; Ryu, Hye Guk; Lee, Juhyun; Shin, Joon; Harikishore, Amaravadhi; Jung, Hoe-Yune; Jung, Hoe-Youn; Kim, Ye Seul; Lyu, Ha-Na; Oh, Eunji; Baek, Nam-In; Choi, Kwan-Yong; Yoon, Ho Sup; Kim, Kyong-Tai

    2015-09-28

    Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients.

  18. Highly Adaptable Triple-Negative Breast Cancer Cells as a Functional Model for Testing Anticancer Agents

    PubMed Central

    Singh, Balraj; Shamsnia, Anna; Raythatha, Milan R.; Milligan, Ryan D.; Cady, Amanda M.; Madan, Simran; Lucci, Anthony

    2014-01-01

    A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance. PMID:25279830

  19. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents.

    PubMed

    Singh, Balraj; Shamsnia, Anna; Raythatha, Milan R; Milligan, Ryan D; Cady, Amanda M; Madan, Simran; Lucci, Anthony

    2014-01-01

    A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance.

  20. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines

    PubMed Central

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70–90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2–3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of

  1. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    PubMed

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  2. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug.

    PubMed

    Sahoo, Banalata; Devi, K Sanjana P; Banerjee, Rakesh; Maiti, Tapas K; Pramanik, Panchanan; Dhara, Dibakar

    2013-05-01

    Targeted and efficient delivery of therapeutics to tumor cells is one of the key issues in cancer therapy. In the present work, we report a temperature and pH dual responsive core-shell nanoparticles comprising smart polymer shell coated on magnetic nanoparticles as an anticancer drug carrier and cancer cell-specific targeting agent. Magnetite nanoparticles (MNPs), prepared by a simple coprecipitation method, was surface modified by introducing amine groups using 3-aminopropyltriethoxysilane. Dual-responsive poly(N-isopropylacrylamide)-block-poly(acrylic acid) copolymer, synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, was then attached to the amine-functionalized MNPs via EDC/NHS method. Further, to accomplish cancer-specific targeting properties, folic acid was tethered to the surface of the nanoparticles. Thereafter, rhodamine B isothiocyanate was conjugated to endow fluorescent property to the MNPs required for cellular imaging applications. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), zeta potential, vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) measurements, and FTIR, UV-vis spectral analysis. Doxorubicin (DOX), an anticancer drug used for the present study, was loaded into the nanoparticles and its release behavior was subsequently studied. Result showed a sustained release of DOX preferentially at the desired lysosomal pH and temperature condition. The biological activity of the DOX-loaded MNPs was studied by MTT assay, fluorescence microscopy, and apoptosis. Intracellular-uptake studies revealed preferential uptake of these nanoparticles into cancer cells (HeLa cells) compared to normal fibroblast cells (L929 cells). The in vitro apoptosis study revealed that

  3. Anticancer Effects of Sandalwood (Santalum album).

    PubMed

    Santha, Sreevidya; Dwivedi, Chandradhar

    2015-06-01

    Effective management of tumorigenesis requires development of better anticancer agents with greater efficacy and fewer side-effects. Natural products are important sources for the development of chemotherapeutic agents and almost 60% of anticancer drugs are of natural origin. α-Santlol, a sesquiterpene isolated from Sandalwood, is known for a variety of therapeutic properties including anti-inflammatory, anti-oxidant, anti-viral and anti-bacterial activities. Cell line and animal studies reported chemopreventive effects of sandalwood oil and α-santalol without causing toxic side-effects. Our laboratory identified its anticancer effects in chemically-induced skin carcinogenesis in CD-1 and SENCAR mice, ultraviolet-B-induced skin carcinogenesis in SKH-1 mice and in vitro models of melanoma, non-melanoma, breast and prostate cancer. Its ability to induce cell-cycle arrest and apoptosis in cancer cells is its most reported anticancer mechanism of action. The present review discusses studies that support the anticancer effect and the mode of action of sandalwood oil and α-santalol in carcinogenesis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Modeling of hyaluronic acid containing anti-cancer drugs-loaded polylactic-co-glycolic acid bioconjugates for targeted delivery to cancer cells

    NASA Astrophysics Data System (ADS)

    Gul-e-Saba, Adulphakdee, A.; Madthing, A.; Zafar, M. N.; Abdullah, M. A.

    2012-09-01

    Molecular modeling of hyaluronan (HA), polylactic-co-glycolic acid (PLGA), polyethylene glycol-bis-amine (PEG-bis-amine), Curcumin, Cisplatin and the conjugate HA-PEG-PLGA containing Curcumin/Cisplatin were performed using Discovery Studio 2.5 to better understand issues and constraints related to targeted delivery of potent anticancer drugs to cancer cells. HA, a versatile biopolymer is a ligand of cancer cell receptor, CD44 that can be particularly useful in a receptor-mediated cellular uptake of drug-incorporated nanoparticles. Biocompatible and biodegradable polymers, PLGA and PEG, serve as polymeric micelles for controlled-release of drug. Curcumin as a natural anticancer agent has poor solubility that limits its use in drug therapeutics, while platinum-based Cisplatin exhibits systemic cytotoxicity. These can be overcome via drug delivery in polymeric biocompatible vehicles. The PLGA-PEG-HA conjugate shows the total measurement of 105 bond length with average bond length of 1.274163 Å. The conjugation between PEG and HA occurs at C8-O1 atoms and can be manipulated to improve properties.

  5. Multi-Agent Cooperative Target Search

    PubMed Central

    Hu, Jinwen; Xie, Lihua; Xu, Jun; Xu, Zhao

    2014-01-01

    This paper addresses a vision-based cooperative search for multiple mobile ground targets by a group of unmanned aerial vehicles (UAVs) with limited sensing and communication capabilities. The airborne camera on each UAV has a limited field of view and its target discriminability varies as a function of altitude. First, by dividing the whole surveillance region into cells, a probability map can be formed for each UAV indicating the probability of target existence within each cell. Then, we propose a distributed probability map updating model which includes the fusion of measurement information, information sharing among neighboring agents, information decay and transmission due to environmental changes such as the target movement. Furthermore, we formulate the target search problem as a multi-agent cooperative coverage control problem by optimizing the collective coverage area and the detection performance. The proposed map updating model and the cooperative control scheme are distributed, i.e., assuming that each agent only communicates with its neighbors within its communication range. Finally, the effectiveness of the proposed algorithms is illustrated by simulation. PMID:24865884

  6. Methyl-hydroxylamine as an efficacious antibacterial agent that targets the ribonucleotide reductase enzyme.

    PubMed

    Julián, Esther; Baelo, Aida; Gavaldà, Joan; Torrents, Eduard

    2015-01-01

    The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme.

  7. Methyl-Hydroxylamine as an Efficacious Antibacterial Agent That Targets the Ribonucleotide Reductase Enzyme

    PubMed Central

    Julián, Esther; Baelo, Aida; Gavaldà, Joan; Torrents, Eduard

    2015-01-01

    The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme. PMID:25782003

  8. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    PubMed

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  9. Biotin-Containing Reduced Graphene Oxide-Based Nanosystem as a Multieffect Anticancer Agent: Combining Hyperthermia with Targeted Chemotherapy.

    PubMed

    Mauro, Nicolò; Scialabba, Cinzia; Cavallaro, Gennara; Licciardi, Mariano; Giammona, Gaetano

    2015-09-14

    Among the relevant properties of graphene derivatives, their ability of acting as an energy-converting device so as to produce heat (i.e., thermoablation and hyperthermia) was more recently taken into account for the treatment of solid tumors. In this pioneering study, for the first time, the in vitro RGO-induced hyperthermia was assessed and combined with the stimuli-sensitive anticancer effect of a biotinylated inulin-doxorubicin conjugate (CJ-PEGBT), hence, getting to a nanosystem endowed with synergic anticancer effects and high specificity. CJ-PEGBT was synthesized by linking pentynoic acid and citraconic acid to inulin. The citraconylamide pendants, used as pH reversible spacer, were exploited to further conjugate doxorubicin, whereas the alkyne moiety was orthogonally functionalized with an azido PEG-biotin derivative by copper(II) catalyzed 1,3-dipolar cycloaddition. DSC measures, AFM, and UV spectrophotometry were employed to systematically investigate adsorption of CJ-PEGBT onto RGO and its physicochemical stability in aqueous media, demonstrating that a stable π-staked nanosystem can be obtained. In vitro tests using cancer breast cells (MCF-7) showed the ability of the RGO/CJ-PEGBT of efficiently killing cancer cells both via a selective laser beam thermoablation and hyperthermia-triggered chemotherapy. If compared with the nonbiotinylated nanosystem, including virgin RGO and the free conjugate, RGO/CJ-PEGBT is endowed with a smart combination of properties which warrant potential as an anticancer nanomedicine.

  10. Polysaccharide-gold nanocluster supramolecular conjugates as a versatile platform for the targeted delivery of anticancer drugs.

    PubMed

    Li, Nan; Chen, Yong; Zhang, Ying-Ming; Yang, Yang; Su, Yue; Chen, Jia-Tong; Liu, Yu

    2014-02-25

    Through the high affinity of the β-cyclodextrin (β-CD) cavity for adamantane moieties, novel polysaccharide-gold nanocluster supramolecular conjugates (HACD-AuNPs) were successfully constructed from gold nanoparticles (AuNPs) bearing adamantane moieties and cyclodextrin-grafted hyaluronic acid (HACD). Due to their porous structure, the supramolecular conjugates could serve as a versatile and biocompatible platform for the loading and delivery of various anticancer drugs, such as doxorubicin hydrochloride (DOX), paclitaxel (PTX), camptothecin (CPT), irinotecan hydrochloride (CPT-11), and topotecan hydrochloride (TPT), by taking advantage of the controlled association/dissociation of drug molecules from the cavities formed by the HACD skeletons and AuNPs cores as well as by harnessing the efficient targeting of cancer cells by hyaluronic acid. Significantly, the release of anticancer drugs from the drug@HACD-AuNPs system was pH-responsive, with more efficient release occurring under a mildly acidic environment, such as that in a cancer cell. Taking the anticancer drug DOX as an example, cell viability experiments revealed that the DOX@HACD-AuNPs system exhibited similar tumor cell inhibition abilities but lower toxicity than free DOX due to the hyaluronic acid reporter-mediated endocytosis. Therefore, the HACD-AuNPs supramolecular conjugates may possess great potential for the targeted delivery of anticancer drugs.

  11. Polysaccharide-Gold Nanocluster Supramolecular Conjugates as a Versatile Platform for the Targeted Delivery of Anticancer Drugs

    NASA Astrophysics Data System (ADS)

    Li, Nan; Chen, Yong; Zhang, Ying-Ming; Yang, Yang; Su, Yue; Chen, Jia-Tong; Liu, Yu

    2014-02-01

    Through the high affinity of the β-cyclodextrin (β-CD) cavity for adamantane moieties, novel polysaccharide-gold nanocluster supramolecular conjugates (HACD-AuNPs) were successfully constructed from gold nanoparticles (AuNPs) bearing adamantane moieties and cyclodextrin-grafted hyaluronic acid (HACD). Due to their porous structure, the supramolecular conjugates could serve as a versatile and biocompatible platform for the loading and delivery of various anticancer drugs, such as doxorubicin hydrochloride (DOX), paclitaxel (PTX), camptothecin (CPT), irinotecan hydrochloride (CPT-11), and topotecan hydrochloride (TPT), by taking advantage of the controlled association/dissociation of drug molecules from the cavities formed by the HACD skeletons and AuNPs cores as well as by harnessing the efficient targeting of cancer cells by hyaluronic acid. Significantly, the release of anticancer drugs from the drug@HACD-AuNPs system was pH-responsive, with more efficient release occurring under a mildly acidic environment, such as that in a cancer cell. Taking the anticancer drug DOX as an example, cell viability experiments revealed that the DOX@HACD-AuNPs system exhibited similar tumor cell inhibition abilities but lower toxicity than free DOX due to the hyaluronic acid reporter-mediated endocytosis. Therefore, the HACD-AuNPs supramolecular conjugates may possess great potential for the targeted delivery of anticancer drugs.

  12. Phytochemicals as Anticancer and Chemopreventive Topoisomerase II Poisons

    PubMed Central

    Ketron, Adam C.

    2013-01-01

    Phytochemicals are a rich source of anticancer drugs and chemopreventive agents. Several of these chemicals appear to exert at least some of their effects through interactions with topoisomerase II, an essential enzyme that regulates DNA supercoiling and removes knots and tangles from the genome. Topoisomerase II-active phytochemicals function by stabilizing covalent protein-cleaved DNA complexes that are intermediates in the catalytic cycle of the enzyme. As a result, these compounds convert topoisomerase II to a cellular toxin that fragments the genome. Because of their mode of action, they are referred to as topoisomerase II poisons as opposed to catalytic inhibitors. The first sections of this article discuss DNA topology, the catalytic cycle of topoisomerase II, and the two mechanisms (interfacial vs. covalent) by which different classes of topoisomerase II poisons alter enzyme activity. Subsequent sections discuss the effects of several phytochemicals on the type II enzyme, including demethyl-epipodophyllotoxins (semisynthetic anticancer drugs) as well as flavones, flavonols, isoflavones, catechins, isothiocyanates, and curcumin (dietary chemopreventive agents). Finally, the leukemogenic potential of topoisomerase II-targeted phytochemicals is described. PMID:24678287

  13. Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics.

    PubMed

    Li, Yu-Ji; Dong, Ming; Kong, Fan-Min; Zhou, Jian-Ping

    2015-07-15

    Nanoparticulate system with theranostic applications has attracted significant attention in cancer therapeutics. In the present study, we have developed a novel composite PLGA NP co-encapsulated with anticancer drug (sorafenib) and magnetic NP (SPION). We have successfully developed nanosized folate-conjugated PEGylated PLGA nanoparticles (SRF/FA-PEG-PLGA NP) with both anticancer and magnetic resonance property. We have showed that FA-conjugated NP exhibits sustained drug release and enhanced cellular uptake in BEL7402 cancer cells. The targeted NP effectively suppressed the tumor cell proliferation and has improved the anticancer efficacy than that of free drug or non-targeted one. Additionally, enhanced MRI properties demonstrate this formulation has good imaging agent characteristics. Finally, SRF/FA-PEG-PLGA NP effectively inhibited the colony forming ability indicating its superior anticancer effect. Together, these multifunctional nanoparticles would be most ideal to improve the therapeutic response in cancer and holds great potential to be a part of future nanomedicine. Our unique approach could be extended for multiple biomedical applications. Copyright © 2015. Published by Elsevier B.V.

  14. Targeted Therapy: Attacking Cancer with Molecular and Immunological Targeted Agents.

    PubMed

    Wilkes, Gail M

    2018-01-01

    Today, personalized cancer therapy with targeted agents has taken center stage, and offers individualized treatment to many. As the mysteries of the genes in a cell's DNA and their specific proteins are defined, advances in the understanding of cancer gene mutations and how cancer evades the immune system have been made. This article provides a basic and simplified understanding of the available (Food and Drug Administration- approved) molecularly and immunologically targeted agents in the USA. Other agents may be available in Asia, and throughout the USA and the world, many more agents are being studied. Nursing implications for drug classes are reviewed.

  15. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    PubMed

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  16. PhytoNanotechnology: Enhancing Delivery of Plant Based Anti-cancer Drugs.

    PubMed

    Khan, Tabassum; Gurav, Pranav

    2017-01-01

    Natural resources continue to be an invaluable source of new, novel chemical entities of therapeutic utility due to the vast structural diversity observed in them. The quest for new and better drugs has witnessed an upsurge in exploring and harnessing nature especially for discovery of antimicrobial, antidiabetic, and anticancer agents. Nature has historically provide us with potent anticancer agents which include vinca alkaloids [vincristine (VCR), vinblastine, vindesine, vinorelbine], taxanes [paclitaxel (PTX), docetaxel], podophyllotoxin and its derivatives [etoposide (ETP), teniposide], camptothecin (CPT) and its derivatives (topotecan, irinotecan), anthracyclines (doxorubicin, daunorubicin, epirubicin, idarubicin), and others. In fact, half of all the anti-cancer drugs approved internationally are either natural products or their derivatives and were developed on the basis of knowledge gained from small molecules or macromolecules that exist in nature. Three new anti-cancer drugs introduced in 2007, viz. trabectedin, epothilone derivative ixabepilone, and temsirolimus were obtained from microbial sources. Selective drug targeting is the need of the current therapeutic regimens for increased activity on cancer cells and reduced toxicity to normal cells. Nanotechnology driven modified drugs and drug delivery systems are being developed and introduced in the market for better cancer treatment and management with good results. The use of nanoparticulate drug carriers can resolve many challenges in drug delivery to the cancer cells that includes: improving drug solubility and stability, extending drug half-lives in the blood, reducing adverse effects in non-target organs, and concentrating drugs at the disease site. This review discusses the scientific ventures and explorations involving application of nanotechnology to some selected plant derived molecules. It presents a comprehensive review of formulation strategies of phytoconstituents in development of novel

  17. The medicinal use of realgar (As₄S₄) and its recent development as an anticancer agent.

    PubMed

    Wu, Jinzhu; Shao, Yanbin; Liu, Jialiang; Chen, Gang; Ho, Paul C

    2011-06-01

    Arsenicals have been known as poisons and paradoxically as therapeutic agents. In the early 1970s, Chinese physicians from Harbin revived the medicinal use of arsenicals as anticancer agents. Notable success was observed in the treatment of acute promyelocytic leukemia (APL) with arsenic trioxide (ATO). The FDA approved ATO injection in the year 2000 for the treatment of APL. In contrast, the clinical use of the other arsenical, realgar (As₄S₄), is currently much less established, though it has also long been used in medical history. According to ancient medical records and recent findings in clinical trials, realgar was found as effective as ATO, but with relatively good oral safety profiles even on chronic administration. These give realgar an advantage over ATO in maintenance treatment. Though there is increasing understanding on the mechanisms of action and metabolic profiles of ATO, similar aspects of realgar are unclear to date. We outline the use of realgar in traditional medicines, especially in traditional Chinese medicines (TCM) from ancient times to present. The clinical and experimental observations on realgar as a therapeutic agent are described with an emphasis on those findings that may imply the rationale and future directions of realgar as a potential anticancer drug candidate. There is an increasing understanding in the mechanisms of action of realgar as an antileukemic agent. However, there is still sparse information on its metabolism and toxicity profiles. Realgar is poorly soluble in water. Recently, several types of realgar nanoparticles (NPs) have been developed. Some of these realgar NPs also possess the unique optical properties of quantum dots. The activities and bioavailability of realgar NPs are much influenced by their sizes, making realgar an interesting biomedical and pharmaceutical research candidate. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. LHRH-Targeted Drug Delivery Systems for Cancer Therapy.

    PubMed

    Li, Xiaoning; Taratula, Oleh; Taratula, Olena; Schumann, Canan; Minko, Tamara

    2017-01-01

    Targeted delivery of therapeutic and diagnostic agents to cancer sites has significant potential to improve the therapeutic outcome of treatment while minimizing severe side effects. It is widely accepted that decoration of the drug delivery systems with targeting ligands that bind specifically to the receptors on the cancer cells is a promising strategy that may substantially enhance accumulation of anticancer agents in the tumors. Due to the transformed cellular nature, cancer cells exhibit a variety of overexpressed cell surface receptors for peptides, hormones, and essential nutrients, providing a significant number of target candidates for selective drug delivery. Among others, luteinizing hormonereleasing hormone (LHRH) receptors are overexpressed in the majority of cancers, while their expression in healthy tissues, apart from pituitary cells, is limited. The recent studies indicate that LHRH peptides can be employed to efficiently guide anticancer and imaging agents directly to cancerous cells, thereby increasing the amount of these substances in tumor tissue and preventing normal cells from unnecessary exposure. This manuscript provides an overview of the targeted drug delivery platforms that take advantage of the LHRH receptors overexpression by cancer cells.

  19. Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse

    PubMed Central

    Nowakowski, Adam; Drela, Katarzyna; Rozycka, Justyna; Janowski, Miroslaw

    2016-01-01

    Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials. PMID:27460260

  20. Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors.

    PubMed

    Sun, Wen; Fan, Jiangli; Wang, Suzhen; Kang, Yao; Du, Jianjun; Peng, Xiaojun

    2018-03-07

    Tumor-targeted drug delivery systems have been increasingly used to improve the therapeutic efficiency of anticancer drugs and reduce their toxic side effects in vivo. Focused on this point, doxorubicin (DOX)-loaded hydroxyapatite (HAP) nanorods consisting of folic acid (FA) modification (DOX@HAP-FA) were developed for efficient antitumor treatment. The DOX-loaded nanorods were synthesized through in situ coprecipitation and hydrothermal method with a DOX template, demonstrating a new procedure for drug loading in HAP materials. DOX could be efficiently released from DOX@HAP-FA within 24 h in weakly acidic buffer solution (pH = 6.0) because of the degradation of HAP nanorods. With endocytosis under the mediation of folate receptors, the nanorods exhibited enhanced cellular uptake and further degraded, and consequently, the proliferation of targeted cells was inhibited. More importantly, in a tumor-bearing mouse model, DOX@HAP-FA treatment demonstrated excellent tumor growth inhibition. In addition, no apparent side effects were observed during the treatment. These results suggested that DOX@HAP-FA may be a promising nanotherapeutic agent for effective cancer treatment in vivo.

  1. Recent developments in anti-cancer agents targeting PI3K, Akt and mTORC1/2.

    PubMed

    Dienstmann, Rodrigo; Rodon, Jordi; Markman, Ben; Tabernero, Josep

    2011-05-01

    Inappropriate PI3K signaling is one of the most frequent occurrences in human cancer and is critical for tumor progression. A variety of genetic mutations and amplifications have been described affecting key components of this pathway, with implications not only for tumorigenesis but also for resistance to targeted agents. Emerging preclinical research has significantly advanced our understanding of the PI3K pathway and its complex downstream signalling, interactions and crosstalk. This knowledge, combined with the limited clinical antitumor activity of mTOR complex 1 inhibitors, has led to the development of rationally designed drugs targeting key elements of this pathway, such as pure PI3K inhibitors (both pan-PI3K and isoform-specific), dual PI3K/ mTOR inhibitors, Akt inhibitors, and mTOR complexes 1 and 2 catalytic site inhibitors. This review will focus primarily on an analysis of newly developed inhibitors of this pathway that have entered clinical trials, and recently registered patents in this field.

  2. Targeted Therapy: Attacking Cancer with Molecular and Immunological Targeted Agents

    PubMed Central

    Wilkes, Gail M.

    2018-01-01

    Today, personalized cancer therapy with targeted agents has taken center stage, and offers individualized treatment to many. As the mysteries of the genes in a cell's DNA and their specific proteins are defined, advances in the understanding of cancer gene mutations and how cancer evades the immune system have been made. This article provides a basic and simplified understanding of the available (Food and Drug Administration- approved) molecularly and immunologically targeted agents in the USA. Other agents may be available in Asia, and throughout the USA and the world, many more agents are being studied. Nursing implications for drug classes are reviewed. PMID:29607374

  3. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy

    PubMed Central

    Shuvalov, Oleg; Petukhov, Alexey; Daks, Alexandra; Fedorova, Olga; Vasileva, Elena; Barlev, Nickolai A.

    2017-01-01

    Cancer-related metabolism has recently emerged as one of the “hallmarks of cancer”. It has several important features, including altered metabolism of glucose and glutamine. Importantly, altered cancer metabolism connects different biochemical pathways into the one fine-tuned metabolic network, which stimulates high proliferation rates and plasticity to malignant cells. Among the keystones of cancer metabolism are one-carbon metabolism and nucleotide biosynthesis, which provide building blocks to anabolic reactions. Accordingly, the importance of these metabolic pathways for anticancer therapy has well been documented by more than fifty years of clinical use of specific metabolic inhibitors – methotrexate and nucleotides analogs. In this review we discuss one-carbon metabolism and nucleotide biosynthesis as common and specific features of many, if not all, tumors. The key enzymes involved in these pathways also represent promising anti-cancer therapeutic targets. We review different aspects of these metabolic pathways including their biochemistry, compartmentalization and expression of the key enzymes and their regulation at different levels. We also discuss the effects of known inhibitors of these pathways as well as the recent data on other enzymes of the same pathways as perspective pharmacological targets. PMID:28177894

  4. Current situation and future usage of anticancer drug databases.

    PubMed

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

  5. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    PubMed

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  6. Evidence That P-glycoprotein Inhibitor (Elacridar)-Loaded Nanocarriers Improve Epidermal Targeting of an Anticancer Drug via Absorptive Cutaneous Transporters Inhibition.

    PubMed

    Giacone, Daniela V; Carvalho, Vanessa F M; Costa, Soraia K P; Lopes, Luciana B

    2018-02-01

    Because P-glycoprotein (P-gp) plays an absorptive role in the skin, its pharmacological inhibition represents a strategy to promote cutaneous localization of anticancer agents that serve as its substrates, improving local efficacy while reducing systemic exposure. Here, we evaluated the ability of a nanoemulsion (NE) coencapsulating a P-gp inhibitor (elacridar) with the antitumor drug paclitaxel to promote epidermal targeting. Loaded NE displayed a nanometric size (45.2 ± 4.0 nm) and negative zeta potential (-4.2 ± 0.8 mV). Elacridar improved NE ability to inhibit verapamil-induced ATPase activity of P-gp; unloaded NE-inhibited P-gp when used at a concentration of 1500 μM, while elacridar encapsulation decreased this concentration by 3-fold (p <0.05). Elacridar-loaded NE reduced paclitaxel penetration into the dermis of freshly excised mice skin and its percutaneous permeation by 1.5- and 1.7-fold (p <0.05), respectively at 6 h, whereas larger drug amounts (1.4-fold, p <0.05) were obtained in viable epidermis. Assessment of cutaneous distribution of a fluorescent paclitaxel derivative confirmed the smaller delivery into the dermis at elacridar presence. In conclusion, we have provided novel evidence that NE containing elacridar exhibited a clear potential for P-gp inhibition and enabled epidermal targeting of paclitaxel, which in turn, can potentially reduce adverse effects associated with systemic exposure to anticancer therapy. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents

    PubMed Central

    Karimi, Mahdi; Eslami, Masoud; Sahandi-Zangabad, Parham; Mirab, Fereshteh; Farajisafiloo, Negar; Shafaei, Zahra; Ghosh, Deepanjan; Bozorgomid, Mahnaz; Dashkhaneh, Fariba; Hamblin, Michael R.

    2016-01-01

    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer’s. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. PMID:26762467

  8. Design, synthesis and biological evaluation of arylcinnamide hybrid derivatives as novel anticancer agents

    PubMed Central

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, Maria Kimatrai; Chayah, Mariem; Camacho, M. Encarnacion; Prencipe, Filippo; Hamel, Ernest; Consolaro, Francesca; Basso, Giuseppe; Viola, Giampietro

    2014-01-01

    The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. A series of novel antiproliferative agents designed by a pharmacophore hybridization approach, combining the arylcinnamide skeleton and an α-bromoacryloyl moiety, was synthesized and evaluated for its antiproliferative activity against a panel of seven human cancer cell lines. In addition, the new derivatives were also active on multidrug-resistant cell lines over-expressing P-glycoprotein. The biological effects of various substituents on the N-phenyl ring of the benzamide portion were also described. In order to study the possible mechanism of action, we observed that 4p slightly increased the Reactive Oxygen Species (ROS) production in HeLa cells, but, more importantly, a remarkable decrease of intracellular reduced glutathione content was detected in treated cells compared with controls. These results were confirmed by the observation that only thiol-containing antioxidants were able to significantly protect the cells from induced cell death. Altogether our results indicate that the new derivatives are endowed with good anticancer activity in vitro, and their properties may result in the development of new cancer therapeutic strategies. PMID:24858544

  9. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents.

    PubMed

    Miller, Marvin J; Zhu, Helen; Xu, Yanping; Wu, Chunrui; Walz, Andrew J; Vergne, Anne; Roosenberg, John M; Moraski, Garrett; Minnick, Albert A; McKee-Dolence, Julia; Hu, Jingdan; Fennell, Kelley; Kurt Dolence, E; Dong, Li; Franzblau, Scott; Malouin, Francois; Möllmann, Ute

    2009-02-01

    Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the "microbial war", extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery ("Trojan Horse" antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described.

  10. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents

    PubMed Central

    Zhu, Helen; Xu, Yanping; Wu, Chunrui; Walz, Andrew J.; Vergne, Anne; Roosenberg, John M.; Moraski, Garrett; Minnick, Albert A.; McKee-Dolence, Julia; Hu, Jingdan; Fennell, Kelley; Dolence, E. Kurt; Dong, Li; Franzblau, Scott; Malouin, Francois; Möllmann, Ute

    2014-01-01

    Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the “microbial war”, extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery (“Trojan Horse” antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described. PMID:19130268

  11. Anticancer Properties of PPARα-Effects on Cellular Metabolism and Inflammation

    PubMed Central

    Grabacka, Maja; Reiss, Krzysztof

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) have lately attracted much attention as therapeutic targets. Previously, PPAR ligands were associated with the treatment of diabetes, hyperlipidemia and cardiovascular diseases, as they modulate the expression of genes regulating glucose and lipid metabolism. Recently, PPAR ligands have been also considered as potential anticancer agents, with relatively low systemic toxicity. The emerging evidence for antiproliferative, proapoptotic, antiinflammatory and potential antimetastatic properties of PPARα ligands prompted us to discuss possible roles of PPARα in tumor suppression. PPARα activation can target cancer cells energy balance by blocking fatty acid synthesis and by promoting fatty acid β-oxidation. In the state of limited nutrient availability, frequently presents in the tumor microenvironment, PPARα cooperates with AMP-dependent protein kinase in: (i) repressing oncogenic Akt activity, (ii) inhibiting cell proliferation, and (iii) forcing glycolysis-dependent cancer cells into “metabolic catastrophe.” Other potential anticancer effects of PPARα include suppression of inflammation, and upregulation of uncoupling proteins (UCPs), which attenuates mitochondrial reactive oxygen species production and cell proliferation. In conclusion, there are strong premises that the low-toxic and well-tolerated PPAR ligands should be considered as new therapeutic agents to fight disseminating cancer, which represents the major challenge for modern medicine and basic research. PMID:18509489

  12. PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Lee, Yeon Kyung; Lee, Jong Yeon; Hong, Jeong Hee; Khang, Dongwoo

    2017-11-01

    Although activating apoptosis in cancer cells by targeting the mitochondria is an effective strategy for cancer therapy, insufficient targeting of the mitochondria in cancer cells restricts the availability in clinical treatment. Here, we report on a polyethylene glycol-coated carbon nanotube (CNT)-ABT737 nanodrug that improves the mitochondrial targeting of lung cancer cells. The polyethylene glycol-coated CNT-ABT737 nanodrug internalized into the early endosomes via macropinocytosis and clathrin-mediated endocytosis in advance of early endosomal escape and delivered into the mitochondria. Cytosol release of the nanodrug led to apoptosis of lung cancer cells by abruption of the mitochondrial membrane potential, inducing Bcl-2-mediated apoptosis and generating intracellular reactive oxygen species. As such, this study provides an effective strategy for increasing the anti-lung cancer efficacy by increasing mitochondria accumulation rate of cytosol released anticancer nanodrugs.

  13. Interactions of cisplatin with non-DNA targets and their influence on anticancer activity and drug toxicity: the complex world of the platinum complex.

    PubMed

    Mezencev, Roman

    2015-01-01

    Since the discovery of its anticancer activity in 1970s, cisplatin and its analogs have become widely used in clinical practice, being administered to 40-80% of patients undergoing chemotherapy for solid tumors. The fascinating story of this drug continues to evolve presently, which includes advances in our understanding of complexity of molecular mechanisms involved in its anticancer activity and drug toxicity. While genomic DNA has been generally recognized as the most critical pharmacological target of cisplatin, the results reported across multiple disciplines suggest that other targets and molecular interactions are likely involved in the anticancer mode of action, drug toxicity and resistance of cancer cells to this remarkable anticancer drug. This article reviews interactions of cisplatin with non-DNA targets, including RNAs, proteins, phospholipids and carbohydrates in the context of its pharmacological activity and drug toxicity. Some of these non-DNA targets and associated mechanisms likely act in a highly concerted manner towards the biological outcome in cisplatin-treated tumors; therefore, the understanding of complexity of cisplatin interactome may open new avenues for modulation of its clinical efficacy or for designing more efficient platinum-based anticancer drugs to reproduce the success of cisplatin in the treatment of highly curable testicular germ cell tumors in its therapeutic applications to other cancers.

  14. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents

    PubMed Central

    Liu, Yu; Wan, Wen-zhu; Li, Yan; Zhou, Guan-lian; Liu, Xin-guang

    2017-01-01

    Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors. PMID:27769061

  15. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Design and Synthesis of Curcumin-Like Diarylpentanoid Analogues as Potential Anticancer Agents.

    PubMed

    Qudjani, Elahe; Iman, Maryam; Davood, Asghar; Ramandi, Mahdi F; Shafiee, Abbas

    2016-01-01

    Curcumin is a polyphenolic natural compound with multiple targets that used for the prophylaxis and treatment of some type of cancers like cervical and pancreatic cancers. Some recent patent for curcumin for cancer has also been reviewed. In this study, ten new curcumin derivatives were designed and synthesized and their cytostatic activity evaluated against the Hela and Panc cell lines that some of them showed more activity than curcumin. In the present study, a series of mono-carbonyl derivatives of curcumin were designed and prepared. The details of the synthesis and chemical characterization of the synthesized compounds are described. The cytostatic activities of the designed compounds are assessed in two different tumor cell lines using MTT test. In vitro screening for human cervix carcinoma cell lines (Hela) and pancreatic cell lines (Panc-1) at 24 and 48 hour showed that all the analogs possessed good activity against these tumor cell lines and compounds 5a, 5c and 6 with high potency can be used as a new lead compounds for the designing and finding new and potent cytostatic agents. Docking studies indicated that compound 5c readily binds the active site of human glyoxalase I protein via two strong hydrogen bonds engaging residues of Glu-99 and Lys-156. Our results are useful in guiding a design of optimized ligands with improved pharmacokinetic properties and increased of anti-cancer activity vs. the prototype curcumin compound.

  17. Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.

    PubMed

    Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng

    2014-01-01

    Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.

  18. Antimicrobial and anticancer efficacy of antineoplastic agent capped gold nanoparticles.

    PubMed

    Selvaraj, V; Grace, A Nirmala; Alagar, M; Hamerton, I

    2010-04-01

    Synthesis of thioguanine (TG)-capped Au nanoparticles (Au@TG) and their enhanced in vitro antimicrobial and anticancer efficacy against Micrococcus luteus, Staphylococcus aureus, Pseudomonas aeruginosa, E. coli, Aspergillus fumigatus, Aspergillus niger and Hep2 cancer cell (Human epidermiod cell) have been reported. The nature of binding between 6-TG and the gold nanoparticles via complexation is investigated using ultraviolet-visible spectrum, cyclic voltammetry, transmission electron microscopy, fluorescence and Fourier transform infrared (FT-IR) spectroscopy. The present experimental studies suggests that Au@TG are more potential than TG towards antimicrobial and anticancer activities. Hence, gold nanoparticles have the potential to be used as effective carriers for anticancer drug.

  19. Binase and other microbial RNases as potential anticancer agents.

    PubMed

    Makarov, Alexander A; Kolchinsky, Alexander; Ilinskaya, Olga N

    2008-08-01

    Some RNases possess preferential cytotoxicity against malignant cells. The best known of these RNases, onconase, was isolated from frog oocytes and is in clinical trials as anticancer therapy. Here we propose an alternative platform for anticancer therapy based on T1 RNases of microbial origin, in particular binase from Bacillus intermedius and RNase Sa from Streptomyces aureofaciens. We discuss their advantages and the most promising directions of research for their potential clinical applications. (c) 2008 Wiley Periodicals, Inc.

  20. ActRII blockade protects mice from cancer cachexia and prolongs survival in the presence of anti-cancer treatments.

    PubMed

    Hatakeyama, Shinji; Summermatter, Serge; Jourdain, Marie; Melly, Stefan; Minetti, Giulia C; Lach-Trifilieff, Estelle

    2016-01-01

    Cachexia affects the majority of patients with advanced cancer and is associated with reduced treatment tolerance, response to therapy, quality of life, and life expectancy. Cachectic patients with advanced cancer often receive anti-cancer therapies against their specific cancer type as a standard of care, and whether specific ActRII inhibition is efficacious when combined with anti-cancer agents has not been elucidated yet. In this study, we evaluated interactions between ActRII blockade and anti-cancer agents in CT-26 mouse colon cancer-induced cachexia model. CDD866 (murinized version of bimagrumab) is a neutralizing antibody against the activin receptor type II (ActRII) preventing binding of ligands such as myostatin and activin A, which are involved in cancer cachexia. CDD866 was evaluated in association with cisplatin as a standard cytotoxic agent or with everolimus, a molecular-targeted agent against mammalian target of rapamycin (mTOR). In the early studies, the treatment effect on cachexia was investigated, and in the additional studies, the treatment effect on progression of cancer and the associated cachexia was evaluated using body weight loss or tumor volume as interruption criteria. Cisplatin accelerated body weight loss and tended to exacerbate skeletal muscle loss in cachectic animals, likely due to some toxicity of this anti-cancer agent. Administration of CDD866 alone or in combination with cisplatin protected from skeletal muscle weight loss compared to animals receiving only cisplatin, corroborating that ActRII inhibition remains fully efficacious under cisplatin treatment. In contrast, everolimus treatment alone significantly protected the tumor-bearing mice against skeletal muscle weight loss caused by CT-26 tumor. CDD866 not only remains efficacious in the presence of everolimus but also showed a non-significant trend for an additive effect on reversing skeletal muscle weight loss. Importantly, both combination therapies slowed down time

  1. International comparison of the factors influencing reimbursement of targeted anti-cancer drugs.

    PubMed

    Lim, Carol Sunghye; Lee, Yun-Gyoo; Koh, Youngil; Heo, Dae Seog

    2014-11-29

    Reimbursement policies for anti-cancer drugs vary among countries even though they rely on the same clinical evidence. We compared the pattern of publicly funded drug programs and analyzed major factors influencing the differences. We investigated reimbursement policies for 19 indications with targeted anti-cancer drugs that are used variably across ten countries. The available incremental cost-effectiveness ratio (ICER) data were retrieved for each indication. Based on the comparison between actual reimbursement decisions and the ICERs, we formulated a reimbursement adequacy index (RAI): calculating the proportion of cost-effective decisions, either reimbursement of cost-effective indications or non-reimbursement of cost-ineffective indications, out of the total number of indications for each country. The relationship between RAI and other indices were analyzed, including governmental dependency on health technology assessment, as well as other parameters for health expenditure. All the data used in this study were gathered from sources publicly available online. Japan and France were the most likely to reimburse indications (16/19), whereas Sweden and the United Kingdom were the least likely to reimburse them (5/19 and 6/19, respectively). Indications with high cost-effectiveness values were more likely to be reimbursed (ρ = -0.68, P = 0.001). The three countries with high RAI scores each had a healthcare system that was financed by general taxation. Although reimbursement policies for anti-cancer drugs vary among countries, we found a strong correlation of reimbursements for those indications with lower ICERs. Countries with healthcare systems financed by general taxation demonstrated greater cost-effectiveness as evidenced by reimbursement decisions of anti-cancer drugs.

  2. Biotin Decorated Gold Nanoparticles for Targeted Delivery of a Smart-Linked Anticancer Active Copper Complex: In Vitro and In Vivo Studies.

    PubMed

    Pramanik, Anup K; Siddikuzzaman; Palanimuthu, Duraippandi; Somasundaram, Kumaravel; Samuelson, Ashoka G

    2016-12-21

    The synthesis and anticancer activity of a copper(II) diacetyl-bis(N4-methylthiosemicarbazone) complex and its nanoconjugates are reported. The copper(II) complex is connected to a carboxylic acid group through a cleavable disulfide link to enable smart delivery. The copper complex is tethered to highly water-soluble 20 nm gold nanoparticles (AuNPs), stabilized by amine terminated lipoic acid-polyethylene glycol (PEG). The gold nanoparticle carrier was further decorated with biotin to achieve targeted action. The copper complex and the conjugates with and without biotin, were tested against HeLa and HaCaT cells. They show very good anticancer activity against HeLa cells, a cell line derived from cervical cancer and are less active against HaCaT cells. Slow and sustained release of the complex from conjugates is demonstrated through cleavage of disulfide linker in the presence of glutathione (GSH), a reducing agent intrinsically present in high concentrations within cancer cells. Biotin appended conjugates do not show greater activity than conjugates without biotin against HeLa cells. This is consistent with drug uptake studies, which suggests similar uptake profiles for both conjugates in vitro. However, in vivo studies using a HeLa cell xenograft tumor model shows 3.8-fold reduction in tumor volume for the biotin conjugated nanoparticle compared to the control whereas the conjugate without biotin shows only 2.3-fold reduction in the tumor volume suggesting significant targeting.

  3. Synthesis of nοvel artemisinin dimers with polyamine linkers and evaluation of their potential as anticancer agents.

    PubMed

    Magoulas, George E; Tsigkou, Tzoanna; Skondra, Lina; Lamprou, Margarita; Tsoukala, Panagiota; Kokkinogouli, Vassiliki; Pantazaka, Evangelia; Papaioannou, Dionissios; Athanassopoulos, Constantinos M; Papadimitriou, Evangelia

    2017-07-15

    The natural product artemisinin and derivatives thereof are currently considered as the drugs of choice for the treatment of malaria. At the same time, a significant number of such drugs have also shown interesting anticancer activity. In the context of the present research work, artemisinin was structurally modified and anchored to naturally occurring polyamines to afford new artemisinin dimeric conjugates whose potential anticancer activity was evaluated. All artemisinin conjugates tested were more effective than artemisinin itself in decreasing the number of MCF7 breast cancer cells. The effect required conjugation and was not due to the artemisinin analogue or the polyamine, alone or in combination. To elucidate potential mechanism of action, we used the most effective conjugates 6, 7, 9 and 12 and found that they decreased expression and secretion of the angiogenic growth factor pleiotrophin by the cancer cells themselves, and inhibited angiogenesis in vivo and endothelial cell growth in vitro. These data suggest that the new artemisinin dimers are good candidates for the development of effective anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A Mn(II) complex of boradiazaindacene (BODIPY) loaded graphene oxide as both LED light and H2O2 enhanced anticancer agent.

    PubMed

    Xu, Xiao-Lei; Shao, Jian; Chen, Qiu-Yun; Li, Cheng-Hao; Kong, Meng-Yun; Fang, Fang; Ji, Ling; Boison, Daniel; Huang, Tao; Gao, Jing; Feng, Chang-Jian

    2016-06-01

    Cancer cells are more susceptible to H2O2 induced cell death than normal cells. H2O2-activatable and O2-evolving nanoparticles could be used as photodynamic therapy agents in hypoxic environments. In this report, a photo-active Mn(II) complex of boradiazaindacene derivatives (Mn1) was used as a dioxygen generator under irradiation with LED light in water. Moreover, the in vitro biological evaluation for Mn1 and its loaded graphene oxide (herein called Mn1@GO) on HepG-2 cells in normal and hypoxic conditions has been performed. In particular, Mn1@GO can react with H2O2 resulting active anticancer species, which show high inhibition on both HepG-2 cells and CoCl2-treated HepG-2 cells (hypoxic cancer cells). The mechanism of LED light enhanced anticancer activity for Mn1@GO on HepG-2 cells was discussed. Our results show that Mn(II) complexes of boradiazaindacene (BODIPY) derivatives loaded GO can be both LED light and H2O2-activated anticancer agents in hypoxic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent.

    PubMed

    Sohretoglu, Didem; Huang, Shile

    2017-11-13

    The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Magnetic polymer nanospheres for anticancer drug targeting

    NASA Astrophysics Data System (ADS)

    Juríková, A.; Csach, K.; Koneracká, M.; Závišová, V.; Múčková, M.; Tomašovičová, N.; Lancz, G.; Kopčanský, P.; Timko, M.; Miškuf, J.

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  7. Potential Anticancer Properties of Osthol: A Comprehensive Mechanistic Review

    PubMed Central

    Shokoohinia, Yalda; Jafari, Fataneh; Mohammadi, Zeynab; Bazvandi, Leili; Hosseinzadeh, Leila; Chow, Nicholas; Bhattacharyya, Piyali; Farzaei, Mohammad Hosein; Farooqi, Ammad Ahmad; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2018-01-01

    Cancer is caused by uncontrolled cell proliferation which has the potential to occur in different tissues and spread into surrounding and distant tissues. Despite the current advances in the field of anticancer agents, rapidly developing resistance against different chemotherapeutic drugs and significantly higher off-target effects cause millions of deaths every year. Osthol is a natural coumarin isolated from Apiaceaous plants which has demonstrated several pharmacological effects, such as antineoplastic, anti-inflammatory and antioxidant properties. We have attempted to summarize up-to-date information related to pharmacological effects and molecular mechanisms of osthol as a lead compound in managing malignancies. Electronic databases, including PubMed, Cochrane library, ScienceDirect and Scopus were searched for in vitro, in vivo and clinical studies on anticancer effects of osthol. Osthol exerts remarkable anticancer properties by suppressing cancer cell growth and induction of apoptosis. Osthol’s protective and therapeutic effects have been observed in different cancers, including ovarian, cervical, colon and prostate cancers as well as chronic myeloid leukemia, lung adenocarcinoma, glioma, hepatocellular, glioblastoma, renal and invasive mammary carcinoma. A large body of evidence demonstrates that osthol regulates apoptosis, proliferation and invasion in different types of malignant cells which are mediated by multiple signal transduction cascades. In this review, we set spotlights on various pathways which are targeted by osthol in different cancers to inhibit cancer development and progression. PMID:29301373

  8. CNS Anticancer Drug Discovery and Development: 2016 conference insights

    PubMed Central

    Levin, Victor A; Abrey, Lauren E; Heffron, Timothy P; Tonge, Peter J; Dar, Arvin C; Weiss, William A; Gallo, James M

    2017-01-01

    CNS Anticancer Drug Discovery and Development, 16-17 November 2016, Scottsdale, AZ, USA The 2016 second CNS Anticancer Drug Discovery and Development Conference addressed diverse viewpoints about why new drug discovery/development focused on CNS cancers has been sorely lacking. Despite more than 70,000 individuals in the USA being diagnosed with a primary brain malignancy and 151,669–286,486 suffering from metastatic CNS cancer, in 1999, temozolomide was the last drug approved by the US FDA as an anticancer agent for high-grade gliomas. Among the topics discussed were economic factors and pharmaceutical risk assessments, regulatory constraints and perceptions and the need for improved imaging surrogates of drug activity. Included were modeling tumor growth and drug effects in a medical environment in which direct tumor sampling for biological effects can be problematic, potential new drugs under investigation and targets for drug discovery and development. The long trajectory and diverse impediments to novel drug discovery, and expectation that more than one drug will be needed to adequately inhibit critical intracellular tumor pathways were viewed as major disincentives for most pharmaceutical/biotechnology companies. While there were a few unanimities, one consensus is the need for continued and focused discussion among academic and industry scientists and clinicians to address tumor targets, new drug chemistry, and more time- and cost-efficient clinical trials based on surrogate end points. PMID:28718326

  9. A review of economic impact of targeted oral anticancer medications.

    PubMed

    Shen, Chan; Chien, Chun-Ru; Geynisman, Daniel M; Smieliauskas, Fabrice; Shih, Ya-Chen T

    2014-02-01

    There has been a rapid increase in the use of targeted oral anticancer medications (OAMs) in the past decade. As OAMs are often expensive, economic consideration play a significant role in the decision to prescribe, receive or cover them. This paper performs a systematic review of costs or budgetary impact of targeted OAMs to better understand their economic impact on the healthcare system, patients as well as payers. We present our review in a summary table that describes the method and main findings, take into account multiple factors, such as country, analytical approach, cost type, study perspective, timeframe, data sources, study population and care setting when we interpret the results from different papers, and discuss the policy and clinical implications. Our review raises a concern regarding the role of sponsorship on findings of economic analyses as the vast majority of pharmaceutical company-sponsored studies reported cost advantages toward the sponsor's drugs.

  10. Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance

    PubMed Central

    Lee, Z-W; Teo, X-Y; Tay, E Y-W; Tan, C-H; Hagen, T; Moore, P K; Deng, L-W

    2014-01-01

    Background and Purpose Many disparate studies have reported the ambiguous role of hydrogen sulfide (H2S) in cell survival. The present study investigated the effect of H2S on the viability of cancer and non-cancer cells. Experimental Approach Cancer and non-cancer cells were exposed to H2S [using sodium hydrosulfide (NaHS) and GYY4137] and cell viability was examined by crystal violet assay. We then examined cancer cellular glycolysis by in vitro enzymatic assays and pH regulator activity. Lastly, intracellular pH (pHi) was determined by ratiometric pHi measurement using BCECF staining. Key Results Continuous, but not a single, exposure to H2S decreased cell survival more effectively in cancer cells, as compared to non-cancer cells. Slow H2S-releasing donor, GYY4137, significantly increased glycolysis, leading to overproduction of lactate. H2S also decreased anion exchanger and sodium/proton exchanger activity. The combination of increased metabolic acid production and defective pH regulation resulted in an uncontrolled intracellular acidification, leading to cancer cell death. In contrast, no significant intracellular acidification or cell death was observed in non-cancer cells. Conclusions and Implications Low and continuous exposure to H2S targets metabolic processes and pH homeostasis in cancer cells, potentially serving as a novel and selective anti-cancer strategy. PMID:24827113

  11. Photolabile ruthenium complexes to cage and release a highly cytotoxic anticancer agent.

    PubMed

    Wei, Jianhua; Renfrew, Anna K

    2018-02-01

    CHS-828 (N-(6-(4-chlorophenoxy)hexyl)-N'-cyano-N″-4-pyridyl guanidine) is an anticancer agent with low bioavailability and high systemic toxicity. Here we present an approach to improve the therapeutic profile of the drug using photolabile ruthenium complexes to generate light-activated prodrugs of CHS-828. Both prodrug complexes are stable in the dark but release CHS-828 when irradiated with visible light. The complexes are water-soluble and accumulate in tumour cells in very high concentrations, predominantly in the mitochondria. Both prodrug complexes are significantly less cyototoxic than free CHS-828 in the dark but their toxicity increases up to 10-fold in combination with visible light. The cellular responses to light treatment are consistent with release of the cytotoxic CHS-828 ligand. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Classification of current anticancer immunotherapies

    PubMed Central

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  13. Green design "bioinspired disassembly-reassembly strategy" applied for improved tumor-targeted anticancer drug delivery.

    PubMed

    Wang, Ruoning; Gu, Xiaochen; Zhou, Jianping; Shen, Lingjia; Yin, Lifang; Hua, Peiying; Ding, Yang

    2016-08-10

    In this study, a simple and green approach 'bioinspired disassembly-reassembly strategy' was employed to reconstitute lipoprotein nanoparticles (RLNs) using whole-components of endogenous ones (contained dehydrated human lipids and native apolipoproteins). These RLNs were engineered to mimic the configuration and properties of natural lipoproteins for efficient drug delivery. In testing therapeutic targeting to microtubules, paclitaxel (PTX) was reassembled into RLNs to achieve improved targeted anti-carcinoma treatment and minimize adverse effects, demonstrating ultimately more applicable than HDL-like particles which are based on exogenous lipid sources. We have characterized that apolipoprotein-decoration of PTX-loaded RLNs (RLNs-PTX) led to favoring uniformly dispersed distribution, increasing PTX-encapsulation with a sustained-release pattern, while enhancing biostability during blood circulation. The innate biological RLNs induced efficient intracellular trafficking of cargos in situ via multi-targeting mechanisms, including scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, as well as other lipoprotein-receptors associated endocytic pathways. The resulting anticancer treatment from RLNs-PTX was demonstrated a half-maximal inhibitory concentration of 0.20μg/mL, cell apoptosis of 18.04% 24h post-incubation mainly arresting G2/M cell cycle in vitro, and tumor weight inhibition of 70.51% in vivo. Collectively, green-step assembly-based RLNs provided an efficient strategy for mediating tumor-targeted accumulation of PTX and enhanced anticancer efficacy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Molecular targeting agents in cancer therapy: science and society.

    PubMed

    Shaikh, Asim Jamal

    2012-01-01

    The inception of targeted agents has revolutionized the cancer therapy paradigm, both for physicians and patients. A large number of molecular targeted agents for cancer therapy are currently available for clinical use today. Many more are in making, but there are issues that remain to be resolved for the scientific as well as social community before the recommendation of their widespread use in may clinical scenarios can be done, one such issue being cost and cost effectiveness, others being resistance and lack of sustained efficacy. With the current knowledge about available targeted agents, the growing knowledge of intricate molecular pathways and unfolding of wider spectrum of molecular targets that can really matter in the disease control, calls for only the just use of the agents available now, drug companies need to make a serious attempt to reduce the cost of the agents. Research should focus on agents that show sustained responses in preclinical data. More needs to be done in laboratories and by the pharmaceutical industries, before we can truly claim to have entered a new era of targeted therapy in cancer care.

  15. Benefit and harms of new anti-cancer drugs.

    PubMed

    Vera-Badillo, Francisco E; Al-Mubarak, Mustafa; Templeton, Arnoud J; Amir, Eitan

    2013-06-01

    Phase III randomized controlled trials (RCTs) assess clinically important differences in endpoints that reflect benefit to and harm of patients. Defining benefit of cancer drugs can be difficult. Overall survival and quality of life are the most relevant primary endpoints, but difficulty in measuring these mean that other endpoints are often used, although their surrogacy or clinical relevance has not always been established. In general, advances in drug development have led to numerous new drugs to enter the market. Pivotal RCT of several new drugs have shown that benefit appeared greater for targeted anticancer agents than for chemotherapeutic agents. This effect seems particularly evident with targeted agents evaluated in biomarker-driven studies. Unfortunately, new therapies have also shown an increase in toxicity. Such toxicity is not always evident in the initial reports of RCTs. This may be a result of a statistical inability to detect differences between arms of RCTs, or occasionally due to biased reporting. There are several examples where reports of new toxicities could only be found in drug labels. In some cases, the small improvement in survival has come at a cost of substantial excess toxicity, leading some to consider such therapy as having equipoise.

  16. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα

    PubMed Central

    Alam, Sarfaraz; Khan, Feroz

    2014-01-01

    Due to the high mortality rate in India, the identification of novel molecules is important in the development of novel and potent anticancer drugs. Xanthones are natural constituents of plants in the families Bonnetiaceae and Clusiaceae, and comprise oxygenated heterocycles with a variety of biological activities along with an anticancer effect. To explore the anticancer compounds from xanthone derivatives, a quantitative structure activity relationship (QSAR) model was developed by the multiple linear regression method. The structure–activity relationship represented by the QSAR model yielded a high activity–descriptors relationship accuracy (84%) referred by regression coefficient (r2=0.84) and a high activity prediction accuracy (82%). Five molecular descriptors – dielectric energy, group count (hydroxyl), LogP (the logarithm of the partition coefficient between n-octanol and water), shape index basic (order 3), and the solvent-accessible surface area – were significantly correlated with anticancer activity. Using this QSAR model, a set of virtually designed xanthone derivatives was screened out. A molecular docking study was also carried out to predict the molecular interaction between proposed compounds and deoxyribonucleic acid (DNA) topoisomerase IIα. The pharmacokinetics parameters, such as absorption, distribution, metabolism, excretion, and toxicity, were also calculated, and later an appraisal of synthetic accessibility of organic compounds was carried out. The strategy used in this study may provide understanding in designing novel DNA topoisomerase IIα inhibitors, as well as for other cancer targets. PMID:24516330

  17. Targeting 6-phosphogluconate dehydrogenase in the oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin.

    PubMed

    Elf, S; Lin, R; Xia, S; Pan, Y; Shan, C; Wu, S; Lonial, S; Gaddh, M; Arellano, M L; Khoury, H J; Khuri, F R; Lee, B H; Boggon, T J; Fan, J; Chen, J

    2017-01-12

    The oxidative pentose phosphate pathway (PPP) is crucial for cancer cell metabolism and tumor growth. We recently reported that targeting a key oxidative PPP enzyme, 6-phosphogluconate dehydrogenase (6PGD), using our novel small-molecule 6PGD inhibitors Physcion and its derivative S3, shows anticancer effects. Notably, humans with genetic deficiency of either 6PGD or another oxidative PPP enzyme, glucose-6-phosphate dehydrogenase, exhibit non-immune hemolytic anemia upon exposure to aspirin and various antimalarial drugs. Inspired by these clinical observations, we examined the anticancer potential of combined treatment with 6PGD inhibitors and antimalarial drugs. We found that stable knockdown of 6PGD sensitizes leukemia cells to antimalarial agent dihydroartemisinin (DHA). Combined treatment with DHA and Physcion activates AMP-activated protein kinase, leading to synergistic inhibition of human leukemia cell viability. Moreover, our combined therapy synergistically attenuates tumor growth in xenograft nude mice injected with human K562 leukemia cells and cell viability of primary leukemia cells from human patients, but shows minimal toxicity to normal hematopoietic cells in mice as well as red blood cells and mononucleocytes from healthy human donors. Our findings reveal the potential for combined therapy using optimized doses of Physcion and DHA as a novel antileukemia treatment without inducing hemolysis.

  18. [Alkylating agents].

    PubMed

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  19. Oxidative stress mediates through apoptosis the anticancer effect of phospho-nonsteroidal anti-inflammatory drugs: implications for the role of oxidative stress in the action of anticancer agents.

    PubMed

    Sun, Yu; Huang, Liqun; Mackenzie, Gerardo G; Rigas, Basil

    2011-09-01

    We assessed the relationship between oxidative stress, cytokinetic parameters, and tumor growth in response to novel phospho-nonsteroidal anti-inflammatory drugs (NSAIDs), agents with significant anticancer effects in preclinical models. Compared with controls, in SW480 colon and MCF-7 breast cancer cells, phospho-sulindac, phospho-aspirin, phospho-flurbiprofen, and phospho-ibuprofen (P-I) increased the levels of reactive oxygen and nitrogen species (RONS) and decreased GSH levels and thioredoxin reductase activity, whereas the conventional chemotherapeutic drugs (CCDs), 5-fluorouracil (5-FU), irinotecan, oxaliplatin, chlorambucil, paclitaxel, and vincristine, did not. In both cell lines, phospho-NSAIDs induced apoptosis and inhibited cell proliferation much more potently than CCDs. We then treated nude mice bearing SW480 xenografts with P-I or 5-FU that had an opposite effect on RONS in vitro. Compared with controls, P-I markedly suppressed xenograft growth, induced apoptosis in the xenografts (8.9 ± 2.7 versus 19.5 ± 3.0), inhibited cell proliferation (52.6 ± 5.58 versus 25.8 ± 7.71), and increased urinary F2-isoprostane levels (10.7 ± 3.3 versus 17.9 ± 2.2 ng/mg creatinine, a marker of oxidative stress); all differences were statistically significant. 5-FU's effects on tumor growth, apoptosis, proliferation, and F2-isoprostane were not statistically significant. F2-isoprostane levels correlated with the induction of apoptosis and the inhibition of cell growth. P-I induced oxidative stress only in the tumors, and its apoptotic effect was restricted to xenografts. Our data show that phospho-NSAIDs act against cancer through a mechanism distinct from that of various CCDs, underscore the critical role of oxidative stress in their effect, and indicate that pathways leading to oxidative stress may be useful targets for anticancer strategies.

  20. Therapeutic efficacy of ferrofluid bound anticancer agent

    NASA Astrophysics Data System (ADS)

    Alexiou, Ch.; Arnold, W.; Hulin, P.; Klein, R.; Schmidt, A.; Bergemannand, Ch.; Parak, F. G.

    2001-09-01

    Ferrofluids coated with starch polymers can be used as biocompatible carriers in a new field of locoregional tumor therapy called "magnetic drug targeting". Bound to medical drugs, such magnetic nanoparticles can be enriched in a desired body compartment using an external magnetic field. In the present study, we confirm the concentration of ferrofluids in VX2 squamous cell carcinoma tissue of the rabbit using histological investigations and MR imaging. The therapeutic efficacy of "magnetic drug targeting" was studied using the rabbit VX2 squamous cell carcinoma model. Mitoxantrone coupled ferrofluids were injected intraarterially into the artery supplying the tumor (femoral artery). The magnetic field (1.7 Tesla) was focused to the tumor placed at the medial portion of the hind limb of New Zealand White rabbits. Complete tumor remissions could be seen without any negative side effects by using only 20% of the normal systemic dosage of the chemotherapeutic agent mitoxantrone. Figs 3, Refs 14.

  1. The role of arsenic in the hydrolysis and DNA metalation processes in an arsenous acid-platinum(ii) anticancer complex.

    PubMed

    Marino, T; Parise, A; Russo, N

    2017-01-04

    Platinum(ii)-based molecules are the most commonly used anticancer drugs in the chemotherapeutic treatment of tumours but possess serious side effects and some cancer types exhibit resistance with respect to these compounds (e.g. cisplatin). For these reasons, the research of new compounds that can bypass this limitation is in continuous development. Recently, mixed Pt(ii)-As(iii) systems have been synthesized and tested as potential anticancer agents. The mechanism of action of these kinds of drugs is unclear. Since in other platinum(ii) containing drugs, hydrolysis plays an important role in the activation of the compound before it reaches DNA, we have explored the aquation process using density functional theory (DFT), focusing our attention on the arsenoplatin complex, [Pt(μ-NHC(CH 3 )O) 2 ClAs(OH) 2 ]. As DNA is believed to be the cellular target for Pt anticancer drugs, the metalation mechanism of DNA purine bases has been also investigated. Also for this new drug it appears that guanine is the preferred site with respect to adenine as with other platinum-containing compounds. A comparison with cisplatin is performed in order to highlight the contribution of arsenic in the anticancer activity of this new proposed anticancer agent.

  2. Linker design for the modular assembly of multifunctional and targeted platinum(ii)-containing anticancer agents.

    PubMed

    Ding, S; Bierbach, U

    2016-08-16

    A versatile and efficient modular synthetic platform was developed for assembling multifunctional conjugates and targeted forms of platinum-(benz)acridines, a class of highly cytotoxic DNA-targeted hybrid agents. The synthetic strategy involved amide coupling between succinyl ester-modified platinum compounds (P1, P2) and a set of 11 biologically relevant primary and secondary amines (N1-N11). To demonstrate the feasibility and versatility of the approach, a structurally and functionally diverse range of amines was introduced. These include biologically active molecules, such as rucaparib (a PARP inhibitor), E/Z-endoxifen (an estrogen receptor antagonist), and a quinazoline-based tyrosine kinase inhibitor. Micro-scale reactions in Eppendorf tubes or on 96-well plates were used to screen for optimal coupling conditions in DMF solution with carbodiimide-, uronium-, and phosphonium-based compounds, as well as other common coupling reagents. Reactions with the phosphonium-based coupling reagent PyBOP produced the highest yields and gave the cleanest conversions. Furthermore, it was demonstrated that the chemistry can also be performed in aqueous media and is amenable to parallel synthesis based on multiple consecutive reactions in DMF in a "one-tube" format. In-line LC-MS was used to assess the stability of the conjugates in physiologically relevant buffers. Hydrolysis of the conjugates occurs at the ester moiety and is facilitated by the aquated metal moiety under low-chloride ion conditions. The rate of ester cleavage greatly depends on the nature of the amine component. Potential applications of the linker technology are discussed.

  3. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    PubMed

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications.

  4. Curcumin-I Knoevenagel's condensates and their Schiff's bases as anticancer agents: synthesis, pharmacological and simulation studies.

    PubMed

    Ali, Imran; Haque, Ashanul; Saleem, Kishwar; Hsieh, Ming Fa

    2013-07-01

    Pyrazolealdehydes (4a-d), Knoevenagel's condensates (5a-d) and Schiff's bases (6a-d) of curcumin-I were synthesized, purified and characterized. Hemolysis assays, cell line activities, DNA bindings and docking studies were carried out. These compounds were lesser hemolytic than standard drug doxorubicin. Minimum cell viability (MCF-7; wild) observed was 59% (1.0 μg/mL) whereas the DNA binding constants ranged from 1.4×10(3) to 8.1×10(5) M(-1). The docking energies varied from -7.30 to -13.4 kcal/mol. It has been observed that DNA-compound adducts were stabilized by three governing forces (Van der Wall's, H-bonding and electrostatic attractions). It has also been observed that compounds 4a-d preferred to enter minor groove while 5a-d and 6a-d interacted with major grooves of DNA. The anticancer activities of the reported compounds might be due to their interactions with DNA. These results indicated the bright future of the reported compounds as anticancer agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Marine Microalgae with Anti-Cancer Properties.

    PubMed

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  6. Diterpenes and Their Derivatives as Potential Anticancer Agents.

    PubMed

    Islam, Muhammad Torequl

    2017-05-01

    As therapeutic tools, diterpenes and their derivatives have gained much attention of the medicinal scientists nowadays. It is due to their pledging and important biological activities. This review congregates the anticancer diterpenes. For this, a search was made with selected keywords in PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and miscellaneous databases from January 2012 to January 2017 for the published articles. A total 28, 789 published articles were seen. Among them, 240 were included in this study. More than 250 important anticancer diterpenes and their derivatives were seen in the databases, acting in the different pathways. Some of them are already under clinical trials, while others are in the nonclinical and/or pre-clinical trials. In conclusion, diterpenes may be one of the lead molecules in the treatment of cancer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Peroxisome Proliferator Activated Receptor A Ligands as Anticancer Drugs Targeting Mitochondrial Metabolism

    PubMed Central

    Grabacka, Maja; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2011-01-01

    Tumor cells show metabolic features distinctive from normal tissues, with characteristically enhanced aerobic glycolysis, glutaminolysis and lipid synthesis. Peroxisome proliferator activated receptor α (PPAR α) is activated by nutrients (fatty acids and their derivatives) and influences these metabolic pathways acting antagonistically to oncogenic Akt and c-Myc. Therefore PPAR α can be regarded as a candidate target molecule in supplementary anticancer pharmacotherapy as well as dietary therapeutic approach. This idea is based on hitting the cancer cell metabolic weak points through PPAR α mediated stimulation of mitochondrial fatty acid oxidation and ketogenesis with simultaneous reduction of glucose and glutamine consumption. PPAR α activity is induced by fasting and its molecular consequences overlap with the effects of calorie restriction and ketogenic diet (CRKD). CRKD induces increase of NAD+/NADH ratio and drop in ATP/AMP ratio. The first one is the main stimulus for enhanced protein deacetylase SIRT1 activity; the second one activates AMP-dependent protein kinase (AMPK). Both SIRT1 and AMPK exert their major metabolic activities such as fatty acid oxidation and block of glycolysis and protein, nucleotide and fatty acid synthesis through the effector protein peroxisome proliferator activated receptor gamma 1 α coactivator (PGC-1α). PGC-1α cooperates with PPAR α and their activities might contribute to potential anticancer effects of CRKD, which were reported for various brain tumors. Therefore, PPAR α activation can engage molecular interplay among SIRT1, AMPK, and PGC-1α that provides a new, low toxicity dietary approach supplementing traditional anticancer regimen. PMID:21133850

  8. A natural anticancer agent thaspine targets human topoisomerase IB.

    PubMed

    Castelli, Silvia; Katkar, Prafulla; Vassallo, Oscar; Falconi, Mattia; Linder, Stig; Desideri, Alessandro

    2013-02-01

    The different steps of the topoisomerase I catalytic cycle have been analyzed in the presence of the plant alkaloid thaspine (1- (2-(Dimethylamino)ethyl)-3,8-dimethoxychromeno[5,4,3-cde]chromene-5,10-dione), known to induce apoptosis in colon carcinoma cells. The experiments indicate that thaspine inhibits both the cleavage and the religation steps of the enzyme reaction. The inhibition is reversible and the effect is enhanced upon pre-incubation. Molecular docking simulations of thaspine over topoisomerase I, in the presence or absence of the DNA substrate, show that thaspine, when interacting with the enzyme alone in the closed or in the open state, can bind in proximity of the active residues preventing the cleavage reaction, whilst when docked with the enzyme-DNA cleavable complex intercalates between the DNA bases in a way similar to that found for camptothecin, explaining its religation inhibition. These results unequivocally demonstrate that thaspine targets human topoisomerase I .

  9. Targeting the Thioredoxin System for Cancer Therapy.

    PubMed

    Zhang, Junmin; Li, Xinming; Han, Xiao; Liu, Ruijuan; Fang, Jianguo

    2017-09-01

    Thioredoxin (Trx) and thioredoxin reductase (TrxR) are essential components of the Trx system which plays pivotal roles in regulating multiple cellular redox signaling pathways. In recent years TrxR/Trx have been increasingly recognized as an important modulator of tumor development, and hence targeting TrxR/Trx is a promising strategy for cancer treatment. In this review we first discuss the structural details of TrxR, the functions of the Trx system, and the rational of targeting TrxR/Trx for cancer treatment. We also highlight small-molecule TrxR/Trx inhibitors that have potential anticancer activity and review their mechanisms of action. Finally, we examine the challenges of developing TrxR/Trx inhibitors as anticancer agents and perspectives for selectively targeting TrxR/Trx. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Molecular targets and anti-cancer potential of escin.

    PubMed

    Cheong, Dorothy H J; Arfuso, Frank; Sethi, Gautam; Wang, Lingzhi; Hui, Kam Man; Kumar, Alan Prem; Tran, Thai

    2018-05-28

    Escin is a mixture of triterpenoid saponins extracted from the horse chestnut tree, Aesculus hippocastanum. Its potent anti-inflammatory and anti-odematous properties makes it a choice of therapy against chronic venous insufficiency and odema. More recently, escin is being actively investigated for its potential activity against diverse cancers. It exhibits anti-cancer effects in many cancer cell models including lung adenocarcinoma, hepatocellular carcinoma and leukemia. Escin also attenuates tumor growth and metastases in various in vivo models. Importantly, escin augments the effects of existing chemotherapeutic drugs, thereby supporting the role of escin as an adjunct or alternative anti-cancer therapy. The beneficial effects of escin can be attributed to its inhibition of proliferation and induction of cell cycle arrest. By regulating transcription factors/growth factors mediated oncogenic pathways, escin also potentially mitigates chronic inflammatory processes that are linked to cancer survival and resistance. This review provides a comprehensive overview of the current knowledge of escin and its potential as an anti-cancer therapy through its anti-proliferative, pro-apoptotic, and anti-inflammatory effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Recent developments in patent anti-cancer agents targeting the matrix metalloproteinases (MMPs).

    PubMed

    Li, Xun; Wu, Ji-Feng

    2010-06-01

    Matrix metalloproteinases (MMPs) belong to a family of closely related calcium- and zinc-dependent endopeptidases involved in the degradation and remodeling of extracellular matrix (ECM) proteins that are associated with the tumorigenic processes. MMPs promote tumor invasion and metastasis, regulating host defense mechanisms and normal cell function. Thus, MMP inhibitors (MMPIs) are expected to be useful chemotherapeutic agents for the treatment of malignant cancer, osteoarthritis, and rheumatoid arthritis. A vast number of small molecular MMPIs have been developed in recent years. Although there have been considerable preclinical and clinical studies on these inhibitors, most of the effective candidates in clinical trials, however, have yielded unsatisfactory results, thus they are as yet unavailable for use as therapeutic drugs. Currently, more efforts have been directed to the design of specific inhibitors towards certain MMP family members for selective usage. This review will focus primarily on an analysis of recent developed MMPIs that have entered preclinical or clinical trials, and recently registered patents with regard to new highly selective MMPIs in USA or patent applications related to the specific inhibitors of MMPs. We also analyze the clinical failure and discuss the possible strategies to best optimize the development of these novel agents.

  12. Novel modified steroid derivatives of androstanolone as chemotherapeutic anti-cancer agents.

    PubMed

    El-Far, Mohamed; Elmegeed, Gamal A; Eskander, Emad F; Rady, Hanaa M; Tantawy, Mohamed A

    2009-10-01

    The aim of the present study is to synthesize and evaluate new potential chemotherapeutic anti-tumor agents. Several thiazolo-, pyrido-, pyrano- and lactam steroid derivatives were obtained using 17beta-hydroxy-5alpha-androstan-3-one (androstanolone) 1 as starting steroid. The structure of the novel steroid derivatives was confirmed using the analytical and spectral data. The most pure and structurally promising compounds 7a, 10a, 12b, 18 and 23 were evaluated as anti-tumor agents. The in vitro cytotoxic activity was evaluated against hepatoma cell lines using MTT assay. Also the in vivo anti-tumor activity was evaluated against Ehrlich ascites carcinoma (EAC). The results of the in vitro study showed that at incubation time 72h, in olive oil, compound 7a was the most effective cytotoxic compound with IC(50) of 30 microM, while the effects of compounds 18 and 23 were approximately similar with IC(50) of 37 microM and 35 microM respectively. While the tested compounds when dissolved in DMSO showed approximately the same IC(50) at both 48 and 72h incubation period, compound 23 was the most effective cytotoxic with IC(50) 42 microM at 48h and 40 microM at 72h. The results of the in vivo study showed that all the tested novel compounds at 25mg/kg were effective against EAC. Our novel steroid derivatives are promising candidates as anti-cancer agents, none of the mice treated with our novel derivatives showed any toxic symptoms, but they also completely inhibited tumor growth and retained the hemoglobin content, body weight, and WBCs near normal values and similar to what obtained for the standard drug 5-flurouracil.

  13. A novel vascular-targeting peptide for gastric cancer delivers low-dose TNFα to normalize the blood vessels and improve the anti-cancer efficiency of 5-fluorouracil.

    PubMed

    Lu, Lan; Li, Zhi Jie; Li, Long Fei; Shen, Jing; Zhang, Lin; Li, Ming Xing; Xiao, Zhan Gang; Wang, Jian Hao; Cho, Chi Hin

    2017-11-01

    Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs. Copyright © 2017. Published by Elsevier Inc.

  14. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Rae-Kwon; Uddin, Nizam; Hyun, Jin-Won

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2more » and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.« less

  15. Anticancer Properties of Capsaicin Against Human Cancer.

    PubMed

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Developments in platinum anticancer drugs

    NASA Astrophysics Data System (ADS)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  17. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    PubMed

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Metformin targets multiple signaling pathways in cancer.

    PubMed

    Lei, Yong; Yi, Yanhua; Liu, Yang; Liu, Xia; Keller, Evan T; Qian, Chao-Nan; Zhang, Jian; Lu, Yi

    2017-01-26

    Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 diabetes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addition, cutting-edge targeting of cancer stem cells by metformin is summarized.

  19. Therapeutic Innovations for Targeting Hepatoblastoma.

    PubMed

    Garnier, Agnès; Ilmer, Matthias; Kappler, Roland; Berger, Michael

    2016-11-01

    Hepatoblastoma is the most common pediatric liver tumor. Despite recent advances in treatment with surgery and chemotherapy, the prognosis in advanced stages remains poor. The neurokinin-1 receptor (NK1R) has recently been described to be pivotal in the development of cancer. Furthermore, overwhelming evidence now exists showing that pharmacological manipulation of NK1R can cause a robust anticancer effect. Consequently, NK1R antagonists, such as the clinical drug aprepitant, are under current investigation as future innovative anticancer agents. In that sense, new evidence suggests that NK1R is highly expressed in human hepatoblastoma and can be targeted to create a robust inhibiton of tumor growth in vivo and in vitro. The mechanisms behind this effect are only now being investigated but already reveal an arsenal of therapeutic possibilities. Our article describes the most recent developments in the field of therapeutic NK1R inhibition in cancer and focuses particularly on the newly discovered molecular mechanisms involved when targeting NK1R in hepatoblastoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    PubMed

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  1. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Shi, Changhong; Wu, Jason Boyang; Pan, Dongfeng

    2016-05-01

    A class of near-infrared fluorescence (NIRF) heptamethine cyanine dyes that are taken up and accumulated specifically in cancer cells without chemical conjugation have recently emerged as promising tools for tumor imaging and targeting. In addition to their fluorescence and nuclear imaging-based tumor-imaging properties, these dyes can be developed as drug carriers to safely deliver chemotherapy drugs to tumors. They can also be used as effective agents for photodynamic therapy with remarkable tumoricidal activity via photodependent cytotoxic activity. The preferential uptake of dyes into cancer but not normal cells is co-operatively mediated by the prevailing activation of a group of organic anion-transporting polypeptides on cancer cell membranes, as well as tumor hypoxia and increased mitochondrial membrane potential in cancer cells. Such mechanistic explorations have greatly advanced the current application and future development of NIRF dyes and their derivatives as anticancer theranostic agents. This review summarizes current knowledge and emerging advances in NIRF dyes, including molecular characterization, photophysical properties, multimodal development and uptake mechanisms, and their growing potential for preclinical and clinical use.

  2. Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Iα: in vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines.

    PubMed

    Tabassum, Sartaj; Zaki, Mehvash; Afzal, Mohd; Arjmand, Farukh

    2014-03-03

    New metal-based anticancer chemotherapeutic drug candidates [Cu(phen)L](NO₃)₂ (1) and [Zn(phen)L](NO₃)₂ (2) were synthesized from ligand L (derived from pharmacophore scaffold barbituric acid and pyrazole). In vitro DNA binding studies of the L, 1 and 2 were carried out by various biophysical techniques revealing electrostatic mode. Complex 1 cleaves pBR322 DNA via oxidative pathway and recognizes major groove of DNA double helix. The molecular docking study was carried out to ascertain the mode of action towards the molecular target DNA and enzymes. The complex 1 exhibited remarkably good anticancer activity on a panel of human cancer cell lines (GI₅₀ values < 10 μg/ml), and to elucidate the mechanism of cancer inhibition, Topo-I enzymatic activity was carried out. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database

    PubMed Central

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P. S.; Agarwal, Subhash M.

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC50/ED50/EC50/GI50), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients’ Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI50 data. PMID:23203877

  4. Repurposing Drugs in Oncology (ReDO)—Propranolol as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Bouche, Gauthier; Sukhatme, Vidula; Meheus, Lydie; Rooman, Ilse; Sukhatme, Vikas P

    2016-01-01

    Propranolol (PRO) is a well-known and widely used non-selective beta-adrenergic receptor antagonist (beta-blocker), with a range of actions which are of interest in an oncological context. PRO displays effects on cellular proliferation and invasion, on the immune system, on the angiogenic cascade, and on tumour cell sensitivity to existing treatments. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. In particular there is evidence that PRO is effective at multiple points in the metastatic cascade, particularly in the context of the post-surgical wound response. Based on this evidence the case is made for further clinical investigation of the anticancer effects of PRO, particularly in combination with other agents. A number of trials are on-going, in different treatment settings for various cancers. PMID:27899953

  5. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    NASA Astrophysics Data System (ADS)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  6. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database.

    PubMed

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-05

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  7. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents. PMID:27145869

  8. Exploration of the medical periodic table: towards new targets.

    PubMed

    Barry, Nicolas P E; Sadler, Peter J

    2013-06-07

    Metallodrugs offer potential for unique mechanisms of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. We discuss recent progress in identifying new target sites and elucidating the mechanisms of action of anti-cancer, anti-bacterial, anti-viral, anti-parasitic, anti-inflammatory, and anti-neurodegenerative agents, as well as in the design of metal-based diagnostic agents. Progress in identifying and defining target sites has been accelerated recently by advances in proteomics, genomics and metal speciation analysis. Examples of metal compounds and chelating agents (enzyme inhibitors) currently in clinical use, clinical trials or preclinical development are highlighted.

  9. A promising anti-cancer and anti-oxidant agents based on the pyrrole and fused pyrrole: synthesis, docking studies and biological evaluation.

    PubMed

    Fatahala, Samar Said; Shalaby, Emad Ahmed; Kassab, Shaymaa Emam; Mohamed, Mossad Said

    2015-01-01

    A series of N-aryl derivatives of pyrrole and its related derivatives of fused form (namely; tetrahydroindole and dihydroindenopyrroles) were prepared in fair to good yields. The newly synthesized compounds were confirmed using IR, (1)H NMR, Mass spectral and elemental analysis. Tetrahydrobenzo[b] pyrroles Ia-d, 1,4-dihydroindeno[1,2-b]pyrroles IIa,b and pyrroles IIIa-c,e were evaluated for anticancer activity, coinciding with the antioxidant activity; using Di-Phenyl Picryl Hydrazyl (DPPH) tests. The cytotoxicity of the tested compounds (at a concentration of 100 and 200 μg /mL) was performed against HepG-2 and EACC cell lines. Compounds Ib, d and IIa showed promising antioxidant activity beside their anticancer activity. Docking studies were employed to justify the promising anticancer activity of Ib,d and IIa. Protein kinase (PKase)-PDB entry 1FCQ was chosen as target enzyme for this purpose using the MOLSOFT ICM 3.4-8C program. The docking results of the tested compounds went aligned with the respective anticancer assay results.

  10. Photoinduced anticancer activity studies of iridium(III) complexes targeting mitochondria and tubules.

    PubMed

    Zhang, Wen-Yao; Yi, Qian-Yan; Wang, Yang-Jie; Du, Fan; He, Miao; Tang, Bing; Wan, Dan; Liu, Yun-Jun; Huang, Hong-Liang

    2018-05-10

    Three new iridium (III) complexes [Ir (ppy) 2 (ipbc)](PF 6 ) (1), [Ir (bzq) 2 (ipbc)](PF 6 ) (2) and [Ir (piq) 2 (ipbc)](PF 6 ) (3) were designed and synthesized. All the complexes were tested for anticancer activity using 3-(4,5-dimethylthiazole)-2,5-diphenyltetraazolium bromide (MTT) method. The complexes show no cytotoxic activity toward cancer BEL-7402, SGC-7901, Eca-109, A549, HeLa and HepG2 cells. However, upon irradiation with white light, the complexes display high cytotoxicity against BEL-7402 cells with an IC 50 value of 5.5 ± 0.8, 7.3 ± 1.3 and 11.5 ± 1.6 μM for 1, 2 and 3, respectively. AO/EB staining and comet assay show that the complexes can induce apoptosis in BEL-7402 cells. The complexes can increase intracellular ROS and Ca 2+ levels and cause a decrease in the mitochondrial membrane potential. Autophagic assays exhibit that the complexes can induce autophagy and regulate the expression of Beclin-1 and LC3 proteins. The cell cycle distribution in BEL-7402 cells was carried out by flow cytometry. The expression of Bcl-2 family proteins was studied by western blot. Additionally, the complexes can release cytochrome c and inhibit the polymerization of α-tubulin. Our study reveals that the complexes inhibit the cell growth in BEL-7402 cells through an ROS-mediated mitochondria dysfunction and targeting tubules pathways. These complexes are a promising new entity for the development of multi-target anticancer drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives

    PubMed Central

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs. PMID:27445824

  12. [Review in the studies on tannins activity of cancer prevention and anticancer].

    PubMed

    Li, Haixia; Wang, Zhao; Liu, Yanze

    2003-06-01

    This paper reviewed the biological activities of tannins in cancer prevention and anticancer, and mainly discussed related mechanisms. The results suggest that tannins, whether total tannins or pure tannin compound, have remarkable activity in cancer prevention and anticancer. It has wealthy foreground for developing new cancer prevention agents and/or new anticancer drugs screening among tannin compounds.

  13. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action.

    PubMed

    Voruganti, Sukesh; Qin, Jiang-Jiang; Sarkar, Sushanta; Nag, Subhasree; Walbi, Ismail A; Wang, Shu; Zhao, Yuqing; Wang, Wei; Zhang, Ruiwen

    2015-08-28

    The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention.

  14. Three amino acid derivatives of valproic acid: design, synthesis, theoretical and experimental evaluation as anticancer agents.

    PubMed

    Luna-Palencia, Gabriela R; Martinez-Ramos, Federico; Vasquez-Moctezuma, Ismael; Fragoso-Vazquez, Manuel Jonathan; Mendieta-Wejebe, Jessica Elena; Padilla-Martínez, Itzia I; Sixto-Lopez, Yudibeth; Mendez-Luna, David; Trujillo-Ferrara, Jose; Meraz-Rios, Marco A; Fonseca-Sabater, Yadira; Correa-Basurto, Jose

    2014-01-01

    Valproic acid (VPA) is extensively used as an anticonvulsive agent and as a treatment for other neurological disorders. It has been shown that VPA exerts an anti-proliferative effect on several types of cancer cells by inhibiting the activity of histone deacetylases (HDACs), which are involved in replication and differentiation processes. However, VPA has some disadvantages, among which are poor water solubility and hepatotoxicity. Therefore, the aim of the present study was to design and synthesize three derivatives of VPA to improve its physicochemical properties and anti-proliferative effects. For this purpose, the amino acids aspartic acid, glutamic acid and proline were added to the molecular structure of VPA. Docking and molecular dynamics simulations were used to determine the mode of recognition of these three derivatives by different conformations of HDAC8. This receptor was used as the specific target because of its high affinity for this type of substrate. The results demonstrate that, compared to VPA, the test compounds bind to different sites on the enzyme and that hydrogen bonds and hydrophobic interactions play key roles in this difference. The IC50 values of the VPA derivatives, experimentally determined using HeLa cells, were in the mM range. This result indicates that the derivatives have greater antiproliferative effects than the parent compound. Hence, these results suggest that these amino acid derivatives may represent a good alternative for anticancer treatment.

  15. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy.

    PubMed

    Dharmawardana, Pathirage G; Peruzzi, Benedetta; Giubellino, Alessio; Burke, Terrence R; Bottaro, Donald P

    2006-01-01

    Growth factor receptor-bound 2 (Grb2) is a ubiquitously expressed adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway. As such, it has been implicated in the oncogenesis of several important human malignancies. In addition to this function, research over the last decade has revealed other fundamental roles for Grb2 in cell motility and angiogenesis--processes that also contribute to tumor growth, invasiveness and metastasis. This functional profile makes Grb2 a high priority target for anti-cancer drug development. Knowledge of Grb2 protein structure, its component Src homology domains and their respective structure-function relationships has facilitated the rapid development of sophisticated drug candidates that can penetrate cells, bind Grb2 with high affinity and potently antagonize Grb2 signaling. These novel compounds offer considerable promise in our growing arsenal of rationally designed anti-cancer therapeutics.

  16. Novel microtubule-targeted agent 6-chloro-4-(methoxyphenyl) coumarin induces G2-M arrest and apoptosis in HeLa cells

    PubMed Central

    Ma, Yi-ming; Zhou, Yu-bo; Xie, Chuan-ming; Chen, Dong-mei; Li, Jia

    2012-01-01

    Aim: To identify a novel coumarin analogue with the highest anticancer activity and to further investigate its anticancer mechanisms. Methods: The viability of cancer cells was investigated using the MTT assay. The cell cycle progression was evaluated using both flow cytometric and Western blotting analysis. Microtubule depolymerization was observed with immunocytochemistry in vivo and a tubulin depolymerization assay in vitro. Apoptosis was demonstrated using Annexin V/Propidium Iodide (PI) double-staining and sub-G1 analysis. Results: Among 36 analogues of coumarin, 6-chloro-4-(methoxyphenyl) coumarin showed the best anticancer activity (IC50 value about 200 nmol/L) in HCT116 cells. The compound had a broad spectrum of anticancer activity against 9 cancer cell lines derived from colon cancer, breast cancer, liver cancer, cervical cancer, leukemia, epidermoid cancer with IC50 value of 75 nmol/L–1.57 μmol/L but with low cytotocitity against WI-38 human lung fibroblasts (IC50 value of 12.128 μmol/L). The compound (0.04–10 μmol/L) induced G2-M phase arrest in HeLa cells in a dose-dependent manner, which was reversible after the compound was removed. The compound (10–300 μmol/L) induced the depolymerization of purified porcine tubulin in vitro. Finally, the compound (0.04–2.5 μmol/L) induced apoptosis of HeLa cells in dose- and time-dependent manners. Conclusion: 6-Chloro-4-(methoxyphenyl) coumarin is a novel microtubule-targeting agent that induces G2–M arrest and apoptosis in HeLa cells. PMID:22266726

  17. Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent.

    PubMed

    Wehbe, Mohamed; Anantha, Malathi; Shi, Minghan; Leung, Ada Wai-Yin; Dragowska, Wieslawa H; Sanche, Léon; Bally, Marcel B

    2017-01-01

    Copper diethyldithiocarbamate (Cu(DDC) 2 ) is the active anticancer agent generated when disulfiram (DSF) is provided in the presence of copper. To date, research directed toward repurposing DSF as an anticancer drug has focused on administration of DSF and copper in combination, efforts that have proven unsuccessful in clinical trials. This is likely due to the inability to form Cu(DDC) 2 at relevant concentrations in regions of tumor growth. Little effort has been directed toward the development of Cu(DDC) 2 because of the inherent aqueous insolubility of the complex. Here, we describe an injectable Cu(DDC) 2 formulation prepared through a method that involves synthesis of Cu(DDC) 2 inside the aqueous core of liposomes. Convection-enhanced delivery of a Cu(DDC) 2 formulation prepared using 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol liposomes into a rat model of F98 glioma engendered a 25% increase in median survival time relative to vehicle-treated animals. In a murine subcutaneous MV-4-11 model, treatment resulted in a 45% reduction in tumor burden when compared to controls. Pharmacokinetic studies indicated that the Cu(DDC) 2 was rapidly eliminated after intravenous administration while the liposomes remained in circulation. To test whether liposomal lipid composition could increase Cu(DDC) 2 circulation lifetime, a number of different formulations were evaluated. Studies demonstrated that liposomes composed of DSPC and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-n-(carboxy[polyethylene glycol]-2000) (95:5) enhanced Cu(DDC) 2 concentrations in the circulation as reflected by a 4.2-fold increase in plasma AUC (0-∞) relative to the DSPC/cholesterol formulation. The anticancer activity of this Cu(DDC) 2 formulation was subsequently evaluated in the MV-4-11 model. At its maximum tolerated dose, this formulation exhibited comparable activity to the DSPC/cholesterol formulation. This is the first report demonstrating the therapeutic effects

  18. Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent

    PubMed Central

    Wehbe, Mohamed; Anantha, Malathi; Shi, Minghan; Leung, Ada Wai-yin; Dragowska, Wieslawa H; Sanche, Léon; Bally, Marcel B

    2017-01-01

    Copper diethyldithiocarbamate (Cu(DDC)2) is the active anticancer agent generated when disulfiram (DSF) is provided in the presence of copper. To date, research directed toward repurposing DSF as an anticancer drug has focused on administration of DSF and copper in combination, efforts that have proven unsuccessful in clinical trials. This is likely due to the inability to form Cu(DDC)2 at relevant concentrations in regions of tumor growth. Little effort has been directed toward the development of Cu(DDC)2 because of the inherent aqueous insolubility of the complex. Here, we describe an injectable Cu(DDC)2 formulation prepared through a method that involves synthesis of Cu(DDC)2 inside the aqueous core of liposomes. Convection-enhanced delivery of a Cu(DDC)2 formulation prepared using 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol liposomes into a rat model of F98 glioma engendered a 25% increase in median survival time relative to vehicle-treated animals. In a murine subcutaneous MV-4–11 model, treatment resulted in a 45% reduction in tumor burden when compared to controls. Pharmacokinetic studies indicated that the Cu(DDC)2 was rapidly eliminated after intravenous administration while the liposomes remained in circulation. To test whether liposomal lipid composition could increase Cu(DDC)2 circulation lifetime, a number of different formulations were evaluated. Studies demonstrated that liposomes composed of DSPC and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-n-(carboxy[polyethylene glycol]-2000) (95:5) enhanced Cu(DDC)2 concentrations in the circulation as reflected by a 4.2-fold increase in plasma AUC(0−∞) relative to the DSPC/cholesterol formulation. The anticancer activity of this Cu(DDC)2 formulation was subsequently evaluated in the MV-4–11 model. At its maximum tolerated dose, this formulation exhibited comparable activity to the DSPC/cholesterol formulation. This is the first report demonstrating the therapeutic effects of an

  19. Advances in Targeted Drug Delivery Approaches for the Central Nervous System Tumors: The Inspiration of Nanobiotechnology.

    PubMed

    Meng, Jianing; Agrahari, Vivek; Youm, Ibrahima

    2017-03-01

    At present, brain tumor is among the most challenging diseases to treat and the therapy is limited by the lack of effective methods to deliver anticancer agents across the blood-brain barrier (BBB). BBB is a selective barrier that separates the circulating blood from the brain extracellular fluid. In its neuroprotective function, BBB prevents the entry of toxins, as well as most of anticancer agents and is the main impediment for brain targeted drug delivery approaches. Nanotechnology-based delivery systems provide an attractive strategy to cross the BBB and reach the central nervous system (CNS). The incorporation of anticancer agents in various nanovehicles facilitates their delivery across the BBB. Moreover, a more powerful tool in brain tumor therapy has relied surface modifications of nanovehicles with specific ligands that can promote their passage through the BBB and favor the accumulation of the drug in CNS tumors. This review describes the physiological and anatomical features of the brain tumor and the BBB, and summarizes the recent advanced approaches to deliver anticancer drugs into brain tumor using nanobiotechnology-based drug carrier systems. The role of specific ligands in the design of functionalized nanovehicles for targeted delivery to brain tumor is reviewed. The current trends and future approaches in the CNS delivery of therapeutic molecules to tumors are also discussed.

  20. Molecular targets of naturopathy in cancer research: bridge to modern medicine.

    PubMed

    Ahmad, Aamir; Ginnebaugh, Kevin R; Li, Yiwei; Padhye, Subhash B; Sarkar, Fazlul H

    2015-01-06

    The relevance of naturopathy (defined as the practice of medicine for the treatment of human diseases with natural agents) in human cancer is beginning to be appreciated, as documented by renewed interest in nutraceutical research, the natural anticancer agents of dietary origin. Because of their pleiotropic effects and the ability to modulate multiple signaling pathways, which is a good attribute of natural agents, nutraceuticals have frequently been demonstrated to re-sensitize drug-resistant cancers. The effectiveness of nutraceuticals can be further enhanced if the tools for the relative assessment of their molecular targets are readily available. Such information can be critical for determining their most effective uses. Here, we discuss the anticancer potential of nutraceuticals and the associated challenges that have interfered with their translational potential as a naturopathic approach for the management of cancers. In the years to come, an efficient screening and assessment of molecular targets will be the key to make rapid progress in the area of drug design and discovery, especially focusing on evidence-based development of naturopathy for the treatment of human malignancies.

  1. Molecular Targets of Naturopathy in Cancer Research: Bridge to Modern Medicine

    PubMed Central

    Ahmad, Aamir; Ginnebaugh, Kevin R.; Li, Yiwei; Padhye, Subhash B.; Sarkar, Fazlul H.

    2015-01-01

    The relevance of naturopathy (defined as the practice of medicine for the treatment of human diseases with natural agents) in human cancer is beginning to be appreciated, as documented by renewed interest in nutraceutical research, the natural anticancer agents of dietary origin. Because of their pleiotropic effects and the ability to modulate multiple signaling pathways, which is a good attribute of natural agents, nutraceuticals have frequently been demonstrated to re-sensitize drug-resistant cancers. The effectiveness of nutraceuticals can be further enhanced if the tools for the relative assessment of their molecular targets are readily available. Such information can be critical for determining their most effective uses. Here, we discuss the anticancer potential of nutraceuticals and the associated challenges that have interfered with their translational potential as a naturopathic approach for the management of cancers. In the years to come, an efficient screening and assessment of molecular targets will be the key to make rapid progress in the area of drug design and discovery, especially focusing on evidence-based development of naturopathy for the treatment of human malignancies. PMID:25569626

  2. Studies in Multifunctional Drug Development: Preparation and Evaluation of 11beta-Substituted Estradiol-Drug Conjugates, Cell Membrane Targeting Imaging Agents, and Target Multifunctional Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dao, KinhLuan Lenny D.

    Cancer is the second leading cause of death after cardiovascular disease in the United State. Despite extensive research in development of antitumor drugs, most of these therapeutic entities often possess nonspecific toxicity, thus they can only be used to treat tumors in higher doses or more frequently. Because of the cytotoxicity and severe side effects, the drug therapeutic window normally is limited. Beside the toxicity issue, antitumor drug are also not selectively taken up by tumor cells, thus the necessitating concentrations that would eradicate the tumor can often not be used. In addition, tumor cells tend to develop resistance against the anticancer drugs after prolonged treatment. Therefore, alleviating the systemic cytotoxicity and side effects, improving in tumor selectivity, high potency, and therapeutic efficacy are still major obstacles in the area of anticancer drug development. A more promising approach for developing a selective agent for cancer is to conjugate a potent therapeutic drug, or an imaging agent with a targeting group, such as antibody or a high binding-specificity small molecule, that selectively recognize the overexpressed antigens or proteins on tumor cells. My research combines several approaches to describe this strategy via using different targeting molecules to different diseases, as well as different potent cytotoxic drugs for different therapies. Three studies related to the preparation and biological evaluation of new therapeutic agents, such as estradiol-drug hybrids, cell membrane targeted molecular imaging agents, and multifunctional NPs will be discussed. The preliminary results of these studies indicated that our new reagents achieved their initial objectives and can be further improved for optimized synthesis and in vivo experiments. The first study describes the method in which we employed a modular assembly approach to synthesize a novel 11beta-substituted steroidal anti-estrogen. The key intermediate was synthesized

  3. Doxycycline directly targets PAR1 to suppress tumor progression.

    PubMed

    Zhong, Weilong; Chen, Shuang; Zhang, Qiang; Xiao, Ting; Qin, Yuan; Gu, Ju; Sun, Bo; Liu, Yanrong; Jing, Xiangyan; Hu, Xuejiao; Zhang, Peng; Zhou, Honggang; Sun, Tao; Yang, Cheng

    2017-03-07

    Doxycycline have been reported to exert anti-cancer activity and have been assessed as anti-cancer agents in clinical trials. However, the direct targets of doxycycline in cancer cells remain unclear. In this study, we used a chemical proteomics approach to identify the Protease-activated receptor 1 (PAR1) as a specific target of inhibition of doxycycline. Binding assays and single-molecule imaging assays were performed to confirm the inhibition of doxycycline to PAR1. The effect of doxycycline on multi-omics and cell functions were assessed based on a PAR1/thrombin model. Molecular docking and molecular dynamic simulations revealed that doxycycline interacts with key amino acids in PAR1. Mutation of PAR1 further confirmed the computation-based results. Moreover, doxycycline provides highly selective inhibition of PAR1 signaling in tumors in vitro and in vivo. Using pathological clinical samples co-stained for doxycycline and PAR1, it was found that doxycycline fluorescence intensity and PAR1 expression shown a clear positive correlation. Thus, doxycycline may be a useful targeted anti-cancer drug that should be further investigated in clinical trials.

  4. Agent Collaborative Target Localization and Classification in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.

  5. Apoptosis induction and anti-cancer activity of LeciPlex formulations.

    PubMed

    Dhawan, Vivek V; Joshi, Ganesh V; Jain, Ankitkumar S; Nikam, Yuvraj P; Gude, Rajiv P; Mulherkar, Rita; Nagarsenker, Mangal S

    2014-10-01

    Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery. Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential. In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system. Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.

  6. Anti-EGFR Agents: Current Status, Forecasts and Future Directions.

    PubMed

    Kwapiszewski, Radoslaw; Pawlak, Sebastian D; Adamkiewicz, Karolina

    2016-12-01

    The epidermal growth factor receptor (EGFR) is one of the most important and attractive targets for specific anticancer therapies. It is a robust regulator of pathways involved in cancer pathogenesis and progression. Thus far, clinical trials have demonstrated the benefits of monoclonal antibodies and synthetic tyrosine kinase inhibitors in targeting this receptor; however, novel strategies are still being developed. This article reviews the current state of efforts in targeting the EGFR in cancer therapy. Following a brief characterization of EGFR, we will present a complete list of anti-EGFR agents that are already approved, and available in clinical practice. Aside from the indications, we will present the sales forecasts and expiry dates of product patents for the selected agents. Finally, we discuss the novel anti-EGFR strategies that are currently in preclinical development.

  7. DNA topoisomerase I and DNA gyrase as targets for TB therapy.

    PubMed

    Nagaraja, Valakunja; Godbole, Adwait A; Henderson, Sara R; Maxwell, Anthony

    2017-03-01

    Tuberculosis (TB) is the deadliest bacterial disease in the world. New therapeutic agents are urgently needed to replace existing drugs for which resistance is a significant problem. DNA topoisomerases are well-validated targets for antimicrobial and anticancer chemotherapies. Although bacterial topoisomerase I has yet to be exploited as a target for clinical antibiotics, DNA gyrase has been extensively targeted, including the highly clinically successful fluoroquinolones, which have been utilized in TB therapy. Here, we review the exploitation of topoisomerases as antibacterial targets and summarize progress in developing new agents to target DNA topoisomerase I and DNA gyrase from Mycobacterium tuberculosis. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Nano anti-cancer drugs: pros and cons and future perspectives.

    PubMed

    Ali, Imran

    2011-02-01

    For last one decade, scientists are working for developing nano anti-cancer drugs with claim of ideal ones due to their targeted chemotherapic nature. These drugs have many beneficial properties such as targeted drug delivery and gene therapy modalities with minimum side effects. This article describes pros and cons and future perspectives of nano anti-cancer drugs. Efforts have been made to address importance, special features, toxicities (general, blood identities, immune system and environmental) and future perspectives of nano anti-cancer drugs. It was concluded that nano anti-cancer drugs may be magic bullet drugs for cancer treatment leading to bright future of the whole world.

  9. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent.

    PubMed

    Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah

    2017-11-14

    Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Are community pharmacists equipped to ensure the safe use of oral anticancer therapy in the community setting? Results of a cross-country survey of community pharmacists in Canada.

    PubMed

    Abbott, Rick; Edwards, Scott; Whelan, Maria; Edwards, Jonathan; Dranitsaris, George

    2014-02-01

    Oral anticancer agents offer significant benefits over parenteral anticancer therapy in terms of patient convenience and reduced intrusiveness. Oral anticancer agents give many cancer patients freedom from numerous hospital visits, allowing them to obtain their medications from their local community pharmacy. However, a major concern with increased use of oral anticancer agents is shift of responsibility in ensuring the proper use of anticancer agents from the hospital/clinical oncology team to the patient/caregiver and other healthcare providers such as the community pharmacists who may not be appropriately trained for this. This study assessed the readiness of community pharmacists across Canada to play this increased role with respect to oral anticancer agents. Using a structured electronic mailing strategy, a standardized survey was mailed to practicing pharmacists in five provinces where community pharmacists were dispensing the majority of oral anticancer agents. In addition to collecting basic demographic and their practice setting, the survey assessed the pharmacists' knowledge regarding cancer therapy and oral anticancer agents in particular, their education needs and access to resources on oral anticancer agents, the quality of prescriptions for oral anticancer agents received by them in terms of the required elements, their role in patient education, and steps to enhance patient and personal safety. There were 352 responses to the survey. Only 13.6% of respondents felt that they had received adequate oncology education at the undergraduate level and approximately 19% had attended a continuing education event related to oncology in the past 2 years. Only 24% of the pharmacists who responded were familiar with the common doses of oral anticancer agents and only 9% felt comfortable educating patients on these medications. A substantial portion of community pharmacists in Canada lack a solid understanding of oral anticancer agents and thus are poorly

  11. [Response of Pharmaceutical Companies to the Crisis of Post-Marketing Clinical Trials of Anti-Cancer Agents -- Results of Questionnaires to Pharmaceutical Companies].

    PubMed

    Nakajima, Toshifusa

    2016-04-01

    Investigator-oriented post-marketing clinical trials of anti-cancer agents are faced to financial crisis due to drastic decrease in research-funds from pharmaceutical companies caused by a scandal in 2013. In order to assess the balance of research funds between 2012 and 2014, we made queries to 26 companies manufacturing anti-cancer agents, and only 10 of 26 responded to our queries. Decrease in the fund was observed in 5 of 10, no change in 1, increase in 3 and no answer in 1. Companies showed passive attitude to carry out doctor-oriented clinical trials of off-patent drugs or unapproved drugs according to advanced medical care B program, though some companies answered to proceed approved routines of these drugs if clinical trials showed good results. Most companies declined to make comments on the activity of Japan Agency for Medical Research and Development (AMED), but some insisted to produce good corroboration between AMED and pharmaceutical companies in order to improve the quality of trials. Further corroboration must be necessary for this purpose among researchers, governmental administrative organs, pharmaceutical companies, patients' groups, and mass-media.

  12. Recent developments in L-asparaginase discovery and its potential as anticancer agent.

    PubMed

    Shrivastava, Abhinav; Khan, Abdul Arif; Khurshid, Mohsin; Kalam, Mohd Abul; Jain, Sudhir K; Singhal, Pradeep K

    2016-04-01

    L-Asparaginase (EC3.5.1.1) is an enzyme, which is used for treatment of acute lymphoblastic leukaemia (ALL) and other related blood cancers from a long time. This enzyme selectively hydrolyzes the extracellular amino acid L-asparagine into L-aspartate and ammonia, leading to nutritional deficiencies, protein synthesis inhibition, and ultimately death of lymphoblastic cells by apoptosis. Currently, bacterial asparaginases are used for treatment purpose but offers scepticism due to a number of toxicities, including thrombosis, pancreatitis, hyperglycemia, and hepatotoxicity. Resistance towards bacterial asparaginase is another major disadvantage during cancer management. This situation attracted attention of researchers towards alternative sources of L-asparaginase, including plants and fungi. Present article discusses about potential of L-asparaginase as an anticancer agent, its mechanism of action, and adverse effects related to current asparaginase formulations. This article also provides an outlook for recent developments in L-asparaginase discovery from alternative sources and their potential as a less toxic alternative to current formulations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides

    PubMed Central

    Kang, Hee Kyoung; Choi, Moon-Chang; Seo, Chang Ho; Park, Yoonkyung

    2018-01-01

    Various organisms exist in the oceanic environment. These marine organisms provide an abundant source of potential medicines. Many marine peptides possess anticancer properties, some of which have been evaluated for treatment of human cancer in clinical trials. Marine anticancer peptides kill cancer cells through different mechanisms, such as apoptosis, disruption of the tubulin-microtubule balance, and inhibition of angiogenesis. Traditional chemotherapeutic agents have side effects and depress immune responses. Thus, the research and development of novel anticancer peptides with low toxicity to normal human cells and mechanisms of action capable of avoiding multi-drug resistance may provide a new method for anticancer treatment. This review provides useful information on the potential of marine anticancer peptides for human therapy. PMID:29558431

  14. Mitochondrial-targeted curcuminoids: a strategy to enhance bioavailability and anticancer efficacy of curcumin.

    PubMed

    Reddy, Cheruku Apoorva; Somepalli, Venkateswarlu; Golakoti, Trimurtulu; Kanugula, Anantha KoteswaraRao; Karnewar, Santosh; Rajendiran, Karthikraj; Vasagiri, Nagarjuna; Prabhakar, Sripadi; Kuppusamy, Periannan; Kotamraju, Srigiridhar; Kutala, Vijay Kumar

    2014-01-01

    Although the anti-cancer effects of curcumin has been shown in various cancer cell types, in vitro, pre-clinical and clinical studies showed only a limited efficacy, even at high doses. This is presumably due to low bioavailability in both plasma and tissues, particularly due to poor intracellular accumulation. A variety of methods have been developed to achieve the selective targeting of drugs to cells and mitochondrion. We used a novel approach by conjugation of curcumin to lipophilic triphenylphosphonium (TPP) cation to facilitate delivery of curcumin to mitochondria. TPP is selectively taken up by mitochondria driven by the membrane potential by several hundred folds. In this study, three mitocurcuminoids (mitocurcuminoids-1, 2, and 3) were successfully synthesized by tagging TPP to curcumin at different positions. ESI-MS analysis showed significantly higher uptake of the mitocurcuminoids in mitochondria as compared to curcumin in MCF-7 breast cancer cells. All three mitocurcuminoids exhibited significant cytotoxicity to MCF-7, MDA-MB-231, SKNSH, DU-145, and HeLa cancer cells with minimal effect on normal mammary epithelial cells (MCF-10A). The IC50 was much lower for mitocurcuminoids when compared to curcumin. The mitocurcuminoids induced significant ROS generation, a drop in ΔØm, cell-cycle arrest and apoptosis. They inhibited Akt and STAT3 phosphorylation and increased ERK phosphorylation. Mitocurcuminoids also showed upregulation of pro-apoptotic BNIP3 expression. In conclusion, the results of this study indicated that mitocurcuminoids show substantial promise for further development as a potential agent for the treatment of various cancers.

  15. Mitochondrial-Targeted Curcuminoids: A Strategy to Enhance Bioavailability and Anticancer Efficacy of Curcumin

    PubMed Central

    Reddy, Cheruku Apoorva; Somepalli, Venkateswarlu; Golakoti, Trimurtulu; Kanugula, Anantha KoteswaraRao; Karnewar, Santosh; Rajendiran, Karthikraj; Vasagiri, Nagarjuna; Prabhakar, Sripadi; Kuppusamy, Periannan; Kotamraju, Srigiridhar; Kutala, Vijay Kumar

    2014-01-01

    Although the anti-cancer effects of curcumin has been shown in various cancer cell types, in vitro, pre-clinical and clinical studies showed only a limited efficacy, even at high doses. This is presumably due to low bioavailability in both plasma and tissues, particularly due to poor intracellular accumulation. A variety of methods have been developed to achieve the selective targeting of drugs to cells and mitochondrion. We used a novel approach by conjugation of curcumin to lipophilic triphenylphosphonium (TPP) cation to facilitate delivery of curcumin to mitochondria. TPP is selectively taken up by mitochondria driven by the membrane potential by several hundred folds. In this study, three mitocurcuminoids (mitocurcuminoids-1, 2, and 3) were successfully synthesized by tagging TPP to curcumin at different positions. ESI-MS analysis showed significantly higher uptake of the mitocurcuminoids in mitochondria as compared to curcumin in MCF-7 breast cancer cells. All three mitocurcuminoids exhibited significant cytotoxicity to MCF-7, MDA-MB-231, SKNSH, DU-145, and HeLa cancer cells with minimal effect on normal mammary epithelial cells (MCF-10A). The IC50 was much lower for mitocurcuminoids when compared to curcumin. The mitocurcuminoids induced significant ROS generation, a drop in ΔØm, cell-cycle arrest and apoptosis. They inhibited Akt and STAT3 phosphorylation and increased ERK phosphorylation. Mitocurcuminoids also showed upregulation of pro-apoptotic BNIP3 expression. In conclusion, the results of this study indicated that mitocurcuminoids show substantial promise for further development as a potential agent for the treatment of various cancers. PMID:24622734

  16. Repurposing Drugs in Oncology (ReDO)—diclofenac as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P

    2016-01-01

    Diclofenac (DCF) is a well-known and widely used non-steroidal anti-inflammatory drug (NSAID), with a range of actions which are of interest in an oncological context. While there has long been an interest in the use of NSAIDs in chemoprevention, there is now emerging evidence that such drugs may have activity in a treatment setting. DCF, which is a potent inhibitor of COX-2 and prostaglandin E2 synthesis, displays a range of effects on the immune system, the angiogenic cascade, chemo- and radio-sensitivity and tumour metabolism. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. Based on this evidence the case is made for further clinical investigation of the anticancer effects of DCF, particularly in combination with other agents - with a range of possible multi-drug and multi-modality combinations outlined in the supplementary materials accompanying the main paper. PMID:26823679

  17. Chemopreventive agents alters global gene expression pattern: predicting their mode of action and targets.

    PubMed

    Narayanan, Bhagavathi A

    2006-12-01

    Chemoprevention has the potential to be a major component of colon, breast, prostate and lung cancer control. Epidemiological, experimental, and clinical studies provide evidence that antioxidants, anti-inflammatory agents, n-3 polyunsaturated fatty acids and several other phytochemicals possess unique modes of action against cancer growth. However, the mode of action of several of these agents at the gene transcription level is not completely understood. Completion of the human genome sequence and the advent of DNA microarrays using cDNAs enhanced the detection and identification of hundreds of differentially expressed genes in response to anticancer drugs or chemopreventive agents. In this review, we are presenting an extensive analysis of the key findings from studies using potential chemopreventive agents on global gene expression patterns, which lead to the identification of cancer drug targets. The summary of the study reports discussed in this review explains the extent of gene alterations mediated by more than 20 compounds including antioxidants, fatty acids, NSAIDs, phytochemicals, retinoids, selenium, vitamins, aromatase inhibitor, lovastatin, oltipraz, salvicine, and zinc. The findings from these studies further reveal the utility of DNA microarray in characterizing and quantifying the differentially expressed genes that are possibly reprogrammed by the above agents against colon, breast, prostate, lung, liver, pancreatic and other cancer types. Phenolic antioxidant resveratrol found in berries and grapes inhibits the formation of prostate tumors by acting on the regulatory genes such as p53 while activating a cascade of genes involved in cell cycle and apoptosis including p300, Apaf-1, cdk inhibitor p21, p57 (KIP2), p53 induced Pig 7, Pig 8, Pig 10, cyclin D, DNA fragmentation factor 45. The group of genes significantly altered by selenium includes cyclin D1, cdk5, cdk4, cdk2, cdc25A and GADD 153. Vitamine D shows impact on p21(Waf1/Cip1) p27 cyclin B

  18. Rational Combinations of Targeted Agents in AML

    PubMed Central

    Bose, Prithviraj; Grant, Steven

    2015-01-01

    Despite modest improvements in survival over the last several decades, the treatment of AML continues to present a formidable challenge. Most patients are elderly, and these individuals, as well as those with secondary, therapy-related, or relapsed/refractory AML, are particularly difficult to treat, owing to both aggressive disease biology and the high toxicity of current chemotherapeutic regimens. It has become increasingly apparent in recent years that coordinated interruption of cooperative survival signaling pathways in malignant cells is necessary for optimal therapeutic results. The modest efficacy of monotherapy with both cytotoxic and targeted agents in AML testifies to this. As the complex biology of AML continues to be elucidated, many “synthetic lethal” strategies involving rational combinations of targeted agents have been developed. Unfortunately, relatively few of these have been tested clinically, although there is growing interest in this area. In this article, the preclinical and, where available, clinical data on some of the most promising rational combinations of targeted agents in AML are summarized. While new molecules should continue to be combined with conventional genotoxic drugs of proven efficacy, there is perhaps a need to rethink traditional philosophies of clinical trial development and regulatory approval with a focus on mechanism-based, synergistic strategies. PMID:26113989

  19. A selective decoy-doxorubicin complex for targeted co-delivery, STAT3 probing and synergistic anti-cancer effect.

    PubMed

    Wang, Shao-Jen; Hou, Yung-Te; Chen, Lin-Chi

    2015-09-04

    A novel selective decoy oligodeoxynucleotide (dODN)-doxorubicin (DOX) complex is reported for cancer theranostics. It eliminates the use of a ligand or carrier for targeted delivery and disassembles into therapeutic dODN and DOX upon encountering over-activated STAT3 in cancer cells. Hence, in situ STAT3 probing and synergistic anti-cancer effect are attained at the same time.

  20. Molecular designing and in silico evaluation of darunavir derivatives as anticancer agents

    PubMed Central

    Mahto, Manoj kumar; Yellapu, Nanda Kumar; Kilaru, Ravendra Babu; Chamarthi, Naga Raju; Bhaskar, Matcha

    2014-01-01

    Darunavir is a synthetic nonpeptidic protease inhibitor which has been tested for anticancer properties. To deduce and enhance the anticancer activity of the Darunavir, we have modified its reactive moiety in an effective way. We designed 9 analogues in ChemBioOffice 2010 and minimized using the LigPrep tool of Schrödinger 2011. These analogues can obstruct the activity of other signalling pathways which are implicated in many tumors. Results of the QikProp showed that all the analogues lied in the specified range of all the pharmacokinetic (ADMET) properties required to become the successful drug. Docking study was performed to test its anticancer activity against the biomarkers of the five main types of cancers i.e. bone, brain, breast, colon and skin cancer. Grid was generated for each oncoproteins by specifying the active site amino acids. The binding model of best scoring analogue with each protein was assessed from their G-scores and disclosed by docking analysis using the XP visualizer tool. An analysis of the receptor-ligand interaction studies revealed that these nine Darunavir analogues are active against all cancer biomarkers and have the features to prove themselves as anticancer drugs, further to be synthesized and tested against the cell lines. PMID:24966524

  1. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides.

    PubMed

    Dissanayake, Shama; Denny, William A; Gamage, Swarna; Sarojini, Vijayalekshmi

    2017-03-28

    Efficient intracellular trafficking and targeted delivery to the site of action are essential to overcome the current drawbacks of cancer therapeutics. Cell Penetrating Peptides (CPPs) offer the possibility of efficient intracellular trafficking, and, therefore the development of drug delivery systems using CPPs as cargo carriers is an attractive strategy to address the current drawbacks of cancer therapeutics. Additionally, the possibility of incorporating Tumor Targeting Peptides (TTPs) into the delivery system provides the necessary drug targeting effect. Therefore the conjugation of CPPs and/or TTPs with therapeutics provides a potentially efficient method of improving intracellular drug delivery mechanisms. Peptides used as cargo carriers in DDS have been shown to enhance the cellular uptake of drugs and thereby provide an efficient therapeutic benefit over the drug on its own. After providing a brief overview of various drug targeting approaches, this review focusses on peptides as carriers and targeting moieties in drug-peptide covalent conjugates and summarizes the most recent literature examples where CPPs on their own or CPPs together with TTPs have been conjugated to anticancer drugs such as Doxorubicin, Methotrexate, Paclitaxel, Chlorambucil etc. A short section on CPPs used in multicomponent drug delivery systems is also included. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds.

    PubMed

    Witte, Anne-Barbara; Anestål, Karin; Jerremalm, Elin; Ehrsson, Hans; Arnér, Elias S J

    2005-09-01

    Mammalian thioredoxin reductase (TrxR) is important for cell proliferation, antioxidant defense, and redox signaling. Together with glutathione reductase (GR) it is the main enzyme providing reducing equivalents to many cellular processes. GR and TrxR are flavoproteins of the same enzyme family, but only the latter is a selenoprotein. With the active site containing selenocysteine, TrxR may catalyze reduction of a wide range of substrates, but can at the same time easily be targeted by electrophilic compounds due to the extraordinarily high reactivity of a selenolate moiety. Here we addressed the inhibition of the enzyme by major anticancer alkylating agents and platinum-containing compounds and we compared it to that of GR. We confirmed prior studies suggesting that the nitrosourea carmustine can inhibit both GR and TrxR. We next found, however, that nitrogen mustards (chlorambucil and melphalan) and alkyl sulfonates (busulfan) efficiently inhibited TrxR while these compounds, surprisingly, did not inhibit GR. Inhibitions were concentration and time dependent and apparently irreversible. Anticancer anthracyclines (daunorubicin and doxorubicin) were, in contrast to the alkylating agents, not inhibitors but poor substrates of TrxR. We also found that TrxR, but not GR, was efficiently inhibited by both cisplatin, its monohydrated complex, and oxaliplatin. Carboplatin, in contrast, could not inhibit any of the two enzymes. These findings lead us to conclude that representative compounds of the major classes of clinically used anticancer alkylating agents and most platinum compounds may easily target TrxR, but not GR. The TrxR inhibition should thereby be considered as a factor that may contribute to the cytotoxicity seen upon clinical use of these drugs.

  3. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents.

    PubMed

    Namdar, Mandana; Perez, Gisela; Ngo, Lang; Marks, Paul A

    2010-11-16

    Histone deacetylase 6 (HDAC6) is structurally and functionally unique among the 11 human zinc-dependent histone deacetylases. Here we show that chemical inhibition with the HDAC6-selective inhibitor tubacin significantly enhances cell death induced by the topoisomerase II inhibitors etoposide and doxorubicin and the pan-HDAC inhibitor SAHA (vorinostat) in transformed cells (LNCaP, MCF-7), an effect not observed in normal cells (human foreskin fibroblast cells). The inactive analogue of tubacin, nil-tubacin, does not sensitize transformed cells to these anticancer agents. Further, we show that down-regulation of HDAC6 expression by shRNA in LNCaP cells enhances cell death induced by etoposide, doxorubicin, and SAHA. Tubacin in combination with SAHA or etoposide is more potent than either drug alone in activating the intrinsic apoptotic pathway in transformed cells, as evidenced by an increase in PARP cleavage and partial inhibition of this effect by the pan-caspase inhibitor Z-VAD-fmk. HDAC6 inhibition with tubacin induces the accumulation of γH2AX, an early marker of DNA double-strand breaks. Tubacin enhances DNA damage induced by etoposide or SAHA as indicated by increased accumulation of γH2AX and activation of the checkpoint kinase Chk2. Tubacin induces the expression of DDIT3 (CHOP/GADD153), a transcription factor up-regulated in response to cellular stress. DDIT3 induction is further increased when tubacin is combined with SAHA. These findings point to mechanisms by which HDAC6-selective inhibition can enhance the efficacy of certain anti-cancer agents in transformed cells.

  4. Design of an Anticancer Copper(II) Prodrug Based on the Lys199 Residue of the Active Targeting Human Serum Albumin Nanoparticle Carrier.

    PubMed

    Gou, Yi; Zhang, Yao; Zhang, Zhenlei; Wang, Jun; Zhou, Zuping; Liang, Hong; Yang, Feng

    2017-06-05

    We not only modified the types and numbers of coordinated ligands in a metal agent to enhance its anticancer activity, but we also designed a metal prodrug based on the N-donor residues of the human serum albumin (HSA) IIA subdomain to improve its delivery efficiency and selectivity in vivo. However, there may be a conflict in simultaneously achieving the two goals because Lys199 and His242 in the IIA subdomain of HSA can replace its two coordinated ligands, which will decrease its anticancer activity relative to the original metal agent. Thus, to improve the delivery efficiency of the metal agent and simultaneously avoid decreasing its anticancer activity in vivo, we decided to develop an anticancer metal prodrug by regulating its pharmacophore ligand so that it would not be displaced by the Lys199 residue of the folic acid (FA)-functionalized HSA nanoparticle (NP) carrier. To this end, we first synthesized two (E)-N'-(5-chloro-2-hydroxybenzylidene)benzohydrazide Schiff base (HL) Cu(II) compounds by designing a second ligand with a different coordinating atom with Cu 2+ /Cu(L)(QL)(Br) [C1, QL = quinolone] and Cu(L)(DMF)(Br) [C2, DMF = N,N-dimethylformamide]. As revealed by the structures of the two HSA complexes, the Cu compounds bind to the hydrophobic cavity in the HSA IIA subdomain. The QL ligand of C1 is replaced by Lys199, which coordinates with Cu 2+ , whereas the DMF ligand of C2 is kept intact and His242 is replaced with Br - of C2 and coordinates with Cu 2+ . The cytotoxicity of the Cu compounds was enhanced by the FA-HSA NPs in the Bel-7402 cells approximately 2-4-fold; however, they raise the cytotoxicity levels in the normal cells in vitro, and the FA-HSA NPs did not. Importantly, the in vivo data showed that FA-HSA-C2 NPs increased selectivity and the capacity to inhibit tumor growth and were less toxic than HSA-C2 NPs and C2. Moreover, C2/HSA-C2 NPs/FA-HSA-C2 NPs induced Bel-7402 cell death by potentially multiple mechanisms.

  5. Venom-based peptide therapy: insights into anti-cancer mechanism

    PubMed Central

    Ma, Rui; Mahadevappa, Ravikiran; Kwok, Hang Fai

    2017-01-01

    The 5-year relative survival rate of all types of cancer has increased significantly over the past three decades partly due to the targeted therapy. However, still there are many targeted therapy drugs could play a role only in a portion of cancer patients with specific molecular alternation. It is necessary to continue to develop new biological agents which could be used alone and/or in combination with current FDA approved drugs to treat complex cancer diseases. Venom-based drugs have been used for hundreds of years in human history. Nevertheless, the venom-origin of the anti-cancer drug do rarely appear in the pharmaceutical market; and this is due to the fact that the mechanism of action for a large number of the venom drug such as venom-based peptide is not clearly understood. In this review, we focus on discussing some identified venom-based peptides and their anti-cancer mechanisms including the blockade of cancer cell proliferation, invasion, angiogenesis, and metastasis (hallmarks of cancer) to fulfill the gap which is hindering their use in cancer therapy. Furthermore, it also highlights the importance of immunotherapy based on venom peptide. Overall, this review provides readers for further understanding the mechanism of venom peptide and elaborates on the need to explore peptide-based therapeutic strategies. PMID:29246030

  6. Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a "Smart" Probe Answer!

    PubMed

    Ali, Moussa; Dondaine, Lucile; Adolle, Anais; Sampaio, Carla; Chotard, Florian; Richard, Philippe; Denat, Franck; Bettaieb, Ali; Le Gendre, Pierre; Laurens, Véronique; Goze, Christine; Paul, Catherine; Bodio, Ewen

    2015-06-11

    Gold phosphine complexes, such as auranofin, have been recognized for decades as antirheumatic agents. Clinical trials are now underway to validate their use in anticancer or anti-HIV treatments. However, their mechanisms of action remain unclear. A challenging question is whether the gold phosphine complex is a prodrug that is administered in an inactive precursor form or rather that the gold atom remains attached to the phosphine ligand during treatment. In this study, we present two novel gold complexes, which we compared to auranofin and to their phosphonium analogue. The chosen ligand is a phosphine-based smart probe, whose strong fluorescence depends on the presence of the gold atom. The in vitro biological action of the gold complexes and the phosphonium derivative were investigated, and a preliminary in vivo study in healthy zebrafish larvae allowed us to evaluate gold complex biodistribution and toxicity. The different analyses carried out showed that these gold complexes were stable and behaved differently from phosphonium and auranofin, both in vitro and in vivo. Two-photon microscopy experiments demonstrated that the cellular targets of these gold complexes are not the same as those of the phosphonium analogue. Moreover, despite similar IC50 values in some cancer cell lines, gold complexes displayed a low toxicity in vivo, in contrast to the phosphonium salt. They are therefore suitable for future in vivo investigations.

  7. Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs.

    PubMed

    Jung, Bom; Shim, Man-Kyu; Park, Min-Ju; Jang, Eun Hyang; Yoon, Hong Yeol; Kim, Kwangmeyung; Kim, Jong-Ho

    2017-03-30

    This study presented the development of hydrophobically modified polysialic acid (HPSA) nanoparticles, a novel anticancer drug nanocarrier that increases therapeutic efficacy without causing nonspecific toxicity towards normal cells. HPSA nanoparticles were prepared by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling between N-deacetylated polysialic acid (PSA) and 5β-cholanic acid. The physicochemical characteristics of HPSA nanoparticles (zeta-potential, morphology and size) were measured, and in vitro cytotoxicity and cellular uptake of PSA and HPSA nanoparticles were tested in A549 cells. In vivo cancer targeting of HPSA nanoparticles was evaluated by labeling PSA and HPSA nanoparticles with Cy5.5, a near-infrared fluorescent dye, for imaging. HPSA nanoparticles showed improved cancer-targeting ability compared with PSA. Doxorubicin-loaded HPSA (DOX-HPSA) nanoparticles were prepared using a simple dialysis method. An analysis of the in vitro drug-release profile and drug-delivery behavior showed that DOX was effectively released from DOX-HPSA nanoparticles. In vivo cancer therapy with DOX-HPSA nanoparticles in mice showed antitumor effects that resembled those of free DOX. Moreover, DOX-HPSA nanoparticles had low toxicity toward other organs, reflecting their tumor-targeting property. Hence, HPSA nanoparticles are considered a potential nanocarrier for anticancer agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. An update on anticancer drug development and delivery targeting carbonic anhydrase IX

    PubMed Central

    Parkkila, Seppo

    2017-01-01

    The expression of carbonic anhydrase (CA) IX is up-regulated in many types of solid tumors in humans under hypoxic and acidic microenvironment. Inhibition of CA IX enzymatic activity with selective inhibitors, antibodies or labeled probes has been shown to reverse the acidic environment of solid tumors and reduce the tumor growth establishing the significant role of CA IX in tumorigenesis. Thus, the development of potent antitumor drugs targeting CA IX with minimal toxic effects is important for the target-specific tumor therapy. Recently, several promising antitumor agents against CA IX have been developed to treat certain types of cancers in combination with radiation and chemotherapy. Here we review the inhibition of CA IX by small molecule compounds and monoclonal antibodies. The methods of enzymatic assays, biophysical methods, animal models including zebrafish and Xenopus oocytes, and techniques of diagnostic imaging to detect hypoxic tumors using CA IX-targeted conjugates are discussed with the aim to overview the recent progress related to novel therapeutic agents that target CA IX in hypoxic tumors. PMID:29181278

  9. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    PubMed Central

    Butt, Adeel Masood; Mohd Amin, Mohd Cairul Iqbal; Katas, Haliza

    2015-01-01

    Background Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. Methods FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake. PMID:25709451

  10. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs.

    PubMed

    Butt, Adeel Masood; Mohd Amin, Mohd Cairul Iqbal; Katas, Haliza

    2015-01-01

    Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay. The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.

  11. Design, synthesis, and anticancer evaluation of long-chain alkoxylated mono-carbonyl analogues of curcumin.

    PubMed

    Weng, Qiaoyou; Fu, Lili; Chen, Gaozhi; Hui, Junguo; Song, Jingjing; Feng, Jianpeng; Shi, Dengjian; Cai, Yuepiao; Ji, Jiansong; Liang, Guang

    2015-10-20

    Curcumin is a nontoxic phenolic compound that modulates the activity of several cellular targets that have been linked with cancers and other chronic diseases. However, the efficacy of curcumin in the clinic has been limited by its poor bioavailability and rapid metabolism in vivo. We have previously reported the design and discovery of series of 5-carbon linker-containing mono-carbonyl analogues of curcumin (MACs) as anti-cancer agents. In continuation of our ongoing research, we designed and synthesized 37 novel long-chain alkoxylated MACs for anti-cancer evaluation here. The MTS assay was used to determine the cytotoxicity of compounds in gastrointestinal cancer cells. Compounds 5, 28, and 29 showed strongest inhibition against gastric cancer cell proliferation and were subjected to further analysis. The effects of 5, 28, and 29 on cell apoptosis were measured by flow cytometry. Expression levels of Bcl-2, cleaved poly ADP-ribose polymerase (PARP), and pro-caspase-3 were detected by western blotting. Compounds 5, 28, and 29 induced apoptosis in human gastric carcinoma cells, increased PARP cleavage, and decreased expression of Bcl-2 and pro-caspase-3 protein. We then showed that compound 28, which possessed the strongest activity among the test compounds in vitro, exhibited significant tumor inhibition in SGC7901-driven xenograft mouse model. Taken together, the novel compound 28 could be further explored as an effective anticancer agent for the treatment of human gastric cancer. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  13. Oncogenic targets, magnitude of benefit, and market pricing of antineoplastic drugs.

    PubMed

    Amir, Eitan; Seruga, Bostjan; Martinez-Lopez, Joaquin; Kwong, Ryan; Pandiella, Atanasio; Tannock, Ian F; Ocaña, Alberto

    2011-06-20

    The relationship between market pricing of new anticancer drugs and the magnitude of clinical benefit caused by them has not been reported. Randomized clinical trials (RCTs) that evaluated approved new agents for solid tumors by the U.S. Food and Drug administration since the year 2000 were assessed. Hazard ratios (HRs) and 95% CIs were extracted for time-to-event end points described for each RCT. HRs were pooled for three groups: agents directed against a specific molecular target, for which the target population is selected by a biomarker (group A); less specific biologic targeted agents (group B); and chemotherapeutic agents (group C). Monthly market prices of these different drugs were compared. For overall survival (OS), the pooled HR was 0.69 (95% CI, 0.59 to 0.81) for group A (six drugs, six trials); it was 0.78 (95% CI, 0.74 to 0.83) for group B (seven drugs, 14 trials); and it was 0.84 (95% CI, 0.79 to 0.90) for group C (eight drugs, 12 trials). For progression-free survival (PFS), the pooled HR was 0.42 (95% CI, 0.36 to 0.49) for group A (six drugs, seven trials); it was 0.57 (95% CI, 0.51 to 0.64) for group B (seven drugs, 14 trials); and it was 0.75 (95% CI, 0.66 to 0.85) for group C (six drugs, 10 trials). Tests for heterogeneity between subgroups were highly significant for PFS (P < .001) and OS (P = .02). The median monthly prices for standard doses of drugs were $5375 for group A, $5644 for group B, and $6584 for group C (P = .87). New agents with specific molecular targets are clinically the most beneficial, but their monthly market prices are not significantly different from those of other anticancer agents.

  14. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies

    PubMed Central

    Bailon-Moscoso, Natalia; Cevallos-Solorzano, Gabriela; Romero-Benavides, Juan Carlos; Orellana, Maria Isabel Ramirez

    2017-01-01

    Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation. PMID:28367072

  15. Targeting targeted agents: open issues for clinical trial design.

    PubMed

    Bria, Emilio; Di Maio, Massimo; Carlini, Paolo; Cuppone, Federica; Giannarelli, Diana; Cognetti, Francesco; Milella, Michele

    2009-05-22

    Molecularly targeted agents for the treatment of solid tumors had entered the market in the last 5 years, with a great impact upon both the scientific community and the society. Many randomized phase III trials conducted in recent years with new targeted agents, despite previous data coming from preclinical research and from phase II trials were often promising, have produced disappointingly negative results. Some other trials have actually met their primary endpoint, demonstrating a statistically significant result favouring the experimental treatment. Unfortunately, with a few relevant exceptions, this advantage is often small, if not negligible, in absolute terms. The difference between statistical significance and clinical relevance should always be considered when translating clinical trials' results in the practice. The reason why this 'revolution' did not significantly impact on cancer treatment to displace chemotherapy from the patient' bedside is in part due to complicated, and in many cases, unknown, mechanisms of action of such drugs; indeed, the traditional way the clinical investigators were used to test the efficacy of 'older' chemotherapeutics, has become 'out of date' from the methodological perspective. As these drugs should be theoretically tailored upon featured bio-markers expressed by the patients, the clinical trial design should follow new rules based upon stronger hypotheses than those developed so far. Indeed, the early phases of basic and clinical drug development are crucial in the correct process which is able to correctly identify the target (when present). Targeted trial designs can result in easier studies, with less, better selected, and supported by stronger proofs of response evidences, patients, in order to not waste time and resources.

  16. Anticancer activity of seaweeds.

    PubMed

    Gutiérrez-Rodríguez, Anllely G; Juárez-Portilla, Claudia; Olivares-Bañuelos, Tatiana; Zepeda, Rossana C

    2018-02-01

    Cancer is a major health problem worldwide and still lacks fully effective treatments. Therefore, alternative therapies, using natural products, have been proposed. Marine algae are an important component of the marine environment, with high biodiversity, and contain a huge number of functional compounds, including terpenes, polyphenols, phlorotannins, and polysaccharides, among others. These compounds have complex structures that have shown several biological activities, including anticancer activity, using in vitro and in vivo models. Moreover, seaweed-derived compounds target important molecules that regulate cancer processes. Here, we review our current understanding of the anticancer activity of seaweeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Immune mechanisms regulating pharmacokinetics and pharmacodynamics of PEGylated liposomal anticancer agents

    NASA Astrophysics Data System (ADS)

    Song, Gina

    integrated approaches, we were able to identify the immunological mechanisms at the molecular, tissue, and clinical levels that may contribute to inter-individual variability in PK and PD of PLD. This dissertation research has a potential to make an impact on development of future NP-based anticancer therapeutics as well as on clinical use of PLD (DoxilRTM) and other PEGylated liposomal anticancer agents.

  18. Doxycycline directly targets PAR1 to suppress tumor progression

    PubMed Central

    Qin, Yuan; Gu, Ju; Sun, Bo; Liu, Yanrong; Jing, Xiangyan; Hu, Xuejiao; Zhang, Peng; Zhou, Honggang; Sun, Tao; Yang, Cheng

    2017-01-01

    Doxycycline have been reported to exert anti-cancer activity and have been assessed as anti-cancer agents in clinical trials. However, the direct targets of doxycycline in cancer cells remain unclear. In this study, we used a chemical proteomics approach to identify the Protease-activated receptor 1 (PAR1) as a specific target of inhibition of doxycycline. Binding assays and single-molecule imaging assays were performed to confirm the inhibition of doxycycline to PAR1. The effect of doxycycline on multi-omics and cell functions were assessed based on a PAR1/thrombin model. Molecular docking and molecular dynamic simulations revealed that doxycycline interacts with key amino acids in PAR1. Mutation of PAR1 further confirmed the computation-based results. Moreover, doxycycline provides highly selective inhibition of PAR1 signaling in tumors in vitro and in vivo. Using pathological clinical samples co-stained for doxycycline and PAR1, it was found that doxycycline fluorescence intensity and PAR1 expression shown a clear positive correlation. Thus, doxycycline may be a useful targeted anti-cancer drug that should be further investigated in clinical trials. PMID:28187433

  19. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams.

    PubMed

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-06-06

    In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam-β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.

  20. Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] Millsp.).

    PubMed

    Zhao, J; Li, C; Wang, W; Zhao, C; Luo, M; Mu, F; Fu, Y; Zu, Y; Yao, M

    2013-07-01

    The aim was to isolate, identify and characterize endophytes from pigeon pea (Cajanus cajan [L.] Millsp.), as novel producer of cajanol and its in vitro cytotoxicity assay. Isolation, identification and characterization of novel endophytes producing cajanol from the roots of pigeon pea were investigated. The endophytes were identified as Hypocrea lixii by morphological and molecular methods. Cajanol produced by endophytes were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). R-18 produced the highest levels of cajanol (322·4 ± 10·6 μg l(-1) or 102·8 ± 6·9 μg g(-1) dry weight of mycelium) after incubation for 7 days. The cytotoxicity towards human lung carcinoma cells (A549) of fungal cajanol was investigated in vitro. First, a novel endophyte Hypocrea lixii, producing anticancer agent cajanol, was isolated from the host pigeon pea (Cajanus cajan [L.] Millsp.). Fungal cajanol possessed stronger cytotoxicity activity towards A549 cells in time- and dose-dependent manners. This endophyte is a potential handle for scientific and commercial exploitation, and it could provide a promising alterative approach for large-scale production of cajanol to satisfy new anticancer drug development. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  1. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents.

    PubMed

    Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar

    2015-03-01

    We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔG(bind, pred)) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔG(bind, expt) (calculated from the Kd value) are consistent with the predicted value of ΔG(bind, pred) calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further

  2. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents

    NASA Astrophysics Data System (ADS)

    Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar

    2015-03-01

    We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔGbind, pred) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔGbind, expt (calculated from the Kd value) are consistent with the predicted value of ΔGbind, pred calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further toxicological

  3. In Vivo Anticancer Efficacy and Toxicity Studies of a Novel Polymer Conjugate N-Acetyl Glucosamine (NAG)-PEG-Doxorubicin for Targeted Cancer Therapy.

    PubMed

    Pawar, Smita; Mahajan, Ketan; Vavia, Pradeep

    2017-11-01

    A novel polymer-drug conjugate, polyethylene glycol-N-(acetyl)-glucosamine-doxorubicin (PEG-NAG-DOX) was evaluated in this study for its in vivo potential for treatment of tumours demonstrating improved efficacy and reduced toxicity. The proposed polymer-drug conjugate comprised of polyethylene glycol-maleimide (mPEG-MAL, 30000 Da) as a carrier, doxorubicin (DOX) as an anticancer drug and N-acetyl glucosamine (NAG) as a targeting moiety as well as penetration enhancer. Doxorubicin has a potent and promising anticancer activity; however, severe cardiotoxicity limits its application in cancer treatment. By modifying DOX in PEG-NAG-DOX prodrug conjugate, we aimed to eliminate this limitation. In vivo anticancer efficacy of the conjugate was evaluated using BDF mice-induced skin melanoma model by i.v. administration of DOX conjugates. Anticancer efficacy studies were done by comparing tumour volume, body weight, organ index and percent survival rate of the animals. Tumour suppression achieved by PEG-NAG-DOX at the cumulative dose of 7.5 mg/kg was two-fold better than that achieved by DOX solution. Also, the survival rate for PEG-NAG-DOX conjugate was >70% as compared to <50% survival rate for DOX solution. In addition, toxicity studies and histopathological studies revealed that while maintaining its cytotoxicity towards tumour cells, PEG-NAG-DOX conjugate showed no toxicities to major organs. Therefore, PEG-NAG-DOX conjugate can be suggested as a desirable candidate for targeted cancer therapy.

  4. A triple modality BSA-coated dendritic nanoplatform for NIR imaging, enhanced tumor penetration and anticancer therapy.

    PubMed

    Cao, Jie; Ge, Ruifen; Zhang, Min; Xia, Junfei; Han, Shangcong; Lu, Wei; Liang, Yan; Zhang, Tingting; Sun, Yong

    2018-05-17

    Functional theranostic systems for drug delivery capable of concurrent near-infrared (NIR) fluorescence imaging, active tumor targeting and anticancer therapies are desired for concise cancer diagnosis and treatment. Dendrimers with controllable size and surface functionalities are good candidates for such platforms. However, integration of active targeting ligands and imaging agents separately on the surface or encapsulation of the imaging agents in the inner core of the dendrimers will result in a more complex composition or reduced drug loading efficiency. Herein, we reported a PAMAM-based theranostic system, with a simple integrin-specific imaging ligand prepared from two motifs. One motif is a NIR carbocyanine fluorescent dye (Cyp) for precise in vivo monitoring of the system and identification of tumor or cancer cells, and the other is a novel tumor-penetrating cyclic peptide (CRGDKGPDC, abbreviated iRGD). BSA was non-covalently bonded with Cyp to reduce NIR agent fluorescence-quenching aggregates and enhance imaging signals. The chemotherapy effect of these dendritic systems was achieved by encapsulating paclitaxel into the hydrophobic interior of the dendrimers. In vitro and in vivo targeting and penetrating studies revealed that a significantly high amount of the dendritic systems was endocytosed by HepG2 cells and enhanced accumulation and penetration at tumor sites. Our safety evaluation showed that masking of cationic-end groups of PAMAM to neutral or anionic groups has resulted in decreased or even zero-toxicity. The preliminary antitumor efficacy of the dendritic system was evaluated. In vitro and in vivo studies confirmed that paclitaxel-encapsulated functionalized PAMAM can efficiently kill HepG2 cancer cells. In conclusion, our functionalized theranostic dendritic system could be a promising nanocarrier to effectively deliver drugs to deep tumor regions for anticancer therapy.

  5. Insights into the importance for designing curcumin-inspired anticancer agents by a prooxidant strategy: The case of diarylpentanoids.

    PubMed

    Dai, Fang; Liu, Guo-Yun; Li, Yan; Yan, Wen-Jing; Wang, Qi; Yang, Jie; Lu, Dong-Liang; Ding, De-Jun; Lin, Dong; Zhou, Bo

    2015-08-01

    Developing anticancer agents by a prooxidant strategy has attracted increasing attention in recent years, although it is not conventional in medicinal chemistry and is completely opposite to antioxidant therapy. In this work, a panel of diarylpentanoids as the curcumin mono-carbonyl analogs were designed and synthesized, and their cytotoxic and proapoptotic mechanisms against human lung cancer A549 cells were investigated at the frontiers of chemistry and biology. It was found that compared with curcumin, the compounds (A1, B1, and C1) bearing two ortho substituents on the aromatic rings, especially A1, exhibit significantly increased cytotoxic and proapoptotic activities through a Michael acceptor unit-dependent prooxidant-mediated mechanism. The prooxidative ability is governed not only by their electrophilicity but also by their geometry, cellular uptake and metabolic stability, and TrxR-inhibitory activity. Mechanistic investigation reveals that the compound A1 could effectively and irreversibly modify the TrxR by virtue of the above optimal biochemical parameters, and convert this antioxidant enzyme into a reactive oxygen species (ROS) promoter, resulting in a burst of the intracellular ROS including H2O2 and O2(-)•. The ROS generation is associated with falling apart in the redox buffering system, and subsequently induces increases in Ca(2+) influx and oxidative stress, collapse of mitochondrial membrane potential, and activation of caspase-9 and caspase-3, ultimately leading to cell apoptosis. This work highlights the feasibility in designing curcumin-inspired anticancer agents by a prooxidant strategy, and gives us useful information on how to design them. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells.

    PubMed

    Vittorio, Orazio; Voliani, Valerio; Faraci, Paolo; Karmakar, Biswajit; Iemma, Francesca; Hampel, Silke; Kavallaris, Maria; Cirillo, Giuseppe

    2014-06-01

    Catechin-dextran conjugates have recently attracted a lot of attention due to their anticancer activity against a range of cancer cells. Magnetic nanoparticles have the ability to concentrate therapeutically important drugs due to their magnetic-spatial control and provide opportunities for targeted drug delivery. Enhancement of the anticancer efficiency of catechin-dextran conjugate by functionalisation with magnetic iron oxide nanoparticles. Modification of the coating shell of commercial magnetic nanoparticles (Endorem) composed of dextran with the catechin-dextran conjugate. Catechin-dextran conjugated with Endorem (Endo-Cat) increased the intracellular concentration of the drug and it induced apoptosis in 98% of pancreatic tumour cells placed under magnetic field. The conjugation of catechin-dextran with Endorem enhances the anticancer activity of this drug and provides a new strategy for targeted drug delivery on tumour cells driven by magnetic field. The ability to spatially control the delivery of the catechin-dextran by magnetic field makes it a promising agent for further application in cancer therapy.

  7. Protein targets for anticancer gold compounds: mechanistic inferences.

    PubMed

    Gabbiani, Chiara; Messori, Luigi

    2011-12-01

    Gold compounds form an interesting class of antiproliferative agents of potential pharmacological use in cancer treatment. Indeed, a number of gold compounds, either gold(III) or gold(I), were recently described and characterised that manifested remarkable cytotoxic properties in vitro against cultured cancer cells; for some of them encouraging in vivo results were also reported toward a few relevant animal models of cancer. The molecular mechanisms through which gold compounds exert their biological effects are still largely unknown and the subject of intense investigations. Recent studies point out that the modes of action of cytotoxic gold compounds are essentially DNA-independent and cisplatin-unrelated, relying -most likely- on gold interactions with a variety of protein targets. Notably, a few cellular proteins playing relevant functional roles were proposed to represent effective targets for cytotoxic gold compounds but these hypotheses need adequate validation. The state of the art of this research area and the perspectives for future studies are herein critically analysed and discussed.

  8. Anticancer drugs during pregnancy.

    PubMed

    Miyamoto, Shingo; Yamada, Manabu; Kasai, Yasuyo; Miyauchi, Akito; Andoh, Kazumichi

    2016-09-01

    Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Anticancer Targets in the Glycolytic Metabolism of Tumors: A Comprehensive Review

    PubMed Central

    Porporato, Paolo E.; Dhup, Suveera; Dadhich, Rajesh K.; Copetti, Tamara; Sonveaux, Pierre

    2011-01-01

    Cancer is a metabolic disease and the solution of two metabolic equations: to produce energy with limited resources and to fulfill the biosynthetic needs of proliferating cells. Both equations are solved when glycolysis is uncoupled from oxidative phosphorylation in the tricarboxylic acid cycle, a process known as the glycolytic switch. This review addresses in a comprehensive manner the main molecular events accounting for high-rate glycolysis in cancer. It starts from modulation of the Pasteur Effect allowing short-term adaptation to hypoxia, highlights the key role exerted by the hypoxia-inducible transcription factor HIF-1 in long-term adaptation to hypoxia, and summarizes the current knowledge concerning the necessary involvement of aerobic glycolysis (the Warburg effect) in cancer cell proliferation. Based on the many observations positioning glycolysis as a central player in malignancy, the most advanced anticancer treatments targeting tumor glycolysis are briefly reviewed. PMID:21904528

  10. Future Perspectives: Therapeutic Targeting of Notch Signalling May Become a Strategy in Patients Receiving Stem Cell Transplantation for Hematologic Malignancies

    PubMed Central

    Ersvaer, Elisabeth; Hatfield, Kimberley J.; Reikvam, Håkon; Bruserud, Øystein

    2011-01-01

    The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects. PMID:22046566

  11. Synthesis of Triazole Derivatives of Levoglucosenone As Promising Anticancer Agents: Effective Exploration of the Chemical Space through retro-aza-Michael//aza-Michael Isomerizations.

    PubMed

    Tsai, Yi-Hsuan; Borini Etichetti, Carla M; Di Benedetto, Carolina; Girardini, Javier E; Martins, Felipe Terra; Spanevello, Rolando A; Suárez, Alejandra G; Sarotti, Ariel M

    2018-04-06

    The design and synthesis of biomass-derived triazoles and the in vitro evaluation as potential anticancer agents are described. The discovery of base-catalyzed retro-aza-Michael//aza-Michael isomerizations allowed the exploration of the chemical space by affording novel types of triazoles, difficult to obtain otherwise. Following this strategy, 2,4-disubstituted 1,2,3-triazoles could be efficiently obtained from the corresponding 1,4-disubstituted analogues.

  12. Drug resistance to targeted therapies: déjà vu all over again.

    PubMed

    Groenendijk, Floris H; Bernards, René

    2014-09-12

    A major limitation of targeted anticancer therapies is intrinsic or acquired resistance. This review emphasizes similarities in the mechanisms of resistance to endocrine therapies in breast cancer and those seen with the new generation of targeted cancer therapeutics. Resistance to single-agent cancer therapeutics is frequently the result of reactivation of the signaling pathway, indicating that a major limitation of targeted agents lies in their inability to fully block the cancer-relevant signaling pathway. The development of mechanism-based combinations of targeted therapies together with non-invasive molecular disease monitoring is a logical way forward to delay and ultimately overcome drug resistance development. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.

    PubMed

    Ma, Brigette B Y; Bristow, Robert G; Kim, John; Siu, Lillian L

    2003-07-15

    Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.

  14. Targeted co-delivery of Beclin 1 siRNA and FTY720 to hepatocellular carcinoma by calcium phosphate nanoparticles for enhanced anticancer efficacy.

    PubMed

    Wu, Jun-Yi; Wang, Zhong-Xia; Zhang, Guang; Lu, Xian; Qiang, Guang-Hui; Hu, Wei; Ji, An-Lai; Wu, Jun-Hua; Jiang, Chun-Ping

    2018-01-01

    FTY720, known as fingolimod, is a new immunosuppressive agent with effective anticancer properties. Although it was recently confirmed that FTY720 inhibits cancer cell proliferation, FTY720 can also induce protective autophagy and reduce cytotoxicity. Blocking autophagy with Beclin 1 siRNA after treatment with FTY720 promotes apoptosis. The objective of this study was to enhance the anticancer effect of FTY720 in hepatocellular carcinoma (HCC) by targeted co-delivery of FTY720 and Beclin 1 siRNA using calcium phosphate (CaP) nanoparticles (NPs). First, the siRNA was encapsulated within the CaP core. To form an asymmetric lipid bilayer structure, we then used an anionic lipid for the inner leaflet and a cationic lipid for the outer leaflet; after removing chloroform by rotary evaporation, these lipids were dispersed in a saline solution with FTY720. The NPs were analyzed by transmission electron microscopy, dynamic light scattering and ultraviolet-visible spectrophotometry. Cancer cell viability and cell death were analyzed by MTT assays, fluorescence-activated cell sorting analysis and Western blotting. In addition, the in vivo effects of the NPs were investigated using an athymic nude mouse subcutaneous transplantation tumor model. When the CaP NPs, called LCP-II NPs, were loaded with FTY720 and siRNA, they exhibited the expected size and were internalized by cells. These NPs were stable in systemic circulation. Furthermore, co-delivery of FTY720 and Beclin 1 siRNA significantly increased cytotoxicity in vitro and in vivo compared with that caused by treatment with the free drug alone. The CaP NP system can be further developed for co-delivery of FTY720 and Beclin 1 siRNA to treat HCC, enhancing the anticancer efficacy of FTY720. Our findings provide a new insight into HCC treatment with co-delivered small molecules and siRNA, and these results can be readily translated into cancer clinical trials.

  15. Modulation of Epigenetic Targets for Anticancer Therapy: Clinicopathological Relevance, Structural Data and Drug Discovery Perspectives

    PubMed Central

    Andreol, Federico; Barbosa, Arménio Jorge Moura; Daniele Parenti, Marco; Rio, Alberto Del

    2013-01-01

    Research on cancer epigenetics has flourished in the last decade. Nevertheless growing evidence point on the importance to understand the mechanisms by which epigenetic changes regulate the genesis and progression of cancer growth. Several epigenetic targets have been discovered and are currently under validation for new anticancer therapies. Drug discovery approaches aiming to target these epigenetic enzymes with small-molecules inhibitors have produced the first pre-clinical and clinical outcomes and many other compounds are now entering the pipeline as new candidate epidrugs. The most studied targets can be ascribed to histone deacetylases and DNA methyltransferases, although several other classes of enzymes are able to operate post-translational modifications to histone tails are also likely to represent new frontiers for therapeutic interventions. By acknowledging that the field of cancer epigenetics is evolving with an impressive rate of new findings, with this review we aim to provide a current overview of pre-clinical applications of small-molecules for cancer pathologies, combining them with the current knowledge of epigenetic targets in terms of available structural data and drug design perspectives. PMID:23016851

  16. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition.

    PubMed

    Kosic, Milica; Arsikin-Csordas, Katarina; Paunovic, Verica; Firestone, Raymond A; Ristic, Biljana; Mircic, Aleksandar; Petricevic, Sasa; Bosnjak, Mihajlo; Zogovic, Nevena; Mandic, Milos; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2016-10-28

    We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    PubMed

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  18. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    PubMed

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  19. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives.

    PubMed

    Li, Yang; Feng, Ling; Song, Zhi-Fang; Li, Hai-Bei; Huai, Qi-Yong

    2016-02-06

    A total of forty novel glycyrrhetinic acid (GA) derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231) in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively) and merits further exploration as a new anticancer agent.

  20. Chemical warfare agents. Classes and targets.

    PubMed

    Schwenk, Michael

    2018-09-01

    Synthetic toxic chemicals (toxicants) and biological poisons (toxins) have been developed as chemical warfare agents in the last century. At the time of their initial consideration as chemical weapon, only restricted knowledge existed about their mechanisms of action. There exist two different types of acute toxic action: nonspecific cytotoxic mechanisms with multiple chemo-biological interactions versus specific mechanisms that tend to have just a single or a few target biomolecules. TRPV1- and TRPA-receptors are often involved as chemosensors that induce neurogenic inflammation. The present work briefly surveys classes and toxicologically relevant features of chemical warfare agents and describes mechanisms of toxic action. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Recent patents therapeutic agents for cancer.

    PubMed

    Li, Xun; Xu, Wenfang

    2006-06-01

    Cancer is one of the most dreaded diseases with a complex pathogenesis, which threats human life greatly. Multidisciplinary scientific investigations are making best efforts to combat this disease and put to the identification of novel anticancer agents. Patent anticancer agents registered in China are therefore increasing dramatically during the past ten years, which will be reviewed briefly in this article. platinum complexes anthracycline analogs (including doxorubicin derivatives) quinoline analogs podophyllotoxins analogs taxane analogs camptothecin (CPT) analogs.

  2. Advances in drug delivery system for platinum agents based combination therapy.

    PubMed

    Kang, Xiang; Xiao, Hai-Hua; Song, Hai-Qin; Jing, Xia-Bin; Yan, Le-San; Qi, Ruo-Gu

    2015-12-01

    Platinum-based anticancer agents are widely used as first-line drugs in cancer chemotherapy for various solid tumors. However, great side effects and occurrence of resistance remain as the major drawbacks for almost all the platinum drugs developed. To conquer these problems, new strategies should be adopted for platinum drug based chemotherapy. Modern nanotechnology has been widely employed in the delivery of various therapeutics and diagnostic. It provides the possibility of targeted delivery of a certain anticancer drug to the tumor site, which could minimize toxicity and optimize the drug efficacy. Here, in this review, we focused on the recent progress in polymer based drug delivery systems for platinum-based combination therapy.

  3. Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging

    PubMed Central

    2008-01-01

    Targeted metallic nanoparticles have shown potential as a platform for development of molecular-specific contrast agents. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In this study, we investigated the development of aptamer-based gold nanoparticles as contrast agents, using aptamers as targeting agents and gold nanoparticles as imaging agents. We devised a novel conjugation approach using an extended aptamer design where the extension is complementary to an oligonucleotide sequence attached to the surface of the gold nanoparticles. The chemical and optical properties of the aptamer−gold conjugates were characterized using size measurements and oligonucleotide quantitation assays. We demonstrate this conjugation approach to create a contrast agent designed for detection of prostate-specific membrane antigen (PSMA), obtaining reflectance images of PSMA(+) and PSMA(−) cell lines treated with the anti-PSMA aptamer−gold conjugates. This design strategy can easily be modified to incorporate multifunctional agents as part of a multimodal platform for reflectance imaging applications. PMID:18512972

  4. Experimental anticancer therapy with vascular-disruptive peptide and liposome-entrapped chemotherapeutic agent.

    PubMed

    Sochanik, Aleksander; Mitrus, Iwona; Smolarczyk, Ryszard; Cichoń, Tomasz; Snietura, Mirosław; Czaja, Maria; Szala, Stanisław

    2010-06-01

    observed when the re-challenge involved the use of folate receptor-targeted liposomes (FTL). Anticancer therapy involving vascular-disruptive peptide and doxorubicin delivered via pegylated folate receptor-targeted liposomes is more effective than either monotherapy, especially when tumor growth is re-challenged with the therapeutic combination.

  5. Proteomic Investigation to Identify Anticancer Targets of Nemopilema nomurai Jellyfish Venom in Human Hepatocarcinoma HepG2 Cells

    PubMed Central

    Choudhary, Indu; Lee, Hyunkyoung; Pyo, Min Jung; Heo, Yunwi; Chae, Jinho; Yum, Seung Shic; Kang, Changkeun; Kim, Euikyung

    2018-01-01

    Nemopilema nomurai is a giant jellyfish that blooms in East Asian seas. Recently, N. nomurai venom (NnV) was characterized from a toxicological and pharmacological point of view. A mild dose of NnV inhibits the growth of various kinds of cancer cells, mainly hepatic cancer cells. The present study aims to identify the potential therapeutic targets and mechanism of NnV in the growth inhibition of cancer cells. Human hepatocellular carcinoma (HepG2) cells were treated with NnV, and its proteome was analyzed using two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF/MS). The quantity of twenty four proteins in NnV-treated HepG2 cells varied compared to non-treated control cells. Among them, the amounts of fourteen proteins decreased and ten proteins showed elevated levels. We also found that the amounts of several cancer biomarkers and oncoproteins, which usually increase in various types of cancer cells, decreased after NnV treatment. The representative proteins included proliferating cell nuclear antigen (PCNA), glucose-regulated protein 78 (GRP78), glucose-6-phosphate dehydrogenase (G6PD), elongation factor 1γ (EF1γ), nucleolar and spindle-associated protein (NuSAP), and activator of 90 kDa heat shock protein ATPase homolog 1 (AHSA1). Western blotting also confirmed altered levels of PCNA, GRP78, and G6PD in NnV-treated HepG2 cells. In summary, the proteomic approach explains the mode of action of NnV as an anticancer agent. Further characterization of NnV may help to unveil novel therapeutic agents in cancer treatment. PMID:29748501

  6. Synthesis and Anticancer Activity of 3-(Substituted Aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiao-Ping; Lan, Lan; Wang, Shuai; Zhao, Kai; Xin, Yu-Xuan; Qi, Qi; Wang, Yao-Lin; Mao, Zhen-Min

    2017-02-01

    A series of 3-(substituted aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT-26, HeLa, MGC80-3, NCI-H460 and SGC-7901 cells (IC 50  = 8.2 - 31.7 μm); 3g, 3n and 3a were the most potent compounds against CHO (IC 50  = 8.2 μm), HCT-15 (IC 50  = 21 μm) and MCF-7 cells (IC 50  = 18.7 μm), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC 50  > 100 μm). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  7. Application of computer assisted combinatorial chemistry in antivirial, antimalarial and anticancer agents design

    NASA Astrophysics Data System (ADS)

    Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.

    Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.

  8. Molecular targets of curcumin for cancer therapy: an updated review.

    PubMed

    Kasi, Pandima Devi; Tamilselvam, Rajavel; Skalicka-Woźniak, Krystyna; Nabavi, Seyed Fazel; Daglia, Maria; Bishayee, Anupam; Pazoki-Toroudi, Hamidreza; Nabavi, Seyed Mohammad

    2016-10-01

    In recent years, natural edible products have been found to be important therapeutic agents for the treatment of chronic human diseases including cancer, cardiovascular disease, and neurodegeneration. Curcumin is a well-known diarylheptanoid constituent of turmeric which possesses anticancer effects under both pre-clinical and clinical conditions. Moreover, it is well known that the anticancer effects of curcumin are primarily due to the activation of apoptotic pathways in the cancer cells as well as inhibition of tumor microenvironments like inflammation, angiogenesis, and tumor metastasis. In particular, extensive studies have demonstrated that curcumin targets numerous therapeutically important cancer signaling pathways such as p53, Ras, PI3K, AKT, Wnt-β catenin, mTOR and so on. Clinical studies also suggested that either curcumin alone or as combination with other drugs possess promising anticancer effect in cancer patients without causing any adverse effects. In this article, we critically review the available scientific evidence on the molecular targets of curcumin for the treatment of different types of cancer. In addition, we also discuss its chemistry, sources, bioavailability, and future research directions.

  9. Clearing the fog of anticancer patents from 1993-2013: through an in-depth technology landscape & target analysis from pioneer research institutes and universities worldwide.

    PubMed

    Dara, Ajay; Sangamwar, Abhay T

    2014-01-01

    In a search for an effective anticancer therapy the R&D units from leading universities and institutes reveal numerous technologies in the form of patent documents. The article addressed comparative anticancer patent landscape and technology assessment of Council of Scientific and Industrial Research (CSIR): India's largest R&D organisation with top twenty international public funded universities and institutes from eight different countries. The methodology include quantitative and qualitative assessment based on the bibliometric parameters and manual technology categorisation to understand the changing patent trends and recent novel technologies. The research finding analysed 25,254 patent documents from the year 1993 to 2013 and reported the insights of latest anticancer technologies and targets through categorisation studies at the level of drug discovery, development and treatment & diagnosis. The article has reported the technology correlation matrix of twelve secondary class technologies with 34 tertiary sub-class research area to identify the leading technologies and scope of future research through whitespaces analysis. In addition, the results have also addressed the target analysis, leading inventor, assignee, collaboration network, geographical distribution, patent trend analysis, citation maps and technology assessment with respect to international patent classification systems such as CPC, IPC and CPI codes. The result suggested peptide technology as the dominating research area next to gene therapy, vaccine and medical preparation containing organic compounds. The Indian CSIR has ranked itself at seventh position among the top 20 universities. Globally, the anticancer research was focused in the area of genetics and immunology, whereas Indian CSIR reported more patents related to plant extract and organic preparation. The article provided a glimpse of two decade anticancer scenario with respect to top public funded universities worldwide.

  10. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine: An anticancer agent targeting hypoxic cells

    PubMed Central

    Seow, Helen A.; Penketh, Philip G.; Shyam, Krishnamurthy; Rockwell, Sara; Sartorelli, Alan C.

    2005-01-01

    To target malignant cells residing in hypoxic regions of solid tumors, we have designed and synthesized prodrugs generating the cytotoxic alkylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) after bioreductive activation. We postulate that one of these agents, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119), requires enzymatic nitro reduction to produce 90CE, whereas another agent, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(4-nitrobenzyloxy)carbonyl]hydrazine (PNBC), can also be activated by nucleophilic attack by thiols such as glutathione (GSH)/GST. We demonstrated that these agents selectively kill hypoxic EMT6 mouse mammary carcinoma and CHO cells. In hypoxia, 50 μM KS119 produced 5 logs of kill of EMT6 cells without discernable cytotoxicity in air; similar effects were observed with CHO cells. PNBC was less efficacious against hypoxic tumor cells and also had some toxicity to aerobic cells, presumably because of GST/thiol activation, making PNBC less interesting as a selective hypoxic-cell cytotoxin. BALB/c mice with established EMT6 solid tumors were used to demonstrate that KS119 could reach and kill hypoxic cells in solid tumors. To gain information on bioreductive enzymes involved in the activation of KS119, cytotoxicity was measured in CHO cell lines overexpressing NADH:cytochrome b5 reductase (NBR), NADPH:cytochrome P450 reductase (NPR), or NAD(P)H: quinone oxidoreductase 1 (NQO1). Increased cytotoxicity occurred in cells overexpressing NBR and NPR, whereas overexpressed NQO1 had no effect. These findings were supported by enzymatic studies using purified NPR and xanthine oxidase to activate KS119. KS119 has significant potential as a hypoxia-selective tumor-cell cytotoxin and is unlikely to cause major toxicity to well oxygenated normal tissues. PMID:15964988

  11. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition.

    PubMed

    He, Qianjun; Shi, Jianlin

    2014-01-22

    In the anti-cancer war, there are three main obstacles resulting in high mortality and recurrence rate of cancers: the severe toxic side effect of anti-cancer drugs to normal tissues due to the lack of tumor-selectivity, the multi-drug resistance (MDR) to free chemotherapeutic drugs and the deadly metastases of cancer cells. The development of state-of-art nanomedicines based on mesoporous silica nanoparticles (MSNs) is expected to overcome the above three main obstacles. In the view of the fast development of anti-cancer strategy, this review highlights the most recent advances of MSN anti-cancer nanomedicines in enhancing chemotherapeutic efficacy, overcoming the MDR and inhibiting metastasis. Furthermore, we give an outlook of the future development of MSNs-based anti-cancer nanomedicines, and propose several innovative and forward-looking anti-cancer strategies, including tumor tissue-cell-nuclear successionally targeted drug delivery strategy, tumor cell-selective nuclear-targeted drug delivery strategy, multi-targeting and multi-drug strategy, chemo-/radio-/photodynamic-/ultrasound-/thermo-combined multi-modal therapy by virtue of functionalized hollow/rattle-structured MSNs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs.

    PubMed

    Gothwal, Avinash; Khan, Iliyas; Gupta, Umesh

    2016-01-01

    Nanotechnology, in health and medicine, extensively improves the safety and efficacy of different therapeutic agents, particularly the aspects related to drug delivery and targeting. Among various nano-carriers, polymer based macromolecular approaches have resulted in improved drug delivery for the diseases like cancers, diabetes, autoimmune disorders and many more. Polymeric micelles consisting of hydrophilic exterior and hydrophobic core have established a record of anticancer drug delivery from the laboratory to commercial reality. The nanometric size, tailor made functionality, multiple choices of polymeric micelle synthesis and stability are the unique properties, which have attracted scientists and researchers around the world to work upon in this opportunistic drug carrier. The capability of polymeric micelles as nano-carriers are nowhere less significant than nanoparticles, liposomes and other nanocarriers, as per as the commercial feasibility and presence is concerned. In fact polymeric micelles are among the most extensively studied delivery platforms for the effective treatment of different cancers as well as non-cancerous disorders. The present review highlights the sequential and recent developments in the design, synthesis, characterization and evaluation of polymeric micelles to achieve the effective anticancer drug delivery. The future possibilities and clinical outcome have also been discussed, briefly.

  13. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity.

    PubMed

    Moussa, Rayan S; Park, Kyung Chan; Kovacevic, Zaklina; Richardson, Des R

    2018-03-20

    Iron (Fe) has become an important target for the development of anti-cancer therapeutics with a number of Fe chelators entering human clinical trials for advanced and resistant cancer. An important aspect of the activity of these compounds is their multiple molecular targets, including those that play roles in arresting the cell cycle, such as the cyclin-dependent kinase inhibitor, p21. At present, the exact mechanism by which Fe chelators regulate p21 expression remains unclear. However, recent studies indicate the ability of chelators to up-regulate p21 at the mRNA level was dependent on the chelator and cell-type investigated. Analysis of the p21 promoter identified that the Sp1-3-binding site played a significant role in the activation of p21 transcription by Fe chelators. Furthermore, there was increased Sp1/ER-α and Sp1/c-Jun complex formation in melanoma cells, suggesting these complexes were involved in p21 promoter activation. Elucidating the mechanisms involved in the regulation of p21 expression in response to Fe chelator treatment in neoplastic cells will further clarify how these agents achieve their anti-tumor activity. It will also enhance our understanding of the complex roles p21 may play in neoplastic cells and lead to the development of more effective and specific anti-cancer therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer

    PubMed Central

    Crombag, Marie-Rose B.S.; Joerger, Markus; Thürlimann, Beat; Schellens, Jan H.M.; Beijnen, Jos H.; Huitema, Alwin D.R.

    2016-01-01

    Background: Elderly patients receiving anticancer drugs may have an increased risk to develop treatment-related toxicities compared to their younger peers. However, a potential pharmacokinetic (PK) basis for this increased risk has not consistently been established yet. Therefore, the objective of this study was to systematically review the influence of age on the PK of anticancer agents frequently administered to elderly breast cancer patients. Methods: A literature search was performed using the PubMed electronic database, Summary of Product Characteristics (SmPC) and available drug approval reviews, as published by EMA and FDA. Publications that describe age-related PK profiles of selected anticancer drugs against breast cancer, excluding endocrine compounds, were selected and included. Results: This review presents an overview of the available data that describe the influence of increasing age on the PK of selected anticancer drugs used for the treatment of breast cancer. Conclusions: Selected published data revealed differences in the effect and magnitude of increasing age on the PK of several anticancer drugs. There may be clinically-relevant, age-related PK differences for anthracyclines and platina agents. In the majority of cases, age is not a good surrogate marker for anticancer drug PK, and the physiological state of the individual patient may better be approached by looking at organ function, Charlson Comorbidity Score or geriatric functional assessment. PMID:26729170

  15. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity.

    PubMed

    Zhou, Qing; Hou, Yilin; Zhang, Li; Wang, Jianlin; Qiao, Youbei; Guo, Songyan; Fan, Li; Yang, Tiehong; Zhu, Lin; Wu, Hong

    2017-01-01

    Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity.

  16. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity

    PubMed Central

    Zhou, Qing; Hou, Yilin; Zhang, Li; Wang, Jianlin; Qiao, Youbei; Guo, Songyan; Fan, Li; Yang, Tiehong; Zhu, Lin; Wu, Hong

    2017-01-01

    Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity. PMID:28638469

  17. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    PubMed

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  18. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  19. Preparation and in vitro evaluation of actively targetable nanoparticles for SN-38 delivery against HT-29 cell lines.

    PubMed

    Ebrahimnejad, Pedram; Dinarvand, Rassoul; Sajadi, Abolghasem; Jaafari, Mahmoud Reza; Nomani, Ali Reza; Azizi, Ebrahim; Rad-Malekshahi, Mazda; Atyabi, Fatemeh

    2010-06-01

    SN-38 (7-ethyl-10-hydroxycamptothecin) is the active metabolite of irinotecan, which is 100-to 1000-fold more cytotoxic than irinotecan. Nevertheless, extreme hydrophobicity of SN-38 has prevented its clinical use. One way of improving the solubility and stability of SN-38 is to formulate the drug into nanoparticles. Folic acid has been widely used as a targeting moiety for various anticancer drugs. For folate-receptor-targeted anticancer therapy, SN-38 nanoparticles were produced using poly-lactide-co-glycolide-polyethylene glycol-folate (PLGA-PEG-FOL) conjugate by emulsification/solvent evaporation method. The FOL-conjugated di-block copolymer was synthesized by coupling the PLGA-PEG-NH(2) di-block copolymer with an activated folic acid. The conjugates were used for the formation of SN-38 nanoparticles with an average size of 200 nm in diameter. The SN-38 targeted nanoparticles showed a greater cytotoxicity against HT-29 cancer cells than SN-38 nontargeted nanoparticles. These results suggested that folate-targeted nanoparticles could be a potentially useful delivery system for SN-38 as an anticancer agent. SN-38 is the active metabolite of the chemotherapy agent irinotecan, which is 100-1000 fold more cytotoxic than irinotecan, but its extreme hydrophobicity has prevented its clinical use. In this paper, the authors present a nanotechnology-based approach targeting the folate-receptor with SN-38 loaded nanoparticles, demonstrating stronger cytotoxicity against HT-29 cancer cells than with control nanoparticles.

  20. eIF3a: A new anticancer drug target in the eIF family.

    PubMed

    Yin, Ji-Ye; Zhang, Jian-Ting; Zhang, Wei; Zhou, Hong-Hao; Liu, Zhao-Qian

    2018-01-01

    eIF3a is the largest subunit of eIF3, which is a key player in all steps of translation initiation. During the past years, eIF3a is recognized as a proto-oncogene, which is an important discovery in this field. It is widely reported to be correlated with cancer occurrence, metastasis, prognosis, and therapeutic response. Recently, the mechanisms of eIF3a action in the carcinogenesis are unveiled gradually. A number of cellular, physiological, and pathological processes involving eIF3a are identified. Most importantly, it is emerging as a new potential drug target in the eIF family, and some small molecule inhibitors are being developed. Thus, we perform a critical review of recent advances in understanding eIF3a physiological and pathological functions, with specific focus on its role in cancer and anticancer drug targets. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Safety and feasibility of targeted agent combinations in solid tumours.

    PubMed

    Park, Sook Ryun; Davis, Myrtle; Doroshow, James H; Kummar, Shivaani

    2013-03-01

    The plethora of novel molecular-targeted agents (MTAs) has provided an opportunity to selectively target pathways involved in carcinogenesis and tumour progression. Combination strategies of MTAs are being used to inhibit multiple aberrant pathways in the hope of optimizing antitumour efficacy and to prevent development of resistance. While the selection of specific agents in a given combination has been based on biological considerations (including the role of the putative targets in cancer) and the interactions of the agents used in combination, there has been little exploration of the possible enhanced toxicity of combinations resulting from alterations in multiple signalling pathways in normal cell biology. Owing to the complex networks and crosstalk that govern normal and tumour cell proliferation, inhibiting multiple pathways with MTA combinations can result in unpredictable disturbances in normal physiology. This Review focuses on the main toxicities and the lack of tolerability of some common MTA combinations, particularly where evidence of enhanced toxicity compared to either agent alone is documented or there is development of unexpected toxicity. Toxicities caused by MTA combinations highlight the need to introduce new preclinical testing paradigms early in the drug development process for the assessment of chronic toxicities resulting from such combinations.

  2. Destabilization of the MutSα's protein-protein interface due to binding to the DNA adduct induced by anticancer agent carboplatin via molecular dynamics simulations.

    PubMed

    Negureanu, Lacramioara; Salsbury, Freddie R

    2013-11-01

    DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα's surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.

  3. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink.

    PubMed

    Wilson, Maxwell Z; Wang, Rurun; Gitai, Zemer; Seyedsayamdost, Mohammad R

    2016-02-09

    While we have come to appreciate the architectural complexity of microbially synthesized secondary metabolites, far less attention has been paid to linking their structural features with possible modes of action. This is certainly the case with tropodithietic acid (TDA), a broad-spectrum antibiotic generated by marine bacteria that engage in dynamic symbioses with microscopic algae. TDA promotes algal health by killing unwanted marine pathogens; however, its mode of action (MoA) and significance for the survival of an algal-bacterial miniecosystem remains unknown. Using cytological profiling, we herein determine the MoA of TDA and surprisingly find that it acts by a mechanism similar to polyether antibiotics, which are structurally highly divergent. We show that like polyether drugs, TDA collapses the proton motive force by a proton antiport mechanism, in which extracellular protons are exchanged for cytoplasmic cations. The α-carboxy-tropone substructure is ideal for this purpose as the proton can be carried on the carboxyl group, whereas the basicity of the tropylium ion facilitates cation export. Based on similarities to polyether anticancer agents we have further examined TDA's cytotoxicity and find it to exhibit potent, broad-spectrum anticancer activities. These results highlight the power of MoA-profiling technologies in repurposing old drugs for new targets. In addition, we identify an operon that confers TDA resistance to the producing marine bacteria. Bioinformatic and biochemical analyses of these genes lead to a previously unknown metabolic link between TDA/acid resistance and the γ-glutamyl cycle. The implications of this resistance mechanism in the context of the algal-bacterial symbiosis are discussed.

  4. Guided molecular missiles for tumor-targeting chemotherapy--case studies using the second-generation taxoids as warheads.

    PubMed

    Ojima, Iwao

    2008-01-01

    A long-standing problem in cancer chemotherapy is the lack of tumor-specific treatments. Traditional chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be killed by a cytotoxic agent. In reality, however, cytotoxic agents have very little or no specificity, which leads to systemic toxicity, causing undesirable severe side effects. Therefore, the development of innovative and efficacious tumor-specific drug delivery protocols or systems is urgently needed. A rapidly growing tumor requires various nutrients and vitamins. Thus, tumor cells overexpress many tumor-specific receptors, which can be used as targets to deliver cytotoxic agents into tumors. This Account presents our research program on the discovery and development of novel and efficient drug delivery systems, possessing tumor-targeting ability and efficacy against various cancer types, especially multidrug-resistant tumors. In general, a tumor-targeting drug delivery system consists of a tumor recognition moiety and a cytotoxic warhead connected directly or through a suitable linker to form a conjugate. The conjugate, which can be regarded as a "guided molecular missile", should be systemically nontoxic, that is, the linker must be stable in blood circulation, but upon internalization into the cancer cell, the conjugate should be readily cleaved to regenerate the active cytotoxic warhead. These novel "guided molecular missiles" are conjugates of the highly potent second-generation taxoid anticancer agents with tumor-targeting molecules through mechanism-based cleavable linkers. These conjugates are specifically delivered to tumors and internalized into tumor cells, and the potent taxoid anticancer agents are released from the linker into the cytoplasm. We have successfully used omega-3 polyunsaturated fatty acids, in particular DHA, and monoclonal antibodies (for EGFR) as tumor-targeting molecules for the conjugates, which exhibited remarkable efficacy against

  5. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles.

    PubMed

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-06

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 10(8) particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  6. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  7. Designing Isoform-selective Inhibitors Against Classical HDACs for Effective Anticancer Therapy: Insight and Perspectives from In Silico.

    PubMed

    Ganai, Shabir Ahmad

    2018-01-01

    Histone deacetylase inhibitors, the small molecules modulating the biological activity of histone deacetylases are emerging as potent chemotherapeutic agents. Despite their considerable therapeutic benefits in disease models, the lack of isoform specificity culminates in debilitating off target effects, raising serious concerns regarding their applicability. This emphasizes the pressing and unmet medical need of designing isoform selective inhibitors for safe and effective anticancer therapy. Keeping these grim facts in view, the current article sheds light on structural basis of off-targeting. Furthermore, the article discusses extensively the role of in silico strategies such as Molecular Docking, Molecular Dynamics Simulation and Energetically-optimized structure based pharmacophore approach in designing on-target inhibitors against classical HDACs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. [Study on liver targeted drug delivery system of the effective anticancer component from Bolbstemma paniculatum].

    PubMed

    Sun, Yi-Yi; Ll, Tong-Hui; Tang, Chen-Kang; Zhu, Zi-Ping; Chi, Qun; Hou, Shi-Xiang

    2005-06-01

    To study the liver targeted drug delivery system of TBMS--the effective anticancer component from Bolbstemma paniculatum, and to discuss the system's function of decreasing toxicity. BCA was used as carrier material. The preparation through overall feedback dynamic techniques. The properties of preparation and toxicology were also technology of nanoparticles was optimized studied. Thenanoparticles' targeting in mice vivo was observed with transmission electron microscopy. The function of decreasing toxicity was researched by the XXTX-2000 automatic quantitative analysis management system. D50 was 0.68 microm. Drug-loading rate and entrapment rate were 37.3% and 88.6% respectively. The release in vitro accorded with Weibull equation. The reaching release balance time and the t 1/2 extended 26 times and 19 times respectively comparing with injection. Nanoparticles mainly distributed in liver tissue. Their toxicity to lung and liver was evidently lower than injection. Nanoparticles' LD50 exceeded injection's by 13.5% and their stimulus was much lower than injection. The TBMS can be targeted to liver by liver targeted drug delivery system. At the same time, the problem about the toxicity hindering clinical application could be solved, which lays the foundation for the further studies on TBMS.

  9. In Vivo Fluorescence Resonance Energy Transfer Imaging for Targeted Anti-Cancer Drug Delivery Kinetics

    NASA Astrophysics Data System (ADS)

    Webb, Kevin; Gaind, Vaibhav; Tsai, Hsiaorho; Bentz, Brian; Chelvam, Venkatesh; Low, Philip

    2012-02-01

    We describe an approach for the evaluation of targeted anti-cancer drug delivery in vivo. The method emulates the drug release and activation process through acceptor release from a targeted donor-acceptor pair that exhibits fluorescence resonance energy transfer (FRET). In this case, folate targeting of the cancer cells is used - 40 % of all human cancers, including ovarian, lung, breast, kidney, brain and colon cancer, over-express folate receptors. We demonstrate the reconstruction of the spatially-dependent FRET parameters in a mouse model and in tissue phantoms. The FRET parameterization is incorporated into a source for a diffusion equation model for photon transport in tissue, in a variant of optical diffusion tomography (ODT) called FRET-ODT. In addition to the spatially-dependent tissue parameters in the diffusion model (absorption and diffusion coefficients), the FRET parameters (donor-acceptor distance and yield) are imaged as a function of position. Modulated light measurements are made with various laser excitation positions and a gated camera. More generally, our method provides a new vehicle for studying disease at the molecular level by imaging FRET parameters in deep tissue, and allows the nanometer FRET ruler to be utilized in deep tissue.

  10. Properties of realgar bioleaching using an extremely acidophilic bacterium and its antitumor mechanism as an anticancer agent.

    PubMed

    Chen, Peng; Xu, Ruixiang; Yan, Lei; Wu, Zhengrong; Wei, Yan; Zhao, Wenbin; Wang, Xin; Xie, Qinjian; Li, Hongyu

    2017-05-22

    Realgar is a naturally occurring arsenic sulfide (or Xionghuang, in Chinese). It contains over 90% tetra-arsenic tetra-sulfide (As 4 S 4 ). Currently, realgar has been confirmed the antitumor activities, both in vitro and in vivo, of realgar extracted using Acidithiobacillus ferrooxidans (A. ferrooxidans). Bioleaching, a new technology to greatly improve the use rate of arsenic extraction from realgar using bacteria, is a novel methodology that addressed a limitation of the traditional method for realgar preparation. The present systematic review reports on the research progress in realgar bioleaching and its antitumor mechanism as an anticancer agent. A total of 93 research articles that report on the biological activity of extracts from realgar using bacteria and its preparation were presented in this review. The realgar bioleaching solution (RBS) works by inducing apoptosis when it is used to treat tumor cells in vitro and in vivo. When it is used to treat animal model organisms in vivo, such as mice and Caenorhabditis elegans, tumor tissues grew more slowly, with mass necrosis. Meanwhile, the agent also showed obvious inhibition of tumor cell growth. Bioleaching technology greatly improves the utilization of realgar and is a novel methodology to improve the traditional method.

  11. Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives?

    PubMed Central

    Cirmi, Santa; Ferlazzo, Nadia; Lombardo, Giovanni E.; Maugeri, Alessandro; Calapai, Gioacchino; Gangemi, Sebastiano; Navarra, Michele

    2016-01-01

    Fruits and vegetables have long been recognized as potentially important in the prevention of cancer risk. Thus, scientific interest in nutrition and cancer has grown over time, as shown by increasing number of experimental studies about the relationship between diet and cancer development. This review attempts to provide an insight into the anti-cancer effects of Citrus fruits, with a focus on their bioactive compounds, elucidating the main cellular and molecular mechanisms through which they may protect against cancer. Scientific literature was selected for this review with the aim of collecting the relevant experimental evidence for the anti-cancer effects of Citrus fruits and their flavonoids. The findings discussed in this review strongly support their potential as anti-cancer agents, and may represent a scientific basis to develop nutraceuticals, food supplements, or complementary and alternative drugs in a context of a multi-target pharmacological strategy in the oncology. PMID:27827912

  12. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    PubMed

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.

    PubMed

    Rajagopal, Sriram; Kumar, R Ajaya; Deevi, Dhanvanthri S; Satyanarayana, Chitkala; Rajagopalan, R

    2003-01-01

    Andrographis paniculata plant extract is known to possess a variety of pharmacological activities. Andrographolide, the major constituent of the extract is implicated towards its pharmacological activity. We studied the cellular processes and targets modulated by andrographolide treatment in human cancer and immune cells. Andrographolide treatment inhibited the in vitro proliferation of different tumor cell lines, representing various types of cancers. The compound exerts direct anticancer activity on cancer cells by cell-cycle arrest at G0/G1 phase through induction of cell-cycle inhibitory protein p27 and decreased expression of cyclin-dependent kinase 4 (CDK4). Immunostimulatory activity of andrographolide is evidenced by increased proliferation of lymphocytes and production of interleukin-2. Andrographolide also enhanced the tumor necrosis factor-alpha production and CD marker expression, resulting in increased cytotoxic activity of lymphocytes against cancer cells, which may contribute for its indirect anticancer activity. The in vivo anticancer activity of the compound is further substantiated against B16F0 melanoma syngenic and HT-29 xenograft models. These results suggest that andrographolide is an interesting pharmacophore with anticancer and immunomodulatory activities and hence has the potential for being developed as a cancer therapeutic agent.

  14. Target specific delivery of anticancer drug in silk fibroin based 3D distribution model of bone-breast cancer cells.

    PubMed

    Subia, Bano; Dey, Tuli; Sharma, Shaily; Kundu, Subhas C

    2015-02-04

    To avoid the indiscriminating action of anticancer drugs, the cancer cell specific targeting of drug molecule becomes a preferred choice for the treatment. The successful screening of the drug molecules in 2D culture system requires further validation. The failure of target specific drug in animal model raises the issue of creating a platform in between the in vitro (2D) and in vivo animal testing. The metastatic breast cancer cells migrate and settle at different sites such as bone tissue. This work evaluates the in vitro 3D model of the breast cancer and bone cells to understand the cellular interactions in the presence of a targeted anticancer drug delivery system. The silk fibroin based cytocompatible 3D scaffold is used as in vitro 3D distribution model. Human breast adenocarcinoma and osteoblast like cells are cocultured to evaluate the efficiency of doxorubicin loaded folic acid conjugated silk fibroin nanoparticle as drug delivery system. Decreasing population of the cancer cells, which lower the levels of vascular endothelial growth factors, glucose consumption, and lactate production are observed in the drug treated coculture constructs. The drug treated constructs do not show any major impact on bone mineralization. The diminished expression of osteogenic markers such as osteocalcein and alkaline phosphatase are recorded. The result indicates that this type of silk based 3D in vitro coculture model may be utilized as a bridge between the traditional 2D and animal model system to evaluate the new drug molecule (s) or to reassay the known drug molecules or to develop target specific drug in cancer research.

  15. Facile synthesis and biological evaluation of novel symmetrical biphenyls as antitumor agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Chen; Hu, Zhigang; Wang, Sicen; He, Langchong

    2012-03-01

    As a continuation to our previous work in developing anticancer agents, eighteen symmetrical biphenyl derivatives structurally related to taspine were synthesized and evaluated in vitro and in vivo. All the compounds were prepared with varied substitutions in the phenyl ring of aniline moiety. The cytotoxicity and anticancer activity of biphenyls was evaluated against various human tumor and normal cell line. Antiproliferative assays indicated that some of them exhibited potent anticancer activity. The potent antiproliferative activity of these compounds against ECV304 suggested that these biphenyls could be served as antiangiogenic agents. The highly active compound (2) also exhibited potent growth inhibition against cancer cell lines in vivo. Our findings demonstrated that these symmetrical biphenyl derivatives would be a promising candidate as novel anticancer agents.

  16. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams

    PubMed Central

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-01-01

    Purpose In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. Experimental Design A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Results Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam—β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Conclusions Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro. PMID:28562328

  17. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashkova, Elena V.; May, Shannon M.; Barry, Michael A., E-mail: mab@mayo.ed

    2009-11-25

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereasmore » Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.« less

  18. Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry.

    PubMed

    Wang, F; Jiao, P; Qi, M; Frezza, M; Dou, Q P; Yan, B

    2010-01-01

    Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn "cancer-promoting" copper into anti-cancer agents.

  19. Possible Anticancer Mechanisms of Some Costus speciosus Active Ingredients Concerning Drug Discovery.

    PubMed

    El-Far, Ali H; Badria, Faried A; Shaheen, Hazem M

    2016-01-01

    Costus speciosus is native to South East Asia, especially found in India, Srilanka, Indonesia and Malaysia. C. speciosus have numerous therapeutic potentials against a wide variety of complains. The therapeutic properties of C. speciosus are attributed to the presence of various ingredients such as alkaloids, flavonoids, glycosides, phenols, saponins, sterols and sesquiterpenes. This review presented the past, present, and the future status of C. speciosus active ingredients to propose a future use as a potential anticancer agent. All possible up-regulation of cellular apoptotic molecules as p53, p21, p27, caspases, reactive oxygen species (ROS) generation and others attribute to the anticancer activity of C. speciosus along the down-regulation of anti-apoptotic agents such as Akt, Bcl2, NFKB, STAT3, JAK, MMPs, actin, surviving and vimentin. Eventually, we recommend further investigation of different C. speciosus extracts, using some active ingredients and evaluate the anticancer effect of these chemicals against different cancers.

  20. Marine Fungi: A Source of Potential Anticancer Compounds

    PubMed Central

    Deshmukh, Sunil K.; Prakash, Ved; Ranjan, Nihar

    2018-01-01

    Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines. PMID:29354097

  1. Synthesis of ent-BE-43547A1 reveals a potent hypoxia-selective anticancer agent and uncovers the biosynthetic origin of the APD-CLD natural products.

    PubMed

    Villadsen, Nikolaj L; Jacobsen, Kristian M; Keiding, Ulrik B; Weibel, Esben T; Christiansen, Bjørn; Vosegaard, Thomas; Bjerring, Morten; Jensen, Frank; Johannsen, Mogens; Tørring, Thomas; Poulsen, Thomas B

    2017-03-01

    Tumour hypoxia is speculated to be a key driver of therapeutic resistance and metastatic dissemination. Consequently, the discovery of new potent agents that selectively target the hypoxic cell population may reveal new and untapped antitumour mechanisms. Here we demonstrate that the BE-43547 subclass of the APD-CLD (amidopentadienoate-containing cyclolipodepsipeptides) natural products possesses highly hypoxia-selective growth-inhibitory activity against pancreatic cancer cells. To enable this discovery, we have developed the first synthesis of the BE-43547-macrocyclic scaffold in 16 steps (longest linear sequence), which also allowed access to the full panel of relative stereoisomers and ultimately to the assignment of stereochemical configuration. Discrepancies between the spectroscopic signatures of the synthetic compounds with that originally reported for the BE-43547 members stimulated us to re-isolate the natural product from a BE-43547-producing microorganism during which we elucidated the biosynthetic gene clusters for the BE-43547 family as well as for all other known APD-CLDs. Our studies underline the exciting possibilities for the further development of the anticancer activities of these natural products.

  2. Synthesis of ent-BE-43547A1 reveals a potent hypoxia-selective anticancer agent and uncovers the biosynthetic origin of the APD-CLD natural products

    NASA Astrophysics Data System (ADS)

    Villadsen, Nikolaj L.; Jacobsen, Kristian M.; Keiding, Ulrik B.; Weibel, Esben T.; Christiansen, Bjørn; Vosegaard, Thomas; Bjerring, Morten; Jensen, Frank; Johannsen, Mogens; Tørring, Thomas; Poulsen, Thomas B.

    2017-03-01

    Tumour hypoxia is speculated to be a key driver of therapeutic resistance and metastatic dissemination. Consequently, the discovery of new potent agents that selectively target the hypoxic cell population may reveal new and untapped antitumour mechanisms. Here we demonstrate that the BE-43547 subclass of the APD-CLD (amidopentadienoate-containing cyclolipodepsipeptides) natural products possesses highly hypoxia-selective growth-inhibitory activity against pancreatic cancer cells. To enable this discovery, we have developed the first synthesis of the BE-43547-macrocyclic scaffold in 16 steps (longest linear sequence), which also allowed access to the full panel of relative stereoisomers and ultimately to the assignment of stereochemical configuration. Discrepancies between the spectroscopic signatures of the synthetic compounds with that originally reported for the BE-43547 members stimulated us to re-isolate the natural product from a BE-43547-producing microorganism during which we elucidated the biosynthetic gene clusters for the BE-43547 family as well as for all other known APD-CLDs. Our studies underline the exciting possibilities for the further development of the anticancer activities of these natural products.

  3. Lead Phytochemicals for Anticancer Drug Development

    PubMed Central

    Singh, Sukhdev; Sharma, Bhupender; Kanwar, Shamsher S.; Kumar, Ashok

    2016-01-01

    Cancer is a serious concern at present. A large number of patients die each year due to cancer illnesses in spite of several interventions available. Development of an effective and side effects lacking anticancer therapy is the trending research direction in healthcare pharmacy. Chemical entities present in plants proved to be very potential in this regard. Bioactive phytochemicals are preferential as they pretend differentially on cancer cells only, without altering normal cells. Carcinogenesis is a complex process and includes multiple signaling events. Phytochemicals are pleiotropic in their function and target these events in multiple manners; hence they are most suitable candidate for anticancer drug development. Efforts are in progress to develop lead candidates from phytochemicals those can block or retard the growth of cancer without any side effect. Several phytochemicals manifest anticancer function in vitro and in vivo. This article deals with these lead phytomolecules with their action mechanisms on nuclear and cellular factors involved in carcinogenesis. Additionally, druggability parameters and clinical development of anticancer phytomolecules have also been discussed. PMID:27877185

  4. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging

    PubMed Central

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-01-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane–modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. PMID:26874280

  5. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging.

    PubMed

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-04-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Synthesis and evaluation of multi-wall carbon nanotube-paclitaxel complex as an anti-cancer agent.

    PubMed

    Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed

    2016-01-01

    The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport.

  7. Pro-Apoptotic and Anti-Cancer Properties of Diosgenin: A Comprehensive and Critical Review.

    PubMed

    Sethi, Gautam; Shanmugam, Muthu K; Warrier, Sudha; Merarchi, Myriam; Arfuso, Frank; Kumar, Alan Prem; Bishayee, Anupam

    2018-05-19

    Novel and alternative options are being adopted to combat the initiation and progression of human cancers. One of the approaches is the use of molecules isolated from traditional medicinal herbs, edible dietary plants and seeds that play a pivotal role in the prevention/treatment of cancer, either alone or in combination with existing chemotherapeutic agents. Compounds that modulate these oncogenic processes are potential candidates for cancer therapy and may eventually make it to clinical applications. Diosgenin is a naturally occurring steroidal sapogenin and is one of the major bioactive compounds found in dietary fenugreek ( Trigonella foenum-graecum ) seeds. In addition to being a lactation aid, diosgenin has been shown to be hypocholesterolemic, gastro- and hepato-protective, anti-oxidant, anti-inflammatory, anti-diabetic, and anti-cancer. Diosgenin has a unique structural similarity to estrogen. Several preclinical studies have reported on the pro-apoptotic and anti-cancer properties of diosgenin against a variety of cancers, both in in vitro and in vivo. Diosgenin has also been reported to reverse multi-drug resistance in cancer cells and sensitize cancer cells to standard chemotherapy. Remarkably, diosgenin has also been reported to be used by pharmaceutical companies to synthesize steroidal drugs. Several novel diosgenin analogs and nano-formulations have been synthesized with improved anti-cancer efficacy and pharmacokinetic profile. In this review we discuss in detail the multifaceted anti-cancer properties of diosgenin that have found application in pharmaceutical, functional food, and cosmetic industries; and the various intracellular molecular targets modulated by diosgenin that abrogate the oncogenic process.

  8. Destabilization of the MutSα’s protein-protein interface due to binding to the DNA adduct induced by anticancer agent Carboplatin via molecular dynamics simulations

    PubMed Central

    Negureanu, Lacramioara; Salsbury, Freddie R

    2013-01-01

    DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα’s surveillance for DNA errors would possible be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations. PMID:24061854

  9. APCCdc20 Suppresses Apoptosis through Targeting Bim for Ubiquitination and Destruction

    PubMed Central

    Wan, Lixin; Tan, Mingjia; Yang, Jie; Inuzuka, Hiroyuki; Dai, Xiangpeng; Wu, Tao; Liu, Jia; Shaik, Shavali; Chen, Guoan; Deng, Jing; Malumbres, Marcos; Letai, Anthony; Kirschner, Marc W.; Sun, Yi; Wei, Wenyi

    2014-01-01

    SUMMARY APCCdc20 plays pivotal roles in governing mitotic progression. By suppressing APCCdc20, anti-mitotic agents activate the spindle-assembly-checkpoint (SAC), and induce apoptosis after prolonged-treatment, while depletion of endogenous Cdc20 suppresses in vivo tumorigenesis in part by triggering mitotic arrest and subsequent apoptosis. However, the molecular mechanism(s) underlying apoptosis induced by Cdc20 abrogation remains poorly understood. Here we report that the BH3-only pro-apoptotic protein Bim is an APCCdc20 target, as such depletion of Cdc20 sensitizes cells to apoptotic stimuli. Strikingly, Cdc20 and multiple APC-core components were identified in an siRNA screen that upon knockdown sensitizes otherwise resistant cancer cells to chemo-radiation therapies in a Bim-dependent manner. Consistently, human Adult-T-cell-Leukemia (ATL) cells that acquire elevated APCCdc20 activity via expressing the Tax-viral-oncoprotein, exhibit reduced Bim levels and resistance to anti-cancer agents. These results reveal an important role for APCCdc20 in governing apoptosis, strengthening the rationale for developing specific Cdc20 inhibitors as effective anti-cancer agents. PMID:24871945

  10. Molecular docking and dynamic simulation studies evidenced plausible immunotherapeutic anticancer property by Withaferin A targeting indoleamine 2,3-dioxygenase.

    PubMed

    Reddy, S V G; Reddy, K Thammi; Kumari, V Valli; Basha, Syed Hussain

    2015-01-01

    Indoleamine 2,3-dioxygenase (IDO) is emerging as an important new therapeutic drug target for the treatment of cancer characterized by pathological immune suppression. IDO catalyzes the rate-limiting step of tryptophan degradation along the kynurenine pathway. Reduction in local tryptophan concentration and the production of immunomodulatory tryptophan metabolites contribute to the immunosuppressive effects of IDO. Presence of IDO on dentritic cells in tumor-draining lymph nodes leading to the activation of T cells toward forming immunosuppressive microenvironment for the survival of tumor cells has confirmed the importance of IDO as a promising novel anticancer immunotherapy drug target. On the other hand, Withaferin A (WA) - active constituent of Withania Somnifera ayurvedic herb has shown to be having a wide range of targeted anticancer properties. In the present study conducted here is an attempt to explore the potential of WA in attenuating IDO for immunotherapeutic tumor arresting activity and to elucidate the underlying mode of action in a computational approach. Our docking and molecular dynamic simulation results predict high binding affinity of the ligand to the receptor with up to -11.51 kcal/mol of energy and 3.63 nM of IC50 value. Further, de novo molecular dynamic simulations predicted stable ligand interactions with critically important residues SER167; ARG231; LYS377, and heme moiety involved in IDO's activity. Conclusively, our results strongly suggest WA as a valuable small ligand molecule with strong binding affinity toward IDO.

  11. Synthesis, antitubercular and anticancer activities of substituted furyl-quinazolin-3(4H)-ones.

    PubMed

    Raghavendra, Nulgulmnalli M; Thampi, Parameshwaran; Gurubasavarajaswamy, Purvarga M; Sriram, Dharmarajan

    2007-12-01

    Some novel substituted-3-{[(1E)-(substituted-2-furyl)-methylene]amino}quinazolin-4(3H)-one (5, 6, 7) a-f were synthesized by a multi-step process. These synthesized compounds are characterized by various spectroscopic techniques and evaluated for their antitubercular and anticancer activities. Biological activity indicated that some of the title compounds are potent antitubercular and anticancer agents.

  12. Curcumin AntiCancer Studies in Pancreatic Cancer.

    PubMed

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-07-16

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC.

  13. Curcumin AntiCancer Studies in Pancreatic Cancer

    PubMed Central

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-01-01

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC. PMID:27438851

  14. Hybrid ligand-alkylating agents targeting telomeric G-quadruplex structures.

    PubMed

    Doria, Filippo; Nadai, Matteo; Folini, Marco; Di Antonio, Marco; Germani, Luca; Percivalle, Claudia; Sissi, Claudia; Zaffaroni, Nadia; Alcaro, Stefano; Artese, Anna; Richter, Sara N; Freccero, Mauro

    2012-04-14

    The synthesis, physico-chemical properties and biological effects of a new class of naphthalene diimides (NDIs) capable of reversibly binding telomeric DNA and alkylate it through an electrophilic quinone methide moiety (QM), are reported. FRET and circular dichroism assays showed a marked stabilization and selectivity towards telomeric G4 DNA folded in a hybrid topology. NDI-QMs' alkylating properties revealed a good reactivity on single nucleosides and selectivity towards telomeric G4. A selected NDI was able to significantly impair the growth of melanoma cells by causing telomere dysfunction and down-regulation of telomerase expression. These findings points to our hybrid ligand-alkylating NDIs as possible tools for the development of novel targeted anticancer therapies. This journal is © The Royal Society of Chemistry 2012

  15. First report on the pharmacokinetic profile of nimbolide, a novel anticancer agent in oral and intravenous administrated rats by LC/MS method.

    PubMed

    Baira, Shandilya Mahamuni; Khurana, Amit; Somagoni, Jaganmohan; Srinivas, R; Godugu, Chandraiah; Talluri, M V N Kumar

    2018-06-02

    Nimbolide is a novel, natural compound with promising potential as a drug candidate for anticancer activity. It is isolated from the Indian traditional medicinal plant Azadirachta indica popularly known as neem. The present study was undertaken to explore the oral bioavailability and pharmacokinetic characteristics of nimbolide in rats using the LC/QTOF/MS method. A simple protein precipitation method using acetonitrile was employed for extracting nimbolide from rat plasma. The chromatographic separation of nimbolide and the internal standard (regorafenib) was attained on an Aquity BEH C18 column (100 × 2.1 mm, 2.7 μm), using ACN and 0.1% of formic acid in water as mobile phase components in a gradient elution mode at a flow rate of 0.45 mL/min over a short run time of 4 min. A mass detection was carried out using target ions of [M + H] + at m/z 467.2074 for nimbolide and m/z 483.0847 for the internal standard. The LC/MS method was validated and all the parameters were found well within the specified limits. The calibration curve was constructed in the range of 1-1000 ng/mL. The method shows good accuracy (91.66-97.12%) and precision (intra 2.21-6.92% CV and inter-day 2.56-4.62% CV). This developed LC/MS method was effectively applied to the pharmacokinetic study of nimbolide upon oral and intravenous administration in rats. In concordance with its physicochemical properties and high lipophilicity, we found that it shows poor oral absorption at different doses (10, 30 and 50 mg/kg). As expected, higher plasma levels were observed upon intravenous (10 mg/kg) administration. This method can be extended for evaluation of drug interaction and drug metabolism in rats as well as in humans. Moreover, our rapid and sensitive method may cater the need to accelerate the preclinical formulation development and lead optimization for future drug development of this potent anticancer agent. Further, our oral bioavailability studies demonstrated that

  16. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach.

    PubMed

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom-liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when

  17. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach

    PubMed Central

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom–liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when

  18. Predicting the size-dependent tissue accumulation of agents released from vascular targeted nanoconstructs

    NASA Astrophysics Data System (ADS)

    de Tullio, Marco D.; Singh, Jaykrishna; Pascazio, Giuseppe; Decuzzi, Paolo

    2014-03-01

    Vascular targeted nanoparticles have been developed for the delivery of therapeutic and imaging agents in cancer and cardiovascular diseases. However, at authors' knowledge, a comprehensive systematic analysis on their delivery efficiency is still missing. Here, a computational model is developed to predict the vessel wall accumulation of agents released from vascular targeted nanoconstructs. The transport problem for the released agent is solved using a finite volume scheme in terms of three governing parameters: the local wall shear rate , ranging from to ; the wall filtration velocity , varying from to ; and the agent diffusion coefficient , ranging from to . It is shown that the percentage of released agent adsorbing on the vessel walls in the vicinity of the vascular targeted nanoconstructs reduces with an increase in shear rate , and with a decrease in filtration velocity and agent diffusivity . In particular, in tumor microvessels, characterized by lower shear rates () and higher filtration velocities (), an agent with a diffusivity (i.e. a 50 nm particle) is predicted to deposit on the vessel wall up to of the total released dose. Differently, drug molecules, exhibiting a smaller size and much higher diffusion coefficient (), are predicted to accumulate up to . In healthy vessels, characterized by higher and lower , the largest majority of the released agent is redistributed directly in the circulation. These data suggest that drug molecules and small nanoparticles only can be efficiently released from vascular targeted nanoconstructs towards the diseased vessel walls and tissue.

  19. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand?

    PubMed Central

    Baig, S; Seevasant, I; Mohamad, J; Mukheem, A; Huri, H Z; Kamarul, T

    2016-01-01

    Underneath the intricacy of every cancer lies mysterious events that impel the tumour cell and its posterity into abnormal growth and tissue invasion. Oncogenic mutations disturb the regulatory circuits responsible for the governance of versatile cellular functions, permitting tumour cells to endure deregulated proliferation, resist to proapoptotic insults, invade and erode normal tissues and above all escape apoptosis. This disruption of apoptosis has been highly implicated in various malignancies and has been exploited as an anticancer strategy. Owing to the fact that apoptosis causes minimal inflammation and damage to the tissue, apoptotic cell death-based therapy has been the centre of attraction for the development of anticancer drugs. Increased understanding of the molecular pathways underlying apoptosis has enabled scientists to establish unique approaches targeting apoptosis pathways in cancer therapeutics. In this review, we reconnoitre the two major pathways (intrinsic and extrinsic) targeted cancer therapeutics, steering toward chief modulators of these pathways, such as B-cell lymphoma 2 protein family members (pro- and antiapoptotic), inhibitor of apoptosis proteins, and the foremost thespian of extrinsic pathway regulator, tumour necrosis factor-related apoptosis-inducing agent. Together, we also will have a look from clinical perspective to address the agents (drugs) and therapeutic strategies adopted to target these specific proteins/pathways that have entered clinical trials. PMID:26775709

  20. Interaction of ABC multidrug transporters with anticancer protein kinase inhibitors: substrates and/or inhibitors?

    PubMed

    Hegedus, Csilla; Ozvegy-Laczka, Csilla; Szakács, Gergely; Sarkadi, Balázs

    2009-05-01

    Protein kinase inhibitors (PKI) are becoming key agents in modern cancer chemotherapy, and combination of PKIs with classical chemotherapeutic drugs may help to overcome currently untreatable metastatic cancers. Since chemotherapy resistance is a recurrent problem, mechanisms of resistance should be clarified in order to help further drug development. Here we suggest that in addition to PKI resistance based on altered target structures, the active removal of these therapeutic agents by the MDR-ABC transporters should also be considered as a major cause of clinical resistance. We discuss the occurring systemic and cellular mechanisms, which may hamper PKI efficiency, and document the role of selected MDR-ABC transporters in these phenomena through their interactions with these anticancer agents. Moreover, we suggest that PKI interactions with ABC transporters may modulate overall drug metabolism, including the fate of diverse, chemically or target-wise unrelated drugs. These effects are based on multiple forms of MDR-ABC transporter interaction with PKIs, as these compounds may be both substrates and/or inhibitors of an ABC transporter. We propose that these interactions should be carefully considered in clinical application, and a combined MDR-ABC transporter and PKI effect may bring a major advantage in future drug development.

  1. Synthesis and evaluation of a class of 1,4,7-triazacyclononane derivatives as iron depletion antitumor agents.

    PubMed

    Wang, Sheng; Gai, Yongkang; Zhang, Shasha; Ke, Lei; Ma, Xiang; Xiang, Guangya

    2018-01-15

    Iron depletion has been confirmed as an efficient strategy for cancer treatment. In the current study, a series of 1,4,7-triazacyclononane derivatives HE-NO2A, HP-NO2A and NE2P2A, as well as the bifunctional chelators p-NO 2 -PhPr-NE3TA and p-NH 2 -PhPr-NE3TA were synthesized and evaluated as iron-depleting agents for the potential anti-cancer therapy against human hepatocellular carcinoma. The cytotoxicity of these chelators was measured using hepatocellular cancer cells and compared with the clinically available iron depletion agent DFO and the universal metal chelator DTPA. All these 1,4,7-triazacyclononane-based chelators exhibited much stronger antiproliferative activity than DFO and DTPA. Among them, chelators with phenylpropyl side chains, represented by p-NO 2 -PhPr-NE3TA and p-NH 2 -PhPr-NE3TA, displayed the highest antiproliferative activity against HepG2 cells. Hence, these compounds are attractive candidates for the advanced study as iron depletion agents for the potential anti-cancer therapy, and could be further in conjugation with a targeting moiety for the future development in targeted iron depletion therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Synthesis and evaluation of thiazolidinone-pyrazole conjugates as anticancer and antimicrobial agents.

    PubMed

    Bhat, Mahima; Poojary, Boja; Kalal, Bhuvanesh Sukhlal; Gurubasavaraja Swamy, Purawarga Matada; Kabilan, Senthamaraikannan; Kumar, Vasantha; Shruthi, Nooji; Alias Anand, Selvam Athavan; Pai, Vinitha Ramanath

    2018-05-01

    To synthesize a series of new thiazolidinone-pyrazole hybrids (5a-o) and assess their anticancer (in vitro and in vivo) and antimicrobial activities. The compounds 5h (against Ehrlich ascites carcinoma cells), 5e and 5i (against the human breast cancer [MDA-MB231] cell line) exhibited potent anticancer activity. All the compounds except 5g and 5e found to be less toxic for the human dermal fibroblast cells. The effective interactions of the compounds in silico with MDM2 exemplified their inhibitory potency. The derivatives also showed moderate antimicrobial activity. The halogen atoms on various positions of the N-arylamino ring played an advantageous role in elevating the potency of the molecules. Thus, these conjugates could be used as a lead for further optimization to achieve promising therapeutics.

  3. Bone marrow-derived CD13+ cells sustain tumor progression: A potential non-malignant target for anticancer therapy.

    PubMed

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b + CD13 + myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b + CD13 + myeloid cells could become a non-malignant target for the development of novel anticancer regimens.

  4. PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.

    PubMed

    Wu, Huizi; Huang, Jiaguo

    2016-01-01

    Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on

  5. Inosine 5'-Monophosphate Dehydrogenase (IMPDH) as a Potential Target for the Development of a New Generation of Antiprotozoan Agents.

    PubMed

    Fotie, Jean

    2018-01-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) is a metabolic enzyme that catalyzes the critical step in guanine nucleotide biosynthesis, and thus is at the center of cell growth and proliferation. However, although this enzyme has been exploited as potential target for the development of immunosuppressive, anticancer, and antiviral agents, the functional importance of IMPDH as a promising antiprotozoan drug target is still in its infancy mainly because of the availability of alternative nucleotides metabolic pathways in many of these parasites. This situation suggests that the inhibition of IMPDH might have little to no effect on the survival of protozoan parasites. As a result, no IMPDH inhibitor is currently commercially available or has advanced to clinical trials as a potential antiprotozoan drug. Nevertheless, recent advances toward the development of selective inhibitors of the IMPDH enzyme from Crystosporidium parvum as potential drug candidates against cryptosporidiosis should revive further investigations of this drug target in other protozoa parasites. The current review examines the chemical structures and biological activities of reported protozoan's IMPDH inhibitors. SciFinder was used to broadly pinpoint reports published on the topic in the chemical literature, with no specific time frame. Opportunities and challenges towards the development of inhibitors of IMPDH enzymes from protozoa parasites as potential chemotherapies toward the respective diseases they cause are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Impact of systemic targeted agents on the clinical outcomes of patients with brain metastases

    PubMed Central

    Johnson, Adam G.; Ruiz, Jimmy; Hughes, Ryan; Page, Brandi R.; Isom, Scott; Lucas, John T.; McTyre, Emory R.; Houseknecht, Kristin W.; Ayala-Peacock, Diandra N.; Bourland, Daniel J.; Hinson, William H.; Laxton, Adrian W.; Tatter, Stephen B.; Debinski, Waldemar; Watabe, Kounosuke; Chan, Michael D.

    2015-01-01

    Background To determine the clinical benefits of systemic targeted agents across multiple histologies after stereotactic radiosurgery (SRS) for brain metastases. Methods Between 2000 and 2013, 737 patients underwent upfront SRS for brain metastases. Patients were stratified by whether or not they received targeted agents with SRS. 167 (23%) received targeted agents compared to 570 (77%) that received other available treatment options. Time to event data were summarized using Kaplan-Meier plots, and the log rank test was used to determine statistical differences between groups. Results Patients who received SRS with targeted agents vs those that did not had improved overall survival (65% vs. 30% at 12 months, p < 0.0001), improved freedom from local failure (94% vs 90% at 12 months, p = 0.06), improved distant failure-free survival (32% vs. 18% at 12 months, p = 0.0001) and improved freedom from whole brain radiation (88% vs. 77% at 12 months, p = 0.03). Improvement in freedom from local failure was driven by improvements seen in breast cancer (100% vs 92% at 12 months, p < 0.01), and renal cell cancer (100% vs 88%, p = 0.04). Multivariate analysis revealed that use of targeted agents improved all cause mortality (HR = 0.6, p < 0.0001). Conclusions Targeted agent use with SRS appears to improve survival and intracranial outcomes. PMID:26087184

  7. Clearing the Fog of Anticancer Patents from 1993–2013: Through an In-Depth Technology Landscape & Target Analysis from Pioneer Research Institutes and Universities Worldwide

    PubMed Central

    Dara, Ajay; Sangamwar, Abhay T.

    2014-01-01

    Background In a search for an effective anticancer therapy the R&D units from leading universities and institutes reveal numerous technologies in the form of patent documents. The article addressed comparative anticancer patent landscape and technology assessment of Council of Scientific and Industrial Research (CSIR): India’s largest R&D organisation with top twenty international public funded universities and institutes from eight different countries. Methodology/Principal Findings The methodology include quantitative and qualitative assessment based on the bibliometric parameters and manual technology categorisation to understand the changing patent trends and recent novel technologies. The research finding analysed 25,254 patent documents from the year 1993 to 2013 and reported the insights of latest anticancer technologies and targets through categorisation studies at the level of drug discovery, development and treatment & diagnosis. The article has reported the technology correlation matrix of twelve secondary class technologies with 34 tertiary sub-class research area to identify the leading technologies and scope of future research through whitespaces analysis. In addition, the results have also addressed the target analysis, leading inventor, assignee, collaboration network, geographical distribution, patent trend analysis, citation maps and technology assessment with respect to international patent classification systems such as CPC, IPC and CPI codes. Conclusions/Significance The result suggested peptide technology as the dominating research area next to gene therapy, vaccine and medical preparation containing organic compounds. The Indian CSIR has ranked itself at seventh position among the top 20 universities. Globally, the anticancer research was focused in the area of genetics and immunology, whereas Indian CSIR reported more patents related to plant extract and organic preparation. The article provided a glimpse of two decade anticancer scenario

  8. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia.

    PubMed

    Sasikala, Arathyram Ramachandra Kurup; GhavamiNejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-11-21

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.

  9. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink

    PubMed Central

    Wilson, Maxwell Z.; Wang, Rurun; Gitai, Zemer; Seyedsayamdost, Mohammad R.

    2016-01-01

    While we have come to appreciate the architectural complexity of microbially synthesized secondary metabolites, far less attention has been paid to linking their structural features with possible modes of action. This is certainly the case with tropodithietic acid (TDA), a broad-spectrum antibiotic generated by marine bacteria that engage in dynamic symbioses with microscopic algae. TDA promotes algal health by killing unwanted marine pathogens; however, its mode of action (MoA) and significance for the survival of an algal–bacterial miniecosystem remains unknown. Using cytological profiling, we herein determine the MoA of TDA and surprisingly find that it acts by a mechanism similar to polyether antibiotics, which are structurally highly divergent. We show that like polyether drugs, TDA collapses the proton motive force by a proton antiport mechanism, in which extracellular protons are exchanged for cytoplasmic cations. The α-carboxy-tropone substructure is ideal for this purpose as the proton can be carried on the carboxyl group, whereas the basicity of the tropylium ion facilitates cation export. Based on similarities to polyether anticancer agents we have further examined TDA’s cytotoxicity and find it to exhibit potent, broad-spectrum anticancer activities. These results highlight the power of MoA-profiling technologies in repurposing old drugs for new targets. In addition, we identify an operon that confers TDA resistance to the producing marine bacteria. Bioinformatic and biochemical analyses of these genes lead to a previously unknown metabolic link between TDA/acid resistance and the γ-glutamyl cycle. The implications of this resistance mechanism in the context of the algal-bacterial symbiosis are discussed. PMID:26802120

  10. Novel platinum compounds and nanoparticles as anticancer agents.

    PubMed

    Sarkar, Arindam

    2018-01-01

    Since the approval of cisplatin in 1979, platinum-based drugs have been regularly used in cancer chemotherapy as a first-line treatment or with the combination of other nonplatinum drugs. Subsequent approval of second- and third-generation drugs such as carboplatin and oxaliplatin respectively, has widened the therapeutic achievement of platinum compounds. There are few other platinum drugs approved recently and many other new drugs as well as the formulations of the old ones are going through clinical trials now. Considering the astonishing achievement of these drugs, analyses on the overall scenario of the patent applications on platinum compounds have become the priority to the scientific community. This review summarizes the published patent applications on the novel platinum anticancer compounds from 2012 to 2017 (August).

  11. Synergistic Anti-Cancer Effect of Phenformin and Oxamate

    PubMed Central

    Miskimins, W. Keith; Ahn, Hyun Joo; Kim, Ji Yeon; Ryu, Sun; Jung, Yuh-Seog; Choi, Joon Young

    2014-01-01

    Phenformin (phenethylbiguanide; an anti-diabetic agent) plus oxamate [lactate dehydrogenase (LDH) inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS). Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and 18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively. PMID:24465604

  12. Synergistic anti-cancer effect of phenformin and oxamate.

    PubMed

    Miskimins, W Keith; Ahn, Hyun Joo; Kim, Ji Yeon; Ryu, Sun; Jung, Yuh-Seog; Choi, Joon Young

    2014-01-01

    Phenformin (phenethylbiguanide; an anti-diabetic agent) plus oxamate [lactate dehydrogenase (LDH) inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS). Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and (18)F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively.

  13. Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent.

    PubMed

    Arjunan, Nithya; Kumari, Henry Linda Jeeva; Singaravelu, Chandra Mohan; Kandasamy, Ruckmani; Kandasamy, Jothivenkatachalam

    2016-11-01

    Chitosan (CS), a seaweed polysaccharide is a natural macromolecule which is widely being used in medical applications because of its distinctive antimicrobial and anticancer properties. Silver, a noble metal, is also receiving wide attention for its potential usage in antimicrobial and anticancer therapeutics. In this study, an effective way of reduction of silver using chitosan at varying reaction temperatures and an optimised concentration of silver were performed. The optical, structural, spectral, morphological and elemental studies of the biosynthesized chitosan-silver (CS-Ag) nanocomposites were characterized by several techniques. The synthesized CS-Ag nanocomposites exhibit particle size around 20nm and were further exploited for potent biological applications in nanomedicine due to their nanometric sizes and biocompatibility of chitosan. The antimicrobial activity of the biosynthesized CS-Ag nanocomposites exhibits zone of inhibition ranged between 09.666±0.577 and 19.000±1.000 (mm). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were from 8 to 128μgmL -1 and 16 to 256μgmL -1 respectively, with the highest antimicrobial activity shown against Gram-negative Salmonella sp. The synergistic effect of chitosan and silver as a composite in nanometric size revealed significant IC 50 value of 29.35μgmL -1 and a maximum of 95.56% inhibition at 100μgmL -1 against A549 lung cancer cell line, resulting in potent anticancer effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Novel agents that downregulate EGFR, HER2, and HER3 in parallel

    PubMed Central

    Ferreira, Renan Barroso; Law, Mary Elizabeth; Jahn, Stephan Christopher; Davis, Bradley John; Heldermon, Coy Don; Reinhard, Mary; Castellano, Ronald Keith; Law, Brian Keith

    2015-01-01

    EGFR, HER2, and HER3 contribute to the initiation and progression of human cancers, and are therapeutic targets for monoclonal antibodies and tyrosine kinase inhibitors. An important source of resistance to these agents arises from functional redundancy among EGFR, HER2, and HER3. EGFR family members contain conserved extracellular structures that are stabilized by disulfide bonds. Compounds that disrupt extracellular disulfide bonds could inactivate EGFR, HER2, and HER3 in unison. Here we describe the identification of compounds that kill breast cancer cells that overexpress EGFR or HER2. Cell death parallels downregulation of EGFR, HER2, and HER3. These compounds disrupt disulfide bonds and are termed Disulfide Bond Disrupting Agents (DDAs). DDA RBF3 exhibits anticancer efficacy in vivo at 40 mg/kg without evidence of toxicity. DDAs may complement existing EGFR-, HER2-, and HER3-targeted agents that function through alternate mechanisms of action, and combination regimens with these existing drugs may overcome therapeutic resistance. PMID:25865227

  15. Synthesis and preliminary biological evaluation of novel taspine derivatives as anticancer agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Shan, Yuanyuan; Li, Na; Ma, Wei; He, Langchong

    2010-07-01

    Antiangiogenic therapy might represent a new promising anticancer therapeutic strategy. Taspine can significantly inhibit cell proliferation of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor-165, which is crucial for angiogenesis. In this study, a series of novel taspine derivatives were synthesized and screened for in vitro anticancer and antiangiogenesis activities. The majority of the derivatives demonstrated a moderate degree of cytotoxicity against human cancer cell lines. One of them (14) exhibited much better antiproliferative activity against CACO-2 (IC(50)=52.5microM) and ECV304 (IC(50)=2.67microM) cells than taspine did. Some of them were also effective in antiproliferative assays against HUVECs. The in silico estimate of solubility of title compounds were higher than that of taspine. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  16. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia

    NASA Astrophysics Data System (ADS)

    Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-10-01

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic

  17. Targets of curcumin

    PubMed Central

    Zhou, Hongyu; Beevers, Christopher S.; Huang, Shile

    2010-01-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-κB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer’s disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here. PMID:20955148

  18. Recent Advances in Anticancer Activities and Drug Delivery Systems of Tannins.

    PubMed

    Cai, Yuee; Zhang, Jinming; Chen, Nelson G; Shi, Zhi; Qiu, Jiange; He, Chengwei; Chen, Meiwan

    2017-07-01

    Tannins, polyphenols in medicinal plants, have been divided into two groups of hydrolysable and condensed tannins, including gallotannins, ellagitannins, and (-)-epigallocatechin-3-gallate (EGCG). Potent anticancer activities have been observed in tannins (especially EGCG) with multiple mechanisms, such as apoptosis, cell cycle arrest, and inhibition of invasion and metastases. Furthermore, the combinational effects of tannins and anticancer drugs have been demonstrated in this review, including chemoprotective, chemosensitive, and antagonizing effects accompanying with anticancer effect. However, the applications of tannins have been hindered due to their poor liposolubility, low bioavailability, off-taste, and shorter half-life time in human body, such as EGCG, gallic acid, and ellagic acid. To tackle these obstacles, novel drug delivery systems have been employed to deliver tannins with the aim of improving their applications, such as gelatin nanoparticles, micelles, nanogold, liposomes, and so on. In this review, the chemical characteristics, anticancer properties, and drug delivery systems of tannins were discussed with an attempt to provide a systemic reference to promote the development of tannins as anticancer agents. © 2016 Wiley Periodicals, Inc.

  19. Implications of protein- and Peptide-based nanoparticles as potential vehicles for anticancer drugs.

    PubMed

    Elzoghby, Ahmed O; Elgohary, Mayada M; Kamel, Nayra M

    2015-01-01

    Protein-based nanocarriers have gained considerable attention as colloidal carrier systems for the delivery of anticancer drugs. Protein nanocarriers possess various advantages including their low cytotoxicity, abundant renewable sources, high drug-binding capacity, and significant uptake into the targeted tumor cells. Moreover, the unique protein structure offers the possibility of site-specific drug conjugation and tumor targeting using various ligands modifying the surface of protein nanocarriers. In this chapter, we highlight the most important applications of protein nanoparticles (NPs) for the delivery of anticancer drugs. We examine the various techniques that have been utilized for the preparation of anticancer drug-loaded protein NPs. Finally, the current chapter also reviews the major outcomes of the in vitro and in vivo investigations of surface-modified tumor-targeted protein NPs. © 2015 Elsevier Inc. All rights reserved.

  20. Anti-cancer agents based on 4-(hetero)Ary1-1,2,5-oxadiazol-3-yl Amino derivatives and a method of making

    DOEpatents

    Gakh, Andrei A.; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A.; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V.

    2013-01-29

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. ##STR00001## In particular, the invention relates N-substituted derivatives of 4-(hetero)aryl-1,2,5-oxadiazol-3-yl amines having the structural Formula (I) and (II), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. Meaning of R1 and R2 in the Formula (I) and (II) are defined in claim 1. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  1. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies

    PubMed Central

    Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay

    2017-01-01

    Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents. PMID:28463978

  2. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies.

    PubMed

    Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay; Singh, Sukh Mahendra

    2017-01-01

    Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents.

  3. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy

    PubMed Central

    Dass, Crispin R; Choong, Peter FM

    2006-01-01

    Cationic (positively charged) liposomes have been tested in various gene therapy clinical trials for neoplastic and other diseases. They have demonstrated selectivity for tumour vascular endothelial cells raising hopes for both antiangiogenic and antivascular therapies. They are also capable of being selectively delivered to the lungs and liver when administered intravenously. These vesicles are being targeted to the tumour in various parts of the body by using advanced liposomal systems such as ligand-receptor and antibody-antigen combinations. At present, the transferrin receptor is commonly used for cancer-targeted drug delivery systems including cationic liposomes. This review looks at the growing utility of these vesicles for delivery of small molecule anticancer drugs. PMID:16792817

  4. Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery.

    PubMed

    Holden, Christopher A; Yuan, Quan; Yeudall, W Andrew; Lebman, Deborah A; Yang, Hu

    2010-02-02

    Tumors frequently contain hypoxic regions that result from a shortage of oxygen due to poorly organized tumor vasculature. Cancer cells in these areas are resistant to radiation- and chemotherapy, limiting the treatment efficacy. Macrophages have inherent hypoxia-targeting ability and hold great advantages for targeted delivery of anticancer therapeutics to cancer cells in hypoxic areas. However, most anticancer drugs cannot be directly loaded into macrophages because of their toxicity. In this work, we designed a novel drug delivery vehicle by hybridizing macrophages with nanoparticles through cell surface modification. Nanoparticles immobilized on the cell surface provide numerous new sites for anticancer drug loading, hence potentially minimizing the toxic effect of anticancer drugs on the viability and hypoxia-targeting ability of the macrophage vehicles. In particular, quantum dots and 5-(aminoacetamido) fluorescein-labeled polyamidoamine dendrimer G4.5, both of which were coated with amine-derivatized polyethylene glycol, were immobilized to the sodium periodate-treated surface of RAW264.7 macrophages through a transient Schiff base linkage. Further, a reducing agent, sodium cyanoborohydride, was applied to reduce Schiff bases to stable secondary amine linkages. The distribution of nanoparticles on the cell surface was confirmed by fluorescence imaging, and it was found to be dependent on the stability of the linkages coupling nanoparticles to the cell surface.

  5. Anticancer agent ABT-737 possesses anti-atopic dermatitis activity via blockade of caspase-1 in atopic dermatitis in vitro and in vivo models.

    PubMed

    Jeong, Hyun-Ja; Ryu, Ka-Jung; Kim, Hyung-Min

    2018-06-29

    Previous studies reported that depletion of Bcl-2 has a protective effect against allergic diseases. Furthermore, recently our study showed that anticancer drug has antiallergic inflammatory effect. An anticancer agent ABT-737 is an inhibitor of Bcl-2 and has an anti-inflammatory effect. However, the antiallergic inflammatory activity of ABT-737 is still unknown. Here, we aimed to explore the anti-atopic dermatitis (AD) activity and the mechanism of ABT-737 in AD models. HaCaT cells were used for in vitro experiments. To evaluate the effect of ABT-737 in vivo model, BalB/c mice were orally administered ABT-737 for 6 weeks in 2,4-dinitrofluorobenzene (DNFB)-induced AD-like murine model. Major assays were enzyme-linked immunosorbent assay, reverse transcription-PCR, caspase-1 assay, histamine assay, and H&E staining. ABT-737 significantly decreased thymic stromal lymphopoietin (TSLP) secretion and caspase-1 activity in activated HaCaT cells. In DNFB-induced AD mice, oral administration of ABT-737 alleviated clinical severity and scratching behavior. ABT-737 decreased levels of AD-related biomarkers including IgE, histamine, TSLP, and inflammatory cytokines. In addition, ABT significantly reduced caspase-1 activity in skin lesions of AD mice. ABT-737 elicited an anti-AD activity via suppression of caspase-1 activation in AD in vitro and in vivo models. Therefore, this study provides important information regarding the use of anticancer drugs for controlling allergic inflammatory diseases.

  6. Preparation of near-infrared-labeled targeted contrast agents for clinical translation

    NASA Astrophysics Data System (ADS)

    Olive, D. Michael

    2011-03-01

    Targeted fluorophore-labeled contrast agents are moving toward translation to human surgical use. To prepare for future clinical use, we examined the performance of potential ligands targeting the epidermal growth factor receptor, α5β3 integrins, and GLUT transporters for their suitability as directed contrast agents. Each agent was labeled with IRDye 800CW, and near-infrared dye with excitation/emission wavelengths of 789/805 nm, which we determined had favorable toxicity characteristics. The probe molecules examined consisted of Affibodies, nanobodies, peptides, and the sugar 2-deoxy-D-glucose. Each probe was tested for specific and non-specific binding in cell based assays. All probe types showed good performance in mouse models for detecting either spontaneous tumors or tumor xenografts in vivo. Each of the probes tested show promise for future human clinical studies.

  7. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  8. Trends in GPCR drug discovery: new agents, targets and indications.

    PubMed

    Hauser, Alexander S; Attwood, Misty M; Rask-Andersen, Mathias; Schiöth, Helgi B; Gloriam, David E

    2017-12-01

    G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.

  9. Boosting Natural Killer Cell-Based Immunotherapy with Anticancer Drugs: a Perspective.

    PubMed

    Cifaldi, Loredana; Locatelli, Franco; Marasco, Emiliano; Moretta, Lorenzo; Pistoia, Vito

    2017-12-01

    Natural killer (NK) cells efficiently recognize and kill tumor cells through several mechanisms including the expression of ligands for NK cell-activating receptors on target cells. Different clinical trials indicate that NK cell-based immunotherapy represents a promising antitumor treatment. However, tumors develop immune-evasion strategies, including downregulation of ligands for NK cell-activating receptors, that can negatively affect antitumor activity of NK cells, which either reside endogenously, or are adoptively transferred. Thus, restoration of the expression of NK cell-activating ligands on tumor cells represents a strategic therapeutic goal. As discussed here, various anticancer drugs can fulfill this task via different mechanisms. We envision that the combination of selected chemotherapeutic agents with NK cell adoptive transfer may represent a novel strategy for cancer immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Synthetic MUC1 Anticancer Vaccine Containing Mannose Ligands for Targeting Macrophages and Dendritic Cells.

    PubMed

    Glaffig, Markus; Stergiou, Natascha; Hartmann, Sebastian; Schmitt, Edgar; Kunz, Horst

    2018-01-08

    A MUC1 anticancer vaccine equipped with covalently linked divalent mannose ligands was found to improve the antigen uptake and presentation by targeting mannose-receptor-positive macrophages and dendritic cells. It induced much stronger specific IgG immune responses in mice than the non-mannosylated reference vaccine. Mannose coupling also led to increased numbers of macrophages, dendritic cells, and CD4 + T cells in the local lymph organs. Comparison of di- and tetravalent mannose ligands revealed an increased binding of the tetravalent version, suggesting that higher valency improves binding to the mannose receptor. The mannose-coupled vaccine and the non-mannosylated reference vaccine induced IgG antibodies that exhibited similar binding to human breast tumor cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chemical genetic profiling of the microtubule-targeting agent peloruside A in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wilmes, Anja; Hanna, Reem; Heathcott, Rosemary W; Northcote, Peter T; Atkinson, Paul H; Bellows, David S; Miller, John H

    2012-04-15

    Peloruside A, a microtubule-stabilising agent from a New Zealand marine sponge, inhibits mammalian cell division by a similar mechanism to that of the anticancer drug paclitaxel. Wild type budding yeast Saccharomyces cerevisiae (haploid strain BY4741) showed growth sensitivity to peloruside A with an IC(50) of 35μM. Sensitivity was increased in a mad2Δ (Mitotic Arrest Deficient 2) deletion mutant (IC(50)=19μM). Mad2 is a component of the spindle-assembly checkpoint complex that delays the onset of anaphase in cells with defects in mitotic spindle assembly. Haploid mad2Δ cells were much less sensitive to paclitaxel than to peloruside A, possibly because the peloruside binding site on yeast tubulin is more similar to mammalian tubulin than the taxoid site where paclitaxel binds. In order to obtain information on the primary and secondary targets of peloruside A in yeast, a microarray analysis of yeast heterozygous and homozygous deletion mutant sets was carried out. Haploinsufficiency profiling (HIP) failed to provide hits that could be validated, but homozygous profiling (HOP) generated twelve validated genes that interact with peloruside A in cells. Five of these were particularly significant: RTS1, SAC1, MAD1, MAD2, and LSM1. In addition to its known target tubulin, based on these microarray 'hits', peloruside A was seen to interact genetically with other cell proteins involved in the cell cycle, mitosis, RNA splicing, and membrane trafficking. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Osmium(VI) complexes as a new class of potential anti-cancer agents.

    PubMed

    Ni, Wen-Xiu; Man, Wai-Lun; Cheung, Myra Ting-Wai; Sun, Raymond Wai-Yin; Shu, Yuan-Lan; Lam, Yun-Wah; Che, Chi-Ming; Lau, Tai-Chu

    2011-02-21

    A nitridoosmium(VI) complex [Os(VI)(N)(sap)(OH(2))Cl] (H(2)sap = N-salicylidene-2-aminophenol) displays prominent in vitro and in vivo anti-cancer properties, induces S- and G2/M-phase arrest and forms a stable adduct with dianionic 5'-guanosine monophosphate.

  13. Targeting Brain Tumors with Nanomedicines: Overcoming Challenges of Blood Brain Barrier.

    PubMed

    Ningaraj, Nagendra S; Reddy, Polluru L; Khaitan, Divya

    2018-04-12

    This review elucidates ongoing research, which show improved delivery of anticancer drugs alone and/ or enclosed in carriers collectively called nanomedicines to cross the Blood brain barrier (BBB) / blood-brain tumor barrier (BTB) to kill tumor cells and impact patient survival. We highlighted various advances in understanding the mechanism of BTB function that impact on anticancer therapeutics delivery. We discussed latest breakthroughs in developing pharmaceutical strategies, including nanomedicines and delivering them across BTB for brain tumor management and treatment. We highlight various studies on regulation of BTB permeability regulation with respect to nanotech-based nanomedicines for targeted treatment of brain tumors. We have reviewed latest literature on development of specialized molecules and nanospheres for carrying pay load of anticancer agents to brain tumor cells across the BBB/ BTB and avoid drug efflux systems. We discuss identification and development of distinctive BTB biomarkers for targeted anti-cancer drug delivery to brain tumors. In addition, we discussed nanomedicines and multimeric molecular therapeutics that were encapsulated in nanospheres for treatment and monitoring of brain tumors. In this context, we highlight our research on calcium-activated potassium channels (KCa) and ATP-sensitive potassium channels (KATP) as portals of enhanced antineoplastic drugs delivery. This review might interest both academic and drug company scientists involved in drug delivery to brain tumors. We further seek to present evidence that BTB modulators can be clinically developed as combination drug or/ and as stand-alone anticancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects.

    PubMed

    Krukiewicz, Katarzyna; Zak, Jerzy K

    2016-05-01

    Since the majority of anticancer pharmacological agents affect not only cancer tissue but also normal cells, chemotherapy is usually accompanied with severe side effects. Regional chemotherapy, as the alternative version of conventional treatment, leads to the enhancement of the therapeutic efficiency of anticancer drugs and, simultaneously, reduction of toxic effects to healthy tissues. This paper provides an insight into different approaches of local delivery of chemotherapeutics, such as the injection of anticancer agents directly into tumor tissue, the use of injectable in situ forming drug carriers or injectable platforms in a form of implants. The wide range of biomaterials used as reservoirs of anticancer drugs is described, i.e. poly(ethylene glycol) and its copolymers, polyurethanes, poly(lactic acid) and its copolymers, poly(ɛ-caprolactone), polyanhydrides, chitosan, cellulose, cyclodextrins, silk, conducting polymers, modified titanium surfaces, calcium phosphate based biomaterials, silicone and silica implants, as well as carbon nanotubes and graphene. To emphasize the applicability of regional chemotherapy in cancer treatment, the commercially available products approved by the relevant health agencies are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synthesis and Anti-cancer Activity of 3-substituted Benzoyl-4-substituted Phenyl-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiaoping; Qin, Weixi; Wang, Shuai; Zhao, Kai; Xin, Yuxuan; Wang, Yaolin; Qi, Qi; Mao, Zhenmin

    2017-01-01

    Cancer is considered a major public health problem worldwide. The aim of this paper is to design and synthesis of novel anticancer agents with potent anticancer activity and minimum side effects. A series of pyrrole derivatives were synthesized, their anti-cancer activity against nine cancer cell lines and two non-cancer cell lines were evaluated by MTT assay, and their cell cycle progression were determined by flow cytometry analysis. The study of the structure-activity relationships revealed that the introduction of the electron-donation groups at the 4th position of the pyrrole ring increased the anti-cancer activity. Among the synthesized compounds, specially the compounds bearing 3,4-dimethoxy phenyl at the 4th position of the pyrrole ring showed potent anti-cancer activity, cpd 19 was the most potent against MGC 80-3, HCT-116 and CHO cell lines (IC50s = 1.0-1.7 μM), cpd 21 was the most potent against HepG2, DU145 and CT-26 cell lines (IC50s = 0.5-0.9 μM), and cpd 15 was the most potent against A549 (IC50 = 3.6 μM). Moreover, these potent compounds showed weak cytotoxicity against HUVEC and NIH/3T3. Thus, the cpds 15, 19 and 21 show potential anti-cancer for further investigation. Furthermore, the flow cytometry analysis revealed that cpd 21 arrested the CT-26 cells at S phase, and induced the cell apoptosis. Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Extemporaneous compounding of oral liquid dosage formulations and alternative drug delivery methods for anticancer drugs.

    PubMed

    Lam, Masha S H

    2011-02-01

    Oncology pharmacists face a constant challenge with patients who cannot swallow oral anticancer drugs, making extemporaneous oral liquid preparation a requirement. Improper extemporaneous preparation of these agents, especially with the traditional chemotherapy with a narrow therapeutic index, may increase the risk of over- or underdosing. In community pharmacies, multiple barriers exist that prevent these pharmacies from preparing extemporaneous oral anticancer drug formulations for a patient's use at home. In a home setting, patients or caregivers without proper counseling and education on how to safely handle chemotherapy are at increased risk for exposure to these drugs. Based on a review of the literature, compounding recipes are available for 46% of oral anticancer agents. A paucity of data exists on dose uniformity, bioequivalence, and stability of extemporaneous oral liquid formulations of anticancer drugs. Pharmacists must have an understanding of the basic scientific principles that are an essential foundation for the proper preparation of extemporaneous oral anticancer liquid formulations. The collaborative effort of a multidisciplinary team can also help identify different barriers in the community setting, especially in areas where community pharmacies may lack resources for the extemporaneous compounding of oral chemotherapy, and to find ways to coordinate better pharmaceutical care. There are great opportunities for oncology pharmacists, as well as community pharmacists, as a resource for educating and monitoring patients receiving oral chemotherapy to ensure dosing accuracy, safe administration, and proper disposal of hazardous drugs. Development of national guidelines to promote standards of practice in the community and/or home setting is urgently needed to help improve the safety of dispensing and handling oral chemotherapeutic agents, including extemporaneously compounded oral liquid formulations of these drugs.

  17. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms

    PubMed Central

    Abdal Dayem, Ahmed; Choi, Hye Yeon; Yang, Gwang-Mo; Kim, Kyeongseok; Saha, Subbroto Kumar; Cho, Ssang-Goo

    2016-01-01

    The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs) via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer. PMID:27657126

  18. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage.

    PubMed

    Yadav, Dharmendra K; Rai, Reeta; Kumar, Naresh; Singh, Surjeet; Misra, Sanjeev; Sharma, Praveen; Shaw, Priyanka; Pérez-Sánchez, Horacio; Mancera, Ricardo L; Choi, Eun Ha; Kim, Mi-Hyun; Pratap, Ramendra

    2016-12-06

    The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage.

  19. Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives

    PubMed Central

    Neophytou, Christiana M.; Constantinou, Andreas I.

    2015-01-01

    Vitamin E isoforms have been extensively studied for their anticancer properties. Novel drug delivery systems (DDS) that include liposomes, nanoparticles, and micelles are actively being developed to improve Vitamin E delivery. Furthermore, several drug delivery systems that incorporate Vitamin E isoforms have been synthesized in order to increase the bioavailability of chemotherapeutic agents or to provide a synergistic effect. D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) is a synthetic derivative of natural alpha-tocopherol which is gaining increasing interest in the development of drug delivery systems and has also shown promising anticancer effect as a single agent. This review provides a summary of the properties and anticancer effects of the most potent Vitamin E isoforms and an overview of the various formulations developed to improve their efficacy, with an emphasis on the use of TPGS in drug delivery approaches. PMID:26137487

  20. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses.

    PubMed

    Arodola, Olayide A; Soliman, Mahmoud E S

    2015-01-01

    Based on experimental data, the anticancer activity of nelfinavir (NFV), a US Food and Drug Administration (FDA)-approved HIV-1 protease inhibitor (PI), was reported. Nevertheless, the mechanism of action of NFV is yet to be verified. It was hypothesized that the anticancer activity of NFV is due to its inhibitory effect on heat shock protein 90 (Hsp90), a promising target for anticancer therapy. Such findings prompted us to investigate the potential anticancer activity of all other FDA-approved HIV-1 PIs against human Hsp90. To accomplish this, "loop docking" - an enhanced in-house developed molecular docking approach - followed by molecular dynamic simulations and postdynamic analyses were performed to elaborate on the binding mechanism and relative binding affinities of nine FDA-approved HIV-1 PIs against human Hsp90. Due to the lack of the X-ray crystal structure of human Hsp90, homology modeling was performed to create its 3D structure for subsequent simulations. Results showed that NFV has better binding affinity (ΔG =-9.2 kcal/mol) when compared with other PIs: this is in a reasonable accordance with the experimental data (IC50 3.1 μM). Indinavir, saquinavir, and ritonavir have close binding affinity to NFV (ΔG =-9.0, -8.6, and -8.5 kcal/mol, respectively). Per-residue interaction energy decomposition analysis showed that hydrophobic interaction (most importantly with Val534 and Met602) played the most predominant role in drug binding. To further validate the docking outcome, 5 ns molecular dynamic simulations were performed in order to assess the stability of the docked complexes. To our knowledge, this is the first account of detailed computational investigations aimed to investigate the potential anticancer activity and the binding mechanism of the FDA-approved HIV PIs binding to human Hsp90. Information gained from this study should also provide a route map toward the design, optimization, and further experimental investigation of potential

  1. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents.

    PubMed

    Park, Sujin; Kim, Eun Hye; Kim, Jinwoo; Kim, Seong Hwan; Kim, Ikyon

    2018-01-20

    A new chemical space was explored based on an indolizine-chalcone hybrid, which was readily accessible by base-mediated aldol condensation of indolizine bearing a 7-acetyl group with various (hetero)aromatic aldehydes. Their anticancer effect was evaluated, revealing that indolizine-chalcone hybrids with 3,5-dimethoxyphenyl group (4h) or the halogen at the meta position (4j and 4l) could have the potential to induce the caspase-dependent apoptosis of human lymphoma cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces.

    PubMed

    Garbin, Valeria; Overvelde, Marlies; Dollet, Benjamin; de Jong, Nico; Lohse, Detlef; Versluis, Michel

    2011-10-07

    Targeted molecular imaging with ultrasound contrast agent microbubbles is achieved by incorporating targeting ligands on the bubble coating and allows for specific imaging of tissues affected by diseases. Improved understanding of the interplay between the acoustic forces acting on the bubbles during insonation with ultrasound and other forces (e.g. shear due to blood flow, binding of targeting ligands to receptors on cell membranes) can help improve the efficacy of this technique. This work focuses on the effects of the secondary acoustic radiation force, which causes bubbles to attract each other and may affect the adhesion of targeted bubbles. First, we examine the translational dynamics of ultrasound contrast agent microbubbles in contact with (but not adherent to) a semi-rigid membrane due to the secondary acoustic radiation force. An equation of motion that effectively accounts for the proximity of the membrane is developed, and the predictions of the model are compared with experimental data extracted from optical recordings at 15 million frames per second. A time-averaged model is also proposed and validated. In the second part of the paper, initial results on the translation due to the secondary acoustic radiation force of targeted, adherent bubbles are presented. Adherent bubbles are also found to move due to secondary acoustic radiation force, and a restoring force is observed that brings them back to their initial positions. For increasing magnitude of the secondary acoustic radiation force, a threshold is reached above which the adhesion of targeted microbubbles is disrupted. This points to the fact that secondary acoustic radiation forces can cause adherent bubbles to detach and alter the spatial distribution of targeted contrast agents bound to tissues during activation with ultrasound. While the details of the rupture of intermolecular bonds remain elusive, this work motivates the use of the secondary acoustic radiation force to measure the strength

  3. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting OncomiRs of the miR-17 family in prostate cancer

    USDA-ARS?s Scientific Manuscript database

    In recent years, not only has the role of miRNAs in cancer become increasingly clear but also their utilization as potential biomarkers and therapeutic targets has also gained ground. Although the importance of dietary stilbenes such as resveratrol and pterostilbene as anti-cancer agents is well rec...

  4. Prospects in the development of natural radioprotective therapeutics with anti-cancer properties from the plants of Uttarakhand region of India.

    PubMed

    Painuli, Sakshi; Kumar, Navin

    2016-03-01

    Radioprotective agents are substances those reduce the effects of radiation in healthy tissues while maintaining the sensitivity to radiation damage in tumor cells. Due to increased awareness about radioactive substances and their fatal effects on human health, radioprotective agents are now the topic of vivid research. Scavenging of free radicals is the most common mechanism in oncogenesis that plays an important role in protecting tissues from lethal effect of radiation exposure therefore radioprotectors are also good anti-cancer agents. There are numerous studies indicating plant-based therapeutics against cancer and radioprotection. Such plants could be further explored for developing them as promising natural radioprotectors with anti-cancer properties. This review systematically presents information on plants having radioprotective and anti-cancer properties. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  5. Anticancer activity of metal complexes: involvement of redox processes.

    PubMed

    Jungwirth, Ute; Kowol, Christian R; Keppler, Bernhard K; Hartinger, Christian G; Berger, Walter; Heffeter, Petra

    2011-08-15

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.

  6. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  7. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review.

    PubMed

    Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan

    2017-10-01

    Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of a gene expression database and related analysis programs for evaluation of anticancer compounds.

    PubMed

    Ushijima, Masaru; Mashima, Tetsuo; Tomida, Akihiro; Dan, Shingo; Saito, Sakae; Furuno, Aki; Tsukahara, Satomi; Seimiya, Hiroyuki; Yamori, Takao; Matsuura, Masaaki

    2013-03-01

    Genome-wide transcriptional expression analysis is a powerful strategy for characterizing the biological activity of anticancer compounds. It is often instructive to identify gene sets involved in the activity of a given drug compound for comparison with different compounds. Currently, however, there is no comprehensive gene expression database and related application system that is; (i) specialized in anticancer agents; (ii) easy to use; and (iii) open to the public. To develop a public gene expression database of antitumor agents, we first examined gene expression profiles in human cancer cells after exposure to 35 compounds including 25 clinically used anticancer agents. Gene signatures were extracted that were classified as upregulated or downregulated after exposure to the drug. Hierarchical clustering showed that drugs with similar mechanisms of action, such as genotoxic drugs, were clustered. Connectivity map analysis further revealed that our gene signature data reflected modes of action of the respective agents. Together with the database, we developed analysis programs that calculate scores for ranking changes in gene expression and for searching statistically significant pathways from the Kyoto Encyclopedia of Genes and Genomes database in order to analyze the datasets more easily. Our database and the analysis programs are available online at our website (http://scads.jfcr.or.jp/db/cs/). Using these systems, we successfully showed that proteasome inhibitors are selectively classified as endoplasmic reticulum stress inducers and induce atypical endoplasmic reticulum stress. Thus, our public access database and related analysis programs constitute a set of efficient tools to evaluate the mode of action of novel compounds and identify promising anticancer lead compounds. © 2012 Japanese Cancer Association.

  9. Synthesis and biological evaluation of novel N-phenyl ureidobenzenesulfonate derivatives as potential anticancer agents. Part 2. Modulation of the ring B.

    PubMed

    Gagné-Boulet, Mathieu; Moussa, Hanane; Lacroix, Jacques; Côté, Marie-France; Masson, Jean-Yves; Fortin, Sébastien

    2015-10-20

    DNA double strand-breaks (DSBs) are the most deleterious lesions that can affect the genome of living beings and are lethal if not quickly and properly repaired. Recently, we discovered a new family of anticancer agents designated as N-phenyl ureidobenzenesulfonates (PUB-SOs) that are blocking the cells cycle progression in S-phase and inducing DNA DSBs. Previously, we have studied the effect of several modifications on the molecular scaffold of PUB-SOs on their cytocidal properties. However, the effect of the nature and the position of substituents on the aromatic ring B is still poorly studied. In this study, we report the preparation and the biological evaluation of 45 new PUB-SO derivatives substituted by alkyl, alkoxy, halogen and nitro groups at different positions on the aromatic ring B. All PUB-SOs were active in the submicromolar to low micromolar range (0.24-20 μM). The cell cycle progression analysis showed that PUB-SOs substituted at position 2 by alkyl, halogen or nitro groups or substituted at position 4 by a hydroxyl group arrest the cell cycle progression in S-phase. Interestingly, all others PUB-SOs substituted at positions 3 and 4 arrested the cell cycle in G2/M-phase. PUB-SOs arresting the cell cycle progression in S-phase also induced the phosphorylation of H2AX (γH2AX) which is indicating the generation of DNA DSBs. We evidenced that few modifications on the ring B of PUB-SOs scaffold lead to cytocidal derivatives arresting the cell cycle in S-phase and inducing γH2AX and DSBs. In addition, this study shows that these new anticancer agents are promising and could be used as alternative to circumvent some of the biopharmaceutical complications that might be encountered during the development of PUB-SOs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs.

    PubMed

    Zhang, Jin; Jiang, Xiangdong; Jiang, Yingnan; Guo, Mingrui; Zhang, Shouyue; Li, Jingjing; He, Jun; Liu, Jie; Wang, Jinhui; Ouyang, Liang

    2016-01-27

    Vascular endothelial growth factor receptor (VEGFR) is a very important receptor tyrosine kinase (RTK) that can induce angiogenesis, increase cell growth and metastasis, reduce apoptosis, alter cytoskeletal function, and affect other biologic changes. Moreover, it is identified to be deregulated in varieties of human cancers. Therefore, VEGFR turn out to be a remarkable target of significant types of anticancer drugs in clinical trials. On the other side, c-Met is the receptor of hepatocyte growth factor (HGF) and a receptor tyrosine kinase. Previous studies have shown that c-Met elicits many different signaling pathways mediating cell proliferation, migration, differentiation, and survival. Furthermore, the correlation between aberrant signaling of the HGF/c-Met pathway and aggressive tumor growth, poor prognosis in cancer patients has been established. Recent reports had shown that c-Met/HGF and VEGFR/VEGF (vascular endothelial growth factor) can act synergistically in the progression of many diseases. They were also found to be over expressed in many human cancers. Thus, in a variety of malignancies, VEGFR and c-Met receptor tyrosine kinases have acted as therapeutic targets. With the development of molecular biology techniques, further understanding of the human tumor disease pathogenesis and interrelated signaling pathways known to tumor cells, using a single target inhibitors have been difficult to achieve the desired therapeutic effect. At this point, with respect to the combination of two inhibitors, a single compound which is able to inhibit both VEGFR and c-Met may put forward the advantage of raising anticancer activity. With the strong interest in these compounds, this review represents a renewal of previous works on the development of dual VEGFR and c-Met small molecule inhibitors as novel anti-cancer agents. Newly collection derivatives have been mainly describing in their biological profiles and chemical structures. Copyright © 2015 Elsevier Masson

  11. Design and synthesis of aminocoumarin derivatives as DPP-IV inhibitors and anticancer agents.

    PubMed

    Soni, Rina; Soman, Shubhangi S

    2018-09-01

    DPP-IV "a moonlighting protein" has immerged as promising pathway to control Type 2 diabetes as well as found to play key role in earlier stages of cancer. Here we have reported design, synthesis and applications of aminocoumarin derivatives as DPP-IV inhibitors. Compounds have been synthesized and studied for their DPP-IV inhibition activity. Three compounds have shown moderate inhibition at 100 µM concentration. All compounds were also screened for their anticancer activity against A549 (Lung cancer cell line), MCF-7 (Breast cancer cell line) using MTT assay. One of the compounds has shown very good anticancer activity with IC 50 value 24 ± 0.1 nM against A549 cell line. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Heterobivalent Imaging Agents Targeting Prostate Cancer Training

    DTIC Science & Technology

    2011-06-01

    has been implicated as a salient player in the pathobiology of cancers of epithelial origin, e.g. prostate, cervix , ovarian, colon and...ANSI Std. Z39.18 W81XWH-10-1-0481 Heterobivalent Imaging Agents Targeting Prostate Cancer Training Aaron LeBeau University of California, San...Francisco San Francisco, CA 94103 Annual Summary 31 MAY 2010 - 1JUN 201101-06-2011 To determine the utility of imaging MT-SP1 in cancer , xenografts of

  13. Multispectral photoacoustic decomposition with localized regularization for detecting targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Tavakoli, Behnoosh; Chen, Ying; Guo, Xiaoyu; Kang, Hyun Jae; Pomper, Martin; Boctor, Emad M.

    2015-03-01

    Targeted contrast agents can improve the sensitivity of imaging systems for cancer detection and monitoring the treatment. In order to accurately detect contrast agent concentration from photoacoustic images, we developed a decomposition algorithm to separate photoacoustic absorption spectrum into components from individual absorbers. In this study, we evaluated novel prostate-specific membrane antigen (PSMA) targeted agents for imaging prostate cancer. Three agents were synthesized through conjugating PSMA-targeting urea with optical dyes ICG, IRDye800CW and ATTO740 respectively. In our preliminary PA study, dyes were injected in a thin wall plastic tube embedded in water tank. The tube was illuminated with pulsed laser light using a tunable Q-switch ND-YAG laser. PA signal along with the B-mode ultrasound images were detected with a diagnostic ultrasound probe in orthogonal mode. PA spectrums of each dye at 0.5 to 20 μM concentrations were estimated using the maximum PA signal extracted from images which are obtained at illumination wavelengths of 700nm-850nm. Subsequently, we developed nonnegative linear least square optimization method along with localized regularization to solve the spectral unmixing. The algorithm was tested by imaging mixture of those dyes. The concentration of each dye was estimated with about 20% error on average from almost all mixtures albeit the small separation between dyes spectrums.

  14. Density functionalized [RuII(NO)(Salen)(Cl)] complex: Computational photodynamics and in vitro anticancer facets.

    PubMed

    Mir, Jan Mohammad; Jain, N; Jaget, P S; Maurya, R C

    2017-09-01

    Photodynamic therapy (PDT) is a treatment that uses photosensitizing agents to kill cancer cells. Scientific community has been eager for decades to design an efficient PDT drug. Under such purview, the current report deals with the computational photodynamic behavior of ruthenium(II) nitrosyl complex containing N, N'-salicyldehyde-ethylenediimine (SalenH 2 ), the synthesis and X-ray crystallography of which is already known [Ref. 38,39]. Gaussian 09W software package was employed to carry out the density functional (DFT) studies. DFT calculations with Becke-3-Lee-Yang-Parr (B3LYP)/Los Alamos National Laboratory 2 Double Z (LanL2DZ) specified for Ru atom and B3LYP/6-31G(d,p) combination for all other atoms were used using effective core potential method. Both, the ground and excited states of the complex were evolved. Some known photosensitizers were compared with the target complex. Pthalocyanine and porphyrin derivatives were the compounds selected for the respective comparative study. It is suggested that effective photoactivity was found due to the presence of ruthenium core in the model complex. In addition to the evaluation of theoretical aspects in vitro anticancer aspects against COLO-205 human cancer cells have also been carried out with regard to the complex. More emphasis was laid to extrapolate DFT to depict the chemical power of the target compound to release nitric oxide. A promising visible light triggered nitric oxide releasing power of the compound has been inferred. In vitro antiproliferative studies of [RuCl 3 (PPh 3 ) 3 ] and [Ru(NO)(Salen)(Cl)] have revealed the model complex as an excellent anticancer agent. From IC 50 values of 40.031mg/mL in former and of 9.74mg/mL in latter, it is established that latter bears more anticancer potentiality. From overall study the DFT based structural elucidation and the efficiency of NO, Ru and Salen co-ligands has shown promising drug delivery property and a good candidacy for both chemotherapy as well as

  15. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    PubMed

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase.

    PubMed

    Mathieu, Véronique; Chantôme, Aurélie; Lefranc, Florence; Cimmino, Alessio; Miklos, Walter; Paulitschke, Verena; Mohr, Thomas; Maddau, Lucia; Kornienko, Alexander; Berger, Walter; Vandier, Christophe; Evidente, Antonio; Delpire, Eric; Kiss, Robert

    2015-10-01

    Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 µM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl(-) and the decreased HCO3 (-) concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na-K-2Cl electroneutral cotransporter or Cl(-)/HCO3 (-) anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells.

  17. The targets of curcumin.

    PubMed

    Zhou, Hongyu; Beevers, Christopher S; Huang, Shile

    2011-03-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-kB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer's disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here.

  18. Network pharmacology-based virtual screening of natural products from Clerodendrum species for identification of novel anti-cancer therapeutics.

    PubMed

    Gogoi, Barbi; Gogoi, Dhrubajyoti; Silla, Yumnam; Kakoti, Bibhuti Bhushan; Bhau, Brijmohan Singh

    2017-01-31

    Plant-derived natural products (NPs) play a vital role in the discovery of new drug molecules and these are used for development of novel therapeutic drugs for a specific disease target. Literature review suggests that natural products possess strong inhibitory efficacy against various types of cancer cells. Clerodendrum indicum and Clerodendrum serratum are reported to have anticancer activity; therefore a study was carried out to identify selective anticancer agents from these plants species. In this report, we employed a docking weighted network pharmacological approach to understand the multi-therapeutics potentiality of C. indicum and C. serratum against various types of cancer. A library of 53 natural products derived from these plants was compiled from the literature and three dimensional space analyses were performed in order to establish the drug-likeness of the NPs library. Further, an NPs-cancer network was built based on docking. We predicted five compounds, namely apigenin 7-glucoside, hispidulin, scutellarein-7-O-beta-d-glucuronate, acteoside and verbascoside, to be potential binding therapeutics for cancer target proteins. Apigenin 7-glucoside and hispidulin were found to have maximum binding interactions (relationship) with 17 cancer drug targets in terms of docking weighted network pharmacological analysis. Hence, we used an integrative approach obtained from network pharmacology for identifying combinatorial drug actions against the cancer targets. We believe that our present study may provide important clues for finding novel drug inhibitors for cancer.

  19. Novel Synergistic Therapy for Metastatic Breast Cancer: Magnetic Nanoparticle Hyperthermia of the Neovasculature Enhanced by a Vascular Disruption Agent

    DTIC Science & Technology

    2012-06-01

    vivo using intravital microscopy and magnetic resonance imaging : correlation with endothelial apoptosis, cytokine induction, and treatment outcome...particles in solutions containing divalent cations. This result indicates that the SPION surface was successfully modified. This image is representative of...Boturyn D, Dumy P. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med

  20. Explorative study on the anticancer activity, selectivity and metabolic stability of related analogs of aminosteroid RM-133.

    PubMed

    Perreault, Martin; Maltais, René; Dutour, Raphaël; Poirier, Donald

    2016-11-01

    RM-133 is a key representative of a new family of aminosteroids reported as potent anticancer agents. Although RM-133 produced interesting results in 4 mouse xenograft cancer models when injected subcutaneously, it needs to be improved to increase its in vivo potency. Thus, to obtain an analog of RM-133 with a better drug potential, a structure-activity relationship study was conducted by synthesizing eleven RM-133-related compounds and addressing their antiproliferative activity on 3 human cancer cells (HL-60, OVCAR-3 and PANC-1) and 3 human normal cell lines (primary ovary, pancreas and renal proximal tubule) as well as their metabolic stability in human liver microsomes. When the 2β-tertiary amine of RM-133 was transformed into a salt or moved to position 3β, the anticancer activity was lost. Modifying the orientation of the side chain of RM-133 increased anticancer activity and selectivity, but led to a drastic loss of stability. The protection of the 3α-hydroxyl of RM-133 by the formation of an ester or a carbamate stabilized the molecule against the phase I metabolic enzymes without affecting its anticancer activity. In comparison to RM-133, the 3-dimethylcarbamate derivative 3 is more selective for cancer cells over normal cells and is much more stable in liver microsomes. Those results support the use of a pro-drug strategy targeting the 3α-hydroxyl of RM-133 as an approach to improve its drug properties. The work presented will enable the development of an optimized anticancer drug of the aminosteroid family that is suitable for a future phase I clinical trial. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Aryl sulfonate based anticancer alkylating agents.

    PubMed

    Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala

    2018-05-01

    This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.

  2. Characterization of a gene cluster responsible for the biosynthesis of anticancer agent FK228 in Chromobacterium violaceum No. 968.

    PubMed

    Cheng, Yi-Qiang; Yang, Min; Matter, Andrea M

    2007-06-01

    A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.

  3. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach.

    PubMed

    Bhise, Ketki; Kashaw, Sushil Kumar; Sau, Samaresh; Iyer, Arun K

    2017-06-30

    Cancer is one of the leading causes of death worldwide. There are several hurdles in cancer therapy because of side-effects which limits its usage. Nanoparticulate drug delivery systems have been tested against cancer in a range of scientific studies. In the recent years, advanced research on Nanostructured Lipid Carriers (NLCs) has garnered considerable attention owing to the advantages over their first-generation counterparts, Solid Lipid Nanoparticles (SLN). NLCs facilitate efficient loading of poorly water soluble drugs with simple methods of drug loading. Recently, there is an increased interest in polyphenols because of the evidence of their promising role in prevention of cancer. Polyphenols are produced as secondary metabolites by plants. Their role in prevention of development of tumors through variety of mechanisms and reduction of tumor cell mass has been reported. This article aims to review the science behind development of NLCs and role of polyphenols as promising anticancer agents. Principles of Quality by Design (QbD) have also been explained which are used in formulation-development of many nanoparticles, including NLCs, as reported in literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Multi-Targeted Agents in Cancer Cell Chemosensitization: What We Learnt from Curcumin Thus Far.

    PubMed

    Bordoloi, Devivasha; Roy, Nand K; Monisha, Javadi; Padmavathi, Ganesan; Kunnumakkara, Ajaikumar B

    2016-01-01

    Research over the past several years has developed many mono-targeted therapies for the prevention and treatment of cancer, but it still remains one of the fatal diseases in the world killing 8.2 million people annually. It has been well-established that development of chemoresistance in cancer cells against mono-targeted chemotherapeutic agents by modulation of multiple survival pathways is the major cause of failure of cancer chemotherapy. Therefore, inhibition of these pathways by non-toxic multi-targeted agents may have profoundly high potential in preventing drug resistance and sensitizing cancer cells to chemotherapeutic agents. To study the potential of curcumin, a multi-targeted natural compound, obtained from the plant Turmeric (Curcuma longa) in combination with standard chemotherapeutic agents to inhibit drug resistance and sensitize cancer cells to these agents based on available literature and patents. An extensive literature survey was performed in PubMed and Google for the chemosensitizing potential of curcumin in different cancers published so far and the patents published during 2014-2015. Our search resulted in many in vitro, in vivo and clinical reports signifying the chemosensitizing potential of curcumin in diverse cancers. There were 160 in vitro studies, 62 in vivo studies and 5 clinical studies. Moreover, 11 studies reported on hybrid curcumin: the next generation of curcumin based therapeutics. Also, 34 patents on curcumin's biological activity have been retrieved. Altogether, the present study reveals the enormous potential of curcumin, a natural, non-toxic, multi-targeted agent in overcoming drug resistance in cancer cells and sensitizing them to chemotherapeutic drugs.

  5. Intracellular uptake and behavior of two types zinc protoporphyrin (ZnPP) micelles, SMA-ZnPP and PEG-ZnPP as anticancer agents; unique intracellular disintegration of SMA micelles.

    PubMed

    Nakamura, Hideaki; Fang, Jun; Gahininath, Bharate; Tsukigawa, Kenji; Maeda, Hiroshi

    2011-11-07

    SMA-ZnPP and PEG-ZnPP are micellar drugs, encapsulating zinc protoporphyrin IX (ZnPP) with styrene maleic acid copolymer (SMA) and covalent conjugate of ZnPP with polyethylene glycol (PEG) respectively. Their intracellular uptake rate and subcellular localization were investigated. We found SMA-ZnPP showed higher and more efficient (about 2.5 times) intracellular uptake rate than PEG-ZnPP, although both SMA-ZnPP and PEG-ZnPP micelles were localized at endoplasmic reticulum (ER) and inhibited the target enzyme heme oxygenase 1 (HO-1) similarly. Both micellar ZnPP were taken up into the tumor cells by endocytosis. Furthermore SMA-ZnPP and PEG-ZnPP were examined for their drug releasing mechanisms. Liberation of ZnPP from the SMA micelle appears to depend on cellular amphiphilic components such as lecithin, while that for PEG-ZnPP depends on hydrolytic cleavage. These results indicate that these micelle formulations make water insoluble ZnPP to water soluble practical anticancer agents. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Computation of the target state and feedback controls for time optimal consensus in multi-agent systems

    NASA Astrophysics Data System (ADS)

    Mulla, Ameer K.; Patil, Deepak U.; Chakraborty, Debraj

    2018-02-01

    N identical agents with bounded inputs aim to reach a common target state (consensus) in the minimum possible time. Algorithms for computing this time-optimal consensus point, the control law to be used by each agent and the time taken for the consensus to occur, are proposed. Two types of multi-agent systems are considered, namely (1) coupled single-integrator agents on a plane and, (2) double-integrator agents on a line. At the initial time instant, each agent is assumed to have access to the state information of all the other agents. An algorithm, using convexity of attainable sets and Helly's theorem, is proposed, to compute the final consensus target state and the minimum time to achieve this consensus. Further, parts of the computation are parallelised amongst the agents such that each agent has to perform computations of O(N2) run time complexity. Finally, local feedback time-optimal control laws are synthesised to drive each agent to the target point in minimum time. During this part of the operation, the controller for each agent uses measurements of only its own states and does not need to communicate with any neighbouring agents.

  7. The energy blocker inside the power house: Mitochondria targeted delivery of 3-bromopyruvate.

    PubMed

    Marrache, Sean; Dhar, Shanta

    2015-03-01

    A key hallmark of many aggressive cancers is accelerated glucose metabolism. The enzymes that catalyze the first step of glucose metabolism are hexokinases. High levels of hexokinase 2 (HK2) are found in cancer cells, but only in a limited number of normal tissues. Metabolic reprogramming of cancer cells using the energy blocker, 3-bromopyruvate (3-BP) that inhibits HK2 has the potential to provide tumor-specific anticancer agents. However, the unique structural and functional characteristics of mitochondria prohibit selective subcellular targeting of 3-BP to modulate the function of this organelle for therapeutic gain. A mitochondria targeted gold nanoparticle (T-3-BP-AuNP) decorated with 3-BP and delocalized lipophilic triphenylphosphonium cations to target the mitochondrial membrane potential (Δ ψ m ) was developed for delivery of 3-BP to cancer cell mitochondria by taking advantage of higher Δ ψ m in cancer cells compared to normal cells. In vitro studies demonstrated enhanced anticancer activity of T-3-BP-AuNPs compared to the non-targeted construct NT-3-BP-AuNP or free 3-BP. The anticancer activity of T-3-BP-AuNP was further enhanced upon laser irradiation by exciting the surface plasmon resonance band of AuNP and thereby utilizing a combination of 3-BP chemotherapeutic and AuNP photothermal effects. The less toxic behavior of T-3-BPNPs in normal mesenchymal stem cells indicated that these NPs preferentially kill cancer cells. T-3-BP-AuNPs showed enhanced ability to modulate cancer cell metabolism by inhibiting glycolysis as well as demolishing mitochondrial oxidative phosphorylation. Our findings demonstrated that concerted chemo-photothermal treatment of glycolytic cancer cells with a single NP capable of targeting mitochondria mediating simultaneous release of a glycolytic inhibitor and photothermal ablation may have promise as a new anticancer therapy.

  8. Dual-Functional Nanographene Oxide as Cancer-Targeted Drug-Delivery System to Selectively Induce Cancer-Cell Apoptosis.

    PubMed

    Zhou, Binwei; Huang, Yanyu; Yang, Fang; Zheng, Wenjie; Chen, Tianfeng

    2016-04-05

    Construction of bioresponsive drug-delivery nanosystems could enhance the anticancer efficacy of anticancer agents and reduce their toxic side effects. Herein, by using transferrin (Tf) as a surface decorator, we constructed a cancer-targeted nanographene oxide (NGO) nanosystem for use in drug delivery. This nanosystem (Tf-NGO@HPIP) drastically enhanced the cellular uptake, retention, and anticancer efficacy of loaded drugs but showed much lower toxicity to normal cells. The nanosystem was internalized through receptor-mediated endocytosis and triggered pH-dependent drug release in acidic environments and in the presence of cellular enzymes. Moreover, Tf-NGO@HPIP effectively induced cancer-cell apoptosis through activation of superoxide-mediated p53 and MAPK pathways along with inactivation of ERK and AKT. Taken together, this study demonstrates a good strategy for the construction of bioresponsive NGO drug-delivery nanosystems and their use as efficient anticancer drug carriers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells

    PubMed Central

    Huang, Shile

    2014-01-01

    Dihydroartemisinin (DHA), an antimalarial drug, has previously unrecognized anticancer activity, and is in clinical trials as a new anticancer agent for skin, lung, colon and breast cancer treatment. However, the anticancer mechanism is not well understood. Here, we show that DHA inhibited proliferation and induced apoptosis in rhabdomyosarcoma (Rh30 and RD) cells, and concurrently inhibited the signaling pathways mediated by the mammalian target of rapamycin (mTOR), a central controller for cell proliferation and survival, at concentrations (<3 μM) that are pharmacologically achievable. Of interest, in contrast to the effects of conventional mTOR inhibitors (rapalogs), DHA potently inhibited mTORC1-mediated phosphorylation of p70 S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 but did not obviously affect mTORC2-mediated phosphorylation of Akt. The results suggest that DHA may represent a novel class of mTORC1 inhibitor and may execute its anticancer activity primarily by blocking mTORC1-mediated signaling pathways in the tumor cells. PMID:23929438

  10. The ATP-binding site of type II topoisomerases as a target for antibacterial drugs.

    PubMed

    Maxwell, Anthony; Lawson, David M

    2003-01-01

    DNA topoisomerases are essential enzymes in all cell types and have been found to be valuable drug targets both for antibacterial and anti-cancer chemotherapy. Type II topoisomerases possess a binding site for ATP, which can be exploited as a target for chemo-therapeutic agents. High-resolution structures of protein fragments containing this site complexed with antibiotics or an ATP analogue have provided vital information for the understanding of the action of existing drugs and for the potential development of novel anti-bacterial agents. In this article we have reviewed the structure and function of the ATPase domain of DNA gyrase (bacterial topoisomerase II), particularly highlighting novel information that has been revealed by structural studies. We discuss the efficacy and mode of action of existing drugs and consider the prospects for the development of novel agents.

  11. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives.

    PubMed

    Singh, Rajesh K; Kumar, Sahil; Prasad, D N; Bhardwaj, T R

    2018-05-10

    Cancer is considered as one of the most serious health problems today. The discovery of nitrogen mustard as an alkylating agent in 1942, opened a new era in the cancer chemotherapy. This valuable class of alkylating agent exerts its biological activity by binding to DNA, cross linking two strands, preventing DNA replication and ultimate cell death. At the molecular level, nitrogen lone pairs of nitrogen mustard generate a strained intermediate "aziridinium ion" which is very reactive towards DNA of tumor cell as well as normal cell resulting in various adverse side effects alogwith therapeutic implications. Over the last 75 years, due to its high reactivity and peripheral cytotoxicity, numerous modifications have been made in the area of nitrogen mustard to improve its efficacy as well as enhancing drug delivery specifically to tumor cells. This review mainly discusses the medicinal chemistry aspects in the development of various classes of nitrogen mustards (mechlorethamine, chlorambucil, melphalan, cyclophosphamide and steroidal based nitrogen mustards). The literature collection includes the historical and the latest developments in these areas. This comprehensive review also attempted to showcase the recent progress in the targeted delivery of nitrogen mustards that includes DNA directed nitrogen mustards, antibody directed enzyme prodrug therapy (ADEPT), gene directed enzyme prodrug therapy (GDEPT), nitrogen mustard activated by glutathione transferase, peptide based nitrogen mustards and CNS targeted nitrogen mustards. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Dichloroacetate Prevents Cisplatin-Induced Nephrotoxicity without Compromising Cisplatin Anticancer Properties

    PubMed Central

    Galgamuwa, Ramindhu; Hardy, Kristine; Dahlstrom, Jane E.; Blackburn, Anneke C.; Wium, Elize; Rooke, Melissa; Cappello, Jean Y.; Tummala, Padmaja; Patel, Hardip R.; Chuah, Aaron; Tian, Luyang; McMorrow, Linda; Board, Philip G.

    2016-01-01

    Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress. Additionally, pretreatment with dichloroacetate accelerated tubular regeneration after cisplatin-induced renal damage. Whole transcriptome sequencing revealed that dichloroacetate prevented mitochondrial dysfunction and preserved the energy-generating capacity of the kidneys by preventing the cisplatin-induced downregulation of fatty acid and glucose oxidation, and of genes involved in the Krebs cycle and oxidative phosphorylation. Notably, dichloroacetate did not interfere with the anticancer activity of cisplatin in vivo. These data provide strong evidence that dichloroacetate preserves renal function when used in conjunction with cisplatin. PMID:26961349

  13. Stabilization of EphA2 dimers as a novel anti-cancer strategy

    NASA Astrophysics Data System (ADS)

    Singh, Deo; Ahmed, Fozia; Salloto, Matt; Hristova, Kalina

    We have recently shown that EphA2 receptors exist in a monomer-dimer equilibrium in the absence of ligand. The monomers promote tumorigenic activity and thus a therapeutic strategy that minimizes the monomer population may be beneficial in the clinic. The YSA peptide is an EphA2-targeting peptide that effectively delivers anticancer agents to cancer tumors. The quantitative measurements of the dimerization of EphA2 receptors in the presence of these peptides using quantitative spectral Forster resonance transfer (QS-FRET) methodology in conjunction with two-photon microscopy that has been developed recently in our lab suggests that this peptide stabilizes the EphA2 dimers. Thus, such peptides that stabilize the EphA2 dimers may be used for the treatment of some cancers that overexpress EphA2.

  14. Trial Watch: Anticancer radioimmunotherapy.

    PubMed

    Vacchelli, Erika; Vitale, Ilio; Tartour, Eric; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-09-01

    Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in

  15. Proof of Concept of a Mobile Health Short Message Service Text Message Intervention That Promotes Adherence to Oral Anticancer Agent Medications: A Randomized Controlled Trial.

    PubMed

    Spoelstra, Sandra L; Given, Charles W; Sikorskii, Alla; Coursaris, Constantinos K; Majumder, Atreyee; DeKoekkoek, Tracy; Schueller, Monica; Given, Barbara A

    2016-06-01

    This multisite, randomized controlled trial assigned 75 adult cancer patients prescribed an oral anticancer agent to either an experimental group that received daily text messages for adherence for 21 days plus usual care or a control group that received usual care. Measures were administered at baseline, weekly (Weeks 1-8), and at exit (Week 9). A satisfaction survey was conducted following the intervention. Acceptability, feasibility, and satisfaction were examined. Primary outcomes were adherence and symptoms. Secondary outcomes were depressive symptoms, self-efficacy, cognition, physical function, and social support. Mixed or general linear models were used for the analyses comparing trial groups. Effect sizes (ES) were estimated to gauge clinical significance. Regarding acceptability, 57.2% (83 of 145) of eligible patients consented, 88% (n = 37 of 42) receiving text messages read them most or all of the time, and 90% (n = 38) were satisfied. The differences between experimental and control groups' ES were 0.29 for adherence, 0.21 for symptom severity, and 0.21 for symptom interference, and differences were not statistically significant. Furthermore, perceived social support was higher (p = 0.04; ES = 0.54) in the experimental group. Proof of concept and preliminary efficacy of a mobile health intervention using text messages to promote adherence for patients prescribed oral anticancer agents were demonstrated. Patients accepted and had high satisfaction with the intervention, and adherence improved after the intervention. Text messages show promise. Additional research is needed prior to use in practice.

  16. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles.

    PubMed

    Igaz, Nóra; Kovács, Dávid; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M; Kiricsi, Mónika

    2016-10-01

    Histone deacetylase (HDAC) inhibitors are considered as novel therapeutic agents inducing cell cycle arrest and apoptotic cell death in various cancer cells. Inhibition of deacetylase activity results in a relaxed chromatin structure thereby rendering the genetic material more vulnerable to DNA targeting agents that could be exploited by combinational cancer therapy. The unique potential of silver nanoparticles (AgNPs) in tumor therapy relies on the generation of reactive radicals which trigger oxidative stress, DNA damage and apoptosis in cancer cells. The revolutionary application of AgNPs as chemotherapeutical drugs seems very promising, nevertheless the exact molecular mechanisms of AgNP action in combination with other anti-cancer agents have yet to be elucidated in details before clinical administrations. As a step towards this we investigated the combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells. We identified synergistic inhibition of cancer cell growth and migration upon combinational treatments. Here we report that the HDAC inhibitor Trichostatin A enhances the DNA targeting capacity and apoptosis inducing efficacy of AgNPs most probably due to its effect on chromatin condensation. These results point to the potential benefits of combinational application of HDAC inhibitors and AgNPs in novel cancer medication protocols. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery.

    PubMed

    Deepagan, V G; Kwon, Seunglee; You, Dong Gil; Nguyen, Van Quy; Um, Wooram; Ko, Hyewon; Lee, Hansang; Jo, Dong-Gyu; Kang, Young Mo; Park, Jae Hyung

    2016-10-01

    Stimuli-responsive micelles have emerged as the drug carrier for cancer therapy since they can exclusively release the drug via their structural changes in response to the specific stimuli of the target site. Herein, we developed the in situ diselenide-crosslinked micelles (DCMs), which are responsive to the abnormal ROS levels of tumoral region, as anticancer drug carriers. The DCMs were spontaneously derived from selenol-bearing triblock copolymers consisting of polyethylene glycol (PEG) and polypeptide derivatives. During micelle formation, doxorubicine (DOX) was effectively encapsulated in the hydrophobic core, and diselenide crosslinks were formed in the shell. The DCMs maintained their structural integrity, at least for 6 days in physiological conditions, even in the presence of destabilizing agents. However, ROS-rich conditions triggered rapid release of DOX from the DOX-encapsulating DCMs (DOX-DCMs) because the hydrophobic diselenide bond was cleaved into hydrophilic selenic acid derivatives. Interestingly, after their systemic administration into the tumor-bearing mice, DOX-DCMs delivered significantly more drug to tumors (1.69-fold and 3.73-fold higher amount compared with their non-crosslinked counterparts and free drug, respectively) and effectively suppressed tumor growth. Overall, our data indicate that DCMs have great potential as drug carriers for anticancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Breakable mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A.; Robinet, Eric; de Cola, Luisa

    2016-03-01

    ``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. Electronic supplementary information (ESI) available: Full experimental procedures, additional SEM and TEM images of particles, complete UV-Vis and PL-monitored characterization of the breakdown of

  19. The promising anticancer drug 3-bromopyruvate is metabolized through glutathione conjugation which affects chemoresistance and clinical practice: An evidence-based view.

    PubMed

    El Sayed, Salah Mohamed; Baghdadi, Hussam; Zolaly, Mohammed; Almaramhy, Hamdi H; Ayat, Mongi; Donki, Jagadish G

    2017-03-01

    3-Bromopyruvate (3BP) is a promising effective anticancer drug against many different tumors in children and adults. 3BP exhibited strong anticancer effects in both preclinical and human studies e.g. energy depletion, oxidative stress, anti-angiogenesis, anti-metastatic effects, targeting cancer stem cells and antagonizing the Warburg effect. There is no report about 3BP metabolism to guide researchers and oncologists to improve clinical practice and prevent drug resistance. In this article, we provide evidences that 3BP is metabolized through glutathione (GSH) conjugation as a novel report where 3BP was confirmed to be attached to GSH followed by permanent loss of pharmacological effects in a picture similar to cisplatin. Both cisplatin and 3BP are alkylating agents. Reported decrease in endogenous cellular GSH content upon 3BP treatment was confirmed to be due to the formation of 3BP-GSH complex i.e. GSH consumption for conjugation with 3BP. Cancer cells having high endogenous GSH exhibit resistance to 3BP while 3BP sensitive cells acquire resistance upon adding exogenous GSH. Being a thiol blocker, 3BP may attack thiol groups in tissues and serum proteins e.g. albumin and GSH. That may decrease 3BP-induced anticancer effects and the functions of those proteins. We proved here that 3BP metabolism is different from metabolism of hydroxypyruvate that results from metabolism of D-serine using D-amino acid oxidase. Clinically, 3BP administration should be monitored during albumin infusion and protein therapy where GSH should be added to emergency medications. GSH exerts many physiological effects and is safe for human administration both orally and intravenously. Based on that, reported GSH-induced inhibition of 3BP effects makes 3BP effects reversible, easily monitored and easily controlled. This confers a superiority of 3BP over many anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Microtubule-Targeting Agents Eribulin and Paclitaxel Differentially Affect Neuronal Cell Bodies in Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Benbow, Sarah J; Wozniak, Krystyna M; Kulesh, Bridget; Savage, April; Slusher, Barbara S; Littlefield, Bruce A; Jordan, Mary Ann; Wilson, Leslie; Feinstein, Stuart C

    2017-07-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anticancer treatment with microtubule-targeted agents (MTAs). The frequency of severe CIPN, which can be dose limiting and even life threatening, varies widely among different MTAs. For example, paclitaxel induces a higher frequency of severe CIPN than does eribulin. Different MTAs also possess distinct mechanisms of microtubule-targeted action. Recently, we demonstrated that paclitaxel and eribulin differentially affect sciatic nerve axons, with paclitaxel inducing more pronounced neurodegenerative effects and eribulin inducing greater microtubule stabilizing biochemical effects. Here, we complement and extend these axonal studies by assessing the effects of paclitaxel and eribulin in the cell bodies of sciatic nerve axons, housed in the dorsal root ganglia (DRG). Importantly, the microtubule network in cell bodies is known to be significantly more dynamic than in axons. Paclitaxel induced activating transcription factor 3 expression, a marker of neuronal stress/injury. Paclitaxel also increased expression levels of acetylated tubulin and end binding protein 1, markers of microtubule stability and growth, respectively. These effects are hypothesized to be detrimental to the dynamic microtubule network within the cell bodies. In contrast, eribulin had no significant effect on any of these parameters in the cell bodies. Taken together, DRG cell bodies and their axons, two distinct neuronal cell compartments, contain functionally distinct microtubule networks that exhibit unique biochemical responses to different MTA treatments. We hypothesize that these distinct mechanistic actions may underlie the variability seen in the initiation, progression, persistence, and recovery from CIPN.