Sample records for targeted genetic modification

  1. Genetic modification and genetic determinism

    PubMed Central

    Resnik, David B; Vorhaus, Daniel B

    2006-01-01

    In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions. PMID:16800884

  2. A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting.

    PubMed

    van den Wollenberg, D J M; van den Hengel, S K; Dautzenberg, I J C; Cramer, S J; Kranenburg, O; Hoeben, R C

    2008-12-01

    Human Orthoreovirus Type 3 Dearing is not pathogenic to humans and has been evaluated clinically as an oncolytic agent. Its transduction efficiency and the tumor cell selectivity may be enhanced by incorporating ligands for alternative receptors. However, the genetic modification of reoviruses has been difficult, and genetic targeting of reoviruses has not been reported so far. Here we describe a technique for generating genetically targeted reoviruses. The propagation of wild-type reoviruses on cells expressing a modified sigma 1-encoding segment embedded in a conventional RNA polymerase II transcript leads to substitution of the wild-type genome segment by the modified version. This technique was used for generating reoviruses that are genetically targeted to an artificial receptor expressed on U118MG cells. These cells lack the junction adhesion molecule-1 and therefore resist infection by wild-type reoviruses. The targeted reoviruses were engineered to carry the ligand for this receptor at the C terminus of the sigma 1 spike protein. This demonstrates that the C terminus of the sigma 1 protein is a suitable locale for the insertion of oligopeptide ligands and that targeting of reoviruses is feasible. The genetically targeted viruses can be propagated using the modified U118MG cells as helper cells. This technique may be applicable for the improvement of human reoviruses as oncolytic agents.

  3. Human germline genetic modification: scientific and bioethical perspectives.

    PubMed

    Smith, Kevin R; Chan, Sarah; Harris, John

    2012-10-01

    The latest mammalian genetic modification technology offers efficient and reliable targeting of genomic sequences, in the guise of designer genetic recombination tools. These and other improvements in genetic engineering technology suggest that human germline genetic modification (HGGM) will become a safe and effective prospect in the relatively near future. Several substantive ethical objections have been raised against HGGM including claims of unacceptably high levels of risk, damage to the status of future persons, and violations of justice and autonomy. This paper critically reviews the latest GM science and discusses the key ethical objections to HGGM. We conclude that major benefits are likely to accrue through the use of safe and effective HGGM and that it would thus be unethical to take a precautionary stance against HGGM. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  4. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    PubMed

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  5. Reproductive cloning combined with genetic modification.

    PubMed

    Strong, C

    2005-11-01

    Although there is widespread opposition to reproductive cloning, some have argued that its use by infertile couples to have genetically related children would be ethically justifiable. Others have suggested that lesbian or gay couples might wish to use cloning to have genetically related children. Most of the main objections to human reproductive cloning are based on the child's lack of unique nuclear DNA. In the future, it may be possible safely to create children using cloning combined with genetic modifications, so that they have unique nuclear DNA. The genetic modifications could be aimed at giving such children genetic characteristics of both members of the couple concerned. Thus, cloning combined with genetic modification could be appealing to infertile, lesbian, or gay couples who seek genetically related children who have genetic characteristics of both members. In such scenarios, the various objections to human reproductive cloning that are based on the lack of genetic uniqueness would no longer be applicable. The author argues that it would be ethically justifiable for such couples to create children in this manner, assuming these techniques could be used safely.

  6. Genetic modifications for personal enhancement: a defence.

    PubMed

    Murphy, Timothy F

    2014-04-01

    Bioconservative commentators argue that parents should not take steps to modify the genetics of their children even in the name of enhancement because of the damage they predict for values, identities and relationships. Some commentators have even said that adults should not modify themselves through genetic interventions. One commentator worries that genetic modifications chosen by adults for themselves will undermine moral agency, lead to less valuable experiences and fracture people's sense of self. These worries are not justified, however, since the effects of modification will not undo moral agency as such. Adults can still have valuable experiences, even if some prior choices no longer seem meaningful. Changes at the genetic level will not always, either, alienate people from their own sense of self. On the contrary, genetic modifications can help amplify choice, enrich lives and consolidate identities. Ultimately, there is no moral requirement that people value their contingent genetic endowment to the exclusion of changes important to them in their future genetic identities. Through weighing risks and benefits, adults also have the power to consent to, and assume the risks of, genetic modifications for themselves in a way not possible in prenatal genetic interventions.

  7. Genetic Modification of the Lung Directed Toward Treatment of Human Disease.

    PubMed

    Sondhi, Dolan; Stiles, Katie M; De, Bishnu P; Crystal, Ronald G

    2017-01-01

    Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.

  8. Rapid Identification of Genetic Modifications in Bacillus anthracis Using Whole Genome Draft Sequences Generated by 454 Pyrosequencing

    DTIC Science & Technology

    2010-08-25

    or intentional genetic modifications that circumvent the targets of the detection assays or in the case of a biological attack using an antibiotic ...genetic changes conferring antibiotic resistance can be deciphered rapidly and accurately using WGS. We demonstrate the utility of Roche 454...Rapid Identification of Genetic Modifications in Bacillus anthracis Using Whole Genome Draft Sequences Generated by 454 Pyrosequencing Peter E. Chen1

  9. Dual targeting of gene delivery by genetic modification of adenovirus serotype 5 fibers and cell-selective transcriptional control.

    PubMed

    Work, L M; Ritchie, N; Nicklin, S A; Reynolds, P N; Baker, A H

    2004-08-01

    Adenovirus (Ad)-mediated gene delivery is a promising approach for genetic manipulation of the vasculature and is being used in both preclinical models and clinical trials. However, safety concerns relating to infection of nontarget tissue and the poor infectivity of vascular cells compared to other cell types necessitates Ad vector refinement. Here, we combine a transductional targeting approach to improve vascular cell infectivity through RGD peptide insertion into adenovirus fibers, combined with transcriptional targeting to endothelial cells using a approximately 1 kb fragment of the fms-like tyrosine kinase receptor-1 (FLT-1) promoter. Single- and double-modified vectors were characterized in human cell lines that either support or have silenced FLT-1 expression. In rat hepatocytes and endothelial cells, the double modification substantially shifted transduction profiles toward vascular endothelial cells. Furthermore, in intact aortae derived from spontaneously hypertensive rats that display enhanced alphav integrin expression on dysfunctional endothelium, enhanced levels of transduction were observed using the double-modified vector but not in aortae derived from normotensive control rats. Our data indicate that Ad-mediated transduction can be beneficially modified in vitro and in vivo by combining fiber modification and a cell-selective promoter within a single-component vector system.

  10. Genetic modification of lymphocytes by retrovirus-based vectors.

    PubMed

    Suerth, Julia D; Schambach, Axel; Baum, Christopher

    2012-10-01

    The genetic modification of lymphocytes is an important topic in the emerging field of gene therapy. Many clinical trials targeting immunodeficiency syndromes or cancer have shown therapeutic benefit; further applications address inflammatory and infectious disorders. Retroviral vector development requires a detailed understanding of the interactions with the host. Most researchers have used simple gammaretroviral vectors to modify lymphocytes, either directly or via hematopoietic stem and progenitor cells. Lentiviral, spumaviral (foamyviral) and alpharetroviral vectors were designed to reduce the necessity for cell stimulation and to utilize potentially safer integration properties. Novel surface modifications (pseudotyping) and transgenes, built using synthetic components, expand the retroviral toolbox, altogether promising increased specificity and potency. Product consistency will be an important criterion for routine clinical use. Copyright © 2012. Published by Elsevier Ltd.

  11. Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction.

    PubMed

    Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G

    2009-10-08

    When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs.

  12. Knowledge, attitudes towards and acceptability of genetic modification in Germany.

    PubMed

    Christoph, Inken B; Bruhn, Maike; Roosen, Jutta

    2008-07-01

    Genetic modification remains a controversial issue. The aim of this study is to analyse the attitudes towards genetic modification, the knowledge about it and its acceptability in different application areas among German consumers. Results are based on a survey from spring 2005. An exploratory factor analysis is conducted to identify the attitudes towards genetic modification. The identified factors are used in a cluster analysis that identified a cluster of supporters, of opponents and a group of indifferent consumers. Respondents' knowledge of genetics and biotechnology differs among the found clusters without revealing a clear relationship between knowledge and support of genetic modification. The acceptability of genetic modification varies by application area and cluster, and genetically modified non-food products are more widely accepted than food products. The perception of personal health risks has high explanatory power for attitudes and acceptability.

  13. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    PubMed Central

    Wang, Bin; Zhou, Jiangfeng

    2003-01-01

    The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined. PMID:14614774

  14. Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction

    PubMed Central

    Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G

    2009-01-01

    Background When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. Results We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). Conclusion We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs. PMID:19814792

  15. Heritability of targeted gene modifications induced by plant-optimized CRISPR systems.

    PubMed

    Mao, Yanfei; Botella, Jose Ramon; Zhu, Jian-Kang

    2017-03-01

    The Streptococcus-derived CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated protein 9) system has emerged as a very powerful tool for targeted gene modifications in many living organisms including plants. Since the first application of this system for plant gene modification in 2013, this RNA-guided DNA endonuclease system has been extensively engineered to meet the requirements of functional genomics and crop trait improvement in a number of plant species. Given its short history, the emphasis of many studies has been the optimization of the technology to improve its reliability and efficiency to generate heritable gene modifications in plants. Here we review and analyze the features of customized CRISPR/Cas9 systems developed for plant genetic studies and crop breeding. We focus on two essential aspects: the heritability of gene modifications induced by CRISPR/Cas9 and the factors affecting its efficiency, and we provide strategies for future design of systems with improved activity and heritability in plants.

  16. Immune modulation by genetic modification of dendritic cells with lentiviral vectors.

    PubMed

    Liechtenstein, Therese; Perez-Janices, Noemi; Bricogne, Christopher; Lanna, Alessio; Dufait, Inès; Goyvaerts, Cleo; Laranga, Roberta; Padella, Antonella; Arce, Frederick; Baratchian, Mehdi; Ramirez, Natalia; Lopez, Natalia; Kochan, Grazyna; Blanco-Luquin, Idoia; Guerrero-Setas, David; Breckpot, Karine; Escors, David

    2013-09-01

    Our work over the past eight years has focused on the use of HIV-1 lentiviral vectors (lentivectors) for the genetic modification of dendritic cells (DCs) to control their functions in immune modulation. DCs are key professional antigen presenting cells which regulate the activity of most effector immune cells, including T, B and NK cells. Their genetic modification provides the means for the development of targeted therapies towards cancer and autoimmune disease. We have been modulating with lentivectors the activity of intracellular signalling pathways and co-stimulation during antigen presentation to T cells, to fine-tune the type and strength of the immune response. In the course of our research, we have found unexpected results such as the surprising immunosuppressive role of anti-viral signalling pathways, and the close link between negative co-stimulation in the immunological synapse and T cell receptor trafficking. Here we review our major findings and put them into context with other published work. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A Kantian argument against comparatively advantageous genetic modification.

    PubMed

    Jensen, David

    2011-08-01

    The genetic modification of children is becoming a more likely possibility given our rapid progress in medical technologies. I argue, from a broadly Kantian point of view, that at least one kind of such modification-modification by a parent for the sake of a child's comparative advantage-is not rationally justified. To argue this, I first characterize a necessary condition on reasons and rational justification: what is a reason for an agent to do an action in one set of circumstances must be a reason for any in those circumstances to do the action. I then show that comparatively advantageous genetic modification violates this principle since a child's "getting ahead" through genetic modification cannot be rationally justified unless other children also could receive the modification, thus rendering the advantage useless. Finally, I consider the major objection to this it seems to disallow all cases of a parent's helping a child get ahead, something that parents normally engage in with their children. I argue that typical practices of developing a comparative advantage in a child, as well as practices of societal competition in general, do not conflict because they involve circumstances that mitigate the universal character of reasons. Many ordinary cases of competitive advantage that we think of as unjust, in fact, can be explained by my argument.

  18. Genetic Modification in Human Pluripotent Stem Cells by Homologous Recombination and CRISPR/Cas9 System.

    PubMed

    Xue, Haipeng; Wu, Jianbo; Li, Shenglan; Rao, Mahendra S; Liu, Ying

    2016-01-01

    Genetic modification is an indispensable tool to study gene function in normal development and disease. The recent breakthrough of creating human induced pluripotent stem cells (iPSCs) by defined factors (Takahashi et al., Cell 131:861-872, 2007) provides a renewable source of patient autologous cells that not only retain identical genetic information but also give rise to many cell types of the body including neurons and glia. Meanwhile, the rapid advancement of genome modification tools such as gene targeting by homologous recombination (Capecchi, Nat Rev Genet 6:507-512, 2005) and genome editing tools such as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system, TALENs (Transcription activator-like effector nucleases), and ZFNs (Zinc finger nucleases) (Wang et al., Cell 153:910-918, 2013; Mali et al., Science 339:823-826, 2013; Hwang et al., Nat Biotechnol 31:227-229, 2013; Friedland et al., Nat Methods 10(8):741-743, 2013; DiCarlo et al., Nucleic Acids Res 41:4336-4343, 2013; Cong et al., Science 339:819-823, 2013) has greatly accelerated the development of human genome manipulation at the molecular level. This chapter describes the protocols for making neural lineage reporter lines using homologous recombination and the CRISPR/Cas system-mediated genome editing, including construction of targeting vectors, guide RNAs, transfection into hPSCs, and selection and verification of successfully targeted clones. This method can be applied to various needs of hPSC genetic engineering at high efficiency and high reliability.

  19. Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells.

    PubMed

    Chen, Xuguang; Nomani, Alireza; Patel, Niket; Nouri, Faranak S; Hatefi, Arash

    2018-01-01

    Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Scalable human ES culture for therapeutic use: propagation, differentiation, genetic modification and regulatory issues.

    PubMed

    Rao, M

    2008-01-01

    Embryonic stem cells unlike most adult stem cell populations can replicate indefinitely while preserving genetic, epigenetic, mitochondrial and functional profiles. ESCs are therefore an excellent candidate cell type for providing a bank of cells for allogenic therapy and for introducing targeted genetic modifications for therapeutic intervention. This ability of prolonged self-renewal of stem cells and the unique advantages that this offers for gene therapy, discovery efforts, cell replacement, personalized medicine and other more direct applications requires the resolution of several important manufacturing, gene targeting and regulatory issues. In this review, we assess some of the advance made in developing scalable culture systems, improvement in vector design and gene insertion technology and the changing regulatory landscape.

  1. Improving efficacy of cancer immunotherapy by genetic modification of natural killer cells.

    PubMed

    Burga, Rachel A; Nguyen, Tuongvan; Zulovich, Jane; Madonna, Sarah; Ylisastigui, Loyda; Fernandes, Rohan; Yvon, Eric

    2016-11-01

    Natural killer (NK) cells are members of the innate immune system that recognize target cells via activating and inhibitory signals received through cell receptors. Derived from the lymphoid lineage, NK cells are able to produce cytokines and exert a cytotoxic effect on viral infected and malignant cells. It is their unique ability to lyse target cells rapidly and without prior education that renders NK cells a promising effector cell for adoptive cell therapy. However, both viruses and tumors employ evasion strategies to avoid attack by NK cells, which represent biological challenges that need to be harnessed to fully exploit the cytolytic potential of NK cells. Using genetic modification, the function of NK cells can be enhanced to improve their homing, cytolytic activity, in vivo persistence and safety. Examples include gene modification to express chemokine, high-affinity Fc receptor and chimeric antigen receptors, suicide genes and the forced expression of cytokines such as interleukin (IL)-2 and IL-15. Preclinical studies have clearly demonstrated that such approaches are effective in improving NK-cell function, homing and safety. In this review, we summarize the recent advances in the genetic manipulations of NK cells and their application for cellular immunotherapeutic strategies. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes.

    PubMed

    Durand, Stéphanie; Nguyen, Xuan-Nhi; Turpin, Jocelyn; Cordeil, Stephanie; Nazaret, Nicolas; Croze, Séverine; Mahieux, Renaud; Lachuer, Joël; Legras-Lachuer, Catherine; Cimarelli, Andrea

    2013-01-01

    Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications.

  3. When gene medication is also genetic modification--regulating DNA treatment.

    PubMed

    Foss, Grethe S; Rogne, Sissel

    2007-07-26

    The molecular methods used in DNA vaccination and gene therapy resemble in many ways the methods applied in genetic modification of organisms. In some regulatory regimes, this creates an overlap between 'gene medication' and genetic modification. In Norway, an animal injected with plasmid DNA, in the form of DNA vaccine or gene therapy, currently is viewed as being genetically modified for as long as the added DNA is present in the animal. However, regulating a DNA-vaccinated animal as genetically modified creates both regulatory and practical challenges. It is also counter-intuitive to many biologists. Since immune responses can be elicited also to alter traits, the borderline between vaccination and the modification of properties is no longer distinct. In this paper, we discuss the background for the Norwegian interpretation and ways in which the regulatory challenge can be handled.

  4. The social and economic impact of biofortification through genetic modification.

    PubMed

    De Steur, Hans; Demont, Matty; Gellynck, Xavier; Stein, Alexander J

    2017-04-01

    Genetic modification (GM) has been advocated as an alternative or complement to micronutrient interventions such as supplementation, fortification or dietary diversification. While proof-of-concept of various GM biofortified crops looks promising, the decision tree of policy makers is much more complex, and requires insight on their socio-economic impacts: Will it actually work? Is it financially sound? Will people accept it? Can it be implemented in a globalized world? This review shows that GM biofortification could effectively reduce the burden of micronutrient deficiencies, in an economically viable way, and is generally well received by target beneficiaries, despite some resistance and uncertainty. Practically, however, protectionist and/or unscientific regulations in some developed countries raise the (perceived) bar for implementation in target countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells.

    PubMed

    Sanchez-Antequera, Yolanda; Mykhaylyk, Olga; van Til, Niek P; Cengizeroglu, Arzu; de Jong, J Henk; Huston, Marshall W; Anton, Martina; Johnston, Ian C D; Pojda, Zygmunt; Wagemaker, Gerard; Plank, Christian

    2011-04-21

    Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.

  6. Genetic Analysis of the Heparan Modification Network in Caenorhabditis elegans*

    PubMed Central

    Townley, Robert A.; Bülow, Hannes E.

    2011-01-01

    Heparan sulfates (HS) are highly modified sugar polymers in multicellular organisms that function in cell adhesion and cellular responses to protein signaling. Functionally distinct, cell type-dependent HS modification patterns arise as the result of a conserved network of enzymes that catalyze deacetylations, sulfations, and epimerizations in specific positions of the sugar residues. To understand the genetic interactions of the enzymes during the HS modification process, we have measured the composition of HS purified from mutant strains of Caenorhabditis elegans. From these measurements we have developed a genetic network model of HS modification. We find the interactions to be highly recursive positive feed-forward and negative feedback loops. Our genetic analyses show that the HS C-5 epimerase hse-5, the HS 2-O-sulfotransferase hst-2, or the HS 6-O-sulfotransferase hst-6 inhibit N-sulfation. In contrast, hse-5 stimulates both 2-O- and 6-O-sulfation and, hst-2 and hst-6 inhibit 6-O- and 2-O-sulfation, respectively. The effects of hst-2 and hst-6 on N-sulfation, 6-O-sulfation, and 2-O-sulfation appear largely dependent on hse-5 function. This core of regulatory interactions is further modulated by 6-O-endosulfatase activity (sul-1). 47% of all 6-O-sulfates get removed from HS and this editing process is dependent on hst-2, thereby providing additional negative feedback between 2-O- and 6-O-sulfation. These findings suggest that the modification patterns are highly sensitive to the relative composition of the HS modification enzymes. Our comprehensive genetic analysis forms the basis of understanding the HS modification network in metazoans. PMID:21454666

  7. Genetic analysis of the heparan modification network in Caenorhabditis elegans.

    PubMed

    Townley, Robert A; Bülow, Hannes E

    2011-05-13

    Heparan sulfates (HS) are highly modified sugar polymers in multicellular organisms that function in cell adhesion and cellular responses to protein signaling. Functionally distinct, cell type-dependent HS modification patterns arise as the result of a conserved network of enzymes that catalyze deacetylations, sulfations, and epimerizations in specific positions of the sugar residues. To understand the genetic interactions of the enzymes during the HS modification process, we have measured the composition of HS purified from mutant strains of Caenorhabditis elegans. From these measurements we have developed a genetic network model of HS modification. We find the interactions to be highly recursive positive feed-forward and negative feedback loops. Our genetic analyses show that the HS C-5 epimerase hse-5, the HS 2-O-sulfotransferase hst-2, or the HS 6-O-sulfotransferase hst-6 inhibit N-sulfation. In contrast, hse-5 stimulates both 2-O- and 6-O-sulfation and, hst-2 and hst-6 inhibit 6-O- and 2-O-sulfation, respectively. The effects of hst-2 and hst-6 on N-sulfation, 6-O-sulfation, and 2-O-sulfation appear largely dependent on hse-5 function. This core of regulatory interactions is further modulated by 6-O-endosulfatase activity (sul-1). 47% of all 6-O-sulfates get removed from HS and this editing process is dependent on hst-2, thereby providing additional negative feedback between 2-O- and 6-O-sulfation. These findings suggest that the modification patterns are highly sensitive to the relative composition of the HS modification enzymes. Our comprehensive genetic analysis forms the basis of understanding the HS modification network in metazoans.

  8. Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood

    PubMed Central

    Harris, Donald G.; Quinn, Kevin J.; French, Beth M.; Schwartz, Evan; Kang, Elizabeth; Dahi, Siamak; Phelps, Carol J.; Ayares, David L.; Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.

    2014-01-01

    Background Genetically modified pigs are a promising potential source of lung xenografts. Ex-vivo xenoperfusion is an effective platform for testing the effect of new modifications, but typical experiments are limited by testing of a single genetic intervention and small sample sizes. The purpose of this study was to analyze the individual and aggregate effects of donor genetic modifications on porcine lung xenograft survival and injury in an extensive pig lung xenoperfusion series. Methods Data from 157 porcine lung xenoperfusion experiments using otherwise unmodified heparinized human blood were aggregated as either continuous or dichotomous variables. Lungs were wild type in 17 perfusions (11% of the study group), while 31 lungs (20% of the study group) had 1 genetic modification, 40 lungs (39%) had 2, and 47 lungs (30%) had 3 or more modifications. The primary endpoint was functional lung survival to 4 hours of perfusion. Secondary analyses evaluated previously identified markers associated with known lung xenograft injury mechanisms. In addition to comparison among all xenografts grouped by survival status, a subgroup analysis was performed of lungs incorporating the GalTKO.hCD46 genotype. Results Each increase in the number of genetic modifications was associated with additional prolongation of lung xenograft survival. Lungs that exhibited survival to 4 hours generally had reduced platelet activation and thrombin generation. GalTKO and the expression of hCD46, HO-1, hCD55 or hEPCR were associated with improved survival. hTBM, HLA-E, and hCD39 were associated with no significant effect on the primary outcome. Conclusion This meta-analysis of an extensive lung xenotransplantation series demonstrates that increasing the number of genetic modifications targeting known xenogeneic lung injury mechanisms is associated with incremental improvements in lung survival. While more detailed mechanistic studies are needed to explore the relationship between gene expression

  9. Recent advances in genetic modification systems for Actinobacteria.

    PubMed

    Deng, Yu; Zhang, Xi; Zhang, Xiaojuan

    2017-03-01

    Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.

  10. Germline Genetic Modification and Identity: the Mitochondrial and Nuclear Genomes.

    PubMed

    Scott, Rosamund; Wilkinson, Stephen

    2017-12-01

    In a legal 'first', the UK removed a prohibition against modifying embryos in human reproduction, to enable mitochondrial replacement techniques (MRTs), a move the Government distanced from 'germline genetic modification', which it aligned with modifying the nuclear genome. This paper (1) analyzes the uses and meanings of this term in UK/US legal and policy debates; and (2) evaluates related ethical concerns about identity. It shows that, with respect to identity, MRTs and nuclear genome editing techniques such as CRISPR/Cas-9 (now a policy topic), are not as different as has been supposed. While it does not follow that the two should be treated exactly alike, one of the central reasons offered for treating MRTs more permissively than nuclear genetic modification, and for not regarding MRTs as 'germline genetic modification', is thereby in doubt. Identity cannot, by itself, do the work thus far assigned to it, explicitly or otherwise, in law and policy.

  11. Recent advances in genetic modification of adenovirus vectors for cancer treatment.

    PubMed

    Yamamoto, Yuki; Nagasato, Masaki; Yoshida, Teruhiko; Aoki, Kazunori

    2017-05-01

    Adenoviruses are widely used to deliver genes to a variety of cell types and have been used in a number of clinical trials for gene therapy and oncolytic virotherapy. However, several concerns must be addressed for the clinical use of adenovirus vectors. Selective delivery of a therapeutic gene by adenovirus vectors to target cancer is precluded by the widespread distribution of the primary cellular receptors. The systemic administration of adenoviruses results in hepatic tropism independent of the primary receptors. Adenoviruses induce strong innate and acquired immunity in vivo. Furthermore, several modifications to these vectors are necessary to enhance their oncolytic activity and ensure patient safety. As such, the adenovirus genome has been engineered to overcome these problems. The first part of the present review outlines recent progress in the genetic modification of adenovirus vectors for cancer treatment. In addition, several groups have recently developed cancer-targeting adenovirus vectors by using libraries that display random peptides on a fiber knob. Pancreatic cancer-targeting sequences have been isolated, and these oncolytic vectors have been shown by our group to be associated with a higher gene transduction efficiency and more potent oncolytic activity in cell lines, murine models, and surgical specimens of pancreatic cancer. In the second part of this review, we explain that combining cancer-targeting strategies can be a promising approach to increase the clinical usefulness of oncolytic adenovirus vectors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification

    PubMed Central

    Weisberg, Steven M.; Badgio, Daniel; Chatterjee, Anjan

    2017-01-01

    The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects) and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes—conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics) were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people’s attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification. PMID:28589120

  13. A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification.

    PubMed

    Weisberg, Steven M; Badgio, Daniel; Chatterjee, Anjan

    2017-01-01

    The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects) and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes-conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics) were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people's attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification.

  14. Pnp gene modification for improved xylose utilization in Zymomonas

    DOEpatents

    Caimi, Perry G G; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2014-12-16

    The endogenous pnp gene encoding polynucleotide phosphorylase in the Zymomonas genome was identified as a target for modification to provide improved xylose utilizing cells for ethanol production. The cells are in addition genetically modified to have increased expression of ribose-5-phosphate isomerase (RPI) activity, as compared to cells without this genetic modification, and are not limited in xylose isomerase activity in the absence of the pnp modification.

  15. Germline modification of domestic animals

    PubMed Central

    Tang, L.; González, R.; Dobrinski, I.

    2016-01-01

    is introduced into the male germ line just before the onset of spermatogenesis, the time required for the production of genetically modified sperm is significantly shorter using germ cell transplantation compared to cloning or embryonic stem (ES) cell based technology. Moreover, the GSC-mediated germline modification circumvents problems associated with embryo manipulation and nuclear reprogramming. Currently, engineering targeted mutations in domestic animals using GSCs remains a challenge as GSCs from those animals are difficult to maintain in vitro for an extended period of time. Recent advances in genome editing techniques such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) greatly enhance the efficiency of engineering targeted genetic change in domestic animals as demonstrated by the generation of several gene knock-out pig and cattle models using those techniques. The potential of GSC-mediated germline modification in making targeted genetic modifications in domestic animal models will be maximized if those genome editing techniques can be applied in GSCs. PMID:27390591

  16. Mobilome and genetic modification of bifidobacteria.

    PubMed

    Guglielmetti, S; Mayo, B; Álvarez-Martín, P

    2013-06-01

    Until recently, proper development of molecular studies in Bifidobacterium species has been hampered by growth difficulties, because of their exigent nutritive requirements, oxygen sensitivity and lack of efficient genetic tools. These studies, however, are critical to uncover the cross-talk between bifidobacteria and their hosts' cells and to prove unequivocally the supposed beneficial effects provided through the endogenous bifidobacterial populations or after ingestion as probiotics. The genome sequencing projects of different bifidobacterial strains have provided a wealth of genetic data that will be of much help in deciphering the molecular basis of the physiological properties of bifidobacteria. To this end, the purposeful development of stable cloning and expression vectors based on robust replicons - either from temperate phages or resident plasmids - is still needed. This review addresses the current knowledge on the mobile genetic elements of bifidobacteria (prophages, plasmids and transposons) and summarises the different types of vectors already available, together with the transformation procedures for introducing DNA into the cells. It also covers recent molecular studies performed with such vectors and incipient results on the genetic modification of these organisms, establishing the basis that would allow the use of bifidobacteria for future biotechnological applications.

  17. Safe genetic modification of cardiac stem cells using a site-specific integration technique.

    PubMed

    Lan, Feng; Liu, Junwei; Narsinh, Kazim H; Hu, Shijun; Han, Leng; Lee, Andrew S; Karow, Marisa; Nguyen, Patricia K; Nag, Divya; Calos, Michele P; Robbins, Robert C; Wu, Joseph C

    2012-09-11

    Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts. We used the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells. Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared with unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging, and positron emission tomography. Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function 2 weeks after cell delivery, as assessed by echocardiography (P=0.002) and MRI (P=0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated human endothelial cells, which enhanced hind limb perfusion (P<0.05 at day 7 and 14 after transplantation) on laser Doppler imaging. The phiC31 integrase genomic modification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types.

  18. Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement

    USDA-ARS?s Scientific Manuscript database

    Genetic modification of dedicated bioenergy crops is in its infancy; however, there are numerous advantages to the use of these tools to improve crops used for biofuels. Potential improved traits through genetic engineering (GE) include herbicide resistance, pest, drought, cold and salt tolerance, l...

  19. Osteoblastic differentiation of human and equine adult bone marrow-derived mesenchymal stem cells when BMP-2 or BMP-7 homodimer genetic modification is compared to BMP-2/7 heterodimer genetic modification in the presence and absence of dexamethasone.

    PubMed

    Carpenter, Ryan S; Goodrich, Laurie R; Frisbie, David D; Kisiday, John D; Carbone, Beth; McIlwraith, C Wayne; Centeno, Christopher J; Hidaka, Chisa

    2010-10-01

    Bone marrow-derived mesenchymal stem cells (BMDMSCs) have been targeted for use in enhancement of bone healing; and their osteogenic potential may be further augmented by genes encoding bone morphogenetic proteins (BMP's). The purpose of this study was to compare the effect of genetic modification of human and equine BMDMSCs with BMP-2 or -7 or BMP-2 and -7 on their osteoblastogenic differentiation in the presence or absence of dexamethasone. The BMDMSCs were harvested from the iliac crest of three human donors and tuber coxae of three equine donors. Monolayer cells were genetically modified using adenovirus vectors encoding BMP-2, -7 or both and cultured in the presence or absence of dexamethasone. Expression of BMPs was confirmed by enzyme linked immunosorbent assay (ELISA). To evaluate osteoblastic differentiation, cellular morphology was assessed every other day and expression and secretion of alkaline phosphatase (ALP), as well as expression levels of osteonectin (OSTN), osteocalcin (OCN), and runt-related transcription factor-2 (Runx2) were measured for up to 14 days. Human and equine BMDMSCs showed a capacity for osteogenic differentiation regardless of genetic modification or dexamethasone supplementation. Dexamethasone supplementation was more important for osteoblastogenic differentiation of equine BMDMSCs than human BMDMSCs. Genetic modification of BMDMSCs increased ALP secretion with AdBMP-2 homodimer having the greatest effect in both human and equine cells compared to AdBMP 7 or AdBMP 2/7. BMP protein elution rates reached their maximal concentration between day 4 and 8 and remained relatively stable thereafter, suggesting that genetically modified BMDMSCs could be useful for cell-based delivery of BMPs to a site of bone formation. Published by Wiley Periodicals, Inc. J Orthop Res 28:1330-1337, 2010.

  20. Targeting aging for disease modification in osteoarthritis.

    PubMed

    Collins, John A; Diekman, Brian O; Loeser, Richard F

    2018-01-01

    Age is a key risk factor for the development of osteoarthritis and age-related changes within the joint might represent targets for therapy. The recent literature was reviewed to find studies that provide new insight into the role of aging in osteoarthritis, with a focus on the potential for disease modification. Preclinical studies using isolated cells and animal models provide evidence that two hallmarks of aging (cellular senescence and mitochondrial dysfunction) contribute to the development of osteoarthritis. Senescent cells secrete pro-inflammatory mediators and matrix degrading enzymes, and killing these cells with 'senolytic' compounds has emerged as a potential disease-modifying therapy. Mitochondrial dysfunction is associated with increased levels of reactive oxygen species (ROS) that can promote osteoarthritis by disrupting homeostatic intracellular signaling. Reducing ROS production in the mitochondria, stimulating antioxidant gene expression through Nrf2 activation, or inhibiting specific redox-sensitive signaling proteins represent additional approaches to disease modification in osteoarthritis that require further investigation. Although no human clinical trials for osteoarthritis have specifically targeted aging, preclinical studies suggest that targeting cellular senescence and/or mitochondrial dysfunction and the effects of excessive ROS may lead to novel interventions that could slow the progression of osteoarthritis.

  1. Safe Genetic Modification of Cardiac Stem Cells Using a Site-Specific Integration Technique

    PubMed Central

    Lan, Feng; Liu, Junwei; Narsinh, Kazim H.; Hu, Shijun; Han, Leng; Lee, Andrew S.; Karow, Marisa; Nguyen, Patricia K.; Nag, Divya; Calos, Michele P.; Robbins, Robert C.; Wu, Joseph C.

    2012-01-01

    Background Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts. Methods and Results We employed the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells (hECs). Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared to unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging (BLI), and positron emission tomography (PET). Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function two weeks after cell delivery, as assessed by echocardiography (P = 0.002) and magnetic resonance imaging (P = 0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated hECs, which enhanced hindlimb perfusion (P<0.05 at day 7 and 14 after transplantation) on laser Doppler imaging. Conclusions The phiC31 integrase genomic modification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types. PMID:22965984

  2. Genetic modification of Anopheles stephensi for resistance to multiple Plasmodium falciparum strains does not influence susceptibility to o'nyong'nyong virus or insecticides, or Wolbachia-mediated resistance to the malaria parasite.

    PubMed

    Pike, Andrew; Dimopoulos, George

    2018-01-01

    Mosquitoes that have been genetically engineered for resistance to human pathogens are a potential new tool for controlling vector-borne disease. However, genetic modification may have unintended off-target effects that could affect the mosquitoes' utility for disease control. We measured the resistance of five genetically modified Plasmodium-suppressing Anopheles stephensi lines to o'nyong'nyong virus, four classes of insecticides, and diverse Plasmodium falciparum field isolates and characterized the interactions between our genetic modifications and infection with the bacterium Wolbachia. The genetic modifications did not alter the mosquitoes' resistance to either o'nyong'nyong virus or insecticides, and the mosquitoes were equally resistant to all tested P. falciparum strains, regardless of Wolbachia infection status. These results indicate that mosquitoes can be genetically modified for resistance to malaria parasite infection and remain compatible with other vector-control measures without becoming better vectors for other pathogens.

  3. Systems genetics for drug target discovery

    PubMed Central

    Penrod, Nadia M.; Cowper-Sal_lari, Richard; Moore, Jason H.

    2011-01-01

    The collection and analysis of genomic data has the potential to reveal novel druggable targets by providing insight into the genetic basis of disease. However, the number of drugs, targeting new molecular entities, approved by the US Food and Drug Administration (FDA) has not increased in the years since the collection of genomic data has become commonplace. The paucity of translatable results can be partly attributed to conventional analysis methods that test one gene at a time in an effort to identify disease-associated factors as candidate drug targets. By disengaging genetic factors from their position within the genetic regulatory system, much of the information stored within the genomic data set is lost. Here we discuss how genomic data is used to identify disease-associated genes or genomic regions, how disease-associated regions are validated as functional targets, and the role network analysis can play in bridging the gap between data generation and effective drug target identification. PMID:21862141

  4. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects

    PubMed Central

    Bramsen, Jesper B.; Pakula, Malgorzata M.; Hansen, Thomas B.; Bus, Claus; Langkjær, Niels; Odadzic, Dalibor; Smicius, Romualdas; Wengel, Suzy L.; Chattopadhyaya, Jyoti; Engels, Joachim W.; Herdewijn, Piet; Wengel, Jesper; Kjems, Jørgen

    2010-01-01

    Small interfering RNAs (siRNAs) are now established as the preferred tool to inhibit gene function in mammalian cells yet trigger unintended gene silencing due to their inherent miRNA-like behavior. Such off-target effects are primarily mediated by the sequence-specific interaction between the siRNA seed regions (position 2–8 of either siRNA strand counting from the 5′-end) and complementary sequences in the 3′UTR of (off-) targets. It was previously shown that chemical modification of siRNAs can reduce off-targeting but only very few modifications have been tested leaving more to be identified. Here we developed a luciferase reporter-based assay suitable to monitor siRNA off-targeting in a high throughput manner using stable cell lines. We investigated the impact of chemically modifying single nucleotide positions within the siRNA seed on siRNA function and off-targeting using 10 different types of chemical modifications, three different target sequences and three siRNA concentrations. We found several differently modified siRNAs to exercise reduced off-targeting yet incorporation of the strongly destabilizing unlocked nucleic acid (UNA) modification into position 7 of the siRNA most potently reduced off-targeting for all tested sequences. Notably, such position-specific destabilization of siRNA–target interactions did not significantly reduce siRNA potency and is therefore well suited for future siRNA designs especially for applications in vivo where siRNA concentrations, expectedly, will be low. PMID:20453030

  5. GENETIC CONTROL OF RESTRICTION AND MODIFICATION IN ESCHERICHIA COLI1

    PubMed Central

    Boyer, Herbert

    1964-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Genetic control of restriction and modification in Escherichia coli. J. Bacteriol. 88:1652–1660. 1964.—Bacterial crosses with K-12 strains of Escherichia coli as Hfr donors (Hfr Hayes, Hfr Cavalli, and Hfr P4X-6) and B/r strains of E. coli as F− recipients were found to differ from crosses between K-12 Hfr donors and K-12 F− recipients in two ways: (i) recombinants (leu, pro, lac, and gal) did not appear at discrete time intervals but did appear simultaneously 30 min after matings were initiated, and (ii) the linkage of unselected markers to selected markers was reduced. Integration of a genetic region linked to the threonine locus of K-12 into the B/r genome resulted in a hybrid which no longer gave anomalous results in conjugation experiments. A similar region of the B strain was introduced into the K-12 strain, which then behaved as a typical B F− recipient. These observations are interpreted as the manifestation of host-controlled modification and restriction on the E. coli chromosome. This was verified by experiments on the restriction and modification of the bacteriophage lambda, F-lac, F-gal, and sex-factor, F1. It was found that the genetic region that controlled the mating responses of the K-12 and B/r strains also controlled the modification and restriction properties of these two strains. The genes responsible for the restricting and modifying properties of the K-12 and B strains of E. coli were found to be allelic, linked to each other, and linked to the threonine locus. PMID:14240953

  6. Genetic Variation and Its Reflection on Posttranslational Modifications in Frequency Clock and Mating Type a-1 Proteins in Sordaria fimicola

    PubMed Central

    Arif, Rabia; Akram, Faiza; Jamil, Tazeen; Lee, Siu Fai

    2017-01-01

    Posttranslational modifications (PTMs) occur in all essential proteins taking command of their functions. There are many domains inside proteins where modifications take place on side-chains of amino acids through various enzymes to generate different species of proteins. In this manuscript we have, for the first time, predicted posttranslational modifications of frequency clock and mating type a-1 proteins in Sordaria fimicola collected from different sites to see the effect of environment on proteins or various amino acids pickings and their ultimate impact on consensus sequences present in mating type proteins using bioinformatics tools. Furthermore, we have also measured and walked through genomic DNA of various Sordaria strains to determine genetic diversity by genotyping the short sequence repeats (SSRs) of wild strains of S. fimicola collected from contrasting environments of two opposing slopes (harsh and xeric south facing slope and mild north facing slope) of Evolution Canyon (EC), Israel. Based on the whole genome sequence of S. macrospora, we targeted 20 genomic regions in S. fimicola which contain short sequence repeats (SSRs). Our data revealed genetic variations in strains from south facing slope and these findings assist in the hypothesis that genetic variations caused by stressful environments lead to evolution. PMID:28717646

  7. Genetic Variation and Its Reflection on Posttranslational Modifications in Frequency Clock and Mating Type a-1 Proteins in Sordaria fimicola.

    PubMed

    Arif, Rabia; Akram, Faiza; Jamil, Tazeen; Mukhtar, Hamid; Lee, Siu Fai; Saleem, Muhammad

    2017-01-01

    Posttranslational modifications (PTMs) occur in all essential proteins taking command of their functions. There are many domains inside proteins where modifications take place on side-chains of amino acids through various enzymes to generate different species of proteins. In this manuscript we have, for the first time, predicted posttranslational modifications of frequency clock and mating type a-1 proteins in Sordaria fimicola collected from different sites to see the effect of environment on proteins or various amino acids pickings and their ultimate impact on consensus sequences present in mating type proteins using bioinformatics tools. Furthermore, we have also measured and walked through genomic DNA of various Sordaria strains to determine genetic diversity by genotyping the short sequence repeats (SSRs) of wild strains of S. fimicola collected from contrasting environments of two opposing slopes (harsh and xeric south facing slope and mild north facing slope) of Evolution Canyon (EC), Israel. Based on the whole genome sequence of S. macrospora , we targeted 20 genomic regions in S. fimicola which contain short sequence repeats (SSRs). Our data revealed genetic variations in strains from south facing slope and these findings assist in the hypothesis that genetic variations caused by stressful environments lead to evolution.

  8. Efficient CRISPR/Cas9-assisted gene targeting enables rapid and precise genetic manipulation of mammalian neural stem cells

    PubMed Central

    Bressan, Raul Bardini; Dewari, Pooran Singh; Kalantzaki, Maria; Gangoso, Ester; Matjusaitis, Mantas; Garcia-Diaz, Claudia; Blin, Carla; Grant, Vivien; Bulstrode, Harry; Gogolok, Sabine; Skarnes, William C.

    2017-01-01

    Mammalian neural stem cell (NSC) lines provide a tractable model for discovery across stem cell and developmental biology, regenerative medicine and neuroscience. They can be derived from foetal or adult germinal tissues and continuously propagated in vitro as adherent monolayers. NSCs are clonally expandable, genetically stable, and easily transfectable – experimental attributes compatible with targeted genetic manipulations. However, gene targeting, which is crucial for functional studies of embryonic stem cells, has not been exploited to date in NSC lines. Here, we deploy CRISPR/Cas9 technology to demonstrate a variety of sophisticated genetic modifications via gene targeting in both mouse and human NSC lines, including: (1) efficient targeted transgene insertion at safe harbour loci (Rosa26 and AAVS1); (2) biallelic knockout of neurodevelopmental transcription factor genes; (3) simple knock-in of epitope tags and fluorescent reporters (e.g. Sox2-V5 and Sox2-mCherry); and (4) engineering of glioma mutations (TP53 deletion; H3F3A point mutations). These resources and optimised methods enable facile and scalable genome editing in mammalian NSCs, providing significant new opportunities for functional genetic analysis. PMID:28096221

  9. Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation1

    PubMed Central

    Eichten, Steven R.; Schmitz, Robert J.; Springer, Nathan M.

    2014-01-01

    Chromatin modifications and epigenetics may play important roles in many plant processes, including developmental regulation, responses to environmental stimuli, and local adaptation. Chromatin modifications describe biochemical changes to chromatin state, such as alterations in the specific type or placement of histones, modifications of DNA or histones, or changes in the specific proteins or RNAs that associate with a genomic region. The term epigenetic is often used to describe a variety of unexpected patterns of gene regulation or inheritance. Here, we specifically define epigenetics to include the key aspects of heritability (stable transmission of gene expression states through mitotic or meiotic cell divisions) and independence from DNA sequence changes. We argue against generically equating chromatin and epigenetics; although many examples of epigenetics involve chromatin changes, those chromatin changes are not always heritable or may be influenced by genetic changes. Careful use of the terms chromatin modifications and epigenetics can help separate the biochemical mechanisms of regulation from the inheritance patterns of altered chromatin states. Here, we also highlight examples in which chromatin modifications and epigenetics affect important plant processes. PMID:24872382

  10. Progress of targeted genome modification approaches in higher plants.

    PubMed

    Cardi, Teodoro; Neal Stewart, C

    2016-07-01

    Transgene integration in plants is based on illegitimate recombination between non-homologous sequences. The low control of integration site and number of (trans/cis)gene copies might have negative consequences on the expression of transferred genes and their insertion within endogenous coding sequences. The first experiments conducted to use precise homologous recombination for gene integration commenced soon after the first demonstration that transgenic plants could be produced. Modern transgene targeting categories used in plant biology are: (a) homologous recombination-dependent gene targeting; (b) recombinase-mediated site-specific gene integration; (c) oligonucleotide-directed mutagenesis; (d) nuclease-mediated site-specific genome modifications. New tools enable precise gene replacement or stacking with exogenous sequences and targeted mutagenesis of endogeneous sequences. The possibility to engineer chimeric designer nucleases, which are able to target virtually any genomic site, and use them for inducing double-strand breaks in host DNA create new opportunities for both applied plant breeding and functional genomics. CRISPR is the most recent technology available for precise genome editing. Its rapid adoption in biological research is based on its inherent simplicity and efficacy. Its utilization, however, depends on available sequence information, especially for genome-wide analysis. We will review the approaches used for genome modification, specifically those for affecting gene integration and modification in higher plants. For each approach, the advantages and limitations will be noted. We also will speculate on how their actual commercial development and implementation in plant breeding will be affected by governmental regulations.

  11. Advances in genetic modification of pluripotent stem cells.

    PubMed

    Fontes, Andrew; Lakshmipathy, Uma

    2013-11-15

    Genetically engineered stem cells aid in dissecting basic cell function and are valuable tools for drug discovery, in vivo cell tracking, and gene therapy. Gene transfer into pluripotent stem cells has been a challenge due to their intrinsic feature of growing in clusters and hence not amenable to common gene delivery methods. Several advances have been made in the rapid assembly of DNA elements, optimization of culture conditions, and DNA delivery methods. This has lead to the development of viral and non-viral methods for transient or stable modification of cells, albeit with varying efficiencies. Most methods require selection and clonal expansion that demand prolonged culture and are not suited for cells with limited proliferative potential. Choosing the right platform based on preferred length, strength, and context of transgene expression is a critical step. Random integration of the transgene into the genome can be complicated due to silencing or altered regulation of expression due to genomic effects. An alternative to this are site-specific methods that target transgenes followed by screening to identify the genomic loci that support long-term expression with stem cell proliferation and differentiation. A highly precise and accurate editing of the genome driven by homology can be achieved using traditional methods as well as the newer technologies such as zinc finger nuclease, TAL effector nucleases and CRISPR. In this review, we summarize the different genetic engineering methods that have been successfully used to create modified embryonic and induced pluripotent stem cells. © 2013. Published by Elsevier Inc. All rights reserved.

  12. Genetic modifications of pigs for medicine and agriculture

    PubMed Central

    Whyte, Jeffrey J.; Prather, Randall S.

    2011-01-01

    SUMMARY Genetically modified swine hold great promise in the fields of agriculture and medicine. Currently, these swine are being used to optimize production of quality meat, to improve our understanding of the biology of disease resistance, and to reduced waste. In the field of biomedicine, swine are anatomically and physiologically analogous to humans. Alterations of key swine genes in disease pathways provide model animals to improve our understanding of the causes and potential treatments of many human genetic disorders. The completed sequencing of the swine genome will significantly enhance the specificity of genetic modifications, and allow for more accurate representations of human disease based on syntenic genes between the two species. Improvements in both methods of gene alteration and efficiency of model animal production are key to enabling routine use of these swine models in medicine and agriculture. PMID:21671302

  13. Refining Intervention Targets in Family-Based Research: Lessons From Quantitative Behavioral Genetics

    PubMed Central

    Leve, Leslie D.; Harold, Gordon T.; Ge, Xiaojia; Neiderhiser, Jenae M.; Patterson, Gerald

    2010-01-01

    The results from a large body of family-based research studies indicate that modifying the environment (specifically dimensions of the social environment) through intervention is an effective mechanism for achieving positive outcomes. Parallel to this work is a growing body of evidence from genetically informed studies indicating that social environmental factors are central to enhancing or offsetting genetic influences. Increased precision in the understanding of the role of the social environment in offsetting genetic risk might provide new information about environmental mechanisms that could be applied to prevention science. However, at present, the multifaceted conceptualization of the environment in prevention science is mismatched with the more limited measurement of the environment in many genetically informed studies. A framework for translating quantitative behavioral genetic research to inform the development of preventive interventions is presented in this article. The measurement of environmental indices amenable to modification is discussed within the context of quantitative behavioral genetic studies. In particular, emphasis is placed on the necessary elements that lead to benefits in prevention science, specifically the development of evidence-based interventions. An example from an ongoing prospective adoption study is provided to illustrate the potential of this translational process to inform the selection of preventive intervention targets. PMID:21188273

  14. Methods for genetic modification of megakaryocytes and platelets.

    PubMed

    Pendaries, Caroline; Watson, Stephen P; Spalton, Jennifer C

    2007-09-01

    During recent decades there have been major advances in the fields of thrombosis and haemostasis, in part through development of powerful molecular and genetic technologies. Nevertheless, genetic modification of megakaryocytes and generation of mutant platelets in vitro remains a highly specialized area of research. Developments are hampered by the low frequency of megakaryocytes and their progenitors, a poor efficiency of transfection and a lack of understanding with regard to the mechanism by which megakaryocytes release platelets. Current methods used in the generation of genetically modified megakaryocytes and platelets include mutant mouse models, cell line studies and use of viruses to transform primary megakaryocytes or haematopoietic precursor cells. This review summarizes the advantages, limitations and technical challenges of such methods, with a particular focus on recent successes and advances in this rapidly progressing field including the potential for use in gene therapy for treatment of patients with platelet disorders.

  15. Coupling bimolecular PARylation biosensors with genetic screens to identify PARylation targets.

    PubMed

    Krastev, Dragomir B; Pettitt, Stephen J; Campbell, James; Song, Feifei; Tanos, Barbara E; Stoynov, Stoyno S; Ashworth, Alan; Lord, Christopher J

    2018-05-22

    Poly (ADP-ribose)ylation is a dynamic protein modification that regulates multiple cellular processes. Here, we describe a system for identifying and characterizing PARylation events that exploits the ability of a PBZ (PAR-binding zinc finger) protein domain to bind PAR with high-affinity. By linking PBZ domains to bimolecular fluorescent complementation biosensors, we developed fluorescent PAR biosensors that allow the detection of temporal and spatial PARylation events in live cells. Exploiting transposon-mediated recombination, we integrate the PAR biosensor en masse into thousands of protein coding genes in living cells. Using these PAR-biosensor "tagged" cells in a genetic screen we carry out a large-scale identification of PARylation targets. This identifies CTIF (CBP80/CBP20-dependent translation initiation factor) as a novel PARylation target of the tankyrase enzymes in the centrosomal region of cells, which plays a role in the distribution of the centrosomal satellites.

  16. Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history

    NASA Astrophysics Data System (ADS)

    Rey, Martin P.; Pontzen, Andrew

    2018-02-01

    Recent work has studied the interplay between a galaxy's history and its observable properties using `genetically modified' cosmological zoom simulations. The approach systematically generates alternative histories for a halo, while keeping its cosmological environment fixed. Applications to date altered linear properties of the initial conditions, such as the mean overdensity of specified regions; we extend the formulation to include quadratic features, such as local variance, that determines the overall importance of smooth accretion relative to mergers in a galaxy's history. We introduce an efficient algorithm for this new class of modification and demonstrate its ability to control the variance of a region in a one-dimensional toy model. Outcomes of this work are twofold: (i) a clarification of the formulation of genetic modifications and (ii) a proof of concept for quadratic modifications leading the way to a forthcoming implementation in cosmological simulations.

  17. Genetic Targeting of an Adenovirus Vector via Replacement of the Fiber Protein with the Phage T4 Fibritin

    PubMed Central

    Krasnykh, Victor; Belousova, Natalya; Korokhov, Nikolay; Mikheeva, Galina; Curiel, David T.

    2001-01-01

    The utility of adenovirus (Ad) vectors for gene therapy is restricted by their inability to selectively transduce disease-affected tissues. This limitation may be overcome by the derivation of vectors capable of interacting with receptors specifically expressed in the target tissue. Previous attempts to alter Ad tropism by genetic modification of the Ad fiber have had limited success due to structural conflicts between the fiber and the targeting ligand. Here we present a strategy to derive an Ad vector with enhanced targeting potential by a radical replacement of the fiber protein in the Ad capsid with a chimeric molecule containing a heterologous trimerization motif and a receptor-binding ligand. Our approach, which capitalized upon the overall structural similarity between the human Ad type 5 (Ad5) fiber and bacteriophage T4 fibritin proteins, has resulted in the generation of a genetically modified Ad5 incorporating chimeric fiber-fibritin proteins targeted to artificial receptor molecules. Gene transfer studies employing this novel viral vector have demonstrated its capacity to efficiently deliver a transgene payload to the target cells in a receptor-specific manner. PMID:11287567

  18. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    NASA Astrophysics Data System (ADS)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  19. Genetic modification of human trabecular meshwork with lentiviral vectors.

    PubMed

    Loewen, N; Fautsch, M P; Peretz, M; Bahler, C K; Cameron, J D; Johnson, D H; Poeschla, E M

    2001-11-20

    Glaucoma, a group of optic neuropathies, is the leading cause of irreversible blindness. Neuronal apoptosis in glaucoma is primarily associated with high intraocular pressure caused by chronically impaired outflow of aqueous humor through the trabecular meshwork, a reticulum of mitotically inactive endothelial-like cells located in the angle of the anterior chamber. Anatomic, genetic, and expression profiling data suggest the possibility of using gene transfer to treat glaucomatous intraocular pressure dysregulation, but this approach will require stable genetic modification of the differentiated aqueous outflow tract. We injected transducing unit-normalized preparations of either of two lentiviral vectors or an oncoretroviral vector as a single bolus into the aqueous circulation of cultured human donor eyes, under perfusion conditions that mimicked natural anterior chamber flow and maintained viability ex vivo. Reporter gene expression was assessed in trabecular meshwork from 3 to 16 days after infusion of 1.0 x 10(8) transducing units of each vector. The oncoretroviral vector failed to transduce the trabecular meshwork. In contrast, feline immunodeficiency virus and human immunodeficiency virus vectors produced efficient, localized transduction of the trabecular meshwork in situ. The results demonstrate that lentiviral vectors permit efficient genetic modification of the human trabecular meshwork when delivered via the afferent aqueous circulation, a clinically accessible route. In addition, controlled comparisons in this study establish that feline and human immunodeficiency virus vectors are equivalently efficacious in delivering genes to this terminally differentiated human tissue.

  20. A Designed Peptide Targets Two Types of Modifications of p53 with Anti-cancer Activity.

    PubMed

    Liang, Lunxi; Wang, Huanbin; Shi, Hubing; Li, Zhaoli; Yao, Han; Bu, Zhigao; Song, Ningning; Li, Chushu; Xiang, Dabin; Zhang, Yao; Wang, Jilin; Hu, Ye; Xu, Qi; Ma, Yanlei; Cheng, Zhongyi; Wang, Yingchao; Zhao, Shuliang; Qian, Jin; Chen, Yingxuan; Fang, Jing-Yuan; Xu, Jie

    2018-06-21

    Many cancer-related proteins are controlled by composite post-translational modifications (PTMs), but prevalent strategies only target one type of modification. Here we describe a designed peptide that controls two types of modifications of the p53 tumor suppressor, based on the discovery of a protein complex that suppresses p53 (suppresome). We found that Morn3, a cancer-testis antigen, recruits different PTM enzymes, such as sirtuin deacetylase and ubiquitin ligase, to confer composite modifications on p53. The molecular functions of Morn3 were validated through in vivo assays and chemico-biological intervention. A rationally designed Morn3-targeting peptide (Morncide) successfully activated p53 and suppressed tumor growth. These findings shed light on the regulation of protein PTMs and present a strategy for targeting two modifications with one molecule. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Cancer gene therapy with targeted adenoviruses.

    PubMed

    Bachtarzi, Houria; Stevenson, Mark; Fisher, Kerry

    2008-11-01

    Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.

  2. Detection of thermogenesis in rodents in response to anti-obesity drugs and genetic modification

    PubMed Central

    Arch, Jonathan R. S.; Trayhurn, Paul

    2013-01-01

    Many compounds and genetic manipulations are claimed to confer resistance to obesity in rodents by raising energy expenditure. Examples taken from recent and older literature, demonstrate that such claims are often based on measurements of energy expenditure after body composition has changed, and depend on comparisons of energy expenditure divided by body weight. This is misleading because white adipose tissue has less influence than lean tissue on energy expenditure. Application of this approach to human data would suggest that human obesity is usually due to a low metabolic rate, which is not an accepted view. Increased energy expenditure per animal is a surer way of demonstrating thermogenesis, but even then it is important to know whether this is due to altered body composition (repartitioning), or increased locomotor activity rather than thermogenesis per se. Regression analysis offers other approaches. The thermogenic response to some compounds has a rapid onset and so cannot be due to altered body composition. These compounds usually mimic or activate the sympathetic nervous system. Thermogenesis occurs in, but may not be confined to, brown adipose tissue. It should not be assumed that weight loss in response to these treatments is due to thermogenesis unless there is a sustained increase in 24-h energy expenditure. Thyroid hormones and fibroblast growth factor 21 also raise energy expenditure before they affect body composition. Some treatments and genetic modifications alter the diurnal rhythm of energy expenditure. It is important to establish whether this is due to altered locomotor activity or efficiency of locomotion. There are no good examples of compounds that do not affect short-term energy expenditure but have a delayed effect. How and under what conditions a genetic modification or compound increases energy expenditure influences the decision on whether to seek drugs for the target or take a candidate drug into clinical studies. PMID:23580228

  3. Augmented liver targeting of exosomes by surface modification with cationized pullulan.

    PubMed

    Tamura, Ryo; Uemoto, Shinji; Tabata, Yasuhiko

    2017-07-15

    Exosomes are membrane nanoparticles containing biological substances that are employed as therapeutics in experimental inflammatory models. Surface modification of exosomes for better tissue targetability and enhancement of their therapeutic ability was recently attempted mainly using gene transfection techniques. Here, we show for the first time that the surface modification of exosomes with cationized pullulan, which has the ability to target hepatocyte asialoglycoprotein receptors, can target injured liver and enhance the therapeutic effect of exosomes. Surface modification can be achieved by a simple mixing of original exosomes and cationized pullulan and through an electrostatic interaction of both substances. The exosomes modified with cationized pullulan were internalized into HepG2 cells in vitro to a significantly greater extent than unmodified ones and this internalization was induced through the asialoglycoprotein receptor that was specifically expressed on HepG2 cells and hepatocytes. When injected intravenously into mice with concanavalin A-induced liver injury, the modified exosomes accumulated in the liver tissue, resulting in an enhanced anti-inflammatory effect in vivo. It is concluded that the surface modification with cationized pullulan promoted accumulation of the exosomes in the liver and the subsequent biological function, resulting in a greater therapeutic effect on liver injury. Exosomes have shown potentials as therapeutics for various inflammatory disease models. This study is the first to show the specific accumulation of exosomes in the liver and enhanced anti-inflammatory effect via the surface modification of exosomes using pullulan, which is specifically recognized by the asialoglycoprotein receptor (AGPR) on HepG2 cells and hepatocytes. The pullulan was expressed on the surface of PKH-labeled exosomes, and it led increased accumulation of PKH into HepG2 cells, whereas the accumulation was canceled by AGPR inhibitor. In the mouse

  4. Generation and genetic modification of induced pluripotent stem cells.

    PubMed

    Schambach, Axel; Cantz, Tobias; Baum, Christopher; Cathomen, Toni

    2010-07-01

    The generation of induced pluripotent stem cells (iPSCs) enabled by exogenous expression of the canonical Oct4, Sox2, Klf4 and c-Myc reprogramming factors has opened new ways to create patient- or disease-specific pluripotent cells. iPSCs represent an almost inexhaustible source of cells for targeted differentiation into somatic effector cells and hence are likely to be invaluable for therapeutic applications and disease-related research. After an introduction on the biology of reprogramming we cover emerging technological advances, including new reprogramming approaches, small-molecule compounds and tailored genetic modification, and give an outlook towards potential clinical applications of iPSCs. Although this field is progressing rapidly, reprogramming is still an inefficient process. The reader will learn about innovative tools to generate patient-specific iPSCs and how to modify these established lines in a safe way. Ideally, the disease-causing mutation is edited directly in the genome using novel technologies based on artificial nucleases, such as zinc-finger nucleases. Human iPSCs create fascinating options with regard to disease modeling, drug testing, developmental studies and therapeutic applications. However, important hurdles have to be taken and more efficient protocols to be established to achieve the ambitious goal of bringing iPSCs into clinical use.

  5. Population-specific genetic modification of Huntington's disease in Venezuela.

    PubMed

    Chao, Michael J; Kim, Kyung-Hee; Shin, Jun Wan; Lucente, Diane; Wheeler, Vanessa C; Li, Hong; Roach, Jared C; Hood, Leroy; Wexler, Nancy S; Jardim, Laura B; Holmans, Peter; Jones, Lesley; Orth, Michael; Kwak, Seung; MacDonald, Marcy E; Gusella, James F; Lee, Jong-Min

    2018-05-01

    Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2-21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies.

  6. Population-specific genetic modification of Huntington's disease in Venezuela

    PubMed Central

    Chao, Michael J.; Kim, Kyung-Hee; Shin, Jun Wan; Lucente, Diane; Wheeler, Vanessa C.; Li, Hong; Roach, Jared C.; Hood, Leroy; Jardim, Laura B.; Jones, Lesley; Orth, Michael; Kwak, Seung; MacDonald, Marcy E.; Gusella, James F.

    2018-01-01

    Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2–21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies. PMID:29750799

  7. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  8. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy.

    PubMed

    Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L

    2010-01-01

    The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

  9. Genetic Control of the Secondary Modification of Deoxyribonucleic Acid in Escherichia coli1

    PubMed Central

    Mamelak, Linda; Boyer, Herbert W.

    1970-01-01

    The wild-type restriction and modification alleles of Escherichia coli K-12 and B were found to have no measurable effect on the patterns of methylated bases in the deoxyribonucleic acid (DNA) of these strains. The genetic region controlling the methylation of cytosine in E. coli K-12 was mapped close to his, and the presence or absence of this gene in E. coli B or E. coli K had no effect on the restriction and modification properties of these strains. Thus, only a few of the methylated bases in the DNA of these strains are involved in host modification, and the biological role of the remainder remains obscure. PMID:4919756

  10. Genetic modification of cells for transplantation.

    PubMed

    Lai, Yi; Drobinskaya, Irina; Kolossov, Eugen; Chen, Chunguang; Linn, Thomas

    2008-01-14

    Progress in gene therapy has produced promising results that translate experimental research into clinical treatment. Gene modification has been extensively employed in cell transplantation. The main barrier is an effective gene delivery system. Several viral vectors were utilized in end-stage differentiated cells. Recently, successful applications were described with adenovirus-associated vectors. As an alternative, embryonic stem cell- and stem cell-like systems were established for generation of tissue-specified gene-modified cells. Owing to the feasibility for genetic manipulations and the self-renewing potency of these cells they can be used in a way enabling large-scale in vitro production. This approach offers the establishment of in vitro cell culture systems that will deliver sufficient amounts of highly purified, immunoautologous cells suitable for application in regenerative medicine. In this review, the current technology of gene delivery systems to cells is recapitulated and the latest developments for cell transplantation are discussed.

  11. Germline Genetic Modification and Identity: the Mitochondrial and Nuclear Genomes

    PubMed Central

    Scott, Rosamund; Wilkinson, Stephen

    2017-01-01

    Abstract In a legal ‘first’, the UK removed a prohibition against modifying embryos in human reproduction, to enable mitochondrial replacement techniques (MRTs), a move the Government distanced from ‘germline genetic modification’, which it aligned with modifying the nuclear genome. This paper (1) analyzes the uses and meanings of this term in UK/US legal and policy debates; and (2) evaluates related ethical concerns about identity. It shows that, with respect to identity, MRTs and nuclear genome editing techniques such as CRISPR/Cas-9 (now a policy topic), are not as different as has been supposed. While it does not follow that the two should be treated exactly alike, one of the central reasons offered for treating MRTs more permissively than nuclear genetic modification, and for not regarding MRTs as ‘germline genetic modification’, is thereby in doubt. Identity cannot, by itself, do the work thus far assigned to it, explicitly or otherwise, in law and policy. PMID:29670305

  12. Attitudes Toward Genetic Modification Research: An Analysis of the Views of the Sputnik Generation.

    ERIC Educational Resources Information Center

    Miller, Jon D.

    1982-01-01

    Utilizing data from the 1977 National Assessment of Educational Progress (NAEP) survey of young adults, summarizes attitudes toward genetic modification research and the demographic, educational, and occupational correlates of these attitudes. (Author/SK)

  13. Genetic risk variants as therapeutic targets for Crohn's disease.

    PubMed

    Gabbani, Tommaso; Deiana, Simona; Marocchi, Margherita; Annese, Vito

    2017-04-01

    The pathogenesis of Inflammatory bowel diseases (IBD) is multifactorial, with interactions between genetic and environmental factors. Despite the existence of genetic factors being largely demonstrated by epidemiological data and several genetic studies, only a few findings have been useful in term of disease prediction, disease progression and targeting therapy. Areas covered: This review summarizes the results of genome-wide association studies in Crohn's disease, the role of epigenetics and the recent discovery by genetic studies of new pathogenetic pathways. Furthermore, it focuses on the importance of applying genetic data to clinical practice, and more specifically how to better target therapy and predict potential drug-related toxicity. Expert opinion: Some genetic markers identified in Crohn`s disease have allowed investigators to hypothesize about, and in some cases, prove the usefulness of new specific therapeutic agents. However, the heterogeneity and complexity of this disease has so far limited the daily clinical use of genetic information. Finally, the study of the implications of genetics on therapy, either to predict efficacy or avoid toxicity, is considered still to be in its infancy.

  14. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    PubMed

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Transcript Isoform Variation Associated with Cytosine Modification in Human Lymphoblastoid Cell Lines.

    PubMed

    Zhang, Xu; Zhang, Wei

    2016-06-01

    Cytosine modification on DNA is variable among individuals, which could correlate with gene expression variation. The effect of cytosine modification on interindividual transcript isoform variation (TIV), however, remains unclear. In this study, we assessed the extent of cytosine modification-specific TIV in lymphoblastoid cell lines (LCLs) derived from unrelated individuals of European and African descent. Our study detected cytosine modification-specific TIVs for 17% of the analyzed genes at a 5% false discovery rate. Forty-five percent of the TIV-associated cytosine modifications correlated with the overall gene expression levels as well, with the corresponding CpG sites overrepresented in transcript initiation sites, transcription factor binding sites, and distinct histone modification peaks, suggesting that alternative isoform transcription underlies the TIVs. Our analysis also revealed 33% of the TIV-associated cytosine modifications that affected specific exons, with the corresponding CpG sites overrepresented in exon/intron junctions, splicing branching points, and transcript termination sites, implying that the TIVs are attributable to alternative splicing or transcription termination. Genetic and epigenetic regulation of TIV shared target preference but exerted independent effects on 61% of the common exon targets. Cytosine modification-specific TIVs detected from LCLs were differentially enriched in those detected from various tissues in The Cancer Genome Atlas, indicating their developmental dependency. Genes containing cytosine modification-specific TIVs were enriched in pathways of cancers and metabolic disorders. Our study demonstrated a prominent effect of cytosine modification variation on the transcript isoform spectrum over gross transcript abundance and revealed epigenetic contributions to diseases that were mediated through cytosine modification-specific TIV. Copyright © 2016 by the Genetics Society of America.

  16. Are You Ready for [a] Roundup?--What Chemistry Has to Do with Genetic Modifications

    NASA Astrophysics Data System (ADS)

    Pöpping, Bert

    2001-06-01

    Genetically modified crops are grown in most parts of the world nowadays. These transgenic plants have new properties such as herbicide tolerance or insect resistance that often cannot be introduced by conventional breeding. Using examples of very common transgenic varieties, the article explains how the knowledge of metabolic pathways and genetic information is used to design these plants and how the same knowledge is used to detect them. It reviews why detection of genetic modifications in plants has become necessary and describes the most common detection methods, from immunological assays to polymerase chain reaction and real-time detection.

  17. Progress in the molecular and genetic modification breeding of beef cattle in China.

    PubMed

    Tong, Bin; Zhang, Li; Li, Guang-Peng

    2017-11-20

    The studies of beef cattle breeding in China have been greatly improved with the rapid development of the international beef cattle industrialization. The beef cattle breeding technologies have rapidly transformed from traditional breeding to molecular marker-assisted breeding, genomic selection and genetic modification breeding. Hundreds of candidate genes and molecular markers associated with growth, meat quality, reproduction performance and diseases resistance have been identified, and some of them have already been used in cattle breeding. Genes and molecular markers associated with growth and development are focused on the growth hormone, muscle regulatory factors, myostatin and insulin-like growth factors. Meat quality is mediated by fatty acid transport and deposition related signals, calpains and calpain system, muscle regulatory factors and muscle growth regulation pathways. Reproduction performance is regulated by GnRH-FSH-LH, growth differentiation factor 9, prolactin receptor and forkhead box protein O1. Disease resistance is modulated by the major histocompatibility complex gene family, toll-like receptors, mannose-binding lectin and interferon gene signals. In this review, we summarize the most recent progress in beef cattle breeding in marker-assisted selection, genome-wide selection and genetic modification breeding, aiming to provide a reference for further genetic breeding research of beef cattle in China.

  18. An Efficient Electroporation Protocol for the Genetic Modification of Mammalian Cells

    PubMed Central

    Chicaybam, Leonardo; Barcelos, Camila; Peixoto, Barbara; Carneiro, Mayra; Limia, Cintia Gomez; Redondo, Patrícia; Lira, Carla; Paraguassú-Braga, Flávio; Vasconcelos, Zilton Farias Meira De; Barros, Luciana; Bonamino, Martin Hernán

    2017-01-01

    Genetic modification of cell lines and primary cells is an expensive and cumbersome approach, often involving the use of viral vectors. Electroporation using square-wave generating devices, like Lonza’s Nucleofector, is a widely used option, but the costs associated with the acquisition of electroporation kits and the transient transgene expression might hamper the utility of this methodology. In the present work, we show that our in-house developed buffers, termed Chicabuffers, can be efficiently used to electroporate cell lines and primary cells from murine and human origin. Using the Nucleofector II device, we electroporated 14 different cell lines and also primary cells, like mesenchymal stem cells and cord blood CD34+, providing optimized protocols for each of them. Moreover, when combined with sleeping beauty-based transposon system, long-term transgene expression could be achieved in all types of cells tested. Transgene expression was stable and did not interfere with CD34+ differentiation to committed progenitors. We also show that these buffers can be used in CRISPR-mediated editing of PDCD1 gene locus in 293T and human peripheral blood mononuclear cells. The optimized protocols reported in this study provide a suitable and cost-effective platform for the genetic modification of cells, facilitating the widespread adoption of this technology. PMID:28168187

  19. Genetic heterogeneity in cholangiocarcinoma: a major challenge for targeted therapies

    PubMed Central

    Brandi, Giovanni; Farioli, Andrea; Astolfi, Annalisa; Biasco, Guido; Tavolari, Simona

    2015-01-01

    Cholangiocarcinoma (CC) encompasses a group of related but distinct malignancies whose lack of a stereotyped genetic signature makes challenging the identification of genomic landscape and the development of effective targeted therapies. Accumulated evidences strongly suggest that the remarkable genetic heterogeneity of CC may be the result of a complex interplay among different causative factors, some shared by most human cancers while others typical of this malignancy. Currently, considerable efforts are ongoing worldwide for the genetic characterization of CC, also using advanced technologies such as next-generation sequencing (NGS). Undoubtedly this technology could offer an unique opportunity to broaden our understanding on CC molecular pathogenesis. Despite this great potential, however, the high complexity in terms of factors potentially contributing to genetic variability in CC calls for a more cautionary application of NGS to this malignancy, in order to avoid possible biases and criticisms in the identification of candidate actionable targets. This approach is further justified by the urgent need to develop effective targeted therapies in this disease. A multidisciplinary approach integrating genomic, functional and clinical studies is therefore mandatory to translate the results obtained by NGS into effective targeted therapies for this orphan disease. PMID:26142706

  20. Genetic modification of stem cells for transplantation.

    PubMed

    Phillips, M Ian; Tang, Yao Liang

    2008-01-14

    Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.

  1. Genetic Modification of Human Pancreatic Progenitor Cells Through Modified mRNA.

    PubMed

    Lu, Song; Chow, Christie C; Zhou, Junwei; Leung, Po Sing; Tsui, Stephen K; Lui, Kathy O

    2016-01-01

    In this chapter, we describe a highly efficient genetic modification strategy for human pancreatic progenitor cells using modified mRNA-encoding GFP and Neurogenin-3. The properties of modified mRNA offer an invaluable platform to drive protein expression, which has broad applicability in pathway regulation, directed differentiation, and lineage specification. This approach can also be used to regulate expression of other pivotal transcription factors during pancreas development and might have potential therapeutic values in regenerative medicine.

  2. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, A. M., E-mail: zam@plasma.mephi.ru; Dvoichenkova, O. A.; Evsin, A. E.

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  3. Gene Flow in Genetically Engineered Perennial Grasses: Lessons for Modification of Dedicated Bioenergy Crops

    USDA-ARS?s Scientific Manuscript database

    Genetic modification of dedicated bioenergy crops, such as switchgrass, will play a major role in crop improvement for a wide range of beneficial traits specific to biofuels. One obstacle that arises regarding transgenic improvement of perennials used for biofuels is the propensity of these plants t...

  4. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    PubMed

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

  5. Germline Modification and Engineering in Avian Species

    PubMed Central

    Lee, Hong Jo; Lee, Hyung Chul; Han, Jae Yong

    2015-01-01

    Production of genome-edited animals using germline-competent cells and genetic modification tools has provided opportunities for investigation of biological mechanisms in various organisms. The recently reported programmed genome editing technology that can induce gene modification at a target locus in an efficient and precise manner facilitates establishment of animal models. In this regard, the demand for genome-edited avian species, which are some of the most suitable model animals due to their unique embryonic development, has also increased. Furthermore, germline chimera production through long-term culture of chicken primordial germ cells (PGCs) has facilitated research on production of genome-edited chickens. Thus, use of avian germline modification is promising for development of novel avian models for research of disease control and various biological mechanisms. Here, we discuss recent progress in genome modification technology in avian species and its applications and future strategies. PMID:26333275

  6. Genetic Modification of Stem Cells for Transplantation

    PubMed Central

    Phillips, M. Ian; Tang, Yao Liang

    2009-01-01

    Gene modification of cells for prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene modified cell has to gain entrance inside the host’s walls and survive and deliver its transgene products Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene modified stem cells in cardiovascular disease, diabetes, neurological diseases,( including Parkinson’s, Alzheimer’s and spinal cord injury repair), bone defects, hemophilia, and cancer. PMID:18031863

  7. Genetic Mutations and Epigenetic Modifications: Driving Cancer and Informing Precision Medicine

    PubMed Central

    Coyle, Krysta Mila; Boudreau, Jeanette E.

    2017-01-01

    Cancer treatment is undergoing a significant revolution from “one-size-fits-all” cytotoxic therapies to tailored approaches that precisely target molecular alterations. Precision strategies for drug development and patient stratification, based on the molecular features of tumors, are the next logical step in a long history of approaches to cancer therapy. In this review, we discuss the history of cancer treatment from generic natural extracts and radical surgical procedures to site-specific and combinatorial treatment regimens, which have incrementally improved patient outcomes. We discuss the related contributions of genetics and epigenetics to cancer progression and the response to targeted therapies and identify challenges and opportunities for the success of precision medicine. The identification of patients who will benefit from targeted therapies is more complex than simply identifying patients whose tumors harbour the targeted aberration, and intratumoral heterogeneity makes it difficult to determine if a precision therapy is successful during treatment. This heterogeneity enables tumors to develop resistance to targeted approaches; therefore, the rational combination of therapeutic agents will limit the threat of acquired resistance to therapeutic success. By incorporating the view of malignant transformation modulated by networks of genetic and epigenetic interactions, molecular strategies will enable precision medicine for effective treatment across cancer subtypes. PMID:28685150

  8. Targeted drug delivery using genetically engineered diatom biosilica.

    PubMed

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H

    2015-11-10

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.

  9. The evolution of adenoviral vectors through genetic and chemical surface modifications.

    PubMed

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-02-17

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.

  10. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.

    PubMed

    Khan, Muhammad Hafeez Ullah; Khan, Shahid U; Muhammad, Ali; Hu, Limin; Yang, Yang; Fan, Chuchuan

    2018-06-01

    Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems. © 2017 Wiley Periodicals, Inc.

  11. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression.

    PubMed

    Ahmed, Nabil; Salsman, Vita S; Yvon, Eric; Louis, Chrystal U; Perlaky, Laszlo; Wels, Winfried S; Dishop, Meghan K; Kleinerman, Eugenie E; Pule, Martin; Rooney, Cliona M; Heslop, Helen E; Gottschalk, Stephen

    2009-10-01

    Human epidermal growth factor receptor 2 (HER2) is expressed by the majority of human osteosarcomas and is a risk factor for poor outcome. Unlike breast cancer, osteosarcoma cells express HER2 at too low, a level for patients to benefit from HER2 monoclonal antibodies. We reasoned that this limitation might be overcome by genetically modifying T cells with HER2-specific chimeric antigen receptors (CARs), because even a low frequency of receptor engagement could be sufficient to induce effector cell killing of the tumor. HER2-specific T cells were generated by retroviral transduction with a HER2-specific CAR containing a CD28.zeta signaling domain. HER2-specific T cells recognized HER2-positive osteosarcoma cells as judged by their ability to proliferate, produce immunostimulatory T helper 1 cytokines, and kill HER2-positive osteosarcoma cell lines in vitro. The adoptive transfer of HER2-specific T cells caused regression of established osteosarcoma xenografts in locoregional as well as metastatic mouse models. In contrast, delivery of nontransduced (NT) T cells did not change the tumor growth pattern. Genetic modification of T cells with CARs specific for target antigens, expressed at too low a level to be effectively recognized by monoclonal antibodies, may allow immunotherapy to be more broadly applicable for human cancer therapy.

  12. Genetically Validated Drug Targets in Leishmania: Current Knowledge and Future Prospects.

    PubMed

    Jones, Nathaniel G; Catta-Preta, Carolina M C; Lima, Ana Paula C A; Mottram, Jeremy C

    2018-04-13

    There has been a very limited number of high-throughput screening campaigns carried out with Leishmania drug targets. In part, this is due to the small number of suitable target genes that have been shown by genetic or chemical methods to be essential for the parasite. In this perspective, we discuss the state of genetic target validation in the field of Leishmania research and review the 200 Leishmania genes and 36 Trypanosoma cruzi genes for which gene deletion attempts have been made since the first published case in 1990. We define a quality score for the different genetic deletion techniques that can be used to identify potential drug targets. We also discuss how the advances in genome-scale gene disruption techniques have been used to assist target-based and phenotypic-based drug development in other parasitic protozoa and why Leishmania has lacked a similar approach so far. The prospects for this scale of work are considered in the context of the application of CRISPR/Cas9 gene editing as a useful tool in Leishmania.

  13. Genetic modification of stem cells for improved therapy of the infarcted myocardium.

    PubMed

    Haider, Husnain Kh; Mustafa, Anique; Feng, Yuliang; Ashraf, Muhammad

    2011-10-03

    The conventional treatment modalities for ischemic heart disease only provide symptomatic relief to the patient without repairing and regenerating the damaged myocardium. Stem cell transplantation has emerged as a promising alternative therapeutic approach for cardiovascular diseases. Stem cells possess the potential of differentiation to adopt morphofunctional cardiac and vasculogenic phenotypes to repopulate the scar tissue and restore regional blood flow in the ischemic myocardium. These beneficial therapeutic effects make stem cell transplantation the method of choice for the treatment of ischemic heart disease. The efficacy of stem cell transplantation may be augmented by genetic manipulation of the cells prior to transplantation. Not only will insertion of therapeutic transgene(s) into the stem cells support the survival and differentiation of cells in the unfavorable microenvironment of the ischemic myocardium, but also the genetically manipulated stem cells will serve as a source of the transgene expression product in the heart for therapeutic benefits. We provide an overview of the extensively studied stem cell types for cardiac regeneration, the various methods in which these cells have been genetically manipulated and rationale of genetic modification of stem cells for use in regenerative cardiovascular therapeutics.

  14. Translating Genetic Research into Preventive Intervention: The Baseline Target Moderated Mediator Design.

    PubMed

    Howe, George W; Beach, Steven R H; Brody, Gene H; Wyman, Peter A

    2015-01-01

    In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM) design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We use simulated data to illustrate a BTMM, and end with a discussion of some of the advantages and limitations of this approach.

  15. Translating Genetic Research into Preventive Intervention: The Baseline Target Moderated Mediator Design

    PubMed Central

    Howe, George W.; Beach, Steven R. H.; Brody, Gene H.; Wyman, Peter A.

    2016-01-01

    In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM) design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We use simulated data to illustrate a BTMM, and end with a discussion of some of the advantages and limitations of this approach. PMID:26779062

  16. Genetic tumor profiling and genetically targeted cancer therapy.

    PubMed

    Goetsch, Cathleen M

    2011-02-01

    To discuss how understanding and manipulation of tumor genetics information and technology shapes cancer care today and what changes might be expected in the near future. Published articles, web resources, clinical practice. Advances in our understanding of genes and their regulation provide a promise of more personalized cancer care, allowing selection of the most safe and effective therapy in an individual situation. Rapid progress in the technology of tumor profiling and targeted cancer therapies challenges nurses to keep up-to-date to provide quality patient education and care. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Production of Prnp-/- goats by gene targeting in adult fibroblasts.

    PubMed

    Zhu, Caihong; Li, Bei; Yu, Guohua; Chen, Jianquan; Yu, Huiqing; Chen, Juan; Xu, Xujun; Wu, Youbing; Zhang, Aimin; Cheng, Guoxiang

    2009-04-01

    Homozygous mice devoid of functional Prnp are resistant to scrapie and prion propagation, but heterozygous mice for Prnp disruption still suffer from prion disease and prion deposition. We have previously generated heterozygous cloned goats with one allele of Prnp functional disruption. To obtain goats with both alleles of Prnp be disrupted which would be resistant to scrapie completely, a second-round gene targeting was applied to disrupt the wild type allele of Prnp in the heterozygous goats. By second-round gene targeting, we successfully disrupted the wild type allele of Prnp in primary Prnp (+/-) goat skin fibroblasts and obtained a Prnp (-/-) cell line without Prnp expression. This is the first report on successful targeting modification in primary adult somatic cells of animals. These cells were used as nuclear donors for somatic cell cloning to produce Prnp (-/-) goats. A total of 57 morulae or blastocytes developed from the reconstructed embryos were transferred to 31 recipients, which produced 7 pregnancies at day 35. At 73 days of gestation, we obtained one cloned fetus with Prnp (-/-) genotype. Our research not only indicated that multiple genetic modifications could be accomplished by multi-round gene targeting in primary somatic cells, but also provided strong evidence that gene targeting in adult cells other than fetal cells could be applied to introduce precise genetic modifications in animals without destroying the embryos.

  18. Beliefs about Genetically Targeted Care in African Americans

    PubMed Central

    Halbert, Chanita Hughes; McDonald, Jasmine A.; Magwood, Gayenell; Jefferson, Melanie

    2018-01-01

    We examined beliefs about genetically targeted care (GTC) among African American men and women in a hospital-based sample and identified sociodemographic, cultural, and clinical factors having significant independent associations with these beliefs. Specifically, beliefs about GTC were evaluated after respondents were randomly primed with a racial or non-racial cue about race and genetics. Despite priming with a racial or non-racial cue, many respondents had positive beliefs about GTC. But, 49% believed that GTC would limit access to medical treatment, 46% believed that people will not trust GTC, and 20% believed that people like them would not benefit from GTC. Racial and non-racial priming did not have significant associations with negative beliefs about GTC. However, cultural beliefs related to temporal orientation were associated significantly with believing that genetically targeted care will limit access to medical treatment. Greater levels of future temporal orientation were associated with a reduced likelihood of endorsing this belief (OR = 0.70, 95% CI = 0.49, 1.01, p = 0.05). Respondents who had a chronic medical condition had an almost three-fold greater likelihood of believing that they would not benefit from GTC (OR = 2.90, 95% CI = 1.00, 8.37, p = 0.05). Greater exposure to information about genetic testing for chronic conditions was also associated with a reduced likelihood of believing that they would not benefit from GTC (OR = 0.40, 95% CI = 0.64, 0.91, p = 0.02). African Americans have diverse beliefs about GTC that should be considered as genetic and genomic services are offered. PMID:28599763

  19. Engineering liposomal nanoparticles for targeted gene therapy.

    PubMed

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  20. Epigenetic modifications in prostate cancer.

    PubMed

    Ngollo, Marjolaine; Dagdemir, Aslihan; Karsli-Ceppioglu, Seher; Judes, Gaelle; Pajon, Amaury; Penault-Llorca, Frederique; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique J

    2014-01-01

    Prostate cancer is the most common cancer in men and the second leading cause of cancer deaths in men in France. Apart from the genetic alterations in prostate cancer, epigenetics modifications are involved in the development and progression of this disease. Epigenetic events are the main cause in gene regulation and the three most epigenetic mechanisms studied include DNA methylation, histone modifications and microRNA expression. In this review, we summarized epigenetic mechanisms in prostate cancer. Epigenetic drugs that inhibit DNA methylation, histone methylation and histone acetylation might be able to reactivate silenced gene expression in prostate cancer. However, further understanding of interactions of these enzymes and their effects on transcription regulation in prostate cancer is needed and has become a priority in biomedical research. In this study, we summed up epigenetic changes with emphasis on pharmacologic epigenetic target agents.

  1. Rexin-G, a targeted genetic medicine for cancer.

    PubMed

    Gordon, Erlinda M; Hall, Frederick L

    2010-05-01

    Rexin-G, a tumor-targeted retrovector bearing a cytocidal cyclin G1 construct, is the first targeted gene therapy vector to gain fast track designation and orphan drug priorities for multiple cancer indications in the US. This review describes the major milestones in the clinical development of Rexin-G: from the molecular cloning and characterization of the human cyclin G1 proto-oncogene in 1994, to the design of the first knockout constructs and genetic engineering of the targeted delivery system from 1995 to 1997, through the initial proofs-of-concept, molecular pharmacology and toxicology studies of Rexin-G in preclinical cancer models from 1997 to 2001, to the pioneering clinical studies in humans from 2002 to 2004, which--together with the advancements in bioprocess development of high-potency clinical grade vectors circa 2005 - 2006--led to the accelerated approval of Rexin-G for all solid tumors by the Philippine FDA in 2007 and the rapid progression of clinical studies from 2007 to 2009 to the cusp of pivotal Phase III trials in the US. In recording the development of Rexin-G as a novel form of targeted biological therapy, this review also highlights important aspects of vector design engineering which served to overcome the physiological barriers to gene delivery as it addresses the key regulatory issues involved in the development of a targeted gene therapy product. Progressive clinical development of Rexin-G demonstrates the potential safety and efficacy of targeted genetic medicine, while validating the design engineering of the molecular biotechnology platform.

  2. Supernatural T cells: genetic modification of T cells for cancer therapy.

    PubMed

    Kershaw, Michael H; Teng, Michele W L; Smyth, Mark J; Darcy, Phillip K

    2005-12-01

    Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.

  3. Small nucleolar RNAs that guide modification in trypanosomatids: repertoire, targets, genome organisation, and unique functions.

    PubMed

    Uliel, Shai; Liang, Xue-hai; Unger, Ron; Michaeli, Shulamit

    2004-03-29

    Small nucleolar RNAs constitute a family of newly discovered non-coding small RNAs, most of which function in guiding RNA modifications. Two prevalent types of modifications are 2'-O-methylation and pseudouridylation. The modification is directed by the formation of a canonical small nucleolar RNA-target duplex. Initially, RNA-guided modification was shown to take place on rRNA, but recent studies suggest that small nuclear RNA, mRNA, tRNA, and the trypanosome spliced leader RNA also undergo guided modifications. Trypanosomes contain more modifications and potentially more small nucleolar RNAs than yeast, and the increased number of modifications may help to preserve ribosome function under adverse environmental conditions during the cycling between the insect and mammalian host. The genome organisation in clusters carrying the two types of small nucleolar RNAs, C/D and H/ACA-like RNAs, resembles that in plants. However, the trypanosomatid H/ACA RNAs are similar to those found in Archaea and are composed of a single hairpin that may represent the primordial H/ACA RNA. In this review we summarise this new field of trypanosome small nucleolar RNAs, emphasising the open questions regarding the number of small nucleolar RNAs, the repertoire, genome organisation, and the unique function of guided modifications in these protozoan parasites.

  4. Comparison of Allergenicity at Gly m 4 and Gly m Bd 30K of Soybean after Genetic Modification.

    PubMed

    Tsai, Jaw-Ji; Chang, Ching-Yun; Liao, En-Chih

    2017-02-15

    Despite rapid growth of genetically modified (GM) crops, effective evaluations of genetic modification on allergenicity are still lacking. Gly m Bd 30K is cross-reactive with cow's milk protein casein, Gly m 4, and with birch pollen allergen Bet v 1. Here we compared the allergenicity between GM and non-GM soybeans with respect to the foci Gly m 4 and Gly m Bd 30K. Recombinant allergens of Gly m Bd 30K and Gly m 4 were generated and polyclonal antibodies raised to identify these two allergenic components in soybeans. GM soybean was first PCR-confirmed using 35S promoter. A total of 20 soybeans (half GM, half non-GM) obtained from a food market were used to assess their allergenicity based on IgE-binding and histamine release. The concentrations of Gly m Bd 30K and Gly m 4 in soybeans were then determined. Most soybean-allergic patients (9 of 10) showed IgE-positive reactions to the allergen of 30 kDa in molecular weight. That allergen turned out to be Glycine max Gly m Bd 30K based on LC-MS/MS analyses. Gly m Bd 30K is therefore the major allergen in the soybean. An increase in the transcription of both the Gly m 4 (stress-induced protein SAM22) and Gly m Bd 28K (soybean allergen precursor) was found after genetic modification. The protein concentrations of Gly m 4 and Gly m Bd 30K were not statistically significant different between non-GM and GM soybeans. There were also no statistical significances between them in the tests of IgE binding and histamine release. In conclusion, soybeans showed similar concentrations of Gly m Bd 30K and Gly m 4 regardless of genetic modification or absence thereof. The allergenicity of both Gly m Bd 30K and Gly m 4 was therefore not altered after genetic modification. Patients showing hypersensitivity to soybeans and who had pre-existing allergy to birch pollen and cow's milk casein might not further increase their allergic reactions following exposures to the GM soybeans.

  5. Molecular genetics and targeted therapeutics in biliary tract carcinoma

    PubMed Central

    Marks, Eric I; Yee, Nelson S

    2016-01-01

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract. PMID:26819503

  6. Molecular genetics and targeted therapeutics in biliary tract carcinoma.

    PubMed

    Marks, Eric I; Yee, Nelson S

    2016-01-28

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract.

  7. Harnessing epigenome modifications for better crops

    USDA-ARS?s Scientific Manuscript database

    Chemical DNA modifications such as methylation influence translation of the DNA code to specific genetic outcomes. While such modifications can be heritable, others are transient, and their overall contribution to plant genetic diversity remains intriguing but uncertain. The focus of this article is...

  8. Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications.

    PubMed

    Porter, Joseph J; Mehl, Ryan A

    2018-01-01

    Posttranslational modifications resulting from oxidation of proteins (Ox-PTMs) are present intracellularly under conditions of oxidative stress as well as basal conditions. In the past, these modifications were thought to be generic protein damage, but it has become increasingly clear that Ox-PTMs can have specific physiological effects. It is an arduous task to distinguish between the two cases, as multiple Ox-PTMs occur simultaneously on the same protein, convoluting analysis. Genetic code expansion (GCE) has emerged as a powerful tool to overcome this challenge as it allows for the site-specific incorporation of an Ox-PTM into translated protein. The resulting homogeneously modified protein products can then be rigorously characterized for the effects of individual Ox-PTMs. We outline the strengths and weaknesses of GCE as they relate to the field of oxidative stress and Ox-PTMs. An overview of the Ox-PTMs that have been genetically encoded and applications of GCE to the study of Ox-PTMs, including antibody validation and therapeutic development, is described.

  9. Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy

    DOE PAGES

    Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...

    2014-09-01

    Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less

  10. Genetic modification of hematopoietic stem cells as a therapy for HIV/AIDS.

    PubMed

    Younan, Patrick; Kowalski, John; Kiem, Hans-Peter

    2013-11-28

    The combination of genetic modification and hematopoietic stem cell (HSC) transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.

  11. Genetic Modification of Hematopoietic Stem Cells as a Therapy for HIV/AIDS

    PubMed Central

    Younan, Patrick; Kowalski, John; Kiem, Hans-Peter

    2013-01-01

    The combination of genetic modification and hematopoietic stem cell (HSC) transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies. PMID:24287598

  12. Unexpected consequences of genetic selection in broilers and turkeys: problems and solutions.

    PubMed

    Hocking, P M

    2014-02-01

    1. Genetic theory leads to the expectation that unexpected consequences of genetic selection for production traits will inevitably occur and that these changes are likely to be undesirable. 2. Both artificial selection for production efficiency and "natural" selection for adaptation to the production environment result in selection sweeps that increase the frequencies of rare recessive alleles that have a negative effect on fitness. 3. Fitness is broadly defined as any trait that affects the ability to survive, reproduce and contribute to the next generation, such as musculoskeletal disease in growing broiler chickens and multiple ovulation in adult broiler parents. 4. Welfare concerns about the negative effects of genetic selection on bird welfare are sometimes exaggerated but are nevertheless real. Breeders have paid increasing attention to these traits over several decades and have demonstrated improvement in pedigree flocks. There is an urgent need to monitor changes in commercial flocks to ensure that genetic change is accompanied by improvements in that target population. 5. New technologies for trait measurement, whole genome selection and targeted genetic modification hold out the promise of efficient and rapid improvement of welfare traits in future breeding of broiler chickens and turkeys. The potential of targeted genetic modification for enhancing welfare traits is considerable, but the goal of achieving public acceptability for the progeny of transgenic poultry will be politically challenging.

  13. Why genetic modification of lignin leads to low-recalcitrance biomass

    DOE PAGES

    Carmona, Christopher; Langan, Paul; Smith, Jeremy C.; ...

    2014-11-11

    Genetic modification of plants via down-regulation of cinnamyl alcohol dehydrogenase leads to incorporation of aldehyde groups in the lignin polymer. Moreover, the resulting lignocellulosic biomass has increased bioethanol yield. However, a molecular-scale explanation of this finding is currently lacking. We perform molecular dynamics simulation of the copolymer with hemicellulose of wild type and the genetically modified lignin, in aqueous solution. We find that the non-covalent association with hemicellulose of lignin containing aldehyde groups is reduced compared to the wild-type. This phase separation may increase the cell wall porosity in the mutant plants, thus explaining their easier deconstruction to biofuels. Themore » thermodynamic origin of the reduced lignin-hemicellulose association is found to be a more favorable self-interaction energy and less favorable interaction with hemicellulose for the mutant lignin. Furthermore, reduced hydration water density fluctuations are found for the mutant lignin, implying a more hydrophobic lignin surface. Our results provide a detailed description of how aldehyde incorporation makes lignin more hydrophobic and reduces its association with hemicellulose, thus suggesting that increased lignin hydrophobicity may be an optimal characteristic required for improved biofuel production.« less

  14. Knowledge, Attitudes Toward, and Acceptability of Genetic Modification among Western Balkan University Students of Life Sciences (AGREE Study).

    PubMed

    Veličković, Vladica; Jović, Marko; Nalić, Ena; Višnjić, Aleksandar; Radulović, Olivera; Šagrić, Čedomir; Ćirić, Milan

    2016-01-01

    There are still no data on the attitudes and acceptance of genetic modification (GM) food in European developing countries, such as the Western Balkan countries. The aim of the study was to assess the knowledge, attitudes, and acceptance of GM but also to shed light on the multifactorial process leading to acceptance of genetic modifications among Western Balkan students of life sciences. In this cross-sectional study, the final study population sample was composed of 1251 university students. The instrument for data collection was a questionnaire consisting of 49 items composed of 5 sections taken from the literature. Attitudes toward GM were analyzed by using Q-mode factor analysis and principal component analysis was run for the assessment of perception of personal health risks. The acceptability of GM was analyzed in binary probit models assessing the acceptability of GM products in different areas of application with Q models, sociodemographic variables, perception of personal health risks factors, respondents' knowledge about biotechnology, gender, and age as explanatory variables. This study demonstrated that students of life sciences supported the implementation of GM in industry and medicine production but not in food production. Their acceptance was most influenced by 3 out of 5 attitude models that were identified (p < 0.0001). Regarding the perception of personal health risks, the factor "credence risks" was seen as a negative predictor of acceptance of GM in industry and food production (p < 0.05). The main knowledge predictor of rejecting GM was misconception, whereas real knowledge had no impact (p < 0.0001). The AGREE study provided the first rough picture of the knowledge, attitudes, and acceptance of GM in this area. Given the target population, it could be expected that the general population's acceptance of all observed elements, especially knowledge, would be lower.

  15. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery.

    PubMed

    Volak, Adrienn; LeRoy, Stanley G; Natasan, Jeya Shree; Park, David J; Cheah, Pike See; Maus, Andreas; Fitzpatrick, Zachary; Hudry, Eloise; Pinkham, Kelsey; Gandhi, Sheetal; Hyman, Bradley T; Mu, Dakai; GuhaSarkar, Dwijit; Stemmer-Rachamimov, Anat O; Sena-Esteves, Miguel; Badr, Christian E; Maguire, Casey A

    2018-05-16

    The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.

  16. Methods for genetic transformation of filamentous fungi.

    PubMed

    Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen

    2017-10-03

    Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.

  17. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.

    PubMed

    Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon

    2015-05-20

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.

  18. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor

    DOE PAGES

    Zhang, Li; Yao, Jian; Withers, John; ...

    2015-11-02

    In the past decade, characterization of the host targets of pathogen virulence factors took a center stage in the study of pathogenesis and disease susceptibility in plants and humans. However, the impressive knowledge of host targets has not been broadly exploited to inhibit pathogen infection. In this paper, we show that host target modification could be a promising new approach to “protect” the disease-vulnerable components of plants. In particular, recent studies have identified the plant hormone jasmonate (JA) receptor as one of the common targets of virulence factors from highly evolved biotrophic/hemibiotrophic pathogens. Strains of the bacterial pathogen Pseudomonas syringae,more » for example, produce proteinaceous effectors, as well as a JA-mimicking toxin, coronatine (COR), to activate JA signaling as a mechanism to promote disease susceptibility. Guided by the crystal structure of the JA receptor and evolutionary clues, we succeeded in modifying the JA receptor to allow for sufficient endogenous JA signaling but greatly reduced sensitivity to COR. Transgenic Arabidopsis expressing this modified receptor not only are fertile and maintain a high level of insect defense, but also gain the ability to resist COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. Finally, our results provide a proof-of-concept demonstration that host target modification can be a promising new approach to prevent the virulence action of highly evolved pathogens.« less

  19. Structural modification of polysaccharides: A biochemical-genetic approach

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  20. From drug to protein: using yeast genetics for high-throughput target discovery.

    PubMed

    Armour, Christopher D; Lum, Pek Yee

    2005-02-01

    The budding yeast Saccharomyces cerevisiae has long been an effective eukaryotic model system for understanding basic cellular processes. The genetic tractability and ease of manipulation in the laboratory make yeast well suited for large-scale chemical and genetic screens. Several recent studies describing the use of yeast genetics for high-throughput drug target identification are discussed in this review.

  1. Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications

    PubMed Central

    2018-01-01

    Posttranslational modifications resulting from oxidation of proteins (Ox-PTMs) are present intracellularly under conditions of oxidative stress as well as basal conditions. In the past, these modifications were thought to be generic protein damage, but it has become increasingly clear that Ox-PTMs can have specific physiological effects. It is an arduous task to distinguish between the two cases, as multiple Ox-PTMs occur simultaneously on the same protein, convoluting analysis. Genetic code expansion (GCE) has emerged as a powerful tool to overcome this challenge as it allows for the site-specific incorporation of an Ox-PTM into translated protein. The resulting homogeneously modified protein products can then be rigorously characterized for the effects of individual Ox-PTMs. We outline the strengths and weaknesses of GCE as they relate to the field of oxidative stress and Ox-PTMs. An overview of the Ox-PTMs that have been genetically encoded and applications of GCE to the study of Ox-PTMs, including antibody validation and therapeutic development, is described. PMID:29849913

  2. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk

    PubMed Central

    Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong

    2015-01-01

    β-Lactoglobulin (BLG) is a major goat’s milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine. PMID:25994151

  3. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk.

    PubMed

    Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong

    2015-05-21

    β-Lactoglobulin (BLG) is a major goat's milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine.

  4. A Generalizable Platform for Interrogating Target- and Signal-Specific Consequences of Electrophilic Modifications in Redox-Dependent Cell Signaling

    PubMed Central

    Lin, Hong-Yu; Haegele, Joseph A.; Disare, Michael T.; Lin, Qishan; Aye, Yimon

    2015-01-01

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized “electrophile toolbox” with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology—T-REX (targetable reactive electrophiles & oxidants)—is established by: (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein—one of several redox-sensitive regulators of the Nrf2–ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2–ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background. PMID:25909755

  5. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model.

    PubMed

    Goodrich, L R; Hidaka, C; Robbins, P D; Evans, C H; Nixon, A J

    2007-05-01

    Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 x 10(7) AdIGF-1 modified chondrocytes and the contralateral joint received 2 x 10(7) naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated. Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and

  6. Targetable genetic features of primary testicular and primary central nervous system lymphomas

    PubMed Central

    Chapuy, Bjoern; Roemer, Margaretha G. M.; Stewart, Chip; Tan, Yuxiang; Abo, Ryan P.; Zhang, Liye; Dunford, Andrew J.; Meredith, David M.; Thorner, Aaron R.; Jordanova, Ekaterina S.; Liu, Gang; Feuerhake, Friedrich; Ducar, Matthew D.; Illerhaus, Gerald; Gusenleitner, Daniel; Linden, Erica A.; Sun, Heather H.; Homer, Heather; Aono, Miyuki; Pinkus, Geraldine S.; Ligon, Azra H.; Ligon, Keith L.; Ferry, Judith A.; Freeman, Gordon J.; van Hummelen, Paul; Golub, Todd R.; Getz, Gad; Rodig, Scott J.; de Jong, Daphne; Monti, Stefano

    2016-01-01

    Primary central nervous system lymphomas (PCNSLs) and primary testicular lymphomas (PTLs) are extranodal large B-cell lymphomas (LBCLs) with inferior responses to current empiric treatment regimens. To identify targetable genetic features of PCNSL and PTL, we characterized their recurrent somatic mutations, chromosomal rearrangements, copy number alterations (CNAs), and associated driver genes, and compared these comprehensive genetic signatures to those of diffuse LBCL and primary mediastinal large B-cell lymphoma (PMBL). These studies identify unique combinations of genetic alterations in discrete LBCL subtypes and subtype-selective bases for targeted therapy. PCNSLs and PTLs frequently exhibit genomic instability, and near-uniform, often biallelic, CDKN2A loss with rare TP53 mutations. PCNSLs and PTLs also use multiple genetic mechanisms to target key genes and pathways and exhibit near-uniform oncogenic Toll-like receptor signaling as a result of MYD88 mutation and/or NFKBIZ amplification, frequent concurrent B-cell receptor pathway activation, and deregulation of BCL6. Of great interest, PCNSLs and PTLs also have frequent 9p24.1/PD-L1/PD-L2 CNAs and additional translocations of these loci, structural bases of immune evasion that are shared with PMBL. PMID:26702065

  7. SIMILAR PATTERNS OF MITOCHONDRIAL VULNERABILITY AND RESCUE INDUCED BY GENETIC MODIFICATION OF α-SYNUCLEIN, PARKIN AND DJ-1 IN C. ELEGANS*

    PubMed Central

    Westlund, Beth; Perier, Celine; Burnam, Lucinda; Sluder, Anne; Hoener, Marius; Rodrigues, Cecilia MP; Alfonso, Aixa; Steer, Clifford; Liu, Leo; Przedborski, Serge; Wolozin, Benjamin

    2014-01-01

    How genetic and environmental factors interact in Parkinson’s disease is poorly understood. We have now compared the patterns of vulnerability and rescue of C. elegans with genetic modifications of three different genetic factors implicated in PD. We observed that expressing α-synuclein, deleting parkin (K08E3.7) or knocking down DJ-1 (B0432.2) or parkin, produces similar patterns of pharmacological vulnerability and rescue. C. elegans lines with these genetic changes were more vulnerable than non-transgenic nematodes to mitochondrial complex I inhibitors, including rotenone, fenperoximate, pyridaben or stigmatellin. In contrast, the genetic manipulations did not increase sensitivity to paraquat, sodium azide, divalent metal ions (FeII or CuII) or etoposide compared to non-transgenic nematodes. Each of the PD-related lines was also partially rescued by the anti-oxidant probucol, the mitochondrial complex II activator, D-β-hydroxybutyrate (DβHB) or the anti-apoptotic bile acid tauroursodeoxycholic acid (TUDCA). Complete protection in all lines was achieved by combining DβHB with TUDCA but not with probucol. These results show that diverse PD-related genetic modifications disrupt mitochondrial function in C. elegans, and they raise the possibility that mitochondrial disruption is a pathway shared in common by many types of familial PD. PMID:16239214

  8. ASSESSING POSSIBLE ECOLOGICAL RISKS OF GENETICALLY MODIFIED CROPS: GENE EXPRESSION ASSAYS AND GENETIC MONITORING OF NON-TARGET ORGANISMS

    EPA Science Inventory

    Widespread planting of genetically modified crops with the Bt transgene pesticide has led to concern over non-target effects of Bt compounds in agroecosystems. While some research suggests that non-target organisms exposed to Bt toxin exhibit reduced fecundity and increased morta...

  9. Synthetic Zinc Finger Proteins: The Advent of Targeted Gene Regulation and Genome Modification Technologies

    PubMed Central

    2015-01-01

    Conspectus The understanding of gene regulation and the structure and function of the human genome increased dramatically at the end of the 20th century. Yet the technologies for manipulating the genome have been slower to develop. For instance, the field of gene therapy has been focused on correcting genetic diseases and augmenting tissue repair for more than 40 years. However, with the exception of a few very low efficiency approaches, conventional genetic engineering methods have only been able to add auxiliary genes to cells. This has been a substantial obstacle to the clinical success of gene therapies and has also led to severe unintended consequences in several cases. Therefore, technologies that facilitate the precise modification of cellular genomes have diverse and significant implications in many facets of research and are essential for translating the products of the Genomic Revolution into tangible benefits for medicine and biotechnology. To address this need, in the 1990s, we embarked on a mission to develop technologies for engineering protein–DNA interactions with the aim of creating custom tools capable of targeting any DNA sequence. Our goal has been to allow researchers to reach into genomes to specifically regulate, knock out, or replace any gene. To realize these goals, we initially focused on understanding and manipulating zinc finger proteins. In particular, we sought to create a simple and straightforward method that enables unspecialized laboratories to engineer custom DNA-modifying proteins using only defined modular components, a web-based utility, and standard recombinant DNA technology. Two significant challenges we faced were (i) the development of zinc finger domains that target sequences not recognized by naturally occurring zinc finger proteins and (ii) determining how individual zinc finger domains could be tethered together as polydactyl proteins to recognize unique locations within complex genomes. We and others have since used

  10. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms.

    PubMed

    Jaffe, Jacob D; Feeney, Caitlin M; Patel, Jinal; Lu, Xiaodong; Mani, D R

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques. Graphical Abstract ᅟ.

  11. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Jaffe, Jacob D.; Feeney, Caitlin M.; Patel, Jinal; Lu, Xiaodong; Mani, D. R.

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques.

  12. Conversing about Citrus Greening: Extension's Role in Educating about Genetic Modification Science as a Solution

    ERIC Educational Resources Information Center

    Ruth, Taylor K.; Lamm, Alexa J.; Rumble, Joy N.; Ellis, Jason D.

    2017-01-01

    Extension agents across the nation will need to facilitate difficult conversations with the public if genetic modification (GM) science is used to combat citrus greening disease. This study used the innovation characteristics described by Rogers to explore if using GM science as a solution to citrus greening had diffused amongst US residents. An…

  13. Identification of Direct Protein Targets of Small Molecules

    PubMed Central

    2010-01-01

    Small-molecule target identification is a vital and daunting task for the chemical biology community as well as for researchers interested in applying the power of chemical genetics to impact biology and medicine. To overcome this “target ID” bottleneck, new technologies are being developed that analyze protein–drug interactions, such as drug affinity responsive target stability (DARTS), which aims to discover the direct binding targets (and off targets) of small molecules on a proteome scale without requiring chemical modification of the compound. Here, we review the DARTS method, discuss why it works, and provide new perspectives for future development in this area. PMID:21077692

  14. Histones and their modifications in ovarian cancer - drivers of disease and therapeutic targets.

    PubMed

    Marsh, Deborah J; Shah, Jaynish S; Cole, Alexander J

    2014-01-01

    Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC) is the most common subtype, with the majority of women presenting with advanced disease where 5-year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation, and monoubiquitination, with involvement of enzymes including histone methyltransferases, histone acetyltransferases/deacetylases, and ubiquitin ligases/deubiquitinases, respectively. Complexes such as the Polycomb repressive complex also play roles in the control of histone modifications and more recently roles for long non-coding RNA and microRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here, we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for women with ovarian cancer.

  15. Tolerance to MHC class II disparate allografts through genetic modification of bone marrow

    PubMed Central

    Jindra, Peter T.; Tripathi, Sudipta; Tian, Chaorui; Iacomini, John; Bagley, Jessamyn

    2012-01-01

    Induction of molecular chimerism through genetic modification of bone marrow is a powerful tool for the induction of tolerance. Here we demonstrate for the first time that expression of an allogeneic MHC class II gene in autologous bone marrow cells, resulting in a state of molecular chimerism, induces tolerance to MHC class II mismatched skin grafts, a stringent test of transplant tolerance. Reconstitution of recipients with syngeneic bone marrow transduced with retrovirus encoding H-2I-Ab (I-Ab) resulted the long-term expression of the retroviral gene product on the surface of MHC class II-expressing bone marrow derived cell types. Mechanistically, tolerance was maintained by the presence of regulatory T cells, which prevented proliferation and cytokine production by alloreactive host T cells. Thus, the introduction of MHC class II genes into bone marrow derived cells through genetic engineering results in tolerance. These results have the potential to extend the clinical applicability of molecular chimerism for tolerance induction. PMID:22833118

  16. Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts?

    PubMed

    Ferrandiz-Rovira, Mariona; Allainé, Dominique; Callait-Cardinal, Marie-Pierre; Cohas, Aurélie

    2016-07-01

    Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.

  17. Epigenetic modification of OXT and human sociability.

    PubMed

    Haas, Brian W; Filkowski, Megan M; Cochran, R Nick; Denison, Lydia; Ishak, Alexandra; Nishitani, Shota; Smith, Alicia K

    2016-07-05

    Across many mammalian species there exist genetic and biological systems that facilitate the tendency to be social. Oxytocin is a neuropeptide involved in social-approach behaviors in humans and others mammals. Although there exists a large, mounting body of evidence showing that oxytocin signaling genes are associated with human sociability, very little is currently known regarding the way the structural gene for oxytocin (OXT) confers individual differences in human sociability. In this study, we undertook a comprehensive approach to investigate the association between epigenetic modification of OXT via DNA methylation, and overt measures of social processing, including self-report, behavior, and brain function and structure. Genetic data were collected via saliva samples and analyzed to target and quantify DNA methylation across the promoter region of OXT We observed a consistent pattern of results across sociability measures. People that exhibit lower OXT DNA methylation (presumably linked to higher OXT expression) display more secure attachment styles, improved ability to recognize emotional facial expressions, greater superior temporal sulcus activity during two social-cognitive functional MRI tasks, and larger fusiform gyrus gray matter volume than people that exhibit higher OXT DNA methylation. These findings provide empirical evidence that epigenetic modification of OXT is linked to several overt measures of sociability in humans and serve to advance progress in translational social neuroscience research toward a better understanding of the evolutionary and genetic basis of normal and abnormal human sociability.

  18. Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans.

    PubMed

    He, Kan; Zhou, Tao; Shao, Jiaofang; Ren, Xiaoliang; Zhao, Zhongying; Liu, Dahai

    2014-03-01

    Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.

  19. Targeted adenoviral vectors

    NASA Astrophysics Data System (ADS)

    Douglas, Joanne T.

    The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.

  20. Creating targeted initial populations for genetic product searches in heterogeneous markets

    NASA Astrophysics Data System (ADS)

    Foster, Garrett; Turner, Callaway; Ferguson, Scott; Donndelinger, Joseph

    2014-12-01

    Genetic searches often use randomly generated initial populations to maximize diversity and enable a thorough sampling of the design space. While many of these initial configurations perform poorly, the trade-off between population diversity and solution quality is typically acceptable for small-scale problems. Navigating complex design spaces, however, often requires computationally intelligent approaches that improve solution quality. This article draws on research advances in market-based product design and heuristic optimization to strategically construct 'targeted' initial populations. Targeted initial designs are created using respondent-level part-worths estimated from discrete choice models. These designs are then integrated into a traditional genetic search. Two case study problems of differing complexity are presented to illustrate the benefits of this approach. In both problems, targeted populations lead to computational savings and product configurations with improved market share of preferences. Future research efforts to tailor this approach and extend it towards multiple objectives are also discussed.

  1. Genetic modification of cerebral arterial wall: implications for prevention and treatment of cerebral vasospasm.

    PubMed

    Vijay, Anantha; Santhanam, R; Katusic, Zvonimir S

    2006-10-01

    Genetic modification of cerebral vessels represents a promising and novel approach for prevention and/or treatment of various cerebral vascular disorders, including cerebral vasospasm. In this review, we focus on the current understanding of the use of gene transfer to the cerebral arteries for prevention and/or treatment of cerebral vasospasm following subarachnoid hemorrhage (SAH). We also discuss the recent developments in vascular therapeutics, involving the autologous use of progenitor cells for repair of damaged vessels, as well as a cell-based gene delivery approach for the prevention and treatment of cerebral vasospasm.

  2. An injectable spheroid system with genetic modification for cell transplantation therapy.

    PubMed

    Uchida, Satoshi; Itaka, Keiji; Nomoto, Takahiro; Endo, Taisuke; Matsumoto, Yu; Ishii, Takehiko; Kataoka, Kazunori

    2014-03-01

    The new methodology to increase a therapeutic potential of cell transplantation was developed here by the use of three-dimensional spheroids of transplanting cells subsequent to the genetic modification with non-viral DNA vectors, polyplex nanomicelles. Particularly, spheroids in regulated size of 100-μm of primary hepatocytes transfected with luciferase gene were formed on the micropatterned culture plates coated with thermosensitive polymer, and were recovered in the form of injectable liquid suspension simply by cooling the plates. After subcutaneously transplanting these hepatocyte spheroids, efficient transgene expression was observed in host tissue for more than a month, whereas transplantation of a single-cell suspension from a monolayer culture resulted in an only transient expression. The spheroid system contributed to the preservation of innate functions of transplanted hepatocytes in the host tissue, such as albumin expression, thereby possessing high potential for expressing transgene. Intravital observation of transplanted cells showed that those from spheroid cultures had a tendency to localize in the vicinity of blood vessels, making a favorable microenvironment for preserving cell functionality. Furthermore, spheroids transfected with erythropoietin-expressing DNA showed a significantly higher hematopoietic effect than that of cell suspensions from monolayer cultures, demonstrating high potential of this genetically-modified spheroid transplantation system for therapeutic applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. On the genetic modification of psychology, personality, and behavior.

    PubMed

    Neitzke, Alex B

    2012-12-01

    I argue that the use of heritable modifications for psychology, personality, and behavior should be limited to the reversal or prevention of relatively unambiguous instances of pathology or likely harm (e.g. sociopathy). Most of the likely modifications of psychological personality would not be of this nature, however, and parents therefore should not have the freedom to make such modifications to future children. I argue by examining the viewpoints of both the individual and society. For individuals, modifications would interfere with their capacity for self-determination in a way that undermines the very concept of self-determination. I argue that modification of psychology and personality is unlike present parenting in morally significant ways. For society, modification offers a medium for power to manipulate the makeup of persons and populations, possibly causing biological harm to the species and altering our conceptions of social responsibility.

  4. [Genetic diversity and genetic structure of endangered wild Sinopodophyllum emodi by start codon targeted polymorphism].

    PubMed

    Chen, Da-Xia; Zhao, Ji-Feng; Liu, Xiang; Wang, Chang-Hua; Zhang, Zhi-Wei; Qin, Song-Yun; Zhong, Guo-Yue

    2013-01-01

    Revealed the genetic diversity level and genetic structure characteristics in Sinopodophyllum emodi, a rare and endangered species in China. We detected the genetic polymorphism within and among six wild populations (45 individuals) by the approach of Start Codon Targeted (SCoT) Polymorphism. The associated genetic parameters were calculated by POP-GENE1.31 and the relationship was constructed based on UPGMA method. A total of 350 bands were scored by 27 primers and 284 bands of them were polymorphic. The average polymorphic bands of each primer were 10.52. At species level, there was a high level of genetic diversity among six populations (PPB = 79.27%, N(e) = 1.332 7, H = 0.210 9 and H(sp) = 0.328 6). At population level, the genetic diversity level was low (PPB = 10.48% (4.00% -23.71%), N(e) = 1.048 7 (1.020 7-1.103 7), H = 0.029 7 (0.012 9-0.063 1), H(pop) = 0.046 2 (0.019 9-0.098 6). The Nei's coefficient of genetic differentiation was 0.841 1, which was consistent with the Shannon's coefficient of genetic differentiation (0.849 4). Two calculated methods all showed that most of the genetic variation existed among populations. The gene flow (N(m) = 0.094 4) was less among populations, indicating that the degree of genetic differentiation was higher. Genetic similarity coefficient were changed from 0.570 8 to 0.978 7. By clustering analysis, the tested populations were divided into two classes and had a tendency that the same geographical origin or material of similar habitats clustered into one group. The genetic diversity of samples of S. emodi is high,which laid a certain foundation for effective protection and improvement of germplasm resources.

  5. Further Characterization of the Target of a Potential Aptamer Biomarker for Pancreatic Cancer: Cyclophilin B and Its Posttranslational Modifications

    PubMed Central

    Sullenger, Bruce A.

    2013-01-01

    Posttranslational modifications on proteins can serve as useful biomarkers for disease. However, their discovery and detection in biological fluids is challenging. Aptamers are oligonucleotide ligands that demonstrate high affinity toward their target proteins and can discriminate closely related proteins with superb specificity. Previously, we generated a cyclophilin B aptamer (M9-5) that could discriminate sera from pancreatic cancer patients and healthy volunteers with high specificity and sensitivity. In our present work we further characterize the aptamer and the target protein, cyclophilin B, and demonstrate that the aptamer could discriminate between cyclophilin B expressed in human cells versus bacteria. Using mass-spectrometric analysis, we discovered post-translational modifications on cyclophilin B that might be responsible for the M9-5 selectivity. The ability to distinguish between forms of the same protein with differing post-translational modifications is an important advantage of aptamers as tools for identification and detection of biomarkers. PMID:24152208

  6. Genetic modification of mesenchymal stem cells to express a single-chain antibody against EGFRvIII on the cell surface.

    PubMed

    Balyasnikova, Irina V; Franco-Gou, Rosa; Mathis, J Michael; Lesniak, Maciej S

    2010-06-01

    Human adult mesenchymal stem cells (hMSCs) are under active investigation as cellular carriers for gene therapy. hMSCs possess natural tropism toward tumours; however, the targeting of hMSCs to specific cell populations within tumours is unexplored. In the case of glioblastoma multiforme (GBM), at least half of the tumours express EGFRvIII on the cell surface, an ideal target for antibody-mediated gene/drug delivery. In this study, we investigated the feasibility of genetically modifying hMSCs to express a single-chain antibody (scFv) to EGFRvIII on their surfaces. Nucleofection was used to transfect hMSCs with cDNA encoding scFv EGFRvIII fused with PDGFR or human B7-1 transmembrane domains. The expression of scFv EGFRvIII on the cell surface was assessed by FACS. A stable population of scFv EGFRvIII-expressing hMSCs was selected, based on antibiotic resistance, and enriched using FACS. We found that nucleofection allows the efficient expression of scFv EGFRvIII on the cell surface of hMSCs. hMSCs transfected with the construct encoding scFv EGFRvIII as a fusion with PDGFRtm showed scFv EGFRvIII expression in up to 86% of cells. Most importantly, human MSCs expressing scFv against EGFRvIII demonstrated enhanced binding to U87-EGFRvIII cells in vitro and significantly increased retention in human U87-EGFRvIII-expressing tumours in vivo. In summary, we provide the first conclusive evidence of genetic modification of hMSCs with a single-chain antibody against an antigen expressed on the surface of tumour cells, thereby opening up a new venue for enhanced delivery of gene therapy applications in the context of malignant brain cancer. Copyright 2009 John Wiley & Sons, Ltd.

  7. Genetic mutations in human rectal cancers detected by targeted sequencing.

    PubMed

    Bai, Jun; Gao, Jinglong; Mao, Zhijun; Wang, Jianhua; Li, Jianhui; Li, Wensheng; Lei, Yu; Li, Shuaishuai; Wu, Zhuo; Tang, Chuanning; Jones, Lindsey; Ye, Hua; Lou, Feng; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; Huang, Xue F; Chen, Si-Yi; Zhang, Enke

    2015-10-01

    Colorectal cancer (CRC) is widespread with significant mortality. Both inherited and sporadic mutations in various signaling pathways influence the development and progression of the cancer. Identifying genetic mutations in CRC is important for optimal patient treatment and many approaches currently exist to uncover these mutations, including next-generation sequencing (NGS) and commercially available kits. In the present study, we used a semiconductor-based targeted DNA-sequencing approach to sequence and identify genetic mutations in 91 human rectal cancer samples. Analysis revealed frequent mutations in KRAS (58.2%), TP53 (28.6%), APC (16.5%), FBXW7 (9.9%) and PIK3CA (9.9%), and additional mutations in BRAF, CTNNB1, ERBB2 and SMAD4 were also detected at lesser frequencies. Thirty-eight samples (41.8%) also contained two or more mutations, with common combination mutations occurring between KRAS and TP53 (42.1%), and KRAS and APC (31.6%). DNA sequencing for individual cancers is of clinical importance for targeted drug therapy and the advantages of such targeted gene sequencing over other NGS platforms or commercially available kits in sensitivity, cost and time effectiveness may aid clinicians in treating CRC patients in the near future.

  8. Human genetics as a model for target validation: finding new therapies for diabetes.

    PubMed

    Thomsen, Soren K; Gloyn, Anna L

    2017-06-01

    Type 2 diabetes is a global epidemic with major effects on healthcare expenditure and quality of life. Currently available treatments are inadequate for the prevention of comorbidities, yet progress towards new therapies remains slow. A major barrier is the insufficiency of traditional preclinical models for predicting drug efficacy and safety. Human genetics offers a complementary model to assess causal mechanisms for target validation. Genetic perturbations are 'experiments of nature' that provide a uniquely relevant window into the long-term effects of modulating specific targets. Here, we show that genetic discoveries over the past decades have accurately predicted (now known) therapeutic mechanisms for type 2 diabetes. These findings highlight the potential for use of human genetic variation for prospective target validation, and establish a framework for future applications. Studies into rare, monogenic forms of diabetes have also provided proof-of-principle for precision medicine, and the applicability of this paradigm to complex disease is discussed. Finally, we highlight some of the limitations that are relevant to the use of genome-wide association studies (GWAS) in the search for new therapies for diabetes. A key outstanding challenge is the translation of GWAS signals into disease biology and we outline possible solutions for tackling this experimental bottleneck.

  9. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-04

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.

  10. Physiological significance of ghrelin revealed by studies using genetically engineered mouse models with modifications in the ghrelin system.

    PubMed

    Ariyasu, Hiroyuki; Akamizu, Takashi

    2015-01-01

    Ghrelin, an endogenous ligand for the growth hormone (GH) secretagogue receptor (GHS-R or ghrelin receptor), is a 28-amino acid acylated peptide mainly produced in the stomach. The pharmacological administration of ghrelin is known to exert diverse effects, such as stimulating GH secretion, promoting food intake, and increasing adiposity. In recent years, genetically engineered mouse models have provided important insights into the physiology of various hormones. In this review, we discuss current knowledge regarding the physiological significance of ghrelin on the basis of studies using genetically engineered mouse models with modifications in the ghrelin system.

  11. Epigenetic regulation of immune checkpoints: another target for cancer immunotherapy?

    PubMed

    Ali, Mahmoud A; Matboli, Marwa; Tarek, Marwa; Reda, Maged; Kamal, Kamal M; Nouh, Mahmoud; Ashry, Ahmed M; El-Bab, Ahmed Fath; Mesalam, Hend A; Shafei, Ayman El-Sayed; Abdel-Rahman, Omar

    2017-01-01

    Epigenetic changes in oncogenes and tumor-suppressor genes contribute to carcinogenesis. Understanding the epigenetic and genetic components of tumor immune evasion is crucial. Few cancer genetic mutations have been linked to direct correlations with immune evasion. Studies on the epigenetic modulation of the immune checkpoints have revealed a critical interaction between epigenetic and immune modulation. Epigenetic modifiers can activate many silenced genes. Some of them are immune checkpoints regulators that turn on immune responses and others turn them off resulting in immune evasion. Many forms of epigenetic inheritance mechanisms may play a role in regulation of immune checkpoints including: covalent modifications, noncoding RNA and histone modifications. In this review, we will show how the potential interaction between epigenetic and immune modulation may lead to new approaches for specific epigenome/immunome-targeted therapies for cancer.

  12. Electrostatic Surface Modifications to Improve Gene Delivery

    PubMed Central

    Shmueli, Ron B.; Anderson, Daniel G.

    2010-01-01

    Importance of the field Gene therapy has the potential to treat a wide variety of diseases including genetic diseases and cancer. Areas covered in this review This review introduces biomaterials used for gene delivery and then focuses on the use of electrostatic surface modifications to improve gene delivery materials. These modifications have been used to stabilize therapeutics in vivo, add cell-specific targeting ligands, and promote controlled release. Coatings of nanoparticles and microparticles as well as non-particulate surface coatings are covered in this review. Electrostatic principles are crucial for the development of multilayer delivery structures fabricated by the layer-by-layer method. What the reader will gain The reader will gain knowledge about the composition of biomaterials used for surface modifications and how these coatings and multilayers can be utilized to improve spatial control and efficiency of delivery. Examples are shown for the delivery of nucleic acids, including DNA and siRNA, to in vitro and in vivo systems. Take home message The versatile and powerful approach of electrostatic coatings and multilayers will lead to the development of enhanced gene therapies. PMID:20201712

  13. Performance of the AOAC use-dilution method with targeted modifications: collaborative study.

    PubMed

    Tomasino, Stephen F; Parker, Albert E; Hamilton, Martin A; Hamilton, Gordon C

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in collaboration with an industry work group, spearheaded a collaborative study designed to further enhance the AOAC use-dilution method (UDM). Based on feedback from laboratories that routinely conduct the UDM, improvements to the test culture preparation steps were prioritized. A set of modifications, largely based on culturing the test microbes on agar as specified in the AOAC hard surface carrier test method, were evaluated in a five-laboratory trial. The modifications targeted the preparation of the Pseudomonas aeruginosa test culture due to the difficulty in separating the pellicle from the broth in the current UDM. The proposed modifications (i.e., the modified UDM) were compared to the current UDM methodology for P. aeruginosa and Staphylococcus aureus. Salmonella choleraesuis was not included in the study. The goal was to determine if the modifications reduced method variability. Three efficacy response variables were statistically analyzed: the number of positive carriers, the log reduction, and the pass/fail outcome. The scope of the collaborative study was limited to testing one liquid disinfectant (an EPA-registered quaternary ammonium product) at two levels of presumed product efficacies, high and low. Test conditions included use of 400 ppm hard water as the product diluent and a 5% organic soil load (horse serum) added to the inoculum. Unfortunately, the study failed to support the adoption of the major modification (use of an agar-based approach to grow the test cultures) based on an analysis of method's variability. The repeatability and reproducibility standard deviations for the modified method were equal to or greater than those for the current method across the various test variables. However, the authors propose retaining the frozen stock preparation step of the modified method, and based on the statistical equivalency of the control log densities, support its adoption as a procedural change to

  14. Assessing environmental impacts of genetically modified plants on non-target organisms: The relevance of in planta studies.

    PubMed

    Arpaia, Salvatore; Birch, A Nicholas E; Kiss, Jozsef; van Loon, Joop J A; Messéan, Antoine; Nuti, Marco; Perry, Joe N; Sweet, Jeremy B; Tebbe, Christoph C

    2017-04-01

    In legal frameworks worldwide, genetically modified plants (GMPs) are subjected to pre-market environmental risk assessment (ERA) with the aim of identifying potential effects on the environment. In the European Union, the EFSA Guidance Document introduces the rationale that GMPs, as well as their newly produced metabolites, represent the potential stressor to be evaluated during ERA. As a consequence, during several phases of ERA for cultivation purposes, it is considered necessary to use whole plants or plant parts in experimental protocols. The importance of in planta studies as a strategy to address impacts of GMPs on non-target organisms is demonstrated, to evaluate both effects due to the intended modification in plant phenotype (e.g. expression of Cry proteins) and effects due to unintended modifications in plant phenotype resulting from the transformation process (e.g. due to somaclonal variations or pleiotropic effects). In planta tests are also necessary for GMPs in which newly expressed metabolites cannot easily be studied in vitro. This paper reviews the scientific literature supporting the choice of in planta studies as a fundamental tool in ERA of GMPs in cultivation dossiers; the evidence indicates they can realistically mimic the ecological relationships occurring in their receiving environments and provide important insights into the biology and sustainable management of GMPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Creating genetically modified pigs by using nuclear transfer

    PubMed Central

    Lai, Liangxue; Prather, Randall S

    2003-01-01

    Nuclear transfer (NT) is a procedure by which genetically identical individuals can be created. The technology of pig somatic NT, including in vitro maturation of oocytes, isolation and treatment of donor cells, artificial activation of reconstructed oocytes, embryo culture and embryo transfer, has been intensively studied in recent years, resulting in birth of cloned pigs in many labs. While it provides an efficient method for producing transgenic pigs, more importantly, it is the only way to produce gene-targeted pigs. So far pig cloning has been successfully used to produce transgenic pigs expressing the green fluorescence protein, expand transgenic pig groups and create gene targeted pigs which are deficient of alpha-1,3-galactosyltransferase. The production of pigs with genetic modification by NT is now in the transition from investigation to practical use. Although the efficiency of somatic cell NT in pig, when measured as development to term as a proportion of oocytes used, is not high, it is anticipated that the ability of making specific modifications to the swine genome will result in this technology having a large impact not only on medicine but also on agriculture. PMID:14613542

  16. CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes

    PubMed Central

    2013-01-01

    Background Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets. Results We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage- or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs. Conclusions We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders. PMID:23628424

  17. Improving experimental phases for strong reflections prior to density modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uervirojnangkoorn, Monarin; University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck; Hilgenfeld, Rolf, E-mail: hilgenfeld@biochem.uni-luebeck.de

    A genetic algorithm has been developed to optimize the phases of the strongest reflections in SIR/SAD data. This is shown to facilitate density modification and model building in several test cases. Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the mapsmore » can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005 ▶), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  18. Concise review: managing genotoxicity in the therapeutic modification of stem cells.

    PubMed

    Baum, Christopher; Modlich, Ute; Göhring, Gudrun; Schlegelberger, Brigitte

    2011-10-01

    The therapeutic use of procedures for genetic stem cell modification is limited by potential adverse events related to uncontrolled mutagenesis. Prominent findings have been made in hematopoietic gene therapy, demonstrating the risk of clonal, potentially malignant outgrowth on the basis of mutations acquired during or after therapeutic genome modification. The incidence and the growth rate of insertional mutants have been linked to the "stemness" of the target cells and vector-related features such as the integration pattern, the architecture, and the exact content of transgene cassettes. Milieu factors supporting the survival and expansion of mutants may eventually allow oncogenic progression. Similar concerns apply for medicinal products based on pluripotent stem cells. Focusing on the genetic stress induced by insertional mutagenesis and culture adaptation, we propose four conclusions. (a) Mutations occurring in the production of stem cell-based medicines may be unavoidable and need to be classified according to their risk to trigger the formation of clones that are sufficiently long-lived and mitotically active to acquire secondary transforming mutations. (b) The development of rational prevention strategies depends upon the identification of the specific mutations forming such "dominant clones" (which can also be addressed as cancer stem cell precursors) and a better knowledge of the mechanisms underlying their creation, expansion, and homeostatic control. (c) Quantitative assay systems are required to assess the practical value of preventive actions. (d) Improved approaches for the genetic modification of stem cells can address all critical steps in the origin and growth control of mutants. Copyright © 2011 AlphaMed Press.

  19. m6ASNP: a tool for annotating genetic variants by m6A function.

    PubMed

    Jiang, Shuai; Xie, Yubin; He, Zhihao; Zhang, Ya; Zhao, Yuli; Chen, Li; Zheng, Yueyuan; Miao, Yanyan; Zuo, Zhixiang; Ren, Jian

    2018-05-01

    Large-scale genome sequencing projects have identified many genetic variants for diverse diseases. A major goal of these projects is to characterize these genetic variants to provide insight into their function and roles in diseases. N6-methyladenosine (m6A) is one of the most abundant RNA modifications in eukaryotes. Recent studies have revealed that aberrant m6A modifications are involved in many diseases. In this study, we present a user-friendly web server called "m6ASNP" that is dedicated to the identification of genetic variants that target m6A modification sites. A random forest model was implemented in m6ASNP to predict whether the methylation status of an m6A site is altered by the variants that surround the site. In m6ASNP, genetic variants in a standard variant call format (VCF) are accepted as the input data, and the output includes an interactive table that contains the genetic variants annotated by m6A function. In addition, statistical diagrams and a genome browser are provided to visualize the characteristics and to annotate the genetic variants. We believe that m6ASNP is a very convenient tool that can be used to boost further functional studies investigating genetic variants. The web server "m6ASNP" is implemented in JAVA and PHP and is freely available at [60].

  20. Genetic Engineering: The Modification of Man

    ERIC Educational Resources Information Center

    Sinsheimer, Robert L.

    1970-01-01

    Describes somatic and genetic manipulations of individual genotypes, using diabetes control as an example of the first mode that is potentially realizable be derepression or viral transduction of genes. Advocates the use of genetic engineering of the second mode to remove man from his biological limitations, but offers maxims to ensure the…

  1. Chemical genetics-based development of small molecules targeting hepatitis C virus.

    PubMed

    Jin, Guanghai; Lee, Jisu; Lee, Kyeong

    2017-09-01

    Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today's advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni ® , Zepatier ® , Technivie ® , and Epclusa ® . A number of reviews have been recently published describing the structure-activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug's mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.

  2. Genetic approaches for the study of PTSD: Advances and challenges

    PubMed Central

    Banerjee, Sunayana B.; Morrison, Filomene G.; Ressler, Kerry J.

    2017-01-01

    Post-traumatic stress disorder (PTSD) is a highly debilitating stress and anxiety-related disorder that occurs in response to specific trauma or abuse. Genetic risk factors may account for up to 30–40% of the heritability of PTSD. Understanding the gene pathways that are associated with PTSD, and how those genes interact with the fear and stress circuitry to mediate risk and resilience for PTSD will enable the development of targeted therapies to prevent the occurrence of or decrease the severity of this complex multi-gene disorder. This review will summarize recent research on genetic approaches to understanding PTSD risk and resilience in human populations, including candidate genes and their epigenetic modifications, genome-wide association studies and neural imaging genetics approaches. Despite challenges faced within this field of study such as inconsistent results and replications, genetic approaches still offer exciting opportunities for the identification and development of novel therapeutic targets and therapies in the future. PMID:28242325

  3. Evolving phage vectors for cell targeted gene delivery.

    PubMed

    Larocca, David; Burg, Michael A; Jensen-Pergakes, Kristen; Ravey, Edward Prenn; Gonzalez, Ana Maria; Baird, Andrew

    2002-03-01

    We adapted filamentous phage vectors for targeted gene delivery to mammalian cells by inserting a mammalian reporter gene expression cassette (GFP) into the vector backbone and fusing the pIII coat protein to a cell targeting ligand (i.e. FGF2, EGF). Like transfection with animal viral vectors, targeted phage gene delivery is concentration, time, and ligand dependent. Importantly, targeted phage particles are specific for the appropriate target cell surface receptor. Phage have distinct advantages over existing gene therapy vectors because they are simple, economical to produce at high titer, have no intrinsic tropism for mammalian cells, and are relatively simple to genetically modify and evolve. Initially transduction by targeted phage particles was low resulting in foreign gene expression in 1-2% of transfected cells. We increased transduction efficiency by modifying both the transfection protocol and vector design. For example, we stabilized the display of the targeting ligand to create multivalent phagemid-based vectors with transduction efficiencies of up to 45% in certain cell lines when combined with genotoxic treatment. Taken together, these studies establish that the efficiency of phage-mediated gene transfer can be significantly improved through genetic modification. We are currently evolving phage vectors with enhanced cell targeting, increased stability, reduced immunogenicity and other properties suitable for gene therapy.

  4. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord.

    PubMed

    Ronsyn, Mark W; Daans, Jasmijn; Spaepen, Gie; Chatterjee, Shyama; Vermeulen, Katrien; D'Haese, Patrick; Van Tendeloo, Viggo Fi; Van Marck, Eric; Ysebaert, Dirk; Berneman, Zwi N; Jorens, Philippe G; Ponsaerts, Peter

    2007-12-14

    Bone marrow-derived stromal cells (MSC) are attractive targets for ex vivo cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (h)MSC with enhanced green fluorescent protein (EGFP) and neurotrophin (NT)3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP) were established and used to study cell survival and transgene expression following transplantation in rat spinal cord. First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While in vivo EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, in vivo NT3 mRNA expression by hMSC-NT3 cells and in vivo EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed in vivo decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i) was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii) did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii) was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants. In this study, we demonstrate that genetically modified hMSC lines can survive

  5. Engineering nucleases for gene targeting: safety and regulatory considerations.

    PubMed

    Pauwels, Katia; Podevin, Nancy; Breyer, Didier; Carroll, Dana; Herman, Philippe

    2014-01-25

    Nuclease-based gene targeting (NBGT) represents a significant breakthrough in targeted genome editing since it is applicable from single-celled protozoa to human, including several species of economic importance. Along with the fast progress in NBGT and the increasing availability of customized nucleases, more data are available about off-target effects associated with the use of this approach. We discuss how NBGT may offer a new perspective for genetic modification, we address some aspects crucial for a safety improvement of the corresponding techniques and we also briefly relate the use of NBGT applications and products to the regulatory oversight. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Targeted Approach to Identify Genetic Loci Associated with ...

    EPA Pesticide Factsheets

    Extreme tolerance to highly toxic dioxin-like contaminants (DLCs) has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killifish populations that have adapted to varied, but highly contaminated urban/industrialized estuaries of the US Atlantic coast. We hypothesized that comparisons among tolerant populations and in contrast to their sensitive neighboring killifish might reveal genetic loci associated with DLC tolerance. Since the aryl hydrocarbon receptor (AHR) pathway partly or fully mediates DLC toxicity in vertebrates, we identified single nucleotide polymorphisms (SNPs) from 43 genes associated with the AHR to serve as targeted markers. Wild fish from the four highly tolerant killifish populations and four nearby sensitive populations were genotyped using 59 SNP markers. Consistent with other killifish population genetic analyses, our results revealed strong genetic differentiation among populations, consistent with isolation by distance models. Pairwise comparisons of nearby tolerant and sensitive populations revealed differentiation among these loci: AHR 1 and 2, cathepsin Z, the cytochrome P450s (CYP) 1A and 3A30, and the NADH ubiquinone oxidoreductase MLRQ subunit. By grouping tolerant versus sensitive populations, we also identified cytochrome P450 1A and the AHR2 loci as under selection, lend

  7. Genetically engineered T cells to target EGFRvIII expressing glioblastoma.

    PubMed

    Bullain, Szofia S; Sahin, Ayguen; Szentirmai, Oszkar; Sanchez, Carlos; Lin, Ning; Baratta, Elizabeth; Waterman, Peter; Weissleder, Ralph; Mulligan, Richard C; Carter, Bob S

    2009-09-01

    Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-zeta). After in vitro selection and expansion, MR1-zeta genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-gamma secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-zeta) or signaling (MR1-delzeta). MR1-zeta expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications.

  8. Evaluating maturation and genetic modification of human dendritic cells in a new polyolefin cell culture bag system.

    PubMed

    Macke, Lars; Garritsen, Henk S P; Meyring, Wilhelm; Hannig, Horst; Pägelow, Ute; Wörmann, Bernhard; Piechaczek, Christoph; Geffers, Robert; Rohde, Manfred; Lindenmaier, Werner; Dittmar, Kurt E J

    2010-04-01

    Dendritic cells (DCs) are applied worldwide in several clinical studies of immune therapy of malignancies, autoimmune diseases, and transplantations. Most legislative bodies are demanding high standards for cultivation and transduction of cells. Closed-cell cultivating systems like cell culture bags would simplify and greatly improve the ability to reach these cultivation standards. We investigated if a new polyolefin cell culture bag enables maturation and adenoviral modification of human DCs in a closed system and compare the results with standard polystyrene flasks. Mononuclear cells were isolated from HLA-A*0201-positive blood donors by leukapheresis. A commercially available separation system (CliniMACS, Miltenyi Biotec) was used to isolate monocytes by positive selection using CD14-specific immunomagnetic beads. The essentially homogenous starting cell population was cultivated in the presence of granulocyte-macrophage-colony-stimulating factor and interleukin-4 in a closed-bag system in parallel to the standard flask cultivation system. Genetic modification was performed on Day 4. After induction of maturation on Day 5, mature DCs could be harvested and cryopreserved on Day 7. During the cultivation period comparative quality control was performed using flow cytometry, gene expression profiling, and functional assays. Both flasks and bags generated mature genetically modified DCs in similar yields. Surface membrane markers, expression profiles, and functional testing results were comparable. The use of a closed-bag system facilitated clinical applicability of genetically modified DCs. The polyolefin bag-based culture system yields DCs qualitatively and quantitatively comparable to the standard flask preparation. All steps including cryopreservation can be performed in a closed system facilitating standardized, safe, and reproducible preparation of therapeutic cells.

  9. Impact of genetic targets on therapy in head and neck squamous cell carcinoma.

    PubMed

    Chaikhoutdinov, Irina; Goldenberg, David

    2013-01-01

    Despite advances in surgical technique, radiation therapy and chemotherapy, the mortality from head and neck squamous cell carcinoma (HNSCC) has not improved significantly. Squamous cell carcinoma is caused by tobacco use, alcohol consumption and infection with high-risk types of human papillomavirus. It is the 6th most common cancer in the world, with upwards of 45,000 new cases reported yearly in the United States alone.In recent years, there has been a significant increase in the understanding of the molecular and genetic pathogenesis of head and neck cancer, shedding light on the unexpected heterogeneity of the disease. Genetic analysis has led to new classification schemes for HNSCC, with different subgroups exhibiting different prognoses. In addition, multiple targets in aberrant signaling pathways have been identified using increasingly sophisticated bio-informatics tools. Advances in technology have allowed for novel delivery mechanisms to introduce genetic material into cells to produce a therapeutic effect by targeting cancer cells via a number of different approaches.A pressing need to develop novel therapies to augment current treatment modalities has led to a number of translational studies involving gene therapy in the treatment of HNSCC. This article will focus on a review of the most recent developments in molecular biology of head and neck squamous cell carcinoma in regards to possible targets for gene therapy, as well as the array of novel therapeutic strategies directed at these targets.

  10. The impact of genetic modification of human foods in the 21st century: a review.

    PubMed

    Uzogara, S G

    2000-05-01

    Genetic engineering of food is the science which involves deliberate modification of the genetic material of plants or animals. It is an old agricultural practice carried on by farmers since early historical times, but recently it has been improved by technology. Many foods consumed today are either genetically modified (GM) whole foods, or contain ingredients derived from gene modification technology. Billions of dollars in U.S. food exports are realized from sales of GM seeds and crops. Despite the potential benefits of genetic engineering of foods, the technology is surrounded by controversy. Critics of GM technology include consumer and health groups, grain importers from European Union (EU) countries, organic farmers, environmentalists, concerned scientists, ethicists, religious rights groups, food advocacy groups, some politicians and trade protectionists. Some of the specific fears expressed by opponents of GM technology include alteration in nutritional quality of foods, potential toxicity, possible antibiotic resistance from GM crops, potential allergenicity and carcinogenicity from consuming GM foods. In addition, some more general concerns include environmental pollution, unintentional gene transfer to wild plants, possible creation of new viruses and toxins, limited access to seeds due to patenting of GM food plants, threat to crop genetic diversity, religious, cultural and ethical concerns, as well as fear of the unknown. Supporters of GM technology include private industries, research scientists, some consumers, U.S. farmers and regulatory agencies. Benefits presented by proponents of GM technology include improvement in fruit and vegetable shelf-life and organoleptic quality, improved nutritional quality and health benefits in foods, improved protein and carbohydrate content of foods, improved fat quality, improved quality and quantity of meat, milk and livestock. Other potential benefits are: the use of GM livestock to grow organs for transplant

  11. Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin

    PubMed Central

    Hernández-Terán, Alejandra; Wegier, Ana; Benítez, Mariana; Lira, Rafael; Escalante, Ana E.

    2017-01-01

    Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE). Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE), and domesticated without genetic engineering (domNGE)]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance), the phenotypic differences between domGE and domNGE would be either less (or inexistent) than between the wild and domesticated relatives (either domGE or domNGE). We conclude that (1) genetic modification (either by selective breeding or GE) can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE) and (2) the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop suggest

  12. Serum-free Erythroid Differentiation for Efficient Genetic Modification and High-Level Adult Hemoglobin Production.

    PubMed

    Uchida, Naoya; Demirci, Selami; Haro-Mora, Juan J; Fujita, Atsushi; Raines, Lydia N; Hsieh, Matthew M; Tisdale, John F

    2018-06-15

    In vitro erythroid differentiation from primary human cells is valuable to develop genetic strategies for hemoglobin disorders. However, current erythroid differentiation methods are encumbered by modest transduction rates and high baseline fetal hemoglobin production. In this study, we sought to improve both genetic modification and hemoglobin production among human erythroid cells in vitro . To model therapeutic strategies, we transduced human CD34 + cells and peripheral blood mononuclear cells (PBMCs) with lentiviral vectors and compared erythropoietin-based erythroid differentiation using fetal-bovine-serum-containing media and serum-free media. We observed more efficient transduction (85%-93%) in serum-free media than serum-containing media (20%-69%), whereas the addition of knockout serum replacement (KSR) was required for serum-free media to promote efficient erythroid differentiation (96%). High-level adult hemoglobin production detectable by electrophoresis was achieved using serum-free media similar to serum-containing media. Importantly, low fetal hemoglobin production was observed in the optimized serum-free media. Using KSR-containing, serum-free erythroid differentiation media, therapeutic adult hemoglobin production was detected at protein levels with β-globin lentiviral transduction in both CD34 + cells and PBMCs from sickle cell disease subjects. Our in vitro erythroid differentiation system provides a practical evaluation platform for adult hemoglobin production among human erythroid cells following genetic manipulation.

  13. Mitochondria are an early target of oxidative modifications in senescing legume nodules.

    PubMed

    Matamoros, Manuel A; Fernández-García, Nieves; Wienkoop, Stefanie; Loscos, Jorge; Saiz, Ana; Becana, Manuel

    2013-02-01

    Legume nodule senescence is a poorly understood process involving a decrease in N(2) fixation and an increase in proteolytic activity. Some physiological changes during nodule aging have been reported, but scarce information is available at the subcellular level. Biochemical, immunological and proteomic approaches were used to provide insight into the effects of aging on the mitochondria and cytosol of nodule host cells. In the mitochondria, the oxidative modification of lipids and proteins was associated with a marked decline in glutathione, a reduced capacity to regenerate ascorbate, and upregulation of alternative oxidase and manganese superoxide dismutase. In the cytosol, there were consistent reductions in the protein concentrations of carbon metabolism enzymes, inhibition of protein synthesis and increase in serine proteinase activity, disorganization of cytoskeleton, and a sharp reduction of cytosolic proteins, but no detectable accumulation of oxidized molecules. We conclude that nodule mitochondria are an early target of oxidative modifications and a likely source of redox signals. Alternative oxidase and manganese superoxide dismutase may play important roles in controlling ROS concentrations and the redox state of mitochondria. The finding that specific methionine residues of a cytosolic glutamine synthetase isoform are sulfoxidized suggests a regulatory role of this enzyme in senescing nodules. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  14. Targeting carbon for crop yield and drought resilience

    PubMed Central

    Griffiths, Cara A

    2017-01-01

    Abstract Current methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step‐change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.4% per year required by 2050. Genetic modification (GM) mainly for herbicide tolerance and insect resistance has been transformational, akin to a second green revolution, although GM has yet to make major inroads into intrinsic yield processes themselves. Drought imposes the major restriction on crop yields globally but, as yet, has not benefited substantially from genetic improvement and still presents a major challenge to agriculture. Much still has to be learnt about the complex process of how drought limits yield and what should be targeted. Mechanisms of drought adaptation from the natural environment cannot be taken into crops without significant modification for the agricultural environment because mechanisms of drought tolerance are often in contrast with mechanisms of high productivity required in agriculture. However, through convergence of fundamental and translational science, it would appear that a mechanism of sucrose allocation in crops can be modified for both productivity and resilience to drought and other stresses. Recent publications show how this mechanism can be targeted by GM, natural variation and a new chemical approach. Here, with an emphasis on drought, we highlight how understanding fundamental science about how crops grow, develop and what limits their growth and yield can be combined with targeted genetic selection and pioneering chemical intervention technology for transformational yield improvements. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID

  15. Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species.

    PubMed

    Feng, Shangguo; He, Refeng; Yang, Sai; Chen, Zhe; Jiang, Mengying; Lu, Jiangjie; Wang, Huizhong

    2015-08-10

    Two molecular marker systems, start codon targeted (SCoT) and target region amplification polymorphism (TRAP), were used for genetic relationship analysis of 36 Dendrobium species collected from China. Twenty-two selected SCoT primers produced 337 loci, of which 324 (96%) were polymorphic, whereas 13 TRAP primer combinations produced a total of 510 loci, with 500 (97.8%) of them being polymorphic. An average polymorphism information content of 0.953 and 0.983 was detected using the SCoT and TRAP primers, respectively, showing that a high degree of genetic diversity exists among Chinese Dendrobium species. The partition of clusters in the unweighted pair group method with arithmetic mean dendrogram and principal coordinate analysis plot based on the SCoT and TRAP markers was similar and clustered the 36 Dendrobium species into four main groups. Our results will provide useful information for resource protection and will also be useful to improve the current Dendrobium breeding programs. Our results also demonstrate that SCoT and TRAP markers are informative and can be used to evaluate genetic relationships between Dendrobium species. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Epidrug mediated re-expression of miRNA targeting the HMGA transcripts in pituitary cells.

    PubMed

    Kitchen, Mark O; Yacqub-Usman, Kiren; Emes, Richard D; Richardson, Alan; Clayton, Richard N; Farrell, William E

    2015-10-01

    Transgenic mice overexpressing the high mobility group A (HMGA) genes, Hmga1 or Hmga2 develop pituitary tumours and their overexpression is also a frequent finding in human pituitary adenomas. In some cases, increased expression of HMGA2 but not that of HMGA1 is consequent to genetic perturbations. However, recent studies show that down-regulation of microRNA (miRNA), that contemporaneously target the HMGA1 and HMGA2 transcripts, are associated with their overexpression. In a cohort of primary pituitary adenoma we determine the impact of epigenetic modifications on the expression of HMGA-targeting miRNA. For these miRNAs, chromatin immunoprecipitations showed that transcript down-regulation is correlated with histone tail modifications associated with condensed silenced genes. The functional impact of epigenetic modification on miRNA expression was determined in the rodent pituitary cell line, GH3. In these cells, histone tail, miRNA-associated, modifications were similar to those apparent in human adenoma and likely account for their repression. Indeed, challenge of GH3 cells with the epidrugs, zebularine and TSA, led to enrichment of the histone modification, H3K9Ac, associated with active genes, and depletion of the modification, H3K27me3, associated with silent genes and re-expression of HMGA-targeting miRNA. Moreover, epidrugs challenges were also associated with a concomitant decrease in hmga1 transcript and protein levels and concurrent increase in bmp-4 expression. These findings show that the inverse relationship between HMGA expression and targeting miRNA is reversible through epidrug interventions. In addition to showing a mechanistic link between epigenetic modifications and miRNA expression these findings underscore their potential as therapeutic targets in this and other diseases.

  17. Epigenetic Modifications in Essential Hypertension

    PubMed Central

    Wise, Ingrid A.; Charchar, Fadi J.

    2016-01-01

    Essential hypertension (EH) is a complex, polygenic condition with no single causative agent. Despite advances in our understanding of the pathophysiology of EH, hypertension remains one of the world’s leading public health problems. Furthermore, there is increasing evidence that epigenetic modifications are as important as genetic predisposition in the development of EH. Indeed, a complex and interactive genetic and environmental system exists to determine an individual’s risk of EH. Epigenetics refers to all heritable changes to the regulation of gene expression as well as chromatin remodelling, without involvement of nucleotide sequence changes. Epigenetic modification is recognized as an essential process in biology, but is now being investigated for its role in the development of specific pathologic conditions, including EH. Epigenetic research will provide insights into the pathogenesis of blood pressure regulation that cannot be explained by classic Mendelian inheritance. This review concentrates on epigenetic modifications to DNA structure, including the influence of non-coding RNAs on hypertension development. PMID:27023534

  18. Rational modification of protein stability by targeting surface sites leads to complicated results

    PubMed Central

    Xiao, Shifeng; Patsalo, Vadim; Shan, Bing; Bi, Yuan; Green, David F.; Raleigh, Daniel P.

    2013-01-01

    The rational modification of protein stability is an important goal of protein design. Protein surface electrostatic interactions are not evolutionarily optimized for stability and are an attractive target for the rational redesign of proteins. We show that surface charge mutants can exert stabilizing effects in distinct and unanticipated ways, including ones that are not predicted by existing methods, even when only solvent-exposed sites are targeted. Individual mutation of three solvent-exposed lysines in the villin headpiece subdomain significantly stabilizes the protein, but the mechanism of stabilization is very different in each case. One mutation destabilizes native-state electrostatic interactions but has a larger destabilizing effect on the denatured state, a second removes the desolvation penalty paid by the charged residue, whereas the third introduces unanticipated native-state interactions but does not alter electrostatics. Our results show that even seemingly intuitive mutations can exert their effects through unforeseen and complex interactions. PMID:23798426

  19. A Simple Method for Visualization of Locus-Specific H4K20me1 Modifications in Living Caenorhabditis elegans Single Cells.

    PubMed

    Shinkai, Yoichi; Kuramochi, Masahiro; Doi, Motomichi

    2018-05-03

    Recently, advances in next-generation sequencing technologies have enabled genome-wide analyses of epigenetic modifications; however, it remains difficult to analyze the states of histone modifications at a single-cell resolution in living multicellular organisms because of the heterogeneity within cellular populations. Here we describe a simple method to visualize histone modifications on the specific sequence of target locus at a single-cell resolution in living Caenorhabditis elegans , by combining the LacO/LacI system and a genetically-encoded H4K20me1-specific probe, "mintbody". We demonstrate that Venus-labeled mintbody and mTurquoise2-labeled LacI can co-localize on an artificial chromosome carrying both the target locus and LacO sequences, where H4K20me1 marks the target locus. We demonstrate that our visualization method can precisely detect H4K20me1 depositions on the her-1 gene sequences on the artificial chromosome, to which the dosage compensation complex binds to regulate sex determination. The degree of H4K20me1 deposition on the her-1 sequences on the artificial chromosome correlated strongly with sex, suggesting that, using the artificial chromosome, this method can reflect context-dependent changes of H4K20me1 on endogenous genomes. Furthermore, we demonstrate live imaging of H4K20me1 depositions on the artificial chromosome. Combined with ChIP assays, this mintbody-LacO/LacI visualization method will enable analysis of developmental and context-dependent alterations of locus-specific histone modifications in specific cells and elucidation of the underlying molecular mechanisms. Copyright © 2018, G3: Genes, Genomes, Genetics.

  20. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma.

    PubMed

    Reznik, Robert; Hendifar, Andrew E; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided.

  1. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  2. Inhibition of BET Bromodomain Targets Genetically Diverse Glioblastoma

    PubMed Central

    Cheng, Zhixiang; Gong, Yuanying; Ma, Yufang; Lu, Kaihua; Lu, Xiang; Pierce, Larry A.; Thompson, Reid C.; Muller, Susanne; Knapp, Stefan; Wang, Jialiang

    2014-01-01

    Purpose Glioblastoma is refractory to conventional therapies. The bromodomain and extraterminal domain (BET) proteins are epigenetic readers that selectively bind to acetylated lysine residues on histone tails. These proteins recently emerged as important therapeutic targets in NUT midline carcinoma and several types of hematopoietic cancers. In this study, the therapeutic potential of a novel BET bromodomain inhibitor, JQ1, was assessed in a panel of genetically heterogeneous glioblastoma samples. Experimental Design The antineoplastic effects of JQ1 were shown using ex vivo cultures derived from primary glioblastoma xenograft lines and surgical specimens of different genetic background. The in vivo efficacy was assessed in orthotopic glioblastoma tumors. Results We showed that JQ1 induced marked G1 cell-cycle arrest and apoptosis, which was phenocopied by knockdown of individual BET family members. JQ1 treatment resulted in significant changes in expression of genes that play important roles in glioblastoma such as c-Myc, p21CIP1/WAF1, hTERT, Bcl-2, and Bcl-xL. Unlike the observations in some hematopoietic cancer cell lines, exogenous c-Myc did not significantly protect glioblastoma cells against JQ1. In contrast, ectopically expressed Bcl-xL partially rescued cells from JQ1-induced apoptosis, and knockdown of p21CIP1/WAF1 attenuated JQ1-induced cell-cycle arrest. Cells genetically engineered for Akt hyperactivation or p53/Rb inactivation did not compromise JQ1 efficacy, suggesting that these frequently mutated signaling pathways may not confer resistance to JQ1. Furthermore, JQ1 significantly repressed growth of orthotopic glioblastoma tumors. Conclusion Our results suggest potentially broad therapeutic use of BET bromodomain inhibitors for treating genetically diverse glioblastoma tumors. PMID:23403638

  3. Host-targeted RAD-Seq reveals genetic changes in the coral Oculina patagonica associated with range expansion along the Spanish Mediterranean coast.

    PubMed

    Leydet, Karine Posbic; Grupstra, Carsten G B; Coma, Rafel; Ribes, Marta; Hellberg, Michael E

    2018-06-01

    Many organisms are expanding their ranges in response to changing environmental conditions. Understanding the patterns of genetic diversity and adaptation along an expansion front is crucial to assessing a species' long-term success. While next-generation sequencing techniques can reveal these changes in fine detail, ascribing them to a particular species can be difficult for organisms that live in close association with symbionts. Using a novel modified restriction site-associated DNA sequencing (RAD-Seq) protocol to target coral DNA, we collected 595 coral-specific single nucleotide polymorphisms from 189 colonies of the invasive coral Oculina patagonica from the Spanish Mediterranean coast, including established core populations and two expansion fronts. Surprisingly, populations from the recent northern expansion are genetically distinct from the westward expansion and core populations and also harbour greater genetic diversity. We found that temperature may have driven adaptation along the northern expansion, as genome scans for selection found three candidate loci associated with temperature in the north but none in the west. We found no genomic signature of selection associated with artificial substrate, which has been proposed for explaining the rapid spread of O. patagonica. This suggests that this coral is simply an opportunistic colonizer of free space made available by coastal habitat modifications. Our results suggest that unique genetic variation, possibly due to limited dispersal across the Ibiza Channel, an influx of individuals from different depths and/or adaptation to cooler temperatures along the northern expansion front may have facilitated the northward range expansion of O. patagonica in the western Mediterranean. © 2018 John Wiley & Sons Ltd.

  4. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord

    PubMed Central

    Ronsyn, Mark W; Daans, Jasmijn; Spaepen, Gie; Chatterjee, Shyama; Vermeulen, Katrien; D'Haese, Patrick; Van Tendeloo, Viggo FI; Van Marck, Eric; Ysebaert, Dirk; Berneman, Zwi N; Jorens, Philippe G; Ponsaerts, Peter

    2007-01-01

    Background Bone marrow-derived stromal cells (MSC) are attractive targets for ex vivo cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (h)MSC with enhanced green fluorescent protein (EGFP) and neurotrophin (NT)3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP) were established and used to study cell survival and transgene expression following transplantation in rat spinal cord. Results First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While in vivo EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, in vivo NT3 mRNA expression by hMSC-NT3 cells and in vivo EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed in vivo decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i) was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii) did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii) was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants. Conclusion In this study, we demonstrate that genetically

  5. Peptidyl-prolyl cis/trans-isomerase A1 (Pin1) is a target for modification by lipid electrophiles.

    PubMed

    Aluise, Christopher D; Rose, Kristie; Boiani, Mariana; Reyzer, Michelle L; Manna, Joseph D; Tallman, Keri; Porter, Ned A; Marnett, Lawrence J

    2013-02-18

    Oxidation of membrane phospholipids is associated with inflammation, neurodegenerative disease, and cancer. Oxyradical damage to phospholipids results in the production of reactive aldehydes that adduct proteins and modulate their function. 4-Hydroxynonenal (HNE), a common product of oxidative damage to lipids, adducts proteins at exposed Cys, His, or Lys residues. Here, we demonstrate that peptidyl-prolyl cis/trans-isomerase A1 (Pin1), an enzyme that catalyzes the conversion of the peptide bond of pSer/pThr-Pro moieties in signaling proteins from cis to trans, is highly susceptible to HNE modification. Incubation of purified Pin1 with HNE followed by MALDI-TOF/TOF mass spectrometry resulted in detection of Michael adducts at the active site residues His-157 and Cys-113. Time and concentration dependencies indicate that Cys-113 is the primary site of HNE modification. Pin1 was adducted in MDA-MB-231 breast cancer cells treated with 8-alkynyl-HNE as judged by click chemistry conjugation with biotin followed by streptavidin-based pulldown and Western blotting with anti-Pin1 antibody. Furthermore, orbitrap MS data support the adduction of Cys-113 in the Pin1 active site upon HNE treatment of MDA-MB-231 cells. siRNA knockdown of Pin1 in MDA-MB-231 cells partially protected the cells from HNE-induced toxicity. Recent studies indicate that Pin1 is an important molecular target for the chemopreventive effects of green tea polyphenols. The present study establishes that it is also a target for electrophilic modification by products of lipid peroxidation.

  6. Genetic recombination pathways and their application for genome modification of human embryonic stem cells.

    PubMed

    Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri

    2010-10-01

    Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens. 2010 Elsevier Inc. All rights reserved.

  7. Network Architecture Predisposes an Enzyme to Either Pharmacologic or Genetic Targeting.

    PubMed

    Jensen, Karin J; Moyer, Christian B; Janes, Kevin A

    2016-02-24

    Chemical inhibition and genetic knockdown of enzymes are not equivalent in cells, but network-level mechanisms that cause discrepancies between knockdown and inhibitor perturbations are not understood. Here we report that enzymes regulated by negative feedback are robust to knockdown but susceptible to inhibition. Using the Raf-MEK-ERK kinase cascade as a model system, we find that ERK activation is resistant to genetic knockdown of MEK but susceptible to a comparable degree of chemical MEK inhibition. We demonstrate that negative feedback from ERK to Raf causes this knockdown-versus-inhibitor discrepancy in vivo. Exhaustive mathematical modeling of three-tiered enzyme cascades suggests that this result is general: negative autoregulation or feedback favors inhibitor potency, whereas positive autoregulation or feedback favors knockdown potency. Our findings provide a rationale for selecting pharmacologic versus genetic perturbations in vivo and point out the dangers of using knockdown approaches in search of drug targets.

  8. The genetic regulatory network centered on Pto-Wuschela and its targets involved in wood formation revealed by association studies.

    PubMed

    Yang, Xiaohui; Wei, Zunzheng; Du, Qingzhang; Chen, Jinhui; Wang, Qingshi; Quan, Mingyang; Song, Yuepeng; Xie, Jianbo; Zhang, Deqiang

    2015-11-09

    Transcription factors (TFs) regulate gene expression and can strongly affect phenotypes. However, few studies have examined TF variants and TF interactions with their targets in plants. Here, we used genetic association in 435 unrelated individuals of Populus tomentosa to explore the variants in Pto-Wuschela and its targets to decipher the genetic regulatory network of Pto-Wuschela. Our bioinformatics and co-expression analysis identified 53 genes with the motif TCACGTGA as putative targets of Pto-Wuschela. Single-marker association analysis showed that Pto-Wuschela was associated with wood properties, which is in agreement with the observation that it has higher expression in stem vascular tissues in Populus. Also, SNPs in the 53 targets were associated with growth or wood properties under additive or dominance effects, suggesting these genes and Pto-Wuschela may act in the same genetic pathways that affect variation in these quantitative traits. Epistasis analysis indicated that 75.5% of these genes directly or indirectly interacted Pto-Wuschela, revealing the coordinated genetic regulatory network formed by Pto-Wuschela and its targets. Thus, our study provides an alternative method for dissection of the interactions between a TF and its targets, which will strength our understanding of the regulatory roles of TFs in complex traits in plants.

  9. Targeted gene deletion of miRNAs in mice by TALEN system.

    PubMed

    Takada, Shuji; Sato, Tempei; Ito, Yoshiaki; Yamashita, Satoshi; Kato, Tomoko; Kawasumi, Miyuri; Kanai-Azuma, Masami; Igarashi, Arisa; Kato, Tomomi; Tamano, Moe; Asahara, Hiroshi

    2013-01-01

    Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A) tail worked better than that of with poly(A) tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.

  10. Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA).

    PubMed

    Ramesh, S V

    2013-09-01

    Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successfully deployed in developing non-coding RNA-based genetically modified plants. The ncRNA-based gene manipulations are typified with mobile nature of silencing signals, interference from viral genome-derived suppressor proteins, and an obligation for meticulous computational analysis to prevaricate any inadvertent effects. In a broad sense, risk assessment inquiries for genetically modified plants based on the expression of ncRNAs are competently addressed by the environmental risk assessment (ERA) models, currently in vogue, designed for the first generation transgenic plants which are based on the expression of heterologous proteins. Nevertheless, transgenic plants functioning on the foundation of ncRNAs warrant due attention with respect to their unique attributes like off-target or non-target gene silencing effects, small RNAs (sRNAs) persistence, food and feed safety assessments, problems in detection and tracking of sRNAs in food, impact of ncRNAs in plant protection measures, effect of mutations etc. The role of recent developments in sequencing techniques like next generation sequencing (NGS) and the ERA paradigm of the different countries in vogue are also discussed in the context of ncRNA-based gene manipulations.

  11. Targeted Next-generation Sequencing and Bioinformatics Pipeline to Evaluate Genetic Determinants of Constitutional Disease.

    PubMed

    Dilliott, Allison A; Farhan, Sali M K; Ghani, Mahdi; Sato, Christine; Liang, Eric; Zhang, Ming; McIntyre, Adam D; Cao, Henian; Racacho, Lemuel; Robinson, John F; Strong, Michael J; Masellis, Mario; Bulman, Dennis E; Rogaeva, Ekaterina; Lang, Anthony; Tartaglia, Carmela; Finger, Elizabeth; Zinman, Lorne; Turnbull, John; Freedman, Morris; Swartz, Rick; Black, Sandra E; Hegele, Robert A

    2018-04-04

    Next-generation sequencing (NGS) is quickly revolutionizing how research into the genetic determinants of constitutional disease is performed. The technique is highly efficient with millions of sequencing reads being produced in a short time span and at relatively low cost. Specifically, targeted NGS is able to focus investigations to genomic regions of particular interest based on the disease of study. Not only does this further reduce costs and increase the speed of the process, but it lessens the computational burden that often accompanies NGS. Although targeted NGS is restricted to certain regions of the genome, preventing identification of potential novel loci of interest, it can be an excellent technique when faced with a phenotypically and genetically heterogeneous disease, for which there are previously known genetic associations. Because of the complex nature of the sequencing technique, it is important to closely adhere to protocols and methodologies in order to achieve sequencing reads of high coverage and quality. Further, once sequencing reads are obtained, a sophisticated bioinformatics workflow is utilized to accurately map reads to a reference genome, to call variants, and to ensure the variants pass quality metrics. Variants must also be annotated and curated based on their clinical significance, which can be standardized by applying the American College of Medical Genetics and Genomics Pathogenicity Guidelines. The methods presented herein will display the steps involved in generating and analyzing NGS data from a targeted sequencing panel, using the ONDRISeq neurodegenerative disease panel as a model, to identify variants that may be of clinical significance.

  12. Selecting for Disabilities: Selection Versus Modification.

    PubMed

    Shaw, Joshua

    2018-04-01

    This essay considers one argument used to defend parents who use preimplantation genetic diagnosis (PGD) to select for deafness and other disabilities. Some bioethicists have argued that a distinction should be drawn between genetically modifying embryos to possess disabilities and using PGD to select embryos that already present markers of them, and that the former is unethical because it inflicts avoidable harms onto the resulting children, whereas the latter is permissible because it allows children with potentially impaired abilities to exist. This essay raises doubts about whether a meaningful moral distinction can be drawn between modification and selection. Arguments which distinguish modification from selection can be understood in two ways. One is to read them as presenting a No Harm, No Foul argument. Another is to read them as presenting a Harming Versus Letting Be argument. Neither succeeds, however, either in establishing a meaningful moral distinction between modification and selection, or in showing that the second is morally permissible in contradistinction to the first.

  13. Genetic approaches to interfere with malaria transmission by vector mosquitoes

    PubMed Central

    Wang, Sibao; Jacobs-Lorena, Marcelo

    2013-01-01

    Malaria remains one of the world’s most devastating diseases, causing over one million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications. PMID:23395485

  14. Establishment of apoptotic regulatory network for genetic markers of colorectal cancer and optimal selection of traditional Chinese medicine target.

    PubMed

    Tian, Tongde; Chen, Chuanliang; Yang, Feng; Tang, Jingwen; Pei, Junwen; Shi, Bian; Zhang, Ning; Zhang, Jianhua

    2017-03-01

    The paper aimed to screen out genetic markers applicable to early diagnosis for colorectal cancer and establish apoptotic regulatory network model for colorectal cancer, and to analyze the current situation of traditional Chinese medicine (TCM) target, thereby providing theoretical evidence for early diagnosis and targeted therapy of colorectal cancer. Taking databases including CNKI, VIP, Wanfang data, Pub Med, and MEDLINE as main sources of literature retrieval, literatures associated with genetic markers that are applied to early diagnosis of colorectal cancer were searched and performed comprehensive and quantitative analysis by Meta analysis, hence screening genetic markers used in early diagnosis of colorectal cancer. KEGG analysis was employed to establish apoptotic regulatory network model based on screened genetic markers, and optimization was conducted on TCM targets. Through Meta analysis, seven genetic markers were screened out, including WWOX, K-ras, COX-2, P53, APC, DCC and PTEN, among which DCC has the highest diagnostic efficiency. Apoptotic regulatory network was built by KEGG analysis. Currently, it was reported that TCM has regulatory function on gene locus in apoptotic regulatory network. The apoptotic regulatory model of colorectal cancer established in this study provides theoretical evidence for early diagnosis and TCM targeted therapy of colorectal cancer in clinic.

  15. UV exposure, genetic targets in melanocytic tumors and transgenic mouse models.

    PubMed

    de Gruijl, Frank R; van Kranen, Henk J; van Schanke, Arne

    2005-01-01

    The genetic changes and corruption of kinase activity in melanomas appear to revolve around a central axis: mitogenic signaling along the RAS pathway down to transcription regulation by pRB. Epidemiological studies point to the importance of ultraviolet (UV) radiation in the etiology of melanoma, but where and how UV radiation is targeted to contribute to the oncogenic signaling remains obscure. Animal models of melanoma genesis could serve to clarify this issue, but many of these models are not responsive to UV exposure. Most interesting advances have been made by using transgenic mice that carry genetic defects that are known to be relevant to human melanoma: specifically, dysfunction in the tumor suppressive action of p16INK4a or a receptor tyrosine kinase/RAS pathway, that is constitutively activated in melanocytes. The latter types of mice appear to be most responsive to (neonatal) UV exposure. Whether this is due to a general increase in target cells by melanocytosis and a paucity or complete lack of pigment, or a possible UV-induced response of the promoter-enhancer of the transgene or a genuinely independent and additional genetic alteration caused by UV exposure needs to be established. Importantly, the full effect of UV radiation needs to be ascertained in mice with different pigmentation by varying the wavelengths, UV-B versus UV-A1, and the exposure schedules, i.e. neonatal versus adult and chronic versus intermittent overexposure. Intermittent UV-B overexposure deserves special attention because it most strongly evokes proliferative responses in melanocytes.

  16. A Target Coverage Scheduling Scheme Based on Genetic Algorithms in Directional Sensor Networks

    PubMed Central

    Gil, Joon-Min; Han, Youn-Hee

    2011-01-01

    As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime. PMID:22319387

  17. Advances in genetic engineering of the avian genome: "Realising the promise".

    PubMed

    Doran, Timothy J; Cooper, Caitlin A; Jenkins, Kristie A; Tizard, Mark L V

    2016-06-01

    This review provides an historic perspective of the key steps from those reported at the 1st Transgenic Animal Research Conference in 1997 through to the very latest developments in avian transgenesis. Eighteen years later, on the occasion of the 10th conference in this series, we have seen breakthrough advances in the use of viral vectors and transposons to transform the germline via the direct manipulation of the chicken embryo, through to the establishment of PGC cultures allowing in vitro modification, expansion into populations to analyse the genetic modifications and then injection of these cells into embryos to create germline chimeras. We have now reached an unprecedented time in the history of chicken transgenic research where we have the technology to introduce precise, targeted modifications into the chicken genome, ranging from; new transgenes that provide improved phenotypes such as increased resilience to economically important diseases; the targeted disruption of immunoglobulin genes and replacement with human sequences to generate transgenic chickens that express "humanised" antibodies for biopharming; and the deletion of specific nucleotides to generate targeted gene knockout chickens for functional genomics. The impact of these advances is set to be realised through applications in chickens, and other bird species as models in scientific research, for novel biotechnology and to protect and improve agricultural productivity.

  18. Targeting carbon for crop yield and drought resilience.

    PubMed

    Griffiths, Cara A; Paul, Matthew J

    2017-11-01

    Current methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step-change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.4% per year required by 2050. Genetic modification (GM) mainly for herbicide tolerance and insect resistance has been transformational, akin to a second green revolution, although GM has yet to make major inroads into intrinsic yield processes themselves. Drought imposes the major restriction on crop yields globally but, as yet, has not benefited substantially from genetic improvement and still presents a major challenge to agriculture. Much still has to be learnt about the complex process of how drought limits yield and what should be targeted. Mechanisms of drought adaptation from the natural environment cannot be taken into crops without significant modification for the agricultural environment because mechanisms of drought tolerance are often in contrast with mechanisms of high productivity required in agriculture. However, through convergence of fundamental and translational science, it would appear that a mechanism of sucrose allocation in crops can be modified for both productivity and resilience to drought and other stresses. Recent publications show how this mechanism can be targeted by GM, natural variation and a new chemical approach. Here, with an emphasis on drought, we highlight how understanding fundamental science about how crops grow, develop and what limits their growth and yield can be combined with targeted genetic selection and pioneering chemical intervention technology for transformational yield improvements. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors

  19. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering.

    PubMed

    Zhou, Man; Luo, Hong

    2013-09-01

    Food security is one of the most important issues challenging the world today. Any strategies to solve this problem must include increasing crop yields and quality. MicroRNA-based genetic modification technology (miRNA-based GM tech) can be one of the most promising solutions that contribute to agricultural productivity directly by developing superior crop cultivars with enhanced biotic and abiotic stress tolerance and increased biomass yields. Indirectly, the technology may increase usage of marginal soils and decrease pesticide use, among other benefits. This review highlights the most recent progress of transgenic studies utilizing various miRNAs and their targets for plant trait modifications, and analyzes the potential of miRNA-mediated gene regulation for use in crop improvement. Strategies for manipulating miRNAs and their targets in transgenic plants including constitutive, stress-induced, or tissue-specific expression of miRNAs or their targets, RNA interference, expressing miRNA-resistant target genes, artificial target mimic and artificial miRNAs were discussed. We also discussed potential risks of utilizing miRNA-based GM tech. In general, miRNAs and their targets not only provide an invaluable source of novel transgenes, but also inspire the development of several new GM strategies, allowing advances in breeding novel crop cultivars with agronomically useful characteristics.

  20. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer.

    PubMed

    Bollard, Catherine M; Gottschalk, Stephen; Leen, Ann M; Weiss, Heidi; Straathof, Karin C; Carrum, George; Khalil, Mariam; Wu, Meng-fen; Huls, M Helen; Chang, Chung-Che; Gresik, M Victoria; Gee, Adrian P; Brenner, Malcolm K; Rooney, Cliona M; Heslop, Helen E

    2007-10-15

    Epstein-Barr virus (EBV)-associated tumors developing in immunocompetent individuals present a challenge to immunotherapy, since they lack expression of immunodominant viral antigens. However, the tumors consistently express viral proteins including LMP2, which are immunologically "weak" but may nonetheless be targets for immune T cells. We previously showed that a majority of cytotoxic T lymphocytes (CTLs) reactivated using EBV-transformed B-lymphoblastoid cells lines (LCLs) contained minor populations of LMP2-specific T cells and homed to tumor sites. However, they did not produce remissions in patients with bulky disease. We have now used gene transfer into antigen-presenting cells (APCs) to augment the expression and immunogenicity of LMP2. These modified APCs increased the frequency of LMP2-specific CTLs by up to 100-fold compared with unmodified LCL-APCs. The LMP2-specific population expanded and persisted in vivo without adverse effects. Nine of 10 patients treated in remission of high-risk disease remain in remission, and 5 of 6 patients with active relapsed disease had a tumor response, which was complete in 4 and sustained for more than 9 months. It is therefore possible to generate immune responses to weak tumor antigens by ex vivo genetic modification of APCs and the CTLs so produced can have substantial antitumor activity. This study is registered at http://www.cancer.gov/clinicaltrials (protocol IDs: BCM-H-9936, NCT00062868, NCT00070226).

  1. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    DOE PAGES

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulatedmore » patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.« less

  2. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization.

    PubMed

    Cowan, Don A; Fernandez-Lafuente, Roberto

    2011-09-10

    The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution.

    PubMed

    Shin, Hae Ja

    2011-02-01

    Microbial biosensors are compact, portable, cost effective, and simple to use, making them seem eminently suitable for the in situ monitoring of environmental pollution. One promising approach for such applications is the fusion of reporter genes with regulatory genes that are dose-dependently responsive to the target chemicals or physiological signals. Their biosensor capabilities, such as target range and sensitivity, could be improved by modification of regulatory genes. Recent uses of such genetically engineered microbial biosensors include the development of portable biosensor kits and high-throughput cell arrays on chips, optic fibers, or other platforms for on-site and on-line monitoring of environmental pollution. This mini-review discusses recent advances in microbial biosensors and their future prospects, with a focus on the development and application of genetically modified microbial biosensors for in situ environmental monitoring.

  4. Drug Addiction and DNA Modifications.

    PubMed

    Brown, Amber N; Feng, Jian

    2017-01-01

    Drug addiction is a complex disorder which can be influenced by both genetic and environmental factors. Research has shown that epigenetic modifications can translate environmental signals into changes in gene expression, suggesting that epigenetic changes may underlie the causes and possibly treatment of substance use disorders. This chapter will focus on epigenetic modifications to DNA, which include DNA methylation and several recently defined additional DNA epigenetic changes. We will discuss the functions of DNA modifications and methods for detecting them, followed by a description of the research investigating the function and consequences of drug-induced changes in DNA methylation patterns. Understanding these epigenetic changes may provide us translational tools for the diagnosis and treatment of addiction in the future.

  5. A Developmental-Genetic Model of Alcoholism: Implications for Genetic Research.

    ERIC Educational Resources Information Center

    Devor, Eric J.

    1994-01-01

    Research for biological-genetic markers of alcoholism is discussed in context of a multifactorial, heterogeneous, developmental model. Suggested that strategies used in linkage and association studies will require modification. Also suggested several extant associations of genetic markers represent true secondary interactive phenomena that alter…

  6. Highly specific detection of genetic modification events using an enzyme-linked probe hybridization chip.

    PubMed

    Zhang, M Z; Zhang, X F; Chen, X M; Chen, X; Wu, S; Xu, L L

    2015-08-10

    The enzyme-linked probe hybridization chip utilizes a method based on ligase-hybridizing probe chip technology, with the principle of using thio-primers for protection against enzyme digestion, and using lambda DNA exonuclease to cut multiple PCR products obtained from the sample being tested into single-strand chains for hybridization. The 5'-end amino-labeled probe was fixed onto the aldehyde chip, and hybridized with the single-stranded PCR product, followed by addition of a fluorescent-modified probe that was then enzymatically linked with the adjacent, substrate-bound probe in order to achieve highly specific, parallel, and high-throughput detection. Specificity and sensitivity testing demonstrated that enzyme-linked probe hybridization technology could be applied to the specific detection of eight genetic modification events at the same time, with a sensitivity reaching 0.1% and the achievement of accurate, efficient, and stable results.

  7. Chemical genetics - a versatile method to combine science and higher level teaching in molecular genetics.

    PubMed

    Sandrock, Björn

    2012-10-09

    Phosphorylation is a key event in many cellular processes like cell cycle, transformation of environmental signals to transcriptional activation or polar growth. The chemical genetics approach can be used to analyse the effect of highly specific inhibition in vivo and is a promising method to screen for kinase targets. We have used this approach to study the role of the germinal centre kinase Don3 during the cell division in the phytopathogenic fungus Ustilago maydis. Due to the easy determination of the don3 phenotype we have chosen this approach for a genetic course for M.Sc. students and for IMPRS (International Max-Planck research school) students. According to the principle of "problem-based learning" the aim of this two-week course is to transfer knowledge about the broad spectrum of kinases to the students and that the students acquire the ability to design their own analog-sensitive kinase of interest. In addition to these training goals, we benefit from these annual courses the synthesis of basic constructs for genetic modification of several kinases in our model system U. maydis.

  8. Air pollution and diabetes association: Modification by type 2 diabetes genetic risk score.

    PubMed

    Eze, Ikenna C; Imboden, Medea; Kumar, Ashish; von Eckardstein, Arnold; Stolz, Daiana; Gerbase, Margaret W; Künzli, Nino; Pons, Marco; Kronenberg, Florian; Schindler, Christian; Probst-Hensch, Nicole

    2016-09-01

    Exposure to ambient air pollution (AP) exposure has been linked to type 2 diabetes (T2D) risk. Evidence on the impact of T2D genetic variants on AP susceptibility is lacking. Compared to single variants, joint genetic variants contribute substantially to disease risk. We investigated the modification of AP and diabetes association by a genetic risk score (GRS) covering 63 T2D genes in 1524 first follow-up participants of the Swiss cohort study on air pollution and lung and heart diseases in adults. Genome-wide data and covariates were available from a nested asthma case-control study design. AP was estimated as 10-year mean residential particulate matter <10μm (PM10). We computed count-GRS and weighted-GRS, and applied PM10 interaction terms in mixed logistic regressions, on odds of diabetes. Analyses were stratified by pathways of diabetes pathology and by asthma status. Diabetes prevalence was 4.6% and mean exposure to PM10 was 22μg/m(3). Odds of diabetes increased by 8% (95% confidence interval: 2, 14%) per T2D risk allele and by 35% (-8, 97%) per 10μg/m(3) exposure to PM10. We observed a positive interaction between PM10 and count-GRS on diabetes [ORinteraction=1.10 (1.01, 1.20)], associations being strongest among participants at the highest quartile of count-GRS [OR: 1.97 (1.00, 3.87)]. Stronger interactions were observed with variants of the GRS involved in insulin resistance [(ORinteraction=1.22 (1.00, 1.50)] than with variants related to beta-cell function. Interactions with count-GRS were stronger among asthma cases. We observed similar results with weighted-GRS. Five single variants near GRB14, UBE2E2, PTPRD, VPS26A and KCNQ1 showed nominally significant interactions with PM10 (P<0.05). Our results suggest that genetic risk for T2D may modify susceptibility to air pollution through alterations in insulin sensitivity. These results need confirmation in diabetes cohort consortia. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights

  9. Virus-mimetic polyplex particles for systemic and inflammation-specific targeted delivery of large genetic contents.

    PubMed

    Kang, S; Lu, K; Leelawattanachai, J; Hu, X; Park, S; Park, T; Min, I M; Jin, M M

    2013-11-01

    Systemic and target-specific delivery of large genetic contents has been difficult to achieve. Although viruses effortlessly deliver kilobase-long genome into cells, its clinical use has been hindered by serious safety concerns and the mismatch between native tropisms and desired targets. Nonviral vectors, in contrast, are limited by low gene transfer efficiency and inherent cytotoxicity. Here we devised virus-mimetic polyplex particles (VMPs) based on electrostatic self-assembly among polyanionic peptide (PAP), cationic polymer polyethyleneimine (PEI) and nucleic acids. We fused PAP to the engineered ligand-binding domain of integrin αLβ2 to target intercellular adhesion molecule-1 (ICAM-1), an inducible marker of inflammation. Fully assembled VMPs packaged large genetic contents, bound specifically to target molecules, elicited receptor-mediated endocytosis and escaped endosomal pathway, resembling intracellular delivery processes of viruses. Unlike conventional PEI-mediated transfection, molecular interaction-dependent gene delivery of VMPs was unaffected by the presence of serum and achieved higher efficiency without toxicity. By targeting overexpressed ICAM-1, VMPs delivered genes specifically to inflamed endothelial cells and macrophages both in vitro and in vivo. Simplicity and versatility of the platform and inflammation-specific delivery may open up opportunities for multifaceted gene therapy that can be translated into the clinic and treat a broad range of debilitating immune and inflammatory diseases.

  10. A high-throughput and rapid computational method for screening of RNA post-transcriptional modifications that can be recognized by target proteins.

    PubMed

    Orr, Asuka A; Gonzalez-Rivera, Juan C; Wilson, Mark; Bhikha, P Reena; Wang, Daiqi; Contreras, Lydia M; Tamamis, Phanourios

    2018-02-01

    There are over 150 currently known, highly diverse chemically modified RNAs, which are dynamic, reversible, and can modulate RNA-protein interactions. Yet, little is known about the wealth of such interactions. This can be attributed to the lack of tools that allow the rapid study of all the potential RNA modifications that might mediate RNA-protein interactions. As a promising step toward this direction, here we present a computational protocol for the characterization of interactions between proteins and RNA containing post-transcriptional modifications. Given an RNA-protein complex structure, potential RNA modified ribonucleoside positions, and molecular mechanics parameters for capturing energetics of RNA modifications, our protocol operates in two stages. In the first stage, a decision-making tool, comprising short simulations and interaction energy calculations, performs a fast and efficient search in a high-throughput fashion, through a list of different types of RNA modifications categorized into trees according to their structural and physicochemical properties, and selects a subset of RNA modifications prone to interact with the target protein. In the second stage, RNA modifications that are selected as recognized by the protein are examined in-detail using all-atom simulations and free energy calculations. We implement and experimentally validate this protocol in a test case involving the study of RNA modifications in complex with Escherichia coli (E. coli) protein Polynucleotide Phosphorylase (PNPase), depicting the favorable interaction between 8-oxo-7,8-dihydroguanosine (8-oxoG) RNA modification and PNPase. Further advancement of the protocol can broaden our understanding of protein interactions with all known RNA modifications in several systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The impact of genetically modified crops on soil microbial communities.

    PubMed

    Giovannetti, Manuela; Sbrana, Cristiana; Turrini, Alessandra

    2005-01-01

    Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.

  12. Effects of genetic modifications to flax (Linum usitatissimum) on arbuscular mycorrhiza and plant performance.

    PubMed

    Wróbel-Kwiatkowska, Magdalena; Turnau, Katarzyna; Góralska, Katarzyna; Anielska, Teresa; Szopa, Jan

    2012-10-01

    Although arbuscular mycorrhizal fungi (AMF) are known for their positive effect on flax growth, the impact of genetic manipulation in this crop on arbuscular mycorrhiza and plant performance was assessed for the first time. Five types of transgenic flax that were generated to improve fiber quality and resistance to pathogens, through increased levels of either phenylpropanoids (W92.40), glycosyltransferase (GT4, GT5), or PR2 beta-1,3-glucanase (B14) or produce polyhydroxybutyrate (M50), were used. Introduced genetic modifications did not change the degree of mycorrhizal colonization as compared to parent cultivars Linola and Nike. Arbuscules were well developed in each tested transgenic type (except M50). In two lines (W92.40 and B14), a higher abundance of arbuscules was observed when compared to control, untransformed flax plants. However, in some cases (W92.40, GT4, GT5, and B14 Md), the mycorrhizal dependency for biomass production of transgenic plants was slightly lower when compared to the original cultivars. No significant influence of mycorrhiza on the photosynthetic activity of transformed lines was found, but in most cases P concentration in mycorrhizal plants remained higher than in nonmycorrhizal ones. The transformed flax lines meet the demands for better quality of fiber and higher resistance to pathogens, without significantly influencing the interaction with AMF.

  13. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin

    PubMed Central

    Zhen, Chao Yu; Tatavosian, Roubina; Huynh, Thao Ngoc; Duc, Huy Nguyen; Das, Raibatak; Kokotovic, Marko; Grimm, Jonathan B; Lavis, Luke D; Lee, Jun; Mejia, Frances J; Li, Yang; Yao, Tingting; Ren, Xiaojun

    2016-01-01

    The Polycomb PRC1 plays essential roles in development and disease pathogenesis. Targeting of PRC1 to chromatin is thought to be mediated by the Cbx family proteins (Cbx2/4/6/7/8) binding to histone H3 with a K27me3 modification (H3K27me3). Despite this prevailing view, the molecular mechanisms of targeting remain poorly understood. Here, by combining live-cell single-molecule tracking (SMT) and genetic engineering, we reveal that H3K27me3 contributes significantly to the targeting of Cbx7 and Cbx8 to chromatin, but less to Cbx2, Cbx4, and Cbx6. Genetic disruption of the complex formation of PRC1 facilitates the targeting of Cbx7 to chromatin. Biochemical analyses uncover that the CD and AT-hook-like (ATL) motif of Cbx7 constitute a functional DNA-binding unit. Live-cell SMT of Cbx7 mutants demonstrates that Cbx7 is targeted to chromatin by co-recognizing of H3K27me3 and DNA. Our data suggest a novel hierarchical cooperation mechanism by which histone modifications and DNA coordinate to target chromatin regulatory complexes. DOI: http://dx.doi.org/10.7554/eLife.17667.001 PMID:27723458

  14. A statistical simulation model for field testing of non-target organisms in environmental risk assessment of genetically modified plants.

    PubMed

    Goedhart, Paul W; van der Voet, Hilko; Baldacchino, Ferdinando; Arpaia, Salvatore

    2014-04-01

    Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non-target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess-zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided.

  15. A statistical simulation model for field testing of non-target organisms in environmental risk assessment of genetically modified plants

    PubMed Central

    Goedhart, Paul W; van der Voet, Hilko; Baldacchino, Ferdinando; Arpaia, Salvatore

    2014-01-01

    Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non-target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess-zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided. PMID:24834325

  16. Genetic modification of the human germ line: The reasons why this project has no future.

    PubMed

    Morange, Michel

    2015-01-01

    Modification of the human germ line has remained a distant but valuable objective for most biologists since the emergence of genetics (and even before). To study the historical transformations of this project, I have selected three periods - the 1930s, at the pinnacle of eugenics, around 1974 when molecular biology triumphed, and today - and have adopted three criteria to estimate the feasibility of this project: the state of scientific knowledge, the existence of suitable tools, and societal demands. Although the long-awaited techniques to modify the germ line are now available, I will show that most of the expectations behind this project have disappeared, or are considered as being reachable by highly different strategies. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. Genetic Determinants of Epigenetic Patterns: Providing Insight into Disease.

    PubMed

    Cazaly, Emma; Charlesworth, Jac; Dickinson, Joanne L; Holloway, Adele F

    2015-03-26

    The field of epigenetics and our understanding of the mechanisms that regulate the establishment, maintenance and heritability of epigenetic patterns continue to grow at a remarkable rate. This information is providing increased understanding of the role of epigenetic changes in disease, insight into the underlying causes of these epigenetic changes and revealing new avenues for therapeutic intervention. Epigenetic modifiers are increasingly being pursued as therapeutic targets in a range of diseases, with a number of agents targeting epigenetic modifications already proving effective in diseases such as cancer. Although it is well established that DNA mutations and aberrant expression of epigenetic modifiers play a key role in disease, attention is now turning to the interplay between genetic and epigenetic factors in complex disease etiology. The role of genetic variability in determining epigenetic profiles, which can then be modified by environmental and stochastic factors, is becoming more apparent. Understanding the interplay between genetic and epigenetic factors is likely to aid in identifying individuals most likely to benefit from epigenetic therapies. This goal is coming closer to realization because of continual advances in laboratory and statistical tools enabling improvements in the integration of genomic, epigenomic and phenotypic data.

  18. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy

    PubMed Central

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-01-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6, heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy. PMID:26177264

  19. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy.

    PubMed

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-09-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6 , heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  20. Fast targeted gene transfection and optogenetic modification of single neurons using femtosecond laser irradiation

    PubMed Central

    Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Witts, Emily C.; Miles, Gareth B.; Dholakia, Kishan; Gunn-Moore, Frank J.

    2013-01-01

    A prevailing problem in neuroscience is the fast and targeted delivery of DNA into selected neurons. The development of an appropriate methodology would enable the transfection of multiple genes into the same cell or different genes into different neighboring cells as well as rapid cell selective functionalization of neurons. Here, we show that optimized femtosecond optical transfection fulfills these requirements. We also demonstrate successful optical transfection of channelrhodopsin-2 in single selected neurons. We extend the functionality of this technique for wider uptake by neuroscientists by using fast three-dimensional laser beam steering enabling an image-guided “point-and-transfect” user-friendly transfection of selected cells. A sub-second transfection timescale per cell makes this method more rapid by at least two orders of magnitude when compared to alternative single-cell transfection techniques. This novel technology provides the ability to carry out large-scale cell selective genetic studies on neuronal ensembles and perform rapid genetic programming of neural circuits. PMID:24257461

  1. Fast targeted gene transfection and optogenetic modification of single neurons using femtosecond laser irradiation.

    PubMed

    Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Witts, Emily C; Miles, Gareth B; Dholakia, Kishan; Gunn-Moore, Frank J

    2013-11-21

    A prevailing problem in neuroscience is the fast and targeted delivery of DNA into selected neurons. The development of an appropriate methodology would enable the transfection of multiple genes into the same cell or different genes into different neighboring cells as well as rapid cell selective functionalization of neurons. Here, we show that optimized femtosecond optical transfection fulfills these requirements. We also demonstrate successful optical transfection of channelrhodopsin-2 in single selected neurons. We extend the functionality of this technique for wider uptake by neuroscientists by using fast three-dimensional laser beam steering enabling an image-guided "point-and-transfect" user-friendly transfection of selected cells. A sub-second transfection timescale per cell makes this method more rapid by at least two orders of magnitude when compared to alternative single-cell transfection techniques. This novel technology provides the ability to carry out large-scale cell selective genetic studies on neuronal ensembles and perform rapid genetic programming of neural circuits.

  2. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms.

    PubMed

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-05

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.

  3. Development and Validation of A 48-Target Analytical Method for High-throughput Monitoring of Genetically Modified Organisms

    PubMed Central

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-01

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930

  4. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  5. Modification and integration of JSW cyclotron GAS targets at the national institutes of health cyclotron facility

    NASA Astrophysics Data System (ADS)

    Finn, R.; Plascjak, P.; Sheh, Y.; Yamashita, Y.; Yoshida, H.; Adams, R.; Simpson, N.; Larson, S.

    1987-04-01

    The Cyclotron staff at the National Institutes of Health is involved in a comprehensive radionuclide preparation program which culminates with the formulation of numerous requested short-lived radiopharmaceutical agents for clinical evaluation. The existence of two cyclotrons and the requests for cyclotron-produced radionuclides, principally short-lived positron-emitting ones, necessitates an efficient and cost-effective program. The clinical need for 15O labelled water exemplifies the modification and effective coupling of two supplied gas target systems without detriment to either individual product. 15O labeled oxygen, produced from the 14N(d,n) 15O nuclear reaction, is combined with the target gas for 11C labelled cyanide production through standard fittings to achieve the chemical oxidation. The system allows an "on-line" product of extremely high yield and excellent radionuclidic purity. The operational characteristics of the redesigned commercial cyclotron targetry system and the radiochemical considerations are presented.

  6. Processing of LEU targets for {sup 99}Mo production--testing and modification of the Cintichem process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, D.; Landsberger, S.; Buchholz, B.

    1995-09-01

    Recent experimental results on testing and modification of the Cintichem process to allow substitution of low enriched uranium (LEU) for high enriched uranium (HEU) targets are presented in this report. The main focus is on {sup 99}Mo recovery and purification by its precipitation with {alpha}-benzoin oxime. Parameters that were studied include concentrations of nitric and sulfuric acids, partial neutralization of the acids, molybdenum and uranium concentrations, and the ratio of {alpha}-benzoin oxime to molybdenum. Decontamination factors for uranium, neptunium, and various fission products were measured. Experiments with tracer levels of irradiated LEU were conducted for testing the {sup 99}Mo recoverymore » and purification during each step of the Cintichem process. Improving the process with additional processing steps was also attempted. The results indicate that the conversion of molybdenum chemical processing from HEU to LEU targets is possible.« less

  7. Role of epigenetic modifications in luminal breast cancer

    PubMed Central

    Abdel-Hafiz, Hany A; Horwitz, Kathryn B

    2015-01-01

    Luminal breast cancers represent approximately 75% of cases. Explanations into the causes of endocrine resistance are complex and are generally ascribed to genomic mechanisms. Recently, attention has been drawn to the role of epigenetic modifications in hormone resistance. We review these here. Epigenetic modifications are reversible, heritable and include changes in DNA methylation patterns, modification of histones and altered microRNA expression levels that target the receptors or their signaling pathways. Large-scale analyses indicate distinct epigenomic profiles that distinguish breast cancers from normal and benign tissues. Taking advantage of the reversibility of epigenetic modifications, drugs that target epigenetic modifiers, given in combination with chemotherapies or endocrine therapies, may represent promising approaches to restoration of therapy responsiveness in these cases. PMID:25689414

  8. Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy.

    PubMed

    Cheng, Xing; Wang, Weijia; Xu, Qi; Harper, James; Carroll, Danielle; Galinski, Mark S; Suzich, JoAnn; Jin, Hong

    2016-06-01

    Clinical development of a mesogenic strain of Newcastle disease virus (NDV) as an oncolytic agent for cancer therapy has been hampered by its select agent status due to its pathogenicity in avian species. Using reverse genetics, we have generated a lead candidate oncolytic NDV based on the mesogenic NDV-73T strain that is no longer classified as a select agent for clinical development. This recombinant NDV has a modification at the fusion protein (F) cleavage site to reduce the efficiency of F protein cleavage and an insertion of a 198-nucleotide sequence into the HN-L intergenic region, resulting in reduced viral gene expression and replication in avian cells but not in mammalian cells. In mammalian cells, except for viral polymerase (L) gene expression, viral gene expression is not negatively impacted or increased by the HN-L intergenic insertion. Furthermore, the virus can be engineered to express a foreign gene while still retaining the ability to grow to high titers in cell culture. The recombinant NDV selectively replicates in and kills tumor cells and is able to drive potent tumor growth inhibition following intratumoral or intravenous administration in a mouse tumor model. The candidate is well positioned for clinical development as an oncolytic virus. Avian paramyxovirus type 1, NDV, has been an attractive oncolytic agent for cancer virotherapy. However, this virus can cause epidemic disease in poultry, and concerns about the potential environmental and economic impact of an NDV outbreak have precluded its clinical development. Here we describe generation and characterization of a highly potent oncolytic NDV variant that is unlikely to cause Newcastle disease in its avian host, representing an essential step toward moving NDV forward as an oncolytic agent. Several attenuation mechanisms have been genetically engineered into the recombinant NDV that reduce chicken pathogenicity to a level that is acceptable worldwide without impacting viral production in

  9. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells.

    PubMed

    Lee, Ciaran M; Zhu, Haibao; Davis, Timothy H; Deshmukh, Harshahardhan; Bao, Gang

    2017-01-01

    The CRISPR/Cas9 system is a powerful tool for precision genome editing. The ability to accurately modify genomic DNA in situ with single nucleotide precision opens up new possibilities for not only basic research but also biotechnology applications and clinical translation. In this chapter, we outline the procedures for design, screening, and validation of CRISPR/Cas9 systems for targeted modification of coding sequences in the human genome and how to perform genome editing in induced pluripotent stem cells with high efficiency and specificity.

  10. Effects of APC De-targeting and GAr modification on the duration of luciferase expression from plasmid DNA delivered to skeletal muscle.

    PubMed

    Subang, Maria C; Fatah, Rewas; Wu, Ying; Hannaman, Drew; Rice, Jason; Evans, Claire F; Chernajovsky, Yuti; Gould, David

    2015-01-01

    Immune responses to expressed foreign transgenes continue to hamper progress of gene therapy development. Translated foreign proteins with intracellular location are generally less accessible to the immune system, nevertheless they can be presented to the immune system through both MHC Class I and Class II pathways. When the foreign protein luciferase was expressed following intramuscular delivery of plasmid DNA in outbred mice, expression rapidly declined over 4 weeks. Through modifications to the expression plasmid and the luciferase transgene we examined the effect of detargeting expression away from antigen-presenting cells (APCs), targeting expression to skeletal muscle and fusion with glycine-alanine repeats (GAr) that block MHC-Class I presentation on the duration of luciferase expression. De-targeting expression from APCs with miR142-3p target sequences incorporated into the luciferase 3'UTR reduced the humoral immune response to both native and luciferase modified with a short GAr sequence but did not prolong the duration of expression. When a skeletal muscle specific promoter was combined with the miR target sequences the humoral immune response was dampened and luciferase expression persisted at higher levels for longer. Interestingly, fusion of luciferase with a longer GAr sequence promoted the decline in luciferase expression and increased the humoral immune response to luciferase. These studies demonstrate that expression elements and transgene modifications can alter the duration of transgene expression but other factors will need to overcome before foreign transgenes expressed in skeletal muscle are immunologically silent.

  11. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference

    PubMed Central

    Murphy, Katherine A.; Tabuloc, Christine A.; Cervantes, Kevin R.; Chiu, Joanna C.

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  12. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  13. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  14. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  15. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  16. Mitochondria: A Common Target for Genetic Mutations and Environmental Toxicants in Parkinson’s Disease

    PubMed Central

    Helley, Martin P.; Pinnell, Jennifer; Sportelli, Carolina; Tieu, Kim

    2017-01-01

    Parkinson’s disease (PD) is a devastating neurological movement disorder. Since its first discovery 200 years ago, genetic and environmental factors have been identified to play a role in PD development and progression. Although genetic studies have been the predominant driving force in PD research over the last few decades, currently only a small fraction of PD cases can be directly linked to monogenic mutations. The remaining cases have been attributed to other risk associated genes, environmental exposures and gene–environment interactions, making PD a multifactorial disorder with a complex etiology. However, enormous efforts from global research have yielded significant insights into pathogenic mechanisms and potential therapeutic targets for PD. This review will highlight mitochondrial dysfunction as a common pathway involved in both genetic mutations and environmental toxicants linked to PD. PMID:29204154

  17. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius.

    PubMed

    Weyda, István; Yang, Lei; Vang, Jesper; Ahring, Birgitte K; Lübeck, Mette; Lübeck, Peter S

    2017-04-01

    In recent years, versatile genetic tools have been developed and applied to a number of filamentous fungi of industrial importance. However, the existing techniques have limitations when it comes to achieve the desired genetic modifications, especially for efficient gene targeting. In this study, we used Aspergillus carbonarius as a host strain due to its potential as a cell factory, and compared three gene targeting techniques by disrupting the ayg1 gene involved in the biosynthesis of conidial pigment in A. carbonarius. The absence of the ayg1 gene leads to phenotypic change in conidia color, which facilitated the analysis on the gene targeting frequency. The examined transformation techniques included Agrobacterium-mediated transformation (AMT) and protoplast-mediated transformation (PMT). Furthermore, the PMT for the disruption of the ayg1 gene was carried out with bipartite gene targeting fragments and the recently adapted CRISPR-Cas9 system. All three techniques were successful in generating Δayg1 mutants, but showed different efficiencies. The most efficient method for gene targeting was AMT, but further it was shown to be dependent on the choice of Agrobacterium strain. However, there are different advantages and disadvantages of all three gene targeting methods which are discussed, in order to facilitate future approaches for fungal strain improvements. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects.

    PubMed

    Papapetrou, E P; Zoumbos, N C; Athanassiadou, A

    2005-10-01

    Serious unwanted complications provoked by retroviral gene transfer into hematopoietic stem cells (HSCs) have recently raised the need for the development and assessment of alternative gene transfer vectors. Within this context, nonviral gene transfer systems are attracting increasing interest. Their main advantages include low cost, ease of handling and large-scale production, large packaging capacity and, most importantly, biosafety. While nonviral gene transfer into HSCs has been restricted in the past by poor transfection efficiency and transient maintenance, in recent years, biotechnological developments are converting nonviral transfer into a realistic approach for genetic modification of cells of hematopoietic origin. Herein we provide an overview of past accomplishments in the field of nonviral gene transfer into hematopoietic progenitor/stem cells and we point at future challenges. We argue that episomally maintained self-replicating vectors combined with physical methods of delivery show the greatest promise among nonviral gene transfer strategies for the treatment of disorders of the hematopoietic system.

  19. New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells.

    PubMed

    Denning, Chris; Priddle, Helen

    2003-07-01

    Until recently, precise modification of the animal genome by gene targeting was restricted to the mouse because germline competent embryonic stem cells are not available in any other mammalian species. Nuclear transfer (NT) technology now provides an alternative route for cell-based transgenesis in domestic species, offering new opportunities in genetic modification. Livestock that produce human therapeutic proteins in their milk, have organs suitable for xenotransplantation, or that could provide resistance to diseases such as spongiform encephalopathies have been produced by NT from engineered, cultured somatic cells. However, improvements in the efficiency of somatic cell gene targeting and a greater understanding of the reprogramming events that occur during NT are required for the routine application of what is currently an inefficient process. The ability to reprogramme and genetically manipulate cells will also be crucial for full exploitation of human embryonic stem (hES) cells, which offer unparalleled opportunities in human health and biotechnology. Particularly pertinent are directed differentiation of hES lines to specific cell lineages, production of cells that evade the patient's immune system and ensuring the safety of ensuing transplants. This review will discuss some of the successes, applications and challenges facing gene targeting in livestock and hES cells.

  20. Bcl-xL Genetic Modification Enhanced the Therapeutic Efficacy of Mesenchymal Stem Cell Transplantation in the Treatment of Heart Infarction

    PubMed Central

    Xue, Xiaodong; Liu, Yu; Zhang, Jian; Liu, Tao; Yang, Zhonglu; Wang, Huishan

    2015-01-01

    Objectives. Low survival rate of mesenchymal stem cells (MSCs) severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI). Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs) or empty vector (vector-MSCs). MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histochemistry, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF) increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction. PMID:26074971

  1. Bcl-xL Genetic Modification Enhanced the Therapeutic Efficacy of Mesenchymal Stem Cell Transplantation in the Treatment of Heart Infarction.

    PubMed

    Xue, Xiaodong; Liu, Yu; Zhang, Jian; Liu, Tao; Yang, Zhonglu; Wang, Huishan

    2015-01-01

    Objectives. Low survival rate of mesenchymal stem cells (MSCs) severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI). Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs) or empty vector (vector-MSCs). MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histochemistry, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF) increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction.

  2. Improving experimental phases for strong reflections prior to density modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.

    Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  3. Improving experimental phases for strong reflections prior to density modification

    DOE PAGES

    Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; ...

    2013-09-20

    Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  4. Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis.

    PubMed

    Derichs, Nico

    2013-03-01

    Cystic fibrosis (CF) is caused by genetic mutations that affect the cystic fibrosis transmembrane conductance regulator (CFTR) protein. These mutations can impact the synthesis and transfer of the CFTR protein to the apical membrane of epithelial cells, as well as influencing the gating or conductance of chloride and bicarbonate ions through the channel. CFTR dysfunction results in ionic imbalance of epithelial secretions in several organ systems, such as the pancreas, gastrointestinal tract, liver and the respiratory system. Since discovery of the CFTR gene in 1989, research has focussed on targeting the underlying genetic defect to identify a disease-modifying treatment for CF. Investigated management strategies have included gene therapy and the development of small molecules that target CFTR mutations, known as CFTR modulators. CFTR modulators are typically identified by high-throughput screening assays, followed by preclinical validation using cell culture systems. Recently, one such modulator, the CFTR potentiator ivacaftor, was approved as an oral therapy for CF patients with the G551D-CFTR mutation. The clinical development of ivacaftor not only represents a breakthrough in CF care but also serves as a noteworthy example of personalised medicine.

  5. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor.

    PubMed

    Bayguinov, Peter O; Ma, Yihe; Gao, Yu; Zhao, Xinyu; Jackson, Meyer B

    2017-09-20

    Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In

  6. Genetically engineered and self-assembled oncolytic protein nanoparticles for targeted cancer therapy.

    PubMed

    Lee, Joong-Jae; Kang, Jung Ae; Ryu, Yiseul; Han, Sang-Soo; Nam, You Ree; Rho, Jong Kook; Choi, Dae Seong; Kang, Sun-Woong; Lee, Dong-Eun; Kim, Hak-Sung

    2017-03-01

    The integration of a targeted delivery with a tumour-selective agent has been considered an ideal platform for achieving high therapeutic efficacy and negligible side effects in cancer therapy. Here, we present engineered protein nanoparticles comprising a tumour-selective oncolytic protein and a targeting moiety as a new format for the targeted cancer therapy. Apoptin from chicken anaemia virus (CAV) was used as a tumour-selective apoptotic protein. An EGFR-specific repebody, which is composed of LRR (Leucine-rich repeat) modules, was employed to play a dual role as a tumour-targeting moiety and a fusion partner for producing apoptin nanoparticles in E. coli, respectively. The repebody was genetically fused to apoptin, and the resulting fusion protein was shown to self-assemble into supramolecular repebody-apoptin nanoparticles with high homogeneity and stability as a soluble form when expressed in E. coli. The repebody-apoptin nanoparticles showed a remarkable anti-tumour activity with negligible side effects in xenograft mice through a cooperative action of the two protein components with distinct functional roles. The repebody-apoptin nanoparticles can be developed as a systemic injectable and tumour-selective therapeutic protein for targeted cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Report on Molecular Diagnostic Testing for Inherited Retinal Dystrophies by Targeted Genetic Analyses.

    PubMed

    Ramkumar, Hema L; Gudiseva, Harini V; Kishaba, Kameron T; Suk, John J; Verma, Rohan; Tadimeti, Keerti; Thorson, John A; Ayyagari, Radha

    2017-02-01

    To test the utility of targeted sequencing as a method of clinical molecular testing in patients diagnosed with inherited retinal degeneration (IRD). After genetic counseling, peripheral blood was drawn from 188 probands and 36 carriers of IRD. Single gene testing was performed on each patient in a Clinical Laboratory Improvement Amendment (CLIA) certified laboratory. DNA was isolated, and all exons in the gene of interest were analyzed along with 20 base pairs of flanking intronic sequence. Genetic testing was most often performed on ABCA4, CTRP5, ELOV4, BEST1, CRB1, and PRPH2. Pathogenicity of novel sequence changes was predicted by PolyPhen2 and sorting intolerant from tolerant (SIFT). Of the 225 genetic tests performed, 150 were for recessive IRD, and 75 were for dominant IRD. A positive molecular diagnosis was made in 70 (59%) of probands with recessive IRD and 19 (26%) probands with dominant IRD. Analysis confirmed 12 (34%) of individuals as carriers of familial mutations associated with IRD. Thirty-two novel variants were identified; among these, 17 sequence changes in four genes were predicted to be possibly or probably damaging including: ABCA4 (14), BEST1 (2), PRPH2 (1), and TIMP3 (1). Targeted analysis of clinically suspected genes in 225 subjects resulted in a positive molecular diagnosis in 26% of patients with dominant IRD and 59% of patients with recessive IRD. Novel damaging mutations were identified in four genes. Single gene screening is not an ideal method for diagnostic testing given the phenotypic and genetic heterogeneity among IRD cases. High-throughput sequencing of all genes associated with retinal degeneration may be more efficient for molecular diagnosis.

  8. Advances in the Engineering of the Gene Editing Enzymes and the Genomes: Understanding and Handling the Off-Target Effects of CRISPR/Cas9.

    PubMed

    Yin, Yufang; Wang, Qian; Xiao, Li; Wang, Fengjiao; Song, Zhuo; Zhou, Cuilan; Liu, Xuan; Xing, Chungen; He, Nongyue; Li, Kai; Feng, Yan; Zhang, Jia

    2018-03-01

    In the past decades, significant progresses have been achieved in genetic engineering of nucleases. Among the genetically engineered nucleases, zinc finger nucleases, transcription activator-like (TAL) effector nucleases, and CRIPSPR/Cas9 system form a new field of gene editing. The gene editing efficiency or targeting effect and the off-target effect are the two major determinant factors in evaluating the usefulness of a new enzyme. Engineering strategies in improving these gene editing enzymes, particularly in minimizing their off-target effects, are the focus of this paper. Examples of using these genetically engineered enzymes in genome modification are discussed in order to better understand the requirement of engineering efforts in obtaining more powerful and useful gene editing enzymes. In addition, the identification of naturally existed anti-Cas proteins has been employed in minimizing off-target effects. Considering the future application in human gene therapy, optimization of these well recognized gene editing enzymes and exploration of more novel enzymes are both required. Before people find an ideal gene editing system having virtually no off-target effect, technologies used to screen and identify off-target effects are of importance in clinical trials employing gene therapy.

  9. Genetic therapies for RNA mis-splicing diseases.

    PubMed

    Hammond, Suzan M; Wood, Matthew J A

    2011-05-01

    RNA mis-splicing diseases account for up to 15% of all inherited diseases, ranging from neurological to myogenic and metabolic disorders. With greatly increased genomic sequencing being performed for individual patients, the number of known mutations affecting splicing has risen to 50-60% of all disease-causing mutations. During the past 10years, genetic therapy directed toward correction of RNA mis-splicing in disease has progressed from theoretical work in cultured cells to promising clinical trials. In this review, we discuss the use of antisense oligonucleotides to modify splicing as well as the principles and latest work in bifunctional RNA, trans-splicing and modification of U1 and U7 snRNA to target splice sites. The success of clinical trials for modifying splicing to treat Duchenne muscular dystrophy opens the door for the use of splicing modification for most of the mis-splicing diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Modification of orthogonal tRNAs: unexpected consequences for sense codon reassignment.

    PubMed

    Biddle, Wil; Schmitt, Margaret A; Fisk, John D

    2016-12-01

    Breaking the degeneracy of the genetic code via sense codon reassignment has emerged as a way to incorporate multiple copies of multiple non-canonical amino acids into a protein of interest. Here, we report the modification of a normally orthogonal tRNA by a host enzyme and show that this adventitious modification has a direct impact on the activity of the orthogonal tRNA in translation. We observed nearly equal decoding of both histidine codons, CAU and CAC, by an engineered orthogonal M. jannaschii tRNA with an AUG anticodon: tRNA Opt We suspected a modification of the tRNA Opt AUG anticodon was responsible for the anomalous lack of codon discrimination and demonstrate that adenosine 34 of tRNA Opt AUG is converted to inosine. We identified tRNA Opt AUG anticodon loop variants that increase reassignment of the histidine CAU codon, decrease incorporation in response to the histidine CAC codon, and improve cell health and growth profiles. Recognizing tRNA modification as both a potential pitfall and avenue of directed alteration will be important as the field of genetic code engineering continues to infiltrate the genetic codes of diverse organisms. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases

    PubMed Central

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J.; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-01-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%–5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. PMID:24989021

  12. Correction of a genetic disease in mouse via use of CRISPR-Cas9.

    PubMed

    Wu, Yuxuan; Liang, Dan; Wang, Yinghua; Bai, Meizhu; Tang, Wei; Bao, Shiming; Yan, Zhiqiang; Li, Dangsheng; Li, Jinsong

    2013-12-05

    The CRISPR-Cas9 system has been employed to generate mutant alleles in a range of different organisms. However, so far there have not been reports of use of this system for efficient correction of a genetic disease. Here we show that mice with a dominant mutation in Crygc gene that causes cataracts could be rescued by coinjection into zygotes of Cas9 mRNA and a single-guide RNA (sgRNA) targeting the mutant allele. Correction occurred via homology-directed repair (HDR) based on an exogenously supplied oligonucleotide or the endogenous WT allele, with only rare evidence of off-target modifications. The resulting mice were fertile and able to transmit the corrected allele to their progeny. Thus, our study provides proof of principle for use of the CRISPR-Cas9 system to correct genetic disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum.

    PubMed

    Vinayak, Sumiti; Pawlowic, Mattie C; Sateriale, Adam; Brooks, Carrie F; Studstill, Caleb J; Bar-Peled, Yael; Cipriano, Michael J; Striepen, Boris

    2015-07-23

    Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality. Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation. There is no vaccine and only a single approved drug that provides no benefit for those in gravest danger: malnourished children and immunocompromised patients. Cryptosporidiosis drug and vaccine development is limited by the poor tractability of the parasite, which includes a lack of systems for continuous culture, facile animal models, and molecular genetic tools. Here we describe an experimental framework to genetically modify this important human pathogen. We established and optimized transfection of C. parvum sporozoites in tissue culture. To isolate stable transgenics we developed a mouse model that delivers sporozoites directly into the intestine, a Cryptosporidium clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and in vivo selection for aminoglycoside resistance. We derived reporter parasites suitable for in vitro and in vivo drug screening, and we evaluated the basis of drug susceptibility by gene knockout. We anticipate that the ability to genetically engineer this parasite will be transformative for Cryptosporidium research. Genetic reporters will provide quantitative correlates for disease, cure and protection, and the role of parasite genes in these processes is now open to rigorous investigation.

  14. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    PubMed

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  15. STOPGAP: a database for systematic target opportunity assessment by genetic association predictions.

    PubMed

    Shen, Judong; Song, Kijoung; Slater, Andrew J; Ferrero, Enrico; Nelson, Matthew R

    2017-09-01

    We developed the STOPGAP (Systematic Target OPportunity assessment by Genetic Association Predictions) database, an extensive catalog of human genetic associations mapped to effector gene candidates. STOPGAP draws on a variety of publicly available GWAS associations, linkage disequilibrium (LD) measures, functional genomic and variant annotation sources. Algorithms were developed to merge the association data, partition associations into non-overlapping LD clusters, map variants to genes and produce a variant-to-gene score used to rank the relative confidence among potential effector genes. This database can be used for a multitude of investigations into the genes and genetic mechanisms underlying inter-individual variation in human traits, as well as supporting drug discovery applications. Shell, R, Perl and Python scripts and STOPGAP R data files (version 2.5.1 at publication) are available at https://github.com/StatGenPRD/STOPGAP . Some of the most useful STOPGAP fields can be queried through an R Shiny web application at http://stopgapwebapp.com . matthew.r.nelson@gsk.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. One Novel Multiple-Target Plasmid Reference Molecule Targeting Eight Genetically Modified Canola Events for Genetically Modified Canola Detection.

    PubMed

    Li, Zhuqing; Li, Xiang; Wang, Canhua; Song, Guiwen; Pi, Liqun; Zheng, Lan; Zhang, Dabing; Yang, Litao

    2017-09-27

    Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R 2 ) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.

  17. Models for discovery of targeted therapy in genetic epileptic encephalopathies.

    PubMed

    Maljevic, Snezana; Reid, Christopher A; Petrou, Steven

    2017-10-01

    Epileptic encephalopathies are severe disorders emerging in the first days to years of life that commonly include refractory seizures, various types of movement disorders, and different levels of developmental delay. In recent years, many de novo occurring variants have been identified in individuals with these devastating disorders. To unravel disease mechanisms, the functional impact of detected variants associated with epileptic encephalopathies is investigated in a range of cellular and animal models. This review addresses efforts to advance and use such models to identify specific molecular and cellular targets for the development of novel therapies. We focus on ion channels as the best-studied group of epilepsy genes. Given the clinical and genetic heterogeneity of epileptic encephalopathy disorders, experimental models that can reflect this complexity are critical for the development of disease mechanisms-based targeted therapy. The convergence of technological advances in gene sequencing, stem cell biology, genome editing, and high throughput functional screening together with massive unmet clinical needs provides unprecedented opportunities and imperatives for precision medicine in epileptic encephalopathies. © 2017 International Society for Neurochemistry.

  18. Mapping genetic vulnerabilities reveals BTK as a novel therapeutic target in oesophageal cancer.

    PubMed

    Chong, Irene Yushing; Aronson, Lauren; Bryant, Hanna; Gulati, Aditi; Campbell, James; Elliott, Richard; Pettitt, Stephen; Wilkerson, Paul; Lambros, Maryou B; Reis-Filho, Jorge S; Ramessur, Anisha; Davidson, Michael; Chau, Ian; Cunningham, David; Ashworth, Alan; Lord, Christopher J

    2017-08-22

    Oesophageal cancer is the seventh most common cause of cancer-related death worldwide. Disease relapse is frequent and treatment options are limited. To identify new biomarker-defined therapeutic approaches for patients with oesophageal cancer, we integrated the genomic profiles of 17 oesophageal tumour-derived cell lines with drug sensitivity data from small molecule inhibitor profiling, identifying drug sensitivity effects associated with cancer driver gene alterations. We also interrogated recently described RNA interference screen data for these tumour cell lines to identify candidate genetic dependencies or vulnerabilities that could be exploited as therapeutic targets. By integrating the genomic features of oesophageal tumour cell lines with siRNA and drug screening data, we identified a series of candidate targets in oesophageal cancer, including a sensitivity to inhibition of the kinase BTK in MYC amplified oesophageal tumour cell lines. We found that this genetic dependency could be elicited with the clinical BTK/ERBB2 kinase inhibitor, ibrutinib. In both MYC and ERBB2 amplified tumour cells, ibrutinib downregulated ERK-mediated signal transduction, cMYC Ser-62 phosphorylation and levels of MYC protein, and elicited G 1 cell cycle arrest and apoptosis, suggesting that this drug could be used to treat biomarker-selected groups of patients with oesophageal cancer. BTK represents a novel candidate therapeutic target in oesophageal cancer that can be targeted with ibrutinib. On the basis of this work, a proof-of-concept phase II clinical trial evaluating the efficacy of ibrutinib in patients with MYC and/or ERBB2 amplified advanced oesophageal cancer is currently underway (NCT02884453). NCT02884453; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    PubMed

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  20. Targeted Gene Knock Out Using Nuclease-Assisted Vector Integration: Hemi- and Homozygous Deletion of JAG1.

    PubMed

    Gapinske, Michael; Tague, Nathan; Winter, Jackson; Underhill, Gregory H; Perez-Pinera, Pablo

    2018-01-01

    Gene editing technologies are revolutionizing fields such as biomedicine and biotechnology by providing a simple means to manipulate the genetic makeup of essentially any organism. Gene editing tools function by introducing double-stranded breaks at targeted sites within the genome, which the host cells repair preferentially by Non-Homologous End Joining. While the technologies to introduce double-stranded breaks have been extensively optimized, this progress has not been matched by the development of methods to integrate heterologous DNA at the target sites or techniques to detect and isolate cells that harbor the desired modification. We present here a technique for rapid introduction of vectors at target sites in the genome that enables efficient isolation of successfully edited cells.

  1. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking.

    PubMed

    Phillips, T J; Mootz, J R K; Reed, C

    2016-01-01

    Methamphetamine has powerful stimulant and euphoric effects that are experienced as rewarding and encourage use. Methamphetamine addiction is associated with debilitating illnesses, destroyed relationships, child neglect, violence, and crime; but after many years of research, broadly effective medications have not been identified. Individual differences that may impact not only risk for developing a methamphetamine use disorder but also affect treatment response have not been fully considered. Human studies have identified candidate genes that may be relevant, but lack of control over drug history, the common use or coabuse of multiple addictive drugs, and restrictions on the types of data that can be collected in humans are barriers to progress. To overcome some of these issues, a genetic animal model comprised of lines of mice selectively bred for high and low voluntary methamphetamine intake was developed to identify risk and protective alleles for methamphetamine consumption, and identify therapeutic targets. The mu opioid receptor gene was supported as a target for genes within a top-ranked transcription factor network associated with level of methamphetamine intake. In addition, mice that consume high levels of methamphetamine were found to possess a nonfunctional form of the trace amine-associated receptor 1 (TAAR1). The Taar1 gene is within a mouse chromosome 10 quantitative trait locus for methamphetamine consumption, and TAAR1 function determines sensitivity to aversive effects of methamphetamine that may curb intake. The genes, gene interaction partners, and protein products identified in this genetic mouse model represent treatment target candidates for methamphetamine addiction. © 2016 Elsevier Inc. All rights reserved.

  2. An Attempt to Target Anxiety Sensitivity via Cognitive Bias Modification

    PubMed Central

    Clerkin, Elise M.; Beard, Courtney; Fisher, Christopher R.; Schofield, Casey A

    2015-01-01

    Our goals in the present study were to test an adaptation of a Cognitive Bias Modification program to reduce anxiety sensitivity, and to evaluate the causal relationships between interpretation bias of physiological cues, anxiety sensitivity, and anxiety and avoidance associated with interoceptive exposures. Participants with elevated anxiety sensitivity who endorsed having a panic attack or limited symptom attack were randomly assigned to either an Interpretation Modification Program (IMP; n = 33) or a Control (n = 32) condition. During interpretation modification training (via the Word Sentence Association Paradigm), participants read short sentences describing ambiguous panic-relevant physiological and cognitive symptoms and were trained to endorse benign interpretations and reject threatening interpretations associated with these cues. Compared to the Control condition, IMP training successfully increased endorsements of benign interpretations and decreased endorsements of threatening interpretations at visit 2. Although self-reported anxiety sensitivity decreased from pre-selection to visit 1 and from visit 1 to visit 2, the reduction was not larger for the experimental versus control condition. Further, participants in IMP (vs. Control) training did not experience less anxiety and avoidance associated with interoceptive exposures. In fact, there was some evidence that those in the Control condition experienced less avoidance following training. Potential explanations for the null findings, including problems with the benign panic-relevant stimuli and limitations with the control condition, are discussed. PMID:25692491

  3. An attempt to target anxiety sensitivity via cognitive bias modification.

    PubMed

    Clerkin, Elise M; Beard, Courtney; Fisher, Christopher R; Schofield, Casey A

    2015-01-01

    Our goals in the present study were to test an adaptation of a Cognitive Bias Modification program to reduce anxiety sensitivity, and to evaluate the causal relationships between interpretation bias of physiological cues, anxiety sensitivity, and anxiety and avoidance associated with interoceptive exposures. Participants with elevated anxiety sensitivity who endorsed having a panic attack or limited symptom attack were randomly assigned to either an Interpretation Modification Program (IMP; n = 33) or a Control (n = 32) condition. During interpretation modification training (via the Word Sentence Association Paradigm), participants read short sentences describing ambiguous panic-relevant physiological and cognitive symptoms and were trained to endorse benign interpretations and reject threatening interpretations associated with these cues. Compared to the Control condition, IMP training successfully increased endorsements of benign interpretations and decreased endorsements of threatening interpretations at visit 2. Although self-reported anxiety sensitivity decreased from pre-selection to visit 1 and from visit 1 to visit 2, the reduction was not larger for the experimental versus control condition. Further, participants in IMP (vs. Control) training did not experience less anxiety and avoidance associated with interoceptive exposures. In fact, there was some evidence that those in the Control condition experienced less avoidance following training. Potential explanations for the null findings, including problems with the benign panic-relevant stimuli and limitations with the control condition, are discussed.

  4. Science, governance, and public participation: an analysis of decision making on genetic modification in Aotearoa/New Zealand.

    PubMed

    Kurian, Priya; Wright, Jeanette

    2012-05-01

    The acceptance of public participation in science and technology governance in liberal democratic contexts is evident in the institutionalization of a variety of mechanisms for participation in recent decades. Yet questions remain about the extent to which institutions have actually transformed their policy practice to embrace democratic governance of techno-scientific decision making. A critical discourse analysis of the response to public participation by the Environmental Risk ManagementAuthority (ERMA), the key decision-making body on genetic modification in Aotearoa/New Zealand, in a specific case demonstrates that ERMA systematically marginalized concerns raised by the public about risk management, ethics, and ecological, economic, and cultural issues in order to give primacy to a positivist, technological worldview. Such delegitimization of public perspectives pre-empts the possibility of the democratic governance of science.

  5. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630

    DOE PAGES

    DeLorenzo, Drew M.; Rottinghaus, Austin G.; Henson, William R.; ...

    2018-01-24

    Rhodococcus opacus PD630 is a non-model, gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic, lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized due to a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ~45-fold in output was constructed. To improvemore » the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.« less

  6. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLorenzo, Drew M.; Rottinghaus, Austin G.; Henson, William R.

    Rhodococcus opacus PD630 is a non-model, gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic, lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized due to a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ~45-fold in output was constructed. To improvemore » the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.« less

  7. Modifications of Glycans: Biological Significance and Therapeutic Opportunities

    PubMed Central

    Muthana, Saddam M.; Campbell, Christopher; Gildersleeve, Jeffrey C.

    2012-01-01

    Carbohydrates play a central role in a wide range of biological processes. As with nucleic acids and proteins, modifications of specific sites within the glycan chain can modulate a carbohydrate’s overall biological function. For example, acylation, methylation, sulfation, epimerization, and phosphorylation can occur at various positions within a carbohydrate to modulate bioactivity. Therefore, there is significant interest in identifying discrete carbohydrate modifications and understanding their biological effects. Additionally, enzymes that catalyze those modifications and proteins that bind modified glycans provide numerous targets for therapeutic intervention. This review will focus on modifications of glycans that occur after the oligomer/polymer has been assembled, generally referred to as postglycosylational modifications. PMID:22195988

  8. Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors

    PubMed Central

    Naganathan, Saranga; Grunbeck, Amy; Tian, He; Huber, Thomas; Sakmar, Thomas P.

    2013-01-01

    To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes. PMID:24056801

  9. Osteoarthritis year in review 2017: genetics and epigenetics.

    PubMed

    Peffers, M J; Balaskas, P; Smagul, A

    2018-03-01

    The purpose of this review is to describe highlights from original research publications related to osteoarthritis (OA), epigenetics and genomics with the intention of recognising significant advances. To identify relevant papers a Pubmed literature search was conducted for articles published between April 2016 and April 2017 using the search terms 'osteoarthritis' together with 'genetics', 'genomics', 'epigenetics', 'microRNA', 'lncRNA', 'DNA methylation' and 'histone modification'. The search term OA generated almost 4000 references. Publications using the combination of descriptors OA and genetics provided the most references (82 references). However this was reduced compared to the same period in the previous year; 8.1-2.1% (expressed as a percentage of the total publications combining the terms OA and genetics). Publications combining the terms OA with genomics (29 references), epigenetics (16 references), long non-coding RNA (lncRNA) (11 references; including the identification of novel lncRNAs in OA), DNA methylation (21 references), histone modification (3 references) and microRNA (miR) (79 references) were reviewed. Potential OA therapeutics such as histone deacetylase (HDAC) inhibitors have been identified. A number of non-coding RNAs may also provide targets for future treatments. There continues to be a year on year increase in publications researching miRs in OA (expressed as a percentage of the total publications), with a doubling over the last 4 years. An overview on the last year's progress within the fields of epigenetics and genomics with respect to OA will be given. Copyright © 2017 Osteoarthritis Research Society International. All rights reserved.

  10. Biochemical And Genetic Modification Of Polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  11. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    PubMed

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. © 2014 Remy et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Matrix metalloproteinase proteomics: substrates, targets, and therapy.

    PubMed

    Morrison, Charlotte J; Butler, Georgina S; Rodríguez, David; Overall, Christopher M

    2009-10-01

    Proteomics encompasses powerful techniques termed 'degradomics' for unbiased high-throughput protease substrate discovery screens that have been applied to an important family of extracellular proteases, the matrix metalloproteinases (MMPs). Together with the data generated from genetic deletion and transgenic mouse models and genomic profiling, these screens can uncover the diverse range of MMP functions, reveal which MMPs and MMP-mediated pathways exacerbate pathology, and which are involved in protection and the resolution of disease. This information can be used to identify and validate candidate drug targets and antitargets, and is critical for the development of new inhibitors of MMP function. Such inhibitors may target either the MMP directly in a specific manner or pathways upstream and downstream of MMP activity that are mediating deleterious effects in disease. Since MMPs do not operate alone but are part of the 'protease web', it is necessary to use system-wide approaches to understand MMP proteolysis in vivo, to discover new biological roles and their potential for therapeutic modification.

  13. Silent genetic alterations identified by targeted next-generation sequencing in pheochromocytoma/paraganglioma: A clinicopathological correlations.

    PubMed

    Pillai, Suja; Gopalan, Vinod; Lo, Chung Y; Liew, Victor; Smith, Robert A; Lam, Alfred King Y

    2017-02-01

    The goal of this pilot study was to develop a customized, cost-effective amplicon panel (Ampliseq) for target sequencing in a cohort of patients with sporadic phaeochromocytoma/paraganglioma. Phaeochromocytoma/paragangliomas from 25 patients were analysed by targeted next-generation sequencing approach using an Ion Torrent PGM instrument. Primers for 15 target genes (NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, MAX, MEN1, KIF1Bβ, EPAS1, CDKN2 & PHD2) were designed using ion ampliseq designer. Ion Reporter software and Ingenuity® Variant Analysis™ software (www.ingenuity.com/variants) from Ingenuity Systems were used to analysis these results. Overall, 713 variants were identified. The variants identified from the Ion Reporter ranged from 64 to 161 per patient. Single nucleotide variants (SNV) were the most common. Further annotation with the help of Ingenuity variant analysis revealed 29 of these 713variants were deletions. Of these, six variants were non-pathogenic and four were likely to be pathogenic. The remaining 19 variants were of uncertain significance. The most frequently altered gene in the cohort was KIF1B followed by NF1. Novel KIF1B pathogenic variant c.3375+1G>A was identified. The mutation was noted in a patient with clinically confirmed neurofibromatosis. Chromosome 1 showed the presence of maximum number of variants. Use of targeted next-generation sequencing is a sensitive method for the detecting genetic changes in patients with phaeochromocytoma/paraganglioma. The precise detection of these genetic changes helps in understanding the pathogenesis of these tumours. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting.

    PubMed

    Moeller, Hanne B; Fuglsang, Cecilia Hvitfeldt; Pedersen, Cecilie Nøhr; Fenton, Robert A

    2018-01-01

    Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Coordinated action of histone modification and microRNA regulations in human genome.

    PubMed

    Wang, Xuan; Zheng, Guantao; Dong, Dong

    2015-10-10

    Both histone modifications and microRNAs (miRNAs) play pivotal role in gene expression regulation. Although numerous studies have been devoted to explore the gene regulation by miRNA and epigenetic regulations, their coordinated actions have not been comprehensively examined. In this work, we systematically investigated the combinatorial relationship between miRNA and epigenetic regulation by taking advantage of recently published whole genome-wide histone modification data and high quality miRNA targeting data. The results showed that miRNA targets have distinct histone modification patterns compared with non-targets in their promoter regions. Based on this finding, we proposed a machine learning approach to fit predictive models on the task to discern whether a gene is targeted by a specific miRNA. We found a considerable advantage in both sensitivity and specificity in diverse human cell lines. Finally, we found that our predicted miRNA targets are consistently annotated with Gene Ontology terms. Our work is the first genome-wide investigation of the coordinated action of miRNA and histone modification regulations, which provide a guide to deeply understand the complexity of transcriptional regulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Performance Assessment PCR-Based Assays Targeting Bacteroidales Genetic Markers of Bovine Fecal Pollution▿

    PubMed Central

    Shanks, Orin C.; White, Karen; Kelty, Catherine A.; Hayes, Sam; Sivaganesan, Mano; Jenkins, Michael; Varma, Manju; Haugland, Richard A.

    2010-01-01

    There are numerous PCR-based assays available to characterize bovine fecal pollution in ambient waters. The determination of which approaches are most suitable for field applications can be difficult because each assay targets a different gene, in many cases from different microorganisms, leading to variation in assay performance. We describe a performance evaluation of seven end-point PCR and real-time quantitative PCR (qPCR) assays reported to be associated with either ruminant or bovine feces. Each assay was tested against a reference collection of DNA extracts from 247 individual bovine fecal samples representing 11 different populations and 175 fecal DNA extracts from 24 different animal species. Bovine-associated genetic markers were broadly distributed among individual bovine samples ranging from 39 to 93%. Specificity levels of the assays spanned 47.4% to 100%. End-point PCR sensitivity also varied between assays and among different bovine populations. For qPCR assays, the abundance of each host-associated genetic marker was measured within each bovine population and compared to results of a qPCR assay targeting 16S rRNA gene sequences from Bacteroidales. Experiments indicate large discrepancies in the performance of bovine-associated assays across different bovine populations. Variability in assay performance between host populations suggests that the use of bovine microbial source-tracking applications will require a priori characterization at each watershed of interest. PMID:20061457

  17. Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree.

    PubMed

    Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen-host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules.

  18. Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree

    PubMed Central

    Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen–host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules. PMID:26649272

  19. Modifications to the HIPAA Privacy, Security, Enforcement, and Breach Notification rules under the Health Information Technology for Economic and Clinical Health Act and the Genetic Information Nondiscrimination Act; other modifications to the HIPAA rules.

    PubMed

    2013-01-25

    The Department of Health and Human Services (HHS or ``the Department'') is issuing this final rule to: Modify the Health Insurance Portability and Accountability Act (HIPAA) Privacy, Security, and Enforcement Rules to implement statutory amendments under the Health Information Technology for Economic and Clinical Health Act (``the HITECH Act'' or ``the Act'') to strengthen the privacy and security protection for individuals' health information; modify the rule for Breach Notification for Unsecured Protected Health Information (Breach Notification Rule) under the HITECH Act to address public comment received on the interim final rule; modify the HIPAA Privacy Rule to strengthen the privacy protections for genetic information by implementing section 105 of Title I of the Genetic Information Nondiscrimination Act of 2008 (GINA); and make certain other modifications to the HIPAA Privacy, Security, Breach Notification, and Enforcement Rules (the HIPAA Rules) to improve their workability and effectiveness and to increase flexibility for and decrease burden on the regulated entities.

  20. Recent progress in the genetics of spontaneously hypertensive rats.

    PubMed

    Pravenec, M; Křen, V; Landa, V; Mlejnek, P; Musilová, A; Šilhavý, J; Šimáková, M; Zídek, V

    2014-01-01

    The spontaneously hypertensive rat (SHR) is the most widely used animal model of essential hypertension and accompanying metabolic disturbances. Recent advances in sequencing of genomes of BN-Lx and SHR progenitors of the BXH/HXB recombinant inbred (RI) strains as well as accumulation of multiple data sets of intermediary phenotypes in the RI strains, including mRNA and microRNA abundance, quantitative metabolomics, proteomics, methylomics or histone modifications, will make it possible to systematically search for genetic variants involved in regulation of gene expression and in the etiology of complex pathophysiological traits. New advances in manipulation of the rat genome, including efficient transgenesis and gene targeting, will enable in vivo functional analyses of selected candidate genes to identify QTL at the molecular level or to provide insight into mechanisms whereby targeted genes affect pathophysiological traits in the SHR.

  1. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy.

    PubMed

    Guiraud, Simon; Chen, Huijia; Burns, David T; Davies, Kay E

    2015-12-01

    What is the topic of this review? This review highlights recent progress in genetically based therapies targeting the primary defect of Duchenne muscular dystrophy. What advances does it highlight? Over the last two decades, considerable progress has been made in understanding the mechanisms underlying Duchenne muscular dystrophy, leading to the development of genetic therapies. These include manipulation of the expression of the gene or related genes, the splicing of the gene and its translation, and replacement of the gene using viral approaches. Duchenne muscular dystrophy is a lethal X-linked disorder caused by mutations in the dystrophin gene. In the absence of the dystrophin protein, the link between the cytoskeleton and extracellular matrix is destroyed, and this severely compromises the strength, flexibility and stability of muscle fibres. The devastating consequence is progressive muscle wasting and premature death in Duchenne muscular dystrophy patients. There is currently no cure, and despite exhaustive palliative care, patients are restricted to a wheelchair by the age of 12 years and usually succumb to cardiac or respiratory complications in their late 20s. This review provides an update on the current genetically based therapies and clinical trials that target or compensate for the primary defect of this disease. These include dystrophin gene-replacement strategies, genetic modification techniques to restore dystrophin expression, and modulation of the dystrophin homologue, utrophin, as a surrogate to re-establish muscle function. © 2015 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  2. SapTrap, a Toolkit for High-Throughput CRISPR/Cas9 Gene Modification in Caenorhabditis elegans.

    PubMed

    Schwartz, Matthew L; Jorgensen, Erik M

    2016-04-01

    In principle, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 allows genetic tags to be inserted at any locus. However, throughput is limited by the laborious construction of repair templates and guide RNA constructs and by the identification of modified strains. We have developed a reagent toolkit and plasmid assembly pipeline, called "SapTrap," that streamlines the production of targeting vectors for tag insertion, as well as the selection of modified Caenorhabditis elegans strains. SapTrap is a high-efficiency modular plasmid assembly pipeline that produces single plasmid targeting vectors, each of which encodes both a guide RNA transcript and a repair template for a particular tagging event. The plasmid is generated in a single tube by cutting modular components with the restriction enzyme SapI, which are then "trapped" in a fixed order by ligation to generate the targeting vector. A library of donor plasmids supplies a variety of protein tags, a selectable marker, and regulatory sequences that allow cell-specific tagging at either the N or the C termini. All site-specific sequences, such as guide RNA targeting sequences and homology arms, are supplied as annealed synthetic oligonucleotides, eliminating the need for PCR or molecular cloning during plasmid assembly. Each tag includes an embedded Cbr-unc-119 selectable marker that is positioned to allow concurrent expression of both the tag and the marker. We demonstrate that SapTrap targeting vectors direct insertion of 3- to 4-kb tags at six different loci in 10-37% of injected animals. Thus SapTrap vectors introduce the possibility for high-throughput generation of CRISPR/Cas9 genome modifications. Copyright © 2016 by the Genetics Society of America.

  3. Advancing epilepsy treatment through personalized genetic zebrafish models.

    PubMed

    Griffin, A; Krasniak, C; Baraban, S C

    2016-01-01

    With an increase in the number of disease causing genetic mutations identified from epilepsy cohorts, zebrafish are proving to be an attractive vertebrate model for functional analysis of these allele variants. Not only do zebrafish have conserved gene functions, but larvae harboring mutations in identified human epileptic genes show spontaneous seizure activity and mimic the convulsive behavioral movements observed in humans. With zebrafish being compatible with medium to high-throughput screening, they are also proving to be a unique and powerful system for early preclinical drug screening, including novel target identification, pharmacology, and toxicology. Additionally, with recent advances in genomic engineering technologies, it is now possible to study the precise pathophysiology of patient-specific gene mutations in zebrafish. The following sections highlight how the unique attributes of zebrafish, in combination with genetic modifications, are continuing to transform our understanding of epilepsy and help identify personalized therapeutics for specific patient cohorts. © 2016 Elsevier B.V. All rights reserved.

  4. Improvement of Predictive Ability by Uniform Coverage of the Target Genetic Space

    PubMed Central

    Bustos-Korts, Daniela; Malosetti, Marcos; Chapman, Scott; Biddulph, Ben; van Eeuwijk, Fred

    2016-01-01

    Genome-enabled prediction provides breeders with the means to increase the number of genotypes that can be evaluated for selection. One of the major challenges in genome-enabled prediction is how to construct a training set of genotypes from a calibration set that represents the target population of genotypes, where the calibration set is composed of a training and validation set. A random sampling protocol of genotypes from the calibration set will lead to low quality coverage of the total genetic space by the training set when the calibration set contains population structure. As a consequence, predictive ability will be affected negatively, because some parts of the genotypic diversity in the target population will be under-represented in the training set, whereas other parts will be over-represented. Therefore, we propose a training set construction method that uniformly samples the genetic space spanned by the target population of genotypes, thereby increasing predictive ability. To evaluate our method, we constructed training sets alongside with the identification of corresponding genomic prediction models for four genotype panels that differed in the amount of population structure they contained (maize Flint, maize Dent, wheat, and rice). Training sets were constructed using uniform sampling, stratified-uniform sampling, stratified sampling and random sampling. We compared these methods with a method that maximizes the generalized coefficient of determination (CD). Several training set sizes were considered. We investigated four genomic prediction models: multi-locus QTL models, GBLUP models, combinations of QTL and GBLUPs, and Reproducing Kernel Hilbert Space (RKHS) models. For the maize and wheat panels, construction of the training set under uniform sampling led to a larger predictive ability than under stratified and random sampling. The results of our methods were similar to those of the CD method. For the rice panel, all training set construction

  5. Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies.

    PubMed

    Zhang, Fan; Zhang, Liang; Zhang, Caiguo

    2016-01-01

    The human genome contains a large number of nonprotein-coding sequences. Recently, new discoveries in the functions of nonprotein-coding sequences have demonstrated that the "Dark Genome" significantly contributes to human diseases, especially with regard to cancer. Of particular interest in this review are long noncoding RNAs (lncRNAs), which comprise a class of nonprotein-coding transcripts that are longer than 200 nucleotides. Accumulating evidence indicates that a large number of lncRNAs exhibit genetic associations with tumorigenesis, tumor progression, and metastasis. Our current understanding of the molecular bases of these lncRNAs that are associated with cancer indicate that they play critical roles in gene transcription, translation, and chromatin modification. Therapeutic strategies based on the targeting of lncRNAs to disrupt their expression or their functions are being developed. In this review, we briefly summarize and discuss the genetic associations and the aberrant expression of lncRNAs in cancer, with a particular focus on studies that have revealed the molecular mechanisms of lncRNAs in tumorigenesis. In addition, we also discuss different therapeutic strategies that involve the targeting of lncRNAs.

  6. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinus, R.J.

    2000-08-30

    methodology. The importance of these and future developments is emphasized, since trait measurement constitutes the largest cost associated with adding additional traits to improvement efforts, regardless of genetic approach. In subsequent sections, recent and projected advances in classical selection and breeding, marker-aided selection, and genetic transformation are documented and used to evaluate the feasibility of individual approaches. Interviews with specialists engaged in research and development on each approach were given particular emphasis in gauging feasibilities and defining future needs and directions. Summaries of important findings and major conclusions are presented at the end of individual sections. Closing portions describe the targeted workshop, conducted in December 1999 and list interviewees and literature cited in the text. Information obtained at the workshop was used to improve accuracy, refine conclusions, and recommend priorities for future research, development, and technology transfer.« less

  7. Can we use genetic and genomic approaches to identify candidate animals for targeted selective treatment.

    PubMed

    Laurenson, Yan C S M; Kyriazakis, Ilias; Bishop, Stephen C

    2013-10-18

    Estimated breeding values (EBV) for faecal egg count (FEC) and genetic markers for host resistance to nematodes may be used to identify resistant animals for selective breeding programmes. Similarly, targeted selective treatment (TST) requires the ability to identify the animals that will benefit most from anthelmintic treatment. A mathematical model was used to combine the concepts and evaluate the potential of using genetic-based methods to identify animals for a TST regime. EBVs obtained by genomic prediction were predicted to be the best determinant criterion for TST in terms of the impact on average empty body weight and average FEC, whereas pedigree-based EBVs for FEC were predicted to be marginally worse than using phenotypic FEC as a determinant criterion. Whilst each method has financial implications, if the identification of host resistance is incorporated into a wider genomic selection indices or selective breeding programmes, then genetic or genomic information may be plausibly included in TST regimes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2] cycloaddition reactions and Staudinger modifications.

  9. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2]cycloaddition reactions and Staudinger modifications.

  10. PLMD: An updated data resource of protein lysine modifications.

    PubMed

    Xu, Haodong; Zhou, Jiaqi; Lin, Shaofeng; Deng, Wankun; Zhang, Ying; Xue, Yu

    2017-05-20

    Post-translational modifications (PTMs) occurring at protein lysine residues, or protein lysine modifications (PLMs), play critical roles in regulating biological processes. Due to the explosive expansion of the amount of PLM substrates and the discovery of novel PLM types, here we greatly updated our previous studies, and presented a much more integrative resource of protein lysine modification database (PLMD). In PLMD, we totally collected and integrated 284,780 modification events in 53,501 proteins across 176 eukaryotes and prokaryotes for up to 20 types of PLMs, including ubiquitination, acetylation, sumoylation, methylation, succinylation, malonylation, glutarylation, glycation, formylation, hydroxylation, butyrylation, propionylation, crotonylation, pupylation, neddylation, 2-hydroxyisobutyrylation, phosphoglycerylation, carboxylation, lipoylation and biotinylation. Using the data set, a motif-based analysis was performed for each PLM type, and the results demonstrated that different PLM types preferentially recognize distinct sequence motifs for the modifications. Moreover, various PLMs synergistically orchestrate specific cellular biological processes by mutual crosstalks with each other, and we totally found 65,297 PLM events involved in 90 types of PLM co-occurrences on the same lysine residues. Finally, various options were provided for accessing the data, while original references and other annotations were also present for each PLM substrate. Taken together, we anticipated the PLMD database can serve as a useful resource for further researches of PLMs. PLMD 3.0 was implemented in PHP + MySQL and freely available at http://plmd.biocuckoo.org. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  11. Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype.

    PubMed

    Cooper-Knock, Johnathan; Robins, Henry; Niedermoser, Isabell; Wyles, Matthew; Heath, Paul R; Higginbottom, Adrian; Walsh, Theresa; Kazoka, Mbombe; Ince, Paul G; Hautbergue, Guillaume M; McDermott, Christopher J; Kirby, Janine; Shaw, Pamela J

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs). We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72 . We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes ( n = 274 genes) was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years) sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72 . We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies ( p = 5.31E-18). Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression ( t -test, p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course ( t -test, p = 0.025). Our data are consistent

  12. Selective Inactivation of Functional RNAs by Ribozyme-Catalyzed Covalent Modification.

    PubMed

    Poudyal, Raghav R; Benslimane, Malak; Lokugamage, Melissa P; Callaway, Mackenzie K; Staller, Seth; Burke, Donald H

    2017-03-17

    The diverse functions of RNA provide numerous opportunities for programming biological circuits. We describe a new strategy that uses ribozyme K28min to covalently tag a specific nucleobase within an RNA or DNA target strand to regulate and selectively inactivate those nucleic acids. K28min variants with appropriately reprogrammed internal guide sequences efficiently tagged multiple sites from an mRNA and from aptamer and ribozyme targets. Upon covalent modification by the corresponding K28min variant, an ATP-binding aptamer lost all affinity for ATP, and the fluorogenic Mango aptamer lost its ability to activate fluorescence of its dye ligand. Modifying a hammerhead ribozyme near the catalytic core led to loss of almost all of its substrate-cleaving activity, but modifying the same hammerhead ribozyme within a tertiary stabilizing element that reduces magnesium dependence only impaired substrate cleavage at low magnesium concentration. Thus, ribozyme-mediated covalent modification can be used both to selectively inactivate and to fine-tune the activities of targeted functional RNAs, analogous to the effects of post-translational modifications of proteins. Ribozyme-catalyzed covalent modification could therefore be developed to regulate nucleic acids components of synthetic and natural circuits.

  13. Inhibition of oxygen-glucose deprivation-induced apoptosis of human adipose-derived stem cells by genetic modification with antiapoptotic protein bcl-2.

    PubMed

    Cui, Ziwei; Shen, Liangyun; Lin, Yue; Wang, Shuqin; Zheng, Dongfeng; Tan, Qian

    2014-08-01

    Adipose-derived stem cells (ADSCs) have become a promising tool for a wide range of cell-based therapies. However, transplanted ADSCs do not survive well under ischemic conditions. In this study we aimed to inhibit oxygen-glucose deprivation (OGD)-induced apoptosis of human ADSCs by genetic modification with antiapoptotic protein Bcl-2. After isolation and culture, the phenotypes of human ADSCs at passage 3 were analyzed by flow cytometry. Then, genetic modification of ADSCs with Bcl-2 was carried out. Bcl-2 gene transfection was verified by Western blot analysis and multipotent differentiation properties were evaluated in Bcl-2-modified ADSCs (Bcl-2-ADSCs). Apoptosis was evaluated by a TUNEL assay under ischemic conditions induced by OGD. Apoptotic nuclei were also assessed and quantified by Hoechst staining. The cultured ADSCs expressed stem cell-associated markers CD29, CD34, CD44, and CD90, but not fibroblast marker HLA-DR or hematopoietic stem cell marker CD133. The Bcl-2 gene was transferred into ADSCs efficiently, and Bcl-2-ADSCs differentiated into adipocytes, chondrocytes, and osteoblasts. In addition, Bcl-2 overexpression reduced the percentage of apoptotic Bcl-2-ADSCs by 38 % under OGD. Our results indicate that Bcl-2 overexpression through gene transfection inhibits apoptosis of ADSCs under ischemic conditions. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  14. A survey of the use of soy in processed Turkish meat products and detection of genetic modification.

    PubMed

    Ulca, Pelin; Balta, Handan; Senyuva, Hamide Z

    2014-01-01

    To screen for possible illegal use of soybeans in meat products, the performance characteristics of a commercial polymer chain reaction (PCR) kit for detection of soybean DNA in raw and cooked meat products were established. Minced chicken and beef products containing soybean at levels from 0.1% to 10.0% were analysed by real-time PCR to amplify the soybean lectin gene. The PCR method could reliably detect the addition of soybean at a level of 0.1%. A survey of 38 Turkish processed meat products found only six samples to be negative for the presence of soybean. In 32 (84%) positive samples, 13 (34%) contained levels of soy above 0.1%. Of soybean positive samples, further DNA analysis was conducted by real-time PCR to detect whether genetically modified (GM) soybean had been used. Of 32 meat samples containing soybean, two samples were positive for GM modification.

  15. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy

    PubMed Central

    Gill, Harinder; Leung, Anskar Y. H.; Kwong, Yok-Lam

    2016-01-01

    Myelodysplastic syndrome (MDS) is a group of heterogeneous clonal hematopoietic stem cell disorders characterized by cytopenia, ineffective hematopoiesis, and progression to secondary acute myeloid leukemia in high-risk cases. Conventional prognostication relies on clinicopathological parameters supplemented by cytogenetic information. However, recent studies have shown that genetic aberrations also have critical impacts on treatment outcome. Moreover, these genetic alterations may themselves be a target for treatment. The mutation landscape in MDS is shaped by gene aberrations involved in DNA methylation (TET2, DNMT3A, IDH1/2), histone modification (ASXL1, EZH2), the RNA splicing machinery (SF3B1, SRSF2, ZRSR2, U2AF1/2), transcription (RUNX1, TP53, BCOR, PHF6, NCOR, CEBPA, GATA2), tyrosine kinase receptor signaling (JAK2, MPL, FLT3, GNAS, KIT), RAS pathways (KRAS, NRAS, CBL, NF1, PTPN11), DNA repair (ATM, BRCC3, DLRE1C, FANCL), and cohesion complexes (STAG2, CTCF, SMC1A, RAD21). A detailed understanding of the pathogenetic mechanisms leading to transformation is critical for designing single-agent or combinatorial approaches in target therapy of MDS. PMID:27023522

  16. Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy.

    PubMed

    Lapteva, Natalia; Parihar, Robin; Rollins, Lisa A; Gee, Adrian P; Rooney, Cliona M

    2016-01-01

    Recent advances in methods for the ex vivo expansion of human natural killer (NK) cells have facilitated the use of these powerful immune cells in clinical protocols. Further, the ability to genetically modify primary human NK cells following rapid expansion allows targeting and enhancement of their immune function. We have successfully adapted an expansion method for primary NK cells from peripheral blood mononuclear cells or from apheresis products in gas permeable rapid expansion devices (G-Rexes). Here, we describe an optimized protocol for rapid and robust NK cell expansion as well as a method for highly efficient retroviral transduction of these ex vivo expanded cells. These methodologies are good manufacturing practice (GMP) compliant and could be used for clinical-grade product manufacturing.

  17. Selected topics from classical bacterial genetics.

    PubMed

    Raleigh, Elisabeth A; Elbing, Karen; Brent, Roger

    2002-08-01

    Current cloning technology exploits many facts learned from classical bacterial genetics. This unit covers those that are critical to understanding the techniques described in this book. Topics include antibiotics, the LAC operon, the F factor, nonsense suppressors, genetic markers, genotype and phenotype, DNA restriction, modification and methylation and recombination.

  18. Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification.

    PubMed

    Douglas, Gillian; Van Kampen, Erik; Hale, Ashley B; McNeill, Eileen; Patel, Jyoti; Crabtree, Mark J; Ali, Ziad; Hoerr, Robert A; Alp, Nicholas J; Channon, Keith M

    2013-11-01

    Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. Endothelial cell repopulation was assessed en face in stented arteries in ApoE(-/-) mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm(2), P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm(2), P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE(-/-) mice had less neointima formation compared with ApoE(-/-) littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm(2), P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm(2), P = 0.043). Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.

  19. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells.

    PubMed

    Wu, Yuxuan; Zhou, Hai; Fan, Xiaoying; Zhang, Ying; Zhang, Man; Wang, Yinghua; Xie, Zhenfei; Bai, Meizhu; Yin, Qi; Liang, Dan; Tang, Wei; Liao, Jiaoyang; Zhou, Chikai; Liu, Wujuan; Zhu, Ping; Guo, Hongshan; Pan, Hong; Wu, Chunlian; Shi, Huijuan; Wu, Ligang; Tang, Fuchou; Li, Jinsong

    2015-01-01

    Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc(-/-)) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs.

  20. Genetic modification of Arachis hypogaea for quality traits

    USDA-ARS?s Scientific Manuscript database

    TILLING, targeting induced local lesions in genomes, combines conventional mutagenesis with targeted screening of known genes. Advantages are that a series of alleles can be recovered to assist with functional analysis, and mutations can be identified in polyploids where a phenotype is likely to be...

  1. Genetic modifications of cytokine genes and Toxoplasma gondii infections in pregnant women.

    PubMed

    Wujcicka, Wioletta; Wilczyński, Jan; Śpiewak, Ewa; Nowakowska, Dorota

    2018-05-31

    .050), although this strong relationship was not significant in the further analysis (Cramér's V = 0.76, χ 2  = 26.81, P = 0.310). Regarding the susceptibility to congenital transmission of T. gondii from mothers to their foetuses among the infected pregnant women, the presence of GA heterozygotic status within IL10 polymorphism significantly increased the risk of parasitic transmission (OR 5.73 in the codominant model and OR 5.18 in the overdominant model; P≤0.050). The correlation stayed important in the power analysis (Cramér's V = 0.29, χ 2  = 6.03, P≤0.050), although it was non-significant in larger groups of patients. Important relationships specific for the first study cohort remained non-significant in the second group of studied pregnant women. Within the analyzed cohort of Polish pregnant women, the genetic modifications from SNPs of genes, encoding both the proinflammatory IL1α, IL1β, IL6, IL12 and TNF-α, and anti-inflammatory IL10 cytokines, may have been associated with susceptibility to T. gondii infection. It is the first study on the contribution of cytokine genes polymorphisms to the occurrence of T. gondii infection during pregnancy. Further studies for other populations of pregnant women would be justified to reveal a detailed role of the analyzed polymorphisms for the occurrence of T. gondii infections during pregnancy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research.

    PubMed

    Miano, Joseph M; Zhu, Qiuyu Martin; Lowenstein, Charles J

    2016-06-01

    Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. © 2016 American Heart Association, Inc.

  3. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research

    PubMed Central

    Miano, Joseph M.; Zhu, Qiuyu Martin; Lowenstein, Charles J.

    2016-01-01

    Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of labs could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any lab can quickly assemble reagents for developing new mouse models for cardiovascular research. Here we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for two-component and three-component CRISPR editing are summarized with a number of applications in mice including frameshift mutations, deletion of enhancers and non-coding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. PMID:27102963

  4. A bacterial genetic selection system for ubiquitylation cascade discovery.

    PubMed

    Levin-Kravets, Olga; Tanner, Neta; Shohat, Noa; Attali, Ilan; Keren-Kaplan, Tal; Shusterman, Anna; Artzi, Shay; Varvak, Alexander; Reshef, Yael; Shi, Xiaojing; Zucker, Ori; Baram, Tamir; Katina, Corine; Pilzer, Inbar; Ben-Aroya, Shay; Prag, Gali

    2016-11-01

    About one-third of the eukaryotic proteome undergoes ubiquitylation, but the enzymatic cascades leading to substrate modification are largely unknown. We present a genetic selection tool that utilizes Escherichia coli, which lack deubiquitylases, to identify interactions along ubiquitylation cascades. Coexpression of split antibiotic resistance protein tethered to ubiquitin and ubiquitylation target together with a functional ubiquitylation apparatus results in a covalent assembly of the resistance protein, giving rise to bacterial growth on selective media. We applied the selection system to uncover an E3 ligase from the pathogenic bacteria EHEC and to identify the epsin ENTH domain as an ultraweak ubiquitin-binding domain. The latter was complemented with a structure-function analysis of the ENTH-ubiquitin interface. We also constructed and screened a yeast fusion library, discovering Sem1 as a novel ubiquitylation substrate of Rsp5 E3 ligase. Collectively, our selection system provides a robust high-throughput approach for genetic studies of ubiquitylation cascades and for small-molecule modulator screening.

  5. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

    PubMed

    Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R

    2016-06-01

    The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. © 2016 The Royal Entomological Society.

  6. A novel multigene expression construct for modification of glycerol metabolism in Yarrowia lipolytica

    PubMed Central

    2013-01-01

    Background High supply of raw, residual glycerol from biodiesel production plants promote the search for novel biotechnological methods of its utilization. In this study we attempted modification of glycerol catabolism in a nonconventional yeast species Yarrowia lipolytica through genetic engineering approach. Results To address this, we developed a novel genetic construct which allows transferring three heterologous genes, encoding glycerol dehydratase, its reactivator and a wide-spectrum alcohol oxidoreductase under the control of glycerol-induced promoter. The three genes, tandemly arrayed in an expression cassette with a marker gene ura3, regulatory and targeting sequences (G3P dh promoter and XPR-like terminator, 28S rDNA as a target locus), were transferred into Yarrowia lipolytica cells. The obtained recombinant strain NCYC3825 was characterized at the molecular level and with respect to its biotechnological potential. Our experiments indicated that the novel recombinant strain stably borne one copy of the expression cassette and efficiently expressed heterologous alcohol oxidoreductase, while glycerol dehydratase and its reactivator were expressed at lower level. Comparative shake flask cultivations in glucose- and glycerol-based media demonstrated higher biomass production by the recombinant strain when glycerol was the main carbon source. During bioreactor (5 L) fed-batch cultivation in glycerol-based medium, the recombinant strain was characterized by relatively high biomass and lipids accumulation (up to 42 gDCW L-1, and a peak value of 38%LIPIDS of DCW, respectively), and production of high titers of citric acid (59 g L-1) and 2-phenylethanol (up to 1 g L-1 in shake flask cultivation), which are industrially attractive bioproducts. Conclusions Due to heterogeneous nature of the observed alterations, we postulate that the main driving force of the modified phenotype was faster growth in glycerol-based media, triggered by modifications in the red

  7. [Ethical challenges of genetic manipulation and research with animals].

    PubMed

    Rodríguez Yunta, Eduardo

    2012-01-01

    Research with animals presents ethical questions both for being used as models of human diseases and for being a prerequisite for trials in humans, as in the introduction of genetic modifications. Some of these questions refer to the fact that, as models, they do not fully represent the human condition; that conducting toxicity tests causes great harm to animals; that their nature is altered by genetic modifications and that introducing genetically modified organisms is a risk. The use of animals in research for the benefit of humans imposes the moral responsibility to respect them, not making them suffer unnecessarily, since they are living beings capable of feeling.

  8. Modifications of adenovirus hexon allow for either hepatocyte detargeting or targeting with potential evasion from Kupffer cells.

    PubMed

    Prill, Jan-Michael; Espenlaub, Sigrid; Samen, Ulrike; Engler, Tatjana; Schmidt, Erika; Vetrini, Francesco; Rosewell, Amanda; Grove, Nathan; Palmer, Donna; Ng, Philip; Kochanek, Stefan; Kreppel, Florian

    2011-01-01

    In vivo gene transfer with adenovirus vectors would significantly benefit from a tight control of the adenovirus-inherent liver tropism. For efficient hepatocyte transduction, adenovirus vectors need to evade from Kupffer cell scavenging while delivery to peripheral tissues or tumors could be improved if both scavenging by Kupffer cells and uptake by hepatocytes were blocked. Here, we provide evidence that a single point mutation in the hexon capsomere designed to enable defined chemical capsid modifications may permit both detargeting from and targeting to hepatocytes with evasion from Kupffer cell scavenging. Vector particles modified with small polyethylene glycol (PEG) moieties specifically on hexon exhibited decreased transduction of hepatocytes by shielding from blood coagulation factor binding. Vector particles modified with transferrin or, surprisingly, 5,000 Da PEG or dextran increased hepatocyte transduction up to 18-fold independent of the presence of Kupffer cells. We further show that our strategy can be used to target high-capacity adenovirus vectors to hepatocytes emphasizing the potential for therapeutic liver-directed gene transfer. Our approach may lead to a detailed understanding of the interactions between adenovirus vectors and Kupffer cells, one of the most important barriers for adenovirus-mediated gene delivery.

  9. Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yan; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS; Li, Guodong

    2013-01-15

    The farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR deficiency in mice results in cholestasis, metabolic disorders, and tumorigenesis in liver and intestine. FXR is known to contribute to pathogenesis by regulating gene transcription; however, changes in the post-transcriptional modification of proteins associated with FXR modulation have not been determined. In the current study, proteomic analysis of the livers of wild-type (WT) and FXR knockout (FXR-KO) mice treated with a FXR synthetic ligand or vehicle was performed. The results identified five proteins as novel FXR targets. Since FXR deficiency in micemore » leads to liver tumorigenesis, poly (ADP-ribose) polymerase family, member 1 (Parp1) that is important for DNA repair, was validated in the current study by quantitative real-time PCR, and 1- and 2-dimensional gel electrophoresis/western blot. The results showed that Parp1 mRNA levels were not altered by FXR genetic status or by agonist treatment. However, total Parp1 protein levels were increased in FXR-KO mice as early as 3 month old. Interestingly, total Parp1 protein levels were increased in WT mice in an age-dependent manner (from 3 to 18 months), but not in FXR-KO mice. Finally, activation of FXR in WT mice resulted in reduction of phosporylated Parp1 protein in the liver without affecting total Parp1 protein levels. In conclusion, this study reveals that FXR genetic status and agonist treatment affects basal levels and phosphorylation state of Parp1, respectively. These alterations, in turn, may be associated with the hepatobiliary alterations observed in FXR-KO mice and participate in FXR agonist-induced protection in the liver. -- Highlights: ► Proteomic analysis identified novel FXR targets. ► FXR modification altered post-translational modification of the Parp1 protein. ► Altered Parp1 function may contribute to mechanisms of FXR regulation of liver functions.« less

  10. Genetic transformation of fruit trees: current status and remaining challenges.

    PubMed

    Gambino, Giorgio; Gribaudo, Ivana

    2012-12-01

    Genetic transformation has emerged as a powerful tool for genetic improvement of fruit trees hindered by their reproductive biology and their high levels of heterozygosity. For years, genetic engineering of fruit trees has focussed principally on enhancing disease resistance (against viruses, fungi, and bacteria), although there are few examples of field cultivation and commercial application of these transgenic plants. In addition, over the years much work has been performed to enhance abiotic stress tolerance, to induce modifications of plant growth and habit, to produce marker-free transgenic plants and to improve fruit quality by modification of genes that are crucially important in the production of specific plant components. Recently, with the release of several genome sequences, studies of functional genomics are becoming increasingly important: by modification (overexpression or silencing) of genes involved in the production of specific plant components is possible to uncover regulatory mechanisms associated with the biosynthesis and catabolism of metabolites in plants. This review focuses on the main advances, in recent years, in genetic transformation of the most important species of fruit trees, devoting particular attention to functional genomics approaches and possible future challenges of genetic engineering for these species in the post-genomic era.

  11. Laboratory Course on "Streptomyces" Genetics and Secondary Metabolism

    ERIC Educational Resources Information Center

    Siitonen, Vilja; Räty, Kaj; Metsä-Ketelä, Mikko

    2016-01-01

    The "'Streptomyces' genetics and secondary metabolism" laboratory course gives an introduction to the versatile soil dwelling Gram-positive bacteria "Streptomyces" and their secondary metabolism. The course combines genetic modification of "Streptomyces"; growing of the strain and protoplast preparation, plasmid…

  12. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin.

    PubMed

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M; Epps, Elizabeth W; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui; DiGiusto, David L

    2014-10-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials. ©AlphaMed Press.

  13. Enhanced Genetic Modification of Adult Growth Factor Mobilized Peripheral Blood Hematopoietic Stem and Progenitor Cells With Rapamycin

    PubMed Central

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M.; Epps, Elizabeth W.; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui

    2014-01-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials. PMID:25107584

  14. Brain Tumor Genetic Modification Yields Increased Resistance to Paclitaxel in Physical Confinement

    PubMed Central

    Bui, Loan; Hendricks, Alissa; Wright, Jamie; Chuong, Cheng-Jen; Davé, Digant; Bachoo, Robert; Kim, Young-tae

    2016-01-01

    Brain tumor cells remain highly resistant to radiation and chemotherapy, particularly malignant and secondary cancers. In this study, we utilized microchannel devices to examine the effect of a confined environment on the viability and drug resistance of the following brain cancer cell lines: primary cancers (glioblastoma multiforme and neuroblastoma), human brain cancer cell lines (D54 and D54-EGFRvIII), and genetically modified mouse astrocytes (wild type, p53−/−, p53−/− PTEN−/−, p53−/− Braf, and p53−/− PTEN−/− Braf). We found that loss of PTEN combined with Braf activation resulted in higher viability in narrow microchannels. In addition, Braf conferred increased resistance to the microtubule-stabilizing drug Taxol in narrow confinement. Similarly, survival of D54-EGFRvIII cells was unaffected following treatment with Taxol, whereas the viability of D54 cells was reduced by 75% under these conditions. Taken together, our data suggests key targets for anticancer drugs based on cellular genotypes and their specific survival phenotypes during confined migration. PMID:27184621

  15. Epigenetic Modifications of Major Depressive Disorder

    PubMed Central

    Saavedra, Kathleen; Molina-Márquez, Ana María; Saavedra, Nicolás; Zambrano, Tomás; Salazar, Luis A.

    2016-01-01

    Major depressive disorder (MDD) is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders. PMID:27527165

  16. Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’

    PubMed Central

    Kapoor, Utkarsh

    2017-01-01

    The discovery of mechanisms that alter genetic information via RNA editing or introducing covalent RNA modifications points towards a complexity in gene expression that challenges long-standing concepts. Understanding the biology of RNA modifications represents one of the next frontiers in molecular biology. To this date, over 130 different RNA modifications have been identified, and improved mass spectrometry approaches are still adding to this list. However, only recently has it been possible to map selected RNA modifications at single-nucleotide resolution, which has created a number of exciting hypotheses about the biological function of RNA modifications, culminating in the proposition of the ‘epitranscriptome’. Here, we review some of the technological advances in this rapidly developing field, identify the conceptual challenges and discuss approaches that are needed to rigorously test the biological function of specific RNA modifications. PMID:28566301

  17. Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations.

    PubMed

    Zhou, Stanley; Treloar, Aislinn E; Lupien, Mathieu

    2016-11-01

    The emergence of whole-genome annotation approaches is paving the way for the comprehensive annotation of the human genome across diverse cell and tissue types exposed to various environmental conditions. This has already unmasked the positions of thousands of functional cis-regulatory elements integral to transcriptional regulation, such as enhancers, promoters, and anchors of chromatin interactions that populate the noncoding genome. Recent studies have shown that cis-regulatory elements are commonly the targets of genetic and epigenetic alterations associated with aberrant gene expression in cancer. Here, we review these findings to showcase the contribution of the noncoding genome and its alteration in the development and progression of cancer. We also highlight the opportunities to translate the biological characterization of genetic and epigenetic alterations in the noncoding cancer genome into novel approaches to treat or monitor disease. The majority of genetic and epigenetic alterations accumulate in the noncoding genome throughout oncogenesis. Discriminating driver from passenger events is a challenge that holds great promise to improve our understanding of the etiology of different cancer types. Advancing our understanding of the noncoding cancer genome may thus identify new therapeutic opportunities and accelerate our capacity to find improved biomarkers to monitor various stages of cancer development. Cancer Discov; 6(11); 1215-29. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Acceptance of genetically modified foods: the relation between technology and evaluation.

    PubMed

    Tenbült, Petra; De Vries, Nanne K; van Breukelen, Gerard; Dreezens, Ellen; Martijn, Carolien

    2008-07-01

    This study investigates why consumers accept different genetically modified food products to different extents. The study shows that whether food products are genetically modified or not and whether they are processed or not are the two important features that affect the acceptance of food products and their evaluation (in terms of perceived healthiness, naturalness, necessity and tastiness). The extent to which these evaluation attributes and acceptance of a product are affected by genetic modification or processing depends on whether the product is negatively affected by the other technology: Any technological change to a 'natural' product (when nonprocessed products are genetically modified or when non-genetically modified products are processed) affect evaluation and acceptance stronger than a change to an technologically adapted product (when processed products are also genetically modified or vice versa). Furthermore, evaluation attributes appear to mediate the effects of genetic modification and processing on acceptance.

  19. Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse

    PubMed Central

    Lou, Shan; Adam, Yoav; Weinstein, Eli N.; Williams, Erika; Williams, Katherine; Parot, Vicente; Kavokine, Nikita; Liberles, Stephen; Madisen, Linda; Zeng, Hongkui

    2016-01-01

    Recent advances in optogenetics have enabled simultaneous optical perturbation and optical readout of membrane potential in diverse cell types. Here, we develop and characterize a Cre-dependent transgenic Optopatch2 mouse line that we call Floxopatch. The animals expressed a blue-shifted channelrhodopsin, CheRiff, and a near infrared Archaerhodopsin-derived voltage indicator, QuasAr2, via targeted knock-in at the rosa26 locus. In Optopatch-expressing animals, we tested for overall health, genetically targeted expression, and function of the optogenetic components. In offspring of Floxopatch mice crossed with a variety of Cre driver lines, we observed spontaneous and optically evoked activity in vitro in acute brain slices and in vivo in somatosensory ganglia. Cell-type-specific expression allowed classification and characterization of neuronal subtypes based on their firing patterns. The Floxopatch mouse line is a useful tool for fast and sensitive characterization of neural activity in genetically specified cell types in intact tissue. SIGNIFICANCE STATEMENT Optical recordings of neural activity offer the promise of rapid and spatially resolved mapping of neural function. Calcium imaging has been widely applied in this mode, but is insensitive to the details of action potential waveforms and subthreshold events. Simultaneous optical perturbation and optical readout of single-cell electrical activity (“Optopatch”) has been demonstrated in cultured neurons and in organotypic brain slices, but not in acute brain slices or in vivo. Here, we describe a transgenic mouse in which expression of Optopatch constructs is controlled by the Cre-recombinase enzyme. This animal enables fast and robust optical measurements of single-cell electrical excitability in acute brain slices and in somatosensory ganglia in vivo, opening the door to rapid optical mapping of neuronal excitability. PMID:27798186

  20. Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification.

    PubMed

    Zhang, Decai; Wang, Weijia; Dong, Qian; Huang, Yunxiu; Wen, Dongmei; Mu, Yuejing; Yuan, Yong

    2017-12-21

    An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H 2 O 2 -mediated oxidation of the chromogenic enzyme substrate ABTS 2- causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs. Graphical abstract An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.

  1. Genetically targeted 3D visualisation of Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG

    PubMed Central

    Ng, Julian; Browning, Alyssa; Lechner, Lorenz; Terada, Masako; Howard, Gillian; Jefferis, Gregory S. X. E.

    2016-01-01

    Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition. PMID:27958322

  2. Epigenetic modification and inheritance in sexual reversal of fish.

    PubMed

    Shao, Changwei; Li, Qiye; Chen, Songlin; Zhang, Pei; Lian, Jinmin; Hu, Qiaomu; Sun, Bing; Jin, Lijun; Liu, Shanshan; Wang, Zongji; Zhao, Hongmei; Jin, Zonghui; Liang, Zhuo; Li, Yangzhen; Zheng, Qiumei; Zhang, Yong; Wang, Jun; Zhang, Guojie

    2014-04-01

    Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model-a marine fish that has both ZW chromosomal GSD and temperature-dependent ESD-we investigated the role of DNA methylation in transition from GSD to ESD. Comparative analysis of the gonadal DNA methylomes of pseudomale, female, and normal male fish revealed that genes in the sex determination pathways are the major targets of substantial methylation modification during sexual reversal. Methylation modification in pseudomales is globally inherited in their ZW offspring, which can naturally develop into pseudomales without temperature incubation. Transcriptome analysis revealed that dosage compensation occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudomale testes, achieving equal expression level in normal male testes. In contrast, female-specific W chromosomal genes are suppressed in pseudomales by methylation regulation. We conclude that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish. We also offer the first clues on the mechanisms behind gene dosage balancing in an organism that undergoes sexual reversal. Finally, we suggest a causal link between the bias sex chromosome assortment in the offspring of a pseudomale family and the transgenerational epigenetic inheritance of sexual reversal in tongue sole fish.

  3. Factors influencing U.S. consumer support for genetic modification to prevent crop disease.

    PubMed

    McComas, Katherine A; Besley, John C; Steinhardt, Joseph

    2014-07-01

    This study examines support for the genetic modification (GM) of crops in the context of preventing "late blight," a devastating potato and tomato disease that caused the Irish Potato Famine in the 1850s and results in substantial crop loss today. We surveyed U.S. adults who do the primary grocery shopping in their household (n = 859). Half of the respondents were randomly assigned to read a vignette describing late blight before responding to questions about GM, whereas the other half read a vignette about generic crop disease before responding to questions. We also examine how the perceived fairness of decision makers relates to GM support and the perceived legitimacy of GM decision making. We found that disease specificity mattered less to support and legitimacy than the perceived fairness of decision makers. The perceived risks of GM to human and environmental health negatively related to GM support and legitimacy, whereas the perceived benefits (e.g. reduced threats to crops and a more secure food supply) positively related to support and legitimacy. Objective knowledge about GM had a small, negative relationship with legitimacy whereas self-assessed familiarity with GM had a positive relationship. Overall, the results offer additional confirmation of past findings from more localized settings that perceived fairness of decision makers matters to support for GM and underscore the importance of considering how risk managers' behaviors and actions are perceived alongside individuals' perceptions about the risks and benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Efficient Modification of the CCR5 Locus in Primary Human T Cells With megaTAL Nuclease Establishes HIV-1 Resistance

    PubMed Central

    Romano Ibarra, Guillermo S; Paul, Biswajit; Sather, Blythe D; Younan, Patrick M; Sommer, Karen; Kowalski, John P; Hale, Malika; Stoddard, Barry; Jarjour, Jordan; Astrakhan, Alexander; Kiem, Hans-Peter; Rawlings, David J

    2016-01-01

    A naturally occurring 32-base pair deletion of the HIV-1 co-receptor CCR5 has demonstrated protection against HIV infection of human CD4+ T cells. Recent genetic engineering approaches using engineered nucleases to disrupt the gene and mimic this mutation show promise for HIV therapy. We developed a megaTAL nuclease targeting the third extracellular loop of CCR5 that we delivered to primary human T cells by mRNA transfection. The CCR5 megaTAL nuclease established resistance to HIV in cell lines and disrupted the expression of CCR5 on primary human CD4+ T cells with a high efficiency, achieving up to 80% modification of the locus in primary cells as measured by molecular analysis. Gene-modified cells engrafted at levels equivalent to unmodified cells when transplanted into immunodeficient mice. Furthermore, genetically modified CD4+ cells were preferentially expanded during HIV-1 infection in vivo in an immunodeficient mouse model. Our results demonstrate the feasibility of targeting CCR5 in primary T cells using an engineered megaTAL nuclease, and the potential to use gene-modified cells to reconstitute a patient's immune system and provide protection from HIV infection. PMID:27741222

  5. T-REX on-demand redox targeting in live cells.

    PubMed

    Parvez, Saba; Long, Marcus J C; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Pham, Vanha N; Lee, Dustin K; Aye, Yimon

    2016-12-01

    This protocol describes targetable reactive electrophiles and oxidants (T-REX)-a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE(alkyne)) and the HaloTag-targetable photocaged precursor to HNE(alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t 1/2 <1-2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4-24 h, depending on the nature of the pathway and the type of readouts used.

  6. T-REX on-demand redox targeting in live cells

    PubMed Central

    Parvez, Saba; Long, Marcus J C; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Pham, Vanha N; Lee, Dustin K; Aye, Yimon

    2017-01-01

    This protocol describes targetable reactive electrophiles and oxidants (T-REX)—a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE (alkyne)) and the HaloTag-targetable photocaged precursor to HNE (alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t1/2 <1–2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4–24 h, depending on the nature of the pathway and the type of readouts used. PMID:27809314

  7. Enhanced CRISPR/Cas9-mediated biallelic genome targeting with dual surrogate reporter-integrated donors.

    PubMed

    Wu, Yun; Xu, Kun; Ren, Chonghua; Li, Xinyi; Lv, Huijiao; Han, Furong; Wei, Zehui; Wang, Xin; Zhang, Zhiying

    2017-03-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has recently emerged as a simple, yet powerful genome engineering tool, which has been widely used for genome modification in various organisms and cell types. However, screening biallelic genome-modified cells is often time-consuming and technically challenging. In this study, we incorporated two different surrogate reporter cassettes into paired donor plasmids, which were used as both the surrogate reporters and the knock-in donors. By applying our dual surrogate reporter-integrated donor system, we demonstrate high frequency of CRISPR/Cas9-mediated biallelic genome integration in both human HEK293T and porcine PK15 cells (34.09% and 18.18%, respectively). Our work provides a powerful genetic tool for assisting the selection and enrichment of cells with targeted biallelic genome modification. © 2017 Federation of European Biochemical Societies.

  8. Gene targeting and subsequent site-specific transgenesis at the β-actin (ACTB) locus in common marmoset embryonic stem cells.

    PubMed

    Shiozawa, Seiji; Kawai, Kenji; Okada, Yohei; Tomioka, Ikuo; Maeda, Takuji; Kanda, Akifumi; Shinohara, Haruka; Suemizu, Hiroshi; James Okano, Hirotaka; Sotomaru, Yusuke; Sasaki, Erika; Okano, Hideyuki

    2011-09-01

    Nonhuman primate embryonic stem (ES) cells have vast promise for preclinical studies. Genetic modification in nonhuman primate ES cells is an essential technique for maximizing the potential of these cells. The common marmoset (Callithrix jacchus), a nonhuman primate, is expected to be a useful transgenic model for preclinical studies. However, genetic modification in common marmoset ES (cmES) cells has not yet been adequately developed. To establish efficient and stable genetic modifications in cmES cells, we inserted the enhanced green fluorescent protein (EGFP) gene with heterotypic lox sites into the β-actin (ACTB) locus of the cmES cells using gene targeting. The resulting knock-in ES cells expressed EGFP ubiquitously under the control of the endogenous ACTB promoter. Using inserted heterotypic lox sites, we demonstrated Cre recombinase-mediated cassette exchange (RMCE) and successfully established a monomeric red fluorescent protein (mRFP) knock-in cmES cell line. Further, a herpes simplex virus-thymidine kinase (HSV-tk) knock-in cmES cell line was established using RMCE. The growth of tumor cells originating from the cell line was significantly suppressed by the administration of ganciclovir. Therefore, the HSV-tk/ganciclovir system is promising as a safeguard for stem cell therapy. The stable and ubiquitous expression of EGFP before RMCE enables cell fate to be tracked when the cells are transplanted into an animal. Moreover, the creation of a transgene acceptor locus for site-specific transgenesis will be a powerful tool, similar to the ROSA26 locus in mice.

  9. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  10. Identifying Genetic Sources of Phenotypic Heterogeneity in Orofacial Clefts by Targeted Sequencing.

    PubMed

    Carlson, Jenna C; Taub, Margaret A; Feingold, Eleanor; Beaty, Terri H; Murray, Jeffrey C; Marazita, Mary L; Leslie, Elizabeth J

    2017-07-17

    Orofacial clefts (OFCs), including nonsyndromic cleft lip with or without cleft palate (NSCL/P), are common birth defects. NSCL/P is highly heterogeneous with multiple phenotypic presentations. Two common subtypes of NSCL/P are cleft lip (CL) and cleft lip with cleft palate (CLP) which have different population prevalence. Similarly, NSCL/P can be divided into bilateral and unilateral clefts, with unilateral being the most common. Individuals with unilateral NSCL/P are more likely to be affected on the left side of the upper lip, but right side affection also occurs. Moreover, NSCL/P is twice as common in males as in females. The goal of this study is to discover genetic variants that have different effects in case subgroups. We conducted both common variant and rare variant analyses in 1034 individuals of Asian ancestry with NSCL/P, examining four sources of heterogeneity within CL/P: cleft type, sex, laterality, and side. We identified several regions associated with subtype differentiation: cleft type differences in 8q24 (p = 1.00 × 10 -4 ), laterality differences in IRF6, a gene previously implicated with wound healing (p = 2.166 × 10 -4 ), sex differences and side of unilateral CL differences in FGFR2 (p = 3.00 × 10 -4 ; p = 6.00 × 10 -4 ), and sex differences in VAX1 (p < 1.00 × 10 -4 ) among others. Many of the regions associated with phenotypic modification were either adjacent to or overlapping functional elements based on ENCODE chromatin marks and published craniofacial enhancers. We have identified multiple common and rare variants as potential phenotypic modifiers of NSCL/P, and suggest plausible elements responsible for phenotypic heterogeneity, further elucidating the complex genetic architecture of OFCs. Birth Defects Research 109:1030-1038, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Mediation and modification of genetic susceptibility to obesity by eating behaviors.

    PubMed

    de Lauzon-Guillain, Blandine; Clifton, Emma Ad; Day, Felix R; Clément, Karine; Brage, Soren; Forouhi, Nita G; Griffin, Simon J; Koudou, Yves Akoli; Pelloux, Véronique; Wareham, Nicholas J; Charles, Marie-Aline; Heude, Barbara; Ong, Ken K

    2017-10-01

    Background: Many genetic variants show highly robust associations with body mass index (BMI). However, the mechanisms through which genetic susceptibility to obesity operates are not well understood. Potentially modifiable mechanisms, including eating behaviors, are of particular interest to public health. Objective: Here we explore whether eating behaviors mediate or modify genetic susceptibility to obesity. Design: Genetic risk scores for BMI (BMI-GRSs) were calculated for 3515 and 2154 adults in the Fenland and EDEN (Etude des déterminants pré et postnatals de la santé et du développement de l'enfant) population-based cohort studies, respectively. The eating behaviors-emotional eating, uncontrolled eating, and cognitive restraint-were measured through the use of a validated questionnaire. The mediating effect of each eating behavior on the association between the BMI-GRS and measured BMI was assessed by using the Sobel test. In addition, we tested for interactions between each eating behavior and the BMI-GRS on BMI. Results: The association between the BMI-GRS and BMI was mediated by both emotional eating (EDEN: P- Sobel = 0.01; Fenland: P- Sobel = 0.02) and uncontrolled eating (EDEN: P- Sobel = 0.04; Fenland: P -Sobel = 0.0006) in both sexes combined. Cognitive restraint did not mediate this association ( P -Sobel > 0.10), except among EDEN women ( P -Sobel = 0.0009). Cognitive restraint modified the relation between the BMI-GRS and BMI among men (EDEN: P -interaction = 0.0001; Fenland: P -interaction = 0.04) and Fenland women ( P -interaction = 0.0004). By tertiles of cognitive restraint, the association between the BMI-GRS and BMI was strongest in the lowest tertile of cognitive restraint, and weakest in the highest tertile. Conclusions: Genetic susceptibility to obesity was partially mediated by the "appetitive" eating behavior traits (uncontrolled and emotional eating) and, in 3 of the 4 population groups studied, was modified by cognitive restraint

  12. Persistence of antigen is required to maintain transplantation tolerance induced by genetic modification of bone marrow stem cells.

    PubMed

    Tian, C; Bagley, J; Iacomini, J

    2006-09-01

    Genetic modification of hematopoietic stem cells (HSCs) resulting in a state of molecular chimerism can be used to induce donor-specific tolerance to allografts. However, the requirements for maintaining tolerance in molecular chimeras remain unknown. Here, we examined whether long-term expression of a retrovirally encoded alloantigen in hematopoietic cells is required to maintain donor-specific tolerance in molecular chimeras. To this end, mice were reconstituted with syngeneic bone marrow transduced with retroviruses carrying the gene encoding the allogeneic MHC class I molecule Kb. Following induction of molecular chimerism, mice were depleted of cells expressing Kb by administration of the anti-Kb monoclonal antibody Y-3. Mice that were effectively depleted of cells expressing the retrovirally encoded MHC class I antigen rejected Kb disparate skin allografts. In contrast, control molecular chimeras accepted Kb disparate skin allografts indefinitely. These data suggest maintenance of tolerance in molecular chimeras requires long-term expression of retrovirally transduced alloantigen on the progeny of retrovirally transduced HSCs.

  13. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement

    PubMed Central

    Prasad, Megana K; Geoffroy, Véronique; Vicaire, Serge; Jost, Bernard; Dumas, Michael; Le Gras, Stéphanie; Switala, Marzena; Gasse, Barbara; Laugel-Haushalter, Virginie; Paschaki, Marie; Leheup, Bruno; Droz, Dominique; Dalstein, Amelie; Loing, Adeline; Grollemund, Bruno; Muller-Bolla, Michèle; Lopez-Cazaux, Séréna; Minoux, Maryline; Jung, Sophie; Obry, Frédéric; Vogt, Vincent; Davideau, Jean-Luc; Davit-Beal, Tiphaine; Kaiser, Anne-Sophie; Moog, Ute; Richard, Béatrice; Morrier, Jean-Jacques; Duprez, Jean-Pierre; Odent, Sylvie; Bailleul-Forestier, Isabelle; Rousset, Monique Marie; Merametdijan, Laure; Toutain, Annick; Joseph, Clara; Giuliano, Fabienne; Dahlet, Jean-Christophe; Courval, Aymeric; El Alloussi, Mustapha; Laouina, Samir; Soskin, Sylvie; Guffon, Nathalie; Dieux, Anne; Doray, Bérénice; Feierabend, Stephanie; Ginglinger, Emmanuelle; Fournier, Benjamin; de la Dure Molla, Muriel; Alembik, Yves; Tardieu, Corinne; Clauss, François; Berdal, Ariane; Stoetzel, Corinne; Manière, Marie Cécile; Dollfus, Hélène; Bloch-Zupan, Agnès

    2016-01-01

    Background Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. Methods We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. Results We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. Conclusions We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. Trial registration numbers NCT01746121 and NCT02397824. PMID:26502894

  14. Irradiation influence on the detection of genetic-modified soybeans

    NASA Astrophysics Data System (ADS)

    Villavicencio, A. L. C. H.; Araújo, M. M.; Baldasso, J. G.; Aquino, S.; Konietzny, U.; Greiner, R.

    2004-09-01

    Three soybean varieties were analyzed to evaluate the irradiation influence on the detection of genetic modification. Samples were treated in a 60Co facility at dose levels of 0, 500, 800, and 1000Gy. The seeds were at first analyzed by Comet Assay as a rapid screening irradiation detection method. Secondly, germination test was performed to detect the viability of irradiated soybeans. Finally, because of its high sensitivity, its specificity and rapidity the polimerase chain reaction was the method applied for genetic modified organism detection. The analysis of DNA by the single technique of microgel electrophoresis of single cells (DNA Comet Assay) showed that DNA damage increased with increasing radiation doses. No negative influence of irradiation on the genetic modification detection was found.

  15. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications.

    PubMed

    Telugu, Bhanu P; Park, Ki-Eun; Park, Chi-Hun

    2017-08-01

    Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.

  16. Engineering tumor cell targeting in nanoscale amyloidal materials

    NASA Astrophysics Data System (ADS)

    Unzueta, Ugutz; Seras-Franzoso, Joaquin; Virtudes Céspedes, María; Saccardo, Paolo; Cortés, Francisco; Rueda, Fabián; Garcia-Fruitós, Elena; Ferrer-Miralles, Neus; Mangues, Ramon; Vázquez, Esther; Villaverde, Antonio

    2017-01-01

    Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.

  17. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment.

    PubMed

    Willis, Rudolph E

    2016-09-14

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis.

  18. Genetic variation and epigenetic modification of the prodynorphin gene in peripheral blood cells in alcoholism.

    PubMed

    D'Addario, Claudio; Shchetynsky, Klementy; Pucci, Mariangela; Cifani, Carlo; Gunnar, Agneta; Vukojević, Vladana; Padyukov, Leonid; Terenius, Lars

    2017-06-02

    Dynorphins are critically involved in the development, maintenance and relapse of alcoholism. Alcohol-induced changes in the prodynorphin gene expression may be influenced by both gene polymorphisms and epigenetic modifications. The present study of human alcoholics aims to evaluate DNA methylation patterns in the prodynorphin gene (PDYN) promoter and to identify single nucleotide polymorphisms (SNPs) associated with alcohol dependence and with altered DNA methylation. Genomic DNA was isolated from peripheral blood cells of alcoholics and healthy controls, and DNA methylation was studied in the PDYN promoter by bisulfite pyrosequencing. In alcoholics, DNA methylation increased in three of the seven CpG sites investigated, as well as in the average of the seven CpG sites. Data stratification showed lower increase in DNA methylation levels in individuals reporting craving and with higher levels of alcohol consumption. Association with alcoholism was observed for rs2235751 and the presence of the minor allele G was associated with reduced DNA methylation at PDYN promoter in females and younger subjects. Genetic and epigenetic factors within PDYN are related to risk for alcoholism, providing further evidence of its involvement on ethanol effects. These results might be of relevance for developing new biomarkers to predict disease trajectories and therapeutic outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Behavioral and genetic investigations of low exploratory behavior in Il18r1−/− mice: We can’t always blame it on the targeted gene

    PubMed Central

    Eisener-Dorman, Amy F.; Lawrence, David A.; Bolivar, Valerie J.

    2010-01-01

    The development of gene targeting technologies has enabled research with immune system-related knockout mouse strains to advance our understanding of how cytokines and their receptors interact and influence a number of body systems, including the central nervous system. A critical issue when we are interpreting phenotypic data from these knockout strains is the potential role of genes other than the targeted one. Although many of the knockout strains have been made congenic on a C57BL/6 (B6) genetic background, there remains a certain amount of genetic material from the129 substrain that was used in the development of these strains. This genetic material could result in phenotypes incorrectly attributed to the targeted gene. We recently reported low activity behavior in Il10−/− mice that was linked to this genetic material rather than the targeted gene itself. In the current study we confirm the generalizability of those earlier findings, by assessing behavior in Il18−/− and Il18r1−/− knockout mice. We identified low activity and high anxiety-like behaviors in Il18r1−/− mice, whereas Il18−/− mice displayed little anxiety-like behavior. Although Il18r1−/− mice are considered a congenic strain, we have identified substantial regions of 129P2-derived genetic material not only flanking the ablated Il18r1 on Chromosome 1, but also on Chromosomes 4, 5, 8, 10, and 14. Our studies suggest that residual 129-derived gene(s), rather than the targeted Il18r1 gene, is/are responsible for the low level of activity seen in the Il18r1−/− mice. Mapping studies are necessary to identify the gene or genes contributing to the low activity phenotype. PMID:20580925

  20. Whole-body multicolor spectrally resolved fluorescence imaging for development of target-specific optical contrast agents using genetically engineered probes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hisataka; Hama, Yukihiro; Koyama, Yoshinori; Barrett, Tristan; Urano, Yasuteru; Choyke, Peter L.

    2007-02-01

    Target-specific contrast agents are being developed for the molecular imaging of cancer. Optically detectable target-specific agents are promising for clinical applications because of their high sensitivity and specificity. Pre clinical testing is needed, however, to validate the actual sensitivity and specificity of these agents in animal models, and involves both conventional histology and immunohistochemistry, which requires large numbers of animals and samples with costly handling. However, a superior validation tool takes advantage of genetic engineering technology whereby cell lines are transfected with genes that induce the target cell to produce fluorescent proteins with characteristic emission spectra thus, identifying them as cancer cells. Multicolor fluorescence imaging of these genetically engineered probes can provide rapid validation of newly developed exogenous probes that fluoresce at different wavelengths. For example, the plasmid containing the gene encoding red fluorescent protein (RFP) was transfected into cell lines previously developed to either express or not-express specific cell surface receptors. Various antibody-based or receptor ligand-based optical contrast agents with either green or near infrared fluorophores were developed to concurrently target and validate cancer cells and their positive and negative controls, such as β-D-galactose receptor, HER1 and HER2 in a single animal/organ. Spectrally resolved fluorescence multicolor imaging was used to detect separate fluorescent emission spectra from the exogenous agents and RFP. Therefore, using this in vivo imaging technique, we were able to demonstrate the sensitivity and specificity of the target-specific optical contrast agents, thus reducing the number of animals needed to conduct these experiments.

  1. Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve

    PubMed Central

    Bottacini, Francesca; Morrissey, Ruth; Roberts, Richard John; James, Kieran; van Breen, Justin; Egan, Muireann; Lambert, Jolanda; van Limpt, Kees; Knol, Jan; Motherway, Mary O’Connell; van Sinderen, Douwe

    2018-01-01

    Abstract Bifidobacterium breve represents one of the most abundant bifidobacterial species in the gastro-intestinal tract of breast-fed infants, where their presence is believed to exert beneficial effects. In the present study whole genome sequencing, employing the PacBio Single Molecule, Real-Time (SMRT) sequencing platform, combined with comparative genome analysis allowed the most extensive genetic investigation of this taxon. Our findings demonstrate that genes encoding Restriction/Modification (R/M) systems constitute a substantial part of the B. breve variable gene content (or variome). Using the methylome data generated by SMRT sequencing, combined with targeted Illumina bisulfite sequencing (BS-seq) and comparative genome analysis, we were able to detect methylation recognition motifs and assign these to identified B. breve R/M systems, where in several cases such assignments were confirmed by restriction analysis. Furthermore, we show that R/M systems typically impose a very significant barrier to genetic accessibility of B. breve strains, and that cloning of a methyltransferase-encoding gene may overcome such a barrier, thus allowing future functional investigations of members of this species. PMID:29294107

  2. Messages promoting genetic modification of crops in the context of climate change: Evidence for psychological reactance.

    PubMed

    Lu, Hang; McComas, Katherine A; Besley, John C

    2017-01-01

    Genetic modification (GM) of crops and climate change are arguably two of today's most challenging science communication issues. Increasingly, these two issues are connected in messages proposing GM as a viable option for ensuring global food security threatened by climate change. This study examines the effects of messages promoting the benefits of GM in the context of climate change. Further, it examines whether explicit reference to "climate change," or "global warming" in a GM message results in different effects than each other, or an implicit climate reference. An online sample of U.S. participants (N = 1050) were randomly assigned to one of four conditions: "climate change" cue, "global warming" cue, implicit cue, or control (no message). Generally speaking, framing GM crops as a way to help ensure global food security proved to be an effective messaging strategy in increasing positive attitudes toward GM. In addition, the implicit cue condition led to liberals having more positive attitudes and behavioral intentions toward GM than the "climate change" cue condition, an effect mediated by message evaluations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. An Efficient and Versatile System for Visualization and Genetic Modification of Dopaminergic Neurons in Transgenic Mice

    PubMed Central

    Kramer, Edgar R.

    2015-01-01

    Background & Aims The brain dopaminergic (DA) system is involved in fine tuning many behaviors and several human diseases are associated with pathological alterations of the DA system such as Parkinson’s disease (PD) and drug addiction. Because of its complex network integration, detailed analyses of physiological and pathophysiological conditions are only possible in a whole organism with a sophisticated tool box for visualization and functional modification. Methods & Results Here, we have generated transgenic mice expressing the tetracycline-regulated transactivator (tTA) or the reverse tetracycline-regulated transactivator (rtTA) under control of the tyrosine hydroxylase (TH) promoter, TH-tTA (tet-OFF) and TH-rtTA (tet-ON) mice, to visualize and genetically modify DA neurons. We show their tight regulation and efficient use to overexpress proteins under the control of tet-responsive elements or to delete genes of interest with tet-responsive Cre. In combination with mice encoding tet-responsive luciferase, we visualized the DA system in living mice progressively over time. Conclusion These experiments establish TH-tTA and TH-rtTA mice as a powerful tool to generate and monitor mouse models for DA system diseases. PMID:26291828

  4. Testing for Genetically Modified Foods Using PCR

    ERIC Educational Resources Information Center

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  5. Powerful tools for genetic modification: Advances in gene editing.

    PubMed

    Roesch, Erica A; Drumm, Mitchell L

    2017-11-01

    Recent discoveries and technical advances in genetic engineering, methods called gene or genome editing, provide hope for repairing genes that cause diseases like cystic fibrosis (CF) or otherwise altering a gene for therapeutic benefit. There are both hopes and hurdles with these technologies, with new ideas emerging almost daily. Initial studies using intestinal organoid cultures carrying the common, F508del mutation have shown that gene editing by CRISPR/Cas9 can convert cells lacking CFTR function to cells with normal channel function, providing a precedent that this technology can be harnessed for CF. While this is an important precedent, the challenges that remain are not trivial. A logistical issue for this and many other genetic diseases is genetic heterogeneity. Approximately, 2000 mutations associated with CF have been found in CFTR, the gene responsible for CF, and thus a feasible strategy that would encompass all individuals affected by the disease is particularly difficult to envision. However, single strategies that would be applicable to all subjects affected by CF have been conceived and are being investigated. With all of these approaches, efficiency (the proportion of cells edited), accuracy (how often other sites in the genome are affected), and delivery of the gene editing components to the desired cells are perhaps the most significant, impending hurdles. Our understanding of each of these areas is increasing rapidly, and while it is impossible to predict when a successful strategy will reach the clinic, there is every reason to believe it is a question of "when" and not "if." © 2017 Wiley Periodicals, Inc.

  6. Improving CRISPR–Cas specificity with chemical modifications in single-guide RNAs

    PubMed Central

    Ryan, Daniel E; Taussig, David; Steinfeld, Israel; Phadnis, Smruti M; Lunstad, Benjamin D; Singh, Madhurima; Vuong, Xuan; Okochi, Kenji D; McCaffrey, Ryan; Olesiak, Magdalena; Roy, Subhadeep; Yung, Chong Wing; Curry, Bo; Sampson, Jeffrey R; Dellinger, Douglas J

    2018-01-01

    Abstract CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence (‘guide sequence’) and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2′-O-methyl-3′-phosphonoacetate, or ‘MP’) incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications. PMID:29216382

  7. New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies.

    PubMed

    Schmitt, Thomas M; Stromnes, Ingunn M; Chapuis, Aude G; Greenberg, Philip D

    2015-12-01

    The immune system, T cells in particular, have the ability to target and destroy malignant cells. However, antitumor immune responses induced from the endogenous T-cell repertoire are often insufficient for the eradication of established tumors, as illustrated by the failure of cancer vaccination strategies or checkpoint blockade for most tumors. Genetic modification of T cells to express a defined T-cell receptor (TCR) can provide the means to rapidly generate large numbers of tumor-reactive T cells capable of targeting tumor cells in vivo. However, cell-intrinsic factors as well as immunosuppressive factors in the tumor microenvironment can limit the function of such gene-modified T cells. New strategies currently being developed are refining and enhancing this approach, resulting in cellular therapies that more effectively target tumors and that are less susceptible to tumor immune evasion. ©2015 American Association for Cancer Research.

  8. Genetic Transformation and Genomic Resources for Next-Generation Precise Genome Engineering in Vegetable Crops

    PubMed Central

    Cardi, Teodoro; D’Agostino, Nunzio; Tripodi, Pasquale

    2017-01-01

    In the frame of modern agriculture facing the predicted increase of population and general environmental changes, the securement of high quality food remains a major challenge to deal with. Vegetable crops include a large number of species, characterized by multiple geographical origins, large genetic variability and diverse reproductive features. Due to their nutritional value, they have an important place in human diet. In recent years, many crop genomes have been sequenced permitting the identification of genes and superior alleles associated with desirable traits. Furthermore, innovative biotechnological approaches allow to take a step forward towards the development of new improved cultivars harboring precise genome modifications. Sequence-based knowledge coupled with advanced biotechnologies is supporting the widespread application of new plant breeding techniques to enhance the success in modification and transfer of useful alleles into target varieties. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system, zinc-finger nucleases, and transcription activator-like effector nucleases represent the main methods available for plant genome engineering through targeted modifications. Such technologies, however, require efficient transformation protocols as well as extensive genomic resources and accurate knowledge before they can be efficiently exploited in practical breeding programs. In this review, we revise the state of the art in relation to availability of such scientific and technological resources in various groups of vegetables, describe genome editing results obtained so far and discuss the implications for future applications. PMID:28275380

  9. A review of different behavior modification strategies designed to reduce sedentary screen behaviors in children.

    PubMed

    Steeves, Jeremy A; Thompson, Dixie L; Bassett, David R; Fitzhugh, Eugene C; Raynor, Hollie A

    2012-01-01

    Previous research suggests that reducing sedentary screen behaviors may be a strategy for preventing and treating obesity in children. This systematic review describes strategies used in interventions designed to either solely target sedentary screen behaviors or multiple health behaviors, including sedentary screen behaviors. Eighteen studies were included in this paper; eight targeting sedentary screen behaviors only, and ten targeting multiple health behaviors. All studies used behavior modification strategies for reducing sedentary screen behaviors in children (aged 1-12 years). Nine studies only used behavior modification strategies, and nine studies supplemented behavior modification strategies with an electronic device to enhance sedentary screen behaviors reductions. Many interventions (50%) significantly reduced sedentary screen behaviors; however the magnitude of the significant reductions varied greatly (-0.44 to -3.1 h/day) and may have been influenced by the primary focus of the intervention, number of behavior modification strategies used, and other tools used to limit sedentary screen behaviors.

  10. BuD, a helix–loop–helix DNA-binding domain for genome modification

    PubMed Central

    Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-01-01

    DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing. PMID:25004980

  11. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    PubMed

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  12. Pesticides that inhibit the ubiquitin-proteasome system: effect measure modification by genetic variation in SKP1 in Parkinson׳s disease.

    PubMed

    Rhodes, Shannon L; Fitzmaurice, Arthur G; Cockburn, Myles; Bronstein, Jeff M; Sinsheimer, Janet S; Ritz, Beate

    2013-10-01

    Cytoplasmic inclusions known as Lewy bodies, a hallmark of Parkinson's disease (PD) pathology, may protect against cytotoxic proteins. Since the ubiquitin-proteasome system (UPS) degrades cytotoxic proteins, dysfunction in the UPS may contribute to PD etiology. Our goal in this study was to screen pesticides for proteasome inhibition and investigate (i) whether ambient exposures to pesticides that inhibit the UPS increase PD risk and (ii) whether genetic variation in candidate genes of the UPS pathway modify those increased risks. We assessed 26S UPS activity in SK-N-MC(u) cells by fluorescence. We recruited idiopathic PD cases (n=360) and population-based controls (n=816) from three counties in California with considerable commercial agriculture. We determined ambient pesticide exposure by our validated GIS-based model utilizing residential and workplace address histories. We limited effect measure modification assessment to Caucasians (287 cases, 453 controls). Eleven of 28 pesticides we screened inhibited 26S UPS activity at 10 µM. Benomyl, cyanazine, dieldrin, endosulfan, metam, propargite, triflumizole, and ziram were associated with increased PD risk. We estimated an odds ratio of 2.14 (95% CI: 1.42, 3.22) for subjects with ambient exposure to any UPS-inhibiting pesticide at both residential and workplace addresses; this association was modified by genetic variation in the s-phase kinase-associated protein 1 gene (SKP1; interaction p-value=0.005). Our results provide evidence that UPS-inhibiting pesticides play a role in the etiology of PD and suggest that genetic variation in candidate genes involved in the UPS pathway might exacerbate the toxic effects of pesticide exposures. © 2013 Published by Elsevier Inc.

  13. Genetic Variants Identified from Epilepsy of Unknown Etiology in Chinese Children by Targeted Exome Sequencing

    PubMed Central

    Wang, Yimin; Du, Xiaonan; Bin, Rao; Yu, Shanshan; Xia, Zhezhi; Zheng, Guo; Zhong, Jianmin; Zhang, Yunjian; Jiang, Yong-hui; Wang, Yi

    2017-01-01

    Genetic factors play a major role in the etiology of epilepsy disorders. Recent genomics studies using next generation sequencing (NGS) technique have identified a large number of genetic variants including copy number (CNV) and single nucleotide variant (SNV) in a small set of genes from individuals with epilepsy. These discoveries have contributed significantly to evaluate the etiology of epilepsy in clinic and lay the foundation to develop molecular specific treatment. However, the molecular basis for a majority of epilepsy patients remains elusive, and furthermore, most of these studies have been conducted in Caucasian children. Here we conducted a targeted exome-sequencing of 63 trios of Chinese epilepsy families using a custom-designed NGS panel that covers 412 known and candidate genes for epilepsy. We identified pathogenic and likely pathogenic variants in 15 of 63 (23.8%) families in known epilepsy genes including SCN1A, CDKL5, STXBP1, CHD2, SCN3A, SCN9A, TSC2, MBD5, POLG and EFHC1. More importantly, we identified likely pathologic variants in several novel candidate genes such as GABRE, MYH1, and CLCN6. Our results provide the evidence supporting the application of custom-designed NGS panel in clinic and indicate a conserved genetic susceptibility for epilepsy between Chinese and Caucasian children. PMID:28074849

  14. Training teachers in generalized writing of behavior modification programs for multihandicapped deaf children.

    PubMed

    Hundert, J

    1982-01-01

    In contrast to previous studies where teachers were instructed how to implement behavior modification programs designed by an experimenter, teachers in the present experiment were taught how to write as well as implement behavior modification programs. The generalized effects of two training conditions on teacher and pupil behaviors were assessed by a multiple baseline design where, following baseline, two teachers of multi-handicapped deaf children were taught to set objectives and measure pupil performance (measurement training), Later, through a training manual, they learned a general problem-solving approach to writing behavior modification programs (programming training). After both training conditions, experimenter feedback was given for teachers' application of training to a target behavior for one pupil and generalization was measured across target behaviors for the same pupil and across pupils. It was found that measurement training had little general effect on either teacher behavior or pupil behavior. However, after programming training, teachers increased their program writing and correct use of behavior modification procedures and generalized this training across pupils and target behaviors. Along with these effects, there was improvement in pupil behaviors. Possible explanation for generalized effects of teacher training were considered.

  15. Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: the Trigger-Threshold-Target model.

    PubMed

    Mottron, Laurent; Belleville, Sylvie; Rouleau, Guy A; Collignon, Olivier

    2014-11-01

    The phenotype of autism involves heterogeneous adaptive traits (strengths vs. disabilities), different domains of alterations (social vs. non-social), and various associated genetic conditions (syndromic vs. nonsyndromic autism). Three observations suggest that alterations in experience-dependent plasticity are an etiological factor in autism: (1) the main cognitive domains enhanced in autism are controlled by the most plastic cortical brain regions, the multimodal association cortices; (2) autism and sensory deprivation share several features of cortical and functional reorganization; and (3) genetic mutations and/or environmental insults involved in autism all appear to affect developmental synaptic plasticity, and mostly lead to its upregulation. We present the Trigger-Threshold-Target (TTT) model of autism to organize these findings. In this model, genetic mutations trigger brain reorganization in individuals with a low plasticity threshold, mostly within regions sensitive to cortical reallocations. These changes account for the cognitive enhancements and reduced social expertise associated with autism. Enhanced but normal plasticity may underlie non-syndromic autism, whereas syndromic autism may occur when a triggering mutation or event produces an altered plastic reaction, also resulting in intellectual disability and dysmorphism in addition to autism. Differences in the target of brain reorganization (perceptual vs. language regions) account for the main autistic subgroups. In light of this model, future research should investigate how individual and sex-related differences in synaptic/regional brain plasticity influence the occurrence of autism. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants.

    PubMed

    Romeis, Jörg; Meissle, Michael; Alvarez-Alfageme, Fernando; Bigler, Franz; Bohan, David A; Devos, Yann; Malone, Louise A; Pons, Xavier; Rauschen, Stefan

    2014-12-01

    Worldwide, plants obtained through genetic modification are subject to a risk analysis and regulatory approval before they can enter the market. An area of concern addressed in environmental risk assessments is the potential of genetically modified (GM) plants to adversely affect non-target arthropods and the valued ecosystem services they provide. Environmental risk assessments are conducted case-by-case for each GM plant taking into account the plant species, its trait(s), the receiving environments into which the GM plant is to be released and its intended uses, and the combination of these characteristics. To facilitate the non-target risk assessment of GM plants, information on arthropods found in relevant agro-ecosystems in Europe has been compiled in a publicly available database of bio-ecological information during a project commissioned by the European Food Safety Authority (EFSA). Using different hypothetical GM maize case studies, we demonstrate how the information contained in the database can assist in identifying valued species that may be at risk and in selecting suitable species for laboratory testing, higher-tier studies, as well as post-market environmental monitoring.

  17. Current and Future Trials of Targeted Therapies in Cutaneous Melanoma

    PubMed Central

    Madhunapantula, SubbaRao V.; Robertson, Gavin P.; Drabick, Joseph J.

    2013-01-01

    In order to effectively treat melanoma, targeted inhibition of key mechanistic events regulating melanoma development such as cell proliferation, survival, angiogenesis and invasion or metastasis needs to be accomplished. The Mitogen Activated Protein Kinase (MAPK) pathway has been identified as a key player in melanoma development making this cascade an important therapeutic target. However, identification of the ideal pathway member to therapeutically target for maximal clinical benefit remains a challenge. In normal cells, the MAPK pathway relays extracellular signals from the cell membrane to the nucleus via a cascade of phosphorylation events, which promote cancer development. Dysregulation of the MAPK pathway occurs frequently in many human cancers including melanoma. Mutations in the B-RAF and RAS genes, genetic or epigenetic modifications are the key aberrations observed in this signaling cascade. Constitutive activation of this pathway causes oncogenic transformation of cells by promoting cell proliferation, invasion, metastasis, migration, survival and angiogenesis. This review provides an overview of (a) key members of MAPK signaling regulating melanoma development; (b) key proteins which can serve as biomarkers to assess disease progression; (c) the clinical efficacy of various pharmacological agents targeting MAPK pathway; (d) current clinical trials evaluating downstream targets of the MAPK pathway; (e) issues associated with pharmacological agents such as drug resistance, induction of cancers; and finally (e) various strategies overcoming drug resistance. PMID:23288642

  18. Quantitative synthesis of genetically encoded glycopeptide libraries displayed on M13 phage.

    PubMed

    Ng, Simon; Jafari, Mohammad R; Matochko, Wadim L; Derda, Ratmir

    2012-09-21

    Phage display is a powerful technology that enables the discovery of peptide ligands for many targets. Chemical modification of phage libraries have allowed the identification of ligands with properties not encountered in natural polypeptides. In this report, we demonstrated the synthesis of 2 × 10(8) genetically encoded glycopeptides from a commercially available phage-displayed peptide library (Ph.D.-7) in a two-step, one-pot reaction in <1.5 h. Unlike previous reports, we bypassed genetic engineering of phage. The glycan moiety was introduced via an oxime ligation following oxidation of an N-terminal Ser/Thr; these residues are present in the peptide libraries at 20-30% abundance. The construction of libraries was facilitated by simple characterization, which directly assessed the yield and regioselectivity of chemical reactions performed on phage. This quantification method also allowed facile yield determination of reactions in 10(9) distinct molecules. We envision that the methodology described herein will find broad application in the synthesis of custom chemically modified phage libraries.

  19. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    NASA Astrophysics Data System (ADS)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  20. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers

    PubMed Central

    Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena

    2015-01-01

    To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype “MS F” (in both markers) was highly diverse and genotypes “Q104 F” (SCoT) and “82–18 F” (CBDP) were least diverse among the female genotype populations. Among male genotypes, “32 M” (CBDP) and “MS M” (SCoT) revealed highest h and I values while “58-5 M” (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups

  1. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers.

    PubMed

    Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena

    2015-09-01

    To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype "MS F" (in both markers) was highly diverse and genotypes "Q104 F" (SCoT) and "82-18 F" (CBDP) were least diverse among the female genotype populations. Among male genotypes, "32 M" (CBDP) and "MS M" (SCoT) revealed highest h and I values while "58-5 M" (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups, one group consisting of

  2. Genetic and epigenetic variants influencing the development of nonalcoholic fatty liver disease.

    PubMed

    Li, Yu-Yuan

    2012-12-07

    Nonalcoholic fatty liver disease (NAFLD) is common worldwide. The importance of genetic and epigenetic changes in etiology and pathogenesis of NAFLD has been increasingly recognized. However, the exact mechanism is largely unknown. A large number of single nucleotide polymorphisms (SNPs) related to NAFLD has been documented by candidate gene studies (CGSs). Among these genes, peroxisome proliferatoractivated receptor-γ, adiponectin, leptin and tumor necrosis factor-α were frequently reported. Since the introduction of genome-wide association studies (GWASs), there have been significant advances in our understanding of genomic variations of NAFLD. Patatin-like phospholipase domain containing family member A3 (PNPLA3, SNP rs738409, encoding I148M), also termed adiponutrin, has caught most attention. The evidence that PNPLA3 is associated with increased hepatic fat levels and hepatic inflammation has been validated by a series of studies. Epigenetic modification refers to phenotypic changes caused by an adaptive mechanism unrelated to alteration of primary DNA sequences. Epigenetic regulation mainly includes microRNAs (miRs), DNA methylation, histone modifications and ubiquitination, among which miRs are studied most extensively. miRs are small natural single stranded RNA molecules regulating mRNA degradation or translation inhibition, subsequently altering protein expression of target genes. The miR-122, a highly abundant miR accounting for nearly 70% of all miRs in the liver, is significantly under-expressed in NAFLD subjects. Inhibition of miR-122 with an antisense oligonucleotide results in decreased mRNA expression of lipogenic genes and improvement of liver steatosis. The investigation into epigenetic involvement in NAFLD pathogenesis is just at the beginning and needs to be refined. This review summarizes the roles of genetics and epigenetics in the development of NAFLD. The progress made in this field may provide novel diagnostic biomarkers and therapeutic

  3. Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species.

    PubMed

    Bhattacharyya, Paromik; Kumaria, Suman; Kumar, Shrawan; Tandon, Pramod

    2013-10-15

    Genetic variability in the wild genotypes of Dendrobium nobile Lindl. collected from different parts of Northeast India, was analyzed using a Start Codon Targeted (SCoT) marker system. A total of sixty individuals comprising of six natural populations were investigated for the existing natural genetic diversity. One hundred and thirty two (132) amplicons were produced by SCoT marker generating 96.21% polymorphism. The PIC value of the SCoT marker system was 0.78 and the Rp values of the primers ranged between 4.43 and 7.50. The percentage of polymorphic loci (Pp) ranging from 25% to 56.82%, Nei's gene diversity (h) from 0.08 to 0.15 with mean Nei's gene diversity of 0.28, and Shannon's information index (I) values ranging from 0.13 to 0.24 with an average value of 0.43 were recorded. The gene flow value (0.37) and the diversity among populations (0.57) demonstrated higher genetic variation among the populations. Analysis of molecular variance (AMOVA) showed 43.37% of variation within the populations, whereas 56.63% variation was recorded among the populations. Cluster analysis also reveals high genetic variation among the genotypes. Present investigation suggests the effectiveness of SCoT marker system to estimate the genetic diversity of D. nobile and that it can be seen as a preliminary point for future research on the population and evolutionary genetics of this endangered orchid species of medicinal importance. © 2013.

  4. Genetic investigation of sudden unexpected death in epilepsy cohort by panel target resequencing.

    PubMed

    Coll, Monica; Allegue, Catarina; Partemi, Sara; Mates, Jesus; Del Olmo, Bernat; Campuzano, Oscar; Pascali, Vincenzo; Iglesias, Anna; Striano, Pasquale; Oliva, Antonio; Brugada, Ramon

    2016-03-01

    Sudden unexpected death in epilepsy (SUDEP) is defined as the abrupt, no traumatic, witnessed or unwitnessed death, occurring in benign circumstances, in an individual with epilepsy, with or without evidence for a seizure and excluding documented status epilepticus (seizure duration ≥ 30 min or seizures without recovery), and in which postmortem examination does not reveal a cause of death. Although the physiopathological mechanisms that underlie SUDEP remain to be clarified, the genetic background has been described to play a role in this disorder. Pathogenic variants in genes associated with epilepsy and encoding cardiac ion channels could explain the SUDEP phenotype. To test this we use the next-generation sequencing technology to sequence a cohort of SUDEP cases and its translation into clinical and forensic fields. A panel target resequencing was used to study 14 SUDEP cases from both postmortem (2 cases) and from living patients (12 cases). Genes already associated with SUDEP and also candidate genes had been investigated. Overall, 24 rare genetic variants were identified in 13 SUDEP cases. Four cases showed rare variants with complete segregation in the SCN1A, FBN1, HCN1, SCN4A, and EFHC1 genes, and one case with a rare variant in KCNQ1 gene showed incomplete pattern of inheritance. In four cases, rare variants were detected in CACNA1A, SCN11A and SCN10A, and KCNQ1 genes, but familial segregation was not possible due to lack of DNA from relatives. Finally, in the four remaining cases, the rare variants did not segregate in the family. This study confirms the link between epilepsy, sudden death, and cardiac disease. In addition, we identified new potential candidate genes for SUDEP: FBN1, HCN1, SCN4A, EFHC1, CACNA1A, SCN11A, and SCN10A. Further confirmation in larger cohorts will be necessary especially if genetic screening for SUDEP is applied to forensic and clinical medicine. Nevertheless, this study supports the emerging concept of a genetically

  5. On the Teaching of a Self-Modification Course

    ERIC Educational Resources Information Center

    Tasto, Donald L.

    1976-01-01

    Discusses teaching techniques, course content, strategies, and problems of teaching a behavior modification course to university students. Course target areas include subjects such as anxiety control, fear elimination, weight control, smoking reduction, interpersonal interaction, assertiveness, and exercise maintenance. (Author/DB)

  6. Expanding the scope of site-specific recombinases for genetic and metabolic engineering.

    PubMed

    Gaj, Thomas; Sirk, Shannon J; Barbas, Carlos F

    2014-01-01

    Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. © 2013 Wiley Periodicals, Inc.

  7. Expanding the Scope of Site-Specific Recombinases for Genetic and Metabolic Engineering

    PubMed Central

    Gaj, Thomas; Sirk, Shannon J.; Barbas, Carlos F.

    2014-01-01

    Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. PMID:23982993

  8. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.

    PubMed

    Ng, I-Son; Tan, Shih-I; Kao, Pei-Hsun; Chang, Yu-Kaung; Chang, Jo-Shu

    2017-10-01

    Microalgae serve as a promising source for the production of biofuels and bio-based chemicals. They are superior to terrestrial plants as feedstock in many aspects and their biomass is naturally rich in lipids, carbohydrates, proteins, pigments, and other valuable compounds. Due to the relatively slow growth rate and high cultivation cost of microalgae, to screen efficient and robust microalgal strains as well as genetic modifications of the available strains for further improvement are of urgent demand in the development of microalgae-based biorefinery. In genetic engineering of microalgae, transformation and selection methods are the key steps to accomplish the target gene modification. However, determination of the preferable type and dosage of antibiotics used for transformant selection is usually time-consuming and microalgal-strain-dependent. Therefore, more powerful and efficient techniques should be developed to meet this need. In this review, the conventional and emerging genome-editing tools (e.g., CRISPR-Cas9, TALEN, and ZFN) used in editing the genomes of nuclear, mitochondria, and chloroplast of microalgae are thoroughly surveyed. Although all the techniques mentioned above demonstrate their abilities to perform gene editing and desired phenotype screening, there still need to overcome higher production cost and lower biomass productivity, to achieve efficient production of the desired products in microalgal biorefineries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Targeted thermal therapy with genetically engineered magnetite magnetosomes@RGD: Photothermia is far more efficient than magnetic hyperthermia.

    PubMed

    Plan Sangnier, Anouchka; Preveral, Sandra; Curcio, Alberto; K A Silva, Amanda; Lefèvre, Chistopher T; Pignol, David; Lalatonne, Yoann; Wilhelm, Claire

    2018-06-10

    Providing appropriate means for heat generation by low intratumoral nanoparticle concentrations is a major challenge for cancer nanotherapy. Here we propose RGD-tagged magnetosomes (magnetosomes@RGD) as a biogenic, genetically engineered, inorganic platform for multivalent thermal cancer treatment. Magnetosomes@RGD are biomagnetite nanoparticles synthesized by genetically modified magnetotactic bacteria thanks to a translational fusion of the RGD peptide with the magnetosomal protein MamC. Magnetosomes@RGD thus combine the high crystallinity of their magnetite core with efficient surface functionalization. The specific affinity of RGD was first quantified by single-cell magnetophoresis with a variety of cell types, including immune, muscle, endothelial, stem and cancer cells. The highest affinity and cellular uptake was observed with PC3 prostatic and HeLa uterine cancer cells. The efficiency of photothermia and magnetic hyperthermia was then compared on PC3 cells. Unexpectedly, photothermia was far more efficient than magnetic hyperthermia, which was almost totally inhibited by the cellular environment. RGD targeting was then assessed in vivo at tumor site, in mice bearing PC3 tumors. As a result, we demonstrate that targeted magnetic nanoparticles could generate heat on a therapeutic level after systemic administration, but only under laser excitation, and successfully inhibit tumor progression. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs.

    PubMed

    Ryan, Daniel E; Taussig, David; Steinfeld, Israel; Phadnis, Smruti M; Lunstad, Benjamin D; Singh, Madhurima; Vuong, Xuan; Okochi, Kenji D; McCaffrey, Ryan; Olesiak, Magdalena; Roy, Subhadeep; Yung, Chong Wing; Curry, Bo; Sampson, Jeffrey R; Bruhn, Laurakay; Dellinger, Douglas J

    2018-01-25

    CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence ('guide sequence') and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2'-O-methyl-3'-phosphonoacetate, or 'MP') incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Targeting Protein O-GlcNAc Modifications In Breast Cancer

    DTIC Science & Technology

    2010-09-30

    O-GlcNAcation and elevated expression of O-GlcNAc transferase (OGT), the enzyme catalyzing addition of O-GlcNAc to proteins. Reduction of O...regulatory switch mechanism analogous to phosphorylation (28). Cytosolic and nuclear enzymes dynamically catalyze addition (O-GlcNAc transferase or OGT) and...levels, through pharmacological inhibition or genetic knock-down of enzymes that add or remove O-GlcNAc, can inhibit ErbB2-mediated oncogenic

  12. Mycobacterium tuberculosis Maltosyltransferase GlgE, a Genetically Validated Antituberculosis Target, Is Negatively Regulated by Ser/Thr Phosphorylation*

    PubMed Central

    Leiba, Jade; Syson, Karl; Baronian, Grégory; Zanella-Cléon, Isabelle; Kalscheuer, Rainer; Kremer, Laurent; Bornemann, Stephen; Molle, Virginie

    2013-01-01

    GlgE is a maltosyltransferase involved in the biosynthesis of α-glucans that has been genetically validated as a potential therapeutic target against Mycobacterium tuberculosis. Despite also making α-glucan, the GlgC/GlgA glycogen pathway is distinct and allosterically regulated. We have used a combination of genetics and biochemistry to establish how the GlgE pathway is regulated. M. tuberculosis GlgE was phosphorylated specifically by the Ser/Thr protein kinase PknB in vitro on one serine and six threonine residues. Furthermore, GlgE was phosphorylated in vivo when expressed in Mycobacterium bovis bacillus Calmette–Guérin (BCG) but not when all seven phosphorylation sites were replaced by Ala residues. The GlgE orthologues from Mycobacterium smegmatis and Streptomyces coelicolor were phosphorylated by the corresponding PknB orthologues in vitro, implying that the phosphorylation of GlgE is widespread among actinomycetes. PknB-dependent phosphorylation of GlgE led to a 2 orders of magnitude reduction in catalytic efficiency in vitro. The activities of phosphoablative and phosphomimetic GlgE derivatives, where each phosphorylation site was substituted with either Ala or Asp residues, respectively, correlated with negative phosphoregulation. Complementation studies of a M. smegmatis glgE mutant strain with these GlgE derivatives, together with both classical and chemical forward genetics, were consistent with flux through the GlgE pathway being correlated with GlgE activity. We conclude that the GlgE pathway appears to be negatively regulated in actinomycetes through the phosphorylation of GlgE by PknB, a mechanism distinct from that known in the classical glycogen pathway. Thus, these findings open new opportunities to target the GlgE pathway therapeutically. PMID:23609448

  13. Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation.

    PubMed

    Leiba, Jade; Syson, Karl; Baronian, Grégory; Zanella-Cléon, Isabelle; Kalscheuer, Rainer; Kremer, Laurent; Bornemann, Stephen; Molle, Virginie

    2013-06-07

    GlgE is a maltosyltransferase involved in the biosynthesis of α-glucans that has been genetically validated as a potential therapeutic target against Mycobacterium tuberculosis. Despite also making α-glucan, the GlgC/GlgA glycogen pathway is distinct and allosterically regulated. We have used a combination of genetics and biochemistry to establish how the GlgE pathway is regulated. M. tuberculosis GlgE was phosphorylated specifically by the Ser/Thr protein kinase PknB in vitro on one serine and six threonine residues. Furthermore, GlgE was phosphorylated in vivo when expressed in Mycobacterium bovis bacillus Calmette-Guérin (BCG) but not when all seven phosphorylation sites were replaced by Ala residues. The GlgE orthologues from Mycobacterium smegmatis and Streptomyces coelicolor were phosphorylated by the corresponding PknB orthologues in vitro, implying that the phosphorylation of GlgE is widespread among actinomycetes. PknB-dependent phosphorylation of GlgE led to a 2 orders of magnitude reduction in catalytic efficiency in vitro. The activities of phosphoablative and phosphomimetic GlgE derivatives, where each phosphorylation site was substituted with either Ala or Asp residues, respectively, correlated with negative phosphoregulation. Complementation studies of a M. smegmatis glgE mutant strain with these GlgE derivatives, together with both classical and chemical forward genetics, were consistent with flux through the GlgE pathway being correlated with GlgE activity. We conclude that the GlgE pathway appears to be negatively regulated in actinomycetes through the phosphorylation of GlgE by PknB, a mechanism distinct from that known in the classical glycogen pathway. Thus, these findings open new opportunities to target the GlgE pathway therapeutically.

  14. Commodifying animals: ethical issues in genetic engineering of animals.

    PubMed

    Almond, B

    2000-03-01

    The genetic modification of living beings raises special ethical concerns which go beyond general discussion of animal rights or welfare. Although the goals may be similar, biotechnology has accelerated the process of modification of types traditionally carried out by cross-breeding. These changes are discussed in relation to two areas: biomedicine, and animal husbandry. Alternative ethical approaches are reviewed, and it is argued that the teleological thesis underlying virtue ethics has special relevance here. The case for and the case against genetic engineering and patenting of life-forms are examined, and conclusions are drawn which favour regulation, caution and respect for animals and animal species.

  15. Targeted next generation sequencing of parotid gland cancer uncovers genetic heterogeneity.

    PubMed

    Grünewald, Inga; Vollbrecht, Claudia; Meinrath, Jeannine; Meyer, Moritz F; Heukamp, Lukas C; Drebber, Uta; Quaas, Alexander; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Hartmann, Wolfgang; Büttner, Reinhard; Odenthal, Margarete; Stenner, Markus

    2015-07-20

    Salivary gland cancer represents a heterogeneous group of malignant tumors. Due to their low incidence and the existence of multiple morphologically defined subtypes, these tumors are still poorly understood with regard to their molecular pathogenesis and therapeutically relevant genetic alterations.Performing a systematic and comprehensive study covering 13 subtypes of salivary gland cancer, next generation sequencing was done on 84 tissue samples of parotid gland cancer using multiplex PCR for enrichment of cancer related gene loci covering hotspots of 46 cancer genes.Mutations were identified in 22 different genes. The most frequent alterations affected TP53, followed by RAS genes, PIK3CA, SMAD4 and members of the ERB family. HRAS mutations accounted for more than 90% of RAS mutations, occurring especially in epithelial-myoepithelial carcinomas and salivary duct carcinomas. Additional mutations in PIK3CA also affected particularly epithelial-myoepithelial carcinomas and salivary duct carcinomas, occurring simultaneously with HRAS mutations in almost all cases, pointing to an unknown and therapeutically relevant molecular constellation. Interestingly, 14% of tumors revealed mutations in surface growth factor receptor genes including ALK, HER2, ERBB4, FGFR, cMET and RET, which might prove to be targetable by new therapeutic agents. 6% of tumors revealed mutations in SMAD4.In summary, our data provide novel insight into the fundamental molecular heterogeneity of salivary gland cancer, relevant in terms of tumor classification and the establishment of targeted therapeutic concepts.

  16. Post-Translational Modification of Bionanoparticles as a Modular Platform for Biosensor Assembly.

    PubMed

    Sun, Qing; Chen, Qi; Blackstock, Daniel; Chen, Wilfred

    2015-08-25

    Context driven biosensor assembly with modular targeting and detection moieties is gaining significant attentions. Although protein-based nanoparticles have emerged as an excellent platform for biosensor assembly, current strategies of decorating bionanoparticles with targeting and detection moieties often suffer from unfavorable spacing and orientation as well as bionanoparticle aggregation. Herein, we report a highly modular post-translational modification approach for biosensor assembly based on sortase A-mediated ligation. This approach enables the simultaneous modifications of the Bacillus stearothermophilus E2 nanoparticles with different functional moieties for antibody, enzyme, DNA aptamer, and dye decoration. The resulting easy-purification platform offers a high degree of targeting and detection modularity with signal amplification. This flexibility is demonstrated for the detection of both immobilized antigens and cancer cells.

  17. Targeted gene knockin in porcine somatic cells using CRISPR/Cas ribonucleoproteins

    USDA-ARS?s Scientific Manuscript database

    The domestic pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiolo...

  18. Development of Genetic Markers in Eucalyptus Species by Target Enrichment and Exome Sequencing

    PubMed Central

    Dasgupta, Modhumita Ghosh; Dharanishanthi, Veeramuthu; Agarwal, Ishangi; Krutovsky, Konstantin V.

    2015-01-01

    The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus. PMID:25602379

  19. Possible modification of Alzheimer's disease by statins in midlife: interactions with genetic and non-genetic risk factors.

    PubMed

    Shinohara, Mitsuru; Sato, Naoyuki; Shimamura, Munehisa; Kurinami, Hitomi; Hamasaki, Toshimitsu; Chatterjee, Amarnath; Rakugi, Hiromi; Morishita, Ryuichi

    2014-01-01

    The benefits of statins, commonly prescribed for hypercholesterolemia, in treating Alzheimer's disease (AD) have not yet been fully established. A recent randomized clinical trial did not show any therapeutic effects of two statins on cognitive function in AD. Interestingly, however, the results of the Rotterdam study, one of the largest prospective cohort studies, showed reduced risk of AD in statin users. Based on the current understanding of statin actions and AD pathogenesis, it is still worth exploring whether statins can prevent AD when administered decades before the onset of AD or from midlife. This review discusses the possible beneficial effects of statins, drawn from previous clinical observations, pathogenic mechanisms, which include β-amyloid (Aβ) and tau metabolism, genetic and non-genetic risk factors (apolipoprotein E, cholesterol, sex, hypertension, and diabetes), and other clinical features (vascular dysfunction and oxidative and inflammatory stress) of AD. These findings suggest that administration of statins in midlife might prevent AD in late life by modifying genetic and non-genetic risk factors for AD. It should be clarified whether statins inhibit Aβ accumulation, tau pathological features, and brain atrophy in humans. To answer this question, a randomized controlled study using amyloid positron emission tomography (PET), tau-PET, and magnetic resonance imaging would be useful. This clinical evaluation could help us to overcome this devastating disease.

  20. [The genetic control of mouse coat color and its applications in genetics teaching].

    PubMed

    Xing, Wanjin; Morigen, Morigen

    2014-10-01

    Mice are the most commonly used mammalian model. The coat colors of mice are typical Mendelian traits, which have various colors such as white, black, yellow and agouti. The inheritance of mouse coat color is usually stated as an example only in teaching the knowledge of recessive lethal alleles. After searched the related literatures and summarized the molecular mechanisms of mouse coat color inheritance, we further expanded the application of this example into the introduction of the basic concepts of alleles and Mendelian laws, demonstration of the gene structure and function, regulation of gene expression, gene interaction, epigenetic modification, quantitative genetics, as well as evolutionary genetics. By running this example through the whole genetics-teaching lectures, we help the student to form a systemic and developmental view of genetic analysis. At the same time, this teaching approach not only highlights the advancement and integrity of genetics, but also results in a good teaching effect on inspiring the students' interest and attracting students' attention.

  1. Genetic modification of hematopoietic stem cells: recent advances in the gene therapy of inherited diseases.

    PubMed

    Bueren, Juan A; Guenechea, Guillermo; Casado, José A; Lamana, María Luisa; Segovia, José C

    2003-01-01

    Hematopoietic stem cells constitute a rare population of precursor cells with remarkable properties for being used as targets in gene therapy protocols. The last years have been particularly productive both in the fields of gene therapy and stem cell biology. Results from ongoing clinical trials have shown the first unquestionable clinical benefits of immunodeficient patients transplanted with genetically modified autologous stem cells. On the other hand, severe side effects in a few patients treated with gene therapy have also been reported, indicating the usefulness of further improving the vectors currently used in gene therapy clinical trials. In the field of stem cell biology, evidence showing the plastic potential of adult hematopoietic stem cells and data indicating the multipotency of adult mesenchymal precursor cells have been presented. Also, the generation of embryonic stem cells by means of nuclear transfer techniques has appeared as a new methodology with direct implications in gene therapy.

  2. Genetic barcodes

    DOEpatents

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  3. Infectious diseases: Surveillance, genetic modification and simulation

    USGS Publications Warehouse

    Koh, H. L.; Teh, S.Y.; De Angelis, D. L.; Jiang, J.

    2011-01-01

    Infectious diseases such as influenza and dengue have the potential of becoming a worldwide pandemic that may exert immense pressures on existing medical infrastructures. Careful surveillance of these diseases, supported by consistent model simulations, provides a means for tracking the disease evolution. The integrated surveillance and simulation program is essential in devising effective early warning systems and in implementing efficient emergency preparedness and control measures. This paper presents a summary of simulation analysis on influenza A (H1N1) 2009 in Malaysia. This simulation analysis provides insightful lessons regarding how disease surveillance and simulation should be performed in the future. This paper briefly discusses the controversy over the experimental field release of genetically modified (GM) Aedes aegypti mosquito in Malaysia. Model simulations indicate that the proposed release of GM mosquitoes is neither a viable nor a sustainable control strategy. ?? 2011 WIT Press.

  4. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines

    PubMed Central

    Cotesta, Simona; Perruccio, Francesca; Knapp, Britta; Fu, Yue; Studer, Christian; Pries, Verena; Riedl, Ralph; Helliwell, Stephen B.; Petrovic, Katarina T.; Movva, N. Rao; Sanglard, Dominique; Tao, Jianshi; Hoepfner, Dominic

    2016-01-01

    Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point. PMID:27855158

  5. Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides.

    PubMed

    Mishima, Eikan; Jinno, Daisuke; Akiyama, Yasutoshi; Itoh, Kunihiko; Nankumo, Shinnosuke; Shima, Hisato; Kikuchi, Koichi; Takeuchi, Yoichi; Elkordy, Alaa; Suzuki, Takehiro; Niizuma, Kuniyasu; Ito, Sadayoshi; Tomioka, Yoshihisa; Abe, Takaaki

    2015-01-01

    The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB) analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A), N6-methyladenosine (m6A), pseudouridine, and 5-methylcytidine (m5C) showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO) and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism.

  6. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals.

    PubMed

    Ehret, Georg B; Ferreira, Teresa; Chasman, Daniel I; Jackson, Anne U; Schmidt, Ellen M; Johnson, Toby; Thorleifsson, Gudmar; Luan, Jian'an; Donnelly, Lousie A; Kanoni, Stavroula; Petersen, Ann-Kristin; Pihur, Vasyl; Strawbridge, Rona J; Shungin, Dmitry; Hughes, Maria F; Meirelles, Osorio; Kaakinen, Marika; Bouatia-Naji, Nabila; Kristiansson, Kati; Shah, Sonia; Kleber, Marcus E; Guo, Xiuqing; Lyytikäinen, Leo-Pekka; Fava, Cristiano; Eriksson, Niclas; Nolte, Ilja M; Magnusson, Patrik K; Salfati, Elias L; Rallidis, Loukianos S; Theusch, Elizabeth; Smith, Andrew J P; Folkersen, Lasse; Witkowska, Kate; Pers, Tune H; Joehanes, Roby; Kim, Stuart K; Lataniotis, Lazaros; Jansen, Rick; Johnson, Andrew D; Warren, Helen; Kim, Young Jin; Zhao, Wei; Wu, Ying; Tayo, Bamidele O; Bochud, Murielle; Absher, Devin; Adair, Linda S; Amin, Najaf; Arking, Dan E; Axelsson, Tomas; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Barnes, Michael R; Barroso, Inês; Bevan, Stephen; Bis, Joshua C; Bjornsdottir, Gyda; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Bornstein, Stefan R; Brown, Morris J; Burnier, Michel; Cabrera, Claudia P; Chambers, John C; Chang, I-Shou; Cheng, Ching-Yu; Chines, Peter S; Chung, Ren-Hua; Collins, Francis S; Connell, John M; Döring, Angela; Dallongeville, Jean; Danesh, John; de Faire, Ulf; Delgado, Graciela; Dominiczak, Anna F; Doney, Alex S F; Drenos, Fotios; Edkins, Sarah; Eicher, John D; Elosua, Roberto; Enroth, Stefan; Erdmann, Jeanette; Eriksson, Per; Esko, Tonu; Evangelou, Evangelos; Evans, Alun; Fall, Tove; Farrall, Martin; Felix, Janine F; Ferrières, Jean; Ferrucci, Luigi; Fornage, Myriam; Forrester, Terrence; Franceschini, Nora; Duran, Oscar H Franco; Franco-Cereceda, Anders; Fraser, Ross M; Ganesh, Santhi K; Gao, He; Gertow, Karl; Gianfagna, Francesco; Gigante, Bruna; Giulianini, Franco; Goel, Anuj; Goodall, Alison H; Goodarzi, Mark O; Gorski, Mathias; Gräßler, Jürgen; Groves, Christopher; Gudnason, Vilmundur; Gyllensten, Ulf; Hallmans, Göran; Hartikainen, Anna-Liisa; Hassinen, Maija; Havulinna, Aki S; Hayward, Caroline; Hercberg, Serge; Herzig, Karl-Heinz; Hicks, Andrew A; Hingorani, Aroon D; Hirschhorn, Joel N; Hofman, Albert; Holmen, Jostein; Holmen, Oddgeir Lingaas; Hottenga, Jouke-Jan; Howard, Phil; Hsiung, Chao A; Hunt, Steven C; Ikram, M Arfan; Illig, Thomas; Iribarren, Carlos; Jensen, Richard A; Kähönen, Mika; Kang, Hyun; Kathiresan, Sekar; Keating, Brendan J; Khaw, Kay-Tee; Kim, Yun Kyoung; Kim, Eric; Kivimaki, Mika; Klopp, Norman; Kolovou, Genovefa; Komulainen, Pirjo; Kooner, Jaspal S; Kosova, Gulum; Krauss, Ronald M; Kuh, Diana; Kutalik, Zoltan; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Lee, Nanette R; Lee, I-Te; Lee, Wen-Jane; Levy, Daniel; Li, Xiaohui; Liang, Kae-Woei; Lin, Honghuang; Lin, Li; Lindström, Jaana; Lobbens, Stéphane; Männistö, Satu; Müller, Gabriele; Müller-Nurasyid, Martina; Mach, François; Markus, Hugh S; Marouli, Eirini; McCarthy, Mark I; McKenzie, Colin A; Meneton, Pierre; Menni, Cristina; Metspalu, Andres; Mijatovic, Vladan; Moilanen, Leena; Montasser, May E; Morris, Andrew D; Morrison, Alanna C; Mulas, Antonella; Nagaraja, Ramaiah; Narisu, Narisu; Nikus, Kjell; O'Donnell, Christopher J; O'Reilly, Paul F; Ong, Ken K; Paccaud, Fred; Palmer, Cameron D; Parsa, Afshin; Pedersen, Nancy L; Penninx, Brenda W; Perola, Markus; Peters, Annette; Poulter, Neil; Pramstaller, Peter P; Psaty, Bruce M; Quertermous, Thomas; Rao, Dabeeru C; Rasheed, Asif; Rayner, N William N W R; Renström, Frida; Rettig, Rainer; Rice, Kenneth M; Roberts, Robert; Rose, Lynda M; Rossouw, Jacques; Samani, Nilesh J; Sanna, Serena; Saramies, Jouko; Schunkert, Heribert; Sebert, Sylvain; Sheu, Wayne H-H; Shin, Young-Ah; Sim, Xueling; Smit, Johannes H; Smith, Albert V; Sosa, Maria X; Spector, Tim D; Stančáková, Alena; Stanton, Alice; Stirrups, Kathleen E; Stringham, Heather M; Sundstrom, Johan; Swift, Amy J; Syvänen, Ann-Christine; Tai, E-Shyong; Tanaka, Toshiko; Tarasov, Kirill V; Teumer, Alexander; Thorsteinsdottir, Unnur; Tobin, Martin D; Tremoli, Elena; Uitterlinden, Andre G; Uusitupa, Matti; Vaez, Ahmad; Vaidya, Dhananjay; van Duijn, Cornelia M; van Iperen, Erik P A; Vasan, Ramachandran S; Verwoert, Germaine C; Virtamo, Jarmo; Vitart, Veronique; Voight, Benjamin F; Vollenweider, Peter; Wagner, Aline; Wain, Louise V; Wareham, Nicholas J; Watkins, Hugh; Weder, Alan B; Westra, Harm-Jan; Wilks, Rainford; Wilsgaard, Tom; Wilson, James F; Wong, Tien Y; Yang, Tsun-Po; Yao, Jie; Yengo, Loic; Zhang, Weihua; Zhao, Jing Hua; Zhu, Xiaofeng; Bovet, Pascal; Cooper, Richard S; Mohlke, Karen L; Saleheen, Danish; Lee, Jong-Young; Elliott, Paul; Gierman, Hinco J; Willer, Cristen J; Franke, Lude; Hovingh, G Kees; Taylor, Kent D; Dedoussis, George; Sever, Peter; Wong, Andrew; Lind, Lars; Assimes, Themistocles L; Njølstad, Inger; Schwarz, Peter Eh; Langenberg, Claudia; Snieder, Harold; Caulfield, Mark J; Melander, Olle; Laakso, Markku; Saltevo, Juha; Rauramaa, Rainer; Tuomilehto, Jaakko; Ingelsson, Erik; Lehtimäki, Terho; Hveem, Kristian; Palmas, Walter; März, Winfried; Kumari, Meena; Salomaa, Veikko; Chen, Yii-Der I; Rotter, Jerome I; Froguel, Philippe; Jarvelin, Marjo-Riitta; Lakatta, Edward G; Kuulasmaa, Kari; Franks, Paul W; Hamsten, Anders; Wichmann, H-Erich; Palmer, Colin N A; Stefansson, Kari; Ridker, Paul M; Loos, Ruth J F; Chakravarti, Aravinda; Deloukas, Panos; Morris, Andrew P; Newton-Cheh, Christopher; Munroe, Patricia B

    2016-10-01

    To dissect the genetic architecture of blood pressure and assess effects on target organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry, and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure-associated loci, of which 17 were new; 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target organ damage in multiple tissues but with minor effects in the kidney. Our findings expand current knowledge of blood pressure-related pathways and highlight tissues beyond the classical renal system in blood pressure regulation.

  7. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals

    PubMed Central

    Chasman, Daniel I.; Jackson, Anne U.; Schmidt, Ellen M.; Johnson, Toby; Thorleifsson, Gudmar; Luan, Jian'an; Donnelly, Lousie A.; Kanoni, Stavroula; Petersen, Ann-Kristin; Pihur, Vasyl; Strawbridge, Rona J.; Shungin, Dmitry; Hughes, Maria F.; Meirelles, Osorio; Kaakinen, Marika; Bouatia-Naji, Nabila; Kristiansson, Kati; Shah, Sonia; Kleber, Marcus E.; Guo, Xiuqing; Lyytikäinen, Leo-Pekka; Fava, Cristiano; Eriksson, Niclas; Nolte, Ilja M.; Magnusson, Patrik K.; Salfati, Elias L.; Rallidis, Loukianos S.; Theusch, Elizabeth; Smith, Andrew J.P.; Folkersen, Lasse; Witkowska, Kate; Pers, Tune H.; Joehanes, Roby; Kim, Stuart K.; Lataniotis, Lazaros; Jansen, Rick; Johnson, Andrew D.; Warren, Helen; Kim, Young Jin; Zhao, Wei; Wu, Ying; Tayo, Bamidele O.; Bochud, Murielle; Absher, Devin; Adair, Linda S.; Amin, Najaf; Arking, Dan E.; Axelsson, Tomas; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Barnes, Michael R.; Barroso, Inês; Bevan, Stephen; Bis, Joshua C.; Bjornsdottir, Gyda; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Bornstein, Stefan R.; Brown, Morris J.; Burnier, Michel; Cabrera, Claudia P.; Chambers, John C.; Chang, I-Shou; Cheng, Ching-Yu; Chines, Peter S.; Chung, Ren-Hua; Collins, Francis S.; Connell, John M.; Döring, Angela; Dallongeville, Jean; Danesh, John; de Faire, Ulf; Delgado, Graciela; Dominiczak, Anna F.; Doney, Alex S.F.; Drenos, Fotios; Edkins, Sarah; Eicher, John D.; Elosua, Roberto; Enroth, Stefan; Erdmann, Jeanette; Eriksson, Per; Esko, Tonu; Evangelou, Evangelos; Evans, Alun; Fall, Tove; Farrall, Martin; Felix, Janine F.; Ferrières, Jean; Ferrucci, Luigi; Fornage, Myriam; Forrester, Terrence; Franceschini, Nora; Duran, Oscar H. Franco; Franco-Cereceda, Anders; Fraser, Ross M.; Ganesh, Santhi K.; Gao, He; Gertow, Karl; Gianfagna, Francesco; Gigante, Bruna; Giulianini, Franco; Goel, Anuj; Goodall, Alison H.; Goodarzi, Mark O.; Gorski, Mathias; Gräßler, Jürgen; Groves, Christopher; Gudnason, Vilmundur; Gyllensten, Ulf; Hallmans, Göran; Hartikainen, Anna-Liisa; Hassinen, Maija; Havulinna, Aki S.; Hayward, Caroline; Hercberg, Serge; Herzig, Karl-Heinz; Hicks, Andrew A.; Hingorani, Aroon D.; Hirschhorn, Joel N.; Hofman, Albert; Holmen, Jostein; Holmen, Oddgeir Lingaas; Hottenga, Jouke-Jan; Howard, Phil; Hsiung, Chao A.; Hunt, Steven C.; Ikram, M. Arfan; Illig, Thomas; Iribarren, Carlos; Jensen, Richard A.; Kähönen, Mika; Kang, Hyun; Kathiresan, Sekar; Keating, Brendan J.; Khaw, Kay-Tee; Kim, Yun Kyoung; Kim, Eric; Kivimaki, Mika; Klopp, Norman; Kolovou, Genovefa; Komulainen, Pirjo; Kooner, Jaspal S.; Kosova, Gulum; Krauss, Ronald M.; Kuh, Diana; Kutalik, Zoltan; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Lee, Nanette R.; Lee, I-Te; Lee, Wen-Jane; Levy, Daniel; Li, Xiaohui; Liang, Kae-Woei; Lin, Honghuang; Lin, Li; Lindström, Jaana; Lobbens, Stéphane; Männistö, Satu; Müller, Gabriele; Müller-Nurasyid, Martina; Mach, François; Markus, Hugh S.; Marouli, Eirini; McCarthy, Mark I.; McKenzie, Colin A.; Meneton, Pierre; Menni, Cristina; Metspalu, Andres; Mijatovic, Vladan; Moilanen, Leena; Montasser, May E.; Morris, Andrew D.; Morrison, Alanna C.; Mulas, Antonella; Nagaraja, Ramaiah; Narisu, Narisu; Nikus, Kjell; O'Donnell, Christopher J.; O'Reilly, Paul F.; Ong, Ken K.; Paccaud, Fred; Palmer, Cameron D.; Parsa, Afshin; Pedersen, Nancy L.; Penninx, Brenda W.; Perola, Markus; Peters, Annette; Poulter, Neil; Pramstaller, Peter P.; Psaty, Bruce M.; Quertermous, Thomas; Rao, Dabeeru C.; Rasheed, Asif; Rayner, N William N.W.R.; Renström, Frida; Rettig, Rainer; Rice, Kenneth M.; Roberts, Robert; Rose, Lynda M.; Rossouw, Jacques; Samani, Nilesh J.; Sanna, Serena; Saramies, Jouko; Schunkert, Heribert; Sebert, Sylvain; Sheu, Wayne H.-H.; Shin, Young-Ah; Sim, Xueling; Smit, Johannes H.; Smith, Albert V.; Sosa, Maria X.; Spector, Tim D.; Stančáková, Alena; Stanton, Alice; Stirrups, Kathleen E.; Stringham, Heather M.; Sundstrom, Johan; Swift, Amy J.; Syvänen, Ann-Christine; Tai, E-Shyong; Tanaka, Toshiko; Tarasov, Kirill V.; Teumer, Alexander; Thorsteinsdottir, Unnur; Tobin, Martin D.; Tremoli, Elena; Uitterlinden, Andre G.; Uusitupa, Matti; Vaez, Ahmad; Vaidya, Dhananjay; van Duijn, Cornelia M.; van Iperen, Erik P.A.; Vasan, Ramachandran S.; Verwoert, Germaine C.; Virtamo, Jarmo; Vitart, Veronique; Voight, Benjamin F.; Vollenweider, Peter; Wagner, Aline; Wain, Louise V.; Wareham, Nicholas J.; Watkins, Hugh; Weder, Alan B.; Westra, Harm-Jan; Wilks, Rainford; Wilsgaard, Tom; Wilson, James F.; Wong, Tien Y.; Yang, Tsun-Po; Yao, Jie; Yengo, Loic; Zhang, Weihua; Zhao, Jing Hua; Zhu, Xiaofeng; Bovet, Pascal; Cooper, Richard S.; Mohlke, Karen L.; Saleheen, Danish; Lee, Jong-Young; Elliott, Paul; Gierman, Hinco J.; Willer, Cristen J.; Franke, Lude; Hovingh, G Kees; Taylor, Kent D.; Dedoussis, George; Sever, Peter; Wong, Andrew; Lind, Lars; Assimes, Themistocles L.; Njølstad, Inger; Schwarz, Peter EH.; Langenberg, Claudia; Snieder, Harold; Caulfield, Mark J.; Melander, Olle; Laakso, Markku; Saltevo, Juha; Rauramaa, Rainer; Tuomilehto, Jaakko; Ingelsson, Erik; Lehtimäki, Terho; Hveem, Kristian; Palmas, Walter; März, Winfried; Kumari, Meena; Salomaa, Veikko; Chen, Yii-Der I.; Rotter, Jerome I.; Froguel, Philippe; Jarvelin, Marjo-Riitta; Lakatta, Edward G.; Kuulasmaa, Kari; Franks, Paul W.; Hamsten, Anders; Wichmann, H.-Erich; Palmer, Colin N.A.; Stefansson, Kari; Ridker, Paul M; Loos, Ruth J.F.; Chakravarti, Aravinda; Deloukas, Panos; Morris, Andrew P.; Newton-Cheh, Christopher; Munroe, Patricia B.

    2016-01-01

    To dissect the genetic architecture of blood pressure and assess effects on target-organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure loci, of which 17 were novel and 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target-organ damage in multiple tissues, with minor effects in the kidney. Our findings expand current knowledge of blood pressure pathways and highlight tissues beyond the classic renal system in blood pressure regulation. PMID:27618452

  8. WONOEP appraisal: new genetic approaches to study epilepsy

    PubMed Central

    Rossignol, Elsa; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A.; Grisar, Thierry; Gilby, Krista L.; Vinet, Jonathan; Kadam, Shilpa D.; Becker, Albert J.

    2014-01-01

    Objective New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming and optogenetic manipulations within epileptic networks are progressively unravelling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiological impacts of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. Methods This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy in Quebec, Canada. Results Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and have revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell-types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knockdown approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. Genetically-encoded cell-type labeling is also providing new means to assess the role of the non-neuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and non

  9. Genetic targeting of the active transcription factor XBP1s to dendritic cells potentiates vaccine-induced prophylactic and therapeutic antitumor immunity.

    PubMed

    Tian, Shenghe; Liu, Zuqiang; Donahue, Cara; Falo, Louis D; You, Zhaoyang

    2012-02-01

    In vivo dendritic cells (DC) targeting is an attractive approach with potential advantages in vaccine efficacy, cost, and availability. Identification of molecular adjuvants to in vivo "modulate " DC to coordinately render improved Th1 and CD8 T cell immunity, and attenuated deleterious Treg effects, is a critical challenge. Here, we report that in vivo genetic targeting of the active transcription factor XBP1s to DC (XBP1s/DC) potentiated vaccine-induced prophylactic and therapeutic antitumor immunity in multiple tumor models. This immunization strategy is based on a genetic vaccine encoding both cytomegalovirus (CMV)-driven vaccine Aghsp70 and DC-specific CD11c-driven XBP1s. The novel targeted vaccine induced durable Th1 and CD8 T cell responses to poorly immunogenic self/tumor antigen (Ag) and attenuated tumor-associated Treg suppressive function. Bone marrow (BM)-derived DC genetically modified to simultaneously overexpress XBP1s and express Aghsp70 upregulated CD40, CD70, CD86, interleukin (IL)-15, IL-15Rα, and CCR7 expression, and increased IL-6, IL-12, and tumor necrosis factor (TNF)-α production in vitro. XBP1s/DC elevated functional DEC205(+)CD8α(+)DC in the draining lymph nodes (DLN). The data suggest a novel role for XBP1s in modulating DC to potentiate tumor vaccine efficacy via overcoming two major obstacles to tumor vaccines (i.e., T cell hyporesponsiveness against poorly immunologic self/tumor Ag and tumor-associated Treg-mediated suppression) and improving DEC205(+)CD8α(+)DC.

  10. Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting

    PubMed Central

    Rattan, Rahul; Bhattacharjee, Somnath; Zong, Hong; Swain, Corban; Siddiqui, Muneeb A.; Visovatti, Scott H.; Kanthi, Yogendra; Desai, Sajani; Pinsky, David J.; Goonewardena, Sascha N.

    2017-01-01

    The surface properties of nanoparticles (NPs) are a major factor that influences how these nanomaterials interact with biological systems. Interactions between NPs and macrophages of the reticuloendothelial system (RES) can reduce the efficacy of NP diagnostics and therapeutics. Traditionally, to limit NP clearance by the RES system, the NP surface is neutralized with molecules like poly(ethylene glycol) (PEG) which are known to resist protein adsorption and RES clearance. Unfortunately, PEG modification is not without drawbacks including difficulties with the synthesis and associations with immune reactions. To overcome some of these obstacles, we neutralized the NP surface by acetylation and compared this modification to PEGylation for RES clearance and tumor-specific targeting. We found that acetylation was comparable to PEGylation in reducing RES clearance. Additionally, we found that dendrimer acetylation did not impact folic acid (FA)-mediated targeting of tumor cells whereas PEG surface modification reduced the targeting ability of the NP. These results clarify the impact of different NP surface modifications on RES clearance and cell-specific targeting and provide insights into the design of more effective NPs. PMID:28705434

  11. Impact of literacy and numeracy on motivation for behavior change after diabetes genetic risk testing.

    PubMed

    Vassy, Jason L; O'Brien, Kelsey E; Waxler, Jessica L; Park, Elyse R; Delahanty, Linda M; Florez, Jose C; Meigs, James B; Grant, Richard W

    2012-01-01

    Type 2 diabetes genetic risk testing might motivate at-risk patients to adopt diabetes prevention behaviors. However, the influence of literacy and numeracy on patient response to diabetes genetic risk is unknown. The authors investigated the association of health literacy, genetic literacy, and health numeracy with patient responses to diabetes genetic risk. and Measurements Overweight patients at high phenotypic risk for type 2 diabetes were recruited for a clinical trial of diabetes genetic risk testing. At baseline, participants predicted how their motivation for lifestyle modification to prevent diabetes might change in response to hypothetical scenarios of receiving "high" and "low" genetic risk results. Responses were analyzed according to participants' health literacy, genetic literacy, and health numeracy. Two-thirds (67%) of participants (n = 175) reported very high motivation to prevent diabetes. Despite high health literacy (92% at high school level), many participants had limited health numeracy (30%) and genetic literacy (38%). Almost all (98%) reported that high-risk genetic results would increase their motivation for lifestyle modification. In contrast, response to low-risk genetic results varied. Higher levels of health literacy (P = 0.04), genetic literacy (P = 0.02), and health numeracy (P = 0.02) were associated with an anticipated decrease in motivation for lifestyle modification in response to low-risk results. While patients reported that high-risk genetic results would motivate them to adopt healthy lifestyle changes, response to low-risk results varied by patient numeracy and literacy. However, anticipated responses may not correlate with true behavior change. If future research justifies the clinical use of genetic testing to motivate behavior change, it may be important to assess how patient characteristics modify that motivational effect.

  12. Microfluidic droplet enrichment for targeted sequencing

    PubMed Central

    Eastburn, Dennis J.; Huang, Yong; Pellegrino, Maurizio; Sciambi, Adam; Ptáček, Louis J.; Abate, Adam R.

    2015-01-01

    Targeted sequence enrichment enables better identification of genetic variation by providing increased sequencing coverage for genomic regions of interest. Here, we report the development of a new target enrichment technology that is highly differentiated from other approaches currently in use. Our method, MESA (Microfluidic droplet Enrichment for Sequence Analysis), isolates genomic DNA fragments in microfluidic droplets and performs TaqMan PCR reactions to identify droplets containing a desired target sequence. The TaqMan positive droplets are subsequently recovered via dielectrophoretic sorting, and the TaqMan amplicons are removed enzymatically prior to sequencing. We demonstrated the utility of this approach by generating an average 31.6-fold sequence enrichment across 250 kb of targeted genomic DNA from five unique genomic loci. Significantly, this enrichment enabled a more comprehensive identification of genetic polymorphisms within the targeted loci. MESA requires low amounts of input DNA, minimal prior locus sequence information and enriches the target region without PCR bias or artifacts. These features make it well suited for the study of genetic variation in a number of research and diagnostic applications. PMID:25873629

  13. Research progress on bladder cancer molecular genetics.

    PubMed

    Kang, Zhengjun; Li, Yuhui; Yu, Yang; Guo, Zhan

    2014-11-01

    Bladder cancer is a common malignant urinary tumor with a high rate of recurrence and quick progression, which threats human health. With the research on bladder cancer molecular genetics, the knowledge of gene modification and the development of molecular detection methods, more tumor markers have been discovered, which may have potential for early diagnosis, clinical examination and prognosis. This article reviews the research progress on bladder cancer molecular genetics.

  14. Genetic Modification of the Relationship between Parental Rejection and Adolescent Alcohol Use.

    PubMed

    Stogner, John M; Gibson, Chris L

    2016-07-01

    Parenting practices are associated with adolescents' alcohol consumption, however not all youth respond similarly to challenging family situations and harsh environments. This study examines the relationship between perceived parental rejection and adolescent alcohol use, and specifically evaluates whether youth who possess greater genetic sensitivity to their environment are more susceptible to negative parental relationships. Analyzing data from the National Longitudinal Study of Adolescent Health, we estimated a series of regression models predicting alcohol use during adolescence. A multiplicative interaction term between parental rejection and a genetic index was constructed to evaluate this potential gene-environment interaction. Results from logistic regression analyses show a statistically significant gene-environment interaction predicting alcohol use. The relationship between parental rejection and alcohol use was moderated by the genetic index, indicating that adolescents possessing more 'risk alleles' for five candidate genes were affected more by stressful parental relationships. Feelings of parental rejection appear to influence the alcohol use decisions of youth, but they do not do so equally for all. Higher scores on the constructed genetic sensitivity measure are related to increased susceptibility to negative parental relationships. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  15. Molecular targets in urothelial cancer: detection, treatment, and animal models of bladder cancer

    PubMed Central

    Smolensky, Dmitriy; Rathore, Kusum; Cekanova, Maria

    2016-01-01

    Bladder cancer remains one of the most expensive cancers to treat in the United States due to the length of required treatment and degree of recurrence. In order to treat bladder cancer more effectively, targeted therapies are being investigated. In order to use targeted therapy in a patient, it is important to provide a genetic background of the patient. Recent advances in genome sequencing, as well as transcriptome analysis, have identified major pathway components altered in bladder cancer. The purpose of this review is to provide a broad background on bladder cancer, including its causes, diagnosis, stages, treatments, animal models, as well as signaling pathways in bladder cancer. The major focus is given to the PI3K/AKT pathway, p53/pRb signaling pathways, and the histone modification machinery. Because several promising immunological therapies are also emerging in the treatment of bladder cancer, focus is also given on general activation of the immune system for the treatment of bladder cancer. PMID:27784990

  16. The genetics of age-related macular degeneration (AMD)--Novel targets for designing treatment options?

    PubMed

    Grassmann, Felix; Fauser, Sascha; Weber, Bernhard H F

    2015-09-01

    Age-related macular degeneration (AMD) is a progressive disease of the central retina and the main cause of legal blindness in industrialized countries. Risk to develop the disease is conferred by both individual as well as genetic factors with the latter being increasingly deciphered over the last decade. Therapeutically, striking advances have been made for the treatment of the neovascular form of late stage AMD while for the late stage atrophic form of the disease, which accounts for almost half of the visually impaired, there is currently no effective therapy on the market. This review highlights our current knowledge on the genetic architecture of early and late stage AMD and explores its potential for the discovery of novel, target-guided treatment options. We reflect on current clinical and experimental therapies for all forms of AMD and specifically note a persisting lack of efficacy for treatment in atrophic AMD. We further explore the current insight in AMD-associated genes and pathways and critically question whether this knowledge is suited to design novel treatment options. Specifically, we point out that known genetic factors associated with AMD govern the risk to develop disease and thus may not play a role in its severity or progression. Treatments based on such knowledge appear appropriate rather for prevention than treatment of manifest disease. As a consequence, future research in AMD needs to be greatly focused on approaches relevant to the patients and their medical needs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Alteration of human serum albumin binding properties induced by modifications: A review

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, Małgorzata; Szkudlarek, Agnieszka; Chudzik, Mariola; Pożycka, Jadwiga; Sułkowska, Anna

    2018-01-01

    Albumin, a major transporting protein in the blood, is the main target of modification that affects the binding of drugs to Sudlow's site I and II. These modification of serum protein moderates its physiological function, and works as a biomarker of some diseases. The main goal of the paper was to explain the possible alteration of human serum albumin binding properties induced by modifications such as glycation, oxidation and ageing, their origin, methods of evaluation and positive and negative meaning described by significant researchers.

  18. "It just goes against the grain." Public understandings of genetically modified (GM) food in the UK.

    PubMed

    Shaw, Alison

    2002-07-01

    This paper reports on one aspect of qualitative research on public understandings of food risks, focusing on lay understandings of genetically modified (GM) food in the UK context. A range of theoretical, conceptual, and empirical literature on food, risk, and the public understanding of science are reviewed. The fieldwork methods are outlined and empirical data from a range of lay groups are presented. Major themes include: varying "technical" knowledge of science, the relationship between knowledge and acceptance of genetic modification, the uncertainty of scientific knowledge, genetic modification as inappropriate scientific intervention in "nature", the acceptability of animal and human applications of genetic modification, the appropriate boundaries of scientific innovation, the necessity for GM foods, the uncertainty of risks in GM food, fatalism about avoiding risks, and trust in "experts" to manage potential risks in GM food. Key discussion points relating to a sociological understanding of public attitudes to GM food are raised and some policy implications are highlighted.

  19. Synthetic Proteins and Peptides for the Direct Interrogation of α-Synuclein Posttranslational Modifications

    PubMed Central

    Pratt, Matthew R.; Abeywardana, Tharindumala; Marotta, Nicholas P.

    2015-01-01

    α-Synuclein is the aggregation-prone protein associated with Parkinson’s disease (PD) and related neurodegenerative diseases. Complicating both its biological functions and toxic aggregation are a variety of posttranslational modifications. These modifications have the potential to either positively or negatively affect α-synuclein aggregation, raising the possibility that the enzymes that add or remove these modifications could be therapeutic targets in PD. Synthetic protein chemistry is uniquely positioned to generate site-specifically and homogeneously modified proteins for biochemical study. Here, we review the application of synthetic peptides and proteins towards understanding the effects of α-synuclein posttranslational modifications. PMID:26120904

  20. Aptamer modification improves the adenoviral transduction of malignant glioma cells.

    PubMed

    Chen, Hao; Zheng, Xiaojing; Di, BingYan; Wang, Dongyang; Zhang, Yaling; Xia, Haibin; Mao, Qinwen

    2013-12-01

    Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Surrogate species selection for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms

    PubMed Central

    Carstens, Keri; Cayabyab, Bonifacio; De Schrijver, Adinda; Gadaleta, Patricia G; Hellmich, Richard L; Romeis, Jörg; Storer, Nicholas; Valicente, Fernando H; Wach, Michael

    2014-01-01

    Most regulatory authorities require that developers of genetically engineered insect-resistant (GEIR) crops evaluate the potential for these crops to have adverse impacts on valued non-target organisms (NTOs), i.e., organisms not intended to be controlled by the trait. In many cases, impacts to NTOs are assessed using surrogate species, and it is critical that the data derived from surrogates accurately predict any adverse impacts likely to be observed from the use of the crop in the agricultural context. The key is to select surrogate species that best represent the valued NTOs in the location where the crop is going to be introduced, but this selection process poses numerous challenges for the developers of GE crops who will perform the tests, as well as for the ecologists and regulators who will interpret the test results. These issues were the subject of a conference “Surrogate Species Selection for Assessing Potential Adverse Environmental Impacts of Genetically Engineered Plants on Non-Target Organisms” convened by the Center for Environmental Risk Assessment, ILSI Research Foundation. This report summarizes the proceedings of the conference, including the presentations, discussions and the points of consensus agreed to by the participants. PMID:24637519

  2. Surrogate species selection for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms.

    PubMed

    Carstens, Keri; Cayabyab, Bonifacio; De Schrijver, Adinda; Gadaleta, Patricia G; Hellmich, Richard L; Romeis, Jörg; Storer, Nicholas; Valicente, Fernando H; Wach, Michael

    2014-01-01

    Most regulatory authorities require that developers of genetically engineered insect-resistant (GEIR) crops evaluate the potential for these crops to have adverse impacts on valued non-target organisms (NTOs), i.e., organisms not intended to be controlled by the trait. In many cases, impacts to NTOs are assessed using surrogate species, and it is critical that the data derived from surrogates accurately predict any adverse impacts likely to be observed from the use of the crop in the agricultural context. The key is to select surrogate species that best represent the valued NTOs in the location where the crop is going to be introduced, but this selection process poses numerous challenges for the developers of GE crops who will perform the tests, as well as for the ecologists and regulators who will interpret the test results. These issues were the subject of a conference "Surrogate Species Selection for Assessing Potential Adverse Environmental Impacts of Genetically Engineered Plants on Non-Target Organisms" convened by the Center for Environmental Risk Assessment, ILSI Research Foundation. This report summarizes the proceedings of the conference, including the presentations, discussions and the points of consensus agreed to by the participants.

  3. Modification of quantum dots with nucleic acids

    NASA Astrophysics Data System (ADS)

    Kocherginskaya, P. B.; Romanova, A. V.; Prokhorenko, I. A.; Itkis, Daniil M.; Korshun, V. A.; Goodilin, Eugene A.; Tretyakov, Yuri D.

    2011-12-01

    The key principles and modern approaches to targeted modification of semiconductor colloidal nanoparticles, quantum dots, which exhibit unique photophysical properties and are a promising class of luminescent markers, are discussed. Attention is given to the preparation of their bioconjugates with nucleic acids, promising tools for biological microchips and resonance energy transfer sensors. The bibliography includes 80 references.

  4. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    PubMed

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  5. Deoxyribonucleic acid restriction and modification systems in Salmonella: chromosomally located systems of different serotypes.

    PubMed Central

    Bullas, L R; Colson, C; Neufeld, B

    1980-01-01

    With the use of four different phages, Salmonella strains representing 85 different serotypes were examined to determine their restriction-modification phenotype. They fell into one of three groups on this basis: group 1, those which lacked the common LT system; group 2, those in which only the LT system could be recognized; and group 3. those which possessed the LT system and at least one other system shown with some serotypes to be closely linked to serB. The specificity of the serB-linked restriction-modification system was unique for each serotype, but different strains of the same serotype expressed the same specificity. Two of the systems were shown to behave in genetic crosses as functional alleles of the S. typhimurium SB system. It is possible that these serB-linked restriction-modification systems constitute a large multiallelic series of genes extending throughout the Salmonella genus and Escherichia coli. We suggest that the division of the Salmonella into the three restriction-modification groups may be significant in defining a "biological grouping" of the different serotypes within the genus which may ultimately be useful in describing the Salmonella species. From the genetic relatedness between the genes of some of the Salmonella restriction-modification systems with those of the E. coli systems, we deduce that the restriction endonuclases produced by the Salmonella serB-linked systems are of type 1. Determination of the nucleotide sequences of the recognition sites of the restriction endonucleases of selected Salmonella systems should further our understanding of specificity with these enzymes. PMID:6243623

  6. Modification Site Localization in Peptides.

    PubMed

    Chalkley, Robert J

    2016-01-01

    There are a large number of search engines designed to take mass spectrometry fragmentation spectra and match them to peptides from proteins in a database. These peptides could be unmodified, but they could also bear modifications that were added biologically or during sample preparation. As a measure of reliability for the peptide identification, software normally calculates how likely a given quality of match could have been achieved at random, most commonly through the use of target-decoy database searching (Elias and Gygi, Nat Methods 4(3): 207-214, 2007). Matching the correct peptide but with the wrong modification localization is not a random match, so results with this error will normally still be assessed as reliable identifications by the search engine. Hence, an extra step is required to determine site localization reliability, and the software approaches to measure this are the subject of this part of the chapter.

  7. Genetic variation in IL-16 miRNA target site and time to prostate cancer diagnosis in African American men

    PubMed Central

    Hughes, Lucinda; Ruth, Karen; Rebbeck, Timothy R.; Giri, Veda N.

    2013-01-01

    Background Men with a family history of prostate cancer and African American men are at high risk for prostate cancer and in need of personalized risk estimates to inform screening decisions. This study evaluated genetic variants in genes encoding microRNA (miRNA) binding sites for informing of time to prostate cancer diagnosis among ethnically-diverse, high-risk men undergoing prostate cancer screening. Methods The Prostate Cancer Risk Assessment Program (PRAP) is a longitudinal screening program for high-risk men. Eligibility includes men ages 35-69 with a family history of prostate cancer or African descent. Participants with ≥ 1 follow-up visit were included in the analyses (n=477). Genetic variants in regions encoding miRNA binding sites in four target genes (ALOX15, IL-16, IL-18, and RAF1) previously implicated in prostate cancer development were evaluated. Genotyping methods included Taqman® SNP Genotyping Assay (Applied Biosystems) or pyrosequencing. Cox models were used to assess time to prostate cancer diagnosis by risk genotype. Results Among 256 African Americans with ≥ one follow-up visit, the TT genotype at rs1131445 in IL-16 was significantly associated with earlier time to prostate cancer diagnosis vs. the CC/CT genotypes (p=0.013), with a suggestive association after correction for false-discovery (p=0.065). Hazard ratio after controlling for age and PSA for TT vs. CC/CT among African Americans was 3.0 (95% CI 1.26-7.12). No association to time to diagnosis was detected among Caucasians by IL-16 genotype. No association to time to prostate cancer diagnosis was found for the other miRNA target genotypes. Conclusions Genetic variation in IL-16 encoding miRNA target site may be informative of time to prostate cancer diagnosis among African American men enrolled in prostate cancer risk assessment, which may inform individualized prostate cancer screening strategies in the future. PMID:24061634

  8. Meganucleases Revolutionize the Production of Genetically Engineered Pigs for the Study of Human Diseases.

    PubMed

    Redel, Bethany K; Prather, Randall S

    2016-04-01

    Animal models of human diseases are critically necessary for developing an in-depth knowledge of disease development and progression. In addition, animal models are vital to the development of potential treatments or even cures for human diseases. Pigs are exceptional models as their size, physiology, and genetics are closer to that of humans than rodents. In this review, we discuss the use of pigs in human translational research and the evolving technology that has increased the efficiency of genetically engineering pigs. With the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system technology, the cost and time it takes to genetically engineer pigs has markedly decreased. We will also discuss the use of another meganuclease, the transcription activator-like effector nucleases , to produce pigs with severe combined immunodeficiency by developing targeted modifications of the recombination activating gene 2 (RAG2).RAG2mutant pigs may become excellent animals to facilitate the development of xenotransplantation, regenerative medicine, and tumor biology. The use of pig biomedical models is vital for furthering the knowledge of, and for treating human, diseases. © The Author(s) 2015.

  9. MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION

    EPA Science Inventory

    In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...

  10. [Genetically modified food--unnecessary controversy?].

    PubMed

    Tchórz, Michał; Radoniewicz-Chagowska, Anna; Lewandowska-Stanek, Hanna; Szponar, Elzbieta; Szponar, Jarosław

    2012-01-01

    Fast development of genetic engineering and biotechnology allows use of genetically modified organisms (GMO) more and more in different branches of science and economy. Every year we can see an increase of food amount produced with the use of modification of genetic material. In our supermarkets we can find brand new types of plants, products including genetically modified ingredients or meat from animals fed with food containing GMO. This article presents general information about genetically modified organisms, it also explains the range of genetic manipulation, use of newly developed products and current field area for GMO in the world. Based on scientific data the article presents benefits from development of biotechnology in reference to modified food. It also presents the voice of skeptics who are extremely concerned about the impact of those organisms on human health and natural environment. Problems that appear or can appear as a result of an increase of GMO are very important not only from a toxicologist's or a doctor's point of view but first of all from the point of view of ordinary consumers--all of us.

  11. Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1+ pre–B ALL

    PubMed Central

    Aghajanirefah, Ali; McLaughlin, Jami; Cheng, Donghui; Geng, Huimin; Eggesbø, Linn M.; Smale, Stephen T.; Müschen, Markus

    2017-01-01

    Inactivation of the tumor suppressor gene encoding the transcriptional regulator Ikaros (IKZF1) is a hallmark of BCR-ABL1+ precursor B cell acute lymphoblastic leukemia (pre–B ALL). However, the mechanisms by which Ikaros functions as a tumor suppressor in pre–B ALL remain poorly understood. Here, we analyzed a mouse model of BCR-ABL1+ pre–B ALL together with a new model of inducible expression of wild-type Ikaros in IKZF1 mutant human BCR-ABL1+ pre–B ALL. We performed integrated genome-wide chromatin and expression analyses and identified Ikaros target genes in mouse and human BCR-ABL1+ pre–B ALL, revealing novel conserved gene pathways associated with Ikaros tumor suppressor function. Notably, genetic depletion of different Ikaros targets, including CTNND1 and the early hematopoietic cell surface marker CD34, resulted in reduced leukemic growth. Our results suggest that Ikaros mediates tumor suppressor function by enforcing proper developmental stage–specific expression of multiple genes through chromatin compaction at its target genes. PMID:28190001

  12. Chemical modification of chitosan for efficient gene therapy.

    PubMed

    Jiang, Hu-Lin; Cui, Peng-Fei; Xie, Rong-Lin; Cho, Chong-Su

    2014-01-01

    Gene therapy involves the introduction of foreign genetic material into cells in order to exert a therapeutic effect. Successful gene therapy relies on effective vector system. Viral vectors are highly efficient in transfecting cells, but the undesirable complications limit their therapeutic applications. As a natural biopolymer, chitosan has been considered to be a good gene carrier candidate due to its ideal character which combines biocompatibility, low toxicity with high cationic density together. However, the low cell specificity and low transfection efficiency of chitosan as a gene carrier need to be overcome before undertaking clinical trials. This chapter is principally on those endeavors such as chemical modifications using cell-specific ligands and stimuli-response groups as well as penetrating modifications that have been done to increase the performances of chitosan in gene therapy. © 2014 Elsevier Inc. All rights reserved.

  13. Nuclear organization mediates cancer-compromised genetic and epigenetic control.

    PubMed

    Zaidi, Sayyed K; Fritz, Andrew; Tracy, Kirsten; Gordon, Jonathan; Tye, Coralee; Boyd, Joseph; Van Wijnen, Andre; Nickerson, Jeffrey; Imbalzano, Anthony; Lian, Jane; Stein, Janet; Stein, Gary

    2018-05-09

    Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice

    PubMed Central

    Demyanenko, Ilya A.; Zakharova, Vlada V.; Ilyinskaya, Olga P.; Vasilieva, Tamara V.; Fedorov, Artem V.; Skulachev, Vladimir P.

    2017-01-01

    Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenylphosphonium (SkQ1) to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db−/db− mice was significantly enhanced after long-term (12 weeks) administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α-smooth muscle actin-positive cells (myofibroblasts), reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes. PMID:28761623

  15. Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice.

    PubMed

    Demyanenko, Ilya A; Zakharova, Vlada V; Ilyinskaya, Olga P; Vasilieva, Tamara V; Fedorov, Artem V; Manskikh, Vasily N; Zinovkin, Roman A; Pletjushkina, Olga Yu; Chernyak, Boris V; Skulachev, Vladimir P; Popova, Ekaterina N

    2017-01-01

    Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db - /db - mice was significantly enhanced after long-term (12 weeks) administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α -smooth muscle actin-positive cells (myofibroblasts), reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes.

  16. Attitudes, perceptions, and trust. Insights from a consumer survey regarding genetically modified banana in Uganda.

    PubMed

    Kikulwe, Enoch M; Wesseler, Justus; Falck-Zepeda, Jose

    2011-10-01

    Genetically modified (GM) crops and food are still controversial. This paper analyzes consumers' perceptions and institutional awareness and trust toward GM banana regulation in Uganda. Results are based on a study conducted among 421 banana-consuming households between July and August 2007. Results show a high willingness to purchase GM banana among consumers. An explanatory factor analysis is conducted to identify the perceptions toward genetic modification. The identified factors are used in a cluster analysis that grouped consumers into segments of GM skepticism, government trust, health safety concern, and food and environmental safety concern. Socioeconomic characteristics differed significantly across segments. Consumer characteristics and perception factors influence consumers' willingness to purchase GM banana. The institutional awareness and trust varied significantly across segments as well. The findings would be essential to policy makers when designing risk-communication strategies targeting different consumer segments to ensure proper discussion and addressing potential concerns about GM technology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Protein S-glutathionylation: from current basics to targeted modifications.

    PubMed

    Popov, Doina

    2014-10-01

    The interaction between antioxidant glutathione and the free thiol in susceptible cysteine residues of proteins leads to reversible protein S-glutathionylation. This reaction ensures cellular homeostasis control (as a common redox-dependent post-translational modification associated with signal transduction) and intervenes in oxidative stress-related cardiovascular pathology (as initiated by redox imbalance). The purpose of this review is to evaluate the recent knowledge on protein S-glutathionylation in terms of chemistry, broad cellular intervention, specific quantification, and potential for therapeutic exploitation. The data bases searched were Medline and PubMed, from 2009 to 2014 (term: glutathionylation). Protein S-glutathionylation ensures protection of protein thiols against irreversible over-oxidation, operates as a biological redox switch in both cell survival (influencing kinases and protein phosphatases pathways) and cell death (by potentiation of apoptosis), and cross-talks with phosphorylation and with S-nitrosylation. Collectively, protein S-glutathionylation appears as a valuable biomarker for oxidative stress, with potential for translation into novel therapeutic strategies.

  18. Chapter VIII. Contributions of propagation techniques and genetic modification to breeding - genetic engineering for disease resistance

    USDA-ARS?s Scientific Manuscript database

    Genetic engineering offers an opportunity to develop flower bulb crops with resistance to fungal, viral, and bacterial pathogens. Several of the flower bulb crops, Lilium spp., Gladiolus, Zantedeschia, Muscari, Hyacinthus, Narcissus, Ornithogalum, Iris, and Alstroemeria, have been transformed with t...

  19. Emotional attitudes of young people completing secondary schools towards genetic modification of organisms (GMO) and genetically modified foods (GMF).

    PubMed

    Jurkiewicz, Anna; Zagórski, Jerzy; Bujak, Franciszek; Lachowski, Stanisław; Florek-Łuszczki, Magdalena

    2014-01-01

    The objective of the study was recognition of the opinions of adolescents completing secondary schools concerning genetically modified organisms and genetically modified food, especially the respondents' emotional attitude towards scientific achievements in the area of live genetically modified organisms. The study covered a group of 500 school adolescents completing secondary school at the level of maturity examination. The study was conducted by the method of a diagnostic survey using a self-designed questionnaire form. Knowledge concerning the possible health effects of consumption of food containing GMO among adolescents competing secondary schools is on a relatively low level; the adolescents examined 'know rather little' or 'very little know' about this problem. In respondents' opinions the results of reliable studies pertaining to the health effects of consumption of GMO 'rather do not exist'. The respondents are against the cultivation of GM plants and breeding of GM animals on own farm in the future. Secondary school adolescents considered that the production of genetically modified food means primarily the enrichment of biotechnological companies, higher income for food producers, and not the elimination of hunger in the world or elimination of many diseases haunting humans.

  20. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    NASA Astrophysics Data System (ADS)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  1. The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code

    PubMed Central

    Hofhuis, Julia; Schueren, Fabian; Nötzel, Christopher; Lingner, Thomas; Gärtner, Jutta; Jahn, Olaf

    2016-01-01

    Translational readthrough gives rise to C-terminally extended proteins, thereby providing the cell with new protein isoforms. These may have different properties from the parental proteins if the extensions contain functional domains. While for most genes amino acid incorporation at the stop codon is far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physiologically extended by translational readthrough and the actual ratio of MDH1x (extended protein) to ‘normal' MDH1 is dependent on the cell type. In human cells, arginine and tryptophan are co-encoded by the MDH1x UGA stop codon. Readthrough is controlled by the 7-nucleotide high-readthrough stop codon context without contribution of the subsequent 50 nucleotides encoding the extension. All vertebrate MDH1x is directed to peroxisomes via a hidden peroxisomal targeting signal (PTS) in the readthrough extension, which is more highly conserved than the extension of lactate dehydrogenase B. The hidden PTS of non-mammalian MDH1x evolved to be more efficient than the PTS of mammalian MDH1x. These results provide insight into the genetic and functional co-evolution of these dually localized dehydrogenases. PMID:27881739

  2. Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control.

    PubMed

    Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram; Covelli, Antonio S; Westler, William M; Azadi, Parastoo; Nett, Jeniel; Mitchell, Aaron P; Andes, David R

    2018-04-03

    Candida biofilms resist the effects of available antifungal therapies. Prior studies with Candida albicans biofilms show that an extracellular matrix mannan-glucan complex (MGCx) contributes to antifungal sequestration, leading to drug resistance. Here we implement biochemical, pharmacological, and genetic approaches to explore a similar mechanism of resistance for the three most common clinically encountered non- albicans Candida species (NAC). Our findings reveal that each Candida species biofilm synthesizes a mannan-glucan complex and that the antifungal-protective function of this complex is conserved. Structural similarities extended primarily to the polysaccharide backbone (α-1,6-mannan and β-1,6-glucan). Surprisingly, biochemical analysis uncovered stark differences in the branching side chains of the MGCx among the species. Consistent with the structural analysis, similarities in the genetic control of MGCx production for each Candida species also appeared limited to the synthesis of the polysaccharide backbone. Each species appears to employ a unique subset of modification enzymes for MGCx synthesis, likely accounting for the observed side chain diversity. Our results argue for the conservation of matrix function among Candida spp. While biogenesis is preserved at the level of the mannan-glucan complex backbone, divergence emerges for construction of branching side chains. Thus, the MGCx backbone represents an ideal drug target for effective pan- Candida species biofilm therapy. IMPORTANCE Candida species, the most common fungal pathogens, frequently grow as a biofilm. These adherent communities tolerate extremely high concentrations of antifungal agents, due in large part, to a protective extracellular matrix. The present studies define the structural, functional, and genetic similarities and differences in the biofilm matrix from the four most common Candida species. Each species synthesizes an extracellular mannan-glucan complex (MGCx) which

  3. Integrative Analysis of Genetic, Genomic, and Phenotypic Data for Ethanol Behaviors: A Network-Based Pipeline for Identifying Mechanisms and Potential Drug Targets.

    PubMed

    Bogenpohl, James W; Mignogna, Kristin M; Smith, Maren L; Miles, Michael F

    2017-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce nonbiased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA, and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x

  4. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity.

    PubMed

    Lillico, Ryan; Stesco, Nicholas; Khorshid Amhad, Tina; Cortes, Claudia; Namaka, Mike P; Lakowski, Ted M

    2016-05-01

    Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.

  5. Genetic engineering including superseding microinjection: new ways to make GM pigs.

    PubMed

    Galli, Cesare; Perota, Andrea; Brunetti, Dario; Lagutina, Irina; Lazzari, Giovanna; Lucchini, Franco

    2010-01-01

    Techniques for genetic engineering of swine are providing genetically modified animals of importance for the field of xenotransplantation, animal models for human diseases and for a variety of research applications. Many of these modifications have been directed toward avoiding naturally existing cellular and antibody responses to species-specific antigens. A number of techniques are today available to engineering the genome of mammals, these range from the well established less efficient method of DNA microinjection into the zygote, the use of viral vectors, to the more recent use of somatic cell nuclear transfer. The use of enzymatic engineering that are being developed now will refine the precision of the genetic modification combined with the use of new vectors like transposons. The use of somatic cell nuclear transfer is currently the most efficient way to generate genetically modified pigs. The development of enzymatic engineering with zinc-finger nucleases, recombinases and transposons will revolutionize the field. Nevertheless, genetic engineering in large domesticated animals will remain a challenging task. Recent improvements in several fields of cell and molecular biology offer new promises and opportunities toward an easier, cost-effective and efficient generation of transgenic pigs. © 2010 John Wiley & Sons A/S.

  6. Facilitation of endoglin-targeting cancer therapy by development/utilization of a novel genetically engineered mouse model expressing humanized endoglin (CD105).

    PubMed

    Toi, Hirofumi; Tsujie, Masanori; Haruta, Yuro; Fujita, Kanako; Duzen, Jill; Seon, Ben K

    2015-01-15

    Endoglin (ENG) is a TGF-β coreceptor and essential for vascular development and angiogenesis. A chimeric antihuman ENG (hENG) monoclonal antibody (mAb) c-SN6j (also known as TRC105) shows promising safety and clinical efficacy features in multiple clinical trials of patients with various advanced solid tumors. Here we developed a novel genetically engineered mouse model to optimize the ENG-targeting clinical trials. We designed a new targeting vector that contains exons 4-8 of hENG gene to generate novel genetically engineered mice (GEMs) expressing functional human/mouse chimeric (humanized) ENG with desired epitopes. Genotyping of the generated mice confirmed that we generated the desired GEMs. Immunohistochemical analysis demonstrated that humanized ENG protein of the GEMs expresses epitopes defined by 7 of our 8 anti-hENG mAbs tested. Surprisingly the homozygous GEMs develop normally and are healthy. Established breast and colon tumors as well as metastasis and tumor microvessels in the GEMs were effectively suppressed by systemic administration of anti-hENG mAbs. Additionally, test result indicates that synergistic potentiation of antitumor efficacy can be induced by simultaneous targeting of two distinct epitopes by anti-hENG mAbs. Sorafenib and capecitabine also showed antitumor efficacy in the GEMs. The presented novel GEMs are the first GEMs that express the targetable humanized ENG. Test results indicate utility of the GEMs for the clinically relevant studies. Additionally, we generated GEMs expressing a different humanized ENG containing exons 5-6 of hENG gene, and the homozygous GEMs develop normally and are healthy. © 2014 UICC.

  7. GENETIC MODIFICATION OF GIBBERELLIC ACID SIGNALING TO PROMOTE CARBON SEQUESTRATION IN TREE ROOTS AND STEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busov, Victor

    morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses. We studied the poplar C(19) gibberellin 2-oxidase (GA2ox) gene subfamily. We show that a set of paralogous gene pairs differentially regulate shoot and root development. ? PtGA2ox4 and its paralogous gene PtGA2ox5 are primarily expressed in aerial organs, and overexpression of PtGA2ox5 produced a strong dwarfing phenotype characteristic of GA deficiency. Suppression of PtGA2ox4 and PtGA2ox5 led to increased biomass growth, but had no effect on root development. By contrast, the PtGA2ox2 and PtGA2ox7 paralogous pair was predominantly expressed in roots, and when these two genes were RNAi-suppressed it led to a decrease of root biomass. ? The morphological changes in the transgenic plants were underpinned by tissue-specific increases in bioactive GAs that corresponded to the predominant native expression of the targeted

  8. Transcriptome analyses based on genetic screens for Pax3 myogenic targets in the mouse embryo

    PubMed Central

    2010-01-01

    Background Pax3 is a key upstream regulator of the onset of myogenesis, controlling progenitor cell survival and behaviour as well as entry into the myogenic programme. It functions in the dermomyotome of the somite from which skeletal muscle derives and in progenitor cell populations that migrate from the somite such as those of the limbs. Few Pax3 target genes have been identified. Identifying genes that lie genetically downstream of Pax3 is therefore an important endeavour in elucidating the myogenic gene regulatory network. Results We have undertaken a screen in the mouse embryo which employs a Pax3GFP allele that permits isolation of Pax3 expressing cells by flow cytometry and a Pax3PAX3-FKHR allele that encodes PAX3-FKHR in which the DNA binding domain of Pax3 is fused to the strong transcriptional activation domain of FKHR. This constitutes a gain of function allele that rescues the Pax3 mutant phenotype. Microarray comparisons were carried out between Pax3GFP/+ and Pax3GFP/PAX3-FKHR preparations from the hypaxial dermomyotome of somites at E9.5 and forelimb buds at E10.5. A further transcriptome comparison between Pax3-GFP positive and negative cells identified sequences specific to myogenic progenitors in the forelimb buds. Potential Pax3 targets, based on changes in transcript levels on the gain of function genetic background, were validated by analysis on loss or partial loss of function Pax3 mutant backgrounds. Sequences that are up- or down-regulated in the presence of PAX3-FKHR are classified as somite only, somite and limb or limb only. The latter should not contain sequences from Pax3 positive neural crest cells which do not invade the limbs. Verification by whole mount in situ hybridisation distinguishes myogenic markers. Presentation of potential Pax3 target genes focuses on signalling pathways and on transcriptional regulation. Conclusions Pax3 orchestrates many of the signalling pathways implicated in the activation or repression of myogenesis

  9. A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation.

    PubMed

    Sato, Yuko; Kujirai, Tomoya; Arai, Ritsuko; Asakawa, Haruhiko; Ohtsuki, Chizuru; Horikoshi, Naoki; Yamagata, Kazuo; Ueda, Jun; Nagase, Takahiro; Haraguchi, Tokuko; Hiraoka, Yasushi; Kimura, Akatsuki; Kurumizaka, Hitoshi; Kimura, Hiroshi

    2016-10-09

    Eukaryotic gene expression is regulated in the context of chromatin. Dynamic changes in post-translational histone modification are thought to play key roles in fundamental cellular functions such as regulation of the cell cycle, development, and differentiation. To elucidate the relationship between histone modifications and cellular functions, it is important to monitor the dynamics of modifications in single living cells. A genetically encoded probe called mintbody (modification-specific intracellular antibody), which is a single-chain variable fragment tagged with a fluorescent protein, has been proposed as a useful visualization tool. However, the efficacy of intracellular expression of antibody fragments has been limited, in part due to different environmental conditions in the cytoplasm compared to the endoplasmic reticulum where secreted proteins such as antibodies are folded. In this study, we have developed a new mintbody specific for histone H4 Lys20 monomethylation (H4K20me1). The specificity of the H4K20me1-mintbody in living cells was verified using yeast mutants and mammalian cells in which this target modification was diminished. Expression of the H4K20me1-mintbody allowed us to monitor the oscillation of H4K20me1 levels during the cell cycle. Moreover, dosage-compensated X chromosomes were visualized using the H4K20me1-mintbody in mouse and nematode cells. Using X-ray crystallography and mutational analyses, we identified critical amino acids that contributed to stabilization and/or proper folding of the mintbody. Taken together, these data provide important implications for future studies aimed at developing functional intracellular antibodies. Specifically, the H4K20me1-mintbody provides a powerful tool to track this particular histone modification in living cells and organisms. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The stable traits of melanoma genetics: an alternate approach to target discovery

    PubMed Central

    2012-01-01

    Background The weight that gene copy number plays in transcription remains controversial; although in specific cases gene expression correlates with copy number, the relationship cannot be inferred at the global level. We hypothesized that genes steadily expressed by 15 melanoma cell lines (CMs) and their parental tissues (TMs) should be critical for oncogenesis and their expression most frequently influenced by their respective copy number. Results Functional interpretation of 3,030 transcripts concordantly expressed (Pearson's correlation coefficient p-value < 0.05) by CMs and TMs confirmed an enrichment of functions crucial to oncogenesis. Among them, 968 were expressed according to the transcriptional efficiency predicted by copy number analysis (Pearson's correlation coefficient p-value < 0.05). We named these genes, "genomic delegates" as they represent at the transcriptional level the genetic footprint of individual cancers. We then tested whether the genes could categorize 112 melanoma metastases. Two divergent phenotypes were observed: one with prevalent expression of cancer testis antigens, enhanced cyclin activity, WNT signaling, and a Th17 immune phenotype (Class A). This phenotype expressed, therefore, transcripts previously associated to more aggressive cancer. The second class (B) prevalently expressed genes associated with melanoma signaling including MITF, melanoma differentiation antigens, and displayed a Th1 immune phenotype associated with better prognosis and likelihood to respond to immunotherapy. An intermediate third class (C) was further identified. The three phenotypes were confirmed by unsupervised principal component analysis. Conclusions This study suggests that clinically relevant phenotypes of melanoma can be retraced to stable oncogenic properties of cancer cells linked to their genetic back bone, and offers a roadmap for uncovering novel targets for tailored anti-cancer therapy. PMID:22537248

  11. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli

    PubMed Central

    Howard, Thomas P.; Middelhaufe, Sabine; Moore, Karen; Edner, Christoph; Kolak, Dagmara M.; Taylor, George N.; Parker, David A.; Lee, Rob; Smirnoff, Nicholas; Aves, Stephen J.; Love, John

    2013-01-01

    Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules. PMID:23610415

  12. Progress and Prospects for Genetic Modification of Nonhuman Primate Models in Biomedical Research

    PubMed Central

    Chan, Anthony W. S.

    2013-01-01

    The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model. PMID:24174443

  13. Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing

    PubMed Central

    Maglio, C; Mancina, R M; Motta, B M; Stef, M; Pirazzi, C; Palacios, L; Askaryar, N; Borén, J; Wiklund, O; Romeo, S

    2014-01-01

    Maglio C., Mancina R. M., Motta B. M., Stef M., Pirazzi C., Palacios L., Askaryar N., Borén J., Wiklund O., Romeo S. (University of Gothenburg, Gothenburg, Sweden; University Magna Graecia of Catanzaro, Italy; University of Milan, Italy; Progenika Biopharma SA, Derio, Spain). Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing. Objectives The aim of this study was to combine clinical criteria and next-generation sequencing (pyrosequencing) to establish a diagnosis of familial hypercholesterolaemia (FH). Design, setting and subjects A total of 77 subjects with a Dutch Lipid Clinic Network score of ≥3 (possible, probable or definite FH clinical diagnosis) were recruited from the Lipid Clinic at Sahlgrenska Hospital, Gothenburg, Sweden. Next-generation sequencing was performed in all subjects using SEQPRO LIPO RS, a kit that detects mutations in the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9) and LDLR adapter protein 1 (LDLRAP1) genes; copy-number variations in the LDLR gene were also examined. Results A total of 26 mutations were detected in 50 subjects (65% success rate). Amongst these, 23 mutations were in the LDLR gene, two in the APOB gene and one in the PCSK9 gene. Four mutations with unknown pathogenicity were detected in LDLR. Of these, three mutations (Gly505Asp, Ile585Thr and Gln660Arg) have been previously reported in subjects with FH, but their pathogenicity has not been proved. The fourth, a mutation in LDLR affecting a splicing site (exon 6–intron 6) has not previously been reported; it was found to segregate with high cholesterol levels in the family of the proband. Conclusions Using a combination of clinical criteria and targeted next-generation sequencing, we have achieved FH diagnosis with a high success rate. Furthermore, we identified a new splicing-site mutation in the LDLR gene. PMID:24785115

  14. Genetic engineering applied to agriculture has a long row to hoe.

    PubMed

    Miller, Henry I

    2018-01-02

    In spite of the lack of scientific justification for skepticism about crops modified with molecular techniques of genetic engineering, they have been the most scrutinized agricultural products in human history. The assumption that "genetically engineered" or "genetically modified" is a meaningful - and dangerous - classification has led to excessive and dilatory regulation. The modern molecular techniques are an extension, or refinement, of older, less precise, less predictable methods of genetic modification, but as long as today's activists and regulators remain convinced that so called "GMOs" represent a distinct and dangerous category of research and products, genetic engineering will fall short of its potential.

  15. [Application of single nucleotide polymorphism-microarray and target gene sequencing in the study of genetic etiology of children with unexplained intellectual disability or developmental delay].

    PubMed

    Gao, Z J; Jiang, Q; Cheng, D Z; Yan, X X; Chen, Q; Xu, K M

    2016-10-02

    Objective: To evaluate the application of single nucleotide polymorphism (SNP)-microarray and target gene sequencing technology in the clinical molecular genetic diagnosis of unexplained intellectual disability(ID) or developmental delay (DD). Method: Patients with ID or DD were recruited in the Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics between September 2015 and February 2016. The intellectual assessment of the patients was performed using 0-6-year-old pediatric examination table of neuropsychological development or Wechsler intelligence scale (>6 years). Patients with a DQ less than 49 or IQ less than 51 were included in this study. The patients were scanned by SNP-array for detection of genomic copy number variations (CNV), and the revealed genomic imbalance was confirmed by quantitative real time-PCR. Candidate gene mutation screening was carried out by target gene sequencing technology.Causal mutations or likely pathogenic variants were verified by polymerase chain reaction and direct sequencing. Result: There were 15 children with ID or DD enrolled, 9 males and 6 females. The age of these patients was 7 months-16 years and 9 months. SNP-array revealed that two of the 15 patients had genomic CNV. Both CNV were de novo micro deletions, one involved 11q24.1q25 and the other micro deletion located on 21q22.2q22.3. Both micro deletions were proved to have a clinical significance due to their association with ID, brain DD, unusual faces etc. by querying Decipher database. Thirteen patients with negative findings in SNP-array were consequently examined with target gene sequencing technology, genotype-phenotype correlation analysis and genetic analysis. Five patients were diagnosed with monogenic disorder, two were diagnosed with suspected genetic disorder and six were still negative. Conclusion: Sequential use of SNP-array and target gene sequencing technology can significantly increase the molecular genetic etiologic

  16. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Álvaro

    2014-06-01

    Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further

  17. Selective Modification of Chitin and Chitosan: En Route to Tailored Oligosaccharides.

    PubMed

    Carvalho, Luísa C R; Queda, Fausto; Santos, Cátia V Almeida; Marques, M Manuel B

    2016-12-19

    Chitin and chitosan are attractive biopolymers with enormous structural possibilities for chemical modification, creating platforms for new chemical entities with a broad scope of applications, ranging from material science to medicine. During the last few years, incredible efforts have been dedicated to the regioselective modification of these biopolymers paving the way for improved properties and tailored activities. Herein, the most recent advances in chitin/chitosan regioselective modification, reaction conditions, selectivity, and the impact on its applications are highlighted. Moreover, the recent focus on chitooligosaccharides, their regioselective and chemoselective functionalization, as well as their role in biological studies, including molecular recognition with several biological targets are also covered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dual Coordination of Post Translational Modifications in Human Protein Networks

    PubMed Central

    Woodsmith, Jonathan; Kamburov, Atanas; Stelzl, Ulrich

    2013-01-01

    Post-translational modifications (PTMs) regulate protein activity, stability and interaction profiles and are critical for cellular functioning. Further regulation is gained through PTM interplay whereby modifications modulate the occurrence of other PTMs or act in combination. Integration of global acetylation, ubiquitination and tyrosine or serine/threonine phosphorylation datasets with protein interaction data identified hundreds of protein complexes that selectively accumulate each PTM, indicating coordinated targeting of specific molecular functions. A second layer of PTM coordination exists in these complexes, mediated by PTM integration (PTMi) spots. PTMi spots represent very dense modification patterns in disordered protein regions and showed an equally high mutation rate as functional protein domains in cancer, inferring equivocal importance for cellular functioning. Systematic PTMi spot identification highlighted more than 300 candidate proteins for combinatorial PTM regulation. This study reveals two global PTM coordination mechanisms and emphasizes dataset integration as requisite in proteomic PTM studies to better predict modification impact on cellular signaling. PMID:23505349

  19. Surface modification via strain-promoted click reaction facilitates targeted lentiviral transduction.

    PubMed

    Chu, Yanjie; Oum, Yoon Hyeun; Carrico, Isaac S

    2016-01-01

    As a result of their ability to integrate into the genome of both dividing and non-dividing cells, lentiviruses have emerged as a promising vector for gene delivery. Targeted gene transduction of specific cells and tissues by lentiviral vectors has been a major goal, which has proven difficult to achieve. We report a novel targeting protocol that relies on the chemoselective attachment of cancer specific ligands to unnatural glycans on lentiviral surfaces. This strategy exhibits minimal perturbation on virus physiology and demonstrates remarkable flexibility. It allows for targeting but can be more broadly useful with applications such as vector purification and immunomodulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Genetic Testing in the Multidisciplinary Management of Melanoma.

    PubMed

    Rashid, Omar M; Zager, Jonathan S

    2015-10-01

    Melanoma is increasing in incidence and represents an aggressive type of cancer. Efforts have focused on identifying genetic factors in melanoma carcinogenesis to guide prevention, screening, early detection, and targeted therapy. This article reviews the hereditary risk factors associated with melanoma and the known molecular pathways and genetic mutations associated with this disease. This article also explores the controversies associated with genetic testing and the latest advances in identifying genetic targets in melanoma, which offer promise for future application in the multidisciplinary management of melanoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae

    PubMed Central

    2011-01-01

    Microalgae have presented themselves as a strong candidate to replace diminishing oil reserves as a source of lipids for biofuels. Here we describe successful modifications of terrestrial plant lipid content which increase overall lipid production or shift the balance of lipid production towards lipid varieties more useful for biofuel production. Our discussion ranges from the biosynthetic pathways and rate limiting steps of triacylglycerol formation to enzymes required for the formation of triacylglycerol containing exotic lipids. Secondarily, we discuss techniques for genetic engineering and modification of various microalgae which can be combined with insights gained from research in higher plants to aid in the creation of production strains of microalgae. PMID:22047615

  2. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    PubMed Central

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  3. A target for production of radioxenons

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Leonard, R.; Jha, S.; Sodd, V. J.; Vincent, J. S.

    1976-01-01

    A liquid cesium target has been developed which allows the production and separate identification of the neutron deficient isotopes of xenon. The present report describes irradiations utilizing 34 to 41 MeV protons to produce millicurie quantities of Xe-127 and Xe-129m. At higher energies, however, the target could be used without modification to produce xenon isotopes as light as 119.

  4. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity

    PubMed Central

    López, Ana; Castelló, María José; Gil, María José; Zheng, Bo; Chen, Peng; Vera, Pablo

    2015-01-01

    tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response. PMID:26492405

  5. Does a medical history of hypertension influence disclosing genetic testing results of the risk for salt-sensitive hypertension, in primary care?

    PubMed

    Okayama, Masanobu; Takeshima, Taro; Harada, Masanori; Ae, Ryusuke; Kajii, Eiji

    2016-01-01

    Disclosing genetic testing results may contribute to the prevention and management of many common diseases. However, whether the presence of a disease influences these effects is unclear. This study aimed to clarify the difference in the effects of disclosing genetic testing results of the risk for developing salt-sensitive hypertension on the behavioral modifications with respect to salt intake in hypertensive and nonhypertensive patients. A cross-sectional study using a self-administered questionnaire was conducted for outpatients aged >20 years (N=2,237) at six primary care clinics and hospitals in Japan. The main factors assessed were medical histories of hypertension, salt preferences, reduced salt intakes, and behavior modifications for reducing salt intake. Behavioral modifications of participants were assessed using their behavior stages before and after disclosure of the hypothetical genetic testing results. Of the 2,237 participants, 1,644 (73.5%) responded to the survey. Of these respondents, 558 (33.9%) patients were hypertensive and 1,086 (66.1%) were nonhypertensive. After being notified of the result "If with genetic risk", the nonhypertensive participants were more likely to make positive behavioral modifications compared to the hypertensive patients among all participants and in those aged <65 years (adjusted relative ratio [ad-RR], 1.76; 95% confidence interval, 1.12-2.76 and ad-RR, 1.99; 1.11-3.57, respectively). In contrast, no difference in negative behavioral modifications between hypertensive and nonhypertensive patients was detected after being notified of the result "If without genetic risk" (ad-RR, 1.05; 95% confidence interval, 0.70-1.57). The behavior of modifying salt intake after disclosure of the genetic testing results differed between hypertensive and nonhypertensive patients. Disclosing a genetic risk for salt-sensitive hypertension was likely to cause nonhypertensive patients, especially those aged <65 years, to improve their

  6. Commercialising genetically engineered animal biomedical products.

    PubMed

    Sullivan, Eddie J; Pommer, Jerry; Robl, James M

    2008-01-01

    Research over the past two decades has increased the quality and quantity of tools available to produce genetically engineered animals. The number of potentially viable biomedical products from genetically engineered animals is increasing. However, moving from cutting-edge research to development and commercialisation of a biomedical product that is useful and wanted by the public has significant challenges. Even early stage development of genetically engineered animal applications requires consideration of many steps, including quality assurance and quality control, risk management, gap analysis, founder animal establishment, cell banking, sourcing of animals and animal-derived material, animal facilities, product collection facilities and processing facilities. These steps are complicated and expensive. Biomedical applications of genetically engineered animals have had some recent successes and many applications are well into development. As researchers consider applications for their findings, having a realistic understanding of the steps involved in the development and commercialisation of a product, produced in genetically engineered animals, is useful in determining the risk of genetic modification to the animal nu. the potential public benefit of the application.

  7. Gene modification therapies: views of parents of people with Down syndrome.

    PubMed

    Michie, Marsha; Allyse, Megan

    2018-06-21

    In considering gene modification technologies, the priorities of patient communities must be a central consideration. The purpose of this study is to assess views of families with Down syndrome (DS) regarding potential genome-based interventions. We constructed an anonymous online survey for family members of people with DS. Participants were asked to agree or disagree with scenarios describing hypothetical interventions to silence or significantly alter the physical and cognitive effects of a trisomy 21, and also with scenarios depicting currently available physical interventions. All 532 respondents were parents of people with DS. For each of the five scenarios, over half said they would approve the intervention or would advise their children with DS to do so. Responses to hypothetical prenatal and pediatric cognitive interventions were significantly affected by participants' assessments of the impact of DS on their children's and their families' lives, while physical and adult cognitive scenarios were not. Future interventions to address genetic conditions will impact patient communities and cannot succeed without their input and support. While many parents of people with DS indicated approval for hypothetical genetic therapies, these results indicate a need for continuing dialogue about benefits and drawbacks of gene modification technologies.

  8. The partial retro-inverso modification: a road traveled together.

    PubMed

    Chorev, Michael

    2005-01-01

    In the mid-1970s, Dr. Murray Goodman was interested in a reversed peptide bond as a surrogate to understand the functional role of the amide bond in aspartame, a dipeptide sweetener. Very soon, realizing the breath and potential of this modification, Murray expanded this activity into a full program and I was fortunate to be part of it. Together we formulated new concepts such as the partially modified retro-inverso and end-group modified retro-inverso transformations, tested hypotheses, generated novel nomenclature, developed synthetic routes, characterized the preferred conformations of the unique building blocks employed in this modification, the gem-diaminoalkyl and the C2-substituted malonyl residues, and studied the biological activity of retro-inverso isomers of bioactive peptides. In the early 1980s several laboratories initiated extensive research targeted at the retro-inverso modification. The revival of this field led to new applications, new methods of synthesis, and new insights on the conformational and topological properties of the retro-inverso modification. Among the fields that embraced the retro-inverso concept were immunology as pertains to subjects such as synthetic vaccines, immunomodulators, and diagnostic tools, and drug delivery field as pertains to targeted and nontargeted cell permeation vectors loaded with bioactive cargo. Doctor Murray Goodman's sudden death leaves behind not only family, friends, and colleagues, but also an impressive record of scientific achievements among which is the revival of the modern era of the retro-inverso transformation. Murray's numerous contributions, excellent leadership, enthusiastic promotion, and outstanding teachings in this field will carry and illuminate his memory far into the future. Copyright 2005 Wiley Periodicals, Inc

  9. A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS).

    PubMed

    Unwin, Richard D; Griffiths, John R; Whetton, Anthony D

    2009-01-01

    The application of a targeted mass spectrometric workflow to the sensitive identification of post-translational modifications is described. This protocol employs multiple reaction monitoring (MRM) to search for all putative peptides specifically modified in a target protein. Positive MRMs trigger an MS/MS experiment to confirm the nature and site of the modification. This approach, termed MIDAS (MRM-initiated detection and sequencing), is more sensitive than approaches using neutral loss scanning or precursor ion scanning methodologies, due to a more efficient use of duty cycle along with a decreased background signal associated with MRM. We describe the use of MIDAS for the identification of phosphorylation, with a typical experiment taking just a couple of hours from obtaining a peptide sample. With minor modifications, the MIDAS method can be applied to other protein modifications or unmodified peptides can be used as a MIDAS target.

  10. Genetically modified pigs produced with a nonviral episomal vector

    PubMed Central

    Manzini, Stefano; Vargiolu, Alessia; Stehle, Isa M; Bacci, Maria Laura; Cerrito, Maria Grazia; Giovannoni, Roberto; Zannoni, Augusta; Bianco, Maria Rosaria; Forni, Monica; Donini, Pierluigi; Papa, Michele; Lipps, Hans J; Lavitrano, Marialuisa

    2006-01-01

    Genetic modification of cells and animals is an invaluable tool for biotechnology and biomedicine. Currently, integrating vectors are used for this purpose. These vectors, however, may lead to insertional mutagenesis and variable transgene expression and can undergo silencing. Scaffold/matrix attachment region-based vectors are nonviral expression systems that replicate autonomously in mammalian cells, thereby making possible safe and reliable genetic modification of higher eukaryotic cells and organisms. In this study, genetically modified pig fetuses were produced with the scaffold/matrix attachment region-based vector pEPI, delivered to embryos by the sperm-mediated gene transfer method. The pEPI vector was detected in 12 of 18 fetuses in the different tissues analyzed and was shown to be retained as an episome. The reporter gene encoded by the pEPI vector was expressed in 9 of 12 genetically modified fetuses. In positive animals, all tissues analyzed expressed the reporter gene; moreover in these tissues, the positive cells were on the average 79%. The high percentage of EGFP-expressing cells and the absence of mosaicism have important implications for biotechnological and biomedical applications. These results are an important step forward in animal transgenesis and can provide the basis for the future development of germ-line gene therapy. PMID:17101993

  11. On the value of nonremovable reminders for behavior modification: an application to nail-biting (onychophagia).

    PubMed

    Koritzky, Gilly; Yechiam, Eldad

    2011-11-01

    The authors examined the effectiveness of a novel behavior modification method for dysfunctional and impulsive habits, based on nonremovable reminders (NrRs). NrRs were implemented by having participants wear nonremovable wristbands designated to constantly remind them of their resolution to quit the targeted habit (nail-biting). Participants were 80 nail-biters who resolved to quit. The NrR approach was contrasted with an aversion-based behavioral modification technique. Recovery was assessed after 3 and 6 weeks of treatment and in a 5-month follow-up. The NrR method was associated with lower drop-out rate and was as successful as the aversion-based method altogether. When considering only non-dropouts, the aversion-based method was more effective. This suggests that the use of constantly present reminders broadens the target population that can benefit from reminders in the course of behavior modification.

  12. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice.

    PubMed

    Chinnasamy, Dhanalakshmi; Yu, Zhiya; Theoret, Marc R; Zhao, Yangbing; Shrimali, Rajeev K; Morgan, Richard A; Feldman, Steven A; Restifo, Nicholas P; Rosenberg, Steven A

    2010-11-01

    Immunotherapies based on adoptive cell transfer are highly effective in the treatment of metastatic melanoma, but the use of this approach in other cancer histologies has been hampered by the identification of appropriate target molecules. Immunologic approaches targeting tumor vasculature provide a means for the therapy of multiple solid tumor types. We developed a method to target tumor vasculature, using genetically redirected syngeneic or autologous T cells. Mouse and human T cells were engineered to express a chimeric antigen receptor (CAR) targeted against VEGFR-2, which is overexpressed in tumor vasculature and is responsible for VEGF-mediated tumor progression and metastasis. Mouse and human T cells expressing the relevant VEGFR-2 CARs mediated specific immune responses against VEGFR-2 protein as well as VEGFR-2-expressing cells in vitro. A single dose of VEGFR-2 CAR-engineered mouse T cells plus exogenous IL-2 significantly inhibited the growth of 5 different types of established, vascularized syngeneic tumors in 2 different strains of mice and prolonged the survival of mice. T cells transduced with VEGFR-2 CAR showed durable and increased tumor infiltration, correlating with their antitumor effect. This approach provides a potential method for the gene therapy of a variety of human cancers.

  13. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering

    PubMed Central

    Zhang, Xiao-Hui; Tee, Louis Y; Wang, Xiao-Gang; Huang, Qun-Shan; Yang, Shi-Hua

    2015-01-01

    CRISPR/Cas9 is a versatile genome-editing technology that is widely used for studying the functionality of genetic elements, creating genetically modified organisms as well as preclinical research of genetic disorders. However, the high frequency of off-target activity (≥50%)—RGEN (RNA-guided endonuclease)-induced mutations at sites other than the intended on-target site—is one major concern, especially for therapeutic and clinical applications. Here, we review the basic mechanisms underlying off-target cutting in the CRISPR/Cas9 system, methods for detecting off-target mutations, and strategies for minimizing off-target cleavage. The improvement off-target specificity in the CRISPR/Cas9 system will provide solid genotype–phenotype correlations, and thus enable faithful interpretation of genome-editing data, which will certainly facilitate the basic and clinical application of this technology. PMID:26575098

  14. Editor's Highlight: Genetic Targets of Acute Toluene Inhalation in Drosophila melanogaster.

    PubMed

    Bushnell, Philip J; Ward, William O; Morozova, Tatiana V; Oshiro, Wendy M; Lin, Mimi T; Judson, Richard S; Hester, Susan D; McKee, John M; Higuchi, Mark

    2017-03-01

    Interpretation and use of data from high-throughput assays for chemical toxicity require links between effects at molecular targets and adverse outcomes in whole animals. The well-characterized genome of Drosophila melanogaster provides a potential model system by which phenotypic responses to chemicals can be mapped to genes associated with those responses, which may in turn suggest adverse outcome pathways associated with those genes. To determine the utility of this approach, we used the Drosophila Genetics Reference Panel (DGRP), a collection of ∼200 homozygous lines of fruit flies whose genomes have been sequenced. We quantified toluene-induced suppression of motor activity in 123 lines of these flies during exposure to toluene, a volatile organic compound known to induce narcosis in mammals via its effects on neuronal ion channels. We then applied genome-wide association analyses on this effect of toluene using the DGRP web portal (http://dgrp2.gnets.ncsu.edu), which identified polymorphisms in candidate genes associated with the variation in response to toluene exposure. We tested ∼2 million variants and found 82 polymorphisms located in or near 66 candidate genes that were associated with phenotypic variation for sensitivity to toluene at P < 5 × 10-5, and human orthologs for 52 of these candidate Drosophila genes. None of these orthologs are known to be involved in canonical pathways for mammalian neuronal ion channels, including GABA, glutamate, dopamine, glycine, serotonin, and voltage sensitive calcium channels. Thus this analysis did not reveal a genetic signature consistent with processes previously shown to be involved in toluene-induced narcosis in mammals. The list of the human orthologs included Gene Ontology terms associated with signaling, nervous system development and embryonic morphogenesis; these orthologs may provide insight into potential new pathways that could mediate the narcotic effects of toluene. Published by Oxford

  15. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19

    PubMed Central

    Singh, Harjeet; Huls, Helen; Cooper, Laurence JN

    2014-01-01

    Summary The advent of efficient approaches to the genetic modification of T cells has provided investigators with clinically appealing approaches to improve the potency of tumor-specific clinical grade T cells. For example, gene therapy has been successfully used to enforce expression of chimeric antigen receptors (CAR) that provide T cells with ability to directly recognize tumor-associated antigens without the need for presentation by human leukocyte antigen. Gene transfer of CARs can be undertaken using viral-based and non-viral approaches. We have advanced DNA vectors derived from the Sleeping Beauty (SB) system to avoid the expense and manufacturing difficulty associated with transducing T cells with recombinant viral vectors. After electroporation, the transposon/transposase system improves the efficiency of integration of plasmids used to express CAR and other transgenes in T cells. The SB system combined with artificial antigen-presenting cells (aAPC) can selectively propagate and thus retrieve CAR+ T cells suitable for human application. This review describes the translation of the SB system and aAPC for use in clinical trials and highlights how a nimble and cost-effective approach to developing genetically modified T cells can be used to implement clinical trials infusing next-generation T cells with improved therapeutic potential. PMID:24329797

  16. ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins

    PubMed Central

    Krassowski, Michal; Paczkowska, Marta; Cullion, Kim; Huang, Tina; Dzneladze, Irakli; Ouellette, B F Francis; Yamada, Joseph T; Fradet-Turcotte, Amelie

    2018-01-01

    Abstract Interpretation of genetic variation is needed for deciphering genotype-phenotype associations, mechanisms of inherited disease, and cancer driver mutations. Millions of single nucleotide variants (SNVs) in human genomes are known and thousands are associated with disease. An estimated 21% of disease-associated amino acid substitutions corresponding to missense SNVs are located in protein sites of post-translational modifications (PTMs), chemical modifications of amino acids that extend protein function. ActiveDriverDB is a comprehensive human proteo-genomics database that annotates disease mutations and population variants through the lens of PTMs. We integrated >385,000 published PTM sites with ∼3.6 million substitutions from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and human genome sequencing projects. The database includes site-specific interaction networks of proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying PTM-associated mutations. Users can upload mutation datasets interactively and use our application programming interface in pipelines. Integrative analysis of mutations and PTMs may help decipher molecular mechanisms of phenotypes and disease, as exemplified by case studies of TP53, BRCA2 and VHL. The open-source database is available at https://www.ActiveDriverDB.org. PMID:29126202

  17. Effect modification by vitamin D receptor genetic polymorphisms in the association between cumulative lead exposure and pulse pressure: a longitudinal study.

    PubMed

    Jhun, Min A; Hu, Howard; Schwartz, Joel; Weisskopf, Marc G; Nie, Linda H; Sparrow, David; Vokonas, Pantel S; Park, Sung Kyun

    2015-01-13

    Although the association between lead and cardiovascular disease is well established, potential mechanisms are still poorly understood. Calcium metabolism plays a role in lead toxicity and thus, vitamin D receptor (VDR) polymorphisms have been suggested to modulate the association between lead and health outcomes. We investigated effect modification by VDR genetic polymorphisms in the association between cumulative lead exposure and pulse pressure, a marker of arterial stiffness. We examined 727 participants (3,100 observations from follow-ups from 1991 to 2011) from the Normative Aging Study (NAS), a longitudinal study of aging. Tibia and patella bone lead levels were measured using K-x-ray fluorescence. Four single nucleotide polymorphisms (SNPs) in the VDR gene, Bsm1, Taq1, Apa1, and Fok1, were genotyped. Linear mixed effects models with random intercepts were implemented to take into account repeated measurements. Adjusting for potential confounders, pulse pressure was 2.5 mmHg (95% CI: 0.4-4.7) and 1.9 mmHg (95% CI: 0.1-3.8) greater per interquartile range (IQR) increase in tibia lead (15 μg/g) and patella lead (20 μg/g), respectively, in those with at least one minor frequency allele in Bsm1 compared with those with major frequency allele homozygotes. The observed interaction effect between bone lead and the Bsm1 genotype persists over time during the follow-up. Similar results were observed in effect modification by Taq1. This study suggests that subjects with the minor frequency alleles of VDR Bsm1 or Taq1 may be more susceptible to cumulative lead exposure-related elevated pulse pressure.

  18. Loss of genetic diversity in Culex quinquefasciatus targeted by a lymphatic filariasis vector control program in Recife, Brazil.

    PubMed

    Cartaxo, Marina F S; Ayres, Constância F J; Weetman, David

    2011-09-01

    Recife is one of the largest cities in north-eastern Brazil and is endemic for lymphatic filariasis transmitted by Culex quinquefasciatus. Since 2003 a control program has targeted mosquito larvae by elimination of breeding sites and bimonthly application of Bacillus sphaericus. To assess the impact of this program on the local vector population we monitored the genetic diversity and differentiation of Cx. quinquefasciatus using microsatellites and a B. sphaericus-resistance associated mutation (cqm1(REC)) over a 3-year period. We detected a significant but gradual decline in allelic diversity, which, coupled with subtle temporal genetic structure, suggests a major impact of the control program on the vector population. Selection on cqm1(REC) does not appear to be involved with loss of neutral diversity from the population, with no temporal trend in resistant allele frequency and no correlation with microsatellite differentiation. The evidence for short-term genetic drift we detected suggests a low ratio of effective population size: census population size for Cx. quinquefasciatus, perhaps coupled with strong geographically-restricted population structure. Spatial definition of populations will be an important step for success of an expanded vector control program. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  19. Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications

    DTIC Science & Technology

    2009-07-01

    metabolic activity), and iPET imaging (a highly sensitive method to assess in vivo tumor-targeting). We have b egun to de velop the DOTA conj...inhibition augmented the cytotoxic potential of peptide 5. • We have begun to develop DOTA -c onjugated peptide 5 and 41 in anticipation of immuno-PET

  20. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test

    PubMed Central

    Lionel, Anath C; Costain, Gregory; Monfared, Nasim; Walker, Susan; Reuter, Miriam S; Hosseini, S Mohsen; Thiruvahindrapuram, Bhooma; Merico, Daniele; Jobling, Rebekah; Nalpathamkalam, Thomas; Pellecchia, Giovanna; Sung, Wilson W L; Wang, Zhuozhi; Bikangaga, Peter; Boelman, Cyrus; Carter, Melissa T; Cordeiro, Dawn; Cytrynbaum, Cheryl; Dell, Sharon D; Dhir, Priya; Dowling, James J; Heon, Elise; Hewson, Stacy; Hiraki, Linda; Inbar-Feigenberg, Michal; Klatt, Regan; Kronick, Jonathan; Laxer, Ronald M; Licht, Christoph; MacDonald, Heather; Mercimek-Andrews, Saadet; Mendoza-Londono, Roberto; Piscione, Tino; Schneider, Rayfel; Schulze, Andreas; Silverman, Earl; Siriwardena, Komudi; Snead, O Carter; Sondheimer, Neal; Sutherland, Joanne; Vincent, Ajoy; Wasserman, Jonathan D; Weksberg, Rosanna; Shuman, Cheryl; Carew, Chris; Szego, Michael J; Hayeems, Robin Z; Basran, Raveen; Stavropoulos, Dimitri J; Ray, Peter N; Bowdin, Sarah; Meyn, M Stephen; Cohn, Ronald D; Scherer, Stephen W; Marshall, Christian R

    2018-01-01

    Purpose Genetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use. Methods We prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing. Results WGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24% P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A. Conclusion WGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort. PMID:28771251

  1. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test.

    PubMed

    Lionel, Anath C; Costain, Gregory; Monfared, Nasim; Walker, Susan; Reuter, Miriam S; Hosseini, S Mohsen; Thiruvahindrapuram, Bhooma; Merico, Daniele; Jobling, Rebekah; Nalpathamkalam, Thomas; Pellecchia, Giovanna; Sung, Wilson W L; Wang, Zhuozhi; Bikangaga, Peter; Boelman, Cyrus; Carter, Melissa T; Cordeiro, Dawn; Cytrynbaum, Cheryl; Dell, Sharon D; Dhir, Priya; Dowling, James J; Heon, Elise; Hewson, Stacy; Hiraki, Linda; Inbar-Feigenberg, Michal; Klatt, Regan; Kronick, Jonathan; Laxer, Ronald M; Licht, Christoph; MacDonald, Heather; Mercimek-Andrews, Saadet; Mendoza-Londono, Roberto; Piscione, Tino; Schneider, Rayfel; Schulze, Andreas; Silverman, Earl; Siriwardena, Komudi; Snead, O Carter; Sondheimer, Neal; Sutherland, Joanne; Vincent, Ajoy; Wasserman, Jonathan D; Weksberg, Rosanna; Shuman, Cheryl; Carew, Chris; Szego, Michael J; Hayeems, Robin Z; Basran, Raveen; Stavropoulos, Dimitri J; Ray, Peter N; Bowdin, Sarah; Meyn, M Stephen; Cohn, Ronald D; Scherer, Stephen W; Marshall, Christian R

    2018-04-01

    PurposeGenetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use.MethodsWe prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing.ResultsWGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24%; P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A.ConclusionWGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort.

  2. Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes.

    PubMed

    Lee, Wonsik; Do, Truc; Zhang, Ge; Kahne, Daniel; Meredith, Timothy C; Walker, Suzanne

    2018-06-08

    Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.

  3. Targeting hardwoods

    Treesearch

    Douglass F. Jacobs

    2011-01-01

    Increasing demand for hardwood seedlings has prompted research to identify target seedling characteristics that promote hardwood plantation establishment. Operational establishment of hardwood plantations has typically emphasized seed collection from non-improved genetic sources, bareroot nursery seedling production, and spring planting using machine planters. The...

  4. A specific endogenous reference for genetically modified common bean (Phaseolus vulgaris L.) DNA quantification by real-time PCR targeting lectin gene.

    PubMed

    Venturelli, Gustavo L; Brod, Fábio C A; Rossi, Gabriela B; Zimmermann, Naíra F; Oliveira, Jaison P; Faria, Josias C; Arisi, Ana C M

    2014-11-01

    The Embrapa 5.1 genetically modified (GM) common bean was approved for commercialization in Brazil. Methods for the quantification of this new genetically modified organism (GMO) are necessary. The development of a suitable endogenous reference is essential for GMO quantification by real-time PCR. Based on this, a new taxon-specific endogenous reference quantification assay was developed for Phaseolus vulgaris L. Three genes encoding common bean proteins (phaseolin, arcelin, and lectin) were selected as candidates for endogenous reference. Primers targeting these candidate genes were designed and the detection was evaluated using the SYBR Green chemistry. The assay targeting lectin gene showed higher specificity than the remaining assays, and a hydrolysis probe was then designed. This assay showed high specificity for 50 common bean samples from two gene pools, Andean and Mesoamerican. For GM common bean varieties, the results were similar to those obtained for non-GM isogenic varieties with PCR efficiency values ranging from 92 to 101 %. Moreover, this assay presented a limit of detection of ten haploid genome copies. The primers and probe developed in this work are suitable to detect and quantify either GM or non-GM common bean.

  5. 75 FR 1704 - Modification to Consolidated Return Regulation Permitting an Election To Treat a Liquidation of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... Modification to Consolidated Return Regulation Permitting an Election To Treat a Liquidation of a Target, Followed by a Recontribution to a New Target, as a Cross-Chain Reorganization AGENCY: Internal Revenue... a target, followed by a recontribution to a new reorganization. DATES: The correction is effective...

  6. INTEGRATIVE ANALYSIS OF GENETIC, GENOMIC AND PHENOTYPIC DATA FOR ETHANOL BEHAVIORS: A NETWORK-BASED PIPELINE FOR IDENTIFYING MECHANISMS AND POTENTIAL DRUG TARGETS

    PubMed Central

    Bogenpohl, James W.; Mignogna, Kristin M.; Smith, Maren L.; Miles, Michael F.

    2016-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce non-biased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x

  7. Quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    The majority of economically important traits targeted for cotton improvement are quantitatively inherited. In this chapter, the current state of cotton quantitative genetics is described and separated into four components. These components include: 1) traditional quantitative inheritance analysis, ...

  8. High Altitude Supersonic Target (HAST), Phase 2

    DTIC Science & Technology

    1974-08-01

    consists of a padded cradle assembly and a tubular steel stand with lockable swivel casters on the front wheels . c Tne recovery module lifting handle is...eds no modification of the ordnance fired at it in order to function. With the HAST system a target will be provided to evaluate the most advanced...Components were tested under environmental extremes. With the completion of the preflight readiness tests and with modification incorporated during the

  9. Genetic progression of malignant melanoma.

    PubMed

    Tímár, J; Vizkeleti, L; Doma, V; Barbai, T; Rásó, E

    2016-03-01

    Malignant melanoma of the skin is the most aggressive human cancer given that a primary tumor a few millimeters in diameter frequently has full metastatic competence. In view of that, revealing the genetic background of this potential may also help to better understand tumor dissemination in general. Genomic analyses have established the molecular classification of melanoma based on the most frequent driver oncogenic mutations (BRAF, NRAS, KIT) and have also revealed a long list of rare events, including mutations and amplifications as well as genetic microheterogeneity. At the moment, it is unclear whether any of these rare events have role in the metastasis initiation process since the major drivers do not have such a role. During lymphatic and hematogenous dissemination, the clonal selection process is evidently reflected by differences in oncogenic drivers in the metastases versus the primary tumor. Clonal selection is also evident during lymphatic progression, though the genetic background of this immunoselection is less clear. Genomic analyses of metastases identified further genetic alterations, some of which may correspond to metastasis maintenance genes. The natural genetic progression of melanoma can be modified by targeted (BRAF or MEK inhibitor) or immunotherapies. Some of the rare events in primary tumors may result in primary resistance, while further new genetic lesions develop during the acquired resistance to both targeted and immunotherapies. Only a few genetic lesions of the primary tumor are constant during natural or therapy-modulated progression. EGFR4 and NMDAR2 mutations, MITF and MET amplifications and PTEN loss can be considered as metastasis drivers. Furthermore, BRAF and MITF amplifications as well as PTEN loss are also responsible for resistance to targeted therapies, whereas NRAS mutation is the only founder genetic lesion showing any association with sensitivity to immunotherapies. Unfortunately, there are hardly any data on the

  10. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma.

    PubMed

    Krishnamurthy, Janani; Rabinovich, Brian A; Mi, Tiejuan; Switzer, Kirsten C; Olivares, Simon; Maiti, Sourindra N; Plummer, Joshua B; Singh, Harjeet; Kumaresan, Pappanaicken R; Huls, Helen M; Wang-Johanning, Feng; Cooper, Laurence J N

    2015-07-15

    The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. ©2015 American Association for Cancer Research.

  11. Genetic Pathway of HIV-1 Resistance to Novel Fusion Inhibitors Targeting the Gp41 Pocket

    PubMed Central

    Su, Yang; Chong, Huihiui; Xiong, Shengwen; Qiao, Yuanyuan; Qiu, Zonglin

    2015-01-01

    ABSTRACT The peptide drug enfuvirtide (T20) is the only HIV-1 fusion inhibitor in clinical use, but it easily induces drug resistance, calling for new strategies for developing effective drugs. On the basis of the M-T hook structure, we recently developed highly potent short-peptide HIV-1 fusion inhibitors (MTSC22 and HP23), which mainly target the conserved gp41 pocket and possess high genetic barriers to resistance. Here, we focused on the selection and characterization of HIV-1 escape mutants of MTSC22, which revealed new resistance pathways and mechanisms. Two mutations (E49K and L57R) located at the inhibitor-binding site and two mutations (N126K and E136G) located at the C-terminal heptad repeat region of gp41 were identified as conferring high resistance either singly or in combination. While E49K reduced the C-terminal binding of inhibitors via an electrostatic repulsion, L57R dramatically disrupted the N-terminal binding of M-T hook structure and pocket-binding domain. Unlike E49K and N126K, which enhanced the stability of the endogenous viral six-helical bundle core (6-HB), L57R and E136G conversely destabilized the 6-HB structure. We also demonstrated that both primary and secondary mutations caused the structural changes in 6-HB and severely impaired the capability for HIV-1 entry. Collectively, our data provide novel insights into the mechanisms of short-peptide fusion inhibitors targeting the gp41 pocket site and help increase our understanding of the structure and function of gp41 and HIV-1 evolution. IMPORTANCE The deep pocket on the N-trimer of HIV-1 gp41 has been considered an ideal drug target because of its high degree of conservation and essential role in viral entry. Short-peptide fusion inhibitors, which contain an M-T hook structure and mainly target the pocket site, show extremely high binding and inhibitory activities as well as high genetic barriers to resistance. In this study, the HIV-1 mutants resistant to MTSC22 were selected and

  12. Studying modification of aminoglycoside antibiotics by resistance-causing enzymes via microarray.

    PubMed

    Disney, Matthew D

    2012-01-01

    Widespread bacterial resistance to antibiotics is a significant public health concern. To remain a step ahead of evolving bacteria, new methods to study resistance to antibacterials and to uncover novel antibiotics that evade resistance are urgently needed. Herein, microarray-based methods that have been developed to study aminoglycoside modification by resistance-causing enzymes are reviewed. These arrays can also be used to study the binding of aminoglycoside antibiotics to a mimic of their therapeutic target, the rRNA aminoacyl site (A-site), and how modification by resistance-causing enzymes affects their abilities to bind RNA.

  13. The effect of communicating the genetic risk of cardiometabolic disorders on motivation and actual engagement in preventative lifestyle modification and clinical outcome: a systematic review and meta-analysis of randomised controlled trials.

    PubMed

    Li, Sherly X; Ye, Zheng; Whelan, Kevin; Truby, Helen

    2016-09-01

    Genetic risk prediction of chronic conditions including obesity, diabetes and CVD currently has limited predictive power but its potential to engage healthy behaviour change has been of immense research interest. We aimed to understand whether the latter is indeed true by conducting a systematic review and meta-analysis investigating whether genetic risk communication affects motivation and actual behaviour change towards preventative lifestyle modification. We included all randomised controlled trials (RCT) since 2003 investigating the impact of genetic risk communication on health behaviour to prevent cardiometabolic disease, without restrictions on age, duration of intervention or language. We conducted random-effects meta-analyses for perceived motivation for behaviour change and clinical changes (weight loss) and a narrative analysis for other outcomes. Within the thirteen studies reviewed, five were vignette studies (hypothetical RCT) and seven were clinical RCT. There was no consistent effect of genetic risk on actual motivation for weight loss, perceived motivation for dietary change (control v. genetic risk group standardised mean difference (smd) -0·15; 95 % CI -1·03, 0·73, P=0·74) or actual change in dietary behaviour. Similar results were observed for actual weight loss (control v. high genetic risk SMD 0·29 kg; 95 % CI -0·74, 1·31, P=0·58). This review found no clear or consistent evidence that genetic risk communication alone either raises motivation or translates into actual change in dietary intake or physical activity to reduce the risk of cardiometabolic disorders in adults. Of thirteen studies, eight were at high or unclear risk of bias. Additional larger-scale, high-quality clinical RCT are warranted.

  14. RNA-modifying proteins as anticancer drug targets.

    PubMed

    Boriack-Sjodin, P Ann; Ribich, Scott; Copeland, Robert A

    2018-06-01

    All major biological macromolecules (DNA, RNA, proteins and lipids) undergo enzyme-catalysed covalent modifications that impact their structure, function and stability. A variety of covalent modifications of RNA have been identified and demonstrated to affect RNA stability and translation to proteins; these mechanisms of translational control have been termed epitranscriptomics. Emerging data suggest that some epitranscriptomic mechanisms are altered in human cancers as well as other human diseases. In this Review, we examine the current understanding of RNA modifications with a focus on mRNA methylation, highlight their possible roles in specific cancer indications and discuss the emerging potential of RNA-modifying proteins as therapeutic targets.

  15. Administration Modifications on the WISC-R Performance Scale with Different Categories of Deaf Children.

    ERIC Educational Resources Information Center

    Sullivan, Patricia M.

    1982-01-01

    Two studies investigated the effects of administration modifications on subtest scaled scores of the Wechsler-Intelligence Scale for Children-Revised (WISC-R). Performance scale rated different groups of 57 severely/profoundly hearing-impaired children. Total communication was found to result in higher scores on all subtests in the genetic and…

  16. Sampling scheme on genetic structure of tree species in fragmented tropical dry forest: an evaluation from landscape genetic simulations

    Treesearch

    Yessica Rico; Marie-Stephanie Samain

    2017-01-01

    Investigating how genetic variation is distributed across the landscape is fundamental to inform forest conservation and restoration. Detecting spatial genetic discontinuities has value for defining management units, germplasm collection, and target sites for reforestation; however, inappropriate sampling schemes can misidentify patterns of genetic structure....

  17. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease.

    PubMed

    Thein, Swee Lay

    2017-01-01

    β-thalassemia and sickle cell disease (SCD) are prototypical Mendelian single gene disorders, both caused by mutations affecting the adult β-globin gene. Despite the apparent genetic simplicity, both disorders display a remarkable spectrum of phenotypic severity and share two major genetic modifiers-α-globin genotype and innate ability to produce fetal hemoglobin (HbF, α 2 γ 2 ).This article provides an overview of the genetic basis for SCD and β-thalassemia, and genetic modifiers identified through phenotype correlation studies. Identification of the genetic variants modifying HbF production in combination with α-globin genotype provide some prediction of disease severity for β-thalassemia and SCD but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered.Nonetheless, genetic studies have been successful in characterizing some of the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation.

  18. Pseudouridine and N6-methyladenosine modifications weaken PUF protein/RNA interactions

    PubMed Central

    AlSadhan, Ishraq; Merriman, Dawn K.; Al-Hashimi, Hashim M.; Herschlag, Daniel

    2017-01-01

    RNA modifications are ubiquitous in biology, with over 100 distinct modifications. While the vast majority were identified and characterized on abundant noncoding RNA such as tRNA and rRNA, the advent of sensitive sequencing-based approaches has led to the discovery of extensive and regulated modification of eukaryotic messenger RNAs as well. The two most abundant mRNA modifications—pseudouridine (Ψ) and N6-methyladenosine (m6A)—affect diverse cellular processes including mRNA splicing, localization, translation, and decay and modulate RNA structure. Here, we test the hypothesis that RNA modifications directly affect interactions between RNA-binding proteins and target RNA. We show that Ψ and m6A weaken the binding of the human single-stranded RNA binding protein Pumilio 2 (hPUM2) to its consensus motif, with individual modifications having effects up to approximately threefold and multiple modifications giving larger effects. While there are likely to be some cases where RNA modifications essentially fully ablate protein binding, here we see modest responses that may be more common. Such modest effects could nevertheless profoundly alter the complex landscape of RNA:protein interactions, and the quantitative rather than qualitative nature of these effects underscores the need for quantitative, systems-level accounting of RNA:protein interactions to understand post-transcriptional regulation. PMID:28138061

  19. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    ERIC Educational Resources Information Center

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2018-01-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about…

  20. Transfer of genetic therapy across human populations: molecular targets for increasing patient coverage in repeat expansion diseases

    PubMed Central

    Varela, Miguel A; Curtis, Helen J; Douglas, Andrew GL; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew JA

    2016-01-01

    Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets. PMID:25990798

  1. Transfer of genetic therapy across human populations: molecular targets for increasing patient coverage in repeat expansion diseases.

    PubMed

    Varela, Miguel A; Curtis, Helen J; Douglas, Andrew G L; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew J A

    2016-02-01

    Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.

  2. Targeted next-generation sequencing helps to decipher the genetic and phenotypic heterogeneity of hypertrophic cardiomyopathy

    PubMed Central

    Cecconi, Massimiliano; Parodi, Maria I.; Formisano, Francesco; Spirito, Paolo; Autore, Camillo; Musumeci, Maria B.; Favale, Stefano; Forleo, Cinzia; Rapezzi, Claudio; Biagini, Elena; Davì, Sabrina; Canepa, Elisabetta; Pennese, Loredana; Castagnetta, Mauro; Degiorgio, Dario; Coviello, Domenico A.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is mainly associated with myosin, heavy chain 7 (MYH7) and myosin binding protein C, cardiac (MYBPC3) mutations. In order to better explain the clinical and genetic heterogeneity in HCM patients, in this study, we implemented a target-next generation sequencing (NGS) assay. An Ion AmpliSeq™ Custom Panel for the enrichment of 19 genes, of which 9 of these did not encode thick/intermediate and thin myofilament (TTm) proteins and, among them, 3 responsible of HCM phenocopy, was created. Ninety-two DNA samples were analyzed by the Ion Personal Genome Machine: 73 DNA samples (training set), previously genotyped in some of the genes by Sanger sequencing, were used to optimize the NGS strategy, whereas 19 DNA samples (discovery set) allowed the evaluation of NGS performance. In the training set, we identified 72 out of 73 expected mutations and 15 additional mutations: the molecular diagnosis was achieved in one patient with a previously wild-type status and the pre-excitation syndrome was explained in another. In the discovery set, we identified 20 mutations, 5 of which were in genes encoding non-TTm proteins, increasing the diagnostic yield by approximately 20%: a single mutation in genes encoding non-TTm proteins was identified in 2 out of 3 borderline HCM patients, whereas co-occuring mutations in genes encoding TTm and galactosidase alpha (GLA) altered proteins were characterized in a male with HCM and multiorgan dysfunction. Our combined targeted NGS-Sanger sequencing-based strategy allowed the molecular diagnosis of HCM with greater efficiency than using the conventional (Sanger) sequencing alone. Mutant alleles encoding non-TTm proteins may aid in the complete understanding of the genetic and phenotypic heterogeneity of HCM: co-occuring mutations of genes encoding TTm and non-TTm proteins could explain the wide variability of the HCM phenotype, whereas mutations in genes encoding only the non-TTm proteins are identifiable in

  3. Molecular genetics made simple

    PubMed Central

    Kassem, Heba Sh.; Girolami, Francesca; Sanoudou, Despina

    2012-01-01

    Abstract Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients. PMID:25610837

  4. OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions

    PubMed Central

    Ranganathan, Sridhar; Suthers, Patrick F.; Maranas, Costas D.

    2010-01-01

    Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis. PMID:20419153

  5. Transcript expression and genetic variability analysis of caspases in breast carcinomas suggests CASP9 as the most interesting target.

    PubMed

    Brynychova, Veronika; Hlavac, Viktor; Ehrlichova, Marie; Vaclavikova, Radka; Nemcova-Furstova, Vlasta; Pecha, Vaclav; Trnkova, Marketa; Mrhalova, Marcela; Kodet, Roman; Vrana, David; Gatek, Jiri; Bendova, Marie; Vernerova, Zdenka; Kovar, Jan; Soucek, Pavel

    2017-01-01

    Apoptosis plays a critical role in cancer cell survival and tumor development. We provide a hypothesis-generating screen for further research by exploring the expression profile and genetic variability of caspases (2, 3, 7, 8, 9, and 10) in breast carcinoma patients. This study addressed isoform-specific caspase transcript expression and genetic variability in regulatory sequences of caspases 2 and 9. Gene expression profiling was performed by quantitative real-time PCR in tumor and paired non-malignant tissues of two independent groups of patients. Genetic variability was determined by high resolution melting, allelic discrimination, and sequencing analysis in tumor and peripheral blood lymphocyte DNA of the patients. CASP3 A+B and S isoforms were over-expressed in tumors of both patient groups. The CASP9 transcript was down-regulated in tumors of both groups of patients and significantly associated with expression of hormonal receptors and with the presence of rs4645978-rs2020903-rs4646034 haplotype in the CASP9 gene. Patients with a low intratumoral CASP9A/B isoform expression ratio (predicted to shift equilibrium towards anti-apoptotic isoform) subsequently treated with adjuvant chemotherapy had a significantly shorter disease-free survival than those with the high ratio (p=0.04). Inheritance of CC genotype of rs2020903 in CASP9 was associated with progesterone receptor expression in tumors (p=0.003). Genetic variability in CASP9 and expression of its splicing variants present targets for further study.

  6. INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS.

    PubMed

    Verkhivker, Gennady M

    2016-01-01

    The human protein kinome presents one of the largest protein families that orchestrate functional processes in complex cellular networks, and when perturbed, can cause various cancers. The abundance and diversity of genetic, structural, and biochemical data underlies the complexity of mechanisms by which targeted and personalized drugs can combat mutational profiles in protein kinases. Coupled with the evolution of system biology approaches, genomic and proteomic technologies are rapidly identifying and charactering novel resistance mechanisms with the goal to inform rationale design of personalized kinase drugs. Integration of experimental and computational approaches can help to bring these data into a unified conceptual framework and develop robust models for predicting the clinical drug resistance. In the current study, we employ a battery of synergistic computational approaches that integrate genetic, evolutionary, biochemical, and structural data to characterize the effect of cancer mutations in protein kinases. We provide a detailed structural classification and analysis of genetic signatures associated with oncogenic mutations. By integrating genetic and structural data, we employ network modeling to dissect mechanisms of kinase drug sensitivities to oncogenic EGFR mutations. Using biophysical simulations and analysis of protein structure networks, we show that conformational-specific drug binding of Lapatinib may elicit resistant mutations in the EGFR kinase that are linked with the ligand-mediated changes in the residue interaction networks and global network properties of key residues that are responsible for structural stability of specific functional states. A strong network dependency on high centrality residues in the conformation-specific Lapatinib-EGFR complex may explain vulnerability of drug binding to a broad spectrum of mutations and the emergence of drug resistance. Our study offers a systems-based perspective on drug design by unravelling

  7. Genetics and epigenetics of rheumatoid arthritis

    PubMed Central

    Viatte, Sebastien; Plant, Darren; Raychaudhuri, Soumya

    2013-01-01

    Investigators have made key advances in rheumatoid arthritis (RA) genetics in the past 10 years. Although genetic studies have had limited influence on clinical practice and drug discovery, they are currently generating testable hypotheses to explain disease pathogenesis. Firstly, we review here the major advances in identifying RA genetic susceptibility markers both within and outside of the MHC. Understanding how genetic variants translate into pathogenic mechanisms and ultimately into phenotypes remains a mystery for most of the polymorphisms that confer susceptibility to RA, but functional data are emerging. Interplay between environmental and genetic factors is poorly understood and in need of further investigation. Secondly, we review current knowledge of the role of epigenetics in RA susceptibility. Differences in the epigenome could represent one of the ways in which environmental exposures translate into phenotypic outcomes. The best understood epigenetic phenomena include post-translational histone modifications and DNA methylation events, both of which have critical roles in gene regulation. Epigenetic studies in RA represent a new area of research with the potential to answer unsolved questions. PMID:23381558

  8. Targeted therapies for Parkinson's disease: From genetics to the clinic.

    PubMed

    Sardi, S Pablo; Cedarbaum, Jesse M; Brundin, Patrik

    2018-04-27

    The greatest unmet medical need in Parkinson's disease (PD) is treatments that slow the relentless progression of symptoms. The discovery of genetic variants causing and/or increasing the risk for PD has provided the field with a new arsenal of potential therapies ready to be tested in clinical trials. We highlight 3 of the genetic discoveries (α-synuclein, glucocerebrosidase, and leucine-rich repeat kinase) that have prompted new therapeutic approaches now entering the clinical stages. We are at an exciting juncture in the journey to developing disease-modifying treatments based on knowledge of PD genetics and pathology. This review focuses on therapeutic paradigms that are under clinical development and highlights a wide range of key outstanding questions in PD. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

  9. A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor.

    PubMed

    Gadd, Samantha; Huff, Vicki; Walz, Amy L; Ooms, Ariadne H A G; Armstrong, Amy E; Gerhard, Daniela S; Smith, Malcolm A; Auvil, Jaime M Guidry; Meerzaman, Daoud; Chen, Qing-Rong; Hsu, Chih Hao; Yan, Chunhua; Nguyen, Cu; Hu, Ying; Hermida, Leandro C; Davidsen, Tanja; Gesuwan, Patee; Ma, Yussanne; Zong, Zusheng; Mungall, Andrew J; Moore, Richard A; Marra, Marco A; Dome, Jeffrey S; Mullighan, Charles G; Ma, Jing; Wheeler, David A; Hampton, Oliver A; Ross, Nicole; Gastier-Foster, Julie M; Arold, Stefan T; Perlman, Elizabeth J

    2017-10-01

    We performed genome-wide sequencing and analyzed mRNA and miRNA expression, DNA copy number, and DNA methylation in 117 Wilms tumors, followed by targeted sequencing of 651 Wilms tumors. In addition to genes previously implicated in Wilms tumors (WT1, CTNNB1, AMER1, DROSHA, DGCR8, XPO5, DICER1, SIX1, SIX2, MLLT1, MYCN, and TP53), we identified mutations in genes not previously recognized as recurrently involved in Wilms tumors, the most frequent being BCOR, BCORL1, NONO, MAX, COL6A3, ASXL1, MAP3K4, and ARID1A. DNA copy number changes resulted in recurrent 1q gain, MYCN amplification, LIN28B gain, and MIRLET7A loss. Unexpected germline variants involved PALB2 and CHEK2. Integrated analyses support two major classes of genetic changes that preserve the progenitor state and/or interrupt normal development.

  10. A Children's Oncology Group and TARGET Initiative Exploring the Genetic Landscape of Wilms Tumor

    PubMed Central

    Gadd, Samantha; Huff, Vicki; Walz, Amy L.; Ooms, Ariadne H.A.G.; Armstrong, Amy E.; Gerhard, Daniela S.; Smith, Malcolm A.; Guidry Auvil, Jaime M.; Meerzaman, Daoud; Chen, Qing-Rong; Hsu, Chih Hao; Yan, Chunhua; Nguyen, Cu; Hu, Ying; Hermida, Leandro C.; Davidsen, Tanja; Gesuwan, Patee; Ma, Yussanne; Zong, Zusheng; Mungall, Andrew J.; Moore, Richard A.; Marra, Marco A.; Dome, Jeffrey S.; Mullighan, Charles G.; Ma, Jing; Wheeler, David A.; Hampton, Oliver A.; Ross, Nicole; Gastier-Foster, Julie M.; Arold, Stefan T.; Perlman, Elizabeth J.

    2017-01-01

    Genome-wide sequencing, mRNA and miRNA expression, DNA copy number and methylation analyses were performed on 117 Wilms tumors, followed by targeted sequencing of 651 Wilms tumors. In addition to genes previously implicated in Wilms tumors (WT1, CTNNB1, FAM123B, DROSHA, DGCR8, XPO5, DICER1, SIX1, SIX2, MLLT1, MYCN, and TP53), mutations were identified in genes not previously recognized as recurrently involved in Wilms tumors, the most frequent being BCOR, BCORL1, NONO, MAX, COL6A3, ASXL1, MAP3K4, and ARID1A. DNA copy number changes resulted in recurrent 1q gain, MYCN amplification, LIN28B gain, and let-7a loss. Unexpected germline variants involved PALB2 and CHEK2. Integrated analyses support two major classes of genetic changes that preserve the progenitor state and/or interrupt normal development. PMID:28825729

  11. Brief communication: Artificial cranial modification in Kow Swamp and Cohuna.

    PubMed

    Durband, Arthur C

    2014-09-01

    The crania from Kow Swamp and Cohuna have been important for a number of debates in Australian paleoanthropology. These crania typically have long, flat foreheads that many workers have cited as evidence of genetic continuity with archaic Indonesian populations, particularly the Ngandong sample. Other scientists have alleged that at least some of the crania from Kow Swamp and the Cohuna skull have been altered through artificial modification, and that the flat foreheads possessed by these individuals are not phylogenetically informative. In this study, several Kow Swamp crania and Cohuna are compared to known modified and unmodified comparative samples. Canonical variates analyses and Mahalanobis distances are generated, and random expectation statistics are used to calculate statistical significance for these tests. The results of this study agree with prior work indicating that a portion of this sample shows evidence for artificial modification of the cranial vault. Many Kow Swamp crania and Cohuna display shape similarities with a population of known modified individuals from New Britain. Kow Swamp 1, 5, and Cohuna show the strongest evidence for modification, but other individuals from this sample also show evidence of culturally manipulated changes in cranial shape. This project provides added support for the argument that at least some Pleistocene Australian groups were practicing artificial cranial modification, and suggests that caution should be used when including these individuals in phylogenetic studies. Copyright © 2014 Wiley Periodicals, Inc.

  12. Genetic modification of hematopoietic cells using retroviral and lentiviral vectors: safety considerations for vector design and delivery into target cells.

    PubMed

    Dropulic, Boro

    2005-07-01

    The recent development of leukemia in three patients following retroviral vector gene transfer in hematopoietic stem cells, resulting in the death of one patient, has raised safety concerns for the use of integrating gene transfer vectors for human gene therapy. This review discusses these serious adverse events from the perspective of whether restrictions on vector design and vector-modified target cells are warranted at this time. A case is made against presently establishing specific restrictions for vector design and transduced cells; rather, their safety should be ascertained by empiric evaluation in appropriate preclinical models on a case-by-case basis. Such preclinical data, coupled with proper informed patient consent and a risk-benefit ratio analysis, provide the best available prospective evaluation of gene transfer vectors prior to their translation into the clinic.

  13. Genetics of osteoporosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urano, Tomohiko; Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655

    Highlights: • Single-nucleotide polymorphisms (SNPs) associated with osteoporosis were identified. • SNPs mapped close to or within VDR and ESR1 are associated with bone mineral density. • WNT signaling pathway plays a pivotal role in regulating bone mineral density. • Genetic studies will be useful for identification of new therapeutic targets. - Abstract: Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies onmore » twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.« less

  14. The challenges of tumor genetic diversity.

    PubMed

    Mroz, Edmund A; Rocco, James W

    2017-05-15

    The authors review and discuss the implications of genomic analyses documenting the diversity of tumors, both among patients and within individual tumors. Genetic diversity among solid tumors limits targeted therapies, because few mutations that drive tumors are both targetable and at high prevalence. Many more driver mutations and how they affect cellular signaling pathways must be identified if targeted therapy is to become widely useful. Genetic diversity within a tumor-intratumor genetic heterogeneity-makes the tumor a collection of subclones: related yet distinct cancers. Selection for pre-existing, resistant subclones by conventional or targeted therapies may explain many treatment failures. Immune therapy faces the same fundamental challenges. Nevertheless, the processes that generate and maintain heterogeneity might provide novel therapeutic targets. Addressing both types of diversity requires genomic tumor analyses linked to detailed clinical data. The trend toward sequencing restricted cancer gene panels, however, limits the ability to discover new driver mutations and assess intratumor heterogeneity. Clinical data currently collected with genomic analyses often lack critical information, substantially limiting their use in understanding tumor diversity. Now that diversity among and within tumors can no longer be ignored, research and clinical practice must adapt to take diversity into account. Cancer 2017;123:917-27. © 2016 American Cancer Society. © 2016 American Cancer Society.

  15. [The discussion of the infiltrative model of mathematical knowledge to genetics teaching].

    PubMed

    Liu, Jun; Luo, Pei-Gao

    2011-11-01

    Genetics, the core course of biological field, is an importance major-basic course in curriculum of many majors related with biology. Due to strong theoretical and practical as well as abstract of genetics, it is too difficult to study on genetics for many students. At the same time, mathematics is one of the basic courses in curriculum of the major related natural science, which has close relationship with the establishment, development and modification of genetics. In this paper, to establish the intrinsic logistic relationship and construct the integral knowledge network and to help students improving the analytic, comprehensive and logistic abilities, we applied some mathematical infiltrative model genetic knowledge in genetics teaching, which could help students more deeply learn and understand genetic knowledge.

  16. A genetically encoded and gate for cell-targeted metabolic labeling of proteins.

    PubMed

    Mahdavi, Alborz; Segall-Shapiro, Thomas H; Kou, Songzi; Jindal, Granton A; Hoff, Kevin G; Liu, Shirley; Chitsaz, Mohsen; Ismagilov, Rustem F; Silberg, Jonathan J; Tirrell, David A

    2013-02-27

    We describe a genetic AND gate for cell-targeted metabolic labeling and proteomic analysis in complex cellular systems. The centerpiece of the AND gate is a bisected methionyl-tRNA synthetase (MetRS) that charges the Met surrogate azidonorleucine (Anl) to tRNA(Met). Cellular protein labeling occurs only upon activation of two different promoters that drive expression of the N- and C-terminal fragments of the bisected MetRS. Anl-labeled proteins can be tagged with fluorescent dyes or affinity reagents via either copper-catalyzed or strain-promoted azide-alkyne cycloaddition. Protein labeling is apparent within 5 min after addition of Anl to bacterial cells in which the AND gate has been activated. This method allows spatial and temporal control of proteomic labeling and identification of proteins made in specific cellular subpopulations. The approach is demonstrated by selective labeling of proteins in bacterial cells immobilized in the center of a laminar-flow microfluidic channel, where they are exposed to overlapping, opposed gradients of inducers of the N- and C-terminal MetRS fragments. The observed labeling profile is predicted accurately from the strengths of the individual input signals.

  17. A Genetically Encoded AND Gate for Cell-Targeted Metabolic Labeling of Proteins

    PubMed Central

    Mahdavi, Alborz; Segall-Shapiro, Thomas H.; Kou, Songzi; Jindal, Granton A.; Hoff, Kevin G.; Liu, Shirley; Chitsaz, Mohsen; Ismagilov, Rustem F.; Silberg, Jonathan J.; Tirrell, David A.

    2013-01-01

    We describe a genetic AND gate for cell-targeted metabolic labeling and proteomic analysis in complex cellular systems. The centerpiece of the AND gate is a bisected methionyl-tRNA synthetase (MetRS) that charges the Met surrogate azidonorleucine (Anl) to tRNAMet. Cellular protein labeling occurs only upon activation of two different promoters that drive expression of the N- and C-terminal fragments of the bisected MetRS. Anl-labeled proteins can be tagged with fluorescent dyes or affinity reagents via either copper-catalyzed or strain-promoted azide-alkyne cycloaddition. Protein labeling is apparent within five minutes after addition of Anl to bacterial cells in which the AND gate has been activated. This method allows spatial and temporal control of proteomic labeling and identification of proteins made in specific cellular subpopulations. The approach is demonstrated by selective labeling of proteins in bacterial cells immobilized in the center of a laminar-flow microfluidic channel, where they are exposed to overlapping, opposed gradients of inducers of the N- and C-terminal MetRS fragments. The observed labeling profile is predicted accurately from the strengths of the individual input signals. PMID:23406315

  18. Benefits and risks associated with genetically modified food products.

    PubMed

    Kramkowska, Marta; Grzelak, Teresa; Czyżewska, Krystyna

    2013-01-01

    Scientists employing methods of genetic engineering have developed a new group of living organisms, termed 'modified organisms', which found application in, among others, medicine, the pharmaceutical industry and food distribution. The introduction of transgenic products to the food market resulted in them becoming a controversial topic, with their proponents and contestants. The presented study aims to systematize objective data on the potential benefits and risks resulting from the consumption of transgenic food. Genetic modifications of plants and animals are justified by the potential for improvement of the food situation worldwide, an increase in yield crops, an increase in the nutritional value of food, and the development of pharmaceutical preparations of proven clinical significance. In the opinions of critics, however, transgenic food may unfavourably affect the health of consumers. Therefore, particular attention was devoted to the short- and long-lasting undesirable effects, such as alimentary allergies, synthesis of toxic agents or resistance to antibiotics. Examples arguing for the justified character of genetic modifications and cases proving that their use can be dangerous are innumerable. In view of the presented facts, however, complex studies are indispensable which, in a reliable way, evaluate effects linked to the consumption of food produced with the application of genetic engineering techniques. Whether one backs up or negates transgenic products, the choice between traditional and non-conventional food remains to be decided exclusively by the consumers.

  19. Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications

    DTIC Science & Technology

    2010-07-14

    CD22 -binding peptides that initiate signal transduction and apoptosis in non-Hodgkin’s lymphoma (NHL), 2) optimize CD22 -mediated signal transduction...and lymphomacidal properties of ligand blocking anti- CD22 monoclonal antibodies (mAbs) and peptides with CD22 -specific phosphatase inhibition and 3...correlate mAb-mediated and anti- CD22 peptide-mediated in vivo physiologic changes, efficacy, and tumor targeting using advanced immuno-positron

  20. Distributed genetic algorithms for the floorplan design problem

    NASA Technical Reports Server (NTRS)

    Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.

    1991-01-01

    Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.