Sample records for targeted liposome-based delivery

  1. A new liposome-based gene delivery system targeting lung epithelial cells using endothelin antagonist.

    PubMed

    Allon, Nahum; Saxena, Ashima; Chambers, Carolyn; Doctor, Bhupendra P

    2012-06-10

    We formulated a new gene delivery system based on targeted liposomes. The efficacy of the delivery system was demonstrated in in vitro and in vivo models. The targeting moiety consists of a high-affinity 7-amino-acid peptide, covalently and evenly conjugated to the liposome surface. The targeting peptide acts as an endothelin antagonist, and accelerates liposome binding and internalization. It is devoid of other biological activity. Liposomes with high phosphatidyl serine (PS) were specially formulated to help their fusion with the endosomal membrane at low pH and enable release of the liposome payload into the cytoplasm. A DNA payload, pre-compressed by protamine, was encapsulated into the liposomes, which directed the plasmid into the cell's nucleus. Upon exposure to epithelial cells, binding of the liposomes occurred within 5-10 min, followed by facilitated internalization of the complex. Endosomal escape was complete within 30 min, followed by DNA accumulation in the nucleus 2h post-transfection. A549 lung epithelial cells transfected with plasmid encoding for GFP encapsulated in targeted liposomes expressed significantly more protein than those transfected with plasmid complexed with Lipofectamine. The intra-tracheal instillation of plasmid encoding for GFP encapsulated in targeted liposomes into rat lungs resulted in the expression of GFP in bronchioles and alveoli within 5 days. These results suggest that this delivery system has great potential in targeting genes to lungs. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands.

    PubMed

    Wei, Xiaoli; Gao, Jie; Zhan, Changyou; Xie, Cao; Chai, Zhilan; Ran, Danni; Ying, Man; Zheng, Ping; Lu, Weiyue

    2015-11-28

    The treatment of glioma is one of the most challenging tasks in clinic. As an intracranial tumor, glioma exhibits many distinctive characteristics from other tumors. In particular, various barriers including enzymatic barriers in the blood and brain capillary endothelial cells, blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) rigorously prevent drug and drug delivery systems from reaching the tumor site. To tackle this dilemma, we developed a liposomal formulation to circumvent multiple-barriers by modifying the liposome surface with proteolytically stable peptides, (D)CDX and c(RGDyK). (D)CDX is a D-peptide ligand of nicotine acetylcholine receptors (nAChRs) on the BBB, and c(RGDyK) is a ligand of integrin highly expressed on the BBTB and glioma cells. Lysosomal compartments of brain capillary endothelial cells are implicated in the transcytosis of those liposomes. However, both peptide ligands displayed exceptional stability in lysosomal homogenate, ensuring that intact ligands could exert subsequent exocytosis from brain capillary endothelial cells and glioma targeting. In the cellular uptake studies, dually labeled liposomes could target both brain capillary endothelial cells and tumor cells, effectively traversing the BBB and BBTB monolayers, overcoming enzymatic barrier and targeting three-dimensional tumor spheroids. Its targeting ability to intracranial glioma was further verified in vivo by ex vivo imaging and histological studies. As a result, doxorubicin liposomes modified with both (D)CDX and c(RGDyK) presented better anti-glioma effect with prolonged median survival of nude mice bearing glioma than did unmodified liposomes and liposomes modified with individual peptide ligand. In conclusion, the liposome suggested in the present study could effectively overcome multi-barriers and accomplish glioma targeted drug delivery, validating its potential value in improving the therapeutic efficacy of doxorubicin for glioma. Copyright © 2015

  3. Laser-induced disruption of systemically administered liposomes for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Larabi, Malika; Shinde, Rajesh; Simanovskii, Dmitrii M.; Guccione, Samira; Contag, Christopher H.

    2009-07-01

    Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 °C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.

  4. Body distributioin of RGD-mediated liposome in brain-targeting drug delivery.

    PubMed

    Qin, Jing; Chen, DaWei; Hu, Haiyang; Qiao, MingXi; Zhao, XiuLi; Chen, Baoyu

    2007-09-01

    RGD conjugation liposomes (RGD-liposomes) were evaluated for brain-targeting drug delivery. The flow cytometric in vitro study demonstrated that RGD-liposomes could bind to monocytes and neutrophils effectively. Ferulic acid (4-hydroxy-3-methoxycinnamic, FA) was loaded into liposomes. Rats were subjected to intrastriatal microinjections of 100 units of human recombinant IL-1beta to produce brain inflammation and caudal vein injection of three formulations (FA solution, FA liposome and RGD-coated FA liposome). Animals were sacrificed 15, 30, 60 and 120 min after administration to study the body distribution of the FA in the three formulations. HPLC was used to determine the concentration of FA in vivo with salicylic acid as internal standard. The results of body distribution indicated that RGD-coated liposomes could be mediated into the brain with a 6-fold FA concentration compared to FA solution and 3-fold in comparison to uncoated liposome. Brain targeted delivery was achieved and a reduction in dosage might be allowed.

  5. Liposome-based drug co-delivery systems in cancer cells.

    PubMed

    Zununi Vahed, Sepideh; Salehi, Roya; Davaran, Soodabeh; Sharifi, Simin

    2017-02-01

    Combination therapy and nanotechnology offer a promising therapeutic method in cancer treatment. By improving drug's pharmacokinetics, nanoparticulate systems increase the drug's therapeutic effects while decreasing its adverse side effects related to high dosage. Liposomes are extensively used as drug delivery systems and several liposomal nanomedicines have been approved for clinical applications. In this regard, liposome-based combination chemotherapy (LCC) opens a novel avenue in drug delivery research and has increasingly become a significant approach in clinical cancer treatment. This review paper focuses on LCC strategies including co-delivery of: two chemotherapeutic drugs, chemotherapeutic agent with anti-cancer metals, and chemotherapeutic agent with gene agents and ligand-targeted liposome for co-delivery of chemotherapeutic agents. Definitely, the multidisciplinary method may help improve the efficacy of cancer therapy. An extensive literature review was performed mainly using PubMed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Barriers to Liposomal Gene Delivery: from Application Site to the Target.

    PubMed

    Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R

    2016-01-01

    Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review.

  7. Engineering liposomal nanoparticles for targeted gene therapy.

    PubMed

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  8. Design and syntheses of mono and multivalent mannosyl-lipoconjugates for targeted liposomal drug delivery.

    PubMed

    Štimac, Adela; Cvitaš, Jelena TrmĿiĿ; Frkanec, Leo; Vugrek, Oliver; Frkanec, Ruža

    2016-09-10

    Multivalent mannosyl-lipoconjugates may be of interest for glycosylation of liposomes and targeted drug delivery because the mannose specifically binds to C-type lectin receptors on the particular cells. In this paper syntheses of two types of novel O-mannosides are presented. Conjugates 1 and 2 with a COOH- and NH2-functionalized spacer and the connection to a lysine and FmocNH-PEG-COOH, are described. The coupling reactions of prepared intermediates 6 and 4 with a PEGylated-DSPE or palmitic acid, respectively, are presented. Compounds 5, mono-, 8, di- and 12, tetravalent mannosyl-lipoconjugates, were synthesized. The synthesized compounds were incorporated into liposomes and liposomal preparations featuring exposed mannose units were characterized. Carbohydrate liposomal quartz crystal microbalance based assay has been established for studying carbohydrate-lectin binding. It was demonstrated that liposomes with incorporated mannosyl-lipoconjugates were effectively recognized by Con A and have great potential to be used for targeted liposomal drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin.

    PubMed

    Paliwal, Shivani Rai; Paliwal, Rishi; Agrawal, Govind Prasad; Vyas, Suresh Prasad

    2016-12-01

    Surface-modified pH-sensitive liposomal system may be useful for intracellular delivery of chemotherapeutics. Achieving site-specific targeting with over-expressed hyaluronic acid (HA) receptors along with using pH sensitive liposome carrier for intracellular drug delivery was the aim of this study. Stealth HA-targeted pH-sensitive liposomes (SL-pH-HA) were developed and evaluated to achieve effective intracellular delivery of doxorubicin (DOX) vis-a-vis enhanced antitumor activity. The in vitro release studies demonstrated that the release of DOX from SL-pH-HA was pH-dependent, i.e. faster at mildly acidic pH ∼5, compared to physiological pH ∼7.4. SLpH-HA was evaluated for their cytotoxicity potential on CD44 receptor expressing MCF-7 cells. The half maximal inhibitory concentration (IC50) of SL-pH-HA and SL-HA were about 1.9 and 2.5 μM, respectively, after 48 h of incubation. The quantitative uptake study revealed higher localization of targeted liposomes in the receptor positive cells, which was further confirmed by fluorescent microscopy. The antitumor efficacy of the DOX-loaded HA-targeted pH-sensitive liposomes was also verified in a tumor xenograft mouse model. DOX was efficiently delivered to the tumor site by active targeting via HA and CD44 receptor interaction. The major side-effect of conventional DOX formulation, i.e. cardiotoxicity was also estimated by measuring serum enzyme levels of LDH and CPK and found to be minimized with developed formulation. Overall, HA targeted pH-sensitive liposomes were significantly more potent than the non-targeted liposomes in cells expressing high levels of CD44. Results strongly implies the promise of such liposomal system as an intracellular drug delivery carrier developed for potential anticancer treatment.

  10. Targeted drug delivery and enhanced intracellular release using functionalized liposomes

    NASA Astrophysics Data System (ADS)

    Garg, Ashish

    The ability to target cancer cells using an appropriate drug delivery system can significantly reduce the associated side effects from cancer therapies and can help in improving the overall quality of life, post cancer survival. Integrin alpha5beta1 is expressed on several types of cancer cells, including colon cancer and plays an important role in tumor growth and metastasis. Thus, the ability to target the integrin alpha 5beta1 using an appropriate drug delivery nano-vector can significantly help in inhibiting tumor growth and reducing tumor metastasis. The work in this thesis focuses on designing and optimizing, functionalized stealth liposomes (liposomes covered with polyethylene glycol (PEG)) that specifically target the integrin alpha5beta1. The PEG provides a steric barrier allowing the liposomes to circulate in the blood for longer duration and the functionalizing moiety, PR_b peptide specifically recognizes and binds to integrin alpha5beta1 expressing cells. The work demonstrates that by optimizing the amount of PEG and PR_b on the liposomal interface, nano-vectors can be engineered that bind to CT26.WT colon cancer cells in a specific manner and internalize through alpha 5beta1-mediated endocytosis. To further improve the efficacy of the system, PR_b functionalized pH-sensitive stealth liposomes that exhibit triggered release under mild acidic conditions present in endocytotic vesicles were designed. The study showed that PR_b functionalized pH-sensitive stealth liposomes, undergo destabilization under mildly acidic conditions and incorporation of the PR_b peptide does not significantly affect the pH-sensitivity of the liposomes. PR_b functionalized pH-sensitive stealth liposomes bind to CT26.WT colon carcinoma cells that express integrin alpha5beta 1, undergo cellular internalization, and release their load intracellularly in a short period of time as compared to other formulations. PR_b-targeted pH-sensitive stealth liposomes encapsulating 5

  11. MRI-visible liposome nanovehicles for potential tumor-targeted delivery of multimodal therapies

    NASA Astrophysics Data System (ADS)

    Ren, Lili; Chen, Shizhen; Li, Haidong; Zhang, Zhiying; Ye, Chaohui; Liu, Maili; Zhou, Xin

    2015-07-01

    Real-time diagnosis and monitoring of disease development, and therapeutic responses to treatment, are possible by theranostic magnetic resonance imaging (MRI). Here we report the synthesis of a multifunctional liposome, which contains Gd-DOTA (an MRI probe), paclitaxel and c(RGDyk) (a targeted peptide). This nanoparticle overcame the insolubility of paclitaxel, reduced the side effects of FDA-approved formulation of PTX-Cre (Taxol®) and improved drug delivery efficiency to the tumor. c(RGDyk) modification greatly enhanced the cytotoxicity of the drug in tumor cells A549. The T1 relaxivity in tumor cells treated with the targeted liposome formulation was increased 16-fold when compared with the non-targeted group. In vivo, the tumors in mice were visualized using T1-weighted imaging after administration of the liposome. Also the tumor growth could be inhibited well after the treatment. Fluorescence images in vitro and ex vivo also showed the targeting effect of this liposome in tumor cells, indicating that this nanovehicle could limit the off-target side effects of anticancer drugs and contrast agents. These findings lay the foundation for further tumor inhibition study and application of this delivery vehicle in cancer therapy settings.

  12. Liposomal Drug Delivery System for Cancer Therapy: Advancement and Patents.

    PubMed

    Jha, Sheetal; Sharma, Pramod K; Malviya, Rishabha

    2016-01-01

    In this review article, authors reviewed about the liposomes which are amongst various drug delivering systems for the delivery of the therapeutic agents at the target site. Advances in liposomal drug delivery systems for the cancer therapy have enhanced the therapeutic levels of the anticancer moieties. Liposomes show promising action on the tumor by incorporating less amount of drug at the target site, with minimum toxic effect and maximum therapeutic effect and thereby enhancing the bioavailability. Liposome-based drug delivery systems provide the potential to elevate the effect of drug concentration in tumor cells. Manuscript briefly describes the role of liposomes in cancer therapy and various patents based on the same. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape.

    PubMed

    Zylberberg, Claudia; Matosevic, Sandro

    2016-11-01

    Liposomes were the first nanoscale drug to be approved for clinical use in 1995. Since then, the technology has grown considerably, and pioneering recent work in liposome-based delivery systems has brought about remarkable developments with significant clinical implications. This includes long-circulating liposomes, stimuli-responsive liposomes, nebulized liposomes, elastic liposomes for topical, oral and transdermal delivery and covalent lipid-drug complexes for improved drug plasma membrane crossing and targeting to specific organelles. While the regulatory bodies' opinion on liposomes is well-documented, current guidance that address new delivery systems are not. This review describes, in depth, the current state-of-the-art of these new liposomal delivery systems and provides a critical overview of the current regulatory landscape surrounding commercialization efforts of higher-level complexity systems, the expected requirements and the hurdles faced by companies seeking to bring novel liposome-based systems for clinical use to market.

  14. Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier

    PubMed Central

    Vieira, Débora B; Gamarra, Lionel F

    2016-01-01

    This review summarizes articles that have been reported in literature on liposome-based strategies for effective drug delivery across the blood–brain barrier. Due to their unique physicochemical characteristics, liposomes have been widely investigated for their application in drug delivery and in vivo bioimaging for the treatment and/or diagnosis of neurological diseases, such as Alzheimer’s, Parkinson’s, stroke, and glioma. Several strategies have been used to deliver drug and/or imaging agents to the brain. Covalent ligation of such macromolecules as peptides, antibodies, and RNA aptamers is an effective method for receptor-targeting liposomes, which allows their blood–brain barrier penetration and/or the delivery of their therapeutic molecule specifically to the disease site. Additionally, methods have been employed for the development of liposomes that can respond to external stimuli. It can be concluded that the development of liposomes for brain delivery is still in its infancy, although these systems have the potential to revolutionize the ways in which medicine is administered. PMID:27799765

  15. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier.

    PubMed

    Vieira, Débora B; Gamarra, Lionel F

    This review summarizes articles that have been reported in literature on liposome-based strategies for effective drug delivery across the blood-brain barrier. Due to their unique physicochemical characteristics, liposomes have been widely investigated for their application in drug delivery and in vivo bioimaging for the treatment and/or diagnosis of neurological diseases, such as Alzheimer's, Parkinson's, stroke, and glioma. Several strategies have been used to deliver drug and/or imaging agents to the brain. Covalent ligation of such macromolecules as peptides, antibodies, and RNA aptamers is an effective method for receptor-targeting liposomes, which allows their blood-brain barrier penetration and/or the delivery of their therapeutic molecule specifically to the disease site. Additionally, methods have been employed for the development of liposomes that can respond to external stimuli. It can be concluded that the development of liposomes for brain delivery is still in its infancy, although these systems have the potential to revolutionize the ways in which medicine is administered.

  16. NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel.

    PubMed

    Gu, Zili; Chang, Minglu; Fan, Yang; Shi, Yanbin; Lin, Guimei

    2017-12-01

    As current tumor chemotherapy faces many challenges, it is important to develop drug delivery systems with increased tumor-targeting ability, enhanced therapeutic effects and reduced side effects. In this study, a pH-sensitive liposome was constructed containing CHEMS-anchored PEG2000 for extended circulation and NGR peptide as the targeting moiety. The NGR-modified docetaxel-loaded pH-sensitive extended-circulation liposomes (DTX/NGR-PLL) prepared possess suitable physiochemical properties, including particle size of approximately 200nm, drug encapsulation efficiency of approximately 70%, and pH-sensitive drug release properties. Experiments performed in vitro and in vivo on human fibrosarcoma cells (HT-1080) and human breast adenocarcinoma cells (MCF-7) verified the specific targeting ability and enhanced antitumor activity to HT-1080 cells. The results of intravenous administration demonstrated that NGR-modified liposomes can significantly and safely accumulate in tumor tissue in xenografted nude mice. In conclusion, the liposomes constructed hold promise as a safe and efficient drug delivery system for specific tumor treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Glioma targeted delivery strategy of doxorubicin-loaded liposomes by dual-ligand modification.

    PubMed

    Han, Wei; Yin, Guangfu; Pu, Ximing; Chen, Xianchun; Liao, Xiaoming; Huang, Zhongbing

    2017-10-01

    The blood-brain barrier (BBB) is the protective parclose of brain safety, but it is also the main obstacle of the drug delivery to cerebral parenchyma, which hamper therapy for brain diseases. In this work, a glioma targeted drug delivery system was developed through loading doxorubicin into Angiopep-2 and TAT peptide dual-modified liposomes (DOX-TAT-Ang-LIP). Low-density lipoprotein receptor-related protein-1 (LRP1) was one receptor overexpressed on both BBB and glioma cytomembranes. Angiopep-2, a specific ligand of LRP1, exhibited high LRP1 binding efficiency. Additionally, TAT could penetrate through cell membranes without selectivity via an unsaturated pathway. To avoid the receptor saturation of Angiopep-2, TAT was also conjugated on the surface of liposomes, providing that the liposomes not only have effective BBB penetrating effect, but also have the glioma targeting function. The prepared DOX liposomes appeared good stability and narrow dispersity in serum with a diameter of 90 nm, and exhibited sustained DOX release behaviors. The conjunctions of Angiopep-2 and TAT were confirmed by 1 H NMR spectra. The BBB model, cellular uptake observations, antiproliferation study, and the cell ultrastructure analyses suggested that DOX-TAT-Ang-LIP could not only penetrate through BBB via transcytosis, but also concentrate in glioma, then enter into glioma cells and finally result in the necrosis of glioma cells.

  18. Multifunctional targeted liposomal drug delivery for efficient glioblastoma treatment

    PubMed Central

    Belhadj, Zakia; Zhan, Changyou; Ying, Man; Wei, Xiaoli; Xie, Cao; Yan, Zhiqiang; Lu, Weiyue

    2017-01-01

    Glioblastoma multiforme (GBM) has been considered to be the most malignant brain tumors. Due to the existence of various barriers including the blood–brain barrier (BBB) and blood–brain tumor barrier (BBTB) greatly hinder the accumulation and deep penetration of chemotherapeutics, the treatment of glioma remains to be the most challenging task in clinic. In order to circumvent these hurdles, we developed a multifunctional liposomal glioma-targeted drug delivery system (c(RGDyK)/pHA-LS) modified with cyclic RGD (c(RGDyK)) and p-hydroxybenzoic acid (pHA) in which c(RGDyK) could target integrin αvβ3 overexpressed on the BBTB and glioma cells and pHA could target dopamine receptors on the BBB. In vitro, c(RGDyK)/pHA-LS could target glioblastoma cells (U87), brain capillary endothelial cells (bEnd.3) and umbilical vein endothelial cells (HUVECs) through a comprehensive pathway. Besides, c(RGDyK)/pHA-LS could also increase the cytotoxicity of doxorubicin encapsulated in liposomes on glioblastoma cells, and was able to penetrate inside the glioma spheroids after traversing the in vitro BBB and BBTB. In vivo, we demonstrated the targeting ability of c(RGDyK)/pHA-LS to intracranial glioma. As expected, c(RGDyK)/pHA-LS/DOX showed a median survival time of 35 days, which was 2.31-, 1.76- and 1.5-fold higher than that of LS/DOX, c(RGDyK)-LS/DOX, and pHA-LS/DOX, respectively. The findings here suggested that the multifunctional glioma-targeted drug delivery system modified with both c(RGDyK) and pHA displayed strong antiglioma efficiency in vitro and in vivo, representing a promising platform for glioma therapy. PMID:28978003

  19. Current trends in the use of liposomes for tumor targeting

    PubMed Central

    Deshpande, Pranali P; Biswas, Swati; Torchilin, Vladimir P

    2013-01-01

    The use of liposomes for drug delivery began early in the history of pharmaceutical nanocarriers. These nanosized, lipid bilayered vesicles have become popular as drug delivery systems owing to their efficiency, biocompatibility, nonimmunogenicity, enhanced solubility of chemotherapeutic agents and their ability to encapsulate a wide array of drugs. Passive and ligand-mediated active targeting promote tumor specificity with diminished adverse off-target effects. The current field of liposomes focuses on both clinical and diagnostic applications. Recent efforts have concentrated on the development of multifunctional liposomes that target cells and cellular organelles with a single delivery system. This review discusses the recent advances in liposome research in tumor targeting. PMID:23914966

  20. Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems.

    PubMed

    Miyazaki, Maiko; Yuba, Eiji; Hayashi, Hiroshi; Harada, Atsushi; Kono, Kenji

    2018-01-17

    For the enhancement of therapeutic effects and reduction of side effects derived from anticancer drugs in cancer chemotherapy, it is imperative to develop drug delivery systems with cancer-specificity and controlled release function inside cancer cells. pH-sensitive liposomes are useful as an intracellular drug delivery system because of their abilities to transfer their contents into the cell interior through fusion or destabilization of endosome, which has weakly acidic environment. We earlier reported liposomes modified with various types of pH-sensitive polymers based on synthetic polymers and biopolymers as vehicles for intracellular drug delivery systems. In this study, hyaluronic acid (HA)-based pH-sensitive polymers were designed as multifunctional polymers having not only pH-sensitivity but also targeting properties to cells expressing CD44, which is known as a cancer cell surface marker. Carboxyl group-introduced HA derivatives of two types, MGlu-HA and CHex-HA, which have a more hydrophobic side chain structure than that of MGlu-HA, were synthesized by reaction with various dicarboxylic anhydrides. These polymer-modified liposomes were stable at neutral pH, but showed content release under weakly acidic conditions. CHex-HA-modified liposomes delivered their contents into CD44-expressing cells more efficiently than HA-modified or MGlu-HA-modified liposomes or unmodified liposomes, whereas the same liposomes were taken up only slightly by cells expressing CD44 proteins less. Competition assay using free HA or other polymers revealed that HA derivative-modified liposomes might be recognized by CD44. Therefore, HA-derivative-modified liposomes are useful as cell-specific intracellular drug delivery systems.

  1. Simultaneous quantification of tumor uptake for targeted and non-targeted liposomes and their encapsulated contents by ICP-MS

    PubMed Central

    Cheng, Zhiliang; Zaki, Ajlan Al; Hui, James Z; Tsourkas, Andrew

    2012-01-01

    Liposomes are intensively being developed for biomedical applications including drug and gene delivery. However, targeted liposomal delivery in cancer treatment is a very complicated multi-step process. Unfavorable liposome biodistribution upon intravenous administration and membrane destabilization in blood circulation could result in only a very small fraction of cargo reaching the tumors. It would therefore be desirable to develop new quantitative strategies to track liposomal delivery systems to improve the therapeutic index and decrease systemic toxicity. Here, we developed a simple and non-radiative method to quantify the tumor uptake of targeted and non-targeted control liposomes as well as their encapsulated contents simultaneously. Specifically, four different chelated lanthanide metals were encapsulated or surface-conjugated onto tumor-targeted and non-targeted liposomes, respectively. The two liposome formulations were then injected into tumor-bearing mice simultaneously and their tumor delivery was determined quantitatively via inductively coupled plasma-mass spectroscopy (ICP-MS), allowing for direct comparisons. Tumor uptake of the liposomes themselves and their encapsulated contents were consistent with targeted and non-targeted liposome formulations that were injected individually. PMID:22882145

  2. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects.

    PubMed

    Song, Zhiwang; Lin, Yun; Zhang, Xia; Feng, Chan; Lu, Yonglin; Gao, Yong; Dong, Chunyan

    2017-01-01

    Apatinib is an oral tyrosine kinase inhibitor, which selectively targets vascular endothelial growth factor receptor 2 and has the potential to treat many tumors therapeutically. Cyclic arginylglycylaspartic acid (cRGD)- and polyethylene glycol (PEG)-modified liposomes (cRGD-Lipo-PEG) were constructed to act as a targeted delivery system for the delivery of apatinib to the human colonic cancer cell line, HCT116. These cRGD-modified liposomes specifically recognized integrin α v β 3 and exhibited greater uptake efficiency with respect to delivering liposomes into HCT116 cells when compared to nontargeted liposomes (Lipo-PEG), as well as greater death of tumor cells and apoptosis. The mechanism by which cRGD-Lipo-PEG targets cells was elucidated further with competition assays. To determine the anticancer efficacy in vivo, nude mice were implanted with HCT116 xenografts and treated with apatinib-loaded liposomes or free apatinib intravenously or via intragastric administration. The active and passive targeting of cRGD-Lipo-PEG led to significant tumor treatment targeting ability, better inhibition of tumor growth, and less toxicity when compared with treatments using uncombined apatinib. The results presented strongly support the case for cRGD-Lipo-PEG representing a targeted delivery system for apatinib in the treatment of colonic cancer.

  3. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects

    PubMed Central

    Song, Zhiwang; Lin, Yun; Zhang, Xia; Feng, Chan; Lu, Yonglin; Gao, Yong; Dong, Chunyan

    2017-01-01

    Apatinib is an oral tyrosine kinase inhibitor, which selectively targets vascular endothelial growth factor receptor 2 and has the potential to treat many tumors therapeutically. Cyclic arginylglycylaspartic acid (cRGD)- and polyethylene glycol (PEG)-modified liposomes (cRGD-Lipo-PEG) were constructed to act as a targeted delivery system for the delivery of apatinib to the human colonic cancer cell line, HCT116. These cRGD-modified liposomes specifically recognized integrin αvβ3 and exhibited greater uptake efficiency with respect to delivering liposomes into HCT116 cells when compared to nontargeted liposomes (Lipo-PEG), as well as greater death of tumor cells and apoptosis. The mechanism by which cRGD-Lipo-PEG targets cells was elucidated further with competition assays. To determine the anticancer efficacy in vivo, nude mice were implanted with HCT116 xenografts and treated with apatinib-loaded liposomes or free apatinib intravenously or via intragastric administration. The active and passive targeting of cRGD-Lipo-PEG led to significant tumor treatment targeting ability, better inhibition of tumor growth, and less toxicity when compared with treatments using uncombined apatinib. The results presented strongly support the case for cRGD-Lipo-PEG representing a targeted delivery system for apatinib in the treatment of colonic cancer. PMID:28331317

  4. Application of liposomes in drug development — focus on gastroenterological targets

    PubMed Central

    Zhang, Jian-Xin; Wang, Kun; Mao, Zheng-Fa; Fan, Xin; Jiang, De-Li; Chen, Min; Cui, Lei; Sun, Kang; Dang, Sheng-Chun

    2013-01-01

    Over the past decade, liposomes became a focal point in developing drug delivery systems. New liposomes, with novel lipid molecules or conjugates, and new formulations opened possibilities for safely and efficiently treating many diseases including cancers. New types of liposomes can prolong circulation time or specifically deliver drugs to therapeutic targets. This article concentrates on current developments in liposome based drug delivery systems for treating diseases of the gastrointestinal tract. We will review different types and uses of liposomes in the development of therapeutics for gastrointestinal diseases including inflammatory bowel diseases and colorectal cancer. PMID:23630417

  5. Pros and cons of the liposome platform in cancer drug targeting.

    PubMed

    Gabizon, Alberto A; Shmeeda, Hilary; Zalipsky, Samuel

    2006-01-01

    Coating of liposomes with polyethylene-glycol (PEG) by incorporation in the liposome bilayer of PEG-derivatized lipids results in inhibition of liposome uptake by the reticulo-endothelial system and significant prolongation of liposome residence time in the blood stream. Parallel developments in drug loading technology have improved the efficiency and stability of drug entrapment in liposomes, particularly with regard to cationic amphiphiles such as anthracyclines. An example of this new generation of liposomes is a formulation of pegylated liposomal doxorubicin known as Doxil or Caelyx, whose clinical pharmacokinetic profile is characterized by slow plasma clearance and small volume of distribution. A hallmark of these long-circulating liposomal drug carriers is their enhanced accumulation in tumors. The mechanism underlying this passive targeting effect is the phenomenon known as enhanced permeability and retention (EPR) which has been described in a broad variety of experimental tumor types. Further to the passive targeting effect, the liposome drug delivery platform offers the possibility of grafting tumor-specific ligands on the liposome membrane for active targeting to tumor cells, and potentially intracellular drug delivery. The pros and cons of the liposome platform in cancer targeting are discussed vis-à-vis nontargeted drugs, using as an example a liposome drug delivery system targeted to the folate receptor.

  6. Micromixer Based Preparation of Functionalized Liposomes and Targeting Drug Delivery

    PubMed Central

    2016-01-01

    We present here a specific targeting nanocarrier system by functionalization of liposomes with one new type of breast cancer targeting peptide (H6, YLFFVFER) by a micromixer with high efficiency. Antitumor drugs could be successfully delivered into human epidermal growth factor receptor 2 (HER2) positive breast cancer cells with high efficiency in both in vivo and ex vivo models. PMID:27096054

  7. Micromixer Based Preparation of Functionalized Liposomes and Targeting Drug Delivery.

    PubMed

    Jia, Xiangqian; Wang, Weizhi; Han, Qiuju; Wang, Zihua; Jia, Yunhong; Hu, Zhiyuan

    2016-04-14

    We present here a specific targeting nanocarrier system by functionalization of liposomes with one new type of breast cancer targeting peptide (H6, YLFFVFER) by a micromixer with high efficiency. Antitumor drugs could be successfully delivered into human epidermal growth factor receptor 2 (HER2) positive breast cancer cells with high efficiency in both in vivo and ex vivo models.

  8. Stimuli-responsive Smart Liposomes in Cancer Targeting.

    PubMed

    Jain, Ankit; Jain, Sanjay K

    2018-02-08

    Liposomes are vesicular carriers which possess aqueous core entrapped within the lipid bilayer. These are carriers of choice because of biocompatible and biodegradable features in addition to flexibility of surface modifications at surface and lipid compositions of lipid bilayers. Liposomes have been reported well for cancer treatment using both passive and active targeting approaches however tumor microenvironment is still the biggest hurdle for safe and effective delivery of anticancer agents. To overcome this problem, stimuli-responsive smart liposomes have emerged as promising cargoes pioneered to anomalous tumor milieu in response to pH, temperature, and enzymes etc. as internal triggers, and magnetic field, ultrasound, and redox potential as external guides for enhancement of drug delivery to tumors. This review focuses on all such stimuli-responsive approaches using fabrication potentiality of liposomes in combination to various ligands, linkers, and PEGylation etc. Scientists engaged in cancer targeting approaches can get benefited greatly with this knowledgeable assemblage of advances in liposomal nanovectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. PLGA/polymeric liposome for targeted drug and gene co-delivery.

    PubMed

    Wang, Hanjie; Zhao, Peiqi; Su, Wenya; Wang, Sheng; Liao, Zhenyu; Niu, Ruifang; Chang, Jin

    2010-11-01

    Chemotherapy is one of the most effective approaches to treat cancers in the clinic, but the problems, such as multidrug resistance (MDR), low bioavailability and toxicity, severely constrain the further application of chemotherapy. Our group recently reported that cationic PLGA/folate coated PEGlated polymeric liposome core-shell nanoparticles (PLGA/FPL NPs). It was self-assembled from a hydrophobic PLGA core and a hydrophilic folate coated PEGlated lipid shell for targeting co-delivery of drug and gene. Hydrophobic drugs can be incorporated into the core and the cationic shell of the drug-loaded nanoparticles can be used to bind DNA. The drug-loaded PLGA/FPL NPs/DNA complexes offer advantages to overcome these problems mentioned above, such as co-delivery of drugs and DNA to improving the chemosensitivity of cancer cells at a gene level, and targeting delivery of drug to the cancer tissue that enhance the bioavailability and reduce the toxicity. The experiment showed that nanoparticles have core-shell structure with nanosize, sustained drug release profile and good DNA-binding ability. Importantly, the core-shell nanoparticles achieve the possibility of co-delivering drugs and genes to the same cells with high gene transfection and drug delivery efficiency. Our data suggest that the PLGA/FPL NPs may be a useful drug and gene co-delivery system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    PubMed Central

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  11. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis

    NASA Astrophysics Data System (ADS)

    Yu-Wai-Man, Cynthia; Tagalakis, Aristides D.; Manunta, Maria D.; Hart, Stephen L.; Khaw, Peng T.

    2016-02-01

    There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye.

  12. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery.

    PubMed

    Zou, Peng; Stern, Stephan T; Sun, Duxin

    2014-03-01

    Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly (lactic-coglycolicacid) (PLGA). BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 min. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 h. The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs.

  13. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery

    PubMed Central

    Zou, Peng; Stern, Stephan T.; Sun, Duxin

    2014-01-01

    Purpose Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly( lactic-coglycolicacid) (PLGA). Methods BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). Results FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 minutes. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 hours. Conclusions The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs. PMID:24065591

  14. Protease-sensitive, polymer-caged liposomes: a method for making highly targeted liposomes using triggered release.

    PubMed

    Basel, Matthew T; Shrestha, Tej B; Troyer, Deryl L; Bossmann, Stefan H

    2011-03-22

    Liposomes have become useful and well-known drug delivery vehicles because of their ability to entrap drugs without chemically modifying them and to deliver them somewhat selectively to tumorous tissue via the enhanced permeation and retention (EPR) effect. Although useful, liposome preparations are still less than ideal because of imperfect specificity, slow release kinetics in the tumor, and leakiness prior to reaching the tumor site. Cancer-associated proteases (CAPs), which are differentially expressed in tumors, have also gained traction recently as a method for tumor targeting and drug delivery. By combining the EPR effect with CAPs sensitivity, a much more specific liposome can be produced. The method described here creates an improved liposome system that can target more specifically, with faster release kinetics and lower general leaking, by deliberately producing a very unstable liposome (loaded with hyperosmotic vehicle) that is subsequently stabilized by a cross-linked polymer shell containing consensus sequences for cancer-associated proteases (protease-triggered, caged liposomes). A cholesterol-anchored, graft copolymer, composed of a short peptide sequence for urokinase plasminogen activator (uPA) and poly(acrylic acid), was synthesized and incorporated into liposomes prepared at high osmolarities. Upon cross-linking of the polymers, the protease-triggered, caged liposomes showed significant resistance to osmotic swelling and leaking of contents. Protease-triggered, caged liposomes also showed significant and substantial differential release of contents in the presence of uPA, while bare liposomes showed no differential effect in the presence of uPA. Thus a protease-sensitive liposome system with fast release kinetics was developed that could be used for more specific targeting to tumors.

  15. Plasmon resonant liposomes for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  16. Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug.

    PubMed

    Shim, Gayong; Han, Su-Eun; Yu, Yong-Hee; Lee, Sangbin; Lee, Han Young; Kim, Kwangmeyung; Kwon, Ick Chan; Park, Tae Gwan; Kim, Young Bong; Choi, Yong Seok; Kim, Chan-Wha; Oh, Yu-Kyoung

    2011-10-10

    Oligolysine-based cationic lipid derivatives were synthesized for delivery of siRNA, and formulated into cationic liposomes. Among various oligolysine-based lipid derivatives differing in lysine residue number and lipid moiety, trilysinoyl oleylamide (TLO)-based liposomes (TLOL) showed the highest delivery efficiency combined with minimal cytotoxicity. Delivery of siRNA using TLOL silenced target genes both in vitro and in vivo. In green fluorescent protein (GFP)-expressing tumor tissue, a significant reduction of fluorescence was observed after intratumoral administration of siGFP using TLOL compared with control siGL2. Intravenous administration of siMcl1 employing pegylated TLOL (pTLOL) reduced the expression of human Mcl1 protein in KB-xenografted tumor tissue. Despite the reduction in target protein Mcl1 expression following such systemic delivery, tumor growth was only slightly reduced compared to a siGL2-treated control group. To potentiate the anticancer activity of siMcl1, the anticancer drug suberoylanilide hydroxamic acid (SAHA) was additionally encapsulated in pTLOL. After intravenous administration of siMcl1 using SAHA-loaded pTLOL (pSTLOL), a significant reduction in tumor growth was observed compared to that seen in animals treated with free SAHA or siGL2 complexed with pSTLOL. The results indicate that pTLOL could be further developed as a systemic delivery system for synergistic anticancer siRNA and a drug. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue

    PubMed Central

    Joshi, Shailendra; Singh-Moon, Rajinder P.; Wang, Mei; Chaudhuri, Durba B.; Holcomb, Mark; Straubinger, Ninfa L.; Bruce, Jeffrey N.; Bigio, Irving J.; Straubinger, Robert M.

    2014-01-01

    Object Transient cerebral hypoperfusion (TCH) has empirically been used to assist intraarterial (IA) drug delivery to brain tumors. Transient (< 3 min) reduction of cerebral blood flow (CBF) occurs during many neuro- and cardiovascular interventions and has recently been used to better target IA drugs to brain tumors. In the present experiments, we assessed whether the effectiveness of IA delivery of cationic liposomes could be improved by TCH. Methods Cationic liposomes composed of 1:1 DOTAP:PC (dioleoyl-trimethylammonium-propane:phosphatidylcholine) were administered to three groups of Sprague Dawley rats. In the first group, we tested the effect of blood flow reduction on IA delivery of cationic liposomes. In the second group, we compared TCH-assisted IA liposomal delivery vs. intravenous (IV) administration of the same dose. In the third group, we assessed retention of cationic liposomes in brain four hours after TCH assisted delivery. The liposomes contained a near infrared dye, DilC18(7), whose concentration could be measured in vivo by diffuse reflectance spectroscopy. Results IA injections of cationic liposomes during TCH increased their delivery approximately four-fold compared to injections during normal blood flow. Optical pharmacokinetic measurements revealed that relative to IV injections, IA injection of cationic liposomes during TCH produced tissue concentrations that were 100-fold greater. The cationic liposomes were retained in the brain tissue four hours after a single IA injection. There was no gross impairment of neurological functions in surviving animals. Conclusions Transient reduction in CBF significantly increased IA delivery of cationic liposomes in the brain. High concentrations of liposomes could be delivered to brain tissue after IA injections with concurrent TCH while none could be detected after IV injection. IA-TCH injections were well tolerated and cationic liposomes were retained for at least 4 hours after IA administration. These

  18. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation.

    PubMed

    Ravar, Fatemeh; Saadat, Ebrahim; Gholami, Mehdi; Dehghankelishadi, Pouya; Mahdavi, Mehdi; Azami, Samira; Dorkoosh, Farid A

    2016-05-10

    Breast cancer is the leading cause of cancer death in women. Chemotherapy is regarded as the most essential strategy in inhibiting the proliferation of tumor cells. Paclitaxel is a widely used taxane; however, the side effects of available Cremophor-based formulations and also the limitations of passive targeting uncovered an essential need to develop tumor-specific targeted nanocarriers. A hyaluronic acid targeted liposomal formulation of paclitaxel was prepared in which, hyaluronic acid was electrostatistically attracted to the surface of liposomes. Liposomes, had a particle size of 106.4±3.2nm, a weakly negative zeta potential of -9.7±0.8mV and an acceptable encapsulation efficiency of 92.1±1.7%. The release profile of liposomes in buffer showed that 95% of PTX was released during 40h. Confocal laser scanning microscopy and flow cytometry analysis showed the greater cellular internalization of coumarin-loaded liposomes compared to free coumarin. MTT assay on 4T1 and T47D cells demonstrated the stronger cytotoxic activity of liposomes in comparison to free paclitaxel. Cell cycle analysis showed that cells were mainly blocked at G2/M phases after 48h treatment with liposomes. In vivo real time imaging on 4T1 tumor-bearing mice revealed that the liposomal formulation mainly accumulated in the tumor area. Liposomes also had better antitumor efficacy against Cremophor-based formulation. In conclusion, hyaluronic acid targeted paclitaxel liposome can serve as a promising targeted formulation of paclitaxel for future cancer chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications.

    PubMed

    Zangabad, Parham Sahandi; Mirkiani, Soroush; Shahsavari, Shayan; Masoudi, Behrad; Masroor, Maryam; Hamed, Hamid; Jafari, Zahra; Taghipour, Yasamin Davatgaran; Hashemi, Hura; Karimi, Mahdi; Hamblin, Michael R

    2018-02-01

    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among different types of self-assembled NPs, liposomes stand out for their non-toxic nature, and their possession of dual hydrophilic-hydrophobic domains. Advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. Firstly, ligands for active targeting can be attached that are recognized by cognate receptors over-expressed on the target cells of tissues. Secondly, modification can be used to impart a stimulus-responsive or "smart" character to the liposomes, whereby the cargo is released on demand only when certain internal stimuli (pH, reducing agents, specific enzymes) or external stimuli (light, magnetic field or ultrasound) are present. Here, we review the field of smart liposomes for drug delivery applications.

  20. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery.

    PubMed

    Paliwal, Shivani Rai; Paliwal, Rishi; Vyas, Suresh P

    2015-05-01

    The pH-sensitive liposomes have been extensively used as an alternative to conventional liposomes in effective intracellular delivery of therapeutics/antigen/DNA/diagnostics to various compartments of the target cell. Such liposomes are destabilized under acidic conditions of the endocytotic pathway as they usually contain pH-sensitive lipid components. Therefore, the encapsulated content is delivered into the intracellular bio-environment through destabilization or its fusion with the endosomal membrane. The therapeutic efficacy of pH-sensitive liposomes enables them as biomaterial with commercial utility especially in cancer treatment. In addition, targeting ligands including antibodies can be anchored on the surface of pH-sensitive liposomes to target specific cell surface receptors/antigen present on tumor cells. These vesicles have also been widely explored for antigen delivery and serve as immunological adjuvant to enhance the immune response to antigens. The present review deals with recent research updates on application of pH-sensitive liposomes in chemotherapy/diagnostics/antigen/gene delivery etc.

  1. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery.

    PubMed

    Dai, Min; Wu, Cong; Fang, Hong-Ming; Li, Li; Yan, Jia-Bao; Zeng, Dan-Lin; Zou, Tao

    2017-06-01

    We prepared and characterised thermo-responsive magnetic liposomes, which were designed to combine features of magnetic targeting and thermo-responsive control release for hyperthermia-triggered local drug delivery. The particle size and zeta-potential of the thermo-responsive magnetic ammonium bicarbonate (MagABC) liposomes were about 210 nm and -14 mV, respectively. The MagABC liposomes showed encapsulation efficiencies of about 15% and 82% for magnetic nanoparticles (mean crystallite size 12 nm) and doxorubicin (DOX), respectively. The morphology of the MagABC liposomes was visualised using transmission electron microscope (TEM). The MagABC liposomes showed desired thermo-responsive release. The MagABC liposomes, when physically targeted to tumour cells in culture by a permanent magnetic field yielded a substantial increase in intracellular accumulation of DOX as compared to non-magnetic ammonium bicarbonate (ABC) liposomes. This resulted in a parallel increase in cytotoxicity for DOX loaded MagABC liposomes over DOX loaded ABC liposomes in tumour cells.

  2. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.

    2015-11-01

    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging.

  3. Liposome-Based Nanomedicine Therapeutics for Rheumatoid Arthritis.

    PubMed

    Rahman, Mahfoozur; Beg, Sarwar; Anwar, Firoz; Kumar, Vikas; Ubale, Ruhi; Addo, Richard T; Ali, Raisuddin; Akhter, Sohail

    2017-01-01

    Rheumatoid arthritis (RA) is a very painful severe autoimmune disease with complex pathology characterized by progressive chronic inflammation, and devastation of the synovium, cartilage, and other joint-associated structures. Significant advances in research in the area of pathophysiology, diagnosis, drug development, and targeted delivery have led to improved RA therapy and better patient compliance. Targeted drug delivery using liposomal nanomedicines significantly alleviate the challenges with conventional anti-RA medications such as off-target effects, short biological half-life, poor bioavailability, high dose-related toxicity, etc. Liposomal nanomedicines in RA drug targeting offer the opportunity for passive targeting [based on size and polyethylene glycol (PEG)-ylation-mediated enhanced permeability and retention] and active targeting (ligation with antibody or peptides, etc.) and encapsulation of lipophilic, hydrophilic drugs, and/or combinational drugs. However, it has been found recently that such injectable nanomedicines raise the concern of an adverse immune phenomenon called complement activationrelated pseudo allergy (CARPA) and failure of therapy on multiple doses due to accelerated body clearance caused many by anti-PEG immunoglobulin M. To ensure safety and efficacy of RA therapy, these need to be considered along with the common formulation quality parameters. Here, we discuss nanotherapeutic targeting in RA therapy using liposomes. Liposomal nanoparticles are investigated for individual anti-RA drug categories. CARPA issues and pathophysiology with such nanomedicines are also discussed in detail.

  4. Use of liposomes as injectable-drug delivery systems.

    PubMed

    Ostro, M J; Cullis, P R

    1989-08-01

    The formation of liposomes and their application as delivery systems for injectable drugs are described. Liposomes are microscopic vesicles composed of one or more lipid membranes surrounding discrete aqueous compartments. These vesicles can encapsulate water-soluble drugs in their aqueous spaces and lipid-soluble drugs within the membrane itself. Liposomes release their contents by interacting with cells in one of four ways: adsorption, endocytosis, lipid exchange, or fusion. Liposome-entrapped drugs are distributed within the body much differently than free drugs; when administered intravenously to healthy animals and humans, most of the injected vesicles accumulate in the liver, spleen, lungs, bone marrow, and lymph nodes. Liposomes also accumulate preferentially at the sites of inflammation and infection and in some solid tumors; however, the reason for this accumulation is not clear. Four major factors influence liposomes' in vivo behavior and biodistribution: (1) liposomes tend to leak if cholesterol is not included in the vesicle membrane, (2) small liposomes are cleared more slowly than large liposomes, (3) the half-life of a liposome increases as the lipid dose increases, and (4) charged liposomal systems are cleared more rapidly than uncharged systems. The most advanced application of liposome-based therapy is in the treatment of systemic fungal infections, especially with amphotericin B. Liposomes are also under investigation for treatment of neoplastic disorders. Liposomes' uses in cancer therapy include encapsulation of known antineoplastic agents such as doxorubicin and methotrexate, delivery of immune modulators such as N-acetylmuramyl-L-alanine-D-isoglutamine, and encapsulation of new chemical entities that are synthesized with lipophilic segments tailored for insertion into lipid bilayers. Liposomal formulations of injectable antimicrobial agents and antineoplastic agents already are undergoing clinical testing, and most probably will receive

  5. Liposomal nanoparticles as a drug delivery vehicle against osteosarcoma

    NASA Astrophysics Data System (ADS)

    Dhule, Santosh Subhashrao

    with folate for targeted delivery in vivo, a significant reduction in tumor size was observed with C6-curcumin-folate liposomes. The encapsulation of two water insoluble drugs, curcumin and C6, in the lipid bilayer of liposomes enhances the cytotoxic effect and validates the potential of combined drug therapy.

  6. Application of Various Types of Liposomes in Drug Delivery Systems

    PubMed Central

    Alavi, Mehran; Karimi, Naser; Safaei, Mohsen

    2017-01-01

    Liposomes, due to their various forms, require further exploration. These structures can deliver both hydrophilic and hydrophobic drugs for cancer, antibacterial, antifungal, immunomodulation, diagnostics, ophtalmica, vaccines, enzymes and genetic elements. Preparation of liposomes results in different properties for these systems. In addition, based on preparation methods, liposomes types can be unilamellar, multilamellar and giant unilamellar; however, there are many factors and difficulties that affect the development of liposome drug delivery structure. In the present review, we discuss some problems that impact drug delivery by liposomes. In addition, we discuss a new generation of liposomes, which is utilized for decreasing the limitation of the conventional liposomes. PMID:28507932

  7. Renal-targeted delivery of triptolide by entrapment in pegylated TRX-20-modified liposomes

    PubMed Central

    Yuan, Zhi-xiang; Jia, Lu; Lim, Lee Yong; Lin, Ju-chun; Shu, Gang; Zhao, Ling; Ye, Gang; Liang, Xiao-xia; Ji, Hongming; Fu, Hua-lin

    2017-01-01

    Previously, 3,5-dipentadecyloxybenzamidine hydrochloride (TRX-20)-modified liposomes were reported to specifically target mesangial cells (MCs) in glomeruli. To further gain a better understanding of the characteristics and potential application for glomerular diseases of TRX-20-modified liposomes, we synthesized TRX-20 and prepared TRX-20-modified liposomes (TRX-LPs) with different molar ratios – 6% (6%-TRX-LP), 11% (11%-TRX-LP), and 14% (14%-TRX-LP) – of TRX-20 to total lipid in the present study. All TRX-LPs exhibited concentration-dependent toxicity against the MCs at a lipid concentration ranging from 0.01 to 1.0 mg/mL with IC50 values of 3.45, 1.13, and 0.55 mg/mL, respectively. Comparison of the cell viability of TRX-LPs indicated that high levels of TRX-20 caused severe cell mortality, with 11%-TRX-LP showing the higher cytoplasmic accumulation in the MCs. Triptolide (TP) as a model drug was first loaded into 11%-TRX-LP and the liposomes were further modified with PEG5000 (PEG-TRX-TP-LP) in an attempt to prolong their circulation in blood and enhance TP-mediated immune suppression. Due to specific binding to MCs, PEG-TRX-TP-LP undoubtedly showed better anti-inflammatory action in vitro, evidenced by the inhibition of release of nitric oxide (NO) and tumor necrosis factor-α from lipopolysaccharide-stimulated MCs, compared with free TP at the same dose. In vivo, the PEG-TRX-TP-LP effectively attenuated the symptoms of membranous nephropathic (MN) rats and improved biochemical markers including proteinuria, serum cholesterol, and albumin. Therefore, it can be concluded that the TRX-modified liposome is an effective platform to target the delivery of TP to glomeruli for the treatment of MN. PMID:28848346

  8. Renal-targeted delivery of triptolide by entrapment in pegylated TRX-20-modified liposomes.

    PubMed

    Yuan, Zhi-Xiang; Jia, Lu; Lim, Lee Yong; Lin, Ju-Chun; Shu, Gang; Zhao, Ling; Ye, Gang; Liang, Xiao-Xia; Ji, Hongming; Fu, Hua-Lin

    2017-01-01

    Previously, 3,5-dipentadecyloxybenzamidine hydrochloride (TRX-20)-modified liposomes were reported to specifically target mesangial cells (MCs) in glomeruli. To further gain a better understanding of the characteristics and potential application for glomerular diseases of TRX-20-modified liposomes, we synthesized TRX-20 and prepared TRX-20-modified liposomes (TRX-LPs) with different molar ratios - 6% (6%-TRX-LP), 11% (11%-TRX-LP), and 14% (14%-TRX-LP) - of TRX-20 to total lipid in the present study. All TRX-LPs exhibited concentration-dependent toxicity against the MCs at a lipid concentration ranging from 0.01 to 1.0 mg/mL with IC 50 values of 3.45, 1.13, and 0.55 mg/mL, respectively. Comparison of the cell viability of TRX-LPs indicated that high levels of TRX-20 caused severe cell mortality, with 11%-TRX-LP showing the higher cytoplasmic accumulation in the MCs. Triptolide (TP) as a model drug was first loaded into 11%-TRX-LP and the liposomes were further modified with PEG 5000 (PEG-TRX-TP-LP) in an attempt to prolong their circulation in blood and enhance TP-mediated immune suppression. Due to specific binding to MCs, PEG-TRX-TP-LP undoubtedly showed better anti-inflammatory action in vitro, evidenced by the inhibition of release of nitric oxide (NO) and tumor necrosis factor-α from lipopolysaccharide-stimulated MCs, compared with free TP at the same dose. In vivo, the PEG-TRX-TP-LP effectively attenuated the symptoms of membranous nephropathic (MN) rats and improved biochemical markers including proteinuria, serum cholesterol, and albumin. Therefore, it can be concluded that the TRX-modified liposome is an effective platform to target the delivery of TP to glomeruli for the treatment of MN.

  9. Evaluation of pharmacokinetic and pharmacodynamic profiles of liposomes for the cell type-specific delivery of small molecule drugs.

    PubMed

    Dasa, Siva Sai Krishna; Suzuki, Ryo; Mugler, Emily; Chen, Lanlin; Jansson-Löfmark, Rasmus; Michaëlsson, Erik; Lindfors, Lennart; Klibanov, Alexander L; French, Brent A; Kelly, Kimberly A

    2017-11-01

    Liposome-based drug formulations represent an exciting avenue of research as they increase efficacy to toxicity ratios. Current formulations rely on passive accumulation to the disease site where drug is taken up by the cells. Ligand mediated targeting increases the net accumulation of liposomes, however, an unexplored benefit is to potentially refine pharmacodynamics (PD) of a drug specifically to different cell types within diseased tissue. As a model system, we engineered cardiomyocyte- (I-1) and endothelial-targeted (B-40) liposomes to carry a VEGFR2 inhibitor (PTK787), and examined the effect of cell type-specific delivery on both pharmacokinetics (PK) and PD. Neovascularization in post-myocardial infarction was significantly reduced by B-40 liposomes loaded with PTK787 as compared to animals injected with I-1 liposomes, and profoundly more as compared to free PTK787. This study thus shows that the intraorgan targeting of drugs through cell type-specific delivery holds substantial promise towards lowering the minimal efficacious dose administered systemically. Published by Elsevier Inc.

  10. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome.

    PubMed

    Zhen, Shuai; Takahashi, Yoichiro; Narita, Shunichi; Yang, Yi-Chen; Li, Xu

    2017-02-07

    The potent ability of CRISPR/Cas9 system to inhibit the expression of targeted gene is being exploited as a new class of therapeutics for a variety of diseases. However, the efficient and safe delivery of CRISPR/Cas9 into specific cell populations is still the principal challenge in the clinical development of CRISPR/Cas9 therapeutics. In this study, a flexible aptamer-liposome-CRISPR/Cas9 chimera was designed to combine efficient delivery and increased flexibility. Our chimera incorporated an RNA aptamer that specifically binds prostate cancer cells expressing the prostate-specific membrane antigen as a ligand. Cationic liposomes were linked to aptamers by the post-insertion method and were used to deliver therapeutic CRISPR/Cas9 that target the survival gene, polo-like kinase 1, in tumor cells. We demonstrate that the aptamer-liposome-CRISPR/Cas9 chimeras had a significant cell-type binding specificity and a remarkable gene silencing effect in vitro. Furthermore, silencing promoted a conspicuous regression of prostate cancer in vivo. Importantly, the approach described here provides a universal means of cell type-specific CRISPR/Cas9 delivery, which is a critical goal for the widespread therapeutic applicability of CRISPR/Cas9 or other nucleic acid drugs.

  11. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome

    PubMed Central

    Zhen, Shuai; Takahashi, Yoichiro; Narita, Shunichi; Yang, Yi-Chen; Li, Xu

    2017-01-01

    The potent ability of CRISPR/Cas9 system to inhibit the expression of targeted gene is being exploited as a new class of therapeutics for a variety of diseases. However, the efficient and safe delivery of CRISPR/Cas9 into specific cell populations is still the principal challenge in the clinical development of CRISPR/Cas9 therapeutics. In this study, a flexible aptamer-liposome-CRISPR/Cas9 chimera was designed to combine efficient delivery and increased flexibility. Our chimera incorporated an RNA aptamer that specifically binds prostate cancer cells expressing the prostate-specific membrane antigen as a ligand. Cationic liposomes were linked to aptamers by the post-insertion method and were used to deliver therapeutic CRISPR/Cas9 that target the survival gene, polo-like kinase 1, in tumor cells. We demonstrate that the aptamer-liposome-CRISPR/Cas9 chimeras had a significant cell-type binding specificity and a remarkable gene silencing effect in vitro. Furthermore, silencing promoted a conspicuous regression of prostate cancer in vivo. Importantly, the approach described here provides a universal means of cell type–specific CRISPR/Cas9 delivery, which is a critical goal for the widespread therapeutic applicability of CRISPR/Cas9 or other nucleic acid drugs. PMID:28030843

  12. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics.

    PubMed

    Sonali; Singh, Rahul Pratap; Singh, Nitesh; Sharma, Gunjan; Vijayakumar, Mahalingam R; Koch, Biplob; Singh, Sanjay; Singh, Usha; Dash, Debabrata; Pandey, Bajarangprasad L; Muthu, Madaswamy S

    2016-05-01

    Diagnosis and therapy of brain cancer was often limited due to low permeability of delivery materials across the blood-brain barrier (BBB) and their poor penetration into the brain tissue. This study explored the possibility of utilizing theranostic d-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester (TPGS) liposomes as nanocarriers for minimally invasive brain-targeted imaging and therapy (brain theranostics). The aim of this work was to formulate transferrin conjugated TPGS coated theranostic liposomes, which contain both docetaxel and quantum dots (QDs) for imaging and therapy of brain cancer. The theranostic liposomes with and without transferrin decoration were prepared and characterized for their particle size, polydispersity, morphology, drug encapsulation efficiency, in-vitro release study and brain theranostics. The particle sizes of the non-targeted and targeted theranostic liposomes were found below 200 nm. Nearly, 71% of drug encapsulation efficiency was achieved with liposomes. The drug release from transferrin conjugated theranostic liposomes was sustained for more than 72 h with 70% of drug release. The in-vivo results indicated that transferrin receptor-targeted theranostic liposomes could be a promising carrier for brain theranostics due to nano-sized delivery and its permeability which provided an improved and prolonged brain targeting of docetaxel and QDs in comparison to the non-targeted preparations.

  13. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery.

    PubMed

    Chono, Sumio; Fukuchi, Rie; Seki, Toshinobu; Morimoto, Kazuhiro

    2009-07-20

    The pulmonary insulin delivery characteristics of liposomes were examined. Aerosolized liposomes containing insulin were administered into rat lungs and the enhancing effect on insulin delivery was evaluated by changes of plasma glucose levels. Liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhanced pulmonary insulin delivery in rats, however, liposomes with dilauroyl, dimyristoyl, distearoyl or dioleoyl phosphatidylcholine did not. Liposomes with DPPC also enhanced the in vitro permeation of FITC dextran (Mw 4400, FD-4) through the calu-3 cell monolayer by reducing the transepithelial electrical resistance and did not harm lung tissues in rats. These findings suggest that liposomes with DPPC enhance pulmonary insulin delivery by opening the epithelial cell space in the pulmonary mucosa not mucosal cell damage. Liposomes with DPPC could be useful as a pulmonary delivery system for peptide and protein drugs.

  14. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery.

    PubMed

    Lu, Mei; Zhao, Xiaoyun; Xing, Haonan; Xun, Zhe; Yang, Tianzhi; Cai, Cuifang; Wang, Dongkai; Ding, Pingtian

    2018-04-03

    Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF

  15. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity.

    PubMed

    Sarker, Satya Ranjan; Aoshima, Yumiko; Hokama, Ryosuke; Inoue, Takafumi; Sou, Keitaro; Takeoka, Shinji

    2013-01-01

    Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt) in the arginine head group. Cationic lipids were hydrated in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt) that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p) DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the highest transfection efficiency in PC-12 cells. However, arginine-based cationic liposomes with TFA salt showed the highest transfection efficiency in HeLa cells, regardless of the presence of serum, with very low associated cytotoxicity. The gene delivery efficiency of amino acid-based

  16. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    PubMed Central

    Sarker, Satya Ranjan; Aoshima, Yumiko; Hokama, Ryosuke; Inoue, Takafumi; Sou, Keitaro; Takeoka, Shinji

    2013-01-01

    Background Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt) in the arginine head group. Methods Cationic lipids were hydrated in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt) that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p) DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the highest transfection efficiency in PC-12 cells. However, arginine-based cationic liposomes with TFA salt showed the highest transfection efficiency in HeLa cells, regardless of the presence of serum, with very low associated cytotoxicity. Conclusion The gene

  17. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effects of surface displayed targeting ligand GE11 on liposome distribution and extravasation in tumor.

    PubMed

    Tang, Hailing; Chen, Xiaojing; Rui, Mengjie; Sun, Wenqiang; Chen, Jian; Peng, Jinliang; Xu, Yuhong

    2014-10-06

    Targeting ligands displayed on liposome surface had been used to mediate specific interactions and drug delivery to target cells. However, they also affect liposome distribution in vivo, as well as the tissue extravasation processes after IV injection. In this study, we incorporated an EGFR targeting peptide GE11 on liposome surfaces in addition to PEG at different densities and evaluated their targeting properties and antitumor effects. We found that the densities of surface ligand and PEG were critical to target cell binding in vitro as well as pharmacokinetic profiles in vivo. The inclusion of GE11-PEG-DSPE and PEG-DSPE at 2% and 4% mol ratios in the liposome formulation mediated a rapid accumulation of liposomes within 1 h after IV injection in the tumor tissues surrounding neovascular structures. This is in addition to the EPR effect that was most prominently described for surface PEG modified liposomes. Therefore, despite the fact that the distribution of liposomes into interior tumor tissues was still limited by diffusion, GE11 targeted doxorubicin loaded liposomes showed significantly better antitumor activity in tumor bearing mice as a result of the fast active-targeting efficiency. We anticipate these understandings can benefit further optimization of targeted drug delivery systems for improving efficacy in vivo.

  19. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery

    PubMed Central

    Paul, Shirshendu; Nahire, Rahul; Mallik, Sanku; Sarkar, Kausik

    2014-01-01

    Micron- to nanometer-sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes, are being developed for diagnostic imaging and ultrasound mediated drug/gene delivery. This review provides an overview of the current state of the art of the mathematical models of the acoustic behavior of ultrasound contrast microbubbles. We also present a review of the in vitro experimental characterization of the acoustic properties of microbubble based contrast agents undertaken in our laboratory. The hierarchical two-pronged approach of modeling contrast agents we developed is demonstrated for a lipid coated (Sonazoid™) and a polymer shelled (poly D-L-lactic acid) contrast microbubbles. The acoustic and drug release properties of the newly developed echogenic liposomes are discussed for their use as simultaneous imaging and drug/gene delivery agents. Although echogenicity is conclusively demonstrated in experiments, its physical mechanisms remain uncertain. Addressing questions raised here will accelerate further development and eventual clinical approval of these novel technologies. PMID:26097272

  20. Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system.

    PubMed

    Feng, Linglin; Zhang, Lei; Liu, Min; Yan, Zhiqiang; Wang, Chenyu; Gu, Bing; Liu, Yu; Wei, Gang; Zhong, Gaoren; Lu, Weiyue

    2010-04-01

    Our aim was to develop a novel liposomal drug delivery system containing dextrans to reduce undesirable retention of antineoplastic agents and thus alleviate local tissue damage. At the cell level, diethylaminoethyl-dextran (DEAE-Dx) showed the strongest inhibiting effect on liposome uptake by macrophages among tested dextrans. The distribution of radiolabeled liposomes mixed with dextrans in injection site and draining lymph node was investigated in rats after subcutaneous injection. DEAE-Dx substantially reduced the undesired local retention and promoted the draining of liposome into lymphatics, which was further confirmed by confocal microscopy images revealing the substantial prevention of rhodamine B-labelled liposome sequestration by macrophages in normal lymph node in rats. Pharmacokinetic data indicated the accelerated drainage of liposome through lymphatics back to systemic circulation by mixing with DEAE-Dx. In the toxicological study in rabbits, DEAE-Dx alleviated the local tissue damage caused by liposomal doxorubicin. In conclusion, dextrans, particularly DEAE-Dx, could efficiently enhanced liposomes drainage into lymphatics, which proves themselves as promising adjuvants for lymphatic-targeted liposomal drug delivery system.

  1. Dual-Energy CT Imaging of Tumor Liposome Delivery After Gold Nanoparticle-Augmented Radiation Therapy

    PubMed Central

    Ashton, Jeffrey R.; Castle, Katherine D.; Qi, Yi; Kirsch, David G.; West, Jennifer L.; Badea, Cristian T.

    2018-01-01

    Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and computed tomography (CT) imaging. AuNPs absorb x-rays and subsequently release low-energy, short-range photoelectrons during external beam radiation therapy (RT), increasing the local radiation dose. When AuNPs are near tumor vasculature, the additional radiation dose can lead to increased vascular permeability. This work focuses on understanding how tumor vascular permeability is influenced by AuNP-augmented RT, and how this effect can be used to improve the delivery of nanoparticle chemotherapeutics. Methods: Dual-energy CT was used to quantify the accumulation of both liposomal iodine and AuNPs in tumors following AuNP-augmented RT in a mouse model of primary soft tissue sarcoma. Mice were injected with non-targeted AuNPs, RGD-functionalized AuNPs (vascular targeting), or no AuNPs, after which they were treated with varying doses of RT. The mice were injected with either liposomal iodine (for the imaging study) or liposomal doxorubicin (for the treatment study) 24 hours after RT. Increased tumor liposome accumulation was assessed by dual-energy CT (iodine) or by tracking tumor treatment response (doxorubicin). Results: A significant increase in vascular permeability was observed for all groups after 20 Gy RT, for the targeted and non-targeted AuNP groups after 10 Gy RT, and for the vascular-targeted AuNP group after 5 Gy RT. Combining targeted AuNPs with 5 Gy RT and liposomal doxorubicin led to a significant tumor growth delay (tumor doubling time ~ 8 days) compared to AuNP-augmented RT or chemotherapy alone (tumor doubling time ~3-4 days). Conclusions: The addition of vascular-targeted AuNPs significantly improved the treatment effect of liposomal doxorubicin after RT, consistent with the increased liposome accumulation observed in tumors in the imaging study. Using this approach with a liposomal drug delivery system can increase specific tumor delivery of chemotherapeutics

  2. CD9 monoclonal antibody-conjugated PEGylated liposomes for targeted delivery of rapamycin in the treatment of cellular senescence

    NASA Astrophysics Data System (ADS)

    Thuy Nguyen, Hanh; Thapa, Raj Kumar; Shin, Beom Soo; Jeong, Jee-Heon; Kim, Jae-Ryong; Yong, Chul Soon; Kim, Jong Oh

    2017-03-01

    Premature cellular senescence refers to the state of irreversible cell cycle arrest due to DNA damage or other stresses. In this study, CD9 monoclonal antibody (CD9mAb) was successfully conjugated to the surface of PEGylated liposomes for targeted delivery of rapamycin (LR-CD9mAb) to overcome senescence of CD9 receptor-overexpressing cells. LR-CD9mAb has a small particle size (143.3 ± 2.4 nm), narrow size distribution (polydispersity index: 0.220 ± 0.036), and negative zeta potential (-14.6 ± 1.2 mV). The uptake of CD9-targeted liposomes by premature senescent human dermal fibroblasts (HDFs) was higher than that by young HDFs, as displayed by confocal microscopic images. The senescence might not be reversed by treatment with rapamycin; however, the drug promoted cell proliferation and reduced the number of cells that expressed the senescence-associated-β-galactosidase (SA-β-gal). These effects were further confirmed by cell viability, cell cycle, and Western blotting analyses. Moreover, CD9-targeted liposomes showed better anti-senescence activity, in comparison with free rapamycin or the conventional liposomal formulation, suggesting the potential application of this system in further in vivo studies.

  3. Development of a macrophage-targeting and phagocytosis-inducing bio-nanocapsule-based nanocarrier for drug delivery.

    PubMed

    Li, Hao; Tatematsu, Kenji; Somiya, Masaharu; Iijima, Masumi; Kuroda, Shun'ichi

    2018-06-01

    Macrophage hyperfunction or dysfunction is tightly associated with various diseases, such as osteoporosis, inflammatory disorder, and cancers. However, nearly all conventional drug delivery system (DDS) nanocarriers utilize endocytosis for entering target cells; thus, the development of macrophage-targeting and phagocytosis-inducing DDS nanocarriers for treating these diseases is required. In this study, we developed a hepatitis B virus (HBV) envelope L particle (i.e., bio-nanocapsule (BNC)) outwardly displaying a tandem form of protein G-derived IgG Fc-binding domain and protein L-derived IgG Fab-binding domain (GL-BNC). When conjugated with the macrophage-targeting ligand, mouse IgG2a (mIgG2a), the GL-BNC itself, and the liposome-fused GL-BNC (i.e., GL-virosome) spontaneously initiated aggregation by bridging between the Fc-binding domain and Fab-binding domain with mIgG2a. The aggregates were efficiently taken up by macrophages, whereas this was inhibited by latrunculin B, a phagocytosis-specific inhibitor. The mIgG2a-GL-virosome containing doxorubicin exhibited higher cytotoxicity toward macrophages than conventional liposomes and other BNC-based virosomes. Thus, GL-BNCs and GL-virosomes may constitute promising macrophage-targeting and phagocytosis-inducing DDS nanocarriers. We have developed a novel macrophage-targeting and phagocytosis-inducing bio-nanocapsule (BNC)-based nanocarrier named GL-BNC, which comprises a hepatitis B virus envelope L particle outwardly displaying protein G-derived IgG Fc- and protein L-derived IgG Fab-binding domains in tandem. The GL-BNC alone or liposome-fused form (GL-virosomes) could spontaneously aggregate when conjugated with macrophage-targeting IgGs, inducing phagocytosis by the interaction between IgG Fc of aggregates and FcγR on phagocytes. Thereby these aggregates were efficiently taken up by macrophages. GL-virosomes containing doxorubicin exhibited higher cytotoxicity towards macrophages than ZZ-virosomes and

  4. Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes

    PubMed Central

    Paoli, Eric E.; Ingham, Elizabeth S.; Zhang, Hua; Mahakian, Lisa M.; Fite, Brett Z.; Gagnon, M. Karen; Tam, Sarah; Kheirolomoom, Azadeh; Cardiff, Robert D.; Ferrara, Katherine W.

    2014-01-01

    Advancements in liposomal drug delivery have produced long circulating and very stable drug formulations. These formulations minimize systemic exposure; however, unfortunately, therapeutic efficacy has remained limited due to the slow diffusion of liposomal particles within the tumor and limited release or uptake of the encapsulated drug. Here, the carboxyl-terminated CRPPR peptide, with affinity for the receptor neuropilin-1 (NRP), which is expressed on both endothelial and cancer cells, was conjugated to liposomes to enhance the tumor accumulation. Using a pH sensitive probe, liposomes were optimized for specific NRP binding and subsequent cellular internalization using in vitro cellular assays. Liposomes conjugated with the carboxyl-terminated CRPPR peptide (termed C-LPP liposomes) bound to the NRP-positive primary prostatic carcinoma cell line (PPC-1) but did not bind to the NRP-negative PC-3 cell line, and binding was observed with liposomal peptide concentrations as low as 0.16 mol%. Binding of the C-LPP liposomes was receptor-limited, with saturation observed at high liposome concentrations. The identical peptide sequence bearing an amide terminus did not bind specifically, accumulating only with a high (2.5 mol%) peptide concentration and adhering equally to NRP positive and negative cell lines. The binding of C-LPP liposomes conjugated with 0.63 mol% of the peptide was 83-fold greater than liposomes conjugated with the amide version of the peptide. Cellular internalization was also enhanced with C-LPP liposomes, with 80% internalized following 3hr incubation. Additionally, fluorescence in the blood pool (~40% of the injected dose) was similar for liposomes conjugated with 0.63 mol% of carboxyl-terminated peptide and non-targeted liposomes at 24 hr after injection, indicating stable circulation. Prior to doxorubicin treatment, in vivo tumor accumulation and vascular targeting were increased for peptide-conjugated liposomes compared to non-targeted liposomes

  5. Liposomes as potential carrier system for targeted delivery of polyene antibiotics.

    PubMed

    Naik, Suresh R; Desai, Sandhya K; Shah, Priyank D; Wala, Santosh M

    2013-09-01

    The development of new therapeutic modalities involves the use of drug carrier, such as liposomes, which can modify pharmacokinetic and bio-distribution of drug profile. Polyene antibiotics incorporation into liposomes improves its availability at the site, bio-distribution and therapeutic index mainly through the engulfment of liposomes by circulating monocytes/macrophages and transportation to the site of infection. Polyene antibiotics (AmB, SJA-95, HA-1-92) and other antibiotics (streptomycin, tobramycin, quinolones, anti-tubercular and anti-cancer drugs), liposomal preparations are described with possible advantages from therapeutic efficacy and toxicity point of view. The polyene macrolide antibiotics liposomal preparations proved to be more effective in the treatment of systemic mycosis. The AmB-cyclodextrin derivatives inclusion complex is a major breakthrough in liposomal preparation which can be converted into aqueous phase of liposome. Liposomal drug incorporated preparation has been one of the important areas of research for developing the existing polyene antibiotics into useful chemotherapeutic agents in clinical medicine. In recent past other antibiotics have also been incorporated into liposomes using wide variety of materials, phosphatidylethanolamine derivatives (pegylated liposomes, enzyme sensitive conjugates, fluidosomes of anti-cancer drugs and poly lactic/glycolic acid microspheres for anti-tuberculosis drugs). In addition, attempts were also made to extend the receptor mediated drug targeting and to review some relevant patents.

  6. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery.

    PubMed

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future.

  7. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery

    PubMed Central

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future. PMID:26491292

  8. Application of liposomal technologies for delivery of platinum analogs in oncology

    PubMed Central

    Liu, Demin; He, Chunbai; Wang, Andrew Z; Lin, Wenbin

    2013-01-01

    Platinum-based chemotherapy, such as cisplatin, oxaliplatin, and carboplatin, is one of the most widely utilized classes of cancer therapeutics. While highly effective, the clinical applications of platinum-based drugs are limited by their toxicity profiles as well as suboptimal pharmacokinetic properties. Therefore, one of the key research areas in oncology has been to develop novel platinum analog drugs and engineer new platinum drug formulations to improve the therapeutic ratio further. Such efforts have led to the development of platinum analogs including nedaplatin, heptaplatin, and lobaplatin. Moreover, reformulating platinum drugs using liposomes has resulted in the development of L-NDPP (Aroplatin™), SPI-77, Lipoplatin™, Lipoxal™, and LiPlaCis®. Liposomes possess several attractive biological activities, including biocompatibility, high drug loading, and improved pharmacokinetics, that are well suited for platinum drug delivery. In this review, we discuss the various platinum drugs and their delivery using liposome-based drug delivery vehicles. We compare and contrast the different liposome platforms as well as speculate on the future of platinum drug delivery research. PMID:24023517

  9. Liposomal temozolomide drug delivery using convection enhanced delivery.

    PubMed

    Nordling-David, Mirjam M; Yaffe, Roni; Guez, David; Meirow, Hadar; Last, David; Grad, Etty; Salomon, Sharona; Sharabi, Shirley; Levi-Kalisman, Yael; Golomb, Gershon; Mardor, Yael

    2017-09-10

    Even though some progress in diagnosis and treatment has been made over the years, there is still no definitive treatment available for Glioblastoma multiforme (GBM). Convection-enhanced delivery (CED), a continuous infusion-mediated pressure gradient via intracranial catheters, studied in clinical trials, enables in situ drug concentrations several orders of magnitude greater than those achieved by systemic administration. We hypothesized that the currently limited efficacy of CED could be enhanced by a liposomal formulation, thus achieving enhanced drug localization to the tumor site with minimal toxicity. We hereby describe a novel approach for treating GBM by CED of liposomes containing the known chemotherapeutic agent, temozolomide (TMZ). A new technique for encapsulating TMZ in hydrophilic (PEGylated) liposomes, characterized by nano-size (121nm), low polydispersity index (<0.13) and with near-neutral charge (-ʒ,0.2mV), has been developed. Co-infusion of PEGylated Gd-DTPA liposomes and TMZ-liposomes by CED in GBM bearing rats, resulted in enhanced tumor detection with longer residence time than free Gd-DTPA. Treatment of GBM-bearing rats with either TMZ solution or TMZ-liposomes resulted in greater tumor inhibition and significantly higher survival. However, the longer survival and smaller tumor volumes exhibited by TMZ liposomal treatment in comparison to TMZ in solution were insignificant (p<0.053); and only significantly lower edema volumes were observed. Thus, there are no clear-cut advantages to use a liposomal delivery system of TMZ via CED over a drug solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Nanobiotechnology-based drug delivery in brain targeting.

    PubMed

    Dinda, Subas C; Pattnaik, Gurudutta

    2013-01-01

    Blood brain barrier (BBB) found to act as rate limiting factor in drug delivery to brain in combating the central nervous system (CNS) disorders. Such limiting physiological factors include the reticuloendothelial system and protein opsonization, which present across BBB, play major role in reducing the passage of drug. Several approaches employed to improve the drug delivery across the BBB. Nanoparticles (NP) are the solid colloidal particle ranges from 1 to 1000 nm in size utilized as career for drug delivery. At present NPs are found to play a significant advantage over the other methods of available drug delivery systems to deliver the drug across the BBB. Nanoparticles may be because of its size and functionalization characteristics able to penetrate and facilitate the drug delivery through the barrier. There are number of mechanisms and strategies found to be involved in this process, which are based on the type of nanomaterials used and its combination with therapeutic agents, such materials include liposomes, polymeric nanoparticles and non-viral vectors of nano-sizes for CNS gene therapy, etc. Nanotechnology is expected to reduce the need for invasive procedures for delivery of therapeutics to the CNS. Some devices such as implanted catheters and reservoirs however will still be needed to overcome the problems in effective drug delivery to the CNS. Nanomaterials are found to improve the safety and efficacy level of drug delivery devices in brain targeting. Nanoegineered devices are found to be delivering the drugs at cellular levels through nono-fluidic channels. Different drug delivery systems such as liposomes, microspheres, nanoparticles, nonogels and nonobiocapsules have been used to improve the bioavailability of the drug in the brain, but microchips and biodegradable polymeric nanoparticulate careers are found to be more effective therapeutically in treating brain tumor. The physiological approaches also utilized to improve the transcytosis capacity

  11. Novel vaginal drug delivery system: deformable propylene glycol liposomes-in-hydrogel.

    PubMed

    Vanić, Željka; Hurler, Julia; Ferderber, Kristina; Golja Gašparović, Petra; Škalko-Basnet, Nataša; Filipović-Grčić, Jelena

    2014-03-01

    Deformable propylene glycol-containing liposomes (DPGLs) incorporating metronidazole or clotrimazole were prepared and evaluated as an efficient drug delivery system to improve the treatment of vaginal microbial infections. The liposome formulations were optimized based on sufficient trapping efficiencies for both drugs and membrane elasticity as a prerequisite for successful permeability and therapy. An appropriate viscosity for vaginal administration was achieved by incorporating the liposomes into Carbopol hydrogel. DPGLs were able to penetrate through the hydrogel network more rapidly than conventional liposomes. In vitro studies of drug release from the liposomal hydrogel under conditions simulating human treatment confirmed sustained and diffusion-based drug release. Characterization of the rheological and textural properties of the DPGL-containing liposomal hydrogels demonstrated that the incorporation of DPGLs alone had no significant influence on mechanical properties of hydrogels compared to controls. These results support the great potential of DPGL-in-hydrogel as an efficient delivery system for the controlled and sustained release of antimicrobial drugs in the vagina.

  12. Development of a liposomal delivery system for temperature-triggered release of a tumor targeting agent, Ln(III)-DOTA-phenylboronate.

    PubMed

    Djanashvili, Kristina; ten Hagen, Timo L M; Blangé, Roy; Schipper, Debby; Peters, Joop A; Koning, Gerben A

    2011-02-01

    Liposomes, capable of temperature-triggered content release at the site of interest, can be of great importance for imaging and therapy of tumors. The delivery of imaging agents or therapeutics can be improved by application of liposomes with a gel-to-liquid phase-transition temperature suitable for mild hyperthermia (41-43°C), and by prolonging their circulation time by incorporation of lipids containing polyethyleneglycol moieties. Still, the rapid wash out of the delivered material from the tumor tissue is a major obstacle for both imaging and therapy. In this study, we developed an optimized temperature sensitive liposomal system to be used with mild hyperthermia: highly stable at physiological temperature and with a sharp transition of the bilayer at 41.5°C, with subsequent rapid release of entrapped compounds such as calcein or tumor cell-targeting contrast agents. Intravital microscopy on calcein/rhodamine containing liposomes was applied to demonstrate the applicability of this system in vivo. The calcein loaded liposomes were injected iv into nude mice with a human BLM melanoma tumor implanted in a dorsal skin-fold window chamber. Arrival of the liposomes at the tumor site and content release after temperature increase were monitored. The results demonstrated not only accumulation of the liposomes at the tumor site, but also a massive release of calcein after increase of the temperature to 41°C. The versatility of the thermosensitive liposomes was further demonstrated by encapsulation of a tumor cell-targeting DOTA-phenylboronate conjugate and its release at elevated temperatures. The DOTA ligand in this system is able to chelate a variety of metals suitable for both diagnostic and therapeutic applications, whereas the phenylboronate function is able to target specifically to tumor cells through a covalent binding with sialic acid moieties over-expressed on their surface upon heat-triggered release from the liposomal carrier. Copyright © 2010 Elsevier

  13. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells.

    PubMed

    Stuart, Christopher H; Singh, Ravi; Smith, Thomas L; D'Agostino, Ralph; Caudell, David; Balaji, K C; Gmeiner, William H

    2016-05-01

    To evaluate the potential use of zinc chelation for prostate cancer therapy using a new liposomal formulation of the zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). TPEN was encapsulated in nontargeted liposomes or liposomes displaying an aptamer to target prostate cancer cells overexpression prostate-specific membrane antigen. The prostate cancer selectivity and therapeutic efficacy of liposomal (targeted and nontargeted) and free TPEN were evaluated in vitro and in tumor-bearing mice. TPEN chelates zinc and results in reactive oxygen species imbalance leading to cell death. Delivery of TPEN using aptamer-targeted liposomes results in specific delivery to targeted cells. In vivo experiments show that TPEN-loaded, aptamer-targeted liposomes reduce tumor growth in a human prostate cancer xenograft model.

  14. A targeted liposome delivery system for combretastatin A4: formulation optimization through drug loading and in vitro release studies.

    PubMed

    Nallamothu, Ramakrishna; Wood, George C; Kiani, Mohammad F; Moore, Bob M; Horton, Frank P; Thoma, Laura A

    2006-01-01

    Efficient liposomal therapeutics require high drug loading and low leakage. The objective of this study is to develop a targeted liposome delivery system for combretastatin A4 (CA4), a novel antivascular agent, with high loading and stable drug encapsulation. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, and distearoyl phosphoethanolamine-PEG-2000 conjugate (DSPE-PEG) were prepared by the lipid film hydration and extrusion process. Cyclic arginine-glycine-aspartic acid (RGD) peptides with affinity for alphav beta3-integrins overexpressed on tumor vascular endothelial cells were coupled to the distal end of polyethylene glycol (PEG) on the liposomes sterically stabilized with PEG (non-targeted liposomes; LCLs). Effect of lipid concentration, drug-to-lipid ratio, cholesterol, and DSPE-PEG content in the formulation on CA4 loading and its release from the liposomes was studied. Total liposomal CA4 levels obtained increased with increasing lipid concentration in the formulation. As the drug-to-lipid ratio increased from 10:100 to 20:100, total drug in the liposome formulation increased from 1.05+/-0.11 mg/mL to 1.55+/-0.13 mg/mL, respectively. When the drug-to-lipid ratio was further raised to 40:100, the total drug in liposome formulation did not increase, but the amount of free drug increased significantly, thereby decreasing the percent of entrapped drug. Increasing cholesterol content in the formulation decreased drug loading. In vitro drug leakage from the liposomes increased with increase in drug-to-lipid ratio or DSPE-PEG content in the formulation; whereas increasing cholesterol content of the formulation up to 30 mol-percent, decreased CA4 leakage from the liposomes. Ligand coupling to the liposome surface increased drug leakage as a function of ligand density. Optimized liposome formulation with 100 mM lipid concentration, 20:100 drug-to-lipid ratio, 30 mol-percent cholesterol, 4 mol-percent DSPE-PEG, and 1 mol

  15. Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo.

    PubMed

    Obata, Yosuke; Tajima, Shoji; Takeoka, Shinji

    2010-03-03

    We developed pH-responsive liposomes containing synthetic glutamic acid-based zwitterionic lipids and evaluated their properties both in vitro and in vivo with the aim of constructing an efficient liposome-based systemic drug delivery system. The glutamic acid-based lipids; 1,5-dihexadecyl N-glutamyl-L-glutamate (L1) and 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate (L2) were synthesized as a pH-responsive component of liposomes that respond to endosomal pH. The zeta potential of liposomes containing L1 or L2 was positive when the solution pH was below 4.6 or 5.6, respectively, but negative at higher pH values. The pH-responsive liposomes showed improved fusogenic potential to an endosome-mimicking anionic membrane at acidic pH, where the zeta potential of the liposomes was positive. We then prepared doxorubicin (DOX)-encapsulating liposomes containing L1 or L2, and clarified by confocal microscopic studies that the contents were rapidly transferred into both the cytoplasm and nucleus. Release of DOX from the endosomes mediated by the pH-responsive liposomes dramatically inhibited cancer cell growth. The L2-liposomes were slightly more effective than L1-liposomes as a drug delivery system. Intravenously injected L2-liposomes displayed blood persistence comparable to that of conventional phospholipid (PC)-based liposomes. Indeed, the antitumor efficacy of L2-liposomes was higher than that of PC-based liposomes against a xenograft breast cancer tumor in vivo. Thus, the high performance of L2-liposomes results from both efficient intracellular drug delivery and comparable blood persistence in comparison with the conventional PC-based liposomes in vitro and in vivo. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Liposomal systems as viable drug delivery technology for skin cancer sites with an outlook on lipid-based delivery vehicles and diagnostic imaging inputs for skin conditions'.

    PubMed

    Akhtar, Naseem; Khan, Riaz A

    2016-10-01

    Skin cancer is among one of the most common human malignancies wide-spread world-over with mortality statistics rising continuously at an alarming rate. The increasing frequency of these malignancies has marked the need for adopting effective treatment plan coupled with better and site-specific delivery options for the desired therapeutic agent's availability at the affected site. The concurrent delivery approaches to cancerous tissues are under constant challenge and, as a result, are evolving and gaining advancements in terms of delivery modes, therapeutic agents and site-specificity of the therapeutics delivery. The lipid-based liposomal drug delivery is an attractive and emerging option, and which is meticulously shaping up beyond a threshold level to a promising, and viable route for the effective delivery of therapeutic agents and other required injuctions to the skin cancer. An update on liposomal delivery of chemotherapeutic agents, natural-origin compounds, photosensitizer, and DNA repair enzymes as well as other desirable and typical delivery modes employed in drug delivery and in the treatment of skin cancers is discussed in details. Moreover, liposomal delivery of nucleic acid-based therapeutics, i.e., small interfering RNA (siRNA), mRNA therapy, and RGD-linked liposomes are among the other promising novel technology under constant development. The current clinical applicability, viable clinical plans, future prospects including transport feasibility of delivery vesicles and imaging techniques in conjunction with the therapeutic agents is also discussed. The ongoing innovations in liposomal drug delivery technology for skin cancers hold promise for further development of the methodology for better, more effective and site-specific delivery as part of the better treatment plan by ensuring faster drug transport, better and full payload delivery with enough and required concentration of the dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Cancer Immunotherapy Utilized Bubble Liposomes and Ultrasound as Antigen Delivery System

    NASA Astrophysics Data System (ADS)

    Oda, Yusuke; Otake, Shota; Suzuki, Ryo; Otake, Shota; Nishiie, Norihito; Hirata, Keiichi; Taira, Yuichiro; Utoguchi, Naoki; Maruyama, Kazuo

    2010-03-01

    In dendritic cells (DCs)-based cancer immunotherapy, it is important to present the epitope peptide derived from tumor associated antigens (TAAs) on MHC class I in order to induce tumor specific cytotoxic T lymphocytes (CTLs). However, MHC class I molecules generally present the epitope peptides derived from endogenous antigens for DCs but not exogenous ones such as TAAs. Recently, we developed the novel liposomal bubbles (Bubble liposomes) encapsulating perfluoropropane nanobubbles. In this study, we attempted to establish the novel antigen delivery system to induce MHC class I presentation using the combination of ultrasound and Bubble liposomes. Using ovalbumin (OVA) as model antigen, the combination of Bubble liposomes and ultrasound exposure for the DC could induce MHC class I presentation. In addition, the viability of DCs was more than 80%. These results suggest that Bubble liposomes might be a novel ultrasound enhanced antigen delivery tool in DC-based cancer immunotherapy.

  18. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats.

    PubMed

    Gaspar, Maria Manuela; Radomska, Anna; Gobbo, Oliviero L; Bakowsky, Udo; Radomski, Marek W; Ehrhardt, Carsten

    2012-12-01

    Lung cancer is the leading cause of cancer death worldwide. Pulmonary anticancer therapy might offer several advantages over systemic delivery, leading to an increased exposure of the lung tumor to the drug, while minimizing side effects, due to regional containment. Here, we studied if a combination of inhalation therapy and drug targeting holds potential as an even more efficient lung cancer therapy. Transferrin (Tf )-conjugated PEG liposomes loaded with doxorubicin (DOX) were administered using an intracorporeal nebulizing catheter to an orthotopic lung cancer model established in athymic Rowett nude rats. Different DOX formulations and doses (0.2 and 0.4 mg/kg) were tested and the influence on tumor progression and life span of rats was evaluated in comparison with the i.v. administration of Tf-PEG-liposomes loaded with DOX at a therapeutic dose of 2 mg/kg. Rats in the untreated control group showed significant weight loss 2 weeks after tumor induction and died between days 19 and 29. Lungs of these animals showed multiple foci of neoplastic deposits, ranging up to 20 mm replacing the entire lobe. Empty Tf-liposomes showed a significant effect on survival time. This might be caused by the secondary cytotoxicity via stimulation of pulmonary macrophages. All animal treated intravenously also perished before the end of the study. No significant (p<0.05) improvement in survival was observed between the groups treated with aerosols of free drug, DOX encapsulated in plain and in Tf-modified liposomes. However, more animals survived in the Tf-liposome groups than in the other treatment regimes, and their lung tissue generally had fewer and smaller tumors. Nevertheless, the size of the groups, and the duration of the trial render it impossible to come to a definite conclusion. Drug targeting demonstrated potential for improving the aerosol treatment of lung cancer.

  19. Fasudil and SOD packaged in peptide-studded-liposomes: Properties, pharmacokinetics and ex-vivo targeting to isolated perfused rat lungs.

    PubMed

    Gupta, Nilesh; Al-Saikhan, Fahad I; Patel, Brijeshkumar; Rashid, Jahidur; Ahsan, Fakhrul

    2015-07-05

    The present study investigated the feasibility of encapsulating two drugs, fasudil and superoxide dismutase (SOD), into liposomes for targeted and inhalational delivery to the pulmonary vasculature to treat pulmonary arterial hypertension (PAH). Nanosized liposomes were prepared by a thin-film formation and extrusion method, and the drugs were encapsulated by a modified freeze-thaw technique. The peptide CARSKNKDC (CAR), a pulmonary-specific targeting sequence, was conjugated on the surface of liposomes. Formulations were optimized for various physicochemical properties, tested for their ex-vivo and in-vivo drug absorption after intratracheal administration, and evaluated for short-term safety in healthy rats. The homogenous nanosized liposomes contained both SOD (~55% entrapment) and fasudil (~40% entrapment), and were stable at 4°C and after nebulization. Liposomes released the drugs in a controlled-release fashion. Compared with plain liposomes, CAR-liposomes increased the uptake by pulmonary endothelial and smooth muscle cells by ~2-fold. CAR-liposomes extended the biological half-lives of SOD and fasudil by ~3-fold. Ex-vivo studies demonstrated that CAR-liposomes were better retained in the lungs than plain liposomes. Bronchoalveolar lavage studies indicated the safety of peptide-equipped liposomes as pulmonary delivery carriers. Overall, this study demonstrates that CAR-liposomes may be used as inhalational carriers for SOD plus fasudil-based combination therapy for PAH. Published by Elsevier B.V.

  20. Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery.

    PubMed

    Carita, Amanda C; Eloy, Josimar O; Chorilli, Marlus; Lee, Robert J; Leonardi, Gislaine Ricci

    2018-02-13

    The cutaneous route is attractive for the delivery of drugs in the treatment of a wide variety of diseases. However the stratum corneum (SC) is an effective barrier that hampers skin penetration. Within this context, liposomes emerge as a potential carrier for improving topical delivery of therapeutic agents. In this review, we aimed to discuss key aspects for the topical delivery by drug-loaded liposomes. Phospholipid type and phase transition temperature have been shown to affect liposomal topical delivery. The effect of surface charge is subject to considerable variation depending on drug and composition. In addition, modified vesicles with the presence of components for permeation enhancement, such as surfactants and solvents, have been shown to have a considerable effect. These liposomes include: Transfersomes, Niosomes, Ethosomes, Transethosomes, Invasomes, coated liposomes, penetration enhancer containing vesicles (PEVs), fatty acids vesicles, Archaeosomes and Marinosomes. Furthermore, adding polymeric coating onto liposome surface could influence cutaneous delivery. Mechanisms of delivery include intact vesicular skin penetration, free drug diffusion, permeation enhancement, vesicle adsorption to and/or fusion with the SC, trans-appendageal penetration, among others. Finally, several skin conditions, including acne, melasma, skin aging, fungal infections and skin cancer, have benefited from liposomal topical delivery of drugs, with promising in vitro and in vivo results. However, despite the existence of some clinical trials, more studies are needed to be conducted in order to explore the potential of liposomes in the dermatological field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Effect of Surface Properties on Liposomal siRNA Delivery

    PubMed Central

    Xia, Yuqiong; Tian, Jie; Chen, Xiaoyuan

    2015-01-01

    Liposomes are one of the most widely investigated carriers for siRNA delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations and ligand modifications. Cationic formulations dominate siRNA delivery and neutral formulations also have good performance while anionic formulations are generally not proper for siRNA delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal siRNA delivery, outlined existing problems and provided some future perspectives. PMID:26695117

  2. Propylene glycol-embodying deformable liposomes as a novel drug delivery carrier for vaginal fibrauretine delivery applications.

    PubMed

    Li, Wei-Ze; Hao, Xu-Liang; Zhao, Ning; Han, Wen-Xia; Zhai, Xi-Feng; Zhao, Qian; Wang, Yu-E; Zhou, Yong-Qiang; Cheng, Yu-Chuan; Yue, Yong-Hua; Fu, Li-Na; Zhou, Ji-Lei; Wu, Hong-Yu; Dong, Chun-Jing

    2016-03-28

    The purpose of this work was to develop and characterize the fibrauretine (FN) loaded propylene glycol-embodying deformable liposomes (FDL), and evaluate the pharmacokinetic behavior and safety of FDL for vaginal drug delivery applications. FDL was characterized for structure, particle size, zeta potential, deformability and encapsulation efficiency; the ability of FDL to deliver FN across vagina tissue in vitro and the distribution behavior of FN in rat by vaginal drug delivery were investigated, the safety of FDL to the vagina of rabbits and rats as well as human vaginal epithelial cells (VK2/E6E7) were also evaluated. Results revealed that: (i) the FDL have a closed spherical shape and lamellar structure with a homogeneous size of 185±19nm, and exhibited a negative charge of -53±2.7mV, FDL also have a good flexibility with a deformability of 92±5.6 (%phospholipids/min); (ii) the dissolving capacity of inner water phase and hydrophilicity of phospholipid bilayers of deformable liposomes were increased by the presence of propylene glycol, this may be elucidated by the fluorescent probes both lipophilic Nile red and hydrophilic calcein that were filled up the entire volume of the FDL uniformly, so the FDL with a high entrapment capacity (were calculated as percentages of total drug) for FN was 78±2.14%; (iii) the permeability of FN through vaginal mucosa was obviously improved by propylene glycol-embodying deformable liposomes, no matter whether the FN loaded in liposomes or not, although FN loaded in liposomes caused the highest permeability and drug reservoir in vagina; (iv) the FN mainly aggregated in the vagina and uterus, then the blood, spleen, liver, kidney, heart and lungs for vaginal drug delivery, this indicating vaginal delivery of FDL have a better 'vaginal local targeting effect'; and (v) the results of safety evaluation illustrate that the FDL is non-irritant and well tolerated in vivo, thereby establishing its vaginal drug delivery potential

  3. A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes

    PubMed Central

    Yang, Xuewei; Yang, Shuang; Chai, Hongyu; Yang, Zhaogang; Lee, Robert J.; Liao, Weiwei; Teng, Lesheng

    2015-01-01

    We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation. PMID:26309138

  4. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system.

    PubMed

    Zhu, Xiali; Xie, Yingxia; Zhang, Yingjie; Huang, Heqing; Huang, Shengnan; Hou, Lin; Zhang, Huijuan; Li, Zhi; Shi, Jinjin; Zhang, Zhenzhong

    2014-11-01

    This report focuses on the thermo-sensitive liposomes loaded with doxorubicin and lysine-modified single-walled carbon nanotube drug delivery system, which was designed to enhance the anti-tumor effect and reduce the side effects of doxorubicin. Doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes was prepared by reverse-phase evaporation method, the mean particle size was 232.0 ± 5.6 nm, and drug entrapment efficiency was 86.5 ± 3.7%. The drug release test showed that doxorubicin released more quickly at 42℃ than at 37℃. Compared with free doxorubicin, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes could efficiently cross the cell membranes and afford higher anti-tumor efficacy on the human hepatic carcinoma cell line (SMMC-7721) cells in vitro. For in vivo experiments, the relative tumor volumes of the sarcomaia 180-bearing mice in thermo-sensitive liposomes group and doxorubicin group were significantly smaller than those of N.S. group. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced the tumor growth inhibition both on SMMC-7721 cells and the sarcomaia 180-bearing mice. The quality of life such as body weight, mental state, food and water intake of sarcomaia 180 tumor-bearing mice treated with doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes were much higher than those treated with doxorubicin. In conclusion, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes combined with near-infrared laser irradiation at 808 nm may potentially provide viable clinical strategies for targeting delivery of anti-cancer drugs. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Liposomes and nanotechnology in drug development: focus on ocular targets

    PubMed Central

    Honda, Miki; Asai, Tomohiro; Oku, Naoto; Araki, Yoshihiko; Tanaka, Minoru; Ebihara, Nobuyuki

    2013-01-01

    Poor drug delivery to lesions in patients’ eyes is a major obstacle to the treatment of ocular diseases. The accessibility of these areas to drugs is highly restricted by the presence of barriers, including the corneal barrier, aqueous barrier, and the inner and outer blood–retinal barriers. In particular, the posterior segment is difficult to reach for drugs because of its structural peculiarities. This review discusses various barriers to drug delivery and provides comprehensive information for designing nanoparticle-mediated drug delivery systems for the treatment of ocular diseases. Nanoparticles can be designed to improve penetration, controlled release, and drug targeting. As highlighted in this review, the therapeutic efficacy of drugs in ocular diseases has been reported to be enhanced by the use of nanoparticles such as liposomes, micro/nanospheres, microemulsions, and dendrimers. Our recent data show that intravitreal injection of targeted liposomes encapsulating an angiogenesis inhibitor caused significantly greater suppression of choroidal neovascularization than did the injection of free drug. Recent progress in ocular drug delivery systems research has provided new insights into drug development, and the use of nanoparticles for drug delivery is thus a promising approach for advanced therapy of ocular diseases. PMID:23439842

  6. The Use of Convection-Enhanced Delivery with Liposomal Toxins in Neurooncology

    PubMed Central

    Fiandaca, Massimo S.; Berger, Mitchel S.; Bankiewicz, Krystof S.

    2011-01-01

    Liposomes have long been effective delivery vehicles for transport of toxins to peripheral cancers. The combination of convection-enhanced delivery (CED) with liposomal toxins was originally proposed to circumvent the limited delivery of intravascular liposomes to the central nervous system (CNS) due to the blood-brain-barrier (BBB). CED offers markedly improved distribution of infused therapeutics within the CNS compared to direct injection or via drug eluting polymers, both of which depend on diffusion for parenchymal distribution. This review examines the basis for improved delivery of liposomal toxins via CED within the CNS, and discusses preclinical and clinical experience with these therapeutic techniques. How CED and liposomal technologies may influence future neurooncologic treatments are also considered. PMID:22069714

  7. RGD-modified pH-sensitive liposomes for docetaxel tumor targeting.

    PubMed

    Chang, Minglu; Lu, Shanshan; Zhang, Fang; Zuo, Tiantian; Guan, Yuanyuan; Wei, Ting; Shao, Wei; Lin, Guimei

    2015-05-01

    Phosphatidylethanolamine-based pH-sensitive liposomes of various compositions have been described as efficient systems for delivery of therapeutic molecules into tumor cells. The aim of this work was to develop a drug delivery system based on pH-sensitive liposomes (PLPs) that were modified with arginine-glycine-aspartic acid (RGD) peptide to enhance the effectiveness of docetaxel treatment. Docetaxel/coumarin-6 loaded PLPs were prepared by the thin-film dispersion method and characterized in detail, including by particle size, polydispersity, zeta potential and drug encapsulation efficiency. In vitro studies using MCF-7, HepG2and A549 cells were employed to investigate cytotoxicity and cellular uptake of the drug solution or docetaxel/coumarin-6 loaded PLPs. The accumulation of 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-labeled liposomes in vivo was studied through tumor section imaging of xenograft mouse models of MCF-7 24h after intravenous administration. The particle size of the non-coated or RGD modified PLPs ranged between 146 and 129nm. Drug release in vitro was modestly prolonged and had good pH sensitivity. In the in vitro study, RGD-coated PLPs showed higher cytotoxicity and cellular uptake relative to non-coated ones. The results of the in vivo study showed that RGD-coated PLPs had higher fluorescence, which suggested a more efficient accumulation than normal PLPs in tumors. In conclusion, these results confirmed RGD-modified PLPs as a potential drug delivery system to achieve controlled release and tumor targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Characterisation of gene delivery using liposomal bubbles and ultrasound

    NASA Astrophysics Data System (ADS)

    Koshima, Risa; Suzuki, Ryo; Oda, Yusuke; Hirata, Keiichi; Nomura, Tetsuya; Negishi, Yoichi; Utoguchi, Naoki; Kudo, Nobuki; Maruyama, Kazuo

    2011-09-01

    The combination of nano/microbubbles and ultrasound is a novel technique for a non-viral gene deliver. We have previously developed novel ultrasound sensitive liposomes (Bubble liposomes) which contain the ultrasound imaging gas perfluoropropane. In this study, Bubble liposomes were compared with cationic lipid (CL)-DNA complexes as potential gene delivery carriers into tumors in vivo. The delivery of genes by bubble liposomes depended on the intensity of the applied ultrasound. The transfection efficiency plateaued at 0.7 W/cm2 ultrasound intensity. Bubble liposomes efficiently transferred genes into cultured cells even when the cells were exposed to ultrasound for only 1 s. In addition, bubble liposomes were able to introduce the luciferase gene more effectively than CL-DNA complexes into mouse ascites tumor cells. We conclude that the combination of Bubble liposomes and ultrasound is a good method for gene transfer in vivo.

  9. Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke

    PubMed Central

    Liu, Huanling; Jablonska, Anna; Li, Yuguo; Cao, Suyi; Liu, Dexiang; Chen, Hanwei; Van Zijl, Peter CM; Bulte, Jeff W.M.; Janowski, Miroslaw; Walczak, Piotr; Liu, Guanshu

    2016-01-01

    ABSTRACT Citicoline (CDPC) is a natural supplement with well-documented neuroprotective effects in the treatment of neurodegenerative diseases. In the present study, we sought to exploit citicoline as a theranostic agent with its inherent chemical exchange saturation transfer (CEST) MRI signal, which can be directly used as an MRI guidance in the citicoline drug delivery. Our in vitro CEST MRI results showed citicoline has two inherent CEST signals at +1 and +2 ppm, attributed to exchangeable hydroxyl and amine protons, respectively. To facilitate the targeted drug delivery of citicoline to ischemic regions, we prepared liposomes encapsulating citicoline (CDPC-lipo) and characterized the particle properties and CEST MRI properties. The in vivo CEST MRI detection of liposomal citicoline was then examined in a rat brain model of unilateral transient ischemia induced by a two-hour middle cerebral artery occlusion. The results showed that the delivery of CPDC-lipo to the brain ischemic areas could be monitored and quantified by CEST MRI. When administered intra-arterially, CDPC-lipo clearly demonstrated a detectable CEST MRI contrast at 2 ppm. CEST MRI revealed that liposomes preferentially accumulated in the areas of ischemia with a disrupted blood-brain-barrier. We furthermore used CEST MRI to detect the improvement in drug delivery using CDPC-lipo targeted against vascular cell adhesion molecule (VCAM)-1 in the same animal model. The MRI findings were validated using fluorescence microscopy. Hence, liposomal citicoline represents a prototype theranostic system, where the therapeutic agent can be detected directly by CEST MRI in a label-free fashion. PMID:27446492

  10. Vincristine-sulphate-loaded liposome-templated calcium phosphate nanoshell as potential tumor-targeting delivery system.

    PubMed

    Thakkar, Hetal Paresh; Baser, Amit Kumar; Parmar, Mayur Prakashbhai; Patel, Ketul Harshadbhai; Ramachandra Murthy, Rayasa

    2012-06-01

    Vincristine-sulfate-loaded liposomes were prepared with an aim to improve stability, reduce drug leakage during systemic circulation, and increase intracellular uptake. Liposomes were prepared by the thin-film hydration method, followed by coating with calcium phosphate, using the sequential addition approach. Prepared formulations were characterized for size, zeta potential, drug-entrapment efficiency, morphology by transmission electron microscopy (TEM), in vitro drug-release profile, and in vitro cell cytotoxicity study. Effect of formulation variables, such as drug:lipid ratio as well as nature and volume of hydration media, were found to affect drug entrapment, and the concentration of calcium chloride in coating was found to affect size and coating efficiency. Size, zeta potential, and TEM images confirmed that the liposomes were effectively coated with calcium phosphate. The calcium phosphate nanoshell exhibited pH-dependent drug release, showing significantly lower release at pH 7.4, compared to the release at pH 4.5, which is the pH of the tumor interstitium. The in vitro cytotoxicity study done on the lung cancer cell line indicated that coated liposomes are more cytotoxic than plain liposomes and drug solution, indicating their potential for intracellular drug delivery. The cell-uptake study done on the lung cancer cell line indicated that calcium-phosphate-coated liposomes show higher cell uptake than uncoated liposomes.

  11. Biotinylated liposomes as potential carriers for the oral delivery of insulin.

    PubMed

    Zhang, Xingwang; Qi, Jianping; Lu, Yi; He, Wei; Li, Xiaoyang; Wu, Wei

    2014-01-01

    This study aimed to explore biotinylated liposomes (BLPs) as novel carriers to enhance the oral delivery of insulin. Biotinylation was achieved by incorporating biotin-conjugated phospholipids into the liposome membranes. A significant hypoglycemic effect and enhanced absorption were observed after treating diabetic rats with the BLPs with a relative bioavailability of 12.09% and 8.23%, based on the measurement of the pharmacologic effect and the blood insulin level, respectively; this achieved bioavailability was approximately double that of conventional liposomes. The significance of the biotinylation was confirmed by the facilitated absorption of the BLPs through receptor-mediated endocytosis, as well as by the improved physical stability of the liposomes. Increased cellular uptake and quick gastrointestinal transport further verified the ability of the BLPs to enhance absorption. These results provide a proof of concept that BLPs can be used as potential carriers for the oral delivery of insulin. Diabetes remains a major source of mortality in the Western world, and advances in its management are expected to have substantial socioeconomic impact. In this paper, biotinylated liposomes were utilized as carriers of insulin for local delivery, demonstrating the feasibility of this approach in a rat model. © 2014.

  12. Pulmonary Delivery of Anti-Tubercular Drugs Using Ligand Anchored pH Sensitive Liposomes for the Treatment of Pulmonary Tuberculosis.

    PubMed

    Bhardwaj, Ankur; Grobler, Anne; Rath, Goutam; Goyal, Amit Kumar; Jain, Amit Kumar; Mehta, Abhinav

    2016-01-01

    Mycobacterium tuberculosis (M. TB) remains the prime cause of bacterial mortality and morbidity world-wide. Therefore, effective delivery and targeting of drug to the cellular tropics is essentially required to generate significant results for tuberculosis treatment. The aim of the present study was to develop and characterize ligand anchored pH sensitive liposomes (TPSL) as dry powder inhaler for the targeted delivery of drugs in the target site i.e. lungs. Ligand anchored PSL (TPSL) was prepared by thin film hydration for the combined delivery of Isoniazid (INH) and Ciprofloxacin HCl (CIP HCl) using 4-aminophenyl-α-D mannopyranoside (Man) as surface functionalized ligand and characterized using different parameters. It was observed that size of the ligand anchored liposomes (TPSL) was slightly more than the non-ligand anchored liposomes (PSL). Drug release was studied at different pH for 24 hrs and it was observed that liposomes exhibited slow release at alkaline pH (58-64%) as compared to macrophage pH (81-87%) where it increased dramatically due to the destabilization of pH sensitive liposome (PSL). In vitro cellular uptake study showed that much higher concentration was achieved in the alveolar macrophage using ligand anchored liposomes as compared to its counterpart. In vivo study showed that maximum drug accumulation was achieved in the lung by delivering drug using ligand anchored PSL as compared to conventional PSL. It was concluded that ligand anchored pH sensitive liposome is one of the promising systems for the targeted drug therapy in pulmonary tuberculosis.

  13. Liposomal lipid and plasmid DNA delivery to B16/BL6 tumors after intraperitoneal administration of cationic liposome DNA aggregates.

    PubMed

    Reimer, D L; Kong, S; Monck, M; Wyles, J; Tam, P; Wasan, E K; Bally, M B

    1999-05-01

    The transfer of plasmid expression vectors to cells is essential for transfection after administration of lipid-based DNA formulations (lipoplexes). A murine i.p. B16/BL6 tumor model was used to characterize DNA delivery, liposomal lipid delivery, and gene transfer after regional (i.p.) administration of free plasmid DNA and DNA lipoplexes. DNA lipoplexes were prepared using cationic dioleoyldimethylammonium chloride/dioleoylphosphatidylethanolamine (50:50 mol ratio) liposomes mixed with plasmid DNA (1 microgram DNA/10 nmol lipid). The plasmid used contained the chloramphenicol acetyltransferase gene and chloramphenicol acetyltransferase expression (mU/g tumor) was measured to estimate transfection efficiency. Tumor-associated DNA and liposomal lipid levels were measured to estimate the efficiency of lipid-mediated DNA delivery to tumors. Plasmid DNA delivery was estimated using [3H]-labeled plasmid as a tracer, dot blot analysis, and/or Southern analysis. Liposomal lipid delivery was estimated using [14C]-dioleoylphosphatidylethanolamine as a liposomal lipid marker. Gene expression in the B16/BL6 tumors was highly variable, with values ranging from greater than 2,000 mU/g tumor to less than 100 mU/g tumor. There was a tendency to observe enhanced transfection in small (<250 mg) tumors. Approximately 18% of the injected dose of DNA was associated with these small tumors 2 h after i.p. administration. Southern analysis of extracted tumor DNA indicated that plasmid DNA associated with tumors was intact 24 h after administration. DNA and associated liposomal lipid are efficiently bound to tumors after regional administration; however, it is unclear whether delivery is sufficient to abet internalization and appropriate subcellular localization of the expression vector.

  14. Effective in vitro and in vivo gene delivery by the combination of liposomal bubbles (bubble liposomes) and ultrasound exposure.

    PubMed

    Suzuki, Ryo; Maruyama, Kazuo

    2010-01-01

    Gene delivery with a physical mechanism using ultrasound (US) and nano/microbubbles is expected as an ideal system in terms of delivering plasmid DNA noninvasively into a specific target site. We developed novel liposomal bubbles (Bubble liposomes (BLs)) containing the lipid nanobubbles of perfluoropropane which were utilized for contrast enhancement in ultrasonography. BLs were smaller in diameter than conventional microbubbles and induced cavitation upon exposure ultrasound. In addition, when coupled with US exposure, BLs could deliver plasmid DNA into various types of cells in vitro and in vivo. The transfection efficiency with BLs and US was higher than that with conventional lipofection method. Therefore, the combination of BLs and US might be an efficient and novel nonviral gene delivery system.

  15. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs

    PubMed Central

    Fouladi, Farnaz; Steffen, Kristine J.; Mallik, Sanku

    2017-01-01

    Liposomes are nanocarriers that deliver the payloads at the target site, leading to therapeutic drug concentrations at the diseased site and reduced toxic effects in healthy tissues. Several approaches have been used to enhance the ability of the nanocarrier to target the specific tissues, including ligand-targeted liposomes and stimuli-responsive liposomes. Ligand-targeted liposomes exhibit higher uptake by the target tissue due to the targeting ligand attached to the surface, while, the stimuli-responsive liposomes do not release their cargo unless they expose to an endogenous or exogenous stimulant at the target site. In this review, we mainly focus on the liposomes that are responsive to pathologically increased levels of enzymes at the target site. Enzyme-responsive liposomes release their cargo upon contact with the enzyme through several destabilization mechanisms: a) structural perturbation in the lipid bilayer, b) removal of a shielding polymer from the surface and increased cellular uptake, c) cleavage of a lipopeptide or lipopolymer incorporated in the bilayer, and d) activation of a prodrug in the liposomes. PMID:28201868

  16. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs.

    PubMed

    Fouladi, Farnaz; Steffen, Kristine J; Mallik, Sanku

    2017-04-19

    Liposomes are nanocarriers that deliver the payloads at the target site, leading to therapeutic drug concentrations at the diseased site and reduced toxic effects in healthy tissues. Several approaches have been used to enhance the ability of the nanocarrier to target the specific tissues, including ligand-targeted liposomes and stimuli-responsive liposomes. Ligand-targeted liposomes exhibit higher uptake by the target tissue due to the targeting ligand attached to the surface, while the stimuli-responsive liposomes do not release their cargo unless they expose to an endogenous or exogenous stimulant at the target site. In this review, we mainly focus on the liposomes that are responsive to pathologically increased levels of enzymes at the target site. Enzyme-responsive liposomes release their cargo upon contact with the enzyme through several destabilization mechanisms: (1) structural perturbation in the lipid bilayer, (2) removal of a shielding polymer from the surface and increased cellular uptake, (3) cleavage of a lipopeptide or lipopolymer incorporated in the bilayer, and (4) activation of a prodrug in the liposomes.

  17. Overcoming cellular and tissue barriers to improve liposomal drug delivery

    NASA Astrophysics Data System (ADS)

    Kohli, Aditya G.

    Forty years of liposome research have demonstrated that the anti-tumor efficacy of liposomal therapies is, in part, driven by three parameters: 1) liposome formulation and lipid biophysics, 2) accumulation and distribution in the tumor, and 3) release of the payload at the site of interest. This thesis outlines three studies that improve on each of these delivery steps. In the first study, we engineer a novel class of zwitterlipids with an inverted headgroup architecture that have remarkable biophysical properties and may be useful for drug delivery applications. After intravenous administration, liposomes accumulate in the tumor by the enhanced permeability and retention effect. However, the tumor stroma often limits liposome efficacy by preventing distribution into the tumor. In the second study, we demonstrate that depletion of hyaluronan in the tumor stroma improves the distribution and efficacy of DoxilRTM in murine 4T1 tumors. Once a liposome has distributed to the therapeutic site, it must release its payload over the correct timescale. Few facile methods exist to quantify the release of liposome therapeutics in vivo. In the third study, we outline and validate a simple, robust, and quantitative method for tracking the rate and extent of release of liposome contents in vivo. This tool should facilitate a better understanding of the pharmacodynamics of liposome-encapsulated drugs in animals. This work highlights aspects of liposome behavior that have prevented successful clinical translation and proposes alternative approaches to improve liposome drug delivery.

  18. Liposome-based delivery of a boron-containing cholesteryl ester for high-LET particle-induced damage of prostate cancer cells: a boron neutron capture therapy study.

    PubMed

    Gifford, Ian; Vreeland, Wyatt; Grdanovska, Slavica; Burgett, Eric; Kalinich, John; Vergara, Vernieda; Wang, C-K Chris; Maimon, Eric; Poster, Dianne; Al-Sheikhly, Mohamad

    2014-06-01

    The efficacy of a boron-containing cholesteryl ester compound (BCH) as a boron neutron capture therapy (BNCT) agent for the targeted irradiation of PC-3 human prostate cancer cells was examined. Liposome-based delivery of BCH was quantified with inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). Cytotoxicity of the BCH-containing liposomes was evaluated with neutral red, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), and lactate dehydrogenase assays. Colony formation assays were utilized to evaluate the decrease in cell survival due to high-linear energy transfer (LET) particles resulting from (10)B thermal neutron capture. BCH delivery by means of encapsulation in a lipid bilayer resulted in a boron uptake of 35.2 ± 4.3 μg/10(9) cells, with minimal cytotoxic effects. PC-3 cells treated with BCH and exposed to a 9.4 × 10(11) n/cm(2) thermal neutron fluence yielded a 20-25% decrease in clonogenic capacity. The decreased survival is attributed to the generation of high-LET α particles and (7)Li nuclei that deposit energy in densely ionizing radiation tracks. Liposome-based delivery of BCH is capable of introducing sufficient boron to PC-3 cells for BNCT. High-LET α particles and (7)Li nuclei generated from (10)B thermal neutron capture significantly decrease colony formation ability in the targeted PC-3 cells.

  19. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting.

    PubMed

    Hsu, Ching-Yun; Yang, Shih-Chun; Sung, Calvin T; Weng, Yi-Han; Fang, Jia-You

    2017-01-01

    Pathogens usually invade hair follicles when skin infection occurs. The accumulated bacteria in follicles are difficult to eradicate. The present study aimed to assess the cutaneous and follicular delivery of chloramphenicol (Cm)-loaded liposomes and the antibacterial activity of these liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Skin permeation was conducted by in vitro Franz diffusion cell. The anti-MRSA potential was checked using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), a well diffusion test, and intracellular MRSA killing. The classic, dimyristoylphosphatidylcholine (DMPC), and deoxycholic acid (DA) liposomes had a vesicle size of 98, 132, and 239 nm, respectively. The incorporation of DMPC or DA into the liposomes increased the bilayer fluidity. The malleable vesicles containing DMPC and DA showed increased follicular Cm uptake over the control solution by 1.5- and 2-fold, respectively. The MIC and MBC of DA liposomes loaded with Cm were 62.5 and 62.5-125 μg/mL, comparable to free Cm. An inhibition zone about 2-fold higher was achieved by DA liposomes as compared to the free control at a Cm dose of 0.5 mg/mL. DA liposomes also augmented antibacterial activity on keratinocyte-infected MRSA. The deformable liposomes had good biocompatibility against keratinocytes and neutrophils (viability >80%). In vivo administration demonstrated that DA liposomes caused negligible toxicity on the skin, based on physiological examination and histology. These data suggest the potential application of malleable liposomes for follicular targeting and the treatment of MRSA-infected dermatologic conditions.

  20. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting

    PubMed Central

    Sung, Calvin T; Weng, Yi-Han; Fang, Jia-You

    2017-01-01

    Pathogens usually invade hair follicles when skin infection occurs. The accumulated bacteria in follicles are difficult to eradicate. The present study aimed to assess the cutaneous and follicular delivery of chloramphenicol (Cm)-loaded liposomes and the antibacterial activity of these liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Skin permeation was conducted by in vitro Franz diffusion cell. The anti-MRSA potential was checked using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), a well diffusion test, and intracellular MRSA killing. The classic, dimyristoylphosphatidylcholine (DMPC), and deoxycholic acid (DA) liposomes had a vesicle size of 98, 132, and 239 nm, respectively. The incorporation of DMPC or DA into the liposomes increased the bilayer fluidity. The malleable vesicles containing DMPC and DA showed increased follicular Cm uptake over the control solution by 1.5- and 2-fold, respectively. The MIC and MBC of DA liposomes loaded with Cm were 62.5 and 62.5–125 μg/mL, comparable to free Cm. An inhibition zone about 2-fold higher was achieved by DA liposomes as compared to the free control at a Cm dose of 0.5 mg/mL. DA liposomes also augmented antibacterial activity on keratinocyte-infected MRSA. The deformable liposomes had good biocompatibility against keratinocytes and neutrophils (viability >80%). In vivo administration demonstrated that DA liposomes caused negligible toxicity on the skin, based on physiological examination and histology. These data suggest the potential application of malleable liposomes for follicular targeting and the treatment of MRSA-infected dermatologic conditions. PMID:29184410

  1. Introduction for Design of Nanoparticle Based Drug Delivery Systems.

    PubMed

    Edgar, Jun Yan Chan; Wang, Hui

    2017-01-01

    Conventional drug delivery systems contain numerous limitations such as limited targeting, low therapeutic indices, poor water solubility, and the induction of drug resistances. In order to overcome the drawbacks of conventional pathway of drug delivery, nanoparticle delivery systems are therefore designed and used as the drug carriers. Nanoparticle based drug delivery systems have been rapidly growing and are being applied to various sections of biomedicine. Drug nanocarriers based on dendrimers, liposomes, self-assembling peptides, watersoluble polymers, and block copolymer micelles are the most extensively studied types of drug delivery systems and some of them are being used in clinical therapy. In particular for cancer therapy, antineoplastic drugs are taking advantage of nanoparticulate drug carriers to improve the cure efficacy. Nanoparticle based drug carriers are capable of improving the therapeutic effectiveness of the drugs by using active targeting for the site-specific delivery, passive targeting mechanisms such as enhanced permeability and retention (EPR), de novo synthesis and uptake of low density liposome in cancer cells or by being water-soluble to improve the suboptimal pharmacokinetics in limited water-soluble delivery methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor.

    PubMed

    Paul, Jonathan W; Hua, Susan; Ilicic, Marina; Tolosa, Jorge M; Butler, Trent; Robertson, Sarah; Smith, Roger

    2017-03-01

    The ability to provide safe and effective pharmacotherapy during obstetric complications, such as preterm labor or postpartum hemorrhage, is hampered by the systemic toxicity of therapeutic agents leading to adverse side effects in the mother and fetus. Development of novel strategies to target tocolytic and uterotonic agents specifically to uterine myocytes would improve therapeutic efficacy while minimizing the risk of side effects. Ligand-targeted liposomes have emerged as a reliable and versatile platform for targeted drug delivery to specific cell types, tissues or organs. Our objective was to develop a targeted drug delivery system for the uterus utilizing an immunoliposome platform targeting the oxytocin receptor. We conjugated liposomes to an antibody that recognizes an extracellular domain of the oxytocin receptor. We then examined the ability of oxytocin receptor-targeted liposomes to deliver contraction-blocking (nifedipine, salbutamol and rolipram) or contraction-enhancing (dofetilide) agents to strips of spontaneously contracting myometrial tissue in vitro (human and mouse). We evaluated the ability of oxytocin receptor-targeted liposomes to localize to uterine tissue in vivo, and assessed if targeted liposomes loaded with indomethacin were capable of preventing lipopolysaccharide-induced preterm birth in mice. Oxytocin receptor-targeted liposomes loaded with nifedipine, salbutamol or rolipram consistently abolished human myometrial contractions in vitro, while oxytocin receptor-targeted liposomes loaded with dofetilide increased contraction duration. Nontargeted control liposomes loaded with these agents had no effect. Similar results were observed in mouse uterine strips. Following in vivo administration to pregnant mice, oxytocin receptor-targeted liposomes localized specifically to the uterine horns and mammary tissue. Targeting increased localization to the uterus 7-fold. Localization was not detected in the maternal brain or fetus. Targeted

  3. Targeted Delivery of CRISPR/Cas9-Mediated Cancer Gene Therapy via Liposome-Templated Hydrogel Nanoparticles.

    PubMed

    Chen, Zeming; Liu, Fuyao; Chen, Yanke; Liu, Jun; Wang, Xiaoying; Chen, Ann T; Deng, Gang; Zhang, Hongyi; Liu, Jie; Hong, Zhangyong; Zhou, Jiangbing

    2017-12-08

    Due to its simplicity, versatility, and high efficiency, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology has emerged as one of the most promising approaches for treatment of a variety of genetic diseases, including human cancers. However, further translation of CRISPR/Cas9 for cancer gene therapy requires development of safe approaches for efficient, highly specific delivery of both Cas9 and single guide RNA to tumors. Here, novel core-shell nanostructure, liposome-templated hydrogel nanoparticles (LHNPs) that are optimized for efficient codelivery of Cas9 protein and nucleic acids is reported. It is demonstrated that, when coupled with the minicircle DNA technology, LHNPs deliver CRISPR/Cas9 with efficiency greater than commercial agent Lipofectamine 2000 in cell culture and can be engineered for targeted inhibition of genes in tumors, including tumors the brain. When CRISPR/Cas9 targeting a model therapeutic gene, polo-like kinase 1 (PLK1), is delivered, LHNPs effectively inhibit tumor growth and improve tumor-bearing mouse survival. The results suggest LHNPs as versatile CRISPR/Cas9-delivery tool that can be adapted for experimentally studying the biology of cancer as well as for clinically translating cancer gene therapy.

  4. Designing liposomal adjuvants for the next generation of vaccines.

    PubMed

    Perrie, Yvonne; Crofts, Fraser; Devitt, Andrew; Griffiths, Helen R; Kastner, Elisabeth; Nadella, Vinod

    2016-04-01

    Liposomes not only offer the ability to enhance drug delivery, but can effectively act as vaccine delivery systems and adjuvants. Their flexibility in size, charge, bilayer rigidity and composition allow for targeted antigen delivery via a range of administration routes. In the development of liposomal adjuvants, the type of immune response promoted has been linked to their physico-chemical characteristics, with the size and charge of the liposomal particles impacting on liposome biodistribution, exposure in the lymph nodes and recruitment of the innate immune system. The addition of immunostimulatory agents can further potentiate their immunogenic properties. Here, we outline the attributes that should be considered in the design and manufacture of liposomal adjuvants for the delivery of sub-unit and nucleic acid based vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Novel freeze-dried DDA and TPGS liposomes are suitable for nasal delivery of vaccine.

    PubMed

    Yusuf, Helmy; Ali, Ahlam A; Orr, Natalie; Tunney, Michael M; McCarthy, Helen O; Kett, Vicky L

    2017-11-25

    There is a pressing need for effective needle-free vaccines that are stable enough for use in the developing world and stockpiling. The inclusion of the cationic lipid DDA and the PEG-containing moiety TPGS into liposomes has the potential to improve mucosal delivery. The aim of this study was to develop stable lyophilized cationic liposomes based on these materials suitable for nasal antigen delivery. Liposomes containing DDA and TPGS were developed. Size and zeta potential measurements, ex vivo, CLSM cell penetration study and cell viability investigations were made. Preliminary immunisation and stability studies using ovalbumin were performed. The liposomes exhibited suitable size and charge for permeation across nasal mucosa. DDA and TPGS increased tissue permeation in ex vivo studies and cell uptake with good cell viability. The liposomes improved immune response both locally and vaginally when compared to i.m administration or control liposomes delivered nasally. Additionally, the lyophilized products demonstrated good stability in terms of Tg, size and antigen retention. This study has shown that the novel liposomes have potential for development as a mucosal vaccine delivery system. Furthermore, the stability of the lyophilized liposomes offers potential additional benefits in terms of thermal stability over liquid formats. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mucosal delivery of liposome-chitosan nanoparticle complexes.

    PubMed

    Carvalho, Edison L S; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can become more inconvenient as a function of the specific characteristics of administration routes. To overcome these limitations, we developed a new drug delivery system that results from the combination of chitosan nanoparticles and liposomes, in an approach of combining their advantages, while avoiding their individual limitations. These lipid/chitosan nanoparticle complexes are, thus, expected to protect the encapsulated drug from harsh environmental conditions, while concomitantly providing its controlled release. To prepare these assemblies, two different strategies have been applied: one focusing on the simple hydration of a previously formed dry lipid film with a suspension of chitosan nanoparticles, and the other relying on the lyophilization of both basic structures (nanoparticles and liposomes) with a subsequent step of hydration with water. The developed systems are able to provide a controlled release of the encapsulated model peptide, insulin, evidencing release profiles that are dependent on their lipid composition. Moreover, satisfactory in vivo results have been obtained, confirming the potential of these newly developed drug delivery systems as drug carriers through distinct mucosal routes.

  7. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44.

    PubMed

    Bartheldyová, Eliška; Effenberg, Roman; Mašek, Josef; Procházka, Lubomír; Knötigová, Pavlína Turánek; Kulich, Pavel; Hubatka, František; Velínská, Kamila; Zelníčková, Jaroslava; Zouharová, Darina; Fojtíková, Martina; Hrebík, Dominik; Plevka, Pavel; Mikulík, Robert; Miller, Andrew D; Macaulay, Stuart; Zyka, Daniel; Drož, Ladislav; Raška, Milan; Ledvina, Miroslav; Turánek, Jaroslav

    2018-06-25

    New synthetic aminoxy lipids are designed and synthesized as building blocks for the formulation of functionalized nanoliposomes by microfluidization using a NanoAssemblr. Orthogonal binding of hyaluronic acid onto the outer surface of functionalized nanoliposomes via aminoxy coupling ( N-oxy ligation) is achieved at hemiacetal function of hyaluronic acid and the structure of hyaluronic acid-liposomes is visualized by transmission electron microscopy and cryotransmission electron microscopy. Observed structures are in a good correlation with data obtained by dynamic light scattering (size and ζ-potential). In vitro experiments on cell lines expressing CD44 receptors demonstrate selective internalization of fluorochrome-labeled hyaluronic acid-liposomes, while cells with down regulated CD44 receptor levels exhibit very low internalization of hyaluronic acid-liposomes. A method based on microfluidization mixing was developed for preparation of monodispersive unilamellar liposomes containing aminoxy lipids and orthogonal binding of hyaluronic acid onto the liposomal surface was demonstrated. These hyaluronic acid-liposomes represent a potentially new drug delivery platform for CD44-targeted anticancer drugs as well as for immunotherapeutics and vaccines.

  8. pH-sensitive liposomes for drug delivery in cancer treatment.

    PubMed

    Ferreira, Diego Dos Santos; Lopes, Sávia Caldeira de Araújo; Franco, Marina Santiago; Oliveira, Mônica Cristina

    2013-09-01

    In recent years, liposomes have been employed with growing success as pharmaceutical carriers for antineoplastic drugs. One specific strategy used to enhance in vivo liposome-mediated drug delivery is the improvement of intracytoplasmic delivery. In this context, pH-sensitive liposomes (pHSLip) have been designed to explore the endosomal acidification process, which may lead to a destabilization of the liposomes, followed by a release of their contents into the cell cytoplasm. This review considers the current status of pHSLip development and its applicability in cancer treatment, focusing on the mechanisms of pH sensitivity and liposomal composition of pHSLip. The final section will discuss the application of these formulations in both in vitro and in vivo studies of antitumor efficacy.

  9. Targeting doxorubicin encapsulated in stealth liposomes to solid tumors by non thermal diode laser.

    PubMed

    Ghannam, Magdy M; El Gebaly, Reem; Fadel, Maha

    2016-04-05

    The use of liposomes as drug delivery systems is the most promising technique for targeting drug especially for anticancer therapy. In this study sterically stabilized liposomes was prepared from DPPC/Cholesterol/PEG-PE encapsulated doxorubicin. The effect of lyophilization on liposomal stability and hence expiration date were studied. Moreover, the effect of diode laser on the drug released from liposomesin vitro and in vivo in mice carrying implanted solid tumor were also studied. The results indicated that lyophilization of the prepared liposomes encapsulating doxorubicin led to marked stability when stored at 5 °C and it is possible to use the re-hydrated lyophilized liposomes within 12 days post reconstitution. Moreover, the use of low energy diode laser for targeting anticancer drug to the tumor cells is a promising method in cancer therapy. We can conclude that lyophilization of the liposomes encapsulating doxorubicin lead to marked stability for the liposomes when stored at 5 °C. Moreover, the use of low energy diode laser for targeting anticancer drug to the tumor cells through the use of photosensitive sterically stabilized liposomes loaded with doxorubicin is a promising method. It proved to be applicable and successful for treatment of Ehrlich solid tumors implanted in mice and eliminated toxic side effects of doxorubicin.

  10. Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region.

    PubMed

    Amin, Mohamadreza; Mansourian, Mercedeh; Koning, Gerben A; Badiee, Ali; Jaafari, Mahmoud Reza; Ten Hagen, Timo L M

    2015-12-28

    Liposomes containing cytotoxic agents and targeted with Arg-Gly-Asp based peptides have frequently been used against αvβ3 integrin on tumor neovasculature. However, like many other ligand modified liposomes these preparations suffered from enhanced uptake by the reticulo endothelial system (RES) and off-targeted interaction with integrin receptors vastly expressed in normal organs causing poor biodistribution and toxic effects. Here we mainly focus on development of a RGD-modified liposomal delivery system to enhance both targeting selectivity and tumor uptake. First, sterically stabilized liposomal doxorubicin (SSLD) prepared and decorated with cRGDfK and RGDyC peptides differ in their physical properties. Stability assessments as well as in vitro and in vivo studies revealed that increasing the peptide hydrophobicity promotes the therapeutic efficacy of RGD-SSLD in a C-26 tumor model due to decreased recognition by RES and opsonization and limited off-targeted interactions. Then a novel N-methylated RGD peptide was designed and its capability in targeting integrin presenting cells was comprehensively assessed both in vitro and in vivo. RGDf[N-methyl]C promotes the liposome internalization by HUVEC via integrin mediated endocytosis. Intravital microscopy in window chamber bearing mice illustrated the capability of RGDf[N-methyl]C-liposomes in targeting both tumor vasculature and tumor cells in murine B16F0 and human BLM tumor models. Quantitative biodistribution in mice bearing B16F0 tumor revealed its high affinity to tumor with no considerable affinity to normal organs. Treatment by high dose of RGDf[N-methyl]C-SSLD was found more effective than non-targeted SSLD and no toxic side effect was observed. In conclusion, the RGDf[N-methyl]C-liposome was found promising in targeting tumor vasculature as well as other cells inside the tumor. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Engineering Remotely Triggered Liposomes to Target Triple Negative Breast Cancer

    PubMed Central

    Sneider, Alexandra; Jadia, Rahul; Piel, Brandon; VanDyke, Derek; Tsiros, Christopher; Rai, Prakash

    2017-01-01

    Triple Negative Breast Cancer (TNBC) continues to present a challenge in the clinic, as there is still no approved targeted therapy. TNBC is the worst sub-type of breast cancer in terms of prognosis and exhibits a deficiency in estrogen, progesterone, and human epidermal growth factor 2 (HER2) receptors. One possible option for the treatment of TNBC is chemotherapy. The issue with many chemotherapy drugs is that their effectiveness is diminished due to poor water solubility, and the method of administration directly or with a co-solvent intravenously can lead to an increase in toxicity. The issues of drug solubility can be avoided by using liposomes as a drug delivery carrier. Liposomes are engineered, biological nanoconstructs that possess the ability to encapsulate both hydrophobic and hydrophilic drugs and have been clinically approved to treat cancer. Specific targeting of cancer cell receptors through the use of ligands conjugated to the surface of drug-loaded liposomes could lessen damage to normal, healthy tissue. This study focuses on polyethylene glycol (PEG)-coated, folate conjugated, benzoporphyrin derivative (BPD)-loaded liposomes for treatment via photodynamic therapy (PDT). The folate receptor is over expressed on TNBC cells so these liposomes are targeted for greater uptake into cancer cells. PDT involves remotely irradiating light at 690 nm to trigger BPD, a hydrophobic photosensitive drug, to form reactive oxygen species that cause tumor cell death. BPD also displays a fluorescence signal when excited by light making it possible to image the fluorescence prior to PDT and for theranostics. In this study, free BPD, non-targeted and folate-targeted PEGylated BPD-loaded liposomes were introduced to a metastatic breast cancer cell line (MDA-MB-231) in vitro. The liposomes were reproducibly synthesized and characterized for size, polydispersity index (PDI), zeta potential, stability, and BPD release kinetics. Folate competition tests, fluorescence

  12. Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery.

    PubMed

    Thamphiwatana, Soracha; Fu, Victoria; Zhu, Jingying; Lu, Diannan; Gao, Weiwei; Zhang, Liangfang

    2013-10-01

    We report a novel pH-responsive gold nanoparticle-stabilized liposome system for gastric antimicrobial delivery. By adsorbing small chitosan-modified gold nanoparticles (diameter ~10 nm) onto the outer surface of negatively charged phospholipid liposomes (diameter ~75 nm), we show that at gastric pH the liposomes have excellent stability with limited fusion ability and negligible cargo releases. However, when the stabilized liposomes are present in an environment with neutral pH, the gold stabilizers detach from the liposomes, resulting in free liposomes that can actively fuse with bacterial membranes. Using Helicobacter pylori as a model bacterium and doxycycline as a model antibiotic, we demonstrate such pH-responsive fusion activity and drug release profile of the nanoparticle-stabilized liposomes. Particularly, at neutral pH the gold nanoparticles detach, and thus the doxycycline-loaded liposomes rapidly fuse with bacteria and cause superior bactericidal efficacy as compared to the free doxycycline counterpart. Our results suggest that the reported liposome system holds a substantial potential for gastric drug delivery; it remains inactive (stable) in the stomach lumen but actively interacts with bacteria once it reaches the mucus layer of the stomach where the bacteria may reside.

  13. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes.

    PubMed

    Gao, Jian-Qing; Lv, Qing; Li, Li-Ming; Tang, Xin-Jiang; Li, Fan-Zhu; Hu, Yu-Lan; Han, Min

    2013-07-01

    Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Revisiting nanoparticle technology for blood-brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes.

    PubMed

    Johnsen, Kasper Bendix; Moos, Torben

    2016-01-28

    An unmet need exists for therapeutic compounds to traverse the brain capillary endothelial cells that denote the blood-brain barrier (BBB) to deliver effective treatment to the diseased brain. The use of nanoparticle technology for targeted delivery to the brain implies that targeted liposomes encapsulating a drug of interest will undergo receptor-mediated uptake and transport through the BBB with a subsequent unfolding of the liposomal content inside the brain, hence revealing drug release to adjacent drug-demanding neurons. As transferrin receptors (TfRs) are present on brain capillary endothelial, but not on endothelial cells elsewhere in the body, the use of TfR-targeted liposomes - colloidal particulates with a phospholipid bilayer membrane - remains the most relevant strategy to obtain efficient drug delivery to the brain. However, many studies have failed to provide sufficient quantitative data to proof passage of the BBB and significant appearance of drugs inside the brain parenchyma. Here, we critically evaluate the current evidence on the use of TfR-targeted liposomes for brain drug delivery based on a thorough investigation of all available studies within this research field. We focus on issues with respect to experimental design and data analysis that may provide an explanation to conflicting reports, and we discuss possible explanations for the current lack of sufficient transcytosis across the BBB for implementation in the design of TfR-targeted liposomes. We finally provide a list of suggestions for strategies to obtain substantial uptake and transport of drug carriers at the BBB with a concomitant transport of therapeutics into the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. pH-Sensitive PEGylated liposomes functionalized with a fibronectin-mimetic peptide show enhanced intracellular delivery to colon cancer cell.

    PubMed

    Garg, Ashish; Kokkoli, Efrosini

    2011-08-01

    pH-sensitive liposomes undergo rapid destabilization under mildly acidic conditions such as those found in endocytotic vesicles. Though this makes them promising drug carriers, their application is limited due to their rapid clearance from circulation by the reticulo-endothelial system. Researchers have therefore used pH-sensitive liposomes that are sterically stabilized by polyethylene glycol (PEG) molecules (stealth liposomes) on the liposome surface. The goal of this study is to bring bio-functionality to pH-sensitive PEGylated liposomes in order to facilitate their potential use as a targeted drug delivery agent. To improve the selectivity of these nanoparticles, we included a targeting moiety, PR_b which specifically recognizes and binds to integrin α(5)β(1) expressing cells. PR_b (KSSPHSRN(SG)(5)RGDSP) is a novel fibronectin-mimetic peptide sequence that mimics the cell adhesion domain of fibronectin. Integrin α(5)β(1) is expressed on several types of cancer cells, including colon cancer, and plays an important role in tumor growth and metastasis. We have thoroughly studied the release of calcein from pH-sensitive PEGylated liposomes by varying the lipid composition of the liposomes in the absence and presence of the targeting peptide, PR_b, and accounting for the first time for the effect of both pH and time (photo-bleaching effect) on the fluorescence signal of calcein. We have demonstrated that we can design PR_b-targeted pH-sensitive PEGylated liposomes, which can undergo destabilization under mildly acidic conditions and have shown that incorporating the PR_b peptide does not significantly affect the pH-sensitivity of the liposomes. PR_b-targeted pH-sensitive PEGylated liposomes bind to CT26.WT colon carcinoma cells that express integrin α(5)β(1), undergo cellular internalization, and release their load intracellularly in a short period of time as compared to other formulations. Our studies demonstrate that PR_b-functionalized pH-sensitive targeted

  16. Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy.

    PubMed

    Paliwal, Shivani R; Paliwal, Rishi; Pal, Harish C; Saxena, Ajeet K; Sharma, Pradyumana R; Gupta, Prem N; Agrawal, Govind P; Vyas, Suresh P

    2012-01-01

    The present investigation reports the development of nanoengineered estrogen receptor (ER) targeted pH-sensitive liposome for the site-specific intracellular delivery of doxorubicin (DOX) for breast cancer therapy. Estrone, a bioligand, was anchored on the surface of pH-sensitive liposome for drug targeting to ERs. The estrone-anchored pH-sensitive liposomes (ES-pH-sensitive-SL) showed fusogenic potential at acidic pH (5.5). In vitro cytotoxicity studies carried out on ER-positive MCF-7 breast carcinoma cells revealed that ES-pH-sensitive-SL formulation was more cytotoxic than non-pH-sensitive targeted liposomes (ES-SL). The flow cytometry analysis confirmed significant enhanced uptake (p < 0.05) of ES-pH-sensitive-SL by MCF-7 cells. Intracellular delivery and nuclear localization of the DOX was confirmed by fluorescence microscopy. The mechanism for higher cytotoxicity shown by estrone-anchored pH-sensitive liposomal-DOX was elucidated using reactive oxygen species (ROS) determination. The in vivo biodistribution studies and antitumor activities of formulations were evaluated on tumor bearing female Balb/c mice followed by intravenous administration. The ES-pH-sensitive-SL efficiently suppressed the breast tumor growth in comparison to both ES-SL and free DOX. Serum enzyme activities such as LDH and CPK levels were assayed for the evaluation of DOX induced cardiotoxicity. The ES-pH-sensitive-SL accelerated the intracellular trafficking of encapsulated DOX, thus increasing the therapeutic efficacy. The findings support that estrone-anchored pH-sensitive liposomes could be one of the promising nanocarriers for the targeted intracellular delivery of anticancer agents to breast cancer with reduced systemic side effects.

  17. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment.

    PubMed

    Jain, Vikas; Jain, Shikha; Mahajan, S C

    2015-01-01

    Cancer is defined as an uncontrolled growth of abnormal cells. Current treatment strategies for cancer include combination of radiation, chemotherapy and surgery. The long-term use of conventional drug delivery systems for cancer chemotherapy leads to fatal damage of normal proliferate cells and this is particularly used for the management of solid tumors, where utmost tumor cells are not invaded quickly. A targeted drug delivery system (TDDS) is a system, which releases the drug at a preselected biosite in a controlled manner. Nanotechnology based delivery systems are making a significant impact on cancer treatment and the polymers play key role in the development of nanopraticlulate carriers for cancer therapy. Some important technological advantages of nanotherapeutic drug delivery systems (NDDS) include prolonged half-life, improved bio-distribution, increased circulation time of the drug, controlled and sustained release of the drug, versatility of route of administration, increased intercellular concentration of drug and many more. This review covers the current research on polymer based anticancer agents, the rationale for development of these polymer therapeutical systems and discusses the benefits and challenges of cancer nanomedicines including polymer-drug conjugates, micelles, dendrimers, immunoconjugates, liposomes, nanoparticles.

  18. Intravenous Delivery of pDNA and siRNA into Muscle with Bubble Liposomes and Ultrasound

    NASA Astrophysics Data System (ADS)

    Negishi, Yoichi; Sekine, Shohko; Endo, Yoko; Nishijima, Nobuaki; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2010-03-01

    Skeletal muscle is an attractive target tissue for numerous gene therapy strategies. Gene delivery into muscle has been extensively studied. Of the strategies, intravascular delivery of naked pDNA is desirable. Muscle has a high density of capillaries that are in close contact with myofibers. Previously, we developed polyethylene glycol (PEG)-modified liposomes entrapping echo-contrast gas, known as ultrasound (US) imaging gas. We called the liposomes "Bubble liposomes" (BLs). It has been reported that BLs improve the tissue permeability by cavitation on US exposure. Here, we modified the naked pDNA or siRNA transfer method into hind limb muscle through blood vessels using BLs and US. The intravenous delivery of pDNA into muscle can be markedly enhanced when the pDNA is delivered in combination with BLs and US. In addition, the expression of pDNA is high in the US-focused site. Moreover, efficient gene delivery can be achieved by the intravenous delivery of pDNA into muscle with BLs and US. Expression is also down-regulated by delivering siRNA with BLs and US. Thus, this US-mediated BL technique involving veins may be an effective method for gene therapy.

  19. Transcutaneous drug delivery by liposomes using fractional laser technology.

    PubMed

    Fujimoto, Takahiro; Wang, Jian; Baba, Kazuki; Oki, Yuka; Hiruta, Yuki; Ito, Masayuki; Ito, Shinobu; Kanazawa, Hideko

    2017-07-01

    Transdermal delivery of hydrophilic peptides remains a challenge due to their poor cellular uptake and transdermal penetration. We hypothesize that combination of a CO 2 fractional laser to enhance percutaneous absorption and liposomes as transdermal carriers would improve skin penetration of hydrophilic drugs. NA. Liposomes were prepared using membrane fusion lipid dioleoylphosphatidylethanolamine, and used to deliver 5-carboxyfluorescein (CF) and fluorescein isothiocyanate-conjugated ovalbumin (OVA-FITC) as model hydrophilic peptide drugs. Liposome size was estimated by dynamic light scattering. Liposome uptake into murine macrophage cells and penetration or permeation into Yucatan micropig skin after irradiation by CO 2 fractional laser at varying energy levels (laser power and exposure duration) were investigated using Franz cell and fluorescence microscopy. Oxidative damage to the irradiated mouse skin was assessed by electron spin resonance. Size of CF and OVA-FITC encapsulated liposomes was 324 ± 75 nm. Cellular uptake of OVA-FITC delivered by liposomes was 10-fold higher (1,370 relative fluorescence units, RFU) than delivered in solution form (130 RFU). Fractional laser irradiation increased skin permeation rate of CF liposomes (0-10%) and OVA-FITC liposomes (4-40%) in a dose-dependent manner. Although peeling off the stratum corneum facilitated CF liposome penetration at low energy levels (2.69-3.29 J/cm 2 ; 10-20 W for 500 μs), drug permeation was similar (7-8%) in peeled or untreated skin at higher laser energy levels (6.06 J/cm 2 ; 20 W for 1,500 μs). FITC penetrated deeper in the skin after laser irradiation. However, OH, O2-, and VC reactive oxygen species were generated upon irradiation of the skin with a fractional CO 2 laser. Increasing laser power and irradiation, time increased liposome uptake by cells and penetration of peptide drugs across the skin in a dose-dependent manner. High-energy CO 2 fractional laser overcomes the

  20. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.

    PubMed

    Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry

    2016-10-28

    Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  2. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, Robert P.

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  3. New drug candidates for liposomal delivery identified by computer modeling of liposomes' remote loading and leakage.

    PubMed

    Cern, Ahuva; Marcus, David; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2017-04-28

    Remote drug loading into nano-liposomes is in most cases the best method for achieving high concentrations of active pharmaceutical ingredients (API) per nano-liposome that enable therapeutically viable API-loaded nano-liposomes, referred to as nano-drugs. This approach also enables controlled drug release. Recently, we constructed computational models to identify APIs that can achieve the desired high concentrations in nano-liposomes by remote loading. While those previous models included a broad spectrum of experimental conditions and dealt only with loading, here we reduced the scope to the molecular characteristics alone. We model and predict API suitability for nano-liposomal delivery by fixing the main experimental conditions: liposome lipid composition and size to be similar to those of Doxil® liposomes. On that basis, we add a prediction of drug leakage from the nano-liposomes during storage. The latter is critical for having pharmaceutically viable nano-drugs. The "load and leak" models were used to screen two large molecular databases in search of candidate APIs for delivery by nano-liposomes. The distribution of positive instances in both loading and leakage models was similar in the two databases screened. The screening process identified 667 molecules that were positives by both loading and leakage models (i.e., both high-loading and stable). Among them, 318 molecules received a high score in both properties and of these, 67 are FDA-approved drugs. This group of molecules, having diverse pharmacological activities, may be the basis for future liposomal drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Recent Advances in Nanoparticle-Based Targeted Drug-Delivery Systems Against Cancer and Role of Tumor Microenvironment.

    PubMed

    Ashfaq, Usman Ali; Riaz, Muhammad; Yasmeen, Erum; Yousaf, Muhammad Zubair

    2017-01-01

    Cancer is one of the major causes of death worldwide. The silent activation of cellular factors responsible for deviation from normal regulatory pathways leads to the development of cancer. Nano-biotechnology is a novel drug-delivery system with high potential of efficacy and accuracy to target lethal cancers. Various biocompatible nanoparticle (NP)-based drug-delivery systems such as liposomes, dendrimers, micelles, silica, quantum dots, and magnetic, gold, and carbon nanotubes have already been reported for successful targeted cancer treatment. NPs are functionalized with different biological molecules, peptides, antibody, and protein ligands for targeted drug delivery. These systems include a hydrophilic central core, a target-oriented biocompatible outer layer, and a middle hydrophobic core where the drug destined to reach target site resides. Most of the NPs have the ability to maintain their structural shape and are constructed according to the cancer microenvironment. The self-assembling and colloidal properties of NPs have caused them to become the best vehicles for targeted drug delivery. The tumor microenvironment (TME) plays a major role in cancer progression, detection, and treatment. Due to its continuous complex behavior, the TME can hinder delivery systems, thus halting cancer treatment. Nonetheless, a successful biophysiological interaction between the NPs and the TME results in targeted release of drugs. Currently, a number of drugs and NP-based delivery systems against cancer are in clinical and preclinical trials and a few have been approved by Food and Drug Administration (FDA); for example: taxol, doxil, cerubidine, and adrucil. This review summarizes topical advances about the drugs being used for cancer treatment, their targeted delivery systems based on NPs, and the role of TME in this connection.

  5. E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells

    PubMed Central

    Mitchell, Michael J.; Chen, Christina S.; Ponmudi, Varun; Hughes, Andrew D.; King, Michael R.

    2012-01-01

    The presence of circulating tumor cells (CTCs) is believed to lead to the formation of secondary tumors via an adhesion cascade involving interaction between adhesion receptors of endothelial cells and ligands on CTCs. Many CTCs express sialylated carbohydrate ligands on their surfaces that adhere to selectin protein found on inflamed endothelial cells. We have investigated the feasibility of using immobilized selectin proteins as a targeting mechanism for CTCs under flow. Herein, targeted liposomal doxorubicin (L-DXR) was functionalized with recombinant human E-selectin (ES) and polyethylene glycol (PEG) to target and kill cancer cells under shear flow, both when immobilized along a microtube device or sheared in a cone-and-plate viscometer in a dilute suspension. Healthy circulating cells such as red blood cells were not targeted by this mechanism and were left to freely circulate, and minimal leukocyte death was observed. Halloysite nanotube (HNT)-coated microtube devices immobilized with nanoscale liposomes significantly enhanced the targeting, capture, and killing of cancer cells. This work demonstrates that E-selectin functionalized L-DXR, sheared in suspension or immobilized onto microtube devices, provides a novel approach to selectively target and deliver chemotherapeutics to CTCs in the bloodstream. PMID:22421423

  6. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy

    PubMed Central

    Dass, Crispin R; Choong, Peter FM

    2006-01-01

    Cationic (positively charged) liposomes have been tested in various gene therapy clinical trials for neoplastic and other diseases. They have demonstrated selectivity for tumour vascular endothelial cells raising hopes for both antiangiogenic and antivascular therapies. They are also capable of being selectively delivered to the lungs and liver when administered intravenously. These vesicles are being targeted to the tumour in various parts of the body by using advanced liposomal systems such as ligand-receptor and antibody-antigen combinations. At present, the transferrin receptor is commonly used for cancer-targeted drug delivery systems including cationic liposomes. This review looks at the growing utility of these vesicles for delivery of small molecule anticancer drugs. PMID:16792817

  7. Multifunctional quantum dots and liposome complexes in drug delivery

    PubMed Central

    Wang, Qi; Chao, Yimin

    2018-01-01

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655

  8. Multifunctional quantum dots and liposome complexes in drug delivery.

    PubMed

    Wang, Qi; Chao, Yi-Min

    2017-09-03

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

  9. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C.more » The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.« less

  10. Drug-in-cyclodextrin-in-liposomes: A novel drug delivery system for flurbiprofen.

    PubMed

    Zhang, Lina; Zhang, Qi; Wang, Xin; Zhang, Wenji; Lin, Congcong; Chen, Fen; Yang, Xinggang; Pan, Weisan

    2015-08-15

    A novel delivery system based on drug-cyclodextrin (CD) complexation and liposomes has been developed to improve therapeutic effect. Three different means, i.e., co-evaporation (COE), co-ground (GR) and co-lyophilization (COL) and three different CDs (β-CD, HP-β-CD and SBE-β-CD) were contrasted to investigate the characteristics of the end products. FP/FP-CD loaded liposomes were obtained by thin layer evaporation technique. Size, zeta potential and encapsulation efficiency were investigated by light scattering analysis and minicolumn centrifugation. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) showed the amorphous form of complexes and spherical morphology of FP-HP-β-CD COE loaded liposomes. The pH 7.4 phosphate buffer solution (PBS) was selected as the medium for the in vitro release. Wistar rats were put into use to study the pharmacokinetic behavior in vivo. FP-HP-β-CD COE loaded liposomes showed the better physicochemical characters that followed the average particle size, polydispersity index, zeta potential and mean encapsulation efficiency 158±10 nm, 0.19±0.1, -12.4±0.1 mW and 56.1±0.5%, separately. The relative bioavailability of FP-HP-β-CD COE loaded liposomes was 420%, 201% and 402% compared with FP solution, FP-HP-β-CD and FP-liposomes, respectively. In conclusion, the novel delivery system improved the relative bioavailability of FP significantly and provided a perspective way for delivery of insoluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model.

    PubMed

    Hitchcock, Kathryn E; Caudell, Danielle N; Sutton, Jonathan T; Klegerman, Melvin E; Vela, Deborah; Pyne-Geithman, Gail J; Abruzzo, Todd; Cyr, Peppar E P; Geng, Yong-Jian; McPherson, David D; Holland, Christy K

    2010-06-15

    The goal of this study was to determine whether targeted, Rhodamine-labeled echogenic liposomes (Rh-ELIP) containing nanobubbles could be delivered to the arterial wall, and whether 1-MHz continuous wave ultrasound would enhance this delivery profile. Aortae excised from apolipoprotein-E-deficient (n=8) and wild-type (n=8) mice were mounted in a pulsatile flow system through which Rh-ELIP were delivered in a stream of bovine serum albumin. Half the aortae from each group were treated with 1-MHz continuous wave ultrasound at 0.49 MPa peak-to-peak pressure, and half underwent sham exposure. Ultrasound parameters were chosen to promote stable cavitation and avoid inertial cavitation. A broadband hydrophone was used to monitor cavitation activity. After treatment, aortic sections were prepared for histology and analyzed by an individual blinded to treatment conditions. Delivery of Rh-ELIP to the vascular endothelium was observed, and sub-endothelial penetration of Rh-ELIP was present in five of five ultrasound-treated aortae and was absent in those not exposed to ultrasound. However, the degree of penetration in the ultrasound-exposed aortae was variable. There was no evidence of ultrasound-mediated tissue damage in any specimen. Ultrasound-enhanced delivery within the arterial wall was demonstrated in this novel model, which allows quantitative evaluation of therapeutic delivery. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory.

    PubMed

    Wang, Ce; Liu, Peng; Zhuang, Yan; Li, Ping; Jiang, Boling; Pan, Hong; Liu, Lanlan; Cai, Lintao; Ma, Yifan

    2014-09-22

    Although retaining antigens at the injection site (the so-called "depot effect") is an important strategy for vaccine development, increasing evidence showed that lymphatic-targeted vaccine delivery with liposomes could be a promising approach for improving vaccine efficacy. However, it remains unclear whether antigen depot or lymphatic targeting would benefit long-term immunological memory, a major determinant of vaccine efficacy. In the present study, OVA antigen was encapsulated with DOTAP cationic liposomes (LP) or DOTAP-PEG-mannose liposomes (LP-Man) to generate depot or lymphatic-targeted liposome vaccines, respectively. The result of in vivo imaging showed that LP mostly accumulated near the injection site, whereas LP-Man not only effectively accumulated in draining lymph nodes (LNs) and the spleen, but also enhanced the uptake by resident antigen-presenting cells. Although LP vaccines with depot effect induced anti-OVA IgG more potently than LP-Man vaccines did on day 40 after priming, they failed to mount an effective B-cell memory response upon OVA re-challenge after three months. In contrast, lymphatic-targeted LP-Man vaccines elicited sustained antibody production and robust recall responses three months after priming, suggesting lymphatic targeting rather than antigen depot promoted the establishment of long-term memory responses. The enhanced long-term immunological memory by LP-Man was attributed to vigorous germinal center responses as well as increased Tfh cells and central memory CD4(+) T cells in the secondary lymphoid organs. Hence, lymphatic-targeted vaccine delivery with LP-Man could be an effective strategy to promote long-lasting immunological memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Comparative study of (Asp)7-CHOL-modified liposome prepared using pre-insertion and post-insertion methods for bone targeting in vivo.

    PubMed

    Zhang, Lijing; Cao, Hua; Zhang, Jiaxin; Yang, Chengli; Hu, Tingting; Li, Huili; Yang, Wu; He, Gu; Song, Xiangrong; Tong, Aiping; Guo, Gang; Li, Rui; Jiang, Yu; Liu, Jiyan; Cai, Lulu; Zheng, Yu

    2017-02-01

    Specific delivery of drugs to bone tissue is very challenging due to the architecture and structure of bone tissue. A seven-repeat sequence of aspartate, a representative bone-targeting oligopeptide, is preferentially used for targeted therapy for bone diseases. In this study, Asp7-cholesterol((Asp)7-CHOL) was synthesized and (Asp)7-CHOL-modified liposome loaded with doxorubicin (DOX) was successfully prepared using both pre-insertion (pre-L) and post-insertion (post-L) methods. The formulation was optimized according to particle size, zeta potential and the drug-loading efficiency of the liposome. In addition, the bone affinity of the (Asp)7-CHOL-modified liposome was evaluated using a hydroxyapatite (HA) absorption method. The results suggested that (Asp)7-CHOL-modified liposome show excellent HA absorption; pre-L showed slightly higher HA binding than post-L. However, post-L had a higher DOX entrapment efficiency than pre-L. In vivo imaging further demonstrated that pre-L showed a higher bone-targeting efficiency than post-L, which was consistent with in vitro results. In all, (Asp)7-CHOL-modified liposome showed excellent bone-targeting activity, suggesting their potential for use as a drug delivery system for bone disease-targeted therapies.

  14. Nanocarriers for cancer-targeted drug delivery.

    PubMed

    Kumari, Preeti; Ghosh, Balaram; Biswas, Swati

    2016-01-01

    Nanoparticles as drug delivery system have received much attention in recent years, especially for cancer treatment. In addition to improving the pharmacokinetics of the loaded poorly soluble hydrophobic drugs by solubilizing them in the hydrophobic compartments, nanoparticles allowed cancer specific drug delivery by inherent passive targeting phenomena and adopted active targeting strategies. For this reason, nanoparticles-drug formulations are capable of enhancing the safety, pharmacokinetic profiles and bioavailability of the administered drugs leading to improved therapeutic efficacy compared to conventional therapy. The focus of this review is to provide an overview of various nanoparticle formulations in both research and clinical applications with a focus on various chemotherapeutic drug delivery systems for the treatment of cancer. The use of various nanoparticles, including liposomes, polymeric nanoparticles, dendrimers, magnetic and other inorganic nanoparticles for targeted drug delivery in cancer is detailed.

  15. The enhanced longevity and liver targetability of Paclitaxel by hybrid liposomes encapsulating Paclitaxel-conjugated gold nanoparticles.

    PubMed

    Bao, Quan-Ying; Zhang, Ning; Geng, Dong-Dong; Xue, Jing-Wei; Merritt, Mackenzie; Zhang, Can; Ding, Ya

    2014-12-30

    Organic and inorganic drug delivery systems both demonstrate their own advantages and challenges in practical applications. Combining these two drug delivery strategies in one system is expected to solve their current issues and achieve desirable functions. In this paper, gold nanoparticles (GNPs) and liposomes have been chosen as the model systems to construct a hybrid system and investigate its performance for the tumor therapy of Paclitaxel (PTX). The thiol-terminated polyethylene glycol (PEG400)-PTX derivative has been covalently modified on the surface of GNPs, followed by the encapsulation of PTX-conjugated GNPs (PTX-PEG400@GNPs) in liposomes. The hybrid liposomes solve the solubility and stability problems of gold conjugates and show high drug loading capacity. In vitro PTX release from the hybrid system maintains the similar sustained behavior demonstrated in its conjugates. Under the protection of a biocompatible liposome shell, encapsulated PTX shows enhanced circulation longevity and liver targetability compared to Taxol(®) and PTX-PEG400@GNPs suspension in the pharmacokinetic and biodistribution studies. These indicate that encapsulating drug-conjugated inorganic nanoparticles inside organic carriers maintains the superiority of both vehicles and improves the performance of hybrid systems. Although these attributes of hybrid liposomes lead to a better therapeutic capacity in a murine liver cancer model than that of the comparison groups, it shows no significant difference from Taxol(®) and conjugate suspension. This result could be due to the delayed and sustained drug release from the system. However, it indicates the promising potential for these hybrid liposomes will allow further construction of a compound preparation with improved performance that is based on their enhanced longevity and liver targetability of Paclitaxel. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Secreted phospholipase A(2) as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue.

    PubMed

    Davidsen, Jesper; Jørgensen, Kent; Andresen, Thomas L; Mouritsen, Ole G

    2003-01-10

    Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes advantage of an elevated activity of secretory phospholipase A(2) (PLA(2)) at the diseased target tissue. The secretory PLA(2) hydrolyses a lipid-based proenhancer in the carrier liposome, producing lyso-phospholipids and free fatty acids, which are shown in a synergistic way to lead to enhanced liposome destabilization and drug release at the same time as the permeability of the target membrane is enhanced. Moreover, the proposed system can be made thermosensitive and offers a rational way for developing smart liposome-based drug delivery systems. This can be achieved by incorporating specific lipid-based proenhancers or prodestabilisers into the liposome carrier, which automatically becomes activated by PLA(2) only at the diseased target sites, such as inflamed or cancerous tissue.

  17. Sustained Zero-Order Release of Intact Ultra-Stable Drug-Loaded Liposomes from an Implantable Nanochannel Delivery System

    PubMed Central

    Celia, Christian; Ferrati, Silvia; Bansal, Shyam; van de Ven, Anne L.; Ruozi, Barbara; Zabre, Erika; Hosali, Sharath; Paolino, Donatella; Sarpietro, Maria Grazia; Fine, Daniel; Fresta, Massimo; Ferrari, Mauro

    2014-01-01

    Metronomic chemotherapy supports the idea that long-term, sustained, constant administration of chemotherapeutics, currently not achievable, could be effective against numerous cancers. Particularly appealing are liposomal formulations, used to solubilize hydrophobic therapeutics and minimize side effects, while extending drug circulation time and enabling passive targeting. As liposome alone cannot survive in circulation beyond 48 hrs, sustaining their constant plasma level for many days is a challenge. To address this, we developed, as a proof of concept, an implantable nanochannel delivery system and ultra-stable PEGylated lapatinib loaded-liposomes, and we demonstrate the release of intact vesicles for over 18 days. Further, we investigate intravasation kinetics of subcutaneously delivered liposomes and verify their biological activity post nanochannel release on BT474 breast cancer cells. The key innovation of this work is the combination of two nanotechnologies to exploit the synergistic effect of liposomes, demonstrated as passive-targeting vectors and nanofluidics to maintain therapeutic constant plasma levels. In principle, this approach could maximize efficacy of metronomic treatments. PMID:23881575

  18. Anti-Lung-Cancer Activity and Liposome-Based Delivery Systems of β-Elemene

    PubMed Central

    Chen, Meiwan; Zhang, Jinming; Yu, Siqin; Wang, Shengpeng; Zhang, Zaijun; Chen, Jianqiang; Xiao, Jian; Wang, Yitao

    2012-01-01

    In the past decade, β-elemene played an important role in enhancing the effects of many anticancer drugs and was widely used in the treatment of different kinds of malignancies and in reducing the side effects of chemotherapy. Further study showed that it is also a promising anti-lung cancer drug. However, the clinical application of β-elemene was limited by its hydrophobic property, poor stability, and low bioavailability. With the development of new excipients and novel technologies, plenty of novel formulations of β-elemene have improved dramatically, which provide a positive perspective in terms of clinical application for β-elemene. Liposome as a drug delivery system shows great advantages over traditional formulations for β-elemene. In this paper, we summarize the advanced progress being made in anti-lung cancer activity and the new liposomes delivery systems of β-elemene. This advancement is expected to improve the level of pharmacy research and provide a stronger scientific foundation for further study on β-elemene. PMID:23243436

  19. Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent

    PubMed Central

    Accardo, Antonella; Salsano, Giuseppina; Morisco, Anna; Aurilio, Michela; Parisi, Antonio; Maione, Francesco; Cicala, Carla; Tesauro, Diego; Aloj, Luigi; De Rosa, Giuseppe; Morelli, Giancarlo

    2012-01-01

    Objectives Drug delivery systems consisting of liposomes displaying a cell surface receptor-targeting peptide are being developed to specifically deliver chemotherapeutic drugs to tumors overexpressing a target receptor. This study addresses novel liposome composition approaches to specifically target tissues overexpressing bombesin (BN) receptors. Methods A new amphiphilic peptide derivative (MonY-BN) containing the BN(7–14) peptide, the DTPA (diethylenetriaminepentaacetate) chelating agent, a hydrophobic moiety with two C18 alkyl chains, and polyethylene glycol spacers, has been synthesized by solid-phase methods. Liposomes have been generated by co-aggregation of MonY-BN with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The structural and biological properties of these new target-selective drug-delivery systems have been characterized. Results Liposomes with a DSPC/MonY-BN (97/3 molar ratio) composition showed a diameter of 145.5 ± 31.5 nm and a polydispersity index of 0.20 ± 0.05. High doxorubicin (Dox) loading was obtained with the remote pH gradient method using citrate as the inner buffer. Specific binding to PC-3 cells of DSPC/MonY-BN liposomes was obtained (2.7% ± 0.3%, at 37°C), compared with peptide-free DSPC liposomes (1.4% ± 0.2% at 37°C). Incubation of cells with DSPC/ MonY-BN/Dox showed significantly lower cell survival compared with DSPC/Dox-treated cells, in the presence of 100 ng/mL and 300 ng/mL drug amounts, in cytotoxicity experiments. Intravenous treatment of PC-3 xenograft-bearing mice with DSPC/MonY-BN/Dox at 10 mg/kg Dox dose produced higher tumour growth inhibition (60%) compared with nonspecific DSPC/ Dox liposomes (36%) relative to control animals. Conclusion The structural and loading properties of DSPC/MonY-BN liposomes along with the observed in-vitro and in-vivo activity are encouraging for further development of this approach for target-specific cancer chemotherapy. PMID:22619538

  20. Tat peptide and hexadecylphosphocholine introduction into pegylated liposomal doxorubicin: An in vitro and in vivo study on drug cellular delivery, release, biodistribution and antitumor activity.

    PubMed

    Teymouri, Manouchehr; Badiee, Ali; Golmohammadzadeh, Shiva; Sadri, Kayvan; Akhtari, Javad; Mellat, Mostafa; Nikpoor, Amin Reza; Jaafari, Mahmoud Reza

    2016-09-10

    We have investigated the co-addition of hexadecylphosphocholine (HePC) and a Tat derived peptide (Tat), coupled to Maleimide-PEG2000-DSPE pegylated liposomal doxorubicin (PLD) in many respects, including drug and liposome cellular delivery, drug release, biodistribution, in vivo cell delivery and antitumor activity. The liposomes were HePC-free and -containing liposomes, from which liposomes with 25, 50, 100 and 200 numbers of Tat/liposome were prepared. Similarly, DiI-C18 (3)-model liposomes (DiI-L and DiI-HePC-L) were prepared. HePC and Tat increased cellular delivery of Dox and cytotoxicity in B16F0 melanoma and C26 colon carcinoma cells. Tat enhanced liposome-cell interaction and caused Dox burst release. HePC and Tat reduced the serum retention time of liposomal Dox, slightly and dramatically, respectively. In comparison, Tat-liposomes enhanced Dox delivery to liver and spleen cells 3h post-injection. Likewise, Dox content of these tissues and tumor was lower at 24h. The naïve liposomes retarded tumor growth more effectively and their related median survival time of the treated C26 bearing BALB/c mice was longer than those of Tat-liposomes (MST>45days versus MST<38days). Overall liposomes exhibiting sustained drug release and negligible cell interaction were more suitable delivery systems in targeting cancerous tumors and suppressing their growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Glycyrrhetinic Acid Liposomes Containing Mannose-Diester Lauric Diacid-Cholesterol Conjugate Synthesized by Lipase-Catalytic Acylation for Liver-Specific Delivery.

    PubMed

    Chen, Jing; Chen, Yuchao; Cheng, Yi; Gao, Youheng

    2017-09-24

    Mannose-diester lauric diacid-cholesterol (Man-DLD-Chol), as a liposomal target ligand, was synthesized by lipase catalyzed in a non-aqueous medium. Its chemical structure was confirmed by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Glycyrrhetinic acid (GA) liposomes containing Man-DLD-Chol (Man-DLD-Chol-GA-Lp) were prepared by the film-dispersion method. We evaluated the characterizations of liposomes, drug-release in vitro, the hemolytic test, cellular uptake, pharmacokinetics, and the tissue distributions. The cellular uptake in vitro suggested that the uptake of Man-DLD-Chol-modified liposomes was significantly higher than that of unmodified liposomes in HepG2 cells. Pharmacokinetic parameters indicated that Man-DLD-Chol-GA-Lp was eliminated more rapidly than GA-Lp. In tissue distributions, the targeting efficiency (Te) of Man-DLD-Chol-GA-Lp on liver was 54.67%, relative targeting efficiency (R Te ) was 3.39, relative uptake rate (Re) was 4.78, and peak concentration ratio (Ce) was 3.46. All these results supported the hypothesis that Man-DLD-Chol would be an efficient liposomal carrier, and demonstrated that Man-DLD-Chol-GA-Lp has potential as a drug delivery for liver-targeting therapy.

  2. Redox responsive liposomal nanohybrid cerasomes for intracellular drug delivery.

    PubMed

    Zhou, Gaoxin; Li, Lushen; Xing, Jing; Jalde, Shivakumar; Li, Yan; Cai, Jin; Chen, Junqing; Liu, Peidang; Gu, Ning; Ji, Min

    2016-12-01

    Cerasome is a freshly developped bilayer vehicle that resemble traditional liposome but has higher mophorlogical stability. In this study, a novel redox-responsive cerasome (RRC) was developed for tumor-targeting drug delivery. The cerasome-forming lipid (CFL) that comprise a cleavable disulfide bond as connector unit of the triethoxysilyl head and the hydrophobic alkyl double chain was synthesized and subsequently used to prepare cerasome through ethanol injection method. RRC that has liposome-resembling lipid bilayer structure was proved being outstanding at drug loading capacity as well as morphological stability as compared to conventional liposomes. In addition, in vitro drug release tests of DOX/RRCs showed a redox-responsive drug release profile: accelerated DOX releasing compared to reduction-insensitive cerasomes (RICs) in the presence of 10mM of GSH. Under the same condition, the reduction sensibility of RRC was further proved by increased hydrodynamic diameter and destroying of integrity from DLS and SEM results. RRC showed non-toxic to human embryonic kidney 293 cells, indicating that this material has good biocompatibility. On the other hand, DOX/RRCs showed a resemble IC 50 (half inhibitory concentration) value to that of free DOX to human hepatoma SMMC-7721 cells and breast cancer MCF-7 cells. IC 50 values at 48h were found to decrease in the following order: DOX/RIC>DOX/RRC>DOX. Taken together, the RRC developped in this study is of great potential to be utilized as a promising platform for intracellular anticancer drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Targeting prostate cancer cells with hybrid elastin-like polypeptide/liposome nanoparticles

    PubMed Central

    Zhang, Wei; Song, Yunmei; Eldi, Preethi; Guo, Xiuli; Hayball, John D; Garg, Sanjay; Albrecht, Hugo

    2018-01-01

    Prostate cancer cells frequently overexpress the gastrin-releasing peptide receptor, and various strategies have been applied in preclinical settings to target this receptor for the specific delivery of anticancer compounds. Recently, elastin-like polypeptide (ELP)-based self-assembling micelles with tethered GRP on the surface have been suggested to actively target prostate cancer cells. Poorly soluble chemotherapeutics such as docetaxel (DTX) can be loaded into the hydrophobic cores of ELP micelles, but only limited drug retention times have been achieved. Herein, we report the generation of hybrid ELP/liposome nanoparticles which self-assembled rapidly in response to temperature change, encapsulated DTX at high concentrations with slow release, displayed the GRP ligand on the surface, and specifically bound to GRP receptor expressing PC-3 cells as demonstrated by flow cytometry. This novel type of drug nanocarrier was successfully used to reduce cell viability of prostate cancer cells in vitro through the specific delivery of DTX. PMID:29391790

  4. Minimizing antibody surface density on liposomes while sustaining cytokine-activated EC targeting.

    PubMed

    Almeda, Dariela; Wang, Biran; Auguste, Debra T

    2015-02-01

    Liposomes may be engineered to target inflamed endothelium by mimicking ligand-receptor interactions between leukocytes and cytokine-activated endothelial cells (ECs). The upregulation and assembly of vascular cell adhesion molecule-1 (VCAM1) and E-selectin on the cell membrane upon exposure to cytokines have shown potential for drug delivery vehicles to target sites of chronic endothelial inflammation, such as atherosclerosis and cancer. Herein, we characterized EC surfaces by measuring the E-selectin and VCAM1 surface densities and adhesion forces of aVCAM1 and aE-selectin to ECs. We quantified the antibody density, ratio, and diffusivity of liposomes to achieve significant binding and internalization. At 1 h, the 1:1 ratio of VCAM1:E-selectin antibodies was significantly higher than 1:0 and 0:1. Significant binding and uptake was achieved at aE-selectin densities as low as 400 molecules/μm(2). The highest levels of binding and uptake were achieved when using a 1:1 ratio of VCAM1:E-selectin antibodies at a density of 1000 molecules/μm(2); this density is 85% lower than previous reports. The binding and uptake of functionalized liposomes were reduced to levels comparable to IgG functionalized liposomes upon a 10-fold reduction in liposome membrane diffusivity. We conclude with a liposomal design that discriminates between healthy and inflamed endothelium while reducing antibody surface presentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    PubMed

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Poly(styrene-co-maleic acid)-based pH-sensitive liposomes mediate cytosolic delivery of drugs for enhanced cancer chemotherapy.

    PubMed

    Banerjee, Shubhadeep; Sen, Kacoli; Pal, Tapan K; Guha, Sujoy K

    2012-10-15

    pH-responsive polymers render liposomes pH-sensitive and facilitate the intracellular release of encapsulated payload by fusing with endovascular membranes under mildly acidic conditions found inside cellular endosomes. The present study reports the use of high-molecular weight poly(styrene-co-maleic acid) (SMA), which exhibits conformational transition from a charged extended structure to an uncharged globule below its pK(1) value, to confer pH-sensitive property to liposomes. The changes in the co-polymer chain conformation resulted in destabilization of the liposomes at mildly acidic pH due to vesicle fusion and/or channel formation within the membrane bilayer, and ultimately led to the release of the encapsulated cargo. The vesicles preserved their pH-sensitivity and stability in serum unlike other polymer-based liposomes and exhibited no hemolytic activity at physiological pH. The lysis of RBCs at endosomal pH due to SMA-based liposome-induced alterations in the bilayer organization leading to spherocyte formation indicated the potential of these vesicles to mediate cytosolic delivery of bio-active molecules through endosome destabilization. The SMA-loaded liposomes exhibiting excellent cytocompatibility, efficiently delivered chemotherapeutic agent 5-Fluorouracil (5-FU) within colon cancer cells HT-29 in comparison to neat liposomes. This caused increased cellular-availability of the drug, which resulted in enhanced apoptosis and highlighted the clinical potential of SMA-based vesicles. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Polymersome-based drug-delivery strategies for cancer therapeutics.

    PubMed

    Anajafi, Tayebeh; Mallik, Sanku

    2015-01-01

    Polymersomes are stable vesicles prepared from amphiphilic polymers and are more stable compared with liposomes. Although these nanovesicles have many attractive properties for in vitro/in vivo applications, liposome-based drug delivery systems are still prevalent in the market. In order to expedite the translational potential and to provide medically valuable formulations, the polymersomes need to be biocompatible and biodegradable. In this review, recent developments for biocompatible and biodegradable polymersomes, including the design of intelligent, targeted, and stimuli-responsive vesicles are summarized.

  8. Active Targeted Drug Delivery for Microbes Using Nano-Carriers

    PubMed Central

    Lin, Yung-Sheng; Lee, Ming-Yuan; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nano-carriers utilized targeting ligands on their surface called ‘active target’ provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced. PMID:25877093

  9. Amelioration of renal ischaemia–reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells

    PubMed Central

    Rogers, NM; Stephenson, MD; Kitching, AR; Horowitz, JD; Coates, PTH

    2012-01-01

    BACKGROUND AND PURPOSE Renal ischaemia–reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. EXPERIMENTAL APPROACH We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. KEY RESULTS Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. CONCLUSIONS AND IMPLICATIONS Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. PMID:21745189

  10. Ag@4ATP-coated liposomes: SERS traceable delivery vehicles for living cells.

    PubMed

    Zhu, Dan; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Wu, Xin; Pei, Yuwei; Chen, Peng; Ma, Xueqin; Cui, Yiping

    2014-07-21

    A liposome-Ag nanohybrid has been demonstrated as a SERS traceable intracellular drug nanocarrier. Liposomes have been introduced for their special qualities in drug delivery systems. In essence, 4-aminothiophenol (4ATP) tagged Ag nanoparticles (Ag@4ATP) were adsorbed onto the surfaces of liposomes via electrostatic interactions, in which 4ATP was used as a SERS reporter. In such a nanohybrid, the locations of the carrier can be tracked by SERS signals while those of the drugs can be monitored through their fluorescence, allowing the simultaneous investigation of the intracellular distribution of both the carriers and the drugs. Our experimental results suggest that the reported liposomal system has substantial potential for intracellular drug delivery.

  11. Giant liposomes as delivery system for ecophysiological studies in copepods.

    PubMed

    Buttino, Isabella; De Rosa, Giuseppe; Carotenuto, Ylenia; Ianora, Adrianna; Fontana, Angelo; Quaglia, Fabiana; La Rotonda, Maria Immacolata; Miralto, Antonio

    2006-03-01

    Giant liposomes are proposed as a potential delivery system in marine copepods, the dominant constituent of the zooplankton. Liposomes were prepared in the same size range as the food ingested by copepods (mean diameter of about 7 microm). The encapsulation of a hydrophilic and high molecular mass fluorescent compound, fluorescein isothiocyanate-dextran (FitcDx), within the liposomes provided a means of verifying copepod ingestion when viewed with the confocal laser-scanning microscope. Females of the calanoid copepod Temora stylifera were fed with FitcDx-encapsulated liposomes alone or mixed with the dinoflagellate alga Prorocentrum minimum. Control copepods were incubated with the P. minimum diet alone. Egg production rates, percentage egg-hatching success and number of faecal pellets produced were evaluated after 24 h and 48 h of feeding. Epifluorescence of copepod gut and faecal pellets indicated that the liposomes were actively ingested by T. stylifera in both experimental food conditions, with or without the dinoflagellate diet. Ingestion rates calculated using 3H-labelled liposomes indicated that females ingested more liposomes when P. minimum was added to the solution (16% vs 7.6% of uptake). When liposomes were supplied together with the algal diet, egg production rate, egg-hatching success and faecal pellet production were as high as those observed for the control diet. By contrary, egg production and hatching success were very low with a diet of liposomes alone and faecal pellet production was similar to that recorded in starved females. This results suggest that liposomes alone did not add any nutritive value to the diet, making them a good candidate as inert carriers to study the nutrient requirements or biological activity of different compounds. In particular, such liposomes are proposed as carriers for diatom-derived polyunsaturated aldehydes, which are known to impair copepod embryo viability. Other potential applications of liposomes as a delivery

  12. Erythrocytes-based synthetic delivery systems: transition from conventional to novel engineering strategies.

    PubMed

    Bhateria, Manisha; Rachumallu, Ramakrishna; Singh, Rajbir; Bhatta, Rabi Sankar

    2014-08-01

    Erythrocytes (red blood cells [RBCs]) and artificial or synthetic delivery systems such as liposomes, nanoparticles (NPs) are the most investigated carrier systems. Herein, progress made from conventional approach of using RBC as delivery systems to novel approach of using synthetic delivery systems based on RBC properties will be reviewed. We aim to highlight both conventional and novel approaches of using RBCs as potential carrier system. Conventional approaches which include two main strategies are: i) directly loading therapeutic moieties in RBCs; and ii) coupling them with RBCs whereas novel approaches exploit structural, mechanical and biological properties of RBCs to design synthetic delivery systems through various engineering strategies. Initial attempts included coupling of antibodies to liposomes to specifically target RBCs. Knowledge obtained from several studies led to the development of RBC membrane derived liposomes (nanoerythrosomes), inspiring future application of RBC or its structural features in other attractive delivery systems (hydrogels, filomicelles, microcapsules, micro- and NPs) for even greater potential. In conclusion, this review dwells upon comparative analysis of various conventional and novel engineering strategies in developing RBC based drug delivery systems, diversifying their applications in arena of drug delivery. Regardless of the challenges in front of us, RBC based delivery systems offer an exciting approach of exploiting biological entities in a multitude of medical applications.

  13. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy

    PubMed Central

    Ta, Terence; Porter, Tyrone M.

    2016-01-01

    Liposomes are a promising class of nanomedicine with the potential to provide site-specific chemotherapy, thus improving the quality of cancer patient care. First-generation liposomes have emerged as one of the first nanomedicines used clinically for localized delivery of chemotherapy. Second-generation liposomes, i.e. stimuli-responsive liposomes, have the potential to not only provide site-specific chemotherapy, but also triggered drug release and thus greater spatial and temporal control of therapy. Temperature-sensitive liposomes are an especially attractive option, as tumors can be heated in a controlled and predictable manner with external energy sources. Traditional thermosensitive liposomes are composed of lipids that undergo a gel-to-liquid phase transition at several degrees above physiological temperature. More recently, temperature-sensitization of liposomes has been demonstrated with the use of lysolipids and synthetic temperature-sensitive polymers. The design, drug release behavior, and clinical potential of various temperature-sensitive liposomes, as well as the various heating modalities used to trigger release, are discussed in this review. PMID:23583706

  14. Polymersome-based drug-delivery strategies for cancer therapeutics

    PubMed Central

    Anajafi, Tayebeh; Mallik, Sanku

    2015-01-01

    Polymersomes are stable vesicles prepared from amphiphilic polymers and are more stable compared with liposomes. Although these nanovesicles have many attractive properties for in vitro/in vivo applications, liposome-based drug delivery systems are still prevalent in the market. In order to expedite the translational potential and to provide medically valuable formulations, the polymersomes need to be biocompatible and biodegradable. In this review, recent developments for biocompatible and biodegradable polymersomes, including the design of intelligent, targeted, and stimuli-responsive vesicles are summarized. PMID:25996048

  15. Synthesis of a novel galactosylated lipid and its application to the hepatocyte-selective targeting of liposomal doxorubicin.

    PubMed

    Wang, Shao-Ning; Deng, Yi-Hui; Xu, Hui; Wu, Hong-Bing; Qiu, Ying-Kun; Chen, Da-Wei

    2006-01-01

    This paper described the synthesis of a novel galactosylated lipid with mono-galactoside moiety, (5-Cholesten-3beta-yl) 4-oxo-4-[2-(lactobionyl amido) ethylamido] butanoate (CHS-ED-LA), and the targetability of doxorubicin (DOX), a model drug, in liposomes containing 10% mol/mol CHS-ED-LA (galactosylated liposomes, GalL) to the liver was studied. The weighted-average overall drug targeting efficiency (Te(*)) was used to evaluate the liver targetability of GalL DOX. The results showed that GalL DOX gave a relatively high (Te(*))(liver) value of 64.6%, while DOX in conventional liposome (CL DOX) only gave a (Te(*))(liver) value of 21.8%. In the liver, the GalL DOX was mainly taken up by parenchymal cells (88% of the total hepatic uptake). Moreover, preinjection of asialofetuin significantly inhibited the liver uptake of GalL DOX (from 70 to 12% of the total injected dose). It was suggested that liposomes containing such novel galactosylated lipid, CHS-ED-LA, had a great potential as drug delivery carriers for hepatocyte-selective targeting.

  16. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery

    NASA Astrophysics Data System (ADS)

    Oude Blenke, Erik E.; van den Dikkenberg, Joep; van Kolck, Bartjan; Kros, Alexander; Mastrobattista, Enrico

    2016-04-01

    Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes

  17. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells.

    PubMed

    Rogers, N M; Stephenson, M D; Kitching, A R; Horowitz, J D; Coates, P T H

    2012-05-01

    Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  18. Delivery systems for biopharmaceuticals. Part II: Liposomes, Micelles, Microemulsions and Dendrimers.

    PubMed

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Biopharmaceuticals are a generation of drugs that include peptides, proteins, nucleic acids and cell products. According to their particular molecular characteristics (e.g. high molecular size, susceptibility to enzymatic activity), these products present some limitations for administration and usually parenteral routes are the only option. To avoid these limitations, different colloidal carriers (e.g. liposomes, micelles, microemulsions and dendrimers) have been proposed to improve biopharmaceuticals delivery. Liposomes are promising drug delivery systems, despite some limitations have been reported (e.g. in vivo failure, poor long-term stability and low transfection efficiency), and only a limited number of formulations have reached the market. Micelles and microemulsions require more studies to exclude some of the observed drawbacks and guarantee their potential for use in clinic. According to their peculiar structures, dendrimers have been showing good results for nucleic acids delivery and a great development of these systems during next years is expected. This is the Part II of two review articles, which provides the state of the art of biopharmaceuticals delivery systems. Part II deals with liposomes, micelles, microemulsions and dendrimers.

  19. Lactoferrin-modified PEGylated liposomes loaded with doxorubicin for targeting delivery to hepatocellular carcinoma

    PubMed Central

    Wei, Minyan; Guo, Xiucai; Tu, Liuxiao; Zou, Qi; Li, Qi; Tang, Chenyi; Chen, Bao; Xu, Yuehong; Wu, Chuanbin

    2015-01-01

    Lactoferrin (Lf) is a potential-targeting ligand for hepatocellular carcinoma (HCC) cells because of its specific binding with asialoglycoprotein receptor (ASGPR). In this present work, a doxorubicin (DOX)-loaded, Lf-modified, polyethylene glycol (PEG)ylated liposome (Lf-PLS) system was developed, and its targeting effect and antitumor efficacy to HCC was also explored. The DOX-loaded Lf-PLS system had spherical or oval vesicles, with mean particle size approximately 100 nm, and had an encapsulation efficiency of 97%. The confocal microscopy and flow cytometry indicated that the cellular uptake of Lf-PLS was significantly higher than that of PEGylated liposome (PLS) in ASGPR-positive cells (P<0.05) but not in ASGPR-negative cells (P>0.05). Cytotoxicity assay by MTT demonstrated that DOX-loaded Lf-PLS showed significantly stronger antiproliferative effects on ASGPR-positive HCC cells than did PLS without the Lf modification (P<0.05). The in vivo antitumor studies on male BALB/c nude mice bearing HepG2 xenografts demonstrated that DOX-loaded Lf-PLS had significantly stronger antitumor efficacy compared with PLS (P<0.05) and free DOX (P<0.05). All these results demonstrated that a DOX-loaded Lf-PLS might have great potential application for HCC-targeting therapy. PMID:26316745

  20. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    PubMed Central

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  1. GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation.

    PubMed

    Cheng, Liang; Huang, Fa-Zhen; Cheng, Li-Fang; Zhu, Ya-Qin; Hu, Qing; Li, Ling; Wei, Lin; Chen, Da-Wei

    2014-01-01

    Non-small cell lung cancer (NSCLC) is a serious threat to human health, and 40%-80% of NSCLCs express high levels of epidermal growth factor receptor (EGFR). GE11 is a novel peptide and exhibits high affinity for EGFR binding. The aim of this study was to construct and evaluate GE11-modified liposomes for targeted drug delivery to EGFR-positive NSCLC. Doxorubicin, a broad-spectrum antitumor agent, was chosen as the payload. GE11 was conjugated to the distal end of DSPE-PEG2000-Mal by an addition reaction with a conjugation efficiency above 90%. Doxorubicin-loaded liposomes containing GE11 (GE11-LP/DOX) at densities ranging from 0% to 15% were prepared by combination of a thin film hydration method and a post insertion method. Irrespective of GE11 density, the physicochemical properties of these targeted liposomes, including particle size, zeta potential, and drug entrapment efficiency, were nearly identical. Interestingly, the cytotoxic effect of the liposomes on A549 tumor cells was closely related to GE11 density, and liposomes with 10% GE11 had the highest tumor cell killing activity and a 2.6-fold lower half maximal inhibitory concentration than that of the nontargeted counterpart (PEG-LP/DOX). Fluorescence microscopy and flow cytometry analysis revealed that GE11 significantly increased cellular uptake of the liposomes, which could be ascribed to specific EGFR-mediated endocytosis. It was found that multiple endocytic pathways were involved in entry of GE11-LP/DOX into cells, but GE11 assisted in cellular internalization mainly via the clathrin-mediated endocytosis pathway. Importantly, the GE11-modified liposomes showed enhanced accumulation and prolonged retention in tumor tissue, as evidenced by a 2.2-fold stronger mean fluorescence intensity in tumor tissue than the unmodified liposomes at 24 hours. In summary, GE11-modified liposomes may be a promising platform for targeted delivery of chemotherapeutic drugs in NSCLC.

  2. Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer.

    PubMed

    Ninomiya, Kazuaki; Kawabata, Shinya; Tashita, Hiroyuki; Shimizu, Nobuaki

    2014-01-01

    Ultrasound-mediated drug delivery was established using liposomes that were modified with the thermosensitive polymer (TSP) poly(NIPMAM-co-NIPAM), which sensitized the liposomes to high temperatures. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation at 0.5 W/cm(2) for 120 s as well as the case under incubation at 42 °C for 15 min. In addition, uptake of the drug released from TSP liposomes by cancer cells was enhanced by ultrasound irradiation. In a cell injury assay using doxorubicin (DOX)-loaded TSP liposomes and ultrasound irradiation, cell viability of HepG2 cells at 6 h after ultrasound irradiation (1 MHz, 0.5 W/cm(2) for 30 s) with DOX-loaded TSP liposomes (TSP/lipid ratio=1) was 60%, which was significantly lower than that of the control conditions such as DOX-loaded TSP liposomes alone and DOX-loaded intact liposomes under ultrasound irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response.

    PubMed

    Liang, Ruijing; Xie, Jun; Li, Jun; Wang, Ke; Liu, Liping; Gao, Yujie; Hussain, Mubashir; Shen, Guanxin; Zhu, Jintao; Tao, Juan

    2017-12-01

    For nanovaccine-based cancer immunotherapy, dendritic cells (DCs) are one of the most powerful antigen presenting cells (APCs) that initiate and promote the maturation of antigen-specific cytotoxic T lymphocytes (e.g., CD8 + T cells) to induce the local and systemic antitumor immunity and further suppress the tumor metastasis and produce long-term protection against tumor. Thus, the activation and maturation of DCs is the prerequisite for efficient CD8 + T cell-based antitumor immune responses, which is considered as a primary and promising task for nanovaccine engineering. Herein, we introduce a versatile nanovaccine of liposomes-coated gold nanocages (Lipos-AuNCs) modified with DCs specific antibody aCD11c for targeted delivery of adjuvant MPLA and melanoma antigen peptide TRP2 to promote the activation and maturation of DCs, and enhance tumor specific T lymphocytes responses. Moreover, AuNCs accumulation and AuNCs-engulfed DCs migration to regional lymph nodes (RLNs) became real-time visualization through in vivo fluorescence and photoacoustic (PA) imaging to monitor the immunity process. In vivo experimental results demonstrated that the targeted antigen/adjuvants-loaded AuNCs exhibited enhanced antitumor immune response to inhibit tumor growth and metastasis in both B16-F10 prophylactic and lung metastasis models, which may act as a promising nanoplatform for antitumor immunotherapy and in vivo tracking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system.

    PubMed

    Al-Remawi, Mayyas; Elsayed, Amani; Maghrabi, Ibrahim; Hamaidi, Mohammad; Jaber, Nisrein

    2017-05-01

    In the present work, insulin-chitosan polyelectrolyte complexes associated to lecithin liposomes were investigated as a new carrier for oral delivery of insulin. The preparation was characterized in terms of particle size, zeta potential and encapsulation efficiency. Surface tension measurements revealed that insulin-chitosan polyelectrolyte complexes have some degree of hydrophobicity and should be added to lecithin liposomal dispersion and not the vice versa to prevent their adsorption on the surface. Stability of insulin was enhanced when it was associated to liposomes. Significant reduction of blood glucose levels was noticed after oral administration of liposomal preparation to streptozotocin diabetic rats compared to control. The hypoglycemic activity was more prolonged compared to subcutaneously administered insulin.

  5. Intracellular delivery of universal proteins using a lysine headgroup containing cationic liposomes: deciphering the uptake mechanism.

    PubMed

    Sarker, Satya Ranjan; Hokama, Ryosuke; Takeoka, Shinji

    2014-01-06

    An amino acid-based cationic lipid having a TFA counterion (trifluoroacetic acid counterion) in the lysine headgroup was used to deliver functional proteins into human cervical cancer cells, HeLa, in the presence of serum. Proteins used in the study were fluorescein isothiocyanate (FITC) labeled bovine serum albumin, mouse anti-F actin antibody [NH3], and goat anti mouse IgG conjugated with FITC. The formation of liposome/protein complexes was confirmed using native polyacrylamide gel electrophoresis. Furthermore, the complexes were characterized in terms of their size and zeta potential at different pH values and found to be responsive to changes in pH. The highest delivery efficiency of the liposome/albumin complexes was 99% at 37 °C. The liposomes effectively delivered albumin and antibodies as confirmed by confocal laser scanning microscopy (CLSM). Inhibition studies showed that the cellular uptake mechanism of the complexes was via caveolae-mediated endocytosis, and the proteins were subsequently released from either the early endosomes or the caveosomes as suggested by CLSM. Thus, lysine-based cationic liposomes can be a useful tool for intracellular protein delivery.

  6. Increased liver uptake of liposomes and improved targeting efficacy by labeling with asialofetuin in rodents.

    PubMed

    Wu, J; Liu, P; Zhu, J L; Maddukuri, S; Zern, M A

    1998-03-01

    To improve liposome-directed therapy of liver disease and gene delivery, it would be beneficial to selectively target hepatocytes. For this purpose, conventional liposomes (CL) were labeled with asialofetuin (AF), an asialoglycoprotein. The biodistribution of AF-labeled liposomes (AF-L) in mice and their incorporation into rat hepatocytes, and their potential use in acute liver injury, were investigated. AF-L displayed a quicker plasma clearance than CL, and 25.4%, 2.7%, and 1.2% of the injected dose remained in the plasma versus 47.0%, 26.1%, and 9.5% of CL, respectively at 2, 4, and 20 hours after the injection. Total liver uptake of AF-L (73%+/-3.9%) was markedly higher (P < .005) than CL (16.5%+/-1.8%) 4 hours after the injection. Liposomal radioactivity (cpm/mg) was greatly enhanced in the liver (11-fold) during the first 4 hours after the administration of 14C-AF-L, and was much higher than in 14C-CL-injected mice (1.5-fold). In vitro incubation of isolated rat hepatocytes with 14C-AF-L or intravenous injection of 14C-AF-L in rats resulted in higher hepatocyte-bound radioactivity compared with 14C-CL (P < .01-.005). AF-L-associated 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) fluorescent signals were not only located in Kupffer cells, but also in hepatocytes, in which bile canaliculus networks were imaged. Intravenous administration of vitamin E (VE)-associated CL (VE-CL, 1 mg/mouse) significantly lowered alanine transaminase (ALT) levels in CCl4-treated mice (196+/-79 vs. 2,107+/-235 U/mL; P < .01). The ALT level in CCl4 + VE-AF-L group was decreased to 38+/-16 units/mL, which was significantly lower than the CC14 + VE-CL group (P < .05). In conclusion, labeling liposomes with AF led to a shortened liposome plasma half-life and greatly enhanced uptake of AF-L liposome by the liver. The enhanced uptake resulted from an increased incorporation of hepatocytes with AF-L liposomes. VE-associated AF liposomes further improved the

  7. Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis

    PubMed Central

    Kluza, Ewelina; Van Tilborg, Geralda A. F.; van der Schaft, Daisy W. J.; Griffioen, Arjan W.; Mulder, Willem J. M.; Nicolay, Klaas

    2010-01-01

    Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy. PMID:20390447

  8. Development and evaluation of emulsion-liposome blends for resveratrol delivery.

    PubMed

    Hung, Chi-Feng; Chen, Jan-Kan; Liao, Mei-Hui; Lo, Huey-Ming; Fang, Jia-You

    2006-01-01

    Nano- and submicron-sized vesicles are beneficial for the controlled delivery of drugs. Resveratrol, the main active polyphenol in red wine, was incorporated into various combinations of emulsions and liposomes to examine its physicochemical characteristics and cardiovascular protection. The blends of emulsion-liposome were composed of coconut oil, soybean lecithin, glycerol formal, and non-ionic surfactants. Multiple systems were assessed by evaluating the droplet size, surface charge, drug encapsulation, release rate, and stability. The vesicle diameter of the systems ranged from 114 to 195 nm. The liposomal vesicles in the systems had smaller diameters (of 43 approximately 56 nm) (F6 and F7). Drug encapsulation of approximately 70% were achieved by the vesicles. The inclusion of resveratrol in these systems retarded the drug release in both the presence and absence of plasma in vitro. The emulsion-liposome blends which incorporated Brij 98 (F5) exhibited the slowest release at zero-order for resveratrol delivery. Treatment using resveratrol in the blended formulations dramatically inhibited vascular intimal thickening, which was tested in an experimental model in which endothelial injury was produced in normal rat carotid arteries. Intraperitoneal injection of the multiple systems was associated with no or negligible liver and kidney toxicity. We concluded that encapsulation by the emulsion-liposome blends is a potent way to enhance the preventative and therapeutic benefits of resveratrol.

  9. Formulation, Development, and In Vitro Evaluation of a CD22 Targeted Liposomal System Containing a Non-Cardiotoxic Anthracycline for B Cell Malignancies.

    PubMed

    Mittal, Nivesh K; Mandal, Bivash; Balabathula, Pavan; Setua, Saini; Janagam, Dileep R; Lothstein, Leonard; Thoma, Laura A; Wood, George C

    2018-04-15

    Doxorubicin cardiotoxicity has led to the development of superior chemotherapeutic agents such as AD 198. However, depletion of healthy neutrophils and thrombocytes from AD 198 therapy must be limited. This can be done by the development of a targeted drug delivery system that delivers AD 198 to the malignant cells. The current research highlights the development and in vitro analysis of targeted liposomes containing AD 198. The best lipids were identified and optimized for physicochemical effects on the liposomal system. Physiochemical characteristics such as size, ζ-potential, and dissolution were also studied. Active targeting to CD22 positive cells was achieved by conjugating anti-CD22 Fab’ to the liposomal surface. Size and ζ-potential of the liposomes was between 115 and 145 nm, and −8 to−15 mV. 30% drug was released over 72 h. Higher cytotoxicity was observed in CD22+ve Daudi cells compared to CD22−ve Jurkat cells. The route of uptake was a clathrin- and caveolin-independent pathway. Intracellular localization of the liposomes was in the endolysosomes. Upon drug release, apoptotic pathways were activated partly by the regulation of apoptotic and oncoproteins such as caspase-3 and c-myc. It was observed that the CD22 targeted drug delivery system was more potent and specific compared to other untargeted formulations.

  10. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy.

    PubMed

    Yuba, Eiji; Kanda, Yuhei; Yoshizaki, Yuta; Teranishi, Ryoma; Harada, Atsushi; Sugiura, Kikuya; Izawa, Takeshi; Yamate, Jyoji; Sakaguchi, Naoki; Koiwai, Kazunori; Kono, Kenji

    2015-10-01

    Potentiation of pH-sensitive liposome-based antigen carriers with IFN-γ gene lipoplexes was attempted to achieve efficient induction of tumor-specific immunity. 3-Methylglutarylated poly(glycidol) (MGluPG)-modified liposomes and cationic liposomes were used, respectively, for the delivery of antigenic protein ovalbumin (OVA) and IFN-γ-encoding plasmid DNA (pDNA). The MGluPG-modified liposomes and the cationic liposome-pDNA complexes (lipoplexes) formed hybrid complexes via electrostatic interactions after their mixing in aqueous solutions. The hybrid complexes co-delivered OVA and IFN-γ-encoding pDNA into DC2.4 cells, a murine dendritic cell line, as was the case of MGluPG-modified liposomes for OVA or the lipoplexes for pDNA. Both the lipoplexes and the hybrid complexes transfected DC2.4 cells and induced IFN-γ protein production, but transfection activities of the hybrid complexes were lower than those of the parent lipoplexes. Subcutaneous administration of hybrid complexes to mice bearing E.G7-OVA tumor reduced tumor volumes, which might result from the induction of OVA-specific cytotoxic T lymphocytes (CTLs). However, the hybrid complex-induced antitumor effect was the same level of the MGluPG-modified liposome-mediated antitumor immunity. In contrast, an extremely strong antitumor immune response was derived when these liposomes and lipoplexes without complexation were injected subcutaneously at the same site of tumor-bearing mice. Immunohistochemical analysis of tumor sections revealed that immunization through the liposome-lipoplex combination promoted the infiltration of CTLs to tumors at an early stage of treatment compared with liposomes, resulting in strong therapeutic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effective Skin Cancer Treatment by Topical Co-delivery of Curcumin and STAT3 siRNA Using Cationic Liposomes.

    PubMed

    Jose, Anup; Labala, Suman; Ninave, Kunal Manoj; Gade, Sudeep Kumar; Venuganti, Venkata Vamsi Krishna

    2018-01-01

    The aim of the present study was to evaluate the effectiveness of iontophoretic co-delivery of curcumin and anti-STAT3 siRNA using cationic liposomes against skin cancer. Curcumin was encapsulated in DOTAP-based cationic liposomes and then complexed with STAT3 siRNA. This nanocomplex was characterized for the average particle size, zeta-potential, and encapsulation efficiency. The cell viability studies in B16F10 mouse melanoma cells have shown that the co-delivery of curcumin and STAT3 siRNA significantly (p < 0.05) inhibited the cancer cell growth compared with either liposomal curcumin or STAT3 siRNA alone. The curcumin-loaded liposomes were able to penetrate up to a depth of 160 μm inside the skin after iontophoretic (0.47 mA/cm 2 ) application. The in vivo efficacy studies were performed in the mouse model of melanoma skin cancer. Co-administration of the curcumin and STAT3 siRNA using liposomes significantly (p < 0.05) inhibited the tumor progression as measured by tumor volume and tumor weight compared with either liposomal curcumin or STAT3 siRNA alone. Furthermore, the iontophoretic administration of curcumin-loaded liposome-siRNA complex showed similar effectiveness in inhibiting tumor progression and STAT3 protein suppression compared with intratumoral administration. Taken together, cationic liposomes can be utilized for topical iontophoretic co-delivery of small molecule and siRNA for effective treatment of skin diseases.

  12. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond

  13. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes.

    PubMed

    Qhattal, Hussaini Syed Sha; Hye, Tanvirul; Alali, Amer; Liu, Xinli

    2014-06-24

    Hyaluronan-grafted liposomes (HA-liposomes) preferentially target CD44-overexpressing tumor cells in vitro via receptor-mediated endocytosis. We investigated the pharmacokinetics and biodistribution of HA-liposomes with various sizes of HA (MW 5-8, 50-60, and 175-350 kDa) in mice. Incorporation of negatively charged HA on the liposome surface compromised its blood circulation time, which led to decreased tumor accumulation in CD44+ human breast cancer MDA-MB-231 xenografts compared to PEGylated liposomes (PEG-5000). Clearance of HA-liposomes was HA polymer length-dependent; high MW (175-350 kDa, highest ligand binding affinity) HA-liposomes displayed faster clearance compared to low MW (5-8, 50-60 kDa) HA-liposomes or PEGylated liposomes. Surface HA ligand density can also affect clearance of HA-liposomes. Thus, HA is not an effective stealth coating material. When dual coating of PEG and HA was used, the PEG-HA-liposomes displayed similar blood circulation time and tumor accumulation to that of the PEGylated liposomes; however, the PEG-HA-liposomes displayed better cellular internalization capability in vivo. Tumor histology showed that PEG-HA-liposomes had a more direct association with CD44+ cancer cells, while PEGylated liposomes located predominantly in the tumor periphery, with less association with CD44+ cells. Flow cytometry analysis of ex vivo tumor cells showed that PEG-HA-liposomes had significantly higher tumor cell internalization compared to PEGylated liposomes. This study demonstrates that a long blood circulation time is critical for active tumor targeting. Furthermore, the use of the tumor-targeting ligand HA does not increase total tumor accumulation of actively targeted liposomes in solid tumors; however, it can enhance intracellular delivery.

  14. Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles.

    PubMed

    Ergen, Can; Heymann, Felix; Al Rawashdeh, Wa'el; Gremse, Felix; Bartneck, Matthias; Panzer, Ulf; Pola, Robert; Pechar, Michal; Storm, Gert; Mohr, Nicole; Barz, Matthias; Zentel, Rudolf; Kiessling, Fabian; Trautwein, Christian; Lammers, Twan; Tacke, Frank

    2017-01-01

    Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Targeted delivery of anti-tuberculosis drugs to macrophages: targeting mannose receptors

    NASA Astrophysics Data System (ADS)

    Filatova, L. Yu; Klyachko, N. L.; Kudryashova, E. V.

    2018-04-01

    The development of systems for targeted delivery of anti-tuberculosis drugs is a challenge of modern biotechnology. Currently, these drugs are encapsulated in a variety of carriers such as liposomes, polymers, emulsions and so on. Despite successful in vitro testing of these systems, virtually no success was achieved in vivo, because of low accessibility of the foci of infection located in alveolar macrophage cells. A promising strategy for increasing the efficiency of therapeutic action of anti-tuberculosis drugs is to encapsulate the agents into mannosylated carriers targeting the mannose receptors of alveolar macrophages. The review addresses the methods for modification of drug substance carriers, such as liposomes and biodegradable polymers, with mannose residues. The use of mannosylated carriers to deliver anti-tuberculosis agents increases the drug circulation time in the blood stream and increases the drug concentration in alveolar macrophage cells. The bibliography includes 113 references.

  16. Targeted delivery of epirubicin to tumor-associated macrophages by sialic acid-cholesterol conjugate modified liposomes with improved antitumor activity.

    PubMed

    Zhou, Songlei; Zhang, Ting; Peng, Bo; Luo, Xiang; Liu, Xinrong; Hu, Ling; Liu, Yang; Di, Donghua; Song, Yanzhi; Deng, Yihui

    2017-05-15

    With the knowledge that the receptors of sialic acid are overexpressed on the surface of tumor-associated macrophages (TAMs), which play a crucial role in the tumor's progression and metastasis, a sialic acid-cholesterol conjugate (SA-CH) was synthesized and modified on the surface of epirubicin (EPI)-loaded liposomes (EPI-SAL) to improve the delivery of EPI to the TAMs. The liposomes were developed using remote loading technology via a pH gradient. The liposomes were evaluated for particle size, encapsulation efficiency, in vitro release, stability, in vitro cytotoxicity and pharmacokinetics. And the in vitro and in vivo cellular uptake studies demonstrated EPI-SAL achieved enhanced accumulation of EPI into TAMs. The antitumor studies indicated that EPI-SAL provided the strongest antitumor activity compared with the other formulations (EPI-S, EPI-CL and EPI-PL represent EPI solution, conventional liposomal EPI, PEGylated liposomal EPI, respectively), and the survival percent of tumor-bearing mice was 83.3%. The superior antitumor efficacy was probably attributed to the killing of TAMs by EPI-SAL, and modulating the tumor microenvironment with the depletion of TAMs. These findings suggested that SA-CH decorated EPI-loaded liposomes may present an effective strategy to eradicate TAMs, which may be a promising approach for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Micro and nano liposome vesicles containing curcumin for a drug delivery system

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan Anh; Duoc Tang, Quan; Chanh Tin Doan, Duc; Chien Dang, Mau

    2016-09-01

    Micro and nano liposome vesicles were prepared using a lipid film hydration method and a sonication method. Phospholipid, cholesterol and curcumin were used to form micro and nano liposomes containing curcumin. The size, structure and properties of the liposomes were characterized by using optical microscopy, transmission electron microscopy, and UV-vis and Raman spectroscopy. It was found that the size of the liposomes was dependent on their composition and the preparation method. The hydration method created micro multilamellars, whereas nano unilamellars were formed using the sonication method. By adding cholesterol, the vesicles of the liposome could be stabilized and stored at 4 °C for up to 9 months. The liposome vesicles containing curcumin with good biocompatibility and biodegradability could be used for drug delivery applications.

  18. Sonoproduction of liposomes and protein particles as templates for delivery purposes.

    PubMed

    Silva, Raquel; Ferreira, Helena; Cavaco-Paulo, Artur

    2011-10-10

    The development of nano and micro delivery systems (DS), so small in size, is growing in importance, such as in drug targeting. In an era where nano is the new trend, micro and nano materials are in the forefront of progress. These systems can be produced by a diversity of methods. However, the use of high-intensity ultrasound offers an easy and versatile tool for nano- and microstructured materials that are often unavailable by conventional methods. Similarly to the synthesis methods that can be used, several starting materials can be applied to produce particulate systems. In this review, the recent strategic development of DS is discussed with emphasis on liposomes and polymer-based, specially protein-based, nanomedicine platforms for drug delivery. Among the variety of applications that materials in the particulate form can have, the control release of drugs is probably the most prominent one, as these have been in the forefront line of interest for biomedical applications. The basic concepts of sonochemical process pertaining to DS are summarized as well as the role of sonochemical procedure to their preparation. The different applications of these systems wrap up this review.

  19. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery.

    PubMed

    Dong, Yixuan; Dong, Pin; Huang, Di; Mei, Liling; Xia, Yaowen; Wang, Zhouhua; Pan, Xin; Li, Ge; Wu, Chuanbin

    2015-04-01

    The unique structure and protective mechanisms of the eye result in low bioavailability of ocular drugs. Using a mucoadhesive material is an efficient solution to improve ocular drug therapeutic efficacy. This study was designed to prepare a liposomal formulation coated by a novel adhesive excipient, silk fibroin (SF), for topical ocular drug delivery. The regenerated silk fibroins (SFs) with different dissolving time were coated onto the ibuprofen-loaded liposomes. The morphology, drug encapsulation efficiency, in vitro release and in vitro corneal permeation of SF-coated liposomes (SLs) were investigated in comparison with the conventional liposome. Cellular adhesion and cytotoxicity assay of SF and SLs were tested using human corneal epithelial cells (HCEC). SLs showed sustained drug release and in vitro corneal permeation of ibuprofen as compared to drug solution and conventional liposome. The cellular fluorescence appeared after 7 min of exposure to SF, and the intensity increased sustainedly up to 12h with no detectable cytotoxicity. Higher fluorescence intensity of Nile red in SLs was observed in a short period of 15 min showing a rapid uptake. These favorable properties make SF-coated liposome be a promising ocular drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation.

    PubMed

    Bunker, Alex; Magarkar, Aniket; Viitala, Tapani

    2016-10-01

    Combined experimental and computational studies of lipid membranes and liposomes, with the aim to attain mechanistic understanding, result in a synergy that makes possible the rational design of liposomal drug delivery system (LDS) based therapies. The LDS is the leading form of nanoscale drug delivery platform, an avenue in drug research, known as "nanomedicine", that holds the promise to transcend the current paradigm of drug development that has led to diminishing returns. Unfortunately this field of research has, so far, been far more successful in generating publications than new drug therapies. This partly results from the trial and error based methodologies used. We discuss experimental techniques capable of obtaining mechanistic insight into LDS structure and behavior. Insight obtained purely experimentally is, however, limited; computational modeling using molecular dynamics simulation can provide insight not otherwise available. We review computational research, that makes use of the multiscale modeling paradigm, simulating the phospholipid membrane with all atom resolution and the entire liposome with coarse grained models. We discuss in greater detail the computational modeling of liposome PEGylation. Overall, we wish to convey the power that lies in the combined use of experimental and computational methodologies; we hope to provide a roadmap for the rational design of LDS based therapies. Computational modeling is able to provide mechanistic insight that explains the context of experimental results and can also take the lead and inspire new directions for experimental research into LDS development. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Joseph G.; Geretti, Elena; Hendriks, Bart S.

    2012-07-01

    Anthracycline-based regimens are a mainstay of early breast cancer therapy, however their use is limited by cardiac toxicity. The potential for cardiotoxicity is a major consideration in the design and development of combinatorial therapies incorporating anthracyclines and agents that target the HER2-mediated signaling pathway, such as trastuzumab. In this regard, HER2-targeted liposomal doxorubicin was developed to provide clinical benefit by both reducing the cardiotoxicity observed with anthracyclines and enhancing the therapeutic potential of HER2-based therapies that are currently available for HER2-overexpressing cancers. While documenting the enhanced therapeutic potential of HER2-targeted liposomal doxorubicin can be done with existing models, there hasmore » been no validated human cardiac cell-based assay system to rigorously assess the cardiotoxicity of anthracyclines. To understand if HER2-targeting of liposomal doxorubicin is possible with a favorable cardiac safety profile, we applied a human stem cell-derived cardiomyocyte platform to evaluate the doxorubicin exposure of human cardiac cells to HER2-targeted liposomal doxorubicin. To the best of our knowledge, this is the first known application of a stem cell-derived system for evaluating preclinical cardiotoxicity of an investigational agent. We demonstrate that HER2-targeted liposomal doxorubicin has little or no uptake into human cardiomyocytes, does not inhibit HER2-mediated signaling, results in little or no evidence of cardiomyocyte cell death or dysfunction, and retains the low penetration into heart tissue of liposomal doxorubicin. Taken together, this data ultimately led to the clinical decision to advance this drug to Phase I clinical testing, which is now ongoing as a single agent in HER2-expressing cancers. -- Highlights: ► Novel approach using stem cell-derived cardiomyocytes to assess preclinical safety. ► HER2-targeted liposomal doxorubicin has improved safety profile vs free

  2. [Study on the hepatocytic cell targetability of liposomes].

    PubMed

    Hou, Xin-pu; Wang, Li; Wang, Xiang-tao; Li, Sha

    2003-02-01

    To target for hepatocytic cell, liposomes was modified by special ligand. Sterically stabilized liposomes (SSL) was conjugated with asialofeticin (AF), the ligand of asialoglycoprotein receptor (ASGP-R) of hepatocyte. ASGP-R-BLM is the ASGP-R reconstructed on bilayer lipid membrane (BLM). The recognition reaction between AF-SSL and ASGP-R-BLM can be monitored by the varieties of membrane electrical parameters. The targetability of AF-SSL mediated to hepatocyte was detected by radioisotopic labeled in vitro and in vivo. The therapeutic effect of antihepatocarcinoma was observed also. The lifetime of ASGP-R-BLM decreased with the added amount of AF-SSL. It was demonstrated that there was recognition reaction between AF-SSL and ASGP-R-BLM. The combination of AF-SSL with hepatocyte was significantly higher than that of SSL without AF-modified in vitro and in vivo. The survival time of rat for AF-SSL carriered ADM (adriamycin) group was much longer and the toxicities on heart, kidney and lung were lower than those SSL carried ADM group. It is possible to actively target the cell with specific receptor by ligand modified liposomes. The result prvide scientific basis of hepatocyte targeted liposomes.

  3. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes.

    PubMed

    Derycke, Annelies S L; De Witte, Peter A M

    2002-01-01

    Over the last few decades, photodynamic therapy evolved to a promising new treating modality for cancer. The photosensitizers used, induce light sensitivity to a normal light insensitive chemical or physical process. Third generation photosensitizers are derivatives of second generation photosensitizers introduced into or attached to chemical devices. This modification increases the biological specificity to deliver photosensitizers to a defined cell type. The aim of this study was to improve the specificity of hypericin for tumor cells using transferrin-conjugated PEG-liposomes. Transferrin was used as tumor-seeking molecule, since many tumor cells, among which HeLa cells, overexpress transferrin receptors on their surface. Hypericin, a potent second generation photosensitizer, was integrated in the lipid bilayers of the liposomes. The antiproliferative effect of the targeted PEG-liposomes was determined and compared with the results of non-targeted PEG-liposomes and free hypericin. Additionally, the intracellular accumulation assay was performed. All manipulations were done on HeLa cells. To interpret the results, the data were supplemented by findings concerning embedding stability. Targeting hypericin by transferrin-conjugated PEG-liposomes did not significantly favour the photocytotoxicity and the intracellular accumulation of hypericin, in comparison with non-targeted PEG-liposomes or free hypericin. Embedding stability experiments showed only limited stable embedding. Despite of their proven efficiency as a targeting carrier system, transferrin-conjugated PEG-liposomes seem less effective in targeting hypericin to tumor cells due to the amount of hypericin leaking out of the PEG-liposomes.

  4. Development of a DNA-liposome complex for gene delivery applications.

    PubMed

    Rasoulianboroujeni, M; Kupgan, G; Moghadam, F; Tahriri, M; Boughdachi, A; Khoshkenar, P; Ambrose, J J; Kiaie, N; Vashaee, D; Ramsey, J D; Tayebi, L

    2017-06-01

    The association structures formed by cationic liposomes and DNA (Deoxyribonucleic acid)-liposome have been effectively utilized as gene carriers in transfection assays. In this research study, cationic liposomes were prepared using a modified lipid film hydration method consisting of a lyophilization step for gene delivery applications. The obtained results demonstrated that the mean particle size had no significant change while the polydispersity (PDI) increased after lyophilization. The mean particle size slightly reduced after lyophilization (520±12nm to 464±25nm) while the PDI increased after lyophilization (0.094±0.017 to 0.220±0.004). In addition. The mean particle size of vesicles increases when DNA is incorporated to the liposomes (673±27nm). According to the Scanning Electron Microscopy (SEM) and transmission electron microscopy (TEM) images, the spherical shape of liposomes confirmed their successful preservation and reconstitution from the powder. It was found that liposomal formulation has enhanced transfection considerably compared to the naked DNA as negative control. Finally, liposomal formulation in this research had a better function than Lipofectamine® 2000 as a commercialized product because the cellular activity (cellular protein) was higher in the prepared lipoplex than Lipofectamine® 2000. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Lipid raft-like liposomes used for targeted delivery of a chimeric entry-inhibitor peptide with anti-HIV-1 activity.

    PubMed

    Gómara, María José; Pérez-Pomeda, Ignacio; Gatell, José María; Sánchez-Merino, Victor; Yuste, Eloisa; Haro, Isabel

    2017-02-01

    The work reports the design and synthesis of a chimeric peptide that is composed of the peptide sequences of two entry inhibitors which target different sites of HIV-1 gp41. The chimeric peptide offers the advantage of targeting two gp41 regions simultaneously: the fusion peptide and the loop both of which are membrane active and participate in the membrane fusion process. We therefore use lipid raft-like liposomes as a tool to specifically direct the chimeric inhibitor peptide to the membrane domains where the HIV-1 envelope protein is located. Moreover, the liposomes that mimic the viral membrane composition protect the chimeric peptide against proteolytic digestion thereby increasing the stability of the peptide. The described liposome preparations are suitable nanosystems for managing hydrophobic entry-inhibitor peptides as putative therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Characterization of cationic liposome formulations designed to exhibit extended plasma residence times and tumor vasculature targeting properties.

    PubMed

    Ho, Emmanuel A; Ramsay, Euan; Ginj, Mihaela; Anantha, Malathi; Bregman, Isaiah; Sy, Jonathan; Woo, Janet; Osooly-Talesh, Maryam; Yapp, Donald T; Bally, Marcel B

    2010-06-01

    Cationic liposomes exhibit a propensity to selectively target tumor-associated blood vessels demonstrating potential value as anti-cancer drug delivery vehicles. Their utility however, is hampered by their biological instability and rapid elimination following i.v. administration. Efforts to circumvent rapid plasma elimination have, to date, focused on decreasing cationic lipid content and incorporating polyethylene glycol (PEG)-modified lipids. In this study we wanted to determine whether highly charged cationic liposomes with surface-associated PEG could be designed to exhibit extended circulation lifetimes, while retaining tumor vascular targeting properties in an HT29 colorectal cancer xenograft model. Cationic liposomes prepared of DSPC, cationic lipids (DODAC, DOTAP, or DC-CHOL), and DSPE-PEG(2000) were studied. Our results demonstrate that formulations prepared with 50 mol% DODAC or DC-CHOL, and 20 mol% DSPE-PEG(2000) exhibited circulation half-lives ranging from 6.5 to 12.5 h. Biodistribution studies demonstrated that DC-CHOL formulations prepared with DSPE-PEG(2000) accumulated threefold higher in s.c. HT29 tumors than its PEG-free counterpart. Fluorescence microscopy studies suggested that the presence of DSPE-PEG(2000) did not adversely affect liposomal tumor vasculature targeting. We show for the first time that it is achievable to design highly charged, highly pegylated (20 mol% DSPE-PEG(2000)) cationic liposomes which exhibit both extended circulation lifetimes and tumor vascular targeting properties. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  7. ICAM-1-Targeted Liposomes Loaded with Liver X Receptor Agonists Suppress PDGF-Induced Proliferation of Vascular Smooth Muscle Cells

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Xu, Meng-Qi; Zhang, Wei; Ma, Sai; Guo, Weisheng; Wang, Yabin; Zhang, Yan; Gou, Tiantian; Chen, Yundai; Liang, Xing-Jie; Cao, Feng

    2017-05-01

    The proliferation of vascular smooth muscle cells (VSMCs) is one of the key events during the progress of atherosclerosis. The activated liver X receptor (LXR) signalling pathway is demonstrated to inhibit platelet-derived growth factor BB (PDGF-BB)-induced VSMC proliferation. Notably, following PDGF-BB stimulation, the expression of intercellular adhesion molecule-1 (ICAM-1) by VSMCs increases significantly. In this study, anti-ICAM-1 antibody-conjugated liposomes were fabricated for targeted delivery of a water-insoluble LXR agonist (T0901317) to inhibit VSMC proliferation. The liposomes were prepared by filming-rehydration method with uniform size distribution and considerable drug entrapment efficiency. The targeting effect of the anti-ICAM-T0901317 liposomes was evaluated by confocal laser scanning microscope (CLSM) and flow cytometry. Anti-ICAM-T0901317 liposomes showed significantly higher inhibition effect of VSMC proliferation than free T0901317 by CCk8 proliferation assays and BrdU staining. Western blot assay further confirmed that anti-ICAM-T0901317 liposomes inhibited retinoblastoma (Rb) phosphorylation and MCM6 expression. In conclusion, this study identified anti-ICAM-T0901317 liposomes as a promising nanotherapeutic approach to overcome VSMC proliferation during atherosclerosis progression.

  8. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma

    NASA Astrophysics Data System (ADS)

    Reddy, Teegala Lakshminarayan; Garikapati, Koteswara Rao; Reddy, S. Gopal; Reddy, B. V. Subba; Yadav, J. S.; Bhadra, Utpal; Bhadra, Manika Pal

    2016-10-01

    pH-sensitive drug carriers that are sensitive to the acidic (pH = ~6.5) microenvironments of tumor tissues have been primarily used as effective drug/gene/siRNA/microRNA carriers for releasing their payloads to tumor cells/tissues. Resistance to various drugs has become a big hurdle in systemic chemotherapy in cancer. Therefore delivery of chemotherapeutic agents and siRNA’s targeting anti apoptotic genes possess advantages to overcome the efflux pump mediated and anti apoptosis-related drug resistance. Here, we report the development of nanocarrier system prepared from kojic acid backbone-based cationic amphiphile containing endosomal pH-sensitive imidazole ring. This pH-sensitive liposomal nanocarrier effectively delivers anti-cancer drug (Paclitaxel; PTX) and siRNA (Bcl-2), and significantly inhibits cell proliferation and reduces tumor growth. Tumor inhibition response attributes to the synergistic effect of PTX potency and MDR reversing ability of Bcl-2 siRNA in the tumor supporting that kojic acid based liposomal pH-sensitive nanocarrier as efficient vehicle for systemic co-delivery of drugs and siRNA.

  9. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy.

    PubMed

    Qin, Li; Wang, Cheng-Zheng; Fan, Hui-Jie; Zhang, Chong-Jian; Zhang, Heng-Wei; Lv, Min-Hao; Cui, Shu-DE

    2014-11-01

    The treatment of a brain glioma remains one of the most difficult challenges in oncology. In the present study a delivery system was developed for targeted drug delivery across the blood-brain barrier (BBB) to the brain cancer cells. A cyclic arginine-glycine-aspartic acid (RGD) peptide and transferrin (TF) were utilized as targeting ligands. Cyclic RGD peptides are specific targeting ligands of cancer cells and TFs are ligands that specifically target the BBB and cancer cells. Liposome (LP) was used to conjugate the cyclic RGD and TFs to establish the brain glioma cascade delivery system (RGD/TF-LP). The LPs were prepared by the thin film hydration method and physicochemical characterization was conducted. In vitro cell uptake and three-dimensional tumor spheroid penetration studies demonstrated that the system could target endothelial and tumor cells, as well as penetrate the tumor cells to reach the core of the tumor spheroids. The results of the in vivo imaging further demonstrated that the RGD/TF-LP provided the highest brain distribution. As a result, the paclitaxel-loaded RGD/TF-LP presents the best antiproliferative activity against C6 cells and tumor spheroids. In conclusion, the RGD/TF-LP may precisely target brain glioma, which may be valuable for glioma imaging and therapy.

  10. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2015-12-30

    Targeting of drug delivery systems (DDSs) to specific intracellular organelles (i.e., subcellular targeting) has been investigated in numerous publications, but targeting efficiency of these systems is seldom reported. We searched scientific publications in the subcellular DDS targeting field and analyzed targeting efficiency and major formulation parameters that affect it. We identified 77 scientific publications that matched the search criteria. In the majority of these studies nanoparticle-based DDSs were applied, while liposomes, quantum dots and conjugates were used less frequently. The nucleus was the most common intracellular target, followed by mitochondrion, endoplasmic reticulum and Golgi apparatus. In 65% of the publications, DDSs surface was decorated with specific targeting residues, but the efficiency of this surface decoration was not analyzed in predominant majority of the studies. Moreover, only 23% of the analyzed publications contained quantitative data on DDSs subcellular targeting efficiency, while the majority of publications reported qualitative results only. From the analysis of publications in the subcellular targeting field, it appears that insufficient efforts are devoted to quantitative analysis of the major formulation parameters and of the DDSs' intracellular fate. Based on these findings, we provide recommendations for future studies in the field of organelle-specific drug delivery and targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Specific targeting to B cells by lipid-based nanoparticles conjugated with a novel CD22-ScFv.

    PubMed

    Loomis, Kristin; Smith, Brandon; Feng, Yang; Garg, Himanshu; Yavlovich, Amichai; Campbell-Massa, Ryan; Dimitrov, Dimiter S; Blumenthal, Robert; Xiao, Xiaodong; Puri, Anu

    2010-04-01

    The CD22 antigen is a viable target for therapeutic intervention for B-cell lymphomas. Several therapeutic anti-CD22 antibodies as well as an anti-CD22-based immunotoxin (HA22) are currently under investigation in clinical settings. Coupling of anti-CD22 reagents with a nano-drug delivery vehicle is projected to significantly improve treatment efficacies. Therefore, we generated a mutant of the targeting segment of HA22 (a CD22 scFv) to increase its soluble expression (mut-HA22), and conjugated it to the surface of sonicated liposomes to generate immunoliposomes (mut-HA22-liposomes). We examined liposome binding and uptake by CD22(+) B-lymphocytes (BJAB) by using calcein and/or rhodamine PE-labeled liposomes. We also tested the effect of targeting on cellular toxicity with doxorubicin-loaded liposomes. We report that: (i) Binding of mut-HA22-liposomes to BJAB cells was significantly greater than liposomes not conjugated with mut-HA22 (control liposomes), and mut-HA22-liposomes bind to and are taken in by BJAB cells in a dose and temperature-dependent manner, respectively; (ii) This binding occurred via the interaction with the cellular CD22 as pre-incubation of the cells with mut-HA22 blocked subsequent liposome binding; (iii) Intracellular localization of mut-HA22-liposomes at 37 degrees C but not at 4 degrees C indicated that our targeted liposomes were taken up through an energy dependent process via receptor-mediated endocytosis; and (iv) Mut-HA22-liposomes loaded with doxorubicin exhibited at least 2-3 fold more accumulation of doxorubicin in BJAB cells as compared to control liposomes. Moreover, these liposomes showed at least a 2-4 fold enhanced killing of BJAB or Raji cells (CD22(+)), but not SUP-T1 cells (CD22(-)). Taken together these data suggest that these 2nd-generation liposomes may serve as promising carriers for targeted drug delivery to treat patients suffering from B-cell lymphoma. Published by Elsevier Inc.

  12. Study of the pH-sensitive mechanism of tumor-targeting liposomes.

    PubMed

    Fan, Yang; Chen, Cong; Huang, Yiheng; Zhang, Fang; Lin, Guimei

    2017-03-01

    Currently, the phosphatidylethanolamine-based, pH-sensitive, liposome drug-delivery system has been widely developed for efficient, targeted cancer therapy. However, the mechanism of pH sensitivity was unclear; it is a main obstacle in controlling the preparation of pH-sensitive liposomes (PSLs).Therefore, our research is aimed at clarifying the pH-response mechanism of the various molecules that compose liposomes. We chose the small pH-sensitive molecules oleic acid (OA), linoleic acid (LA) and cholesteryl hemisuccinate (CHEMS) and the fundamental lipids cholesterol and phosphatidylethanolamine (PE) as test molecules. The PSLs were prepared using the thin-film hydration method and characterized in detail at various pH values (pH 5.0, 6.0 and 7.4), including particle size, ζ-potential, drug encapsulation efficiency and drug loading. The surface structure was observed by transmission electron microscopy (TEM), and the electrical conductivity of the liposome dispersion was also tested. The calorimetric analysis was conducted by Nano-differential scanning calorimetry (Nano-DSC). The in vitro drug release profile showed that PSLs exhibit good pH sensitivity. At neutral pH, the particle size was approximately 150nm, and it dramatically increased at pH 5.0. The ζ-potential increased as the pH decreased. The Nano-DSC results showed that cholesterol and CHEMS can both increase the stability and phase transfer temperature of PSLs. Conductivity increased to a maximum at pH 5.0 and was rather low at pH 7.4. In conclusion, results show that the three kinds of liposomes have pH responsive release characteristics in acidic pH. The OA-PSLs have a pH sensitive point of 5. Since CHEMS has a cholesterol-like structure, it can stabilizes the phospholipid bilayer under neutral conditions as shown in the Nano-DSC data, and because it has a special steroidal rigid structure, it exhibits better pH response characteristics under acidic conditions. Copyright © 2016 Elsevier B.V. All

  13. Dual drug delivery using "smart" liposomes for triggered release of anticancer agents

    NASA Astrophysics Data System (ADS)

    Jain, Ankit; Gulbake, Arvind; Jain, Ashish; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K.

    2013-07-01

    Ovarian cancer is one of the most fatal gynecologic cancers. In this debut study, dual approach using synergistically active combination of paclitaxel-topotecan (Pac-Top; 20:1, w/w) is investigated with utilization of characteristic features of tumor micro-environment and additionally overexpressed folate receptors (FR-α) to achieve targeting to tumor site. Various liposomes namely liposomes, PEGylated liposomes, and FR-targeted PEGylated liposomes with lipid compositions viz. DPPC:DMPG (85.5:9.5), DPPC:DMPG:mPEG2000-DSPE (85.5:9.5:5), and DPPC:DMPG:mPEG2000-DSPE:DSPE-PEG-folate (85.5:9.5:4.5:0.5), respectively, were developed using thin film casting method. These were nanometric in size around 200 nm. In vitro drug release study showed initial burst release followed by sustained release for more than 72 h at physiological milieu (37 ± 0.5 °C, pH 7.4) while burst release (i.e., more than 90 %) within 5 min at simulated tumor milieu (41 ± 1 °C, pH 4). SRB cytotoxicity assay in OVCAR-3 cell line revealed Pac-Top free (20:1, w/w) to be more toxic (GI50 = 6.5 μg/ml) than positive control (Adriamycin, GI50 = 9.1 μg/ml) and FR-targeted PEGylated liposomes GI50 (14.7 μg/ml). Moreover, florescence microscopy showed the highest cell uptake of FR-targeted PEGylated liposomes so called "smart liposomes" which has not only mediated effective targeting to FR-α but also triggered release of drugs upon hyperthermia.

  14. Biophysical aspects of using liposomes as delivery vehicles.

    PubMed

    Ulrich, Anne S

    2002-04-01

    Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too.

  15. Association with Amino Acids Does Not Enhance Efficacy of Polymerized Liposomes As a System for Lung Gene Delivery

    PubMed Central

    Bandeira, Elga; Lopes-Pacheco, Miquéias; Chiaramoni, Nadia; Ferreira, Débora; Fernandez-Ruocco, Maria J.; Prieto, Maria J.; Maron-Gutierrez, Tatiana; Perrotta, Ramiro M.; de Castro-Faria-Neto, Hugo C.; Rocco, Patricia R. M.; Alonso, Silvia del Valle; Morales, Marcelo M.

    2016-01-01

    Development of improved drug and gene delivery systems directly into the lungs is highly desirable given the important burden of respiratory diseases. We aimed to evaluate the safety and efficacy of liposomes composed of photopolymerized lipids [1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine] associated with amino acids as vectors for gene delivery into the lungs of healthy animals. Lipopolymer vesicles, in particular, are more stable than other types of liposomes. In this study, lipopolymers were associated with l-arginine, l-tryptophan, or l-cysteine. We hypothesized that the addition of these amino acids would enhance the efficacy of gene delivery to the lungs by the lipopolymers. l-Arginine showed the highest association efficiency due to its positive charge and better surface interactions. None of the formulations caused inflammation or altered lung mechanics, suggesting that these lipopolymers can be safely administered as aerosols. All formulations were able to induce eGFP mRNA expression in lung tissue, but the addition of amino acids reduced delivery efficacy when compared with the simple lipopolymer particle. These results indicate that this system could be further explored for gene or drug delivery targeting lung diseases. PMID:27199766

  16. Simultaneous measurement of liposome extravasation and content release in tumors.

    PubMed

    Wu, N Z; Braun, R D; Gaber, M H; Lin, G M; Ong, E T; Shan, S; Papahadjopoulos, D; Dewhirst, M W

    1997-03-01

    The success of liposome-based drug delivery systems for tumor targeting relies on maximum extravasation of liposomes into tumor interstitium, as well as optimal release of contents from the liposomes once within the tumor Liposome extravasation and content release are two separate processes that can be individually or jointly manipulated so a method is needed to monitor these two processes independently and simultaneously. In this report, we describe a method to measure liposome extravasation and content release in tumor tissues growing in a rat skinfold window chamber preparation. Mixtures of liposomes containing either doxorubicin or calcein, both of which are fluorescent, and liposomes surface-labeled with rhodamine were injected intravenously. Fluorescent, light intensities in a tumor region in two fluorescent channels were measured using an image-processing system. Light intensities of plasma from blood samples were also measured using this system. These measurements were used to calculate the amounts of liposomes and released contents in both plasma and tumor interstitium. The calculations were based on the fact that the liposome surface labels and contents emit fluorescent light at different wavelengths and when encapsulated, the contents fluorescence is self-quenched. The model included equations to account for fluorescent light "cross-contamination" by the two fluorochromes as well as equations relating the measured fluorescent light intensities to the amounts of liposomes and released contents. This method was applied to three situations in which liposome extravasation and content release were manipulated in different, predictable ways. Our results indicate that this method can perform simultaneous independent and quantitative measurements of liposome extravasation and content release. This method can potentially be used to study drug delivery of other carrier systems in vivo.

  17. Drug delivery in cancer using liposomes.

    PubMed

    Dass, Crispin R

    2008-01-01

    There are various types of liposomes used for cancer therapy, but these can all be placed into three distinct categories based on the surface charge of vesicles: neutral, anionic and cationic. This chapter describes the more rigorous and easy methods used for liposome manufacture, with references, to aid the reader in preparing these formulations in-house.

  18. pHLIP®-Mediated Delivery of PEGylated Liposomes to Cancer Cells

    PubMed Central

    Yao, Lan; Daniels, Jennifer; Wijesinghe, Dayanjali; Andreev, Oleg A.; Reshetnyak, Yana K.

    2013-01-01

    We develop a method for pH-dependent fusion between liposomes and cellular membranes using pHLIP® (pH Low Insertion Peptide), which inserts into lipid bilayer of membrane only at low pH. Previously we establish the molecular mechanism of peptide action and show that pHLIP can target acidic diseased tissue. Here we investigate how coating of PEGylated liposomes with pHLIP might affect liposomal uptake by cells. The presence of pHLIP on the surface of PEGylated-liposomes enhanced membrane fusion and lipid exchange in a pH dependent fashion, leading to increase of cellular uptake and payload release, and inhibition of cell proliferation by liposomes containing ceramide. A novel type of pH-sensitive, “fusogenic” pHLIP-liposomes was developed, which could be used to selectively deliver various diagnostic and therapeutic agents to acidic diseased cells. PMID:23416366

  19. "Smart" liposomal nanocontainers in biology and medicine.

    PubMed

    Tarahovsky, Y S

    2010-07-01

    The perspectives of using liposomes for delivery of drugs to desired parts of the human body have been intensively investigated for more than 30 years. During this time many inventions have been suggested and different kinds of liposomal devices developed, and a number of them have reached the stages of preclinical or clinical trials. The latest techniques can be used to develop biocompatible nano-sized liposomal containers having some abilities of artificial intellect, such as the presence of sensory and responsive units. However, only a few have been clinically approved. Further improvements in this area depend on our knowledge of the interactions of drugs with the lipid bilayer of liposomes. Further studies on liposomal transport through the human body, their targeting of cells requiring therapeutic treatment, and finally, the development of techniques for controlled drug delivery to desired acceptors on cell surfaces or in cytoplasm are still required.

  20. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging.

    PubMed

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor.

  1. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging

    PubMed Central

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N′-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor. PMID:26316749

  2. Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging.

    PubMed

    Li, Shihong; Goins, Beth; Zhang, Lujun; Bao, Ande

    2012-06-20

    Liposomes are effective lipid nanoparticle drug delivery systems, which can also be functionalized with noninvasive multimodality imaging agents with each modality providing distinct information and having synergistic advantages in diagnosis, monitoring of disease treatment, and evaluation of liposomal drug pharmacokinetics. We designed and constructed a multifunctional theranostic liposomal drug delivery system, which integrated multimodality magnetic resonance (MR), near-infrared (NIR) fluorescent and nuclear imaging of liposomal drug delivery, and therapy monitoring and prediction. The premanufactured liposomes were composed of DSPC/cholesterol/Gd-DOTA-DSPE/DOTA-DSPE with the molar ratio of 39:35:25:1 and having ammonium sulfate/pH gradient. A lipidized NIR fluorescent tracer, IRDye-DSPE, was effectively postinserted into the premanufactured liposomes. Doxorubicin could be effectively postloaded into the multifunctional liposomes. The multifunctional doxorubicin-liposomes could also be stably radiolabeled with (99m)Tc or (64)Cu for single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging, respectively. MR images displayed the high-resolution micro-intratumoral distribution of the liposomes in squamous cell carcinoma of head and neck (SCCHN) tumor xenografts in nude rats after intratumoral injection. NIR fluorescent, SPECT, and PET images also clearly showed either the high intratumoral retention or distribution of the multifunctional liposomes. This multifunctional drug carrying liposome system is promising for disease theranostics allowing noninvasive multimodality NIR fluorescent, MR, SPECT, and PET imaging of their in vivo behavior and capitalizing on the inherent advantages of each modality.

  3. Targeted Therapy for Acute Autoimmune Myocarditis with Nano-Sized Liposomal FK506 in Rats.

    PubMed

    Okuda, Keiji; Fu, Hai Ying; Matsuzaki, Takashi; Araki, Ryo; Tsuchida, Shota; Thanikachalam, Punniyakoti V; Fukuta, Tatsuya; Asai, Tomohiro; Yamato, Masaki; Sanada, Shoji; Asanuma, Hiroshi; Asano, Yoshihiro; Asakura, Masanori; Hanawa, Haruo; Hao, Hiroyuki; Oku, Naoto; Takashima, Seiji; Kitakaze, Masafumi; Sakata, Yasushi; Minamino, Tetsuo

    2016-01-01

    Immunosuppressive agents are used for the treatment of immune-mediated myocarditis; however, the need to develop a more effective therapeutic approach remains. Nano-sized liposomes may accumulate in and selectively deliver drugs to an inflammatory lesion with enhanced vascular permeability. The aims of this study were to investigate the distribution of liposomal FK506, an immunosuppressive drug encapsulated within liposomes, and the drug's effects on cardiac function in a rat experimental autoimmune myocarditis (EAM) model. We prepared polyethylene glycol-modified liposomal FK506 (mean diameter: 109.5 ± 4.4 nm). We induced EAM by immunization with porcine myosin and assessed the tissue distribution of the nano-sized beads and liposomal FK506 in this model. After liposomal or free FK506 was administered on days 14 and 17 after immunization, the cytokine expression in the rat hearts along with the histological findings and hemodynamic parameters were determined on day 21. Ex vivo fluorescent imaging revealed that intravenously administered fluorescent-labeled nano-sized beads had accumulated in myocarditic but not normal hearts on day 14 after immunization and thereafter. Compared to the administration of free FK506, FK506 levels were increased in both the plasma and hearts of EAM rats when liposomal FK506 was administered. The administration of liposomal FK506 markedly suppressed the expression of cytokines, such as interferon-γ and tumor necrosis factor-α, and reduced inflammation and fibrosis in the myocardium on day 21 compared to free FK506. The administration of liposomal FK506 also markedly ameliorated cardiac dysfunction on day 21 compared to free FK506. Nano-sized liposomes may be a promising drug delivery system for targeting myocarditic hearts with cardioprotective agents.

  4. Targeting of asialofetuin sugar chain-bearing liposomes to liver lysosomes.

    PubMed

    Banno, Y; Ohki, K; Nozawa, Y

    1983-10-01

    Specific direction of liposomes bearing an asialofetuin sugar chain (AFSC) to liver parenchymal cells was examined both in vivo and in vitro. The AFSC-bearing liposomes were preferentially recovered in the liver within several minutes after an intravenous injection into mice and were found to be predominantly localized in mitochondrial-lysosomal fraction. The massive distribution of the AFSC-liposomes in this fraction was also confirmed by using a lysosomal protease inhibitor, E-64-d. In isolated rat hepatocytes, the uptake of AFSC-liposomes was increased 2-3-fold as compared with the control liposomes without AFSC. Thus liposomes bearing AFSC would be useful to target enzymes to liver lysosomes.

  5. Phospholipid liposomes functionalized by protein

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  6. Safe and efficient pH sensitive tumor targeting modified liposomes with minimal cytotoxicity.

    PubMed

    Wang, Lilin; Geng, Di; Su, Haijia

    2014-11-01

    Incorporating the pH-sensitivity of octylamine grafted poly aspartic acid (PASP) with the biocompatibility of liposomes, a novel pH sensitive drug delivery system, octylamine-graft-PASP (PASP-g-C8) modified liposomes (OPLPs), was obtained. Since hydrophobic chains have been grafted into PASP backbones, the octylamine chain could act as the "anchor" to implant onto liposomes. The structure of PASP-g-C8, involving long-chain and hydrophobic anchors can significantly enhance the stability of the drug carrier. The shortcoming of single PASP chain modified liposomes (PLPs), that cannot sustain a slow and controlled release especially in a physiological pH solution (resembling normal tissues of pH 7.4) is thus overcome. Drug release experiments were carried out and the result showed that OPLPs sustained a slow and steady release in comparison with PLPs in the physiological pH 7.4 environment. However, OPLPs can provide a fast release in subacid environment (pH 5.0 of resembled tumor tissues). The results of diameter analysis and zeta potential demonstrated that OPLPs presented a larger diameter and higher electronegativity. Furthermore, in the "chain-anchor" structure of PASP-g-C8, the degree of substitution (DS) of the "anchor" is a remarkable factor to alter the pH-sensitivity of OPLPs. The in vitro tumor inhibition and cell toxicity studies revealed that tumor cells treated with OPLPs survived only 35.0% after 48 h whereas normal cells survived 100% in the same condition. The pH sensitive OPLPs are promising tumor targeting drug delivery with high tumor inhibition and insignificant cytotoxicity. Copyright © 2014. Published by Elsevier B.V.

  7. Albumin-Encapsulated Liposomes: A Novel Drug Delivery Carrier With Hydrophobic Drugs Encapsulated in the Inner Aqueous Core.

    PubMed

    Okamoto, Yuko; Taguchi, Kazuaki; Yamasaki, Keishi; Sakuragi, Mina; Kuroda, Shun'ichi; Otagiri, Masaki

    2018-01-01

    Liposomes are clinically used in drug delivery, but loading hydrophobic substances is limited to the hydrophobic space of a lipid membrane, despite the fact that it is favorable to encapsulate substances into the inner aqueous core of liposome, from a drug stability of view. We report herein on the preparation of a liposome with bovine serum albumin encapsulated (BSA-liposome). Using this system, it is possible to encapsulate hydrophobic drugs in the inner aqueous core of the liposome based on the hypothesis that the water solubility of hydrophobic drugs is increased when bound to albumin. The physicochemical properties of the prepared BSA-liposomes could be easily regulated and the loading of hydrophobic drugs in the inner aqueous core of the liposome was dramatically improved by virtue of the drug-binding properties of albumin. An in vivo safety and pharmacokinetic study showed that BSA-liposomes possess favorable properties as a drug carrier, including biocompatibility and a stealth effect. This new type of hydrophobic drug carrier, an albumin-liposome, has the potential for use in delivering numerous hydrophobic drugs that typically bind to albumin. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Efficient intradermal delivery of superoxide dismutase using a combination of liposomes and iontophoresis for protection against UV-induced skin damage.

    PubMed

    Kigasawa, Kaoru; Miyashita, Moeko; Kajimoto, Kazuaki; Kanamura, Kiyoshi; Harashima, Hideyoshi; Kogure, Kentaro

    2012-01-01

    Superoxide dismutase (SOD) is a potent antioxidant agent that protects against UV-induced skin damage. However, its high molecular weight is a significant obstacle for efficient delivery into the skin through the stratum corneum and development of antioxidant activity. Recently, we developed a non-invasive transfollicular delivery system for macromolecules using a combination of liposomes and iontophoresis, that represents promising technology for enhancing transdermal administration of charged drugs (IJP, 403, 2011, Kajimoto et al.). In this study, in rats we attempted to apply this system to intradermal delivery of SOD for preventing UV-induced skin injury. SOD encapsulating in cationic liposomes was subjected to anodal iontophoresis. After iontophoretic treatment, the liposomes were diffused widely in the viable skin layer around hair follicles. In contrast, passive diffusion failed to transport liposomes efficiently into the skin. Iontophoretic delivery of liposomes encapsulating SOD caused a marked decrease in the production of oxidative products, such as malondialdehyde, hexanoyl lysine, and 8-hydroxi-2-deoxyguanosine, in UV-irradiated skin. These findings suggested that functional SOD can be delivered into the skin using a combination of iontophoresis and a liposomal system. In conclusion, we succeeded in developing an efficient intradermal SOD delivery system, that would be useful for delivery of other macromolecules.

  9. Topical delivery of liposomally encapsulated interferon evaluated in a cutaneous herpes guinea pig model.

    PubMed Central

    Weiner, N; Williams, N; Birch, G; Ramachandran, C; Shipman, C; Flynn, G

    1989-01-01

    The topical delivery of liposomally encapsulated interferon was evaluated in the cutaneous herpes simplex virus guinea pig model. Application of liposomally entrapped interferon caused a reduction of lesion scores, whereas application of interferon formulated as a solution or as an emulsion was ineffective. The method of liposomal preparation rather than the lipid composition of the bilayers appeared to be the most important factor for reducing lesion scores. Only liposomes prepared by the dehydration-rehydration method were effective. This finding implied that the dehydration and subsequent rehydration of the liposomes facilitate partitioning of the interferon into liposomal bilayers, where the drug is positioned for transfer into the lipid compartment of the stratum corneum. Liposomes do not appear to function as permeation enhancers but seem to provide the needed physicochemical environment for transfer of interferon into the skin. PMID:2802550

  10. Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer.

    PubMed

    Ou, Yu-Chuan; Webb, Joseph A; Faley, Shannon; Shae, Daniel; Talbert, Eric M; Lin, Sharon; Cutright, Camden C; Wilson, John T; Bellan, Leon M; Bardhan, Rizia

    2016-08-31

    In this work, we demonstrate controlled drug delivery from low-temperature-sensitive liposomes (LTSLs) mediated by photothermal heating from multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. The unique geometry of MGNs enables the generation of mild hyperthermia (∼42 °C) by converting near-infrared light to heat and effectively delivering doxorubicin (DOX) from the LTSLs in breast cancer cells. We confirmed the cellular uptake of MGNs by using both fluorescence confocal Z-stack imaging and transmission electron microscopy (TEM) imaging. We performed a cellular viability assay and live/dead cell fluorescence imaging of the combined therapeutic effects of MGNs with DOX-loaded LTSLs (DOX-LTSLs) and compared them with free DOX and DOX-loaded non-temperature-sensitive liposomes (DOX-NTSLs). Imaging of fluorescent live/dead cell indicators and MTT assay outcomes both demonstrated significant decreases in cellular viability when cells were treated with the combination therapy. Because of the high phase-transition temperature of NTSLs, no drug delivery was observed from the DOX-NTSLs. Notably, even at a low DOX concentration of 0.5 μg/mL, the combination treatment resulted in a higher (33%) cell death relative to free DOX (17% cell death). The results of our work demonstrate that the synergistic therapeutic effect of photothermal hyperthermia of MGNs with drug delivery from the LTSLs can successfully eradicate aggressive breast cancer cells with higher efficacy than free DOX by providing a controlled light-activated approach and minimizing off-target toxicity.

  11. Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer

    PubMed Central

    2016-01-01

    In this work, we demonstrate controlled drug delivery from low-temperature-sensitive liposomes (LTSLs) mediated by photothermal heating from multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. The unique geometry of MGNs enables the generation of mild hyperthermia (∼42 °C) by converting near-infrared light to heat and effectively delivering doxorubicin (DOX) from the LTSLs in breast cancer cells. We confirmed the cellular uptake of MGNs by using both fluorescence confocal Z-stack imaging and transmission electron microscopy (TEM) imaging. We performed a cellular viability assay and live/dead cell fluorescence imaging of the combined therapeutic effects of MGNs with DOX-loaded LTSLs (DOX-LTSLs) and compared them with free DOX and DOX-loaded non-temperature-sensitive liposomes (DOX-NTSLs). Imaging of fluorescent live/dead cell indicators and MTT assay outcomes both demonstrated significant decreases in cellular viability when cells were treated with the combination therapy. Because of the high phase-transition temperature of NTSLs, no drug delivery was observed from the DOX-NTSLs. Notably, even at a low DOX concentration of 0.5 μg/mL, the combination treatment resulted in a higher (33%) cell death relative to free DOX (17% cell death). The results of our work demonstrate that the synergistic therapeutic effect of photothermal hyperthermia of MGNs with drug delivery from the LTSLs can successfully eradicate aggressive breast cancer cells with higher efficacy than free DOX by providing a controlled light-activated approach and minimizing off-target toxicity. PMID:27656689

  12. Gemcitabine treatment of rat soft tissue sarcoma with phosphatidyldiglycerol-based thermosensitive liposomes.

    PubMed

    Limmer, Simone; Hahn, Jasmin; Schmidt, Rebecca; Wachholz, Kirsten; Zengerle, Anja; Lechner, Katharina; Eibl, Hansjörg; Issels, Rolf D; Hossann, Martin; Lindner, Lars H

    2014-09-01

    The pyrimidine analogue gemcitabine (dFdC) is frequently used in the treatment of patients with solid tumors. However, after i.v. application dFdC is rapidly inactivated by metabolization. Here, the potential of thermosensitive liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2-TSL) were investigated as carrier and targeting system for delivery of dFdC in combination with local hyperthermia (HT). DPPG2-TSL were prepared by the lipid film hydration and extrusion method and characterized by dynamic light scattering, thin layer chromatography, phosphate assay and HPLC. In vivo experiments were performed in Brown Norway rats with a syngeneic soft tissue sarcoma. Local HT treatment was performed by light exposure. DPPG2-TSL were stable at 37°C in serum and showed a temperature dependent dFdC release >40°C. Plasma half-life of dFdC was strongly increased from 0.07 h (non-liposomal) to 0.53 h (liposomal, vesicle size 105 nm) or 2.59 h (liposomal, 129 nm). Therapy of BN175 tumors with dFdC encapsulated in DPPG2-TSL + HT showed significant improvement in tumor growth delay compared to non-liposomal dFdC without HT (p < 0.05), non-liposomal dFdC with HT (p < 0.01), and liposomal dFdC without HT (p < 0.05), respectively. Gemcitabine encapsulated in DPPG2-TSL in combination with local HT is a promising tool for the treatment of solid tumors. Therefore, these encouraging results ask for further investigation and evaluation.

  13. Development and characterization of minoxidil-loaded liposomal system for delivery to pilosebaceous units.

    PubMed

    Jain, Bhawna; Singh, Bhupinder; Katare, Om Prakash; Vyas, Suresh Prashad

    2010-06-01

    The current study aimed to deliver minoxidil (2,4-diamino-6-piperidinopyrimidine 3-oxide; MXD), a potent hypertrichotic agent, into the pilosebaceous units, exploring the potential of the liposomal system. MXD-loaded liposomes of different compositions were prepared by a thin-film hydration technique and subsequently characterized for various vesicle-specific attributes (i.e., size, shape, lamellarity, and entrapment efficiency). Comparative analysis among these compositions was conducted with reference to their vesicle-specific parameters, drug deposition, and drug-delivery mechanism toward pilosebaceous units. The latter may bring about a distinct change in MXD therapy for various ailments related to pilosebaceous units, such as alopecia. The in vitro drug release, ex vivo skin permeation, and drug-retention behavior of the prepared formulation were evaluated by employing rat skin (normal as well as pilosebaceous free) and semipermeable membrane. The results revealed that the neutral liposomes (mean vesicle size, 3.83 +/- 0.18 microm) showed maximum drug deposition in the pilosebaceous units among all the other tested formulations. A quantitative estimation of pilosebaceous delivery revealed that the concentration of MXD in each pilosebaceous unit decreased in the following order: neutral liposomal formulation (5.8 x 10(3) to 7.25 x 10(3) microg) > positively charged liposomal formulation (4.7 x 10(3) to 5.87 x 10(3) microg) > negatively charged liposomal formulation (4.2 x 10(3) to 5.25 x 10(3) microg) > nonliposomal formulation (1.6 x 10(3) to 2.0 x 10(3) microg). Stability studies construed the need to store the liposomal formulation at lower temperatures. The results of the current work indicate that the neutral liposomes can deliver the drug molecules into pilosebaceous units more effectively than the other studied formulations.

  14. Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer.

    PubMed

    Jose, Anup; Labala, Suman; Venuganti, Venkata Vamsi Krishna

    2017-04-01

    Skin cancer is one of the most widely prevalent cancer types with over expression of multiple oncogenic signaling molecules including STAT3. Curcumin is a natural compound with effective anti-cancer properties. The objective of this work was to investigate the liposomal co-delivery of curcumin and STAT3 siRNA by non-invasive topical iontophoretic application to treat skin cancer. Curcumin was encapsulated in cationic liposomes and then complexed with STAT3 siRNA. The liposomal nanocomplex was characterized for particle size, zeta-potential, drug release and stability. Human epidermoid (A431) cancer cells were used to study the cell uptake, growth inhibition and apoptosis induction of curcumin-loaded liposome-siRNA complex. Topical iontophoresis was applied to study the skin penetration of nanocomplex in excised porcine skin model. Results showed that curcumin-loaded liposome-siRNA complex was rapidly taken up by cells preferentially through clathrin-mediated endocytosis pathway. The co-delivery of curcumin and STAT3 siRNA using liposomes resulted in significantly (p < .05) greater cancer cell growth inhibition and apoptosis events compared with neat curcumin and free STAT3 siRNA treatment. Furthermore, topical iontophoresis application enhanced skin penetration of nanocomplex to penetrate viable epidermis. In conclusion, cationic liposomal system can be developed for non-invasive iontophoretic co-delivery of curcumin and siRNA to treat skin cancer.

  15. Hepatocyte-targeted delivery using ph-sensitive liposomes loaded with lactosylnorcantharidin phospholipid complex: preparation, characterization, and therapeutic evaluation in vivo and in vitro.

    PubMed

    Qiao-ling, Z; Yi, Z; Min, G; Di-jia, Y; Xiao-feng, Z; Yang, L; Jing-yu, X; Ying, W; Zong-lin, G; Kong-lang, X; Ai-jun, Z; Wei-liang, C; Lin-sen, S; Xue-nong, Z; Qiang, Z

    2012-01-01

    Liposomes loaded with lactosyl-norcantharidin phospholipid complex (LPC) were prepared, in which soybean phosphatidylcholine was used to improve the liposolubility of lactosyl-norcantharidin (Lac-NCTD). The pH-sensitive LPC liposomes (pH-LPC-lips) were obtained by electrostatic adsorption of the carboxymethyl chitosan onto the surface of the liposomes. The in vitro drug release of pH-LPC-lips and LPC-lips was investigated in dissolution media with pH ranging from 1.0 to 8.0. The in vitro antitumor activity and cellular uptake of Lac-NCTD and its liposomes to HepG2 cells were studied. The pH-LPC-lips demonstrated strong cytotoxicity against the cells and easily permeated the cell membrane. The in vivo antitumor activities of Lac-NCTD and its liposomes were evaluated in mice bearing H22 liver tumors. The pH-LPC-lips displayed the best tumor inhibitory effect. The optical imaging results indicated that Cy7- labeled pH-LPC-lips showed excellent hepatocyte specificity in H22 tumor-bearing mice. Therefore, pH-LPC-lips can be regarded as liver-targeting agents that combine targeting and active releasing.

  16. A Novel Multifunctional Theranostic Liposome Drug Delivery System: Construction, Characterization, and Multimodality MR, Near-infrared Fluorescent and Nuclear Imaging

    PubMed Central

    Li, Shihong; Goins, Beth; Zhang, Lujun; Bao, Ande

    2012-01-01

    Liposomes are effective lipid nanoparticle drug delivery systems, which can also be functionalized with non-invasive multimodality imaging agents with each modality providing distinct information and having synergistic advantages in diagnosis, monitoring of disease treatment, and evaluation of liposomal drug pharmacokinetics. We designed and constructed a multifunctional theranostic liposomal drug delivery system, which integrated multimodality magnetic resonance (MR), near-infrared (NIR) fluorescent and nuclear imaging of liposomal drug delivery, and therapy monitoring and prediction. The pre-manufactured liposomes were composed of DSPC/cholesterol/Gd-DOTADSPE/DOTA-DSPE with the molar ratio of 39:35:25:1 and having ammonium sulfate/pH gradient. A lipidized NIR fluorescent tracer, IRDye-DSPE, was effectively post-inserted into the pre-manufactured liposomes. Doxorubicin could be effectively post-loaded into the multifunctional liposomes. The multifunctional doxorubicin-liposomes could also be stably radiolabeled with 99mTc or 64Cu for single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging, respectively. MR images displayed the high resolution micro-intratumoral distribution of the liposomes in squamous cell carcinoma of head and neck (SCCHN) tumor xenografts in nude rats after intratumoral injection. NIR fluorescent, SPECT and PET images also clearly showed either the high intratumoral retention or distribution of the multifunctional liposomes. This multifunctional drug carrying liposome system is promising for disease theranostics allowing non-invasive multimodality NIR fluorescent, MR, SPECT and PET imaging of their in vivo behavior and capitalizing on the inherent advantages of each modality. PMID:22577859

  17. Superparamagnetic Iron Oxide Nanoparticle-Based Delivery Systems for Biotherapeutics

    PubMed Central

    Mok, Hyejung; Zhang, Miqin

    2014-01-01

    Introduction Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable, and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically-driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. Area covered This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. We examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes, and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. Expert opinion Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared to chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely-tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation. PMID:23199200

  18. Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide.

    PubMed

    Wang, Feng; Liu, Juewen

    2013-12-21

    Studying interactions between nano-carbons and lipid membranes is important for multiplexed drug delivery, device fabrication and for understanding toxicity. Herein, we report that nanodiamond (ND, sp(3) carbon) forms a complex with highly biocompatible zwitterionic liposomes based on hydrogen bonding, which is confirmed by pH-dependent and urea-dependent assays. Despite such weak interaction, the complex is highly stable. Comparisons were made with two sp(2) carbons: nanoscale graphene oxide (NGO) and carbon nanotubes (CNTs), where CNT adsorption is the weakest. Adsorption of the nano-carbons does not induce liposome leakage or affect lipid phase transition temperature. Therefore, the potential toxicity of nano-carbons is unlikely to be related to direct membrane damage. ND facilitates cellular uptake of liposomes and co-delivery of negatively charged calcein and positively charged doxorubicin has been demonstrated. ND has the lowest toxicity, while CNTs and NGO are slightly more toxic. The effect of introducing fusogenic lipids and cholesterol was further studied to understand the effect of lipid formulation.

  19. Enhanced efficacy of TD53, a novel algicidal agent, against the harmful algae via the liposomal delivery system.

    PubMed

    Han, Hyo-Kyung; Kim, Yeon-Mi; Lim, Soo-Jeong; Hong, Soon-Seok; Jung, Seul-Gi; Cho, Hoon; Lee, Wonjae; Jin, Eonseon

    2011-02-28

    The present study aimed to design the liposomal delivery system for TD53, a novel algicial drug in order to improve the delivery properties of TD53 and evaluate its algicidal effects as well as selectivity against harmful and non-harmful algae. Liposomes of TD53 were prepared with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) by a lyophilization, resulting in relatively small size vesicles (234±38nm) and narrow size distribution (PI=0.130±0.027). The drug leakage from the liposome was negligible in the F/2 media (<2% during 96h incubation). Subsequently algicidal activity of liposomal TD53 against harmful and nonharmful algae was evaluated at various concentrations. The IC(50) values of TD53 in liposome against harmful algae such as Chattonella marina, Heterosigma akashiwo and Cocholodinium polykrikoides were 2.675, 2.029, and 0.480μM, respectively, and were reduced by approximately 50% compared to those obtained from non-liposomal TD53. In contrast, the algicidal effect of liposomal TD53 was insignificant against non-harmful algae including Navicula pelliculosa, Nannochloropsis oculata and Phaeodactylum EPV. Those results suggested that liposomal delivery systems might be effective to enhance the efficacy of TD53 while maintaining the selectivity to harmful algal species. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Calcium-Responsive Liposomes via a Synthetic Lipid Switch.

    PubMed

    Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D

    2018-03-07

    Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development and characterization of polymer-coated liposomes for vaginal delivery of sildenafil citrate.

    PubMed

    Refai, Hanan; Hassan, Doaa; Abdelmonem, Rehab

    2017-11-01

    Vaginal administration of sildenafil citrate has shown recently to develop efficiently the uterine lining with subsequent successful embryo implantation following in vitro fertilization. The aim of the present study was to develop sildenafil-loaded liposomes coated with bioadhesive polymers for enhanced vaginal retention and improved drug permeation. Three liposomal formulae were prepared by thin-film method using different phospholipid:cholesterol ratios. The optimal liposomal formulation was coated with bioadhesive polymers (chitosan and HPMC). A marked increase in liposomal size and zeta potential was observed for all coated liposomal formulations. HPMC-coated liposomes showed the greater bioadhesion and higher entrapment efficiency than chitosan-coated formulae. The in vitro release studies showed prolonged release of sildenafil from coated liposomes as compared to uncoated liposomes and sildenafil solution. Ex vivo permeation study revealed the enhanced permeation of coated relative to uncoated liposomes. Chitosan-coated formula demonstrated highest drug permeation and was thus selected for further investigations. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) confirmed the successful coating of the liposomes by chitosan. Histopathological in vivo testing proved the efficacy of chitosan-coated liposomes to improve blood flow to the vaginal endometrium and to increase endometrial thickness. Chitosan-coated liposomes can be considered as potential novel drug delivery system intended for the vaginal administration of sildenafil, which would prolong system's retention at the vaginal site and enhance the permeation of sildenafil to uterine blood circulation.

  2. Emerging Research and Clinical Development Trends of Liposome and Lipid Nanoparticle Drug Delivery Systems

    PubMed Central

    KRAFT, JOHN C.; FREELING, JENNIFER P.; WANG, ZIYAO; HO, RODNEY J. Y.

    2014-01-01

    Liposomes are spherical-enclosed membrane vesicles mainly constructed with lipids. Lipid nanoparticles are loaded with therapeutics and may not contain an enclosed bilayer. The majority of those clinically approved have diameters of 50–300 nm. The growing interest in nanomedicine has fueled lipid–drug and lipid–protein studies, which provide a foundation for developing lipid particles that improve drug potency and reduce off-target effects. Integrating advances in lipid membrane research has enabled therapeutic development. At present, about 600 clinical trials involve lipid particle drug delivery systems. Greater understanding of pharmacokinetics, biodistribution, and disposition of lipid–drug particles facilitated particle surface hydration technology (with polyethylene glycol) to reduce rapid clearance and provide sufficient blood circulation time for drug to reach target tissues and cells. Surface hydration enabled the liposome-encapsulated cancer drug doxorubicin (Doxil) to gain clinical approval in 1995. Fifteen lipidic therapeutics are now clinically approved. Although much research involves attaching lipid particles to ligands selective for occult cells and tissues, preparation procedures are often complex and pose scale-up challenges. With emerging knowledge in drug target and lipid–drug distribution in the body, a systems approach that integrates knowledge to design and scale lipid–drug particles may further advance translation of these systems to improve therapeutic safety and efficacy. PMID:24338748

  3. Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.

    PubMed

    Smith, Cartney E; Kong, Hyunjoon

    2014-04-08

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads.

  4. Cross-Linkable Liposomes Stabilize a Magnetic Resonance Contrast-Enhancing Polymeric Fastener

    PubMed Central

    2015-01-01

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565

  5. Association of vasoactive intestinal peptide with polymer-grafted liposomes: structural aspects for pulmonary delivery.

    PubMed

    Stark, Brigitte; Debbage, Paul; Andreae, Fritz; Mosgoeller, Wilhelm; Prassl, Ruth

    2007-03-01

    A polymer-grafted liposomal formulation that has the potential to be developed for aerosolic pulmonary delivery of vasoactive intestinal peptide (VIP), a potent vasodilatory neuropeptide, is described. As VIP is prone to rapid proteolytic degradation in the microenvironment of the lung a proper delivery system is required to increase the half-life and bioavailability of the peptide. Here we investigate structural parameters of unilamellar liposomes composed of palmitoyl-oleoyl-phosphatidylcholine, lyso-stearyl-phosphatidylglycerol and distearyl-phosphatidyl-ethanolamine covalently linked to polyethylene glycol 2000, and report on VIP-lipid interaction mechanisms. We found that the cationic VIP is efficiently entrapped by the negatively charged spherical liposomes and becomes converted to an amphipathic alpha-helix. By fluorescence spectroscopy using single Trp-modified VIP we could show that VIP is closely associated to the membrane. Our data suggest that the N-terminal random-coiled domain is embedded in the interfacial headgroup region of the phospholipid bilayer. By doing so, neither the bilayer thickness of the lipid membrane nor the mobility of the phospholipid acyl chains are affected as shown by small angle X-ray scattering and electron spin resonance spectroscopy. Finally, in an ex vivo lung arterial model system we found that liposomal-associated VIP is recognized by its receptors to induce vasodilatory effects with comparable high relaxation efficiency as free VIP but with a significantly retarded dilatation kinetics. In conclusion, we have designed and characterized a liposomal formulation that is qualified to entrap biologically active VIP and displays structural features to be considered for delivery of VIP to the lung.

  6. Aerosol delivery of liposome-encapsulated ciprofloxacin: aerosol characterization and efficacy against Francisella tularensis infection in mice.

    PubMed

    Conley, J; Yang, H; Wilson, T; Blasetti, K; Di Ninno, V; Schnell, G; Wong, J P

    1997-06-01

    The aerosol delivery of liposome-encapsulated ciprofloxacin by using 12 commercially available jet nebulizers was evaluated in this study. Aerosol particles containing liposome-encapsulated ciprofloxacin generated by the nebulizers were analyzed with a laser aerodynamic particle sizer. Mean mass aerodynamic diameters (MMADs) and geometric standard deviations (GSDs) were determined, and the drug contents of the sampling filters from each run onto which aerosolized liposome-encapsulated ciprofloxacin had been deposited were analyzed spectrophotometrically. The aerosol particles of liposome-encapsulated ciprofloxacin generated by these nebulizers ranged from 1.94 to 3.5 microm, with GSDs ranging from 1.51 to 1.84 microm. The drug contents of the sampling filters exposed for 1 min to aerosolized liposome-encapsulated ciprofloxacin range from 12.7 to 40.5 microg/ml (0.06 to 0.2 mg/filter). By using the nebulizer selected on the basis of most desirable MMADs, particle counts, and drug deposition, aerosolized liposome-encapsulated ciprofloxacin was used for the treatment of mice infected with 10 times the 50% lethal dose of Francisella tularensis. All mice treated with aerosolized liposome-encapsulated ciprofloxacin survived the infection, while all ciprofloxacin-treated or untreated control mice succumbed to the infection (P < 0.001). These results suggest that aerosol delivery of liposome-encapsulated ciprofloxacin to the lower respiratory tract is feasible and that it may provide an effective therapy for the treatment of respiratory tract infections.

  7. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: comparison with conventional liposomes.

    PubMed

    Elmoslemany, Riham M; Abdallah, Ossama Y; El-Khordagui, Labiba K; Khalafallah, Nawal M

    2012-06-01

    Propylene glycol (PG)-phospholipid vesicles have been advocated as flexible lipid vesicles for enhanced skin delivery of drugs. To further characterize the performance of these vesicles and to address some relevant pharmaceutical issues, miconazole nitrate(MN)-loaded PG nanoliposomes were prepared and characterized for vesicle size, entrapment efficiency, in vitro release, and vesicle stability. An issue of pharmaceutical importance is the time-dependent, dilution-driven diffusion of propylene glycol out of the vesicles. This was addressed by assessing propylene glycol using gas chromatography in the separated vesicles and monitoring its buildup in the medium after repeated dispersion of separated vesicles in fresh medium. Further, the antifungal activity of liposomal formulations under study was assessed using Candida albicans, and their in vitro skin permeation and retention were studied using human skin. At all instances, blank and drug-loaded conventional liposomes were included for comparison. The results provided evidence of controlled MN delivery, constant percent PG uptake in the vesicles (≈45.5%) in the PG concentration range 2.5 to 10%, improved vesicle stability, and enhanced skin deposition of MN with minimum skin permeation. These are key issues for different formulation and performance aspects of propylene glycol-phospholipid vesicles.

  8. Formulation and advantages of furazolidone in liposomal drug delivery systems.

    PubMed

    Alam, Muhammad Irfan; Paget, Timothy; Elkordy, Amal Ali

    2016-03-10

    Furazolidone has proven to have antiprotozoal and antibacterial activity. A number of literature supported its use against Helicobacter pylori. This potential application opens new prospects of its use in clinical settings in triple therapy. In order to avoid side effects associated with this drug, liposomal mucoadhesive drug delivery that can work locally in stomach is considered as an appropriate approach. This study is a focus on formulations and in vitro characterization of liposomes containing furazolidone. Therefore, the effects of variable amounts of drug and cholesterol on encapsulation efficacy and in vitro drug release were evaluated for different liposomal formulations. Mucoadhesive behavior of chitosan coated liposomal at two different pHs was also evaluated and increase in pH from 1.3 to 4.5 increased mucoadhesion from 42% to 60% respectively. Increasing the amount of drug from 4mg to 5mg increased encapsulation activity however, increasing the drug any further decreased encapsulation activity. In contrast, by increasing the amount of cholesterol decrease in encapsulation activity was observed. The optimized formulation with 5mg of drug and 53mg of cholesterol in formulation gave 57% drug release at pH 1.3 but release was increased up to 71% by increasing pH to 4.5 for same amount of drug. However, by using 10.6mg of cholesterol and 5mg of drug the overall release was increased at both pH conditions, at pH 1.3 release was 69% as compared to 77% at pH 4.5. This trend of drug release profile and mucoadhesion that favors pH 4.5 is documented as useful in targeting H. pylori as normal pH of stomach is expected to be higher by the influence of this microbe. Hence, the results of this research can be taken further into a future in vivo study. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery.

    PubMed

    Zhang, Lin; Sang, Yuan; Feng, Jing; Li, Zhaoming; Zhao, Aili

    2016-08-01

    Oral colon-targeted drug delivery has attracted many researchers because of its distinct advantages of increasing the bioavailability of the drug at the target site and reducing the side effects. Polysaccharides that are precisely activated by the physiological environment of the colon hold greater promise for colon targeting. Considerable research efforts have been directed towards developing polysaccharide-based micro/nanocarriers. Types of polysaccharides for colon targeting and in vitro/in vivo assessments of polysaccharide-based carriers for oral colon-targeted drug delivery are summarised. Polysaccharide-based microspheres have gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon (colon cancer, inflammatory bowel disease (IBD), amoebiasis and irritable bowel syndrome (IBS)), but also for it's potential for the delivery of anti-rheumatoid arthritis and anti-chronic stable angina drugs. Besides, Polysaccharide-based micro/nanocarriers such as microbeads, microcapsules, microparticles, nanoparticles, nanogels and nanospheres are also introduced in this review.

  10. Topology of Surface Ligands on Liposomes: Characterization Based on the Terms, Incorporation Ratio, Surface Anchor Density, and Reaction Yield.

    PubMed

    Lee, Shang-Hsuan; Sato, Yusuke; Hyodo, Mamoru; Harashima, Hideyoshi

    2016-01-01

    The surface topology of ligands on liposomes is an important factor in active targeting in drug delivery systems. Accurately evaluating the density of anchors and bioactive functional ligands on a liposomal surface is critical for ensuring the efficient delivery of liposomes. For evaluating surface ligand density, it is necessary to clarify that on the ligand-modified liposomal surfaces, some anchors are attached to ligands but some are not. To distinguish between these situations, a key parameter, surface anchor density, was introduced to specify amount of total anchors on the liposomal surface. Second, the parameter reaction yield was introduced to identify the amount of ligand-attached anchors among total anchors, since the conjugation efficiency is not always the same nor 100%. Combining these independent parameters, we derived: incorporation ratio=surface anchor density×reaction yield. The term incorporation ratio defines the surface ligand density. Since the surface anchor density represents the density of polyethylene glycol (PEG) on the surfaces in most cases, it also determines liposomal function. It is possible to accurately characterize various PEG and ligand densities and to define the surface topologies. In conclusion, this quantitative methodology can standardize the liposome preparation process and qualify the modified liposomal surfaces.

  11. Liposomal 64Cu-PET Imaging of Anti-VEGF Drug Effects on Liposomal Delivery to Colon Cancer Xenografts.

    PubMed

    Blocker, Stephanie J; Douglas, Kirk A; Polin, Lisa Anne; Lee, Helen; Hendriks, Bart S; Lalo, Enxhi; Chen, Wei; Shields, Anthony F

    2017-01-01

    Liposomes (LP) deliver drug to tumors due to enhanced permeability and retention (EPR). LP were labeled with 64 Cu for positron emission tomography (PET) to image tumor localization. Bevacizumab (bev), a VEGF targeted antibody, may modify LP delivery by altering tumor EPR and this change can also be imaged. Objective : Assess the utility of 64 Cu-labeled LP for PET in measuring altered LP delivery early after treatment with bev. Methods: HT-29 human colorectal adenocarcinoma tumors were grown subcutaneously in SCID mice. Empty LP MM-DX-929 (Merrimack Pharmaceuticals, Inc. Cambridge, MA) were labeled with 64 CuCl 2 chelated with 4-DEAP-ATSC. Tumor-bearing mice received ~200-300 μCi of 64 Cu-MM-DX-929 and imaged with microPET. All mice were scanned before and after the treatment period, in which half of the mice received bev for one week. Scans were compared for changes in LP accumulation during this time. Initially, tissues were collected after the second PET for biodistribution measurements and histological analysis. Subsequent groups were divided for further treatment. Tumor growth following bev treatment, with or without LP-I, was assessed compared to untreated controls. Results : PET scans of untreated mice showed increased uptake of 64 Cu-MM-DX-929, with a mean change in tumor SUV max of 43.9%±6.6% (n=10) after 7 days. Conversely, images of treated mice showed that liposome delivery did not increase, with changes in SUV max of 7.6%±4.8% (n=12). Changes in tumor SUV max were significantly different between both groups (p=0.0003). Histology of tumor tissues indicated that short-term bev was able to alter vessel size. Therapeutically, while bev monotherapy, LP-I monotherapy, and treatment with bev followed by LP-I all slowed HT-29 tumor growth compared to controls, combination provided no therapeutic benefit. Conclusions: PET with tracer LP 64 Cu-MM-DX-929 can detect significant differences in LP delivery to colon tumors treated with bev when compared to

  12. Influence of vascular normalization on interstitial flow and delivery of liposomes in tumors

    NASA Astrophysics Data System (ADS)

    Ozturk, Deniz; Yonucu, Sirin; Yilmaz, Defne; Burcin Unlu, Mehmet

    2015-02-01

    Elevated interstitial fluid pressure is one of the barriers of drug delivery in solid tumors. Recent studies have shown that normalization of tumor vasculature by anti-angiogenic factors may improve the delivery of conventional cytotoxic drugs, possibly by increasing blood flow, decreasing interstitial fluid pressure, and enhancing the convective transvascular transport of drug molecules. Delivery of large therapeutic agents such as nanoparticles and liposomes might also benefit from normalization therapy since their transport depends primarily on convection. In this study, a mathematical model is presented to provide supporting evidence that normalization therapy may improve the delivery of 100 nm liposomes into solid tumors, by both increasing the total drug extravasation and providing a more homogeneous drug distribution within the tumor. However these beneficial effects largely depend on tumor size and are stronger for tumors within a certain size range. It is shown that this size effect may persist under different microenvironmental conditions and for tumors with irregular margins or heterogeneous blood supply.

  13. State of the Art of Stimuli-Responsive Liposomes for Cancer Therapy

    PubMed Central

    Heidarli, Elmira; Dadashzadeh, Simin; Haeri, Azadeh

    2017-01-01

    Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at the target site and endosomal entrapment of long circulating liposomes are very important obstacles for achieving maximum anticancer efficacy. Thus, additional strategies such as stimulus-sensitive drug release are necessary to improve efficacy. Stimuli-sensitive liposomes are stable in blood circulation, however, activated by responding to external or internal stimuli and control the cargo release at the target site. This review focuses on state of the art of stimuli-responsive liposomes. Both external stimuli-responsive liposomes, including hyperthermia (HT), magnetic, light, and ultrasound-sensitive liposomes and internal stimuli (pH, reduction, and enzyme) responsive liposomes are covered. PMID:29552041

  14. State of the Art of Stimuli-Responsive Liposomes for Cancer Therapy.

    PubMed

    Heidarli, Elmira; Dadashzadeh, Simin; Haeri, Azadeh

    2017-01-01

    Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at the target site and endosomal entrapment of long circulating liposomes are very important obstacles for achieving maximum anticancer efficacy. Thus, additional strategies such as stimulus-sensitive drug release are necessary to improve efficacy. Stimuli-sensitive liposomes are stable in blood circulation, however, activated by responding to external or internal stimuli and control the cargo release at the target site. This review focuses on state of the art of stimuli-responsive liposomes. Both external stimuli-responsive liposomes, including hyperthermia (HT), magnetic, light, and ultrasound-sensitive liposomes and internal stimuli (pH, reduction, and enzyme) responsive liposomes are covered.

  15. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids

    NASA Astrophysics Data System (ADS)

    Simovic, Spomenka; Barnes, Timothy J.; Tan, Angel; Prestidge, Clive A.

    2012-02-01

    Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.

  16. Dual Targeting Biomimetic Liposomes for Paclitaxel/DNA Combination Cancer Treatment

    PubMed Central

    Liu, Guo-Xia; Fang, Gui-Qing; Xu, Wei

    2014-01-01

    Combinations of chemotherapeutic drugs with nucleic acid has shown great promise in cancer therapy. In the present study, paclitaxel (PTX) and DNA were co-loaded in the hyaluronic acid (HA) and folate (FA)-modified liposomes (HA/FA/PPD), to obtain the dual targeting biomimetic nanovector. The prepared HA/FA/PPD exhibited nanosized structure and narrow size distributions (247.4 ± 4.2 nm) with appropriate negative charge of −25.40 ± 2.7 mV. HA/FA/PD (PTX free HA/FA/PPD) showed almost no toxicity on murine malignant melanoma cell line (B16) and human hepatocellular carcinoma cell line (HepG2) (higher than 80% cell viability), demonstrating the safety of the blank nanovector. In comparison with the FA-modified PTX/DNA co-loaded liposomes (FA/PPD), HA/FA/PPD showed significant superiority in protecting the nanoparticles from aggregation in the presence of plasma and degradation by DNase I. Moreover, HA/FA/PPD could also significantly improve the transfection efficiency and cellular internalization rates on B16 cells comparing to that of FA/PPD (p < 0.05) and PPD (p < 0.01), demonstrating the great advantages of dual targeting properties. Furthermore, fluorescence microscope and flow cytometry results showed that PTX and DNA could be effectively co-delivered into the same tumor cell via HA/FA/PPD, contributing to PTX/DNA combination cancer treatment. In conclusion, the obtained HA/FA/PPD in the study could effectively target tumor cells, enhance transfection efficiency and subsequently achieve the co-delivery of PTX and DNA, displaying great potential for optimal combination therapy. PMID:25177862

  17. A photo-responsive peptide- and asparagine-glycine-arginine (NGR) peptide-mediated liposomal delivery system.

    PubMed

    Xie, Xiangyang; Yang, Yanfang; Yang, Yang; Zhang, Hui; Li, Ying; Mei, Xingguo

    2016-09-01

    The conjugation of tunable peptides or materials with nanocarriers represents a promising approach for drug delivery to tumor cells. In this study, we report the development of a novel liposomal carrier system that exploits the cell surface binding synergism between photo-sensitive peptides (PSPs) and targeting ligands. The positive charges of the lysine residues on the cell-penetrating peptides (CPPs) were temporarily caged by the photolabile-protective groups (PG), thereby forming a PSP. Furthermore, this PSP enhances specific uptake into cancer cells after rapidly uncaging the PG via near-infrared (NIR) light illumination. In the circulatory system, the cell penetrability of PSP was hindered. In contrast, the asparagine-glycine-arginine (NGR) peptide moieties, selectively bind to CD13-positive tumors, were attached to the nanocarrier to facilitate the active accumulation of this liposomal carrier in tumor tissue. The dual-modified liposomes (PSP/NGR-L) were prepared by emulsification method, and the concentrations of DSPE-PEG 2000 -psCPP and DSPE-PEG 5000 -NGR in the liposomes were chosen to be 4% and 1% (molar ratio), respectively. The mean particle size of the PSP/NGR-L was about 95 nm, and the drug entrapment efficiency was more than 90%. Cellular uptake results demonstrated that the proposed PSP/NGR-L had an enhancement of cancer cell recognition and specific uptake. Furthermore, the PSP/NGR-L demonstrated a stronger antitumor efficacy in the HT-1080 tumor model in nude mice with the aid of NIR illumination.

  18. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin

    PubMed Central

    Taha, Ehab I.; El-Anazi, Magda H.; El-Bagory, Ibrahim M.; Bayomi, Mohsen A.

    2013-01-01

    Ophthalmic drug bioavailability is limited due to protective mechanisms of the eye which require the design of a system to enhance ocular delivery. In this study several liposomal formulations containing ciprofloxacin (CPX) have been formulated using reverse phase evaporation technique with final dispersion of pH 7.4. Different types of phospholipids including Phosphatidylcholine, Dipalmitoylphosphatidylcholine and Dimyristoyl-sn-glycero-3-phosphocholine were utilized. The effect of formulation factors such as type of phospholipid, cholesterol content, incorporation of positively charging inducing agents and ultrasonication on the properties of the liposomal vesicles was studied. Bioavailability of selected liposomal formulations in rabbit eye aqueous humor has been investigated and compared with that of commercially available CPX eye drops (Ciprocin®). Pharmacokinetic parameters including Cmax, Tmax, elimination rate constant, t1/2, MRT and AUC0–∞, were determined. The investigated formulations showed more than three folds of improvement in CPX ocular bioavailability compared with the commercial product. PMID:25061409

  19. Adamantane in Drug Delivery Systems and Surface Recognition.

    PubMed

    Štimac, Adela; Šekutor, Marina; Mlinarić-Majerski, Kata; Frkanec, Leo; Frkanec, Ruža

    2017-02-16

    The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.

  20. Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer

    PubMed Central

    Song, Xiao-li; Ju, Rui-jun; Xiao, Yao; Wang, Xin; Liu, Shuang; Fu, Min; Liu, Jing-jing; Gu, Li-yan; Li, Xue-tao; Cheng, Lan

    2017-01-01

    Chemotherapy for aggressive non-small-cell lung cancer (NSCLC) usually results in a poor prognosis due to tumor metastasis, vasculogenic mimicry (VM) channels, limited killing of tumor cells, and severe systemic toxicity. Herein, we developed a kind of multifunctional targeting epirubicin liposomes to enhance antitumor efficacy for NSCLC. In the liposomes, octreotide was modified on liposomal surface for obtaining a receptor-mediated targeting effect, and honokiol was incorporated into the lipid bilayer for inhibiting tumor metastasis and eliminating VM channels. In vitro cellular assays showed that multifunctional targeting epirubicin liposomes not only exhibited the strongest cytotoxic effect on Lewis lung tumor cells but also showed the most efficient inhibition on VM channels. Action mechanism studies showed that multifunctional targeting epirubicin liposomes could downregulate PI3K, MMP-2, MMP-9, VE-Cadherin, and FAK and activate apoptotic enzyme caspase 3. In vivo results exhibited that multifunctional targeting epirubicin liposomes could accumulate selectively in tumor site and display an obvious antitumor efficacy. In addition, no significant toxicity of blood system and major organs was observed at a test dose. Therefore, multifunctional targeting epirubicin liposomes may provide a safe and efficient therapy strategy for NSCLC. PMID:29066893

  1. Liposome-based mucus-penetrating particles (MPP) for mucosal theranostics: demonstration of diamagnetic chemical exchange saturation transfer (diaCEST) magnetic resonance imaging (MRI).

    PubMed

    Yu, Tao; Chan, Kannie W Y; Anonuevo, Abraham; Song, Xiaolei; Schuster, Benjamin S; Chattopadhyay, Sumon; Xu, Qingguo; Oskolkov, Nikita; Patel, Himatkumar; Ensign, Laura M; van Zjil, Peter C M; McMahon, Michael T; Hanes, Justin

    2015-02-01

    Mucus barriers lining mucosal epithelia reduce the effectiveness of nanocarrier-based mucosal drug delivery and imaging ("theranostics"). Here, we describe liposome-based mucus-penetrating particles (MPP) capable of loading hydrophilic agents, e.g., the diaCEST MRI contrast agent barbituric acid (BA). We observed that polyethylene glycol (PEG)-coated liposomes containing ≥7 mol% PEG diffused only ~10-fold slower in human cervicovaginal mucus (CVM) compared to their theoretical speeds in water. 7 mol%-PEG liposomes contained sufficient BA loading for diaCEST contrast, and provided improved vaginal distribution compared to 0 and 3mol%-PEG liposomes. However, increasing PEG content to ~12 mol% compromised BA loading and vaginal distribution, suggesting that PEG content must be optimized to maintain drug loading and stability. Non-invasive diaCEST MRI illustrated uniform vaginal coverage and longer retention of BA-loaded 7 mol%-PEG liposomes compared to unencapsulated BA. Liposomal MPP with optimized PEG content hold promise for drug delivery and imaging at mucosal surfaces. This team of authors characterized liposome-based mucus-penetrating particles (MPP) capable of loading hydrophilic agents, such as barbituric acid (a diaCEST MRI contrast agent) and concluded that liposomal MPP with optimized PEG coating enables drug delivery and imaging at mucosal surfaces. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Aerosol delivery of liposome-encapsulated ciprofloxacin: aerosol characterization and efficacy against Francisella tularensis infection in mice.

    PubMed Central

    Conley, J; Yang, H; Wilson, T; Blasetti, K; Di Ninno, V; Schnell, G; Wong, J P

    1997-01-01

    The aerosol delivery of liposome-encapsulated ciprofloxacin by using 12 commercially available jet nebulizers was evaluated in this study. Aerosol particles containing liposome-encapsulated ciprofloxacin generated by the nebulizers were analyzed with a laser aerodynamic particle sizer. Mean mass aerodynamic diameters (MMADs) and geometric standard deviations (GSDs) were determined, and the drug contents of the sampling filters from each run onto which aerosolized liposome-encapsulated ciprofloxacin had been deposited were analyzed spectrophotometrically. The aerosol particles of liposome-encapsulated ciprofloxacin generated by these nebulizers ranged from 1.94 to 3.5 microm, with GSDs ranging from 1.51 to 1.84 microm. The drug contents of the sampling filters exposed for 1 min to aerosolized liposome-encapsulated ciprofloxacin range from 12.7 to 40.5 microg/ml (0.06 to 0.2 mg/filter). By using the nebulizer selected on the basis of most desirable MMADs, particle counts, and drug deposition, aerosolized liposome-encapsulated ciprofloxacin was used for the treatment of mice infected with 10 times the 50% lethal dose of Francisella tularensis. All mice treated with aerosolized liposome-encapsulated ciprofloxacin survived the infection, while all ciprofloxacin-treated or untreated control mice succumbed to the infection (P < 0.001). These results suggest that aerosol delivery of liposome-encapsulated ciprofloxacin to the lower respiratory tract is feasible and that it may provide an effective therapy for the treatment of respiratory tract infections. PMID:9174185

  3. Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia.

    PubMed

    Salade, Laurent; Wauthoz, Nathalie; Deleu, Magali; Vermeersch, Marjorie; De Vriese, Carine; Amighi, Karim; Goole, Jonathan

    2017-01-01

    The aim of the present study was to develop a ghrelin-containing formulation based on liposomes coated with chitosan intended for nose-brain delivery for the treatment of cachexia. Among the three types of liposomes developed, anionic liposomes provided the best results in terms of encapsulation efficiency (56%) and enzymatic protection against trypsin (20.6% vs 0% for ghrelin alone) and carboxylesterase (81.6% vs 17.2% for ghrelin alone). Ghrelin presented both electrostatic and hydrophobic interactions with the anionic lipid bilayer, as demonstrated by isothermal titration calorimetry. Then, anionic liposomes were coated with N -(2-hydroxy) propyl-3-trimethyl ammonium chitosan chloride. The coating involved a size increment from 146.9±2.7 to 194±6.1 nm, for uncoated and coated liposomes, respectively. The ζ-potential was similarly increased from -0.3±1.2 mV to 6±0.4 mV before and after coating, respectively. Chitosan provided mucoadhesion, with an increase in mucin adsorption of 22.9%. Enhancement of permeation through the Calu3 epithelial monolayer was also observed with 10.8% of ghrelin recovered in the basal compartment in comparison to 0% for ghrelin alone. Finally, aerosols generated from two nasal devices (VP3 and SP270) intended for aqueous dispersion were characterized with either coated or uncoated liposomes. Contrarily to the SP270 device, VP3 device showed minor changes between coated and uncoated liposome aerosols, as shown by their median volume diameters of 38.4±5.76 and 37.6±5.74 µm, respectively. Overall, the results obtained in this study show that the developed formulation delivered by the VP3 device can be considered as a potential candidate for nose-brain delivery of ghrelin.

  4. Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia

    PubMed Central

    Salade, Laurent; Wauthoz, Nathalie; Deleu, Magali; Vermeersch, Marjorie; De Vriese, Carine; Amighi, Karim; Goole, Jonathan

    2017-01-01

    The aim of the present study was to develop a ghrelin-containing formulation based on liposomes coated with chitosan intended for nose–brain delivery for the treatment of cachexia. Among the three types of liposomes developed, anionic liposomes provided the best results in terms of encapsulation efficiency (56%) and enzymatic protection against trypsin (20.6% vs 0% for ghrelin alone) and carboxylesterase (81.6% vs 17.2% for ghrelin alone). Ghrelin presented both electrostatic and hydrophobic interactions with the anionic lipid bilayer, as demonstrated by isothermal titration calorimetry. Then, anionic liposomes were coated with N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan chloride. The coating involved a size increment from 146.9±2.7 to 194±6.1 nm, for uncoated and coated liposomes, respectively. The ζ-potential was similarly increased from -0.3±1.2 mV to 6±0.4 mV before and after coating, respectively. Chitosan provided mucoadhesion, with an increase in mucin adsorption of 22.9%. Enhancement of permeation through the Calu3 epithelial monolayer was also observed with 10.8% of ghrelin recovered in the basal compartment in comparison to 0% for ghrelin alone. Finally, aerosols generated from two nasal devices (VP3 and SP270) intended for aqueous dispersion were characterized with either coated or uncoated liposomes. Contrarily to the SP270 device, VP3 device showed minor changes between coated and uncoated liposome aerosols, as shown by their median volume diameters of 38.4±5.76 and 37.6±5.74 µm, respectively. Overall, the results obtained in this study show that the developed formulation delivered by the VP3 device can be considered as a potential candidate for nose–brain delivery of ghrelin. PMID:29238190

  5. Dosimetric model for intraperitoneal targeted liposomal radioimmunotherapy of ovarian cancer micrometastases

    NASA Astrophysics Data System (ADS)

    Syme, A. M.; McQuarrie, S. A.; Middleton, J. W.; Fallone, B. G.

    2003-05-01

    A simple model has been developed to investigate the dosimetry of micrometastases in the peritoneal cavity during intraperitoneal targeted liposomal radioimmunotherapy. The model is applied to free-floating tumours with radii between 0.005 cm and 0.1 cm. Tumour dose is assumed to come from two sources: free liposomes in solution in the peritoneal cavity and liposomes bound to the surface of the micrometastases. It is assumed that liposomes do not penetrate beyond the surface of the tumours and that the total amount of surface antigen does not change over the course of treatment. Integrated tumour doses are expressed as a function of biological parameters that describe the rates at which liposomes bind to and unbind from the tumour surface, the rate at which liposomes escape from the peritoneal cavity and the tumour surface antigen density. Integrated doses are translated into time-dependent tumour control probabilities (TCPs). The results of the work are illustrated in the context of a therapy in which liposomes labelled with Re-188 are targeted at ovarian cancer cells that express the surface antigen CA-125. The time required to produce a TCP of 95% is used to investigate the importance of the various parameters. The relative contributions of surface-bound radioactivity and unbound radioactivity are used to assess the conditions required for a targeted approach to provide an improvement over a non-targeted approach during intraperitoneal radiation therapy. Using Re-188 as the radionuclide, the model suggests that, for microscopic tumours, the relative importance of the surface-bound radioactivity increases with tumour size. This is evidenced by the requirement for larger antigen densities on smaller tumours to affect an improvement in the time required to produce a TCP of 95%. This is because for the smallest tumours considered, the unbound radioactivity is often capable of exerting a tumouricidal effect before the targeting agent has time to accumulate

  6. Preparation of pH-sensitive anionic liposomes designed for drug delivery system (DDS) application.

    PubMed

    Aoki, Asami; Akaboshi, Hikaru; Ogura, Taku; Aikawa, Tatsuo; Kondo, Takeshi; Tobori, Norio; Yuasa, Makoto

    2015-01-01

    We prepared pH-sensitive anionic liposomes composed solely of anionic bilayer membrane components that were designed to promote efficient release of entrapped agents in response to acidic pH. The pH-sensitive anionic liposomes showed high dispersion stability at neutral pH, but the fluidity of the bilayer membrane was enhanced in an acidic environment. These liposomes were rather simple and were composed of dimyristoylphosphatidylcholine (DMPC), an anionic bilayer membrane component, and polyoxyethylene sorbitan monostearate (Tween 80). In particular, the present pH-sensitive anionic liposomes showed higher temporal stability than those of conventional DMPC/DPPC liposomes. We found that pHsensitive properties strongly depended on the molecular structure, pKa value, and amount of an incorporated anionic bilayer membrane component, such as sodium oleate (SO), dimyristoylphosphatidylserine (DMPS), or sodium β-sitosterol sulfate (SS). These results provide an opportunity to manipulate liposomal stability in a pH-dependent manner, which could lead to the formulation of a high performance drug delivery system (DDS).

  7. Oleanolic acid liposomes with polyethylene glycol modification: promising antitumor drug delivery

    PubMed Central

    Gao, Dawei; Tang, Shengnan; Tong, Qi

    2012-01-01

    Background Oleanolic acid is a pentacyclic triterpene present in many fruits and vegetables, and has received much attention on account of its biological properties. However, its poor solubility and low bioavailability limit its use. The objective of this study was to encapsulate oleanolic acid into nanoliposomes using the modified ethanol injection method. Methods The liposomes contain a hydrophobic oleanolic acid core, an amphiphilic soybean lecithin monolayer, and a protective hydrophilic polyethylene glycol (PEG) coating. During the preparation process, the formulations described were investigated by designing 34 orthogonal experiments as well as considering the effects of different physical characteristics. The four factors were the ratios of drug to soybean phosphatidylcholine (w/w), cholesterol (w/w), PEG-2000 (w/w), and temperature of phosphate-buffered saline at three different levels. We identified the optimized formulation which showed the most satisfactory lipid stability and particle formation. The morphology of the liposomes obtained was determined by transmission electron microscopy and atomic force microscopy. The existence of PEG in the liposome component was validated by Fourier transform infrared spectrum analysis. Results The PEGylated liposomes dispersed individually and had diameters of around 110–200 nm. Encapsulation efficiency was more than 85%, as calculated by high-performance liquid chromatography and Sephadex® gel filtration. Furthermore, when compared with native oleanolic acid, the liposomal formulations showed better stability in vitro. Finally, the cytotoxicity of the oleanolic acid liposomes was evaluated using a microtiter tetrazolium assay. Conclusion These results suggest that PEGylated liposomes would serve as a potent delivery vehicle for oleanolic acid in future cancer therapy. PMID:22848175

  8. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation

    PubMed Central

    Niu, Mengmeng; Lu, Yi; Hovgaard, Lars; Wu, Wei

    2011-01-01

    Background: Oral delivery of insulin is challenging and must overcome the barriers of gastric and enzymatic degradation as well as low permeation across the intestinal epithelium. The present study aimed to develop a liposomal delivery system containing glycocholate as an enzyme inhibitor and permeation enhancer for oral insulin delivery. Methods: Liposomes containing sodium glycocholate were prepared by a reversed-phase evaporation method followed by homogenization. The particle size and entrapment efficiency of recombinant human insulin (rhINS)-loaded sodium glycocholate liposomes can be easily adjusted by tuning the homogenization parameters, phospholipid:sodium glycocholate ratio, insulin:phospholipid ratio, water:ether volume ratio, interior water phase pH, and the hydration buffer pH. Results: The optimal formulation showed an insulin entrapment efficiency of 30% ± 2% and a particle size of 154 ± 18 nm. A conformational study by circular dichroism spectroscopy and a bioactivity study confirmed the preserved integrity of rhINS against preparative stress. Transmission electron micrographs revealed a nearly spherical and deformed structure with discernable lamella for sodium glycocholate liposomes. Sodium glycocholate liposomes showed better protection of insulin against enzymatic degradation by pepsin, trypsin, and α-chymotrypsin than liposomes containing the bile salt counterparts of sodium taurocholate and sodium deoxycholate. Conclusion: Sodium glycocholate liposomes showed promising in vitro characteristics and have the potential to be able to deliver insulin orally. PMID:21822379

  9. Clearance and Biodistribution of Liposomally Encapsulated Nitroxides: A Model for Targeted Delivery of Electron Paramagnetic Resonance Imaging Probes to Tumors

    PubMed Central

    Burks, Scott R.; Legenzov, Eric A.; Rosen, Gerald M.

    2011-01-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as molecular probes is potentially a powerful tool for the detection and physiological characterization of micrometastatic lesions. Encapsulating nitroxides in anti-HER2 immunoliposomes at high concentrations to take advantage of the “self-quenching” phenomenon of nitroxides allows generation of robust EPR signals in HER2-overexpressing breast tumor cells with minimal background from indifferent tissues or circulating liposomes. We investigated the in vivo pharmacological properties of nitroxides encapsulated in sterically stabilized liposomes designed for long circulation times. We show that circulation times of nitroxides can be extended from hours to days; this increases the proportion of liposomes in circulation to enhance tumor targeting. Furthermore, nitroxides encapsulated in sterically stabilized anti-HER2 immunoliposomes can be delivered to HER2-overexpressing tumors at micromolar concentrations, which should be imageable by EPR. Lastly, after in vivo administration, liposomally encapsulated nitroxide signal also appears in the liver, spleen, and kidneys. Although these organs are spatially distinct and would not hinder tumor imaging in our model, understanding nitroxide signal retention in these organs is essential for further improvements in EPR imaging contrast between tumors and other tissues. These results lay the foundation to use liposomally delivered nitroxides and EPR imaging to visualize tumor cells in vivo. PMID:21737567

  10. Pirfenidone-loaded liposomes for lung targeting: preparation and in vitro/in vivo evaluation

    PubMed Central

    Meng, Hui; Xu, Yong

    2015-01-01

    Background The purpose of this study was to develop novel pirfenidone (PFD)-loaded liposomes for targeting to the lung. Methods The liposomes were prepared by the film hydration method, and their in vitro/vivo characteristics were evaluated. Results The PFD liposomes appeared visually as green to yellowish suspensions and were spherical in shape. The particle size was 582.3±21.6 nm and the entrapment efficiency was relatively high (87.2%±5.7%). The liposomes showed typical sustained and prolonged drug-release behavior in vitro and fitted well with the Weibull distribution equation. The relatively slower time taken to reach a minimal plasma PFD concentration in vivo suggests that PFD liposomes have a sustained-release profile, which is consistent with the results of the in vitro release study. The PFD liposomes showed the largest area under the curve for the lung. The high distribution of PFD achieved in the lungs using this liposomal formulation may be explained by physical entrapment of the liposomes in the vascular network of the lung. Histopathological results indicated that liposomal PFD could alleviate pathological injury in lung tissue. Conclusion This liposomal formulation can enable sustained release of PFD and increase targeting to the lung. PMID:26185416

  11. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications.

    PubMed

    Elnaggar, Yosra S R; El-Refaie, Wessam M; El-Massik, Magda A; Abdallah, Ossama Y

    2014-04-28

    Conventional carriers for skin delivery encounter obstacles of drug leakage, scanty permeation and low entrapment efficiency. Phospholipid nanogels have recently been recognized as prominent delivery systems to circumvent such obstacles and impart easier application. The current review provides an overview on different types of lecithin nanostructured gels, with particular emphasis on liposomal versus microemulsion gelled systems. Liposomal gels investigated encompassed classic liposomal hydrogel, modified liposomal gels (e.g. Transferosomal, Ethosomal, Pro-liposomal and Phytosomal gels), Microgel in liposomes (M-i-L) and Vesicular phospholipid gel (VPG). Microemulsion gelled systems encompassed Lecithin microemulsion-based organogels (LMBGs), Pluronic lecithin organogels (PLOs) and Lecithin-stabilized microemulsion-based hydrogels. All systems were reviewed regarding matrix composition, state of art, characterization and updated applications. Different classes of lecithin nanogels exhibited crucial impact on transdermal delivery regarding drug permeation, drug loading and stability aspects. Future perspectives of this theme issue are discussed based on current laboratory studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Photodynamic efficacy of hypericin targeted by two delivery techniques to hepatocellular carcinoma cells.

    PubMed

    Fadel, Maha; Kassab, Kawser; Youssef, Tareq

    2010-09-01

    The photocytotoxic effect of hypericin (Hyp) targeted by two different delivery techniques, namely, liposomes and anti-hepatocyte specific antigen (anti-HSA) was investigated. Optical absorption and steady-state fluorescence were used to analyze the conjugation of Hyp with anti-HSA model and to evaluate the encapsulation capacity and drug release in a liposome model. Particle size and thermal analysis of the prepared liposomes were performed using laser-light scattering and differential scanning calorimetry (DSC), respectively. Viability study of HepG2 cells exposed to Hyp in the two delivery systems, in the dark and following visible light irradiation, was performed in comparison to free Hyp. The intracellular uptake and localization of Hyp in HepG2 cells were analyzed by means of spectrofluorometry and fluorescence microscopy. Spectroscopic measurements demonstrated that Hyp binds to anti-HSA in its monomeric form. The photocytotoxic effect of Hyp depended clearly on the form of Hyp administered, either in free form, loaded into liposomes or conjugated with anti-HSA. While liposomes loaded with Hyp (Lip-Hyp) did not induce significant phototoxicity, both free Hyp or anti-HSA-Hyp inflicted substantial cell mortality, after photoirradiation. The intracellular uptake of Lip-Hyp by HepG2 cells was estimated to be 20% less compared to free Hyp or anti-HSA-Hyp. In spite of the equal uptake of both free Hyp and anti-HSA-Hyp, HepG2 cells demonstrated a relatively higher mortality with anti-HSA-Hyp compared to free Hyp.

  13. A new adjuvant delivery system 'cyclic di-GMP/YSK05 liposome' for cancer immunotherapy.

    PubMed

    Miyabe, Hiroko; Hyodo, Mamoru; Nakamura, Takashi; Sato, Yusuke; Hayakawa, Yoshihiro; Harashima, Hideyoshi

    2014-06-28

    Cyclic dinucleotides are of importance in the field of microbiology and immunology. They function as second messengers and are thought to participate in the signal transduction of cytosolic DNA immune responses. One such dinucleotide, cyclic di-GMP (c-di-GMP), stimulates the immune system. It is thought that c-di-GMP is recognized by ATP dependent RNA helicase (DDX41) in the cytosol, forms a complex with the Stimulator of interferon genes protein (STING), triggers a signal via the tank binding kinase 1-interferon regulatory factor 3 (TBK1-IRF3) pathway and induces the production of type I interferons. Therefore c-di-GMP can be thought of as a new class of adjuvant. However, because c-di-GMP contains two phosphate groups, this prevents its use as an adjuvant because it cannot pass through the cell membrane, even though the target molecule of c-di-GMP is located in the cytoplasm. Our group has been developing a series of liposomal drug delivery systems and recently investigated YSK05 which is a synthetic, pH sensitive lipid that has a high fusogenicity. We utilized this lipid as a carrier to transport c-di-GMP into the cytosol to then use c-di-GMP as an adjuvant. Based on screening experiments, YSK05/POPE/cholesterol=40/25/35 was found to induce IFN-β in Raw264.7 cells. The induction of IFN-β from c-di-GMP liposomes was inhibited by adding BX795, a TBK1 inhibitor, indicating that the production of IFN-β caused the activation of the STING-TBK1 pathway. C-di-GMP liposomes also showed significantly higher levels of expression of CD80, CD86 and MHC class I. The c-di-GMP/YSK05 liposome facilitated antigen specific cytotoxic T cell activity and the inhibition of tumor growth in a mouse model. These findings indicate that c-di-GMP/YSK05 liposomes could be used, not only to transfer c-di-GMP to the cytosol and induce an innate immune system but also as a platform for investigating the mechanism of immune sensing with cyclic dinucleotides in vitro and in vivo. Copyright

  14. Light-sensitive Lipid-based Nanoparticles for Drug Delivery: Design Principles and Future Considerations for Biological Applications

    PubMed Central

    Yavlovich, Amichai; Smith, Brandon; Gupta, Kshitij; Blumenthal, Robert; Puri, Anu

    2011-01-01

    Radiation-based therapies aided by nanoparticles have been developed since decades, and can be primarily categorized into two main platforms. First, delivery of payload of photo-reactive drugs (photosensitizers) using the conventional nanoparticles, and second, design and development of photo-triggerable nanoparticles (primarily liposomes) to attain light-assisted on-demand drug delivery. The main focus of this review is to provide an update of the history, current status and future applications of photo-triggerable lipid-based nanoparticles (light-sensitive liposomes). We will begin with a brief overview on the applications of liposomes for delivery of photosensitizers, including the choice of photosensitizers for photodynamic therapy, as well as the currently available light sources (lasers) used for these applications. The main segment of this review will encompass the details on the strategies to develop photo-triggerable designer liposomes for their drug delivery function. The principles underlying the assembly of photoreactive lipids into nanoparticles (liposomes) and photo-triggering mechanisms will be presented. We will also discuss factors that limit the applications of these liposomes for in vivo triggered drug delivery and emerging concepts that may lead to the biologically viable photo-activation strategies. We will conclude with our view point on the future perspectives of light-sensitive liposomes in the clinic. PMID:20939770

  15. PMO Delivery System Using Bubble Liposomes and Ultrasound Exposure for Duchenne Muscular Dystrophy Treatment.

    PubMed

    Negishi, Yoichi; Ishii, Yuko; Nirasawa, Kei; Sasaki, Eri; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo

    2018-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration, caused by nonsense or frameshift mutations in the dystrophin (DMD) gene. Antisense oligonucleotides can be used to induce specific exon skipping; recently, a phosphorodiamidate morpholino oligomer (PMO) has been approved for clinical use in DMD. However, an efficient PMO delivery strategy is required to improve the therapeutic efficacy in DMD patients. We previously developed polyethylene glycol (PEG)-modified liposomes containing ultrasound contrast gas, "Bubble liposomes" (BLs), and found that the combination of BLs with ultrasound exposure is a useful gene delivery tool. Here, we describe an efficient PMO delivery strategy using the combination of BLs and ultrasound exposure to treat muscles in a DMD mouse model (mdx). This ultrasound-mediated BL technique can increase the PMO-mediated exon-skipping efficiency, leading to significantly increased dystrophin expression. Thus, the combination of BLs and ultrasound exposure may be a feasible PMO delivery method to improve therapeutic efficacy and reduce the PMO dosage for DMD treatment.

  16. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy.

    PubMed

    Du, Bin; Han, Shuping; Li, Hongyan; Zhao, Feifei; Su, Xiangjie; Cao, Xiaohui; Zhang, Zhenzhong

    2015-03-12

    Recently, nanoplatforms with multiple functions, such as tumor-targeting drug carriers, MRI, optical imaging, thermal therapy etc., have become popular in the field of cancer research. The present study reports a novel multi-functional liposome for cancer theranostics. A dual targeted drug delivery with radiofrequency-triggered drug release and imaging based on the magnetic field influence was used advantageously for tumor multi-mechanism therapy. In this system, the surface of fullerene (C60) was decorated with iron oxide nanoparticles, and PEGylation formed a hybrid nanosystem (C60-Fe3O4-PEG2000). Thermosensitive liposomes (dipalmitoylphosphatidylcholine, DPPC) with DSPE-PEG2000-folate wrapped up the hybrid nanosystem and docetaxel (DTX), which were designed to combine features of biological and physical (magnetic) drug targeting for fullerene radiofrequency-triggered drug release. The magnetic liposomes not only served as powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agents, but also as powerful agents for photothermal ablation of tumors. Furthermore, a remarkable thermal therapy combined chemotherapy multi-functional liposome nanoplatform converted radiofrequency energy into thermal energy to release drugs from thermosensitive liposomes, which was also observed during both in vitro and in vivo treatment. The multi-functional liposomes also could selectively kill cancer cells in highly localized regions via their excellent active tumor targeting and magnetic targeted abilities.

  17. Targeted delivery of let-7a microRNA encapsulated ephrin-A1 conjugated liposomal nanoparticles inhibit tumor growth in lung cancer

    PubMed Central

    Lee, Hung-Yen; Mohammed, Kamal A; Kaye, Fredric; Sharma, Parvesh; Moudgil, Brij M; Clapp, William L; Nasreen, Najmunnisa

    2013-01-01

    MicroRNAs (miRs) are small noncoding RNA sequences that negatively regulate the expression of target genes by posttranscriptional repression. miRs are dysregulated in various diseases, including cancer. let-7a miR, an antioncogenic miR, is downregulated in lung cancers. Our earlier studies demonstrated that let-7a miR inhibits tumor growth in malignant pleural mesothelioma (MPM) and could be a potential therapeutic against lung cancer. EphA2 (ephrin type-A receptor 2) tyrosine kinase is overexpressed in most cancer cells, including MPM and non-small-cell lung cancer (NSCLC) cells. Ephrin-A1, a specific ligand of the EphA2 receptor, inhibits cell proliferation and migration. In this study, to enhance the delivery of miR, the miRs were encapsulated in the DOTAP (N-[1-(2.3-dioleoyloxy)propyl]-N,N,N-trimethyl ammonium)/Cholesterol/DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[cyanur(polyethylene glycol)-2000])-PEG (polyethylene glycol)-cyanur liposomal nanoparticles (LNP) and ephrin-A1 was conjugated on the surface of LNP to target receptor EphA2 on lung cancer cells. The LNP with an average diameter of 100 nm showed high stability, low cytotoxicity, and high loading efficiency of precursor let-7a miR and ephrin-A1. The ephrin-A1 conjugated LNP (ephrin-A1–LNP) and let-7a miR encapsulated LNP (miR–LNP) showed improved transfection efficiency against MPM and NSCLC. The effectiveness of targeted delivery of let-7a miR encapsulated ephrin-A1 conjugated LNP (miR–ephrin-A1–LNP) was determined on MPM and NSCLC tumor growth in vitro. miR–ephrin-A1–LNP significantly increased the delivery of let-7a miR in lung cancer cells when compared with free let-7a miR. In addition, the expression of target gene Ras was significantly repressed following miR–ephrin-A1–LNP treatment. Furthermore, the miR–ephrin-A1–LNP complex significantly inhibited MPM and NSCLC proliferation, migration, and tumor growth. Our results demonstrate that the engineered mi

  18. Lipid based noninvasive vesicular formulation of cytarabine: Nanodeformable liposomes.

    PubMed

    Raj, Rakesh; Raj, Pooja Mongia; Ram, Alpana

    2016-06-10

    Leukemia is the common cause of death and worldwide incidence of this disease is increasing. Chemotherapy is the first choice for leukemia treatment, but the major limitations of standard therapy are its side effects and poor patient compliances. Therefore it is imperative to look for a therapeutic system with lesser side effects urgently to address the underlying causes of poor treatment outcomes. In such a scenario transdermal route for delivery of chemotherapeutic drugs could be a better alternative to provide sustained drug level, enhanced activity, self administration and better patient compliances. The present work is focus on the design of nanolipid based transdermal carrier, deformable liposomes bearing cytarabine as a model drug for effective delivery of drug with enhanced transdermal flux. Developed nanocarriers were characterized for their size, morphology, entrapment efficiency, skin penetration and irritation. It could be concluded that nanodeformable liposomes accentuated transdermal flux of cytarabine and could provide a new strategy for leukemia. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Development of a liposome microbicide formulation for vaginal delivery of octylglycerol for HIV prevention

    PubMed Central

    Wang, Lin; Sassi, Alexandra Beumer; Patton, Dorothy; Isaacs, Charles; Moncla, B. J.; Gupta, Phalguni; Rohan, Lisa Cencia

    2015-01-01

    The feasibility of using a liposome drug delivery system to formulate octylglycerol (OG) as a vaginal microbicide product was explored. A liposome formulation was developed containing 1% OG and phosphatidyl choline in a ratio that demonstrated in vitro activity against Neisseria gonorrhoeae, HSV-1, HSV-2 and HIV-1 while sparing the innate vaginal flora, Lactobacillus. Two conventional gel formulations were prepared for comparison. The OG liposome formulation with the appropriate OG/lipid ratio and dosing level had greater efficacy than either conventional gel formulation and maintained this efficacy for at least 2 months. No toxicity was observed for the liposome formulation in ex vivo testing in a human ectocervical tissue model or in vivo testing in the macaque safety model. Furthermore, minimal toxicity was observed to lactobacilli in vitro or in vivo safety testing. The OG liposome formulation offers a promising microbicide product with efficacy against HSV, HIV and N. gonorrhoeae. PMID:22149387

  20. [Targeted drug delivery system: potential application to resveratrol].

    PubMed

    Farghali, Hassan; Kameníková, Ludmila

    2017-01-01

    Drug delivery system (DDS) is intended to increasing effectiveness of drugs through targeted distribution and to reducing of unwanted effects. In this mini-review, the basic principles of nanotechnology that were developed for DDS were reported including sections on the present research in key areas that are important for future investigations. Attention is paid on resveratrol as a model phytochemical with interesting pharmacologic profile which was demonstrated in great numbers of studies and for its wide use as supplemental therapy. Due to complicated pharmacokinetic profile of resveratrol that is characterized by very low bioavailability in spite of high oral absorption, the effects of resveratrol is being studied in new nanotechnology preparations of pharmaceutical formulation. Herein we report on results of present in vitro and in vivo investigations with resveratrol in new types of drug formulations using different nanoparticles as liposomes, solid lipid particles, cyclodextrins and micelles.Key words: targeted drug delivery nanotechnology resveratrol.

  1. Liposomal Bupivacaine Block at the Time of Cesarean Delivery to Decrease Postoperative Pain: A Randomized Controlled Trial.

    PubMed

    Prabhu, Malavika; Clapp, Mark A; McQuaid-Hanson, Emily; Ona, Samsiya; OʼDonnell, Taylor; James, Kaitlyn; Bateman, Brian T; Wylie, Blair J; Barth, William H

    2018-07-01

    To evaluate whether a liposomal bupivacaine incisional block decreases postoperative pain and represents an opioid-minimizing strategy after scheduled cesarean delivery. In a single-blind, randomized controlled trial among opioid-naive women undergoing cesarean delivery, liposomal bupivacaine or placebo was infiltrated into the fascia and skin at the surgical site, before fascial closure. Using an 11-point numeric rating scale, the primary outcome was pain score with movement at 48 hours postoperatively. A sample size of 40 women per group was needed to detect a 1.5-point reduction in pain score in the intervention group. Pain scores and opioid consumption, in oral morphine milligram equivalents, at 48 hours postoperatively were summarized as medians (interquartile range) and compared using the Wilcoxon rank-sum test. Between March and September 2017, 249 women were screened, 103 women enrolled, and 80 women were randomized. One woman in the liposomal bupivacaine group was excluded after randomization as a result of a vertical skin incision, leaving 39 patients in the liposomal bupivacaine group and 40 in the placebo group. Baseline characteristics between groups were similar. The median (interquartile range) pain score with movement at 48 hours postoperatively was 4 (2-5) in the liposomal bupivacaine group and 3.5 (2-5.5) in the placebo group (P=.72). The median (interquartile range) opioid use was 37.5 (7.5-60) morphine milligram equivalents in the liposomal bupivacaine group and 37.5 (15-75) morphine milligram equivalents in the placebo group during the first 48 hours postoperatively (P=.44). Compared with placebo, a liposomal bupivacaine incisional block at the time of cesarean delivery resulted in similar postoperative pain scores in the first 48 hours postoperatively. ClinicalTrials.gov, NCT02959996.

  2. Incorporation of a selective sigma-2 receptor ligand enhances uptake of liposomes by multiple cancer cells

    PubMed Central

    Zhang, Yifei; Huang, Yixian; Zhang, Peng; Gao, Xiang; Gibbs, Robert B; Li, Song

    2012-01-01

    Background: The sigma-2 receptor is an attractive target for tumor imaging and targeted therapy because it is overexpressed in multiple types of solid tumors, including prostate cancer, breast cancer, and lung cancer. SV119 is a synthetic small molecule that binds to sigma-2 receptors with high affinity and specificity. This study investigates the utility of SV119 in mediating the selective targeting of liposomal vectors in various types of cancer cells. Methods: SV119 was covalently linked with polyethylene glycol-dioleyl amido aspartic acid conjugate (PEG-DOA) to generate a novel functional lipid, SV119-PEG-DOA. This lipid was utilized for the preparation of targeted liposomes to enhance their uptake by cancer cells. Liposomes with various SV119 densities (0, 1, 3, and 5 mole%) were prepared and their cellular uptake was investigated in several tumor cell lines. In addition, doxorubicin (DOX) was loaded into the targeted and unmodified liposomes, and the cytotoxic effect on the DU-145 cells was evaluated by MTT assay. Results: Liposomes with or without SV119-PEG-DOA both have a mean diameter of approximately 90 nm and a neutral charge. The incorporation of SV119-PEG-DOA significantly increased the cellular uptake of liposomes by the DU-145, PC-3, A549, 201T, and MCF-7 tumor cells, which was shown by fluorescence microscopy and the quantitative measurement of fluorescence intensity. In contrast, the incorporation of SV119 did not increase the uptake of liposomes by the normal BEAS-2B cells. In a time course study, the uptake of SV119 liposomes by DU-145 cells was also significantly higher at each time point compared to the unmodified liposomes. Furthermore, the DOX-loaded SV119 liposomes showed significantly higher cytotoxicity to DU-145 cells compared to the DOX-loaded unmodified liposomes. Conclusion: SV119 liposomes were developed for targeted drug delivery to cancer cells. The targeting efficiency and specificity of SV119 liposomes to cancer cells was

  3. Nanoparticle-based drug delivery to the vagina: a review

    PubMed Central

    Ensign, Laura M.; Cone, Richard; Hanes, Justin

    2014-01-01

    Vaginal drug administration can improve prophylaxis and treatment of many conditions affecting the female reproductive tract, including sexually transmitted diseases, fungal and bacterial infections, and cancer. However, achieving sustained local drug concentrations in the vagina can be challenging, due to the high permeability of the vaginal epithelium and expulsion of conventional soluble drug dosage forms. Nanoparticle-based drug delivery platforms have received considerable attention for vaginal drug delivery, as nanoparticles can provide sustained release, cellular targeting, and even intrinsic antimicrobial or adjuvant properties that can improve the potency and/or efficacy of prophylactic and therapeutic modalities. Here, we review the use of polymeric nanoparticles, liposomes, dendrimers, and inorganic nanoparticles for vaginal drug delivery. Although most of the work toward nanoparticle-based drug delivery in the vagina has been focused on HIV prevention, strategies for treatment and prevention of other sexually transmitted infections, treatment for reproductive tract cancer, and treatment of fungal and bacterial infections are also highlighted. PMID:24830303

  4. Antinociception and side effects of L- and D-dipalmitoylphosphatidyl choline liposome-encapsulated alfentanil after spinal delivery in rats.

    PubMed

    Isackson, J; Wallace, M S; Ho, R J; Shen, D D; Yaksh, T L

    1995-11-01

    We have observed that spinal liposome administration in the rat resulted in in an allodynia evoked by light touch. We later determined that liposomes composed of D-isomer phospholipids were essentially non-toxic. This study examines the effects of alfentanil encapsulated in liposomes made from the natural L-isomer and synthetic D-isomer of dipalmitoyl phosphatidyl choline on antinoceiception, side effects, and algogenic behaviour. Both unilamellar and multilamellar liposomes were studied. Rats prepared with chronic intrathecal catheters received intrathecal injections of alfentanil (5 or 50 micrograms) in saline or encapsulated in liposomes composed of either L- or D-isomers of dipalmitoyl phosphatidyl choline (DPPC) in unilamellar or multilamellar liposome formulations. Antinociception was measured using the hot plate test (52.5 degrees). Side effects were measured by catalepsy, corneal responses, pinna response, righting reflex, and paw step. Allodynia was measured by lightly stroking the animal's back. Intrathecal alfentanil in saline or in the liposomes produced a dose-dependent increased latency in the hot plate response. Encapsulation of alfentanil in the liposomes produced a significant decrease in the loss of corneal, paw step and righting reflex and a slight decrease in catalepsy and loss of the pinna response. There was no significant difference between liposome preparations in preventing side effects. L-multilamellar-DPPC produced allodynia in 100% of the animals whereas significantly less allodynia was observed with the other preparations. This study indicates that liposomal preparations can significantly enhance the therapeutic ratio of a lipid soluble opioid after spinal delivery. However, the choice of lipids for the formulation of liposomes intended for spinal drug delivery must be considered since the L-isomer and larger lipid load of multilamellar liposomes have a direct spinal effect leading to alledynia. Previous studies have in fact shown that

  5. Liposome-Cross-Linked Hybrid Hydrogels for Glutathione-Triggered Delivery of Multiple Cargo Molecules.

    PubMed

    Liang, Yingkai; Kiick, Kristi L

    2016-02-08

    Novel, liposome-cross-linked hybrid hydrogels cross-linked by the Michael-type addition of thiols with maleimides were prepared via the use of maleimide-functionalized liposome cross-linkers and thiolated polyethylene glycol (PEG) polymers. Gelation of the materials was confirmed by oscillatory rheology experiments. These hybrid hydrogels are rendered degradable upon exposure to thiol-containing molecules such as glutathione (GSH), via the incorporation of selected thioether succinimide cross-links between the PEG polymers and liposome nanoparticles. Dynamic light scattering (DLS) characterization confirmed that intact liposomes were released upon network degradation. Owing to the hierarchical structure of the network, multiple cargo molecules relevant for chemotherapies, namely doxorubicin (DOX) and cytochrome c, were encapsulated and simultaneously released from the hybrid hydrogels, with differential release profiles that were driven by degradation-mediated release and Fickian diffusion, respectively. This work introduces a facile approach for the development of advanced, hybrid drug delivery vehicles that exhibit novel chemical degradation.

  6. Polymer coated liposomes for dental drug delivery--interactions with parotid saliva and dental enamel.

    PubMed

    Nguyen, S; Hiorth, M; Rykke, M; Smistad, G

    2013-09-27

    The interactions between pectin coated liposomes and parotid saliva and dental enamel were studied to investigate their potential to mimic the protective biofilm formed naturally on tooth surfaces. Different pectin coated liposomes with respect to pectin type (LM-, HM- and AM-pectin) and concentration (0.05% and 0.2%) were prepared. Interactions between the pectin coated liposomes and parotid saliva were studied by turbidimetry and imaging by atomic force microscopy. The liposomes were adsorbed to hydroxyapatite (HA) and human dental enamel using phosphate buffer and parotid saliva as adsorption media. A continuous flow was imposed on the enamel surfaces for various time intervals to examine their retention on the dental enamel. The results were compared to uncoated, charged liposomes. No aggregation tendencies for the pectin coated liposomes and parotid saliva were revealed. This makes them promising as drug delivery systems to be used in the oral cavity. In phosphate buffer the adsorption to HA of pectin coated liposomes was significantly lower than the negative liposomes. The difference diminished in parotid saliva. Positive liposomes adsorbed better to the dental enamel than the pectin coated liposomes. However, when subjected to flow for 1h, no significant differences in the retention levels on the enamel were found between the formulations. For all formulations, more than 40% of the liposomes still remained on the enamel surfaces. At time point 20 min the retention of HM-pectin coated and positive liposomes were significantly higher. It was concluded that pectin coated liposomes can adsorb to HA as well as to the dental enamel. Their ability to retain on the enamel surfaces promotes the concept of using them as protective structures for the teeth. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles.

    PubMed

    Ducat, E; Deprez, J; Gillet, A; Noël, A; Evrard, B; Peulen, O; Piel, G

    2011-11-28

    The purpose of this study is to propose a suitable vector combining increased circulation lifetime and intracellular delivery capacities for a therapeutic peptide. Long circulating classical liposomes [SPC:CHOL:PEG-750-DSPE (47:47:6 molar% ratio)] or pH-sensitive stealth liposomes [DOPE:CHEMS:CHOL:PEG(750)-DSPE (43:21:30:6 molar% ratio)] were used to deliver a therapeutic peptide to its nuclear site of action. The benefit of using stealth pH-sensitive liposomes was investigated and formulations were compared to classical liposomes in terms of size, shape, charge, encapsulation efficiency, stability and, most importantly, in terms of cellular uptake. Confocal microscopy and flow cytometry were used to evaluate the intracellular fate of liposomes themselves and of their hydrophilic encapsulated material. Cellular uptake of peptide-loaded liposomes was also investigated in three cell lines: Hs578t human epithelial cells from breast carcinoma, MDA-MB-231 human breast carcinoma cells and WI-26 human diploid lung fibroblast cells. The difference between formulations in terms of peptide delivery from the endosome to the cytoplasm and even to the nucleus was investigated as a function of time. Characterization studies showed that both formulations possess acceptable size, shape and encapsulation efficiency but cellular uptake studies showed the important benefit of the pH-sensitive formulation over the classical one, in spite of liposome PEGylation. Indeed, stealth pH-sensitive liposomes were able to deliver hydrophilic materials strongly to the cytoplasm. Most importantly, when encapsulated in pH-sensitive stealth liposomes, the peptide was able to reach the nucleus of tumorigenic and non tumorigenic breast cancer cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. HEPC-based liposomes trigger cytokine release from peripheral blood cells: effects of liposomal size, dose and lipid composition.

    PubMed

    Yamamoto, Sayaka; Ishida, Tatsuhiro; Inoue, Akiko; Mikami, Junko; Muraguchi, Masahiro; Ohmoto, Yasukazu; Kiwada, Hiroshi

    2002-04-02

    The immune response caused by liposome stimulation was studied by assessing the level of several cytokines released from human peripheral blood cells. Liposome stimulation resulted in the release of IL-6, IL-10, IL-1beta, TNF-alpha and IFN-gamma. The size of the liposomes affected the degree of the cytokine releases with larger sized liposomes causing higher levels of cytokine induction. In addition, it appears that the lipid composition of liposomes had no effect on the degree of cytokine release. The release of cytokines occurred even in the absence of serum, suggesting that serum proteins did not contribute to liposome stimulation in peripheral blood cells. The release of cytokines induced by liposome stimulation was inhibited by the presence of either protein kinase-C (PKC) or protein tyrosine kinase (PTK) inhibitor, but not by the presence of an endocytosis inhibitor. This indicates that signal transduction via PKC or PTK is necessary, in order for human peripheral blood cells to release cytokines (IL-6, IL-10, IL-1beta, TNF-alpha and IFN-gamma) as the result of liposome stimulation. These quantitative data on the release of cytokines by liposomal stimulation provide useful information for the development of rational drug delivery systems and the safety of cytokine induction via the use of liposomes.

  9. [Pyr1]-Apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction

    PubMed Central

    Serpooshan, Vahid; Sivanesan, Senthilkumar; Huang, Xiaoran; Mahmoudi, Morteza; Malkovskiy, Andrey V.; Zhao, Mingming; Inayathullah, Mohammed; Wagh, Dhananjay; Zhang, Xuexiang J.; Metzler, Scott; Bernstein, Daniel; Wu, Joseph C.; Ruiz-Lozano, Pilar; Rajadas, Jayakumar

    2017-01-01

    Nanoparticle-mediated sustained delivery of therapeutics is one of the highly effective and increasingly utilized applications of nanomedicine. Here, we report the development and application of a drug delivery system consisting of polyethylene glycol (PEG)-conjugated liposomal nanoparticles as an efficient in vivo delivery approach for [Pyr1]-apelin-13 polypeptide. Apelin is an adipokine that regulates a variety of biological functions including cardiac hypertrophy and hypertrophy-induced heart failure. The clinical use of apelin has been greatly impaired by its remarkably short half-life in circulation. Here, we investigate whether [Pyr1]-apelin-13 encapsulation in liposome nanocarriers, conjugated with PEG polymer on their surface, can prolong apelin stability in the blood stream and potentiate apelin beneficial effects in cardiac function. Atomic force microscopy and dynamic light scattering were used to assess the structure and size distribution of drug-laden nanoparticles. [Pyr1]-apelin-13 encapsulation in PEGylated liposomal nanocarriers resulted in sustained and extended drug release both in vitro and in vivo. Moreover, intraperitoneal injection of [Pyr1]-apelin-13 nanocarriers in a mouse model of pressure-overload induced heart failure demonstrated a sustainable long-term effect of [Pyr1]-apelin-13 in preventing cardiac dysfunction. We concluded that this engineered nanocarrier system can serve as a delivery platform for treating heart injuries through sustained bioavailability of cardioprotective therapeutics. PMID:25443792

  10. Intraperitoneal (188)Re-Liposome delivery switches ovarian cancer metabolism from glycolysis to oxidative phosphorylation and effectively controls ovarian tumour growth in mice.

    PubMed

    Shen, Yao An; Lan, Keng Li; Chang, Chih Hsien; Lin, Liang Ting; He, Chun Lin; Chen, Po Hung; Lee, Te Wei; Lee, Yi Jang; Chuang, Chi Mu

    2016-05-01

    Cancer stem cells exhibit distinctive cellular metabolism compared with the more differentiated counterparts or normal cells. We aimed to investigate the impact of a novel radionuclide anti-cancer agent (188)Re-Liposome on stemness markers' expression and cellular metabolism in an ovarian cancer model. A 2×2 factorial experiment was designed in which factor 1 represented the drug treatment comparing (188)Re-BMEDA, a free form of (188)Re, with (188)Re-Liposome, a nanoparticle-encapsulated form of (188)Re. Factor 2 represented the delivery route, comparing intravenous with intraperitoneal delivery. Intraperitoneal delivery of (188)Re-Liposome predominantly killed the CSCs-like cells in tumours and switched metabolism from glycolysis to oxidative phosphorylation. Further, intraperitoneal delivery of (188)Re-Liposome treatment was able to block epithelial-to-mesenchymal transition (EMT) and reactivate p53 function. Collectively, these molecular changes led to a striking tumour-killing effect. Radionuclides encapsulated in liposomes may represent a novel treatment for ovarian cancer when delivered intraperitoneally (a type of loco-regional delivery). In the future, this concept may be further extended for the treatment of several relevant cancers that have been proved to be suitable for loco-regional delivery of therapeutic agents, such as colon cancer, gastric cancer, and pancreatic cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Lipid-based colloidal carriers for peptide and protein deliveryliposomes versus lipid nanoparticles

    PubMed Central

    Martins, Susana; Sarmento, Bruno; Ferreira, Domingos C; Souto, Eliana B

    2007-01-01

    This paper highlights the importance of lipid-based colloidal carriers and their pharmaceutical implications in the delivery of peptides and proteins for oral and parenteral administration. There are several examples of biomacromolecules used nowadays in the therapeutics, which are promising candidates to be delivered by means of liposomes and lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Several production procedures can be applied to achieve a high association efficiency between the bioactives and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. Generally, this can lead to improved bioavailability, or in case of oral administration a more consistent temporal profile of absorption from the gastrointestinal tract. Advantages and drawbacks of such colloidal carriers are also pointed out. This article describes strategies used for formulation of peptides and proteins, methods used for assessment of association efficiency and practical considerations regarding the toxicological concerns. PMID:18203427

  12. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems

    PubMed Central

    Wen, Ru; Umeano, Afoma C.; Francis, Lily; Sharma, Nivita; Tundup, Smanla; Dhar, Shanta

    2016-01-01

    Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease. PMID:27258316

  13. A novel application of maleimide for advanced drug delivery: in vitro and in vivo evaluation of maleimide-modified pH-sensitive liposomes.

    PubMed

    Li, Tianshu; Takeoka, Shinji

    2013-01-01

    Maleimide is a stable and easy-to-handle moiety that rapidly and covalently conjugates thiol groups of cysteine residues in proteins or peptides. Herein, we use maleimide to modify the surface of liposomes in order to obtain an advanced drug delivery system. Employing a small amount (0.3 mol%) of maleimide-polyethylene glycol (PEG) to modify the surface of the liposomes M-GGLG-liposomes, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate (GGLG)/cholesterol/poly(ethylene glycol) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (PEG5000-DSPE)/maleimide-PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03, drug delivery efficiency was remarkably improved both in vitro and in vivo compared to unmodified liposomes (GGLG-liposomes, composed of GGLG/cholesterol/PEG5000-DSPE/PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03). Moreover, this modification did not elicit any detectable increase in cytotoxicity. The maleimide-modification did not alter the physical characteristics of the liposomes such as size, zeta potential, pH sensitivity, dispersibility and drug encapsulation efficiency. However, M-GGLG-liposomes were more rapidly (≥2-fold) internalized into HeLa, HCC1954, and MDA-MB-468 cells compared to GGLG-liposomes. In vivo, M-GGLG-liposomes encapsulating doxorubicin (M-GGLG-DOX-liposomes) also showed a more potent antitumor effect than GGLG-DOX-liposomes and the widely used 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-DOX-liposomes after two subcutaneous injections around breast cancer tissue in mice. The biodistribution of liposomes in this model was observed using an in vivo imaging system, which showed that M-GGLG-liposomes were present for significantly longer at the injection site compared to GGLG-liposomes. The outstanding biological functions of the maleimide-modified liposomes as a novel drug delivery system make them ideally suited to a wide range of applications.

  14. A novel application of maleimide for advanced drug delivery: in vitro and in vivo evaluation of maleimide-modified pH-sensitive liposomes

    PubMed Central

    Li, Tianshu; Takeoka, Shinji

    2013-01-01

    Maleimide is a stable and easy-to-handle moiety that rapidly and covalently conjugates thiol groups of cysteine residues in proteins or peptides. Herein, we use maleimide to modify the surface of liposomes in order to obtain an advanced drug delivery system. Employing a small amount (0.3 mol%) of maleimide-polyethylene glycol (PEG) to modify the surface of the liposomes M-GGLG-liposomes, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate (GGLG)/cholesterol/poly(ethylene glycol) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (PEG5000-DSPE)/maleimide-PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03, drug delivery efficiency was remarkably improved both in vitro and in vivo compared to unmodified liposomes (GGLG-liposomes, composed of GGLG/cholesterol/PEG5000-DSPE/PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03). Moreover, this modification did not elicit any detectable increase in cytotoxicity. The maleimide-modification did not alter the physical characteristics of the liposomes such as size, zeta potential, pH sensitivity, dispersibility and drug encapsulation efficiency. However, M-GGLG-liposomes were more rapidly (≥2-fold) internalized into HeLa, HCC1954, and MDA-MB-468 cells compared to GGLG-liposomes. In vivo, M-GGLG-liposomes encapsulating doxorubicin (M-GGLG-DOX-liposomes) also showed a more potent antitumor effect than GGLG-DOX-liposomes and the widely used 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-DOX-liposomes after two subcutaneous injections around breast cancer tissue in mice. The biodistribution of liposomes in this model was observed using an in vivo imaging system, which showed that M-GGLG-liposomes were present for significantly longer at the injection site compared to GGLG-liposomes. The outstanding biological functions of the maleimide-modified liposomes as a novel drug delivery system make them ideally suited to a wide range of applications. PMID:24143089

  15. Size-Dependency of the Surface Ligand Density of Liposomes Prepared by Post-insertion.

    PubMed

    Lee, Shang-Hsuan; Sato, Yusuke; Hyodo, Mamoru; Harashima, Hideyoshi

    2017-01-01

    In the active targeting of a drug delivery system (DDS), the density of the ligand on the functionalized liposome determines its affinity for binding to the target. To evaluate these densities on the surface of different sized liposomes, 4 liposomes with various diameters (188, 137, 70, 40 nm) were prepared and their surfaces were modified with fluorescently labeled ligand-lipid conjugates by the post-insertion method. Each liposomal mixture was fractionated into a series of fractions using size exclusion chromatography (SEC), and the resulting liposome fractions were precisely analyzed and the surface ligand densities calculated. The data collected using this methodology indicate that the density of the ligand on a particle is greatly dependent on the size of the liposome. This, in turn, indicates that smaller liposomes (75-40 nm) tend to possess higher densities. For developing active targeting systems, size and the density of the ligands are two important and independent factors that can affect the efficiency of a system as it relates to medical use.

  16. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury.

    PubMed

    Li, Nan; Weng, Dong; Wang, Shan-Mei; Zhang, Yuan; Chen, Shan-Shan; Yin, Zhao-Fang; Zhai, Jiali; Scoble, Judy; Williams, Charlotte C; Chen, Tao; Qiu, Hui; Wu, Qin; Zhao, Meng-Meng; Lu, Li-Qin; Mulet, Xavier; Li, Hui-Ping

    2017-11-01

    The advent of nanomedicine requires novel delivery vehicles to actively target their site of action. Here, we demonstrate the development of lung-targeting drug-loaded liposomes and their efficacy, specificity and safety. Our study focuses on glucocorticoids methylprednisolone (MPS), a commonly used drug to treat lung injuries. The steroidal molecule was loaded into functionalized nano-sterically stabilized unilamellar liposomes (NSSLs). Targeting functionality was performed through conjugation of surfactant protein A (SPANb) nanobodies to form MPS-NSSLs-SPANb. MPS-NSSLs-SPANb exhibited good size distribution, morphology, and encapsulation efficiency. Animal experiments demonstrated the high specificity of MPS-NSSLs-SPANb to the lung. Treatment with MPS-NSSLs-SPANb reduced the levels of TNF-α, IL-8, and TGF-β1 in rat bronchoalveolar lavage fluid and the expression of NK-κB in the lung tissues, thereby alleviating lung injuries and increasing rat survival. The nanobody functionalized nanoparticles demonstrate superior performance to treat lung injury when compared to that of antibody functionalized systems.

  17. Long-circulating, pH-sensitive liposomes versus long-circulating, non-pH-sensitive liposomes as a delivery system for tumor identification.

    PubMed

    de Barros, André Luís Branco; Mota, Luciene das Graças; Soares, Daniel Crístian Ferreira; de Souza, Cristina Maria; Cassali, Geovanni Dantas; Oliveira, Mônica Cristina; Cardoso, Valbert Nascimento

    2013-09-01

    Bombesin (BBN) is a tetradecapeptide that binds specifically to gastrin-releasing peptide receptors in humans. Several forms of cancer, including lung, prostate, breast, and colon over-express receptors for bombesin-like peptides. Therefore, radiolabeled bombesin analogs might be useful for tumor identification. Nevertheless, it is well known that higher tumor uptake can yield images in higher quality. Hence, drug delivery systems, such as liposomes, can be used to achieve a higher concentration of radiotracer in tumor site, and also improve the radiotracer stability, since peptides can suffer easily degradation in vivo by natural plasma and tissue peptides. In this paper, we prepared long-circulating, pH-sensitive liposomes and long-circulation, non-pH sensitive liposomes. Both formulations were able to encapsulate the radiolabeled bombesin derivative (99mTc-BBN(7_14)), and also showing high in vitro stability. Biodistribution studies were performed in Ehrlich tumor bearing-mice to compare the ability of pH-sensitive and non-pH sensitive liposomes to deliver 99mTc-BBN(7_14) to tumor site. Results showed higher tumor uptake (2-fold) when pH-sensitive liposomes were used, suggesting that these vesicles can facilitate the access to the tumor by releasing the diagnostic agent into the ideal area. As a result, tumor-to-muscle ratio achieved with pH-sensitive liposomes was higher than that obtained with non-pH-sensitive formulation. In addition, scintigraphic images for pH-sensitive liposomes showed evident tumor uptake, corroborating with biodistribution data. Therefore, the results presented in this paper suggest that pH-sensitive liposomes are able to deliver more efficiently the radiolabeled bombesin analog. This finding poses a new possibility to improve images quality, since the tumor-to-muscle ratio was strongly enhanced.

  18. Synthesis and validation of novel cholesterol-based fluorescent lipids designed to observe the cellular trafficking of cationic liposomes.

    PubMed

    Kim, Bieong-Kil; Seu, Young-Bae; Choi, Jong-Soo; Park, Jong-Won; Doh, Kyung-Oh

    2015-09-15

    Cholesterol-based fluorescent lipids with ether linker were synthesized using NBD (Chol-E-NBD) or Rhodamine B (Chol-E-Rh), and the usefulnesses as fluorescent probes for tracing cholesterol-based liposomes were validated. The fluorescent intensities of liposomes containing these modified lipids were measured and observed under a microscope. Neither compound interfered with the expression of GFP plasmid, and live cell images were obtained without interferences. Changes in the fluorescent intensity of liposomes containing Chol-E-NBD were followed by flow cytometry for up to 24h. These fluorescent lipids could be useful probes for trafficking of cationic liposome-mediated gene delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of Liposome Characteristics and Dose on the Pharmacokinetics of Liposomes Coated with Poly(amino acid)s

    PubMed Central

    Romberg, Birgit; Oussoren, Christien; Snel, Cor J.; Hennink, Wim E.

    2007-01-01

    Long-circulating liposomes, such as PEG-liposomes, are frequently studied for drug delivery and diagnostic purposes. In our group, poly(amino acid) (PAA)-based coatings for long-circulating liposomes have been developed. These coatings provide liposomes with similar circulation times as compared to PEG-liposomes, but have the advantage of being enzymatically degradable. For PEG-liposomes it has been reported that circulation times are relatively independent of their physicochemical characteristics. In this study, the influence of factors such as PAA grafting density, cholesterol inclusion, surface charge, particle size, and lipid dose on the circulation kinetics of PAA-liposomes was evaluated after intravenous administration in rats. Prolonged circulation kinetics of PAA-liposomes can be maintained upon variation of liposome characteristics and the lipid dose given. However, the use of relatively high amounts of strongly charge-inducing lipids and a too large mean size is to be avoided. In conclusion, PAA-liposomes represent a versatile drug carrier system for a wide variety of applications. PMID:17674159

  20. Zwitterionic poly(carboxybetaine)-based cationic liposomes for effective delivery of small interfering RNA therapeutics without accelerated blood clearance phenomenon.

    PubMed

    Li, Yan; Liu, Ruiyuan; Shi, Yuanjie; Zhang, Zhenzhong; Zhang, Xin

    2015-01-01

    For efficient delivery of small interfering RNA (siRNA) to the target diseased site in vivo, it is important to design suitable vehicles to control the blood circulation of siRNA. It has been shown that surface modification of cationic liposome/siRNA complexes (lipoplexes) with polyethylene glycol (PEG) could enhance the circulation time of lipoplexes. However, the first injection of PEGylated lipoplexes in vivo induces accelerated blood clearance and enhances hepatic accumulation of the following injected PEGylated lipoplexes, which is known as the accelerated blood clearance (ABC) phenomenon. Herein, we developed zwitterionic poly(carboxybetaine) (PCB) modified lipoplexes for the delivery of siRNA therapeutics, which could avoid protein adsorption and enhance the stability of lipoplexes as that for PEG. Quite different from the PEGylation, the PCBylated lipoplexes could avoid ABC phenomenon, which extended the blood circulation time and enhanced the tumor accumulation of lipoplexes in vivo. After accumulation in tumor site, the PCBylation could promote the cellular uptake and endosomal/lysosomal escape of lipoplexes due to its unique chemical structure and pH-sensitive ability. With excellent tumor accumulation, cellular uptake and endosomal/lysosomal escape abilities, the PCBylated lipoplexes significantly inhibited tumor growth and induced tumor cell apoptosis.

  1. The Role of Liposomal Bupivacaine in Value-Based Care.

    PubMed

    Iorio, Richard

    Multimodal pain control strategies are crucial in reducing opioid use and delivering effective pain management to facilitate improved surgical outcomes. The utility of liposomal bupivacaine in enabling effective pain control in multimodal strategies has been demonstrated in several studies, but others have found the value of liposomal bupivacaine in such approaches to be insignificant. At New York University Langone Medical Center, liposomal bupivacaine injection and femoral nerve block were compared in their delivery of efficacious and cost-effective multimodal analgesia among patients undergoing total joint arthroplasty (TJA). Retrospective analysis revealed that including liposomal bupivacaine in a multimodal pain control protocol for TJA resulted in improved quality and efficiency metrics, decreased narcotic use, and faster mobilization, all relative to femoral nerve block, and without a significant increase in admission costs. In addition, liposomal bupivacaine use was associated with elimination of the need for patient-controlled analgesia in TJA. Thus, at Langone Medical Center, the introduction of liposomal bupivacaine to TJA has been instrumental in achieving adequate pain control, delivering high-level quality of care, and controlling costs.

  2. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.

    PubMed

    Reddy, K R

    2000-01-01

    To review recent developments in novel injectable drug delivery mechanisms and outline the advantages and disadvantages of each. A MEDLINE (1995-January 2000) search using the terms polyethylene glycol, liposomes, polymers, polylactic acid, and controlled release was conducted. Additional references were identified by scanning bibliographies. All articles were considered for inclusion. Abstracts were included only if they were judged to add critical information not otherwise available in the medical literature. A number of systems that alter the delivery of injectable drugs have been developed in attempts to improve pharmacodynamic and pharmacokinetic properties of therapeutic agents. New drug delivery systems can be produced either through a change in formulation (e.g., continuous-release products, liposomes) or an addition to the drug molecule (e.g., pegylation). Potential advantages of new delivery mechanisms include an increased or prolonged duration of pharmacologic activity, a decrease in adverse effects, and increased patient compliance and quality of life. Injectable continuous-release systems deliver drugs in a controlled, predetermined fashion and are particularly appropriate when it is important to avoid large fluctuations in plasma drug concentrations. Encapsulating a drug within a liposome can produce a prolonged half-life and a shift of distribution toward tissues with increased capillary permeability (e.g., tumors, infected tissue). Pegylation provides a method for modification of therapeutic proteins to minimize many of the limitations (e.g., poor stability, short half-life, immunogenicity) associated with these agents. Pegylation of therapeutic proteins is an established process with new applications. However, not all pegylated proteins are alike, and each requires optimization on a protein-by-protein basis to derive maximum clinical benefit. The language required to describe each pegylated therapeutic protein must be more precise to accurately

  3. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review.

    PubMed

    Singh, Jagdeep; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2016-06-01

    From the early sixteenth and seventeenth centuries to the present day of life, tuberculosis (TB) still is a global health threat with some new emergence of resistance. This type of emergence poses a vital challenge to control TB cases across the world. Mortality and morbidity rates are high due to this new face of TB. The newer nanotechnology-based drug-delivery approaches involving micro-metric and nano-metric carriers are much needed at this stage. These delivery systems would provide more advantages over conventional systems of treatment by producing enhanced therapeutic efficacy, uniform distribution of drug molecule to the target site, sustained and controlled release of drug molecules and lesser side effects. The main aim to develop these novel drug-delivery systems is to improve the patient compliance and reduce therapy time. This article reviews and elaborates the new concepts and drug-delivery approaches for the treatment of TB involving solid-lipid particulate drug-delivery systems (solid-lipid micro- and nanoparticles, nanostructured lipid carriers), vesicular drug-delivery systems (liposomes, niosomes and liposphere), emulsion-based drug-delivery systems (micro and nanoemulsion) and some other novel drug-delivery systems for the effective treatment of tuberculosis and role of immunomodulators as an adjuvant therapy for management of MDR-TB and XDR-TB.

  4. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review.

    PubMed

    Singh, Jagdeep; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2015-08-11

    From the early sixteenth and seventeenth centuries to the present day of life, tuberculosis (TB) still is a global health threat with some new emergence of resistance. This type of emergence poses a vital challenge to control TB cases across the world. Mortality and morbidity rates are high due to this new face of TB. The newer nanotechnology-based drug-delivery approaches involving micro-metric and nano-metric carriers are much needed at this stage. These delivery systems would provide more advantages over conventional systems of treatment by producing enhanced therapeutic efficacy, uniform distribution of drug molecule to the target site, sustained and controlled release of drug molecules and lesser side effects. The main aim to develop these novel drug-delivery systems is to improve the patient compliance and reduce therapy time. This article reviews and elaborates the new concepts and drug-delivery approaches for the treatment of TB involving solid-lipid particulate drug-delivery systems (solid-lipid micro- and nanoparticles, nanostructured lipid carriers), vesicular drug-delivery systems (liposomes, niosomes and liposphere), emulsion-based drug-delivery systems (micro and nanoemulsion) and some other novel drug-delivery systems for the effective treatment of tuberculosis and role of immunomodulators as an adjuvant therapy for management of MDR-TB and XDR-TB.

  5. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji

    2014-09-01

    Cationic lipid-incorporated liposomes modified with pH-sensitive polymers were prepared by introducing 3, 5-didodecyloxybenzamidine as a cationic lipid to egg yolk phosphatidylcholine liposomes modified with 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG) as a pH-sensitive polymer. These liposomes were stable at neutral pH, but were destabilized below pH 6.0 because MGlu-HPG changed its characteristics from hydrophilic to hydrophobic in response to the pH decrease. Cationic lipid inclusion improved their pH sensitivity at weakly acidic pH and association of liposomes with murine dendritic cell (DC) lines. Cationic lipid-incorporated liposomes delivered entrapped ovalbumin (OVA) molecules not only to cytosol but also to endosome/lysosome. Treatment with cationic lipid-incorporated liposomes induced up-regulation of antigen presentation-involved molecules on DCs, the promotion of cytokine production, and antigen presentation via both major histocompatibility complex (MHC) class I and II molecules. Especially, antigen presentation via MHC class II was promoted by cationic lipid inclusion, which might correspond to efficient endosome/lysosome delivery of OVA. Subcutaneous administration of OVA-loaded cationic lipid-incorporated liposomes induced antigen-specific antibody production in serum and Th1-dominant immune responses in the spleen. Furthermore, administration of the cationic lipid-incorporated liposomes to mice bearing E.G7-OVA tumor more significantly reduced the tumor volume than liposomes without cationic lipids. Therefore, cationic lipid inclusion into pH-sensitive polymer-modified liposomes, which can achieve both efficient antigen intracellular delivery and activation of antigen presenting cell, is an effective approach to develop antigen carriers for efficient cancer immunotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier.

    PubMed

    Chen, Zhi-Lan; Huang, Man; Wang, Xia-Rong; Fu, Jun; Han, Min; Shen, You-Qing; Xia, Zheng; Gao, Jian-Qing

    2016-02-01

    α-Mangostin (α-M) is a polyphenolic xanthone that protects and improves the survival of cerebral cortical neurons against Aβ oligomer-induced toxicity in rats. α-M is a potential candidate as a treatment for Alzheimer's disease (AD). However, the efficacy was limited by the poor penetration of the drug through the blood-brain barrier (BBB). In this study, we modified the α-M liposome with transferrin (Tf) and investigated the intracellular distribution of liposomes in bEnd3 cells. In addition, the transport of α-M across the BBB in the Tf(α-M) liposome group was examined. In vitro studies demonstrated that the Tf(α-M) liposome could cross the BBB in the form of an integrated liposome. Results of the in vivo studies on the α-M distribution in the brain demonstrated that the Tf(α-M) liposome improved the brain delivery of α-M. These results indicated that the Tf liposome is a potential carrier of α-M against AD. The use of α-Mangostin (α-M) as a potential agent to treat Alzheimer's disease (AD) has been reported. However, its use is limited by the poor penetration through the blood brain barrier. The delivery of this agent by transferrin-modified liposomes was investigated by the authors in this study. The positive results could point to a better drug delivery system for brain targeting. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Peptide and protein delivery using new drug delivery systems.

    PubMed

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  8. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses

    PubMed Central

    Hendricks, Gabriel L.; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C.; Viswanathan, Karthik; Albers, Leila; Comolli, James C.; Shriver, Zachary; Knipe, David M.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Trevejo, Jose M.

    2016-01-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as ‘molecular sinks’ and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710

  9. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses.

    PubMed

    Hendricks, Gabriel L; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C; Viswanathan, Karthik; Albers, Leila; Comolli, James C; Shriver, Zachary; Knipe, David M; Kurt-Jones, Evelyn A; Fygenson, Deborah K; Trevejo, Jose M; Wang, Jennifer P; Finberg, Robert W

    2015-04-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as 'molecular sinks' and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA).

    PubMed

    Patil, Yogita; Shmeeda, Hilary; Amitay, Yasmine; Ohana, Patricia; Kumar, Saran; Gabizon, Alberto

    2018-04-19

    Folate-targeted liposomes (FTL) were tested as drug delivery vehicles to PSMA-positive cancer cells. We used FL with co-entrapped mitomycin C lipophilic prodrug (MLP) and doxorubicin (DOX), and the LNCaP prostate cancer cell line which expresses PSMA but is negative for folate receptor. A major increase in cell drug levels was observed when LNCaP cells were incubated with FTL as compared to non-targeted liposomes (NTL). MLP was activated to mitomycin C, and intracellular and nuclear fluorescence of DOX was detected, indicating FTL processing and drug bioavailability. PMPA (2-(phosphonomethyl)-pentanedioic acid), a specific inhibitor of PSMA, blocked the uptake of FTL into LNCaP cells, but did not affect the uptake of FTL into PSMA-deficient and folate receptor-positive KB cells. The cytotoxic activity of drug-loaded FTL was found significantly enhanced when compared to NTL in LNCaP cells. FTL may provide a new tool for targeted therapy of cancers that over-express the PSMA receptor. Copyright © 2018. Published by Elsevier Inc.

  11. Companion Diagnostic 64Cu-Liposome Positron Emission Tomography Enables Characterization of Drug Delivery to Tumors and Predicts Response to Cancer Nanomedicines.

    PubMed

    Lee, Helen; Gaddy, Daniel; Ventura, Manuela; Bernards, Nicholas; de Souza, Raquel; Kirpotin, Dmitri; Wickham, Thomas; Fitzgerald, Jonathan; Zheng, Jinzi; Hendriks, Bart S

    2018-01-01

    Deposition of liposomal drugs into solid tumors is a potentially rate-limiting step for drug delivery and has substantial variability that may influence probability of response. Tumor deposition is a shared mechanism for liposomal therapeutics such that a single companion diagnostic agent may have utility in predicting response to multiple nanomedicines. Methods: We describe the development, characterization and preclinical proof-of-concept of the positron emission tomography (PET) agent, MM-DX-929, a drug-free untargeted 100 nm PEGylated liposome stably entrapping a chelated complex of 4-DEAP-ATSC and 64 Cu (copper-64). MM-DX-929 is designed to mimic the biodistribution of similarly sized therapeutic agents and enable quantification of deposition in solid tumors. Results: MM-DX-929 demonstrated sufficient in vitro and in vivo stability with PET images accurately reflecting the disposition of liposome nanoparticles over the time scale of imaging. MM-DX-929 is also representative of the tumor deposition and intratumoral distribution of three different liposomal drugs, including targeted liposomes and those with different degrees of PEGylation. Furthermore, stratification using a single pre-treatment MM-DX-929 PET assessment of tumor deposition demonstrated that tumors with high MM-DX-929 deposition predicted significantly greater anti-tumor activity after multi-cycle treatments with different liposomal drugs. In contrast, MM-DX-929 tumor deposition was not prognostic in untreated tumor-bearing xenografts, nor predictive in animals treated with small molecule chemotherapeutics. Conclusions: These data illustrate the potential of MM-DX-929 PET as a companion diagnostic strategy to prospectively select patients likely to respond to liposomal drugs or nanomedicines of similar molecular size.

  12. A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy.

    PubMed

    Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Watarai, Shinobu; Kono, Kenji

    2013-04-01

    Highly pH-sensitive liposomes that deliver antigenic molecules into cytosol through fusion with or destabilization of endosome were prepared by surface modification of egg yolk phosphatidylcholine/dioleoylphosphatidylethanolamine (1/1, mol/mol) liposomes with 3-methylglutarylated poly(glycidol) of linear (MGlu-LPG) or hyperbranched structure (MGlu-HPG). These polymer-modified liposomes were stable at neutral pH, but they became strongly destabilized below pH 6, which corresponds to the pH of endosome. These polymer-modified liposomes were taken up by murine dendritic cells (DCs) more efficiently than the unmodified liposomes were through an endocytic pathway. They introduced entrapped ovalbumin (OVA) molecules into cytosol. Subcutaneous or nasal administration of the polymer-modified liposomes loaded with OVA induced generation of OVA-specific cytotoxic T cells (CTL) much more effectively than the unmodified liposomes loaded with OVA. Furthermore, administration of the polymer-modified OVA-loaded liposomes to mice bearing E.G7-OVA tumor significantly reduced the tumor burden, although the OVA-loaded unmodified liposomes only slightly affected tumor growth. Results suggest that the polymer-modified liposomes with highly pH-sensitive destabilizing property are promising as antigen carriers for efficient cancer immunotherapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs.

    PubMed

    Joshi, Sameer; Hussain, Maryam T; Roces, Carla B; Anderluzzi, Giulia; Kastner, Elisabeth; Salmaso, Stefano; Kirby, Daniel J; Perrie, Yvonne

    2016-11-30

    Despite the substantial body of research investigating the use of liposomes, niosomes and other bilayer vesicles for drug delivery, the translation of these systems into licensed products remains limited. Indeed, recent shortages in the supply of liposomal products demonstrate the need for new scalable production methods for liposomes. Therefore, the aim of our research has been to consider the application of microfluidics in the manufacture of liposomes containing either or both a water soluble and a lipid soluble drug to promote co-delivery of drugs. For the first time, we demonstrate the entrapment of a hydrophilic and a lipophilic drug (metformin and glipizide respectively) both individually, and in combination, using a scalable microfluidics manufacturing system. In terms of the operating parameters, the choice of solvents, lipid concentration and aqueous:solvent ratio all impact on liposome size with vesicle diameter ranging from ∼90 to 300nm. In terms of drug loading, microfluidics production promoted high loading within ∼100nm vesicles for both the water soluble drug (20-25% of initial amount added) and the bilayer embedded drug (40-42% of initial amount added) with co-loading of the drugs making no impact on entrapment efficacy. However, co-loading of glipizide and metformin within the same liposome formulation did impact on the drug release profiles; in both instances the presence of both drugs in the one formulation promoted faster (up to 2 fold) release compared to liposomes containing a single drug alone. Overall, these results demonstrate the application of microfluidics to prepare liposomal systems incorporating either or both an aqueous soluble drug and a bilayer loaded drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging.

    PubMed

    Zhang, Liang; Habib, Amyn A; Zhao, Dawen

    2016-06-21

    Phosphatidylserine (PS), which is normally intracellular, becomes exposed on the outer surface of viable endothelial cells (ECs) of tumor vasculature. Utilizing a PS-targeting antibody, we have recently established a PS-targeted liposomal (PS-L) nanoplatform that has demonstrated to be highly tumor-selective. Because of the vascular lumen-exposed PS that is immediately accessible without a need to penetrate the intact blood brain barrier (BBB), we hypothesize that the systemically administered PS-L binds specifically to tumor vascular ECs, becomes subsequently internalized into the cells and then enables its cargos to be efficiently delivered to glioma parenchyma. To test this, we exploited the dual MRI/optical imaging contrast agents-loaded PS-L and injected it intravenously into mice bearing intracranial U87 glioma. At 24 h, both in vivo optical imaging and MRI depicted enhanced tumor contrast, distinct from the surrounding normal brain. Intriguingly, longitudinal MRI revealed temporal and spatial intratumoral distribution of the PS-L by following MRI contrast changes, which appeared punctate in tumor periphery at an earlier time point (4 h), but became clustering and disseminated throughout the tumor at 24 h post injection. Importantly, glioma-targeting specificity of the PS-L was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the glioma. Together, these results indicate that the PS-L nanoplatform enables the enhanced, glioma-targeted delivery of imaging contrast agents by crossing the tumor BBB efficiently, which may also serve as a useful nanoplatform for anti-glioma drugs.

  15. Determination of the Subcellular Distribution of Liposomes Using Confocal Microscopy.

    PubMed

    Solomon, Melani A

    2017-01-01

    It is being increasingly recognized that therapeutics need to be delivered to specific organelle targets within cells. Liposomes are versatile lipid-based drug delivery vehicles that can be surface-modified to deliver the loaded cargo to specific subcellular locations within the cell. Hence, the development of such technology requires a means of measuring the subcellular distribution possibly by utilizing imaging techniques that can visualize and quantitate the extent of this subcellular localization. The apparent increase of resolution along the Z-axis offered by confocal microscopy makes this technique suitable for such studies. In this chapter, we describe the application of confocal laser scanning microscopy (CLSM) to determine the subcellular distribution of fluorescently labeled mitochondriotropic liposomes.

  16. Physicochemical interactions among α-eleostearic acid-loaded liposomes applied to the development of drug delivery systems

    NASA Astrophysics Data System (ADS)

    Nogueira, Alessandro Oliveira de Moraes; de Sousa, Robson Simplício; Pereira, Luiza Silveira; Mallmann, Christian; da Silva Ferreira, Ailton; Clementin, Rosilene Maria; de Lima, Vânia Rodrigues

    2018-02-01

    In this study, α-eleostearic acid-loaded (α-ESA-loaded) dimyristoylphosphatidylcholine (DMPC) liposomes had their physicochemical properties characterized by horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy, nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). In vitro thiobarbituric acid reactive substance (TBARS) assays were performed to obtain preliminary information on the oxidative potential of the system. An α-ESA-promoted ordering effect in the lipid phosphate region was observed. It was associated with a rotation restriction due to an increase in the amount of lipid group hydrogen bonds. The fatty acid was responsible for the reduction in the degree of hydration of carbonyl groups located in the interfacial region of lipids. α-ESA disordered the DMPC methylene acyl chains by trans-gauche isomerization and increased its rotation rate. TBARS results showed pro-oxidant behavior on liposomes, induced by α-ESA. The discussion about the responses considered the degree of saturation of phosphatidylcholines and suggested that the α-ESA oxidative effects may be modulated by the liposome lipid composition. The versatility of liposomal carriers may be promising for the development of efficacious α-ESA-based drug delivery systems. Results described in this study contribute to the selection of adequate material to produce them.

  17. Development of liposomal and microemulsion formulations for transdermal delivery of clonazepam: effect of randomly methylated β-cyclodextrin.

    PubMed

    Mura, Paola; Bragagni, Marco; Mennini, Natascia; Cirri, Marzia; Maestrelli, Francesca

    2014-11-20

    Transdermal administration of clonazepam, a poorly water-soluble benzodiazepine, is an interesting strategy for overcoming the drawbacks of its oral administration. With this aim, two nano-carrier formulations, based on ultra-deformable liposomes and microemulsions, have been developed to favour clonazepam transdermal delivery. Considering the solubilizing power of methyl-βcyclodextrin (Me-βCD) toward clonazepam and its potential positive influence on transdermal drug delivery, the effect of its addition to these formulations was investigated. Artificial lipophilic membranes simulating the skin allowed a rapid evaluation of the drug permeation properties from the systems, compared with those from an aqueous drug suspension, with or without Me-βCD. The best formulations were further characterized by permeation through excised rabbit ear skin. All the formulations increased drug permeability, ranging from 2-fold (liposomes without Me-βCD), up to over 4-fold (microemulsions containing Me-βCD). The different formulations allowed for pointing out different possible permeation enhancing mechanisms of Me-βCD: increase in drug solubility and thermodynamic activity in the vehicle, when added to the drug aqueous suspension; interactions with the vesicle bilayer, in case of liposomal formulations; interactions with the skin membrane lipids, as evidenced in experiments with excised rabbit ear for microemulsions containing Me-βCD, that were then selected for further in vivo studies. Copyright © 2014. Published by Elsevier B.V.

  18. pH-sensitive liposomes: characterization and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, J.

    1986-01-01

    It has been demonstrated that liposomes composed of dioleoylphosphatidylethanolamine (DOPE) and palmitoylhomocysteine (PHC) have the ability to fuse with adjacent membranes upon exposure to mildly acid pH. The ability of liposomes to fuse is absolutely dependent on the presence of DOPE and a weakly acidic amphiphile. The acid induced fusion event is a leaky process, but the leakage can be reduced by 50%, with only a small loss of fusion ability, by the inclusion of 40 mole percent cholesterol. Using an established monoclonal antibody targeting system. pH-sensitive immunoliposomes were prepared which successfully delivered entrapped calcein to the cytoplasm of targetmore » cells. The addition of chloroquine, which raises the internal pH of cellular vacuoles, blocks the cytoplasmic delivery of the pH-sensitive immunoliposomes. pH-insensitive immunoliposomes delivered calcein only to the endosome/lysosome system and not the cytoplasm. /sup 31/P-NMR and light scattering of DOPE:OA liposomes under acidic conditions demonstrate that the effect of the protons and the divalent cations is to force the DOPE to revert to the hexagonal II configuration. In vivo experiments with DOPE:OA immunoliposomes indicate that the liposomes rapidly aggregate and release their contents upon exposure to plasma. These results indicate that pH-sensitive immunoliposomes are an effective tool for in vitro cytoplasmic delivery but are ineffective for in vivo delivery at this point in development.« less

  19. Bilirubin Nanoparticle-Assisted Delivery of a Small Molecule-Drug Conjugate for Targeted Cancer Therapy.

    PubMed

    Lee, Soyoung; Lee, Yonghyun; Kim, Hyungjun; Lee, Dong Yun; Jon, Sangyong

    2018-06-11

    Despite growing interest in targeted cancer therapy with small molecule drug conjugates (SMDCs), the short half-life of these conjugates in blood associated with their small size has limited their efficacy in cancer therapy. In this report, we propose a new approach for improving the antitumor efficacy of SMDCs based on nanoparticle-assisted delivery. Ideally, a nanoparticle-based delivery vehicle would prolong the half-life of an SMDC in blood and then release it in response to stimuli in the tumor microenvironment (TME). In this study, PEGylated bilirubin-based nanoparticles (BRNPs) were chosen as an appropriate delivery carrier because of their ability to release drugs in response to TME-associated reactive oxygen species (ROS) through rapid particle disruption. As a model SMDC, ACUPA-SN38 was synthesized by linking the prostate-specific membrane antigen (PSMA)-targeting ligand, ACUPA, to the chemotherapeutic agent, SN38. ACUPA-SN38 was loaded into BRNPs using a film-formation and rehydration method. The resulting ACUPA-SN38@BRNPs exhibited ROS-mediated particle disruption and rapid release of the SMDC, resulting in greater cytotoxicity toward PSMA-overexpressing prostate cancer cells (LNCaP) than toward ROS-unresponsive ACUPA-SN38@Liposomes. In a pharmacokinetic study, the circulation time of ACUPA-SN38@BRNPs in blood was prolonged by approximately 2-fold compared with that of the SMDC-based micellar nanoparticles. Finally, ACUPA-SN38@BRNPs showed greater antitumor efficacy in a PSMA-overexpressing human prostate xenograft tumor model than SN38@BRNPs or the SMDC alone. Collectively, these findings suggest that BRNPs are a viable delivery carrier option for various cancer-targeting SMDCs that suffer from short circulation half-life and limited therapeutic efficacy.

  20. Preparation of a Sustained-Release Nebulized Aerosol of R-terbutaline Hydrochloride Liposome and Evaluation of Its Anti-asthmatic Effects via Pulmonary Delivery in Guinea Pigs.

    PubMed

    Li, Qingrui; Zhan, Shuyao; Liu, Qing; Su, Hao; Dai, Xi; Wang, Hai; Beng, Huimin; Tan, Wen

    2018-01-01

    An aerosolized liposome formulation for the pulmonary delivery of an anti-asthmatic medication was developed. Asthma treatment usually requires frequent administration of medication for a sustained bronchodilator response. Liposomes are known for their sustained drug release capability and thus would be a suitable delivery system for prolonging the therapeutic effect of anti-asthmatic medication. Liposomes prepared by thin film hydration were loaded with a model drug, R-terbutaline hydrochloride(R-TBH), using an ammonium sulfate-induced transmembrane electrochemical gradient. This technique provided an encapsulation efficiency of up to 71.35% and yielded R-TBH liposomes with a particle size of approximately 145 ± 20 nm. According to stability studies, these R-TBH liposomes should be stored at 4°C before usage. Compared to R-TBH solution, which showed 90.84% release within 8 h, liposomal R-TBH had a cumulative release of 73.53% at 37°C over 192 h. A next generation impactor (NGI) was used to analyze the particle size distribution in the lungs of R-TBH liposome aerosol in vitro at 5°C. The therapeutic efficacy of the nebulized aerosol of the R-TBH liposomes was assessed via pulmonary delivery in guinea pigs. The results showed that, compared to the R-TBH solution group, the R-TBH liposome group had a prolonged anti-asthma effect.

  1. Liposomal Formulations in Clinical Use: An Updated Review

    PubMed Central

    Bulbake, Upendra; Doppalapudi, Sindhu; Kommineni, Nagavendra; Khan, Wahid

    2017-01-01

    Liposomes are the first nano drug delivery systems that have been successfully translated into real-time clinical applications. These closed bilayer phospholipid vesicles have witnessed many technical advances in recent years since their first development in 1965. Delivery of therapeutics by liposomes alters their biodistribution profile, which further enhances the therapeutic index of various drugs. Extensive research is being carried out using these nano drug delivery systems in diverse areas including the delivery of anti-cancer, anti-fungal, anti-inflammatory drugs and therapeutic genes. The significant contribution of liposomes as drug delivery systems in the healthcare sector is known by many clinical products, e.g., Doxil®, Ambisome®, DepoDur™, etc. This review provides a detailed update on liposomal technologies e.g., DepoFoam™ Technology, Stealth technology, etc., the formulation aspects of clinically used products and ongoing clinical trials on liposomes. PMID:28346375

  2. An evaluation of the anti-tumor efficacy of oleanolic acid-loaded PEGylated liposomes

    NASA Astrophysics Data System (ADS)

    Tang, Shengnan; Gao, Dawei; Zhao, Tingting; Zhou, Jing; Zhao, Xiaoning

    2013-06-01

    The effective delivery of oleanolic acid (OA) to the target site has several benefits in therapy for different pathologies. However, the delivery of OA is challenging due to its poor aqueous solubility. The study aims to evaluate the tumor inhibition effect of the PEGylated OA nanoliposome on the U14 cervical carcinoma cell line. In our previous study, OA was successfully encapsulated into PEGylated liposome with the modified ethanol injection method. Oral administration of PEGylated OA liposome was demonstrated to be more efficient in inhibiting xenograft tumors. The results of organ index indicated that PEG liposome exhibited higher anti-tumor activity and lower cytotoxicity. It was also found that OA and OA liposomes induced tumor cell apoptosis detected by flow cytometry. Furthermore, effects of OA on the morphology of tumor and other tissues were observed by hematoxylin and eosin staining. The histopathology sections did not show pathological changes in kidney or liver in tested mice. In contrast, there was a significant difference in tumor tissues between treatment groups and the negative control group. These observations imply that PEGylated liposomes seem to have advantages for cancer therapy in terms of effective delivery of OA.

  3. Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia

    PubMed Central

    Yu, Bo; Mao, Yicheng; Bai, Li-Yuan; Herman, Sarah E. M.; Wang, Xinmei; Ramanunni, Asha; Jin, Yan; Mo, Xiaokui; Cheney, Carolyn; Chan, Kenneth K.; Jarjoura, David; Marcucci, Guido; Lee, Robert J.; Byrd, John C.

    2013-01-01

    Several RNA-targeted therapeutics, including antisense oligonucleotides (ONs), small interfering RNAs, and miRNAs, constitute immunostimulatory CpG motifs as an integral part of their design. The limited success with free antisense ONs in hematologic malignancies in recent clinical trials has been attributed to the CpG motif–mediated, TLR-induced prosurvival effects and inefficient target modulation in desired cells. In an attempt to diminish their off-target prosurvival and proinflammatory effects and specific delivery, as a proof of principle, in the present study, we developed an Ab-targeted liposomal delivery strategy using a clinically relevant CD20 Ab (rituximab)–conjugated lipopolyplex nanoparticle (RIT-INP)– and Bcl-2–targeted antisense G3139 as archetypical antisense therapeutics. The adverse immunostimulatory responses were abrogated by selective B cell–targeted delivery and early endosomal compartmentalization of G3139-encapsulated RIT-INPs, resulting in reduced NF-κB activation, robust Bcl-2 down-regulation, and enhanced sensitivity to fludarabine-induced cytotoxicity. Furthermore, significant in vivo therapeutic efficacy was noted after RIT-INP–G3139 administration in a disseminated xenograft leukemia model. The results of the present study demonstrate that CD20-targeted delivery overcomes the immunostimulatory properties of CpG-containing ON therapeutics and improves efficient gene silencing and in vivo therapeutic efficacy for B-cell malignancies. The broader implications of similar approaches in overcoming immunostimulatory properties of RNA-directed therapeutics in hematologic malignancies are also discussed. PMID:23165478

  4. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come

    PubMed Central

    Yingchoncharoen, Phatsapong; Kalinowski, Danuta S.

    2016-01-01

    Cancer is a leading cause of death in many countries around the world. However, the efficacy of current standard treatments for a variety of cancers is suboptimal. First, most cancer treatments lack specificity, meaning that these treatments affect both cancer cells and their normal counterparts. Second, many anticancer agents are highly toxic, and thus, limit their use in treatment. Third, a number of cytotoxic chemotherapeutics are highly hydrophobic, which limits their utility in cancer therapy. Finally, many chemotherapeutic agents exhibit short half-lives that curtail their efficacy. As a result of these deficiencies, many current treatments lead to side effects, noncompliance, and patient inconvenience due to difficulties in administration. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems known commonly as nanoparticles. Among these delivery systems, lipid-based nanoparticles, particularly liposomes, have shown to be quite effective at exhibiting the ability to: 1) improve the selectivity of cancer chemotherapeutic agents; 2) lower the cytotoxicity of anticancer drugs to normal tissues, and thus, reduce their toxic side effects; 3) increase the solubility of hydrophobic drugs; and 4) offer a prolonged and controlled release of agents. This review will discuss the current state of lipid-based nanoparticle research, including the development of liposomes for cancer therapy, different strategies for tumor targeting, liposomal formulation of various anticancer drugs that are commercially available, recent progress in liposome technology for the treatment of cancer, and the next generation of lipid-based nanoparticles. PMID:27363439

  5. Multiple polysaccharide-drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting.

    PubMed

    Ruttala, Hima Bindu; Ramasamy, Thiruganesh; Gupta, Biki; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-10-01

    In the present study, a unique strategy was developed to develop nanocarriers containing multiple therapeutics with controlled release characteristics. In this study, we demonstrated the synthesis of dextran sulfate-doxorubicin (DS-DOX) and alginate-cisplatin (AL-CIS) polymer-drug complexes to produce a transferrin ligand-conjugated liposome. The targeted nanoparticles (TL-DDAC) were nano-sized and spherical. The targeted liposome exhibited a specific receptor-mediated endocytic uptake in cancer cells. The enhanced cellular uptake of TL-DDAC resulted in a significantly better anticancer effect in resistant and sensitive breast cancer cells compared to that of the free drugs. Specifically, DOX and CIS at a molar ratio of 1:1 exhibited better therapeutic performance compared to that of other combinations. The combination of an anthracycline-based topoisomerase II inhibitor (DOX) and a platinum compound (CIS) resulted in significantly higher cell apoptosis (early and late) in both types of cancer cells. In conclusion, treatment with DS-DOX and AL-CIS based combination liposomes modified with transferrin (TL-DDAC) was an effective cancer treatment strategy. Further investigation in clinically relevant animal models is warranted to prove the therapeutic efficacy of this unique strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dextran derivative-based pH-sensitive liposomes for cancer immunotherapy.

    PubMed

    Yuba, Eiji; Tajima, Naoki; Yoshizaki, Yuta; Harada, Atsushi; Hayashi, Hiroshi; Kono, Kenji

    2014-03-01

    pH-Sensitive dextran derivatives having 3-methylglutarylated residues (MGlu-Dex) were prepared by reacting dextran with 3-methyl-glutaric anhydride. MGlu-Dex changed the protonation state and their characteristics from hydrophilic to hydrophobic in neutral and acidic pH regions. Surface modification of egg yolk phosphatidylcholine liposomes with MGlu-Dex produced highly pH-sensitive liposomes that were stable at neutral pH but which were destabilized strongly in the weakly acidic pH region. MGlu-Dex-modified liposomes were taken up efficiently by dendritic cells and delivered entrapped ovalbumin (OVA) molecules into the cytosol. When MGlu-Dex-modified liposomes loaded with OVA were administered subcutaneously to mice, the antigen-specific humoral and cellular immunity was induced more effectively than the unmodified liposomes loaded with OVA. Furthermore, administration of MGlu-Dex-modified liposomes loaded with OVA to mice bearing E.G7-OVA tumor significantly suppressed tumor growth and extended the mice survival. Results suggest that MGlu-Dex-modified liposomes are promising for the production of safe and potent antigen delivery systems that contribute to the establishment of efficient cancer immunotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. In vivo monitoring of liposomal release in tumours following ultrasound stimulation.

    PubMed

    Evjen, Tove J; Hagtvet, Eirik; Moussatov, Alexei; Røgnvaldsson, Sibylla; Mestas, Jean-Louis; Fowler, R Andrew; Lafon, Cyril; Nilssen, Esben A

    2013-08-01

    Dioeleoylphosphatidylethanolamine (DOPE)-based liposomes were recently reported as a new class of liposomes for ultrasound (US)-mediated drug delivery. The liposomes showed both high stability and in vitro US-mediated drug release (sonosensitivity). In the current study, in vivo proof-of-principle of US triggered release in tumoured mice was demonstrated using optical imaging. Confocal non-thermal US was used to deliver cavitation to tumours in a well-controlled manner. To detect in vivo release, the near infrared fluorochrome Al (III) Phthalocyanine Chloride Tetrasulphonic acid (AlPcS₄) was encapsulated into both DOPE-based liposomes and control liposomes based on hydrogenated soy phosphatidylcholine (HSPC). Encapsulation causes concentration dependent quenching of fluorescence that is recovered upon AlPcS₄ release from the liposomes. Exposure of tumours to US resulted in a significant increase in fluorescence in mice administered with DOPE-based liposomes, but no change in the mice treated with HSPC-based liposomes. Thus, DOPE-based liposomes showed superior sonosensitivity compared to HSPC-based liposomes in vivo. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Design and evaluation of pH-sensitive liposomes constructed by poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate for doxorubicin delivery.

    PubMed

    Xu, Huan; Hu, Meina; Yu, Xiu; Li, Yan; Fu, Yuanshan; Zhou, Xiaoxia; Zhang, Di; Li, Jianying

    2015-04-01

    In this study, a novel material, poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate (PEtOz-CHEMS), was synthesized to construct pH-sensitive liposomes. The structure of PEtOz-CHEMS was confirmed by thin-layer chromatography, Fourier transform infrared spectroscopy, and (1)H NMR. Anticancer fluorescent drug doxorubicin (DOX) was encapsulated into the liposomes. Compared with conventional liposomes (CL), CHEMS modified liposomes (CH-L) and PEGylated liposomes (PEG-L), the PEtOzylated liposomes (PEtOz-L) showed an acidic pH-induced increase in particle size. At pH 6.4, the heme release of PEtOz-L group was close to that of the positive control group, whereas that of CL, CH-L and PEG-L was close to that of the negative control group. In vitro drug release studies demonstrated that DOX was released from PEtOz-L in a pH-dependent manner, and the release of DOX from conventional DOX liposomes (CL-DOX), DOX loaded CH-L (CH-DOX-L) and PEGylated DOX liposomes (PEG-DOX-L) had no pronounced differences under each pH medium. In vitro cellular uptake assays showed that PEtOz-DOX-L indicated a significant fluorescence intensity at pH 6.4 compared with at pH 7.4. CL-DOX, CH-DOX-L and PEG-DOX-L did not achieve any obvious diversity at different pH conditions. Confocal laser scanning microscopy images showed that PEtOz-DOX-L can fuse with the endosomal membrane under acidic conditions of endosome, release DOX into the cytoplasm, then gather into the nucleus. Therefore, PEtOz can help liposomes achieve "endosomal escape". The in vitro cytotoxicity experiment results on A375 cells showed that PEtOz-DOX-L resulted in lower cell viability than CL-DOX, CH-DOX-L and PEG-DOX-L under low pH conditions. These results confirm that the pH-responsive PEtOz was a promising material for intracellular targeted delivery system and might be used for overcoming the "PEG dilemma". Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Elastic liposomes as novel carriers: recent advances in drug delivery

    PubMed Central

    Hussain, Afzal; Singh, Sima; Sharma, Dinesh; Webster, Thomas J; Shafaat, Kausar; Faruk, Abdul

    2017-01-01

    Elastic liposomes (EL) are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields. PMID:28761343

  10. Elastic liposomes as novel carriers: recent advances in drug delivery.

    PubMed

    Hussain, Afzal; Singh, Sima; Sharma, Dinesh; Webster, Thomas J; Shafaat, Kausar; Faruk, Abdul

    2017-01-01

    Elastic liposomes (EL) are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields.

  11. New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid.

    PubMed

    Sánchez, Marina; Aranda, Francisco J; Teruel, José A; Ortiz, Antonio

    2011-01-01

    Phosphatidylethanolamine-based pH-sensitive liposomes of various compositions have been described as efficient systems for cytoplasmic delivery of molecules into cells. Incorporation of an amphiphile of appropriate structure is needed for the stabilization and performance of these vesicles. Among the wide variety of interesting activities displayed by Pseudomonas aeruginosa dirhamnolipids (diRL), is their capacity to stabilize bilayer structures in phosphatidylethanolamine systems. In this work, X-ray scattering, dynamic light scattering, fluorescence spectroscopy and fluorescence microscopy have been used to study the structure and pH-dependent behaviour of phosphatidylethanolamine/diRL liposomes. We show that diRL, in combination with dioleoylphosphatidylethanolamine (DOPE), forms stable multilamellar and unilamellar liposomes. Acidification of DOPE/diRL vesicles leads to membrane destabilization, fusion, and release of entrapped aqueous vesicle contents. Finally, DOPE/diRL pH-sensitive liposomes act as efficient vehicles for the cytoplasmic delivery of fluorescent probes into cultured cells. It is concluded that DOPE/diRL form stable pH-sensitive liposomes, and that these liposomes are incorporated into cultured cells through the endocytic pathway, delivering its contents into the cytoplasm, which means a potential use of these liposomes for the delivery of foreign substances into living cells. Our results establish a new application of diRL as a bilayer stabilizer in phospholipid vesicles, and the use of diRL-containing pH-sensitive liposomes as delivery vehicles. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake

    PubMed Central

    Li, Xiuying; Chen, Dan; Le, Chaoyi; Zhu, Chunliu; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2011-01-01

    Background The aim of this study was to investigate the intestinal mucus-penetrating properties and intestinal cellular uptake of two types of liposomes modified by Pluronic F127 (PF127). Methods The two types of liposomes, ie, PF127-inlaid liposomes and PF127-adsorbed liposomes, were prepared by a thin-film hydration method followed by extrusion, in which coumarin 6 was loaded as a fluorescence marker. A modified Franz diffusion cell mounted with the intestinal mucus of rats was used to study the diffusion characteristics of the two types of PF127 liposomes. Cell uptake studies were conducted in Caco-2 cells and analyzed using confocal laser scanning microcopy as well as flow cytometry. Results The diffusion efficiency of the two types of PF127-modified liposomes through intestinal rat mucus was 5–7-fold higher than that of unmodified liposomes. Compared with unmodified liposomes, PF127-inlaid liposomes showed significantly higher cellular uptake of courmarin 6. PF127-adsorbed liposomes showed a lower cellular uptake. Moreover, and interestingly, the two types of PF127-modified liposomes showed different cellular uptake mechanisms in Caco-2 cells. Conclusion PF127-inlaid liposomes with improved intestinal mucus-penetrating ability and enhanced cellular uptake might be a potential carrier candidate for oral drug delivery. PMID:22163166

  13. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunmao; Ding, Chao; Kong, Minjian

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lungmore » cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  14. Experimental anticancer therapy with vascular-disruptive peptide and liposome-entrapped chemotherapeutic agent.

    PubMed

    Sochanik, Aleksander; Mitrus, Iwona; Smolarczyk, Ryszard; Cichoń, Tomasz; Snietura, Mirosław; Czaja, Maria; Szala, Stanisław

    2010-06-01

    Vasculature is essential for the sustained growth of solid tumors and metastases. Tumor cells surviving vascular-disruptive therapeutic intervention (especially those present at the tumor rim) can contribute to tumor regrowth. The aim was to strengthen, by carrier-mediated delivery of a chemotherapeutic, the curative effects of a bifunctional anti-vascular oligopeptide capable of inducing vascular shutdown and tumor shrinkage. For the in vitro experiments and animal therapy, ACDCRGDCFC-GG-(D)(KLAKLAK)(2) peptide (900 microM in D-PBSA, i.e. Dulbecco's PBS without Ca(2+) and Mg(2+)) and size-calibrated, passively or actively targeted liposomes based on distearoylphosphatidylcholine, cholesterol, and N-carbamoyl-methoxypolyethyleneglycol coupled to distearoylphosphatidylethanolamine (PEG-DSPE) and containing gradient-entrapped doxorubicin were used. The KB (human nasopharyngeal carcinoma) cell line overexpressing folate receptors was used in the fluorescence studies of liposomal uptake. The B16-F10 melanoma cell line was used for confirming, by flow cytometry and confocal microscopy, doxorubicin intracellular transfer as well as to induce experimental tumors in C57BL/6 mice. Animal therapy was achieved with injections of vascular-disrupting peptide, doxorubicin-loaded liposomes, or alternating combined therapy. The results (tumor growth inhibition and survival) were compared using the Mann-Whitney U test and the log-rank test. Necrosis in H&E-stained tumor sections was assessed microscopically by pathologists. Treatment of C57BL/6 mice bearing B16-F10 experimental tumors with a combination of vascular-disruptive peptide and doxorubicin-carrying pegylated liposomes (either passively targeted liposomes (PTL) or folate receptor targeted) gave better therapeutic effects when tumor development was re-challenged with a second cycle of combined therapy. Marked inhibition of tumor growth and a statistically significant extension of the lifespan of the treated mice were

  15. Surfactant-stable and pH-sensitive liposomes coated with N-succinyl-chitosan and chitooligosaccharide for delivery of quercetin.

    PubMed

    Seong, Joon Seob; Yun, Mid Eum; Park, Soo Nam

    2018-02-01

    Layer-by-layer (LbL) self-assembly of multilayered liposomes is used to improve the stability of conventional liposomes. In this study, the LbL technology was used to prepare novel multilayered liposomes from chitooligosaccharide and N-succinyl-chitosan. We propose that this preparation can be used as a transdermal drug delivery system (TDDS) to enhance stability against surfactants and control drug release. Particle size increased with the number of layers in the multilayer and the zeta potential varied between positive and negative values with alternate deposition of polyelectrolytes. Finally, approximately 300-400nm-thick four-layered liposomes were prepared. These liposomes were more stable against surfactants and showed a relatively high release of quercetin at pH 5.5 than the uncoated liposomes as assessed via in vitro drug release and skin permeation studies. In summary, the multilayered liposomes showed potential for use as a surfactant-stable TDDS that effectively enhanced the permeation of quercetin, a poorly soluble drug, into the skin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Design of ligand-targeted nanoparticles for enhanced cancer targeting

    NASA Astrophysics Data System (ADS)

    Stefanick, Jared F.

    Ligand-targeted nanoparticles are increasingly used as drug delivery vehicles for cancer therapy, yet have not consistently produced successful clinical outcomes. Although these inconsistencies may arise from differences in disease models and target receptors, nanoparticle design parameters can significantly influence therapeutic efficacy. By employing a multifaceted synthetic strategy to prepare peptide-targeted nanoparticles with high purity, reproducibility, and precisely controlled stoichiometry of functionalities, this work evaluates the roles of polyethylene glycol (PEG) coating, ethylene glycol (EG) peptide-linker length, peptide hydrophilicity, peptide density, and nanoparticle size on tumor targeting in a systematic manner. These parameters were analyzed in multiple disease models by targeting human epidermal growth factor receptor 2 (HER2) in breast cancer and very late antigen-4 (VLA-4) in multiple myeloma to demonstrate the widespread applicability of this approach. By increasing the hydrophilicity of the targeting peptide sequence and simultaneously optimizing the EG peptide-linker length, the in vitro cellular uptake of targeted liposomes was significantly enhanced. Specifically, including a short oligolysine chain adjacent to the targeting peptide sequence effectively increased cellular uptake ~80-fold using an EG6 peptide-linker compared to ~10-fold using an EG45 linker. In vivo, targeted liposomes prepared in a traditional manner lacking the oligolysine chain demonstrated similar biodistribution and tumor uptake to non-targeted liposomes. However, by including the oligolysine chain, targeted liposomes using an EG45 linker significantly improved tumor uptake ~8-fold over non-targeted liposomes, while the use of an EG6 linker decreased tumor accumulation and uptake, owing to differences in cellular uptake kinetics, clearance mechanisms, and binding site barrier effects. To further improve tumor targeting and enhance the selectivity of targeted

  17. Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release.

    PubMed

    Lajunen, Tatu; Kontturi, Leena-Stiina; Viitala, Lauri; Manna, Moutusi; Cramariuc, Oana; Róg, Tomasz; Bunker, Alex; Laaksonen, Timo; Viitala, Tapani; Murtomäki, Lasse; Urtti, Arto

    2016-06-06

    Light-triggered drug delivery systems enable site-specific and time-controlled drug release. In previous work, we have achieved this with liposomes containing gold nanoparticles in the aqueous core. Gold nanoparticles absorb near-infrared light and release the energy as heat that increases the permeability of the liposomal bilayer, thus releasing the contents of the liposome. In this work, we replaced the gold nanoparticles with the clinically approved imaging agent indocyanine green (ICG). The ICG liposomes were stable at storage conditions (4-22 °C) and at body temperature, and fast near-infrared (IR) light-triggered drug release was achieved with optimized phospholipid composition and a 1:50 ICG-to-lipid molar ratio. Encapsulated small molecular calcein and FITC-dextran (up to 20 kDa) were completely released from the liposomes after light exposure for 15 s. Location of ICG in the PEG layer of the liposomes was simulated with molecular dynamics. ICG has important benefits as a light-triggering agent in liposomes: fast content release, improved stability, improved possibility of liposomal size control, regulatory approval to use in humans, and the possibility of imaging the in vivo location of the liposomes based on the fluorescence of ICG. Near-infrared light used as a triggering mechanism has good tissue penetration and safety. Thus, ICG liposomes are an attractive option for light-controlled and efficient delivery of small and large drug molecules.

  18. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery.

    PubMed

    Yao, Yao; Su, Zhihui; Liang, Yanchao; Zhang, Na

    2015-01-01

    Combination of chemotherapeutic drug and small interfering RNA (siRNA) can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome to co-deliver drug and siRNA to tumor region. Driven by the electrostatic interaction, the pH-sensitive material, carboxymethyl chitosan (CMCS), was coated onto the surface of the cationic liposome (CL) preloaded with sorafenib (Sf) and siRNA (Si). To evaluate whether the resulting CMCS-modified Sf and siRNA co-delivery cationic liposome (CMCS-SiSf-CL) enhanced antitumor efficiency after systematic administration, in vitro and in vivo experiments were evaluated in HepG2 cells and the H22 cells-bearing Kunming mice model. The experimental results demonstrated that CMCS-SiSf-CL was able to condense siRNA efficiently and protect siRNA from being degraded by serum and RNase. The release rate of Sf from CMCS-modified liposome exhibited pH-sensitive release behavior. Furthermore, in vitro cellular uptake results showed that CMCS-SiSf-CL yielded higher fluorescence intensity at pH 6.5 than at pH 7.4, and that siRNA could be delivered to tumor site by CMCS-SiSf-CL in vivo. The in vivo antitumor efficacy showed that CMCS-Sf-CL inhibits tumor growth effectively when compared with free Sf solution. In current experimental conditions, this liposomal formulation did not show significant toxicity both in vitro and in vivo. Therefore, co-delivering Sf with siRNA by CMCS-SiSf-CL might provide a promising approach for tumor therapy.

  19. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice

    PubMed Central

    2013-01-01

    Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field. PMID:24564841

  20. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity.

    PubMed

    Zhao, Yang; Ren, Wei; Zhong, Ting; Zhang, Shuang; Huang, Dan; Guo, Yang; Yao, Xin; Wang, Chao; Zhang, Wei-Qiang; Zhang, Xuan; Zhang, Qiang

    2016-01-28

    The pH environment in gliomas is acidic. Therefore, in the present research, we selected our previously reported tumor-specific pH-responsive peptide H7K(R2)2 as a targeting ligand, which could respond to the acidic pH environment in gliomas, possessing CPP characteristics. The pH-sensitive liposomes were selected as carriers which could also respond to the acidic pH environment in gliomas triggering encapsulated drug release from these pH-sensitive liposomes. The H7K(R2)2-modified pH-sensitive liposomes containing doxorubicin (DOX-PSL-H7K(R2)2) were designed and prepared in order to evaluate their potential targeting of glioma tumor cells and their anti-tumor activity in mice with glioma tumor cells. DOX-PSL-H7K(R2)2 was prepared by the thin-film hydration method followed by remote loading using an ammonium sulfate gradient method. The in vitro release of DOX from pH-sensitive liposomes was tested and the in vitro targeting characteristics of H7K(R2)2-modified liposomes regarding C6 (rat C6 glioma cells) and U87-MG (human glioblastoma cells) were evaluated. The in vivo anti-tumor activity of DOX-PSL-H7K(R2)2 was also investigated in C6 tumor-bearing mice and in U87-MG orthotopic tumor-bearing nude mice. A specific targeting effect triggered by an acidic pH was observed in our in vitro experiments in C6 and U87-MG glioma cells. The pH-triggered DOX release from the pH-sensitive liposomes under acidic conditions was also confirmed in our in vitro experiment. Anti-tumor activity of DOX-PSL-H7K(R2)2 was found in C6 tumor-bearing mice and U87-MG orthotopic tumor-bearing nude mice in in vivo experiments. The antiangiogenic activity of DOX-PSL-H7K(R2)2 was confirmed in C6 tumor-bearing mice in the in vivo experiment. These H7K(R2)2-modified pH-sensitive liposomes containing anti-tumor drugs developed in this study are a promising delivery system involving the response stimuli at the acidic pH in the glioma tumor microenvironment and are suitable for anti-tumor therapy

  1. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA

    PubMed Central

    Liu, Xiaoli; Madhankumar, Achuthamangalam B.; Miller, Patti A.; Duck, Kari A.; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M.; Connor, James R.; Yang, Qing X.

    2016-01-01

    Background Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. Methods The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. Results The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. Conclusions IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. PMID:26519740

  2. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential

    PubMed Central

    Immordino, Maria Laura; Dosio, Franco; Cattel, Luigi

    2006-01-01

    Among several promising new drug-delivery systems, liposomes represent an advanced technology to deliver active molecules to the site of action, and at present several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles (“first-generation liposomes”) to “second-generation liposomes”, in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. A significant step in the development of long-circulating liposomes came with inclusion of the synthetic polymer poly-(ethylene glycol) (PEG) in liposome composition. The presence of PEG on the surface of the liposomal carrier has been shown to extend blood-circulation time while reducing mononuclear phagocyte system uptake (stealth liposomes). This technology has resulted in a large number of liposome formulations encapsulating active molecules, with high target efficiency and activity. Further, by synthetic modification of the terminal PEG molecule, stealth liposomes can be actively targeted with monoclonal antibodies or ligands. This review focuses on stealth technology and summarizes pre-clinical and clinical data relating to the principal liposome formulations; it also discusses emerging trends of this promising technology. PMID:17717971

  3. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy

    DTIC Science & Technology

    2014-02-01

    Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0167 5c... Nanotechnologies in Living Systems”, Moscow Region, Russia, September, 2011. 3. “Ionic nanogels for drug delivery in cancer ”. NanoDDS’12; Atlantic City, New...AD Award Number: W81XWH-11-1-0167 TITLE: Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast

  4. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin

    PubMed Central

    Li, Chong; Zhang, Yan; Su, Tingting; Feng, Lianlian; Long, Yingying; Chen, Zhangbao

    2012-01-01

    We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs) having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs) without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability. PMID:23233804

  5. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin.

    PubMed

    Li, Chong; Zhang, Yan; Su, Tingting; Feng, Lianlian; Long, Yingying; Chen, Zhangbao

    2012-01-01

    We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs) having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs) without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability.

  6. Aptamer-based liposomes improve specific drug loading and release.

    PubMed

    Plourde, Kevin; Derbali, Rabeb Mouna; Desrosiers, Arnaud; Dubath, Céline; Vallée-Bélisle, Alexis; Leblond, Jeanne

    2017-04-10

    Aptamer technology has shown much promise in cancer therapeutics for its targeting abilities. However, its potential to improve drug loading and release from nanocarriers has not been thoroughly explored. In this study, we employed drug-binding aptamers to actively load drugs into liposomes. We designed a series of DNA aptamer sequences specific to doxorubicin, displaying multiple binding sites and various binding affinities. The binding ability of aptamers was preserved when incorporated into cationic liposomes, binding up to 15equivalents of doxorubicin per aptamer, therefore drawing the drug into liposomes. Optimization of the charge and drug/aptamer ratios resulted in ≥80% encapsulation efficiency of doxorubicin, ten times higher than classical passively-encapsulating liposomal formulations and similar to a pH-gradient active loading strategy. In addition, kinetic release profiles and cytotoxicity assay on HeLa cells demonstrated that the release and therapeutic efficacy of liposomal doxorubicin could be controlled by the aptamer's structure. Our results suggest that the aptamer exhibiting a specific intermediate affinity is the best suited to achieve high drug loading while maintaining efficient drug release and therapeutic activity. This strategy was successfully applied to tobramycin, a hydrophilic drug suffering from low encapsulation into liposomes, where its loading was improved six-fold using aptamers. Overall, we demonstrate that aptamers could act, in addition to their targeting properties, as multifunctional excipients for liposomal formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.

    PubMed

    Ho, Benjamin N; Pfeffer, Claire M; Singh, Amareshwar T K

    2017-11-01

    The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Acoustically active liposome-nanobubble complexes for enhanced ultrasonic imaging and ultrasound-triggered drug delivery.

    PubMed

    Nguyen, An T; Wrenn, Steven P

    2014-01-01

    Ultrasound is well known as a safe, reliable imaging modality. A historical limitation of ultrasound, however, was its inability to resolve structures at length scales less than nominally 20 µm, which meant that classical ultrasound could not be used in applications such as echocardiography and angiogenesis where one requires the ability to image small blood vessels. The advent of ultrasound contrast agents, or microbubbles, removed this limitation and ushered in a new wave of enhanced ultrasound applications. In recent years, the microbubbles have been designed to achieve yet another application, namely ultrasound-triggered drug delivery. Ultrasound contrast agents are thus tantamount to 'theranostic' vehicles, meaning they can do both therapy (drug delivery) and imaging (diagnostics). The use of ultrasound contrast agents as drug delivery vehicles, however, is perhaps less than ideal when compared to traditional drug delivery vehicles (e.g., polymeric microcapsules and liposomes) which have greater drug carrying capacities. The drawback of the traditional drug delivery vehicles is that they are not naturally acoustically active and cannot be used for imaging. The notion of a theranostic vehicle is sufficiently intriguing that many attempts have been made in recent years to achieve a vehicle that combines the echogenicity of microbubbles with the drug carrying capacity of liposomes. The attempts can be classified into three categories, namely entrapping, tethering, and nesting. Of these, nesting is the newest-and perhaps the most promising. © 2014 Wiley Periodicals, Inc.

  9. Peritoneal retention of liposomes: Effects of lipid composition, PEG coating and liposome charge.

    PubMed

    Dadashzadeh, S; Mirahmadi, N; Babaei, M H; Vali, A M

    2010-12-01

    In the treatment of peritoneal carcinomatosis, systemic chemotherapy is not quite effective due to the poor penetration of cytotoxic agents into the peritoneal cavity, whereas intraperitoneal administration of chemotherapeutic agents is generally accompanied by quick absorption of the free drug from the peritoneum. Local delivery of drugs with controlled-release delivery systems like liposomes could provide sustained, elevated drug levels and reduce local and systemic toxicity. In order to achieve an ameliorated liposomal formulation that results in higher peritoneal levels of the drug and retention, vesicles composed of different phospholipid compositions (distearoyl [DSPC]; dipalmitoyl [DPPC]; or dimiristoylphosphatidylcholine [DMPC]) and various charges (neutral; negative, containing distearoylphosphatidylglycerol [DSPG]; or positive, containing dioleyloxy trimethylammonium propane [DOTAP]) were prepared at two sizes of 100 and 1000nm. The effect of surface hydrophilicity was also investigated by incorporating PEG into the DSPC-containing neutral and charged liposomes. Liposomes were labeled with (99m)Tc and injected into mouse peritoneum. Mice were then sacrificed at eight different time points, and the percentage of injected radiolabel in the peritoneal cavity and the tissue distribution in terms of the percent of the injected dose/gram of tissue (%ID/g) were obtained. The ratio of the peritoneal AUC to the free label ranged from a minimum of 4.95 for DMPC/CHOL (cholesterol) 100nm vesicles to a maximum of 24.99 for DSPC/CHOL/DOTAP 1000nm (DOTAP 1000) vesicles. These last positively charged vesicles had the greatest peritoneal level; moreover, their level remained constant at approximately 25% of the injected dose from 2 to 48h. Among the conventional (i.e., without PEG) 100nm liposomes, the positively charged vesicles again showed the greatest retention. Incorporation of PEG at this size into the lipid structures augmented the peritoneal level, particularly

  10. Safe and efficient drug delivery system with liposomes for intrathecal application of an antivasospastic drug, fasudil.

    PubMed

    Ishida, Tatsuhiro; Takanashi, Yoshihiro; Kiwada, Hiroshi

    2006-03-01

    Pharmacological treatment for cerebral ischemia and cerebral vasospasm following subarachnoid hemorrhage (SAH) cannot attain sufficiently high concentrations of the drugs in the cerebrospinal fluid (CSF) without precipitating systemic side effects. We recently developed a liposomal drug delivery system for intrathecal application that can maintain effective concentrations of cerebral vasodilator, fasudil, in the CSF. A single intrathecal injection of liposomal fasudil could maintain a therapeutic drug concentration in the CSF over a period time due to their sustained-release property, significantly decreasing infarct size in a rat model of acute ischemia and reducing vasoconstriction of the rat and dog basilar artery in a model of SAH. In this review, we are introducing our new less-invasive intrathecal drug delivery system that provides an alternative and safe method to deliver therapeutic agents.

  11. Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9

    PubMed Central

    Banerjee, Jayati; Hanson, Andrea J.; Gadam, Bhushan; Elegbede, Adekunle I.; Tobwala, Shakila; Ganguly, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2011-01-01

    Liposomes have been widely used as a drug delivery vehicle and currently, more than 10 liposomal formulations are approved by the Food and Drug Administration for clinical use. However, upon targeting, the release of the liposome-encapsulated contents is usually slow. We have recently demonstrated that contents from appropriately-formulated liposomes can be rapidly released by the cancer-associated enzyme matrix metalloproteinase-9 (MMP-9). Herein, we report our detailed studies to optimize the liposomal formulations. By properly selecting the lipopeptide, the major lipid component and their relative amounts, we demonstrate that the contents are rapidly released in the presence of cancer-associated levels of recombinant human MMP-9. We observed that the degree of lipid mismatch between the lipopepides and the major lipid component profoundly affects the release profiles from the liposomes. By utilizing the optimized liposomal formulations, we also demonstrate that cancer cells (HT-29) which secrete low levels of MMP-9 failed to release significant amount of the liposomal contents. Metastatic cancer cells (MCF7) secreting high levels of the enzyme rapidly release the encapsulated contents from the liposomes. PMID:19601658

  12. Octanol-assisted liposome assembly on chip

    PubMed Central

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5–20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells. PMID:26794442

  13. Octanol-assisted liposome assembly on chip.

    PubMed

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E C; Dekker, Cees

    2016-01-22

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.

  14. Octanol-assisted liposome assembly on chip

    NASA Astrophysics Data System (ADS)

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.

  15. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A

    NASA Astrophysics Data System (ADS)

    Leserman, Lee D.; Barbet, Jacques; Kourilsky, François; Weinstein, John N.

    1980-12-01

    Many applications envisioned for liposomes in cell biology and chemotherapy require their direction to specific cellular targets1-3. The ability to use antibody as a means of conferring specificity to liposomes would markedly increase their usefulness. We report here a method for covalently coupling soluble proteins, including monoclonal antibody and Staphylococcus aureus protein A (ref. 4), to small sonicated liposomes, by using the heterobifunctional cross-linking reagent N-hydroxysuccinimidyl 3-(2-pyridyldithio)propionate (SPDP, Pharmacia). Liposomes bearing covalently coupled mouse monoclonal antibody against human β2-microglobulin [antibody B1.1G6 (IgG2a, κ) (B. Malissen et al., in preparation)] bound specifically to human, but not to mouse cells. Liposomes bearing protein A became bound to human cells previously incubated with the B1.1G6 antibody, but not to cells incubated without antibody. The coupling method results in efficient binding of protein to the liposomes without aggregation and without denaturation of the coupled ligand; at least 60% of liposomes bound functional protein. Further, liposomes did not leak encapsulated carboxyfluorescein (CF) as a consequence of the reaction.

  16. Application of Liposomes in Treatment of Rheumatoid Arthritis: Quo Vadis

    PubMed Central

    Singh, Sachin Kumar; Gulati, Monica

    2014-01-01

    The most common treatments for rheumatoid arthritis include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, disease modifying antirheumatic drugs (DMARDs), and some biological agents. However, none of the treatments available is able to achieve the ultimate goal of treatment, that is, drug-free remission. This limitation has shifted the focus of treatment to delivery strategies with an ability to deliver the drugs into the synovial cavity in the proper dosage while mitigating side effects to other tissues. A number of approaches like microemulsions, microspheres, liposomes, microballoons, cocrystals, nanoemulsions, dendrimers, microsponges, and so forth, have been used for intrasynovial delivery of these drugs. Amongst these, liposomes have proven to be very effective for retaining the drug in the synovial cavity by virtue of their size and chemical composition. The fast clearance of intra-synovially administered drugs can be overcome by use of liposomes leading to increased uptake of drugs by the target synovial cells, which in turn reduces the exposure of nontarget sites and eliminates most of the undesirable effects associated with therapy. This review focuses on the use of liposomes in treatment of rheumatoid arthritis and summarizes data relating to the liposome formulations of various drugs. It also discusses emerging trends of this promising technology. PMID:24688450

  17. Development and Characterization of Liposomal Doxorubicin Hydrochloride with Palm Oil

    PubMed Central

    Sabeti, Bahareh; Noordin, Mohamed Ibrahim; Mohd, Shaharuddin; Hashim, Rosnani; Akbari Javar, Hamid

    2014-01-01

    The usage of natural products in pharmaceuticals has steadily seen improvements over the last decade, and this study focuses on the utilization of palm oil in formulating liposomal doxorubicin (Dox). The liposomal form of Dox generally minimizes toxicity and enhances target delivery actions. Taking into account the antiproliferative and antioxidant properties of palm oil, the aim of this study is to design and characterize a new liposomal Dox by replacing phosphatidylcholine with 5% and 10% palm oil content. Liposomes were formed using the freeze_thaw method, and Dox was loaded through pH gradient technique and characterized through in vitro and ex vivo terms. Based on TEM images, large lamellar vesicles (LUV) were formed, with sizes of 438 and 453 nm, having polydispersity index of 0.21 ± 0.8 and 0.22 ± 1.3 and zeta potentials of about −31 and −32 mV, respectively. In both formulations, the entrapment efficiency was about 99%, and whole Dox was released through 96 hours in PBS (pH = 7.4) at 37°C. Comparing cytotoxicity and cellular uptake of LUV with CaelyxR on MCF7 and MDA-MBA 231 breast cancer cell lines indicated suitable uptake and lower IC50 of the prepared liposomes. PMID:24795894

  18. The application of EDTA in drug delivery systems: doxorubicin liposomes loaded via NH4EDTA gradient

    PubMed Central

    Song, Yanzhi; Huang, Zhenjun; Song, Yang; Tian, Qingjing; Liu, Xinrong; She, Zhennan; Jiao, Jiao; Lu, Eliza; Deng, Yihui

    2014-01-01

    The applications of ethylenediaminetetraacetic acid (EDTA) have been expanded from the treatment of heavy metal poisoning to chelation therapies for atherosclerosis, heart disease, and cancers, in which EDTA reduces morbidity and mortality by chelating toxic metal ions. In this study, EDTA was used in a drug delivery system by adopting an NH4EDTA gradient method to load doxorubicin into liposomes with the goal of increasing therapeutic effects and decreasing drug-related cytotoxicity. The particle size of the optimum NH4EDTA gradient liposomes was 79.4±1.87 nm, and the entrapment efficiency was 95.54%±0.59%. In vitro studies revealed that liposomes prepared using an NH4EDTA gradient possessed long-term stability and delayed drug release. The in vivo studies also showed the superiority of the new doxorubicin formulation. Compared with an equivalent drug dose (5 mg/kg) prepared by (NH4)2SO4 gradient, NH4EDTA gradient liposomes showed no significant differences in tumor inhibition ratio, but cardiotoxicity and liposome-related immune organ damage were lower, and no drug-related deaths were observed. These results show that use of the NH4EDTA gradient method to load doxorubicin into liposomes could significantly reduce drug toxicity without influencing antitumor activity. PMID:25120359

  19. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging

    PubMed Central

    Wen, Chih-Jen; Zhang, Li-Wen; Al-Suwayeh, Saleh A; Yen, Tzu-Chen; Fang, Jia-You

    2012-01-01

    Quantum dots (QDs) and apomorphine were incorporated into liposomes to eliminate uptake by the liver and enhance brain targeting. We describe the preparation, physicochemical characterization, in vivo bioimaging, and brain endothelial cell uptake of the theranostic liposomes. QDs and the drug were mainly located in the bilayer membrane and inner core of the liposomes, respectively. Spherical vesicles with a mean diameter of ~140 nm were formed. QDs were completely encapsulated by the vesicles. Nearly 80% encapsulation percentage was achieved for apomorphine. A greater fluorescence intensity was observed in mouse brains treated with liposomes compared to free QDs. This result was further confirmed by ex vivo imaging of the organs. QD uptake by the heart and liver was reduced by liposomal incorporation. Apomorphine accumulation in the brain increased by 2.4-fold after this incorporation. According to a hyperspectral imaging analysis, multifunctional liposomes but not the aqueous solution carried QDs into the brain. Liposomes were observed to have been efficiently endocytosed into bEND3 cells. The mechanisms involved in the cellular uptake were clathrin- and caveola-mediated endocytosis, which were energy-dependent. To the best of our knowledge, our group is the first to develop liposomes with a QD-drug hybrid for the aim of imaging and treating brain disorders. PMID:22619515

  20. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging.

    PubMed

    Wen, Chih-Jen; Zhang, Li-Wen; Al-Suwayeh, Saleh A; Yen, Tzu-Chen; Fang, Jia-You

    2012-01-01

    Quantum dots (QDs) and apomorphine were incorporated into liposomes to eliminate uptake by the liver and enhance brain targeting. We describe the preparation, physicochemical characterization, in vivo bioimaging, and brain endothelial cell uptake of the theranostic liposomes. QDs and the drug were mainly located in the bilayer membrane and inner core of the liposomes, respectively. Spherical vesicles with a mean diameter of ~140 nm were formed. QDs were completely encapsulated by the vesicles. Nearly 80% encapsulation percentage was achieved for apomorphine. A greater fluorescence intensity was observed in mouse brains treated with liposomes compared to free QDs. This result was further confirmed by ex vivo imaging of the organs. QD uptake by the heart and liver was reduced by liposomal incorporation. Apomorphine accumulation in the brain increased by 2.4-fold after this incorporation. According to a hyperspectral imaging analysis, multifunctional liposomes but not the aqueous solution carried QDs into the brain. Liposomes were observed to have been efficiently endocytosed into bEND3 cells. The mechanisms involved in the cellular uptake were clathrin- and caveola-mediated endocytosis, which were energy-dependent. To the best of our knowledge, our group is the first to develop liposomes with a QD-drug hybrid for the aim of imaging and treating brain disorders.

  1. Amadori-glycated phosphatidylethanolamine enhances the physical stability and selective targeting ability of liposomes

    PubMed Central

    Miyazawa, Taiki; Kamiyoshihara, Reina; Shimizu, Naoki; Harigae, Takahiro; Otoki, Yurika; Ito, Junya; Kato, Shunji; Miyazawa, Teruo

    2018-01-01

    Liposomes consisting of 100% phosphatidylcholine exhibit poor membrane fusion, cellular uptake and selective targeting capacities. To overcome these limitations, we used Amadori-glycated phosphatidylethanolamine, which is universally present in animals and commonly consumed in foods. We found that liposomes containing Amadori-glycated phosphatidylethanolamine exhibited significantly reduced negative membrane potential and demonstrated high cellular uptake. PMID:29515844

  2. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens

    PubMed Central

    Watson, Douglas S.; Endsley, Aaron N.; Huang, Leaf

    2012-01-01

    Liposomes (phospholipid bilayer vesicles) are versatile and robust delivery systems for induction of antibody and T lymphocyte responses to associated subunit antigens. In the last 15 years, liposome vaccine technology has matured and now several vaccines containing liposome-based adjuvants have been approved for human use or have reached late stages of clinical evaluation. Given the intensifying interest in liposome-based vaccines, it is important to understand precisely how liposomes interact with the immune system and stimulate immunity. It has become clear that the physicochemical properties of liposomal vaccines – method of antigen attachment, lipid composition, bilayer fluidity, particle charge, and other properties – exert dramatic effects on the resulting immune response. Here, we present a comprehensive review of the physicochemical properties of liposomal vaccines and how they influence immune responses. A discussion of novel and emerging immunomodulators that are suitable for inclusion in liposomal vaccines is also presented. Through a comprehensive analysis of the body of liposomal vaccine literature, we enumerate a series of principles that can guide the rational design of liposomal vaccines to elicit immune responses of a desired magnitude and quality. We also identify major unanswered questions in the field, pointing the direction for future study. PMID:22306376

  3. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come.

    PubMed

    Yingchoncharoen, Phatsapong; Kalinowski, Danuta S; Richardson, Des R

    2016-07-01

    Cancer is a leading cause of death in many countries around the world. However, the efficacy of current standard treatments for a variety of cancers is suboptimal. First, most cancer treatments lack specificity, meaning that these treatments affect both cancer cells and their normal counterparts. Second, many anticancer agents are highly toxic, and thus, limit their use in treatment. Third, a number of cytotoxic chemotherapeutics are highly hydrophobic, which limits their utility in cancer therapy. Finally, many chemotherapeutic agents exhibit short half-lives that curtail their efficacy. As a result of these deficiencies, many current treatments lead to side effects, noncompliance, and patient inconvenience due to difficulties in administration. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems known commonly as nanoparticles. Among these delivery systems, lipid-based nanoparticles, particularly liposomes, have shown to be quite effective at exhibiting the ability to: 1) improve the selectivity of cancer chemotherapeutic agents; 2) lower the cytotoxicity of anticancer drugs to normal tissues, and thus, reduce their toxic side effects; 3) increase the solubility of hydrophobic drugs; and 4) offer a prolonged and controlled release of agents. This review will discuss the current state of lipid-based nanoparticle research, including the development of liposomes for cancer therapy, different strategies for tumor targeting, liposomal formulation of various anticancer drugs that are commercially available, recent progress in liposome technology for the treatment of cancer, and the next generation of lipid-based nanoparticles. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Hyaluronan-decorated liposomes as drug delivery systems for cutaneous administration.

    PubMed

    Franzé, Silvia; Marengo, Alessandro; Stella, Barbara; Minghetti, Paola; Arpicco, Silvia; Cilurzo, Francesco

    2018-01-15

    The work aimed to evaluate the feasibility to design hyaluronic acid (HA) decorated flexible liposomes to enhance the skin penetration of nifedipine. Egg phosphatidylcholine (e-PC) based transfersomes (Tween 80) and transethosomes (ethanol) were prepared. HA was reacted with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (HA-DPPE) and two molar ratios (0.5 and 3%) of conjugate with respect to e-PC were tested. The presence of HA significantly increased the packing order of the bilayer (as verified by differential scanning calorimetry), reducing both the encapsulation efficiency and the flexibility of the decorated liposomes in a dose-dependent manner. In fact, at the highest HA content the constant of deformability (K, N/mm) increased and the carriers remained on the skin surface after topical application. The stiffening effect of HA was counterbalanced by the addition of ethanol as fluidizing agent that allowed to maintain the highest HA concentration, meanwhile reducing the K value of the vesicles. HA-transethosomes allowed a suitable nifedipine permeation (J ∼ 30 ng/cm 2 /h) and significantly improved the drug penetration, favouring the formation of a drug depot in the epidermis. These data suggest the potentialities of HA-transethosomes as drug delivery systems intended for the treatment of cutaneous pathologies and underline the importance of studying the effect of surface functionalization on carrier deformability to rationalize the design of such systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma

    NASA Astrophysics Data System (ADS)

    McNeeley, Kathleen M.; Annapragada, Ananth; Bellamkonda, Ravi V.

    2007-09-01

    Liposomal and other nanocarrier based drug delivery vehicles can localize to tumours through passive and/or active targeting. Passively targeted liposomal nanocarriers accumulate in tumours via 'leaky' vasculature through the enhanced permeability and retention (EPR) effect. Passive accumulation depends upon the circulation time and the degree of tumour vessel 'leakiness'. After extravasation, actively targeted liposomal nanocarriers efficiently deliver their payload by receptor-mediated uptake. However, incorporation of targeting moieties can compromise circulation time in the blood due to recognition and clearance by the reticuloendothelial system, decreasing passive accumulation. Here, we compare the efficacy of passively targeted doxorubicin-loaded PEGylated liposomal nanocarriers to that of actively targeted liposomal nanocarriers in a rat 9L brain tumour model. Although folate receptor (FR)-targeted liposomal nanocarriers had significantly reduced blood circulation time compared to PEGylated liposomal nanocarriers; intratumoural drug concentrations both at 20 and 50 h after administration were equal for both treatments. Both treatments significantly increased tumour inoculated animal survival by 60-80% compared to non-treated controls, but no difference in survival was observed between FR-targeted and passively targeted nanocarriers. Therefore, alternate approaches allowing for active targeting without compromising circulation time may be important for fully realizing the benefits of receptor-mediated active targeting of gliomas.

  6. Nanoformulation of Geranylgeranyltransferase-I Inhibitors for Cancer Therapy: Liposomal Encapsulation and pH-Dependent Delivery to Cancer Cells

    PubMed Central

    Lu, Jie; Yoshimura, Kohei; Goto, Koichi; Lee, Craig; Hamura, Ken; Kwon, Ohyun; Tamanoi, Fuyuhiko

    2015-01-01

    Small molecule inhibitors against protein geranylgeranyltransferase-I such as P61A6 have been shown to inhibit proliferation of a variety of human cancer cells and exhibit antitumor activity in mouse models. Development of these inhibitors could be dramatically accelerated by conferring tumor targeting and controlled release capability. As a first step towards this goal, we have encapsulated P61A6 into a new type of liposomes that open and release cargos only under low pH condition. These low pH-release type liposomes were prepared by adjusting the ratio of two types of phospholipid derivatives. Loading of geranylgeranyltransferase-I inhibitor (GGTI) generated liposomes with average diameter of 50–100 nm. GGTI release in solution was sharply dependent on pH values, only showing release at pH lower than 6. Release of cargos in a pH-dependent manner inside the cell was demonstrated by the use of a proton pump inhibitor Bafilomycin A1 that Increased lysosomal pH and inhibited the release of a dye carried in the pH-liposome. Delivery of GGTI to human pancreatic cancer cells was demonstrated by the inhibition of protein geranylgeranylation inside the cell and this effect was blocked by Bafilomycin A1. In addition, GGTI delivered by pH-liposomes induced proliferation inhibition, G1 cell cycle arrest that is associated with the expression of cell cycle regulator p21CIP1/WAF1. Proliferation inhibition was also observed with various lung cancer cell lines. Availability of nanoformulated GGTI opens up the possibility to combine with other types of inhibitors. To demonstrate this point, we combined the liposomal-GGTI with farnesyltransferase inhibitor (FTI) to inhibit K-Ras signaling in pancreatic cancer cells. Our results show that the activated K-Ras signaling in these cells can be effectively inhibited and that synergistic effect of the two drugs is observed. Our results suggest a new direction in the use of GGTI for cancer therapy. PMID:26352258

  7. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, M. Frederick

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer,more » incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are

  8. Transformable DNA Nanocarriers for Plasma Membrane Targeted Delivery of Cytokine

    PubMed Central

    Sun, Wujin; Ji, Wenyan; Hu, Quanyin; Yu, Jicheng; Wang, Chao; Qian, Chenggen; Hochu, Gabrielle; Gu, Zhen

    2016-01-01

    Direct delivery of cytokines using nanocarriers holds great promise for cancer therapy. However, the nanometric scale of the vehicles made them susceptible to size-dependent endocytosis, reducing the plasma membrane-associated apoptosis signalling. Herein, we report a tumor microenvironment-responsive and transformable nanocarrier for cell membrane targeted delivery of cytokine. This formulation is comprised of a phospholipase A2 (PLA2) degradable liposome as a shell, and complementary DNA nanostructures (designated as nanoclews) decorated with cytokines as the cores. Utilizing the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a model cytokine, we demonstrate that the TRAIL loaded DNA nanoclews are capable of transforming into nanofibers after PLA2 activation. The nanofibers with micro-scaled lengths efficiently present the loaded TRAIL to death receptors on the cancer cell membrane and amplified the apoptotic signalling with reduced TRAIL internalization. PMID:27131597

  9. Convection-enhanced delivery of a topoisomerase I inhibitor (nanoliposomal topotecan) and a topoisomerase II inhibitor (pegylated liposomal doxorubicin) in intracranial brain tumor xenografts1

    PubMed Central

    Yamashita, Yoji; Krauze, Michal T.; Kawaguchi, Tomohiro; Noble, Charles O.; Drummond, Daryl C.; Park, John W.; Bankiewicz, Krystof S.

    2007-01-01

    Despite multimodal treatment options, the response and survival rates for patients with malignant gliomas remain dismal. Clinical trials with convection-enhanced delivery (CED) have recently opened a new window in neuro-oncology to the direct delivery of chemotherapeutics to the CNS, circumventing the blood-brain barrier and reducing systemic side effects. Our previous CED studies with liposomal chemotherapeutics have shown promising antitumor activity in rodent brain tumor models. In this study, we evaluated a combination of nanoliposomal topotecan (nLs-TPT) and pegylated liposomal doxorubicin (PLD) to enhance efficacy in our brain tumor models, and to establish a CED treatment capable of improving survival from malignant brain tumors. Both liposomal drugs decreased key enzymes involved in tumor cell replication in vitro. Synergistic effects of nLs-TPT and PLD on U87MG cell death were found. The combination displayed excellent efficacy in a CED-based survival study 10 days after tumor cell implantation. Animals in the control group and those in single-agent groups had a median survival of less than 30 days, whereas the combination group experienced a median survival of more than 90 days. We conclude that CED of two liposomal chemotherapeutics (nLs-TPT and PLD) may be an effective treatment option for malignant gliomas. PMID:17018695

  10. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA.

    PubMed

    Liu, Xiaoli; Madhankumar, Achuthamangalam B; Miller, Patti A; Duck, Kari A; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M; Connor, James R; Yang, Qing X

    2016-05-01

    Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Characterization of CD44-Mediated Cancer Cell Uptake and Intracellular Distribution of Hyaluronan-Grafted Liposomes

    PubMed Central

    Qhattal, Hussaini Syed Sha; Liu, Xinli

    2011-01-01

    Hyaluronan (HA) is a biocompatible and biodegradable linear polysaccharide which is of interest for tumor targeting through cell surface CD44 receptors. HA binds with high affinity to CD44 receptors, which are overexpressed in many tumors and involved in cancer metastasis. In the present study, we investigated the impact of HA molecular weight (MW), grafting density, and CD44 receptor density on endocytosis of HA-grafted liposomes (HA-liposomes) by cancer cells. Additionally, the intracellular localization of the HA-liposomes was determined. HAs of different MWs (5-8, 10-12, 175-350, and 1600 kDa) were conjugated to liposomes with varying degrees of grafting density. HA surface density was quantified using the hexadecyltrimethylammonium bromide turbidimetric method. Cellular uptake and subcellular localization of HA-liposomes were evaluated by flow cytometry and fluorescence microscopy. Mean particle sizes of HA-liposomes ranged from 120 to 180 nm and increased with the bigger size of HA. HA-liposome uptake correlated with HA MW (5-8 < 10-12 < 175-350 kDa), grafting density, and CD44 receptor density and exceeded that obtained with unconjugated plain liposomes. HA-liposomes were taken up into cells via lipid raft-mediated endocytosis, which is both energy- and cholesterol-dependent. Once within cells, HA-liposomes localized primarily to endosomes and lysosomes. The results demonstrate that cellular targeting efficiency of HA-liposomes depends strongly upon HA MW, grafting density, and cell surface receptor CD44 density. The results support a role of HA-liposomes for targeted drug delivery. PMID:21696190

  12. Gd(III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging

    NASA Astrophysics Data System (ADS)

    Jung, Suk Hyun; Na, Kyunga; Lee, Seul A.; Cho, Sun Hang; Seong, Hasoo; Shin, Byung Cheol

    2012-08-01

    Ultrasound-sensitive (sonosensitive) liposomes for tumor targeting have been studied in order to increase the antitumor efficacy of drugs and decrease the associated severe side effects. Liposomal contrast agents having Gd(III) are known as a nano-contrast agent system for the efficient and selective delivery of contrast agents into pathological sites. The objective of this study was to prepare Gd(III)-DOTA-modified sonosensitive liposomes (GdSL), which could deliver a model drug, doxorubicin (DOX), to a specific site and, at the same time, be capable of magnetic resonance (MR) imaging. The GdSL was prepared using synthesized Gd(III)-DOTA-1,2-distearoyl- sn-glycero-3-phosphoethanolamine lipid. Sonosensitivity of GdSL to 20-kHz ultrasound induced 33% to 40% of DOX release. The relaxivities ( r 1) of GdSL were 6.6 to 7.8 mM-1 s-1, which were higher than that of MR-bester®. Intracellular uptake properties of GdSL were evaluated according to the intensity of ultrasound. Intracellular uptake of DOX for ultrasound-triggered GdSL was higher than that for non-ultrasound-triggered GdSL. The results of our study suggest that the paramagnetic and sonosensitive liposomes, GdSL, may provide a versatile platform for molecular imaging and targeted drug delivery.

  13. Development and in vitro evaluation of mucoadhesive patches of methotrexate for targeted delivery in oral cancer

    PubMed Central

    Jin, Bao-Zhong; Dong, Xiao-Qi; Xu, Xin; Zhang, Feng-He

    2018-01-01

    The present study focused on the development of a mucoadhesive patch of methotrexate (MTX) for targeted delivery in oral cancer. Initially, MTX-loaded liposomes were prepared using the thin film hydration method, and had a mean diameter of 105.7–137.4 nm and percentage entrapment efficiency of 54.6±3.5. These liposomes were cast in optimized mucoadhesive film. The film was characterized by its release pattern, thickness, weight and percentage swelling index and the sustained release profile of the optimized film was evaluated. The developed liposomes and liposomes cast in the film formulation were evaluated for cytotoxicity in HSC-3 cells using an MTT assay, and a significant decrease in the half maximal inhibitory concentration of MTX was identified with the MTX-entrapped liposomal film, M-LP-F7. The results of the mitochondria-dependent intrinsic pathway demonstrated that there was significant mitochondrial membrane potential disruption with M-LP-F7 compared with the plain drug. M-LP-F7 increased the rate of apoptosis in HSC-3 cells by almost 3-fold. Elevated levels of reactive oxygen species provided evidence that M-LP-F7 exerts a pro-oxidant effect in HSC-3 cells. PMID:29434971

  14. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells

    PubMed Central

    Li, Xue-tao; Tang, Wei; Jiang, Ying; Wang, Xiao-min; Wang, Yan-hong; Cheng, Lan; Meng, Xian-sheng

    2016-01-01

    Malignant brain glioma is the most lethal and aggressive type of cancer. Surgery and radiotherapy cannot eliminate all glioma stem cells (GSCs) and blood–brain barrier (BBB) restricts the movement of antitumor drugs from blood to brain, thus leading to the poor prognosis with high recurrence rate. In the present study, the targeting conjugates of cholesterol polyethylene glycol polyethylenimine (CHOL-PEG2000-PEI) and D-a-tocopheryl polyethylene glycol 1000 succinate vapreotide (TPGS1000-VAP) were newly synthesized for transporting drugs across the BBB and targeting glioma cells and GSCs. The multifunctional targeting vinorelbine plus tetrandrine liposomes were constructed by modifying the targeting conjugates. The studies were undertaken on BBB model, glioma cells, GSCs, and glioma-bearing mice. In vitro results showed that multifunctional targeting drugs-loaded liposomes with suitable physicochemical property could enhance the transport drugs across the BBB, increase the intracellular uptake, inhibit glioma cells and GSCs, penetrate and destruct the GSCs spheroids, and induce apoptosis via activating related apoptotic proteins. In vivo results demonstrated that multifunctional targeting drugs-loaded liposomes could significantly accumulate into brain tumor location, show the specificity to tumor sites, and result in a robust overall antitumor efficacy in glioma-bearing mice. These data suggested that the multifunctional targeting vinorelbine plus tetrandrine liposomes could offer a promising strategy for treating brain glioma. PMID:27029055

  15. The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system.

    PubMed

    Chen, Hongdan; Pan, Hao; Li, Panpan; Wang, Hui; Wang, Xin; Pan, Weisan; Yuan, Yue

    2016-07-01

    In this study, novel chitosan-coated deformable liposomes (DL-CS) were proposed as an ocular drug delivery system to prolong pre-corneal retention, and improve transcorneal penetration and absorption. Flurbiprofen-loaded deformable liposomes (FP-DL) were prepared by a modified ethanol injection method and then coated with chitosan. Both DL and DL-CS exhibited a homogeneous particle size distribution, high encapsulation efficiency and good stability. After coating with 0.1% CS, the zeta potential was shifted from negative to positive. The apparent permeability coefficient of FP-DL-0.1% CS evaluated using isolated rabbit corneas was 1.29-, 1.95- and 4.59- fold greater than that of uncoated FP-DL, conventional liposomes and FP solution (P<0.01), respectively. The in vivo pre-corneal retention time and elimination dynamics were assessed using gamma scintigraphy technology. The area under the remaining activity-time of FP-DL-0.1% CS was prolonged 2.84- and 1.53-fold compared with that of the FP solution and FP-DL groups, respectively. Moreover, the ocular irritation test in vivo revealed that DL-0.1% CS produced no ocular damage or abnormal clinical signs. These results indicate that DL-CS appears to be a novel ophthalmic drug delivery strategy with the potential to overcome the limitations of conventional eye drops. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Liposomes, lipid nanocapsules and smartCrystals®: A comparative study for an effective quercetin delivery to the skin.

    PubMed

    Hatahet, T; Morille, M; Hommoss, A; Devoisselle, J M; Müller, R H; Bégu, S

    2018-05-05

    Quercetin is a flavonoid with strong antioxidant and antiinflammatory activities considered as a potential drug candidate for skin exogenous supplementation. Nevertheless, crude quercetin suffers from poor water solubility and consequently topical inactivity. Therefore, quercetin formulation within a suitable system that overcomes its solubility limitation is a matter of investigation. Three approaches were tested to improve quercetin delivery to skin: liposomes, lipid nanocapsules (LNC) and smartCrystals®. These nanoformulations were compared in terms of average particle size, homogeneity (PDI), quercetin loading and cellular interactions with HaCaT (keratinocytes) and TPH-1 (monocytes) cell lines. Finally, two formulations were selected for testing quercetin delivery to human skin in vivo using stripping test. Different size distribution was obtained with each strategy starting from 26 nm with quercetin LNC, 179 nm with liposomes to 295 nm with quercetin smartCrystals®. The drug loading varied with each formulation from 0.56 mg/ml with liposomes, 10.8 mg/ml with LNC to 14.4 mg/ml with smartCrystals®. No toxicity was observed in HaCaT cells with quercetin and free radical scavenging ability was established at 5 µg/ml. The safety of quercetin at 5 µg/ml was further confirmed on THP-1 cells with efficient free radical scavenging ability. Finally, skin penetration evidenced different behavior between the two selected forms (LNC and SmartCrystals®), which could lead to different promising strategies for skin protection. On one side, quercetin smartCrystals® seems to enable the superficial deposition of quercetin on top of the skin, which presents a good strategy for a quercetin-based sunscreen product. On the other side, LNC seems to allow quercetin delivery to viable epidermis that holds the promise for skin inflammatory disorders such as psoriasis. Copyright © 2018. Published by Elsevier B.V.

  17. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review.

    PubMed

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.

  18. Cytoplasmic Delivery of Liposomal Contents Mediated by an Acid-Labile Cholesterol-Vinyl Ether-PEG Conjugate

    PubMed Central

    Boomer, Jeremy A.; Qualls, Marquita M.; Inerowicz, H. Dorota; Haynes, Robert H.; Patri, G.V. Srilaksmi; Kim, Jong-Mok; Thompson, David H.

    2009-01-01

    An acid-cleavable PEG lipid, 1′-(4′-cholesteryloxy-3′-butenyl)-ω-methoxy-polyethylene[112] glycolate (CVEP), has been developed that produces stable liposomes when dispersed as a minor component (0.5–5 mol%) in 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Cleavage of CVEP at mildly acidic pH’s results in dePEGylation of the latently fusogenic DOPE liposomes, thereby triggering the onset of contents release. This paper describes the synthesis of CVEP via a six step sequence starting from the readily available precursors 1,4-butanediol, cholesterol, and mPEG acid. The hydrolysis rates and release kinetics from CVEP:DOPE liposome dispersions as a function of CVEP loading, as well as the cryogenic transmission electron microscopy and pH-dependent monolayer properties of 9:91 CVEP:DOPE mixtures, also are reported. When folate-receptor positive KB cells were exposed to calcein-loaded 5:95 CVEP:DOPE liposomes containing 0.1 mol% folate-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-polyethylene[76] glycolamide (folate-PEG-DSPE), efficient delivery of the calcein cargo to the cytoplasm of the cells was observed as determined by fluorescence microscopy and flow cytometry. Fluorescence resonance energy transfer analysis of lipid mixing in these cells was consistent with membrane-membrane fusion between the liposome and endosomal membranes. PMID:19072698

  19. Noninvasive control of the transport function of fluorescent coloured liposomal nanoparticles

    NASA Astrophysics Data System (ADS)

    Stelmashchuk, O.; Zherebtsov, E.; Zherebtsova, A.; Kuznetsova, E.; Vinokurov, A.; Dunaev, A.; Mamoshin, A.; Snimshchikova, I.; Borsukov, A.; Bykov, A.; Meglinski, I.

    2017-06-01

    The use of liposomal nanoparticles with an incorporated active substance is an innovative and promising approach to diagnostics and therapy. The application of liposomal nanoparticle-based drugs allows for targeted localized delivery, overcomes the natural barriers within the body effectively, and minimizes possible side effects. Liposomes are able to contain a variety of ingredients with practically no limitations to their chemical composition, chemical properties, or size of constituent molecules. This study evaluated the ability to control the passage of fluorescent dye-filled liposomes through the intestinal mucosal barrier after oral administration. For this purpose, the increase in transcutaneous registered fluorescence from tetrabromofluorescein dye was recorded and analysed. Fluorescence intensity was measured at the proximal end of the tail of an animal model after oral administration of the liposomes. Measurements were taken at the excitation wavelengths of 365 and 450 nm. The fluorescence intensity in the group treated with the fluorescent contrast agent encapsulated in liposomal particles increased 140% of the initial level, but in the group treated with pure contrast agent, the increase in detected fluorescence intensity did not exceed 110%. Mice that received empty liposomes as well as the control group did not demonstrate statistically significant changes in fluorescence intensity. A potential application of our results is an express laser optical method of monitoring the transport of orally administered liposomal particles. The results can be used to help create new optical tools for use in the development of new drugs and in high-throughput screening used during their testing.

  20. The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases

    PubMed Central

    Nisini, Roberto; Poerio, Noemi; Mariotti, Sabrina; De Santis, Federica; Fraziano, Maurizio

    2018-01-01

    Liposomes are closed bilayer structures spontaneously formed by hydrated phospholipids that are widely used as efficient delivery systems for drugs or antigens, due to their capability to encapsulate bioactive hydrophilic, amphipathic, and lipophilic molecules into inner water phase or within lipid leaflets. The efficacy of liposomes as drug or antigen carriers has been improved in the last years to ameliorate pharmacokinetics and capacity to release their cargo in selected target organs or cells. Moreover, different formulations and variations in liposome composition have been often proposed to include immunostimulatory molecules, ligands for specific receptors, or stimuli responsive compounds. Intriguingly, independent research has unveiled the capacity of several phospholipids to play critical roles as intracellular messengers in modulating both innate and adaptive immune responses through various mechanisms, including (i) activation of different antimicrobial enzymatic pathways, (ii) driving the fusion–fission events between endosomes with direct consequences to phagosome maturation and/or to antigen presentation pathway, and (iii) modulation of the inflammatory response. These features can be exploited by including selected bioactive phospholipids in the bilayer scaffold of liposomes. This would represent an important step forward since drug or antigen carrying liposomes could be engineered to simultaneously activate different signal transduction pathways and target specific cells or tissues to induce antigen-specific T and/or B cell response. This lipid-based host-directed strategy can provide a focused antimicrobial innate and adaptive immune response against specific pathogens and offer a novel prophylactic or therapeutic option against chronic, recurrent, or drug-resistant infections. PMID:29459867

  1. Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu

    2016-01-01

    The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery.

  2. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy

    DTIC Science & Technology

    2014-02-01

    Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0166 5c... Nanotechnologies in Living Systems”, Moscow Region, Russia, September, 2011. 3. “Ionic nanogels for drug delivery in cancer ”. NanoDDS’12; Atlantic City, New...AD Award Number: W81XWH-11-1-0166 TITLE: Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast

  3. Characterization and Application of a Nose-Only Exposure Chamber for Inhalation Delivery of Liposomal Drugs and Nucleic Acids to Mice

    PubMed Central

    Seshadri, S.; Garbuzenko, O.B.; Han, T.; Wang, Z.; Minko, T.

    2013-01-01

    Abstract Background A small nose-only exposure chamber was evaluated for inhalation delivery of drug carrier systems (DCSs) to mice for the treatment of lung cancer. The chamber then was used for inhalation delivery of an anticancer drug, antisense oligonucleotides (ASO), and small interfering RNA (siRNA) directly to the cancerous lungs of mice. Methods The uniformity of particle delivery across the ports of the exposure chamber and stability of the DCS (liposomes) during continuous aerosolization by a Collison nebulizer were examined. The mean produced particle size by number was approximately 130 nm, and the mass median diameter was approximately 270 nm. The system was then used to deliver DCS containing doxorubicin (DOX) and ASO or siRNA targeted to multidrug resistance-associated protein 1 (MRP1) mRNA as suppressors of cancer cell resistance. The retention of the drug in the lungs and the effect on tumor size were compared after inhalation delivery and intravenous injection in a nu/nu mouse model of lung cancer. Results The aerosol mass across the four inhalation ports had a coefficient of variation of less than 12%, and approximately 1.4% of the nebulized mass was available for inhalation at each port. The mean size of 130 nm of liposomal DCS did not change significantly during continuous 60-min aerosolization. For inhalation delivery of DCS with DOX+ASO/siRNA, the amount of drugs available for inhalation was lower compared with intravenous injection of DOX; however, the observed lung dose and the retention time were significantly higher. The delivery of DOX+ASO/siRNA via inhalation resulted in tumor volume reduction of more than 90%, whereas only about 40% reduction was achieved after intravenous injection of DOX. Conclusions The investigated exposure system is suitable for inhalation delivery of complex DCS, and its use to deliver DCS containing anticancer drugs and resistance suppressors via inhalation offered a superior method for lung cancer

  4. Comparative dosimetric evaluation of nanotargeted (188)Re-(DXR)-liposome for internal radiotherapy.

    PubMed

    Chang, Chih-Hsien; Stabin, Michael G; Chang, Ya-Jen; Chen, Liang-Cheng; Chen, Min-Hua; Chang, Tsui-Jung; Lee, Te-Wei; Ting, Gann

    2008-12-01

    A dosimetric analysis was performed to evaluate nanoliposomes as carriers of radionuclides ((188)Re-liposomes) and radiochemotherapeutic drugs [(188)Re-doxorubicin (DXR)-liposomes] in internal radiotherapy for colon carcinoma, as evaluated in mice. Pharmacokinetic data for (188)Re-N, N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), (188)Re-liposome, and (188)Re-DXR-liposome were obtained for the estimation of absorbed doses in tumors and normal organs. Two colon carcinoma mouse models were employed: subcutaneous growing solid tumor and malignant ascites pervading tumor models. Radiation-dose estimates for normal tissues and tumors were calculated by using the OLINDA/EXM program. An evaluation of a recommended maximum administered activity (MAA) for the nanotargeted drugs was also made. Mean absorbed doses derived from (188)Re-liposome and (188)Re-DXR-liposome in normal tissues were generally similar to those from (188)Re-BMEDA in intraperitoneal and intravenous administration. Tissue-absorbed dose in the liver was 0.24-0.40 and 0.17-0.26 (mGy/MBq) and in red marrow was 0.033-0.050 and 0.038-0.046 (mGy/MBq), respectively, for (188)Re-liposome and (188)Re-DXR-liposome. Tumor-absorbed doses for the nanotargeted (188)Re-liposome and (188)Re-DXR-liposome were higher than those of (188)Re-BMEDA for both routes of administration (4-26-fold). Dose to red marrow defined the recommended MAA. Our results suggest that radionuclide and chemoradiotherapeutic passive targeting delivery, using nanoliposomes as the carrier, is feasible and promising in systemic-targeted radionuclide therapy.

  5. Anti-EphA10 antibody-conjugated pH-sensitive liposomes for specific intracellular delivery of siRNA.

    PubMed

    Zang, Xinlong; Ding, Huaiwei; Zhao, Xiufeng; Li, Xiaowei; Du, Zhouqi; Hu, Haiyang; Qiao, Mingxi; Chen, Dawei; Deng, Yuihui; Zhao, Xiuli

    2016-01-01

    Therapeutic delivery of small interfering RNA (siRNA) is a major challenge that limits its potential clinical application. Here, a pH-sensitive cholesterol-Schiff base-polyethylene glycol (Chol-SIB-PEG)-modified cationic liposome-siRNA complex, conjugated with the recombinant humanized anti-EphA10 antibody (Eph), was developed as an efficient nonviral siRNA delivery system. Chol-SIB-PEG was successfully synthesized and confirmed with FTIR and (1)H-NMR. An Eph-PEG-SIB-Chol-modified liposome-siRNA complex (EPSLR) was prepared and characterized by size, zeta potential, gel retardation, and encapsulation efficiency. Electrophoresis results showed that EPSLR was resistant to heparin replacement and protected siRNA from fetal bovine serum digestion. EPSLR exhibited only minor cytotoxicity in MCF-7/ADR cells. The results of flow cytometry and confocal laser scanning microscopy suggested that EPSLR enhanced siRNA transfection in MCF-7/ADR cells. Intracellular distribution experiment revealed that EPSLR could escape from the endo-lysosomal organelle and release siRNA into cytoplasm at 4 hours posttransfection. Western blot experiment demonstrated that EPSLR was able to significantly reduce the levels of MDR1 protein in MCF-7/ADR cells. The in vivo study of DIR-labeled complexes in mice bearing MCF-7/ADR tumor indicated that EPSLR could reach the tumor site rather than other organs more effectively. All these results demonstrate that EPSLR has much potential for effective siRNA delivery and may facilitate its therapeutic application.

  6. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts

    PubMed Central

    Krauze, Michal T.; Noble, Charles O.; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B.; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W.; Bankiewicz, Krystof S.

    2007-01-01

    We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors. PMID:17652269

  7. Photo-triggered destabilization of nanoscopic vehicles by dihydroindolizine for enhanced anticancer drug delivery in cervical carcinoma.

    PubMed

    Singh, Priya; Choudhury, Susobhan; Kulanthaivel, Senthilguru; Bagchi, Damayanti; Banerjee, Indranil; Ahmed, Saleh A; Pal, Samir Kumar

    2018-02-01

    The efficacy and toxicity of drugs depend not only on their potency but also on their ability to reach the target sites in preference to non-target sites. In this regards destabilization of delivery vehicles induced by light can be an effective strategy for enhancing drug delivery with spatial and temporal control. Herein we demonstrate that the photoinduced isomerization from closed (hydrophobic) to open isomeric form (hydrophilic) of a novel DHI encapsulated in liposome leads to potential light-controlled drug delivery vehicles. We have used steady state and picosecond resolved dynamics of a drug 8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS) incorporated in liposome to monitor the efficacy of destabilization of liposome in absence and presence UVA irradiation. Steady state and picosecond resolved polarization gated spectroscopy including the well-known strategy of solvation dynamics and Förster resonance energy transfer; reveal the possible mechanism out of various phenomena involved in destabilization of liposome. We have also investigated the therapeutic efficacy of doxorubicin (DOX) delivery from liposome to cervical cancer cell line HeLa. The FACS, confocal fluorescence microscopic and MTT assay studies reveal an enhanced cellular uptake of DOX leading to significant reduction in cell viability (∼40%) of HeLa followed by photoresponsive destabilization of liposome. Our studies successfully demonstrate that these DHI encapsulated liposomes have potential application as a smart photosensitive drug delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Image guided drug release from pH-sensitive Ion channel-functionalized stealth liposomes into an in vivo glioblastoma model.

    PubMed

    Pacheco-Torres, Jesus; Mukherjee, Nobina; Walko, Martin; López-Larrubia, Pilar; Ballesteros, Paloma; Cerdan, Sebastian; Kocer, Armagan

    2015-08-01

    Liposomal drug delivery vehicles are promising nanomedicine tools for bringing cytotoxic drugs to cancerous tissues selectively. However, the triggered cargo release from liposomes in response to a target-specific stimulus has remained elusive. We report on functionalizing stealth-liposomes with an engineered ion channel and using these liposomes in vivo for releasing an imaging agent into a cerebral glioma rodent model. If the ambient pH drops below a threshold value, the channel generates temporary pores on the liposomes, thus allowing leakage of the intraluminal medicines. By using magnetic resonance spectroscopy and imaging, we show that engineered liposomes can detect the mildly acidic pH of the tumor microenvironment with 0.2 pH unit precision and they release their content into C6 glioma tumors selectively, in vivo. A drug delivery system with this level of sensitivity and selectivity to environmental stimuli may well serve as an optimal tool for environmentally-triggered and image-guided drug release. Cancer remains a leading cause of mortality worldwide. With advances in science, delivery systems of anti-cancer drugs have also become sophisticated. In this article, the authors designed and characterized functionalized liposomal vehicles, which would release the drug payload in a highly sensitive manner in response to a change in pH environment in an animal glioma model. The novel data would enable better future designs of drug delivery systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Convection-enhanced delivery of targeted quantum dot-immunoliposome hybrid nanoparticles to intracranial brain tumor models.

    PubMed

    Weng, Kevin C; Hashizume, Rintaro; Noble, Charles O; Serwer, Laura P; Drummond, Daryl C; Kirpotin, Dmitri B; Kuwabara, Anne M; Chao, Lucy X; Chen, Fanqing F; James, Charles D; Park, John W

    2013-12-01

    The aim of this work is to evaluate combining targeting strategy and convection-enhanced delivery in brain tumor models by imaging quantum dot-immunoliposome hybrid nanoparticles. An EGF receptor-targeted, quantum dot-immunoliposome hybrid nanoparticle (QD-IL) was synthesized. In vitro uptake was measured by flow cytometry and intracellular localization was imaged by confocal microscopy. In the in vivo study, QD-ILs were delivered to intracranial xenografts via convection-enhanced delivery and fluorescence was monitored noninvasively in real-time. QD-ILs exhibited specific and efficient uptake in vitro and exhibited approximately 1.3- to 5.0-fold higher total fluorescence compared with nontargeted counterpart in intracranial brain tumor xenografts in vivo. QD-ILs serve as an effective imaging agent in vitro and in vivo, and the data suggest that ligand-directed liposomal nanoparticles in conjunction with convection-enhanced delivery may offer therapeutic benefits for glioblastoma treatment as a result of specific and efficient uptake by malignant cells.

  10. Tumor-homing peptides as tools for targeted delivery of payloads to the placenta

    PubMed Central

    King, Anna; Ndifon, Cornelia; Lui, Sylvia; Widdows, Kate; Kotamraju, Venkata R.; Agemy, Lilach; Teesalu, Tambet; Glazier, Jocelyn D.; Cellesi, Francesco; Tirelli, Nicola; Aplin, John D.; Ruoslahti, Erkki; Harris, Lynda K.

    2016-01-01

    The availability of therapeutics to treat pregnancy complications is severely lacking mainly because of the risk of causing harm to the fetus. As enhancement of placental growth and function can alleviate maternal symptoms and improve fetal growth in animal models, we have developed a method for targeted delivery of payloads to the placenta. We show that the tumor-homing peptide sequences CGKRK and iRGD bind selectively to the placental surface of humans and mice and do not interfere with normal development. Peptide-coated nanoparticles intravenously injected into pregnant mice accumulated within the mouse placenta, whereas control nanoparticles exhibited reduced binding and/or fetal transfer. We used targeted liposomes to efficiently deliver cargoes of carboxyfluorescein and insulin-like growth factor 2 to the mouse placenta; the latter significantly increased mean placental weight when administered to healthy animals and significantly improved fetal weight distribution in a well-characterized model of fetal growth restriction. These data provide proof of principle for targeted delivery of drugs to the placenta and provide a novel platform for the development of placenta-specific therapeutics. PMID:27386551

  11. Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine.

    PubMed

    Nava, Guadalupe; Piñón, Elizabeth; Mendoza, Luis; Mendoza, Néstor; Quintanar, David; Ganem, Adriana

    2011-12-15

    The objective of the current study was to formulate ketorolac tromethamine-loaded elastic liposomes and evaluate their in vitro drug release and their ex vivo and in vivo transdermal delivery. Ketorolac tromethamine (KT), which is a potent analgesic, was formulated in elastic liposomes using Tween 80 as an edge activator. The elastic vesicles were prepared by film hydration after optimizing the sonication time and number of extrusions. The vesicles exhibited an entrapment efficiency of 73 ± 11%, vesicle size of 127.8 ± 3.4 nm and a zeta potential of -12 mV. In vitro drug release was analyzed from liposomes and an aqueous solution, using Franz diffusion cells and a cellophane dialysis membrane with molecular weight cut-off of 8000 Da. Ex vivo permeation of KT across pig ear skin was studied using a Franz diffusion cell, with phosphate buffer (pH 7.4) at 32 °C as receptor solution. An in vivo drug permeation study was conducted on healthy human volunteers using a tape-stripping technique. The in vitro results showed (i) a delayed release when KT was included in elastic liposomes, compared to an aqueous solution of the drug; (ii) a flux of 0.278 mg/cm2h and a lag time of about 10 h for ex vivo permeation studies, which may indicate that KT remains in the skin (with the possibility of exerting a local effect) before reaching the receptor medium; (iii) a good correlation between the total amount permeated, the penetration distance (both determined by tape stripping) and transepidermal water loss (TEWL) measured during the in vivo permeation studies. Elastic liposomes have the potential to transport the drug through the skin, keep their size and drug charge, and release the drug into deep skin layers. Therefore, elastic liposomes hold promise for the effective topical delivery of KT.

  12. Nanotechnology based approaches for anti-diabetic drugs delivery.

    PubMed

    Kesharwani, Prashant; Gorain, Bapi; Low, Siew Yeng; Tan, Siew Ann; Ling, Emily Chai Siaw; Lim, Yin Khai; Chin, Chuan Ming; Lee, Pei Yee; Lee, Chun Mey; Ooi, Chun Haw; Choudhury, Hira; Pandey, Manisha

    2018-02-01

    Nanotechnology science has been diverged its application in several fields with the advantages to operate with nanometric range of objects. Emerging field of nanotechnology has been also being approached and applied in medical biology for improved efficacy and safety. Increased success in therapeutic field has focused several approaches in the treatment of the common metabolic disorder, diabetes. The development of nanocarriers for improved delivery of different oral hypoglycemic agents compared to conventional therapies includes nanoparticles (NPs), liposomes, dendrimer, niosomes and micelles, which produces great control over the increased blood glucose level and thus becoming an eye catching and most promising technology now-a-days. Besides, embellishment of nanocarriers with several ligands makes it more targeted delivery with the protection of entrapped hypoglycaemic agents against degradation, thereby optimizing prolonged blood glucose lowering effect. Thus, nanocarriers of hypoglycemic agents provide the aim towards improved diabetes management with minimized risk of acute and chronic complications. In this review, we provide an overview on distinctive features of each nano-based drug delivery system for diabetic treatment and current NPs applications in diabetes management. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor

    PubMed Central

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin. PMID:24729702

  14. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor.

    PubMed

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin.

  15. Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery.

    PubMed

    Chen, Rencai; Li, Rongli; Liu, Qian; Bai, Chao; Qin, Benlin; Ma, Yue; Han, Jing

    2017-07-01

    The aims of this work were to develop a novel vesicular carrier, procyanidins, ultradeformable liposomes (PUDLs), to expand the applications for procyanidins, and increase their stability and transdermal delivery. In this study, we prepared procyanidins ultradeformable liposomes using thin film hydration method and evaluated their encapsulation efficiency, vesicle deformability, storage stability, and skin permeation in vitro. The influence of different surfactants on the properties of PUDLs was also investigated. The results obtained showed that the PUDLs containing Tween 80 had a high entrapment efficiency (80.27 ± 0.99%), a small particle size (140.6 ± 19 nm), high elasticity, and prolonged drug release. Compared with procyanidins solution, the stability of procyanidins in PUDLs improved significantly when stored at 4, 25, and 30°C. The penetration rate of PUDLs was 6.25-fold greater than that of procyanidins solution. Finally, the results of our study suggested that PUDLs could increase the transdermal flux, prolong the release and improve the stability of procyanidins, and could serve as an effective dermal delivery system for procyanidins.

  16. Destruction of vasculogenic mimicry channels by targeting epirubicin plus celecoxib liposomes in treatment of brain glioma

    PubMed Central

    Ju, Rui-Jun; Zeng, Fan; Liu, Lei; Mu, Li-Min; Xie, Hong-Jun; Zhao, Yao; Yan, Yan; Wu, Jia-Shuan; Hu, Ying-Jie; Lu, Wan-Liang

    2016-01-01

    The efficacy of chemotherapy for brain glioma is restricted by the blood–brain barrier (BBB), and surgery or radiotherapy cannot eliminate the glioma cells because of their unique location. Residual brain glioma cells can form vasculogenic mimicry (VM) channels that can cause a recurrence of brain glioma. In the present study, targeting liposomes incorporating epirubicin and celecoxib were prepared and used for the treatment of brain glioma, along with the destruction of their VM channels. Evaluations were performed on the human brain glioma U87MG cells in vitro and on intracranial brain glioma-bearing nude mice. Targeting epirubicin plus celecoxib liposomes in the circulatory blood system were able to be transported across the BBB, and accumulated in the brain glioma region. Then, the liposomes were internalized by brain glioma cells and killed glioma cells by direct cytotoxic injury and the induction of apoptosis. The induction of apoptosis was related to the activation of caspase-8- and -3-signaling pathways, the activation of the proapoptotic protein Bax, and the suppression of the antiapoptotic protein Mcl-1. The destruction of brain glioma VM channels was related to the downregulation of VM channel-forming indictors, which consisted of MMP-2, MMP-9, FAK, VE-Cad, and VEGF. The results demonstrated that the targeting epirubicin plus celecoxib liposomes were able to effectively destroy the glioma VM channels and exhibited significant efficacy in the treatment of intracranial glioma-bearing nude mice. Therefore, targeting epirubicin plus celecoxib liposomes could be a potential nanostructured formulation to treat gliomas and destroy their VM channels. PMID:27042063

  17. Preparation and characterization of isoniazid-loaded crude soybean lecithin liposomes.

    PubMed

    Nkanga, Christian Isalomboto; Krause, Rui Werner; Noundou, Xavier Siwe; Walker, Roderick Bryan

    2017-06-30

    Tuberculosis (TB) is a poverty related infectious disease that is rapidly giving rise to public health concerns. Lengthy drug administration and frequent adverse side-effects associated with TB treatment make anti-tubercular drugs (ATDs) good candidates for drug delivery studies. This work aimed to formulate and prepare liposomes as a cost-effective option for ATD delivery. Liposomes were prepared by film hydration using crude soybean lecithin (CL) and not pure phospholipids as in the normal practice. Cholesterol was also used (up to 25% mass ratio), and isoniazid (INH) was encapsulated as model drug using a freeze-thaw loading technique. Purified soybean lecithin (PL) was also used for comparative purposes, under the same conditions. INH-loaded liposomes were characterized for particle size, Zeta Potential (ZP), encapsulation efficiency (EE) and drug release. Physicochemical properties were investigated using thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction and Fourier transform infrared. INH-loaded CL-based liposomes showed high EE (79±2.45%). The average particle size (813.00±9.21nm) and ZP (-42.80±4.31mV) of this formulation are promising for the treatment of TB by pulmonary delivery. These findings suggest the possibility of encapsulating ATDs in liposomes made of crude soybean lecithin that is cheap and readily available. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Modifying glycyrrhetinic acid liposomes with liver-targeting ligand of galactosylated derivative: preparation and evaluations

    PubMed Central

    Cheng, Yi; Gao, Youheng; Zheng, Pinjing; Li, Chuangnan; Tong, Yidan; Li, Zhao; Luo, Wenhui; Chen, Zhao

    2017-01-01

    In this study, novel glycyrrhetinic acid (GA) liposomes modified with a liver-targeting galactosylated derivative ligand (Gal) were prepared using a film-dispersion method. To characterize the samples, particle size, zeta potential, drug loading, and encapsulation efficiency were performed. Moreover, plasma and tissues were pre-treated by liquid-liquid extraction and analyzed by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results showed that the mean residence times (MRTs) and the area under the curve (AUC) of GA liposomes with Gal (Gal-GA-LP), and GA liposomes (GA-LP) were higher than the GA solution (GA-S) in plasma. The tissue (liver) distribution of Gal-GA-LP was significantly different in contrast to GA-LP. The relative intake rate (Re) of Gal-GA-LP and GA-LP in the liver was 4.752 and 2.196, respectively. The peak concentration ratio (Ce) of Gal-GA-LP and GA-LP in the liver was 2.796 and 1.083, respectively. The targeting efficiency (Te) of Gal-GA-LP and GA-LP in the liver was 48.193% and 34.718%, respectively. Taken together, the results indicate that Gal-GA-LP is an ideal complex for liver-targeting, and has great potential application in the clinical treatment of hepatic diseases. Drug loading and releasing experiments also indicated that most liposomes are spherical structures and have good dispersity under physiologic conditions, which could prolong GA release efficiency in vitro. PMID:29254224

  19. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review

    PubMed Central

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms. PMID:29520143

  20. In Vivo Evaluation of Magnetic Targeting in Mice Colon Tumors with Ultra-Magnetic Liposomes Monitored by MRI.

    PubMed

    Thébault, Caroline J; Ramniceanu, Grégory; Michel, Aude; Beauvineau, Claire; Girard, Christian; Seguin, Johanne; Mignet, Nathalie; Ménager, Christine; Doan, Bich-Thuy

    2018-06-25

    The development of theranostic nanocarriers as an innovative therapy against cancer has been improved by targeting properties in order to optimize the drug delivery to safely achieve its desired therapeutic effect. The aim of this paper is to evaluate the magnetic targeting (MT) efficiency of ultra-magnetic liposomes (UML) into CT26 murine colon tumor by magnetic resonance imaging (MRI). Dynamic susceptibility contrast MRI was applied to assess the bloodstream circulation time. A novel semi-quantitative method called %I 0.25 , based on the intensity distribution in T 2 * -weighted MRI images was developed to compare the accumulation of T 2 contrast agent in tumors with or without MT. To evaluate the efficiency of magnetic targeting, the percentage of pixels under the intensity value I 0.25 (I 0.25  = 0.25(I max  - I min )) was calculated on the intensity distribution histogram. This innovative method of processing MRI images showed the MT efficiency by a %I 0.25 that was significantly higher in tumors using MT compared to passive accumulation, from 15.3 to 28.6 %. This methodology was validated by ex vivo methods with an iron concentration that is 3-fold higher in tumors using MT. We have developed a method that allows a semi-quantitative evaluation of targeting efficiency in tumors, which could be applied to different T 2 contrast agents.

  1. Sialylneolacto-N-tetraose c (LSTc)-bearing Liposomal Decoys Capture Influenza A Virus*

    PubMed Central

    Hendricks, Gabriel L.; Weirich, Kim L.; Viswanathan, Karthik; Li, Jing; Shriver, Zachary H.; Ashour, Joseph; Ploegh, Hidde L.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Finberg, Robert W.; Comolli, James C.; Wang, Jennifer P.

    2013-01-01

    Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains. PMID:23362274

  2. Mechanisms of the ultrasound-mediated intracellular delivery of liposomes and dextrans.

    PubMed

    Afadzi, Mercy; Strand, Sabina P; Nilssen, Esben A; Måsøy, Svein-Erik; Johansen, Tonni F; Hansen, Rune; Angelsen, Bjørn A; de L Davies, Catharina

    2013-01-01

    The mechanism involved in the ultrasoundenhanced intracellular delivery of fluorescein-isothiocyanate (FITC)-dextran (molecular weight 4 to 2000 kDa) and liposomes containing doxorubicin (Dox) was studied using HeLa cells and an ultrasound transducer at 300 kHz, varying the acoustic power. The cellular uptake and cell viability were measured using flow cytometry and confocal microscopy. The role of endocytosis was investigated by inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis. Microbubbles were found to be required during ultrasound treatment to obtain enhanced cellular uptake. The percentage of cells internalizing Dox and dextran increased with increasing mechanical index. Confocal images and flow cytometric analysis indicated that the liposomes were disrupted extracellularly and that released Dox was taken up by the cells. The percentage of cells internalizing dextran was independent of the molecular weight of dextrans, but the amount of the small 4-kDa dextran molecules internalized per cell was higher than for the other dextrans. The inhibition of endocytosis during ultrasound exposure resulted in a significant decrease in cellular uptake of dextrans. Therefore, the improved uptake of Dox and dextrans may be a result of both sonoporation and endocytosis.

  3. Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes.

    PubMed

    Graham, Susan M; Carlisle, Robert; Choi, James J; Stevenson, Mark; Shah, Apurva R; Myers, Rachel S; Fisher, Kerry; Peregrino, Miriam-Bazan; Seymour, Len; Coussios, Constantin C

    2014-03-28

    The encapsulation of cytotoxic drugs within liposomes enhances pharmacokinetics and allows passive accumulation within tumors. However, liposomes designed to achieve good stability during the delivery phase often have compromised activity at the target site. This problem of inefficient and unpredictable drug release is compounded by the present lack of low-cost, non-invasive methods to measure such release. Here we show that focused ultrasound, used at pressures similar to those applied during diagnostic ultrasound scanning, can be utilised to both trigger and monitor release of payload from liposomes. Notably, drug release was influenced by liposome composition and the presence of SonoVue® microbubbles, which provided the nuclei for the initiation of an event known as inertial cavitation. In vitro studies demonstrated that liposomes formulated with a high proportion of 1,2 distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) released up to 30% of payload following ultrasound exposure in the presence of SonoVue®, provided that the exposure created sufficient inertial cavitation events, as characterised by violent bubble collapse and the generation of broadband acoustic emissions. In contrast a 'Doxil'-like liposome formulation gave no such triggered release. In pre-clinical studies, ultrasound was used as a non-invasive, targeted stimulus to trigger a 16-fold increase in the level of payload release within tumors following intravenous delivery. The inertial cavitation events driving this release could be measured remotely in real-time and were a reliable predictor of drug release. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.

    PubMed

    Schroeder, Avi; Kost, Joseph; Barenholz, Yechezkel

    2009-11-01

    Ultrasound is used in many medical applications, such as imaging, blood flow analysis, dentistry, liposuction, tumor and fibroid ablation, and kidney stone disruption. In the past, low frequency ultrasound (LFUS) was the main method to downsize multilamellar (micron range) vesicles into small (nano scale) unilamellar vesicles. Recently, the ability of ultrasound to induce localized and controlled drug release from liposomes, utilizing thermal and/or mechanical effects, has been shown. This review, deals with the interaction of ultrasound with liposomes, focusing mainly on the mechanical mechanism of drug release from liposomes using LFUS. The effects of liposome lipid composition and physicochemical properties, on one hand, and of LFUS parameters, on the other, on liposomal drug release, are addressed. Acoustic cavitation, in which gas bubbles oscillate and collapse in the medium, thereby introducing intense mechanical strains, increases release substantially. We suggest that the mechanism of release may involve formation and collapse of small gas nuclei in the hydrophobic region of the lipid bilayer during exposure to LFUS, thereby inducing the formation of transient pores through which drugs are released. Introducing PEG-lipopolymers to the liposome bilayer enhances responsivity to LFUS, most likely due to absorption of ultrasonic energy by the highly hydrated PEG headgroups. The presence of amphiphiles, such as phospholipids with unsaturated acyl chains, which destabilize the lipid bilayer, also increases liposome susceptibility to LFUS. Application of these principles to design highly LFUS-responsive liposomes is discussed.

  5. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors

    PubMed Central

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-01-01

    Purpose The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer (PCa) tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in PCa cells. The junction of theTMPRSS2 and ERG derived portions of the fusion mRNA constitutes a cancer specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low toxicity treatment for PCa. Experimental Design We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (Type III or Type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of PCa cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. Results The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Conclusions Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with PCa. PMID:23052253

  6. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors.

    PubMed

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-12-15

    The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in prostate cancer cells. The junction of theTMPRSS2- and ERG-derived portions of the fusion mRNA constitutes a cancer-specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low-toxicity treatment for prostate cancer. We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (type III or type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of prostate cancer cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with prostate cancer. ©2012 AACR.

  7. Targeted Drug Delivery Based on Gold Nanoparticle Derivatives.

    PubMed

    Gholipourmalekabadi, Mazaher; Mobaraki, Mohammadmahdi; Ghaffari, Maryam; Zarebkohan, Amir; Omrani, Vahid Fallah; Urbanska, Aleksandra M; Seifalian, Alexander

    2017-01-01

    Drug delivery systems are effective and attractive methods which allow therapeutic substances to be introduced into the body more effectively and safe by having tunable delivery rate and release target site. Gold nanoparticles (AuNPs) have a myriad of favorable physical, chemical, optical, thermal and biological properties that make them highly suitable candidates as non-toxic carriers for drug and gene delivery. The surface modifications of AuNPs profoundly improve their circulation, minimize aggregation rates, enhance attachment to therapeutic molecules and target agents due to their nano range size which further increases their ability to cross cell membranes and reduce overall cytotoxicity. This comprehensive article reviews the applications of the AuNPs in drug delivery systems along with their corresponding surface modifications. The highlighting results obtained from the preclinical trial are promising and next five years have huge possibility move to the clinical setting. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Designer lipids for drug delivery: from heads to tails

    PubMed Central

    Kohli, Aditya G.; Kierstead, Paul H.; Venditto, Vincent J.; Walsh, Colin L.; Szoka, Francis C.

    2014-01-01

    For four decades, liposomes composed of both naturally occurring and synthetic lipids have been investigated as delivery vehicles for low molecular weight and macromolecular drugs. These studies paved the way for the clinical and commercial success of a number of liposomal drugs, each of which required a tailored formulation; one liposome size does not fit all drugs! Instead, the physicochemical properties of the liposome must be matched to the pharmacology of the drug. An extensive biophysical literature demonstrates that varying lipid composition can influence the size, membrane stability, in vivo interactions, and drug release properties of a liposome. In this review we focus on recently described synthetic lipid headgroups, linkers and hydrophobic domains that can provide control over the intermolecular forces, phase preference, and macroscopic behavior of liposomes. These synthetic lipids further our understanding of lipid biophysics, promote targeted drug delivery, and improve liposome stability. We further highlight the immune reactivity of novel synthetic headgroups as a key design consideration. For instance it was originally thought that synthetic PEGylated lipids were immunologically inert; however, it’s been observed that under certain conditions PEGylated lipids induce humoral immunity. Such immune activation may be a limitation to the use of other engineered lipid headgroups for drug delivery. In addition to the potential immunogenicity of engineered lipids, future investigations on liposome drugs in vivo should pay particular attention to the location and dynamics of payload release. PMID:24816069

  9. Nuclear and Fluorescent Labeled PD-1-Liposome-DOX-64Cu/IRDye800CW Allows Improved Breast Tumor Targeted Imaging and Therapy.

    PubMed

    Du, Yang; Liang, Xiaolong; Li, Yuan; Sun, Ting; Jin, Zhengyu; Xue, Huadan; Tian, Jie

    2017-11-06

    The overexpression of programmed cell death-1 (PD-1) in tumors as breast cancer makes it a possible target for cancer imaging and therapy. Advances in molecular imaging, including radionuclide imaging and near-infrared fluorescence (NIRF) imaging, enable the detection of tumors with high sensitivity. In this study, we aim to develop a novel PD-1 antibody targeted positron emission tomography (PET) and NIRF labeled liposome loaded with doxorubicin (DOX) and evaluate its application for in vivo cancer imaging and therapy. IRDye800CW and 64 Cu were conjugated to liposomes with PD-1 antibody labeling, and DOX was inside the liposomes to form theranostic nanoparticles. The 4T1 tumors were successfully visualized with PD-1-Liposome-DOX- 64 Cu/IRDye800CW using NIRF/PET imaging. The bioluminescent imaging (BLI) results showed that tumor growth was significantly inhibited in the PD-1-Liposome-DOX-treated group than the IgG control. Our results highlight the potential of using dual-labeled theranostic PD-1 mAb-targeted Liposome-DOX- 64 Cu/IRDye800CW for the management of breast tumor.

  10. Inhibition of hexokinase-2 with targeted liposomal 3-bromopyruvate in an ovarian tumor spheroid model of aerobic glycolysis

    PubMed Central

    Gandham, Srujan Kumar; Talekar, Meghna; Singh, Amit; Amiji, Mansoor M

    2015-01-01

    Background The objective of this study was to evaluate the expression levels of glycolytic markers, especially hexokinase-2 (HK2), using a three-dimensional multicellular spheroid model of human ovarian adenocarcinoma (SKOV-3) cells and to develop an epidermal growth factor receptor-targeted liposomal formulation for improving inhibition of HK2 and the cytotoxicity of 3-bromopyruvate (3-BPA). Methods Multicellular SKOV-3 tumor spheroids were developed using the hanging drop method and expression levels of glycolytic markers were examined. Non-targeted and epidermal growth factor receptor-targeted liposomal formulations of 3-BPA were formulated and characterized. Permeability and cellular uptake of the liposomal formulations in three-dimensional SKOV-3 spheroids was evaluated using confocal microscopy. The cytotoxicity and HK2 inhibition potential of solution form of 3-BPA was compared to the corresponding liposomal formulation by using cell proliferation and HK2 enzymatic assays. Results SKOV-3 spheroids were reproducibly developed using the 96-well hanging drop method, with an average size of 900 µm by day 5. HK2 enzyme activity levels under hypoxic conditions were found to be higher than under normoxic conditions (P<0.0001, Student’s t-test, unpaired and two-tailed). Liposomal formulations (both non-targeted and targeted) of 3-BPA showed a more potent inhibitory effect (P<0.001, Student’s t-test, unpaired and two-tailed) at a dose of 50 µM than the aqueous solution form at 3, 6, and 24 hours post administration. Similarly, the cytotoxic activity 3-BPA at various concentrations (10 µM–100 µM) showed that the liposomal formulations had an enhanced cytotoxic effect of 2–5-fold (P<0.0001, Student’s t-test, unpaired and two-tailed) when compared to the aqueous solution form for both 10 µM and 25 µM concentrations. Conclusion SKOV-3 spheroids developed by the hanging drop method can be used as a tumor aerobic glycolysis model for evaluation of therapies

  11. Inhibition of hexokinase-2 with targeted liposomal 3-bromopyruvate in an ovarian tumor spheroid model of aerobic glycolysis.

    PubMed

    Gandham, Srujan Kumar; Talekar, Meghna; Singh, Amit; Amiji, Mansoor M

    2015-01-01

    The objective of this study was to evaluate the expression levels of glycolytic markers, especially hexokinase-2 (HK2), using a three-dimensional multicellular spheroid model of human ovarian adenocarcinoma (SKOV-3) cells and to develop an epidermal growth factor receptor-targeted liposomal formulation for improving inhibition of HK2 and the cytotoxicity of 3-bromopyruvate (3-BPA). Multicellular SKOV-3 tumor spheroids were developed using the hanging drop method and expression levels of glycolytic markers were examined. Non-targeted and epidermal growth factor receptor-targeted liposomal formulations of 3-BPA were formulated and characterized. Permeability and cellular uptake of the liposomal formulations in three-dimensional SKOV-3 spheroids was evaluated using confocal microscopy. The cytotoxicity and HK2 inhibition potential of solution form of 3-BPA was compared to the corresponding liposomal formulation by using cell proliferation and HK2 enzymatic assays. SKOV-3 spheroids were reproducibly developed using the 96-well hanging drop method, with an average size of 900 µm by day 5. HK2 enzyme activity levels under hypoxic conditions were found to be higher than under normoxic conditions (P<0.0001, Student's t-test, unpaired and two-tailed). Liposomal formulations (both non-targeted and targeted) of 3-BPA showed a more potent inhibitory effect (P<0.001, Student's t-test, unpaired and two-tailed) at a dose of 50 µM than the aqueous solution form at 3, 6, and 24 hours post administration. Similarly, the cytotoxic activity 3-BPA at various concentrations (10 µM-100 µM) showed that the liposomal formulations had an enhanced cytotoxic effect of 2-5-fold (P<0.0001, Student's t-test, unpaired and two-tailed) when compared to the aqueous solution form for both 10 µM and 25 µM concentrations. SKOV-3 spheroids developed by the hanging drop method can be used as a tumor aerobic glycolysis model for evaluation of therapies targeting the glycolytic pathway in cancer

  12. Liposomes as lubricants: beyond drug delivery.

    PubMed

    Goldberg, Ronit; Klein, Jacob

    2012-05-01

    In this paper we review recent work (Goldberg et al., 2011a,b) on a new use for phosphatidylcholine liposomes: as ultra-efficient boundary lubricants at up to the highest physiological pressures. Using a surface force balance, we have measured the normal and shear interactions as a function of surface separation between layers of hydrogenated soy phophatidylcholine (HSPC) small unilamellar vesicles (SUVs) adsorbed from dispersion, at both pure water and physiologically high salt concentrations of 0.15 M NaNO(3). Cryo-Scanning Electron Microscopy shows each surface to be coated by a close-packed HSPC-SUV layer with an over-layer of liposomes on top. The shear forces reveal strikingly low friction coefficients down to 2×10(-5) in pure water system or 6×10(-4) in the 150 mM salt system, up to contact pressures of at least 12 MPa (pure water) or 6 MPa (high salt), comparable with those in the major joints. This low friction is attributed to the hydration lubrication mechanism arising from rubbing of the highly hydrated phosphocholine-headgroup layers exposed at the outer surface of each liposome, and provides support for the conjecture that phospholipids may play a significant role in biological lubrication. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Alendronate-coated long-circulating liposomes containing 99mtechnetium-ceftizoxime used to identify osteomyelitis

    PubMed Central

    Ferreira, Diego dos Santos; Boratto, Fernanda Alves; Cardoso, Valbert Nascimento; Serakides, Rogéria; Fernandes, Simone Odília; Ferreira, Lucas Antônio Miranda; Oliveira, Mônica Cristina

    2015-01-01

    Osteomyelitis is a progressive destruction of bones caused by microorganisms. Inadequate or absent treatment increases the risk of bone growth inhibition, fractures, and sepsis. Among the diagnostic techniques, functional images are the most sensitive in detecting osteomyelitis in its early stages. However, these techniques do not have adequate specificity. By contrast, radiolabeled antibiotics could improve selectivity, since they are specifically recognized by the bacteria. The incorporation of these radiopharmaceuticals in drug-delivery systems with high affinity for bones could improve the overall uptake. In this work, long-circulating and alendronate-coated liposomes containing 99mtechnetium-radiolabeled ceftizoxime were prepared and their ability to identify infectious foci (osteomyelitis) in animal models was evaluated. The effect of the presence of PEGylated lipids and surface-attached alendronate was evaluated. The bone-targeted long-circulating liposomal 99mtechnetium–ceftizoxime showed higher uptake in regions of septic inflammation than did the non-long-circulating and/or alendronate-non-coated liposomes, showing that both the presence of PEGylated lipids and alendronate coating are important to optimize the bone targeting. Scintigraphic images of septic or aseptic inflammation-bearing Wistar rats, as well as healthy rats, were acquired at different time intervals after the intravenous administration of these liposomes. The target-to-non-target ratio proved to be significantly higher in the osteomyelitis-bearing animals for all investigated time intervals. Biodistribution studies were also performed after the intravenous administration of the formulation in osteomyelitis-bearing animals. A significant amount of liposomes were taken up by the organs of the mononuclear phagocyte system (liver and spleen). Intense renal excretion was also observed during the entire experiment period. Moreover, the liposome uptake by the infectious focus was significantly

  14. Safety of real-time convection-enhanced delivery of liposomes to primate brain: a long-term retrospective.

    PubMed

    Krauze, Michal T; Vandenberg, Scott R; Yamashita, Yoji; Saito, Ryuta; Forsayeth, John; Noble, Charles; Park, John; Bankiewicz, Krystof S

    2008-04-01

    Convection-enhanced delivery (CED) is gaining popularity in direct brain infusions. Our group has pioneered the use of liposomes loaded with the MRI contrast reagent as a means to track and quantitate CED in the primate brain through real-time MRI. When co-infused with therapeutic nanoparticles, these tracking liposomes provide us with unprecedented precision in the management of infusions into discrete brain regions. In order to translate real-time CED into clinical application, several important parameters must be defined. In this study, we have analyzed all our cumulative animal data to answer a number of questions as to whether real-time CED in primates depends on concentration of infusate, is reproducible, allows prediction of distribution in a given anatomic structure, and whether it has long term pathological consequences. Our retrospective analysis indicates that real-time CED is highly predictable; repeated procedures yielded identical results, and no long-term brain pathologies were found. We conclude that introduction of our technique to clinical application would enhance accuracy and patient safety when compared to current non-monitored delivery trials.

  15. Carrier-Based Drug Delivery System for Treatment of Acne

    PubMed Central

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  16. Fluorescence Characterization of Gold Modified Liposomes with Antisense N-myc DNA Bound to the Magnetisable Particles with Encapsulated Anticancer Drugs (Doxorubicin, Ellipticine and Etoposide).

    PubMed

    Skalickova, Sylvie; Nejdl, Lukas; Kudr, Jiri; Ruttkay-Nedecky, Branislav; Jimenez, Ana Maria Jimenez; Kopel, Pavel; Kremplova, Monika; Masarik, Michal; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-02-25

    Liposome-based drug delivery systems hold great potential for cancer therapy. The aim of this study was to design a nanodevice for targeted anchoring of liposomes (with and without cholesterol) with encapsulated anticancer drugs and antisense N-myc gene oligonucleotide attached to its surface. To meet this main aim, liposomes with encapsulated doxorubicin, ellipticine and etoposide were prepared. They were further characterized by measuring their fluorescence intensity, whereas the encapsulation efficiency was estimated to be 16%. The hybridization process of individual oligonucleotides forming the nanoconstruct was investigated spectrophotometrically and electrochemically. The concentrations of ellipticine, doxorubicin and etoposide attached to the nanoconstruct in gold nanoparticle-modified liposomes were found to be 14, 5 and 2 µg·mL(-1), respectively. The study succeeded in demonstrating that liposomes are suitable for the transport of anticancer drugs and the antisense oligonucleotide, which can block the expression of the N-myc gene.

  17. Oral delivery of peptides and proteins using lipid-based drug delivery systems.

    PubMed

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-10-01

    In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted. The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins. Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.

  18. Evaluation of antitumor activity and cardiac toxicity of a bone-targeted ph-sensitive liposomal formulation in a bone metastasis tumor model in mice.

    PubMed

    Dos Santos Ferreira, Diego; Jesus de Oliveira Pinto, Bruno Luís; Kumar, Vidhya; Cardoso, Valbert Nascimento; Fernandes, Simone Odília; Souza, Cristina Maria; Cassali, Geovanni Dantas; Moore, Anna; Sosnovik, David E; Farrar, Christian T; Leite, Elaine Amaral; Alves, Ricardo José; de Oliveira, Mônica Cristina; Guimarães, Alexander Ramos; Caravan, Peter

    2017-07-01

    Chemotherapy for bone tumors is a major challenge because of the inability of therapeutics to penetrate dense bone mineral. We hypothesize that a nanostructured formulation with high affinity for bone could deliver drug to the tumor while minimizing off-target toxicity. Here, we evaluated the efficacy and toxicity of a novel bone-targeted, pH-sensitive liposomal formulation containing doxorubicin in an animal model of bone metastasis. Biodistribution studies with the liposome showed good uptake in tumor, but low accumulation of doxorubicin in the heart. Mice treated with the bone-targeted liposome formulation showed a 70% reduction in tumor volume, compared to 35% reduction for free doxorubicin at the same dose. Both cardiac toxicity and overall mortality were significantly lower for animals treated with the bone-targeted liposomes compared to free drug. Bone-targeted, pH-sensitive, doxorubicin containing liposomes represent a promising approach to selectively delivering doxorubicin to bone tumors while minimizing cardiac toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. pH-Cleavable Nucleoside Lipids: A New Paradigm for Controlling the Stability of Lipid-Based Delivery Systems.

    PubMed

    Oumzil, Khalid; Benizri, Sébastien; Tonelli, Giovanni; Staedel, Cathy; Appavoo, Ananda; Chaffanet, Max; Navailles, Laurence; Barthélémy, Philippe

    2015-11-01

    Lipid-based delivery systems are an established technology with considerable clinical acceptance and several applications in human. Herein, we report the design, synthesis and evaluation of novel orthoester nucleoside lipids (ONLs) for the modulation of liposome stability. The ONLs contain head groups with 3'-orthoester nucleoside derivatives featuring positive or negative charges. The insertion of the orthoester function in the NL structures allows the formation of pH-sensitive liposomes. ONL-based liposomes can be hydrolyzed to provide nontoxic products, including nucleoside derivatives and hexadecanol. To allow the release to be tunable at different hydrolysis rates, the charge of the polar head structure is modulated, and the head group can be released at a biologically relevant pH. Crucially, when ONLs are mixed with natural phosphocholine lipids (PC), the resultant liposome evolves toward the formation of a hexadecanol/PC lamellar system. Biological evaluation shows that stable nucleic acid lipid particles (SNALPs) formulated with ONLs and siRNAs can effectively enter into tumor cells and release their nucleic acid payload in response to an intracellular acidic environment. This results in a much higher antitumor activity than conventional SNALPs. The ability to use pH-cleavable nucleolipids to control the stability of lipid-based delivery systems represents a promising approach for the intracellular delivery of drug cargos. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents

    PubMed Central

    Zhou, Zhiguo

    2013-01-01

    Fullerene medicine is a new but rapidly growing research subject. Fullerene has a number of desired structural, physical and chemical properties to be adapted for biological use including antioxidants, anti-aging, anti-inflammation, photodynamic therapy, drug delivery, and magnetic resonance imaging contrast agents. Chemical functionalization of fullerenes has led to several interesting compounds with very promising preclinical efficacy, pharmacokinetic and safety data. However, there is no clinical evaluation or human use except in fullerene-based cosmetic products for human skincare. This article summarizes recent advances in liposome formulation of fullerenes for the use in therapeutics and molecular imaging. PMID:24300561

  1. Surface functionalization of liposomes with proteins and carbohydrates for use in anti-cancer applications

    NASA Astrophysics Data System (ADS)

    Platt, Virginia M.

    Liposomes can be used to exploit the altered biology of cancer thereby increasing delivery of liposome-associated anti-cancer drugs. In this dissertation, I explore methods that utilize the unique cancer expression of the polymeric glycosaminoglycan hyaluronan (HA) and the HA receptor CD44 to target liposomes to tumors, using liposomes functionalized with proteins or oligosaccharides on their surface. To make it easier to prepare protein-functionalized liposomes, a non-covalent protein/liposome association method based upon metal chelation/his 6 interaction was devised and characterized. I evaluated non-covalent attachment of the prodrug converting enzyme yeast cytosine deaminase, the far-red fluorescent protein mKate, two antigens ovalbumin and the membrane proximal region of an HIV GAG and hyaluronidase, a HA-degrading enzyme. In Chapter 2, I describe the synthesis of hyaluronan-oligosaccharide (HA-O) lipid conjugates and their incorporation into liposomes to target CD44-overexpressing cancer cells. HA-O ligands of defined-length, up to 10 monosaccharides, were attached to lipids via various linkers by reductive amination. The HA-lipids were easily incorporated into liposomes but did not mediate binding of liposomes to CD44 overexpressing cells. In Chapter 3, I evaluate the capacity of tris-NTA-Ni-lipids incorporated within a liposome bilayer to associate with his6-tagged proteins. Tris-NTA-lipids of differing structures and avidities were used to associate yeast cytosine deaminase and mKate to the surface of liposomes. Two tris-NTA-lipids and a mono-NTA lipid associated his-tagged proteins to a 1:1 molar ratio in solution. The proteins remained active while associated with the liposome surface. When challenged in vitro with fetal calf serum, tris-NTA-containing liposomes retained his-tagged proteins longer than mono-NTA. However, the tris-NTA/his6 interaction was found to be in a dynamic state; free yeast cytosine deaminase rapidly competed with pre-bound m

  2. Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids.

    PubMed

    Mo, Ran; Sun, Qiong; Li, Nan; Zhang, Can

    2013-04-01

    pH-sensitive liposomes (HHG2C(18)-L and PEGHG2C(18)-L) based on zwitterionic oligopeptide lipids as anticancer drug carriers were developed and evaluated for effective intracellular delivery and enhanced antitumor activity. The amino acid-based lipids, 1,5-dioctadecyl-l-glutamyl 2-histidyl-hexahydrobenzoic acid (HHG2C(18)) and 1,5-distearyl N-(N-α-(4-mPEG2000) butanedione)-histidyl-l-glutamate (PEGHG2C(18)), were synthesized, which have the multistage pH-response to tumor microenvironmental pH (pH(e), pH 6.0-7.0) and endosomal/lysosomal pH (pH(i), pH 4.0-6.0) successively. HHG2C(18)-L contains HHG2C(18), while PEGHG2C(18)-L includes HHG2C(18) and PEGHG2C(18). Both of them displayed the capability of charge conversion to the surrounding pH. The zeta potentials of HHG2C(18)-L and PEGHG2C(18)-L were negative at pH 7.4, whereas positive at pH 6.5 and more positive at lower pH. Coumarin 6-loaded HHG2C(18)-L (C6/HHG2C(18)-L) and PEGHG2C(18)-L (C6/PEGHG2C(18)-L) showed higher tumor cellular uptake due to electrostatic absorptive endocytosis at pH(e) (pH 6.5), produced proton sponge effect for endo-lysosomal escape, and accumulated to the mitochondria based on stronger positive charge by the hydrolysis of a pH-sensitive linker at pH(i) (pH 5.5 and pH 4.5). Furthermore, temsirolimus (CCI-779)-loaded HHG2C(18)-L (CCI-779/HHG2C(18)-L) and PEGHG2C(18)-L (CCI-779/PEGHG2C(18)-L) had significantly higher antiproliferative and apoptosis inducing effects toward the human renal carcinoma (A498) cells at pH 6.5 relative to that at pH 7.4. The half maximal inhibitory concentration (IC50) of CCI-779/HHG2C(18)-L and CCI-779/PEGHG2C(18)-L were about 3 μg/mL and 5 μg/mL at pH 6.5, 1.67-fold and 1.60-fold improved relative to that at pH 7.4, respectively. The total apoptotic ratio of CCI-779/HHG2C(18)-L and CCI-779/PEGHG2C(18)-L increased from 9.90% and 7.78% at pH 7.4 to 19.53% and 12.10% at pH 6.5, respectively. In vivo, CCI-779/PEGHG2C(18)-L after intravenous administration presented

  3. Liposomal nanomedicines.

    PubMed

    Fenske, David B; Cullis, Pieter R

    2008-01-01

    Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines, represent an advanced class of drug delivery systems, with several formulations presently on the market and many more in clinical trials. Over the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs (such as anticancer drugs and antibiotics) and the new genetic drugs (plasmid DNA containing therapeutic genes, antisense oligonucleotides and small interfering RNA) within LNs. If the LNs possess certain properties, they tend to accumulate at sites of disease, such as tumours, where the endothelial layer is 'leaky' and allows extravasation of particles with small diameters. These properties include a diameter centred on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (> 6 h) circulation lifetime. These properties permit the LNs to protect their contents during circulation, prevent contact with healthy tissues, and accumulate at sites of disease. The authors discuss recent advances in this field involving conventional anticancer drugs, as well as applications involving gene delivery, stimulation of the immune system and silencing of unwanted gene expression. Liposomal nanomedicines have the potential to offer new treatments in such areas as cancer therapy, vaccine development and cholesterol management.

  4. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy.

    PubMed

    Saengkrit, Nattika; Saesoo, Somsak; Srinuanchai, Wanwisa; Phunpee, Sarunya; Ruktanonchai, Uracha Rungsardthong

    2014-02-01

    The delivery of curcumin has been explored in the form of liposomal nanoparticles to treat various cancer cells. Since curcumin is water insoluble and an effective delivery route is through encapsulation in liposomes, which were modified with three components of DDAB, cholesterol and non-ionic surfactant. The purpose of this study was to establish a critical role of DDAB in liposomes containing curcumin at cellular response against two types of cell lines (HeLa and SiHa). Here, we demonstrate that DDAB is a potent inducer of cell uptake and cell death in both cell lines. The enhanced cell uptake was found on DDAB-containing liposome, but not on DDAB-free liposome. However, the cytotoxicity of DDAB-containing liposomes was high and needs to be optimized. The cytotoxicity of liposomal curcumin was more pronounced than free curcumin in both cells, suggesting the benefits of using nanocarrier. In addition, the anticancer efficiency and apoptosis effect of the liposomal curcumin formulations with DDAB was higher than those of DDAB-free liposomes. Therefore curcumin loaded liposomes indicate significant potential as delivery vehicles for the treatment of cervical cancers. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Characteristics of sequential targeting of brain glioma for transferrin-modified cisplatin liposome.

    PubMed

    Lv, Qing; Li, Li-Min; Han, Min; Tang, Xin-Jiang; Yao, Jin-Na; Ying, Xiao-Ying; Li, Fan-Zhu; Gao, Jian-Qing

    2013-02-28

    Methods on how to improve the sequential targeting of glioma subsequent to passing of drug through the blood-brain barrier (BBB) have been occasionally reported. However, the characteristics involved are poorly understood. In the present study, cisplatin (Cis) liposome (lipo) was modified with transferrin (Tf) to investigate the characteristics of potential sequential targeting to glioma. In bEnd3/C6 co-culture BBB models, higher transport efficiency across the BBB and cytotoxicity in basal C6 cells induced by Cis-lipo(Tf) than Cis-lipo and Cis-solution, suggest its sequential targeting effect. Interestingly, similar liposomal morphology as that of donor compartment was first demonstrated in the receptor solution of BBB models. Meanwhile, a greater acquisition in the lysosome of bEnd3, distributed sequentially into the nucleus of C6 cells were found for the Cis-lipo(Tf). Pre-incubation of chlorpromazine and Tf inhibited this process, indicating that a clathrin-dependent endocytosis is involved in the transport of Cis-lipo(Tf) across the BBB. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Liposomal adjuvant development for leishmaniasis vaccines.

    PubMed

    Askarizadeh, Anis; Jaafari, Mahmoud Reza; Khamesipour, Ali; Badiee, Ali

    2017-08-01

    Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis.

  7. Liposomal adjuvant development for leishmaniasis vaccines

    PubMed Central

    Askarizadeh, Anis; Jaafari, Mahmoud Reza; Khamesipour, Ali; Badiee, Ali

    2017-01-01

    Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis. PMID:29201374

  8. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats☆

    PubMed Central

    Gradauer, K.; Barthelmes, J.; Vonach, C.; Almer, G.; Mangge, H.; Teubl, B.; Roblegg, E.; Dünnhaupt, S.; Fröhlich, E.; Bernkop-Schnürch, A.; Prassl, R.

    2013-01-01

    The aim of the present study was the in vivo evaluation of thiomer-coated liposomes for an oral application of peptides. For this purpose, salmon calcitonin was chosen as a model drug and encapsulated within liposomes. Subsequently, the drug loaded liposomes were coated with either chitosan–thioglycolic acid (CS–TGA) or an S-protected version of the same polymer (CS–TGA–MNA), leading to an increase in the particle size of about 500 nm and an increase in the zeta potential from approximately − 40 mV to a maximum value of about + 44 mV, depending on the polymer. Coated liposomes were demonstrated to effectively penetrate the intestinal mucus layer where they came in close contact with the underlying epithelium. To investigate the permeation enhancing properties of the coated liposomes ex vivo, we monitored the transport of fluoresceinisothiocyanate-labeled salmon calcitonin (FITC-sCT) through rat small intestine. Liposomes coated with CS–TGA–MNA showed the highest effect, leading to a 3.8-fold increase in the uptake of FITC-sCT versus the buffer control. In vivo evaluation of the different formulations was carried out by the oral application of 40 μg of sCT per rat, either encapsulated within uncoated liposomes, CS–TGA-coated liposomes or CS–TGA–MNA-coated liposomes, or given as a solution serving as negative control. The blood calcium level was monitored over a time period of 24 h. The highest reduction in the blood calcium level, to a minimum of 65% of the initial value after 6 h, was achieved for CS–TGA–MNA-coated liposomes. Comparing the areas above curves (AAC) of the blood calcium levels, CS–TGA–MNA-coated liposomes led to an 8.2-fold increase compared to the free sCT solution if applied orally in the same concentration. According to these results, liposomes coated with S-protected thiomers have demonstrated to be highly valuable carriers for enhancing the oral bioavailability of salmon calcitonin. PMID:24140721

  9. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats.

    PubMed

    Gradauer, K; Barthelmes, J; Vonach, C; Almer, G; Mangge, H; Teubl, B; Roblegg, E; Dünnhaupt, S; Fröhlich, E; Bernkop-Schnürch, A; Prassl, R

    2013-12-28

    The aim of the present study was the in vivo evaluation of thiomer-coated liposomes for an oral application of peptides. For this purpose, salmon calcitonin was chosen as a model drug and encapsulated within liposomes. Subsequently, the drug loaded liposomes were coated with either chitosan-thioglycolic acid (CS-TGA) or an S-protected version of the same polymer (CS-TGA-MNA), leading to an increase in the particle size of about 500 nm and an increase in the zeta potential from approximately -40 mV to a maximum value of about +44 mV, depending on the polymer. Coated liposomes were demonstrated to effectively penetrate the intestinal mucus layer where they came in close contact with the underlying epithelium. To investigate the permeation enhancing properties of the coated liposomes ex vivo, we monitored the transport of fluoresceinisothiocyanate-labeled salmon calcitonin (FITC-sCT) through rat small intestine. Liposomes coated with CS-TGA-MNA showed the highest effect, leading to a 3.8-fold increase in the uptake of FITC-sCT versus the buffer control. In vivo evaluation of the different formulations was carried out by the oral application of 40 μg of sCT per rat, either encapsulated within uncoated liposomes, CS-TGA-coated liposomes or CS-TGA-MNA-coated liposomes, or given as a solution serving as negative control. The blood calcium level was monitored over a time period of 24h. The highest reduction in the blood calcium level, to a minimum of 65% of the initial value after 6h, was achieved for CS-TGA-MNA-coated liposomes. Comparing the areas above curves (AAC) of the blood calcium levels, CS-TGA-MNA-coated liposomes led to an 8.2-fold increase compared to the free sCT solution if applied orally in the same concentration. According to these results, liposomes coated with S-protected thiomers have demonstrated to be highly valuable carriers for enhancing the oral bioavailability of salmon calcitonin. © 2013. Published by Elsevier B.V. All rights reserved.

  10. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery.

    PubMed

    Dheer, Divya; Arora, Divya; Jaglan, Sundeep; Rawal, Ravindra K; Shankar, Ravi

    2017-01-01

    Polysaccharides, an important class of biological polymers, are effectively bioactive, nontoxic, hydrophilic, biodegradable and offer a wide diversity in structure and properties. These can be easily modified chemically and biochemically to enhance the bioadhesion with biological tissues, better stability and can improve bioavailability of drugs. Most of the chemotherapeutic drugs have a narrow therapeutic index, slow drug delivery systems and poor water solubility that usually proves toxic to human bodies. The inherent biocompatibility of these biopolymers have shown enhancement of solubility of some chemotherapeutic drugs which also leads to the preparation of nanomaterials for the delivery of antibiotics, anticancer, proteins, peptides and nucleic acids using several routes of administration. Recently, synthesis and research on polysaccharides based nanomaterials have gained enormous attention as one of the most applicable resources in nanomedicine area. This review article will provide a specific emphasis on polysaccharides as natural biomaterials for targeted anticancer drug delivery system.

  11. Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics.

    PubMed

    du Plessis, Lissinda H; Marais, Etienne B; Mohammed, Faruq; Kotzé, Awie F

    2014-01-01

    In the last decades several new biotechnologically-based therapeutics have been developed due to progress in genetic engineering. A growing challenge facing pharmaceutical scientists is formulating these compounds into oral dosage forms with adequate bioavailability. An increasingly popular approach to formulate biotechnology-based therapeutics is the use of lipid based formulation technologies. This review highlights the importance of lipid based drug delivery systems in the formulation of oral biotechnology based therapeutics including peptides, proteins, DNA, siRNA and vaccines. The different production procedures used to achieve high encapsulation efficiencies of the bioactives are discussed, as well as the factors influencing the choice of excipient. Lipid based colloidal drug delivery systems including liposomes and solid lipid nanoparticles are reviewed with a focus on recent advances and updates. We further describe microemulsions and self-emulsifying drug delivery systems and recent findings on bioactive delivery. We conclude the review with a few examples on novel lipid based formulation technologies.

  12. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis.

    PubMed

    Togami, Kohei; Miyao, Aki; Miyakoshi, Kei; Kanehira, Yukimune; Tada, Hitoshi; Chono, Sumio

    2015-01-01

    In the present in vitro study, we assessed the delivery of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor (tbFGF) to lung fibroblasts and investigated the anti-fibrotic effect of the drug. The tbFGF peptide, KRTGQYKLC, was used to modify the surface of liposomes (tbFGF-liposomes). We used the thin-layer evaporation method, followed by sonication, to prepare tbFGF-liposomes containing pirfenidone. The cellular accumulation of tbFGF-liposomes was 1.7-fold greater than that of non-modified liposomes in WI-38 cells used as a model of lung fibroblasts. Confocal laser scanning microscopy showed that tbFGF-liposomes were widely localized in WI-38 cells. The inhibitory effects of pirfenidone incorporated into tbFGF-liposomes on transforming growth factor-β1 (TGF-β1)-induced collagen synthesis in WI-38 cells were evaluated by measuring the level of intracellular hydroxyproline, a major component of the protein collagen. Pirfenidone incorporated into tbFGF-liposomes at concentrations of 10, 30, and 100 µM significantly decreased the TGF-β1-induced hydroxyproline content in WI-38 cells. The anti-fibrotic effect of pirfenidone incorporated into tbFGF-liposomes was enhanced compared with that of pirfenidone solution. These results indicate that tbFGF-liposomes are a useful drug delivery system of anti-fibrotic drugs to lung fibroblasts for the treatment of idiopathic pulmonary fibrosis.

  13. In Vitro Co-Delivery Evaluation of Novel Pegylated Nano-Liposomal Herbal Drugs of Silibinin and Glycyrrhizic Acid (Nano-Phytosome) to Hepatocellular Carcinoma Cells

    PubMed Central

    Ochi, Mohammad Mahdi; Amoabediny, Ghasem; Rezayat, Seyed Mahdi; Akbarzadeh, Azim; Ebrahimi, Bahman

    2016-01-01

    Objective This study aimed to evaluate a co-encapsulated pegylated nano-liposome system based on two herbal anti-tumor drugs, silibinin and glycyrrhizic acid, for delivery to a hepatocellular carcinoma (HCC) cell line (HepG2). Materials and Methods In this experimental study, co-encapsulated nano-liposomes by the thin layer film hydration method with HEPES buffer and sonication at 60% amplitude. Liposomes that co-encapsulated silibinin and glycyrrhizic acid were prepared with a specified molar ratio of dipalmitoylphosphatidylcholine (DPPC), cholesterol (CHOL), and methoxy-polyethylene glycol 2000 (PEG2000)–derived distearoyl phosphatidylethanolamine (mPEG2000-DSPE). We used the MTT technique to assess cytotoxicity for various concentrations of co-encapsulated nano-liposomes, free silibinin (25% w/v) and glycyrrhizic acid (75% w/v) on HepG2 and fibroblast cell lines over a 48-hour period. Results Formulation of pegylated nano-liposomes showed a narrow size distribution with an average diameter of 46.3 nm. The encapsulation efficiency (EE) for silibinin was 24.37%, whereas for glycyrrhizic acid it was 68.78%. Results of in vitro cytotoxicity showed significantly greater co-encapsulated nano-liposomes on the HepG2 cell line compared to the fibroblast cell line. The half maximal inhibitory concentration (IC50) for co-encapsulated pegylated nanoliposomal herbal drugs was 48.68 µg/ml and free silibinin with glycyrrhizic acid was 485.45 µg/ml on the HepG2 cell line. Conclusion This in vitro study showed that nano-liposome encapsulation of silibinin with glycyrrhizic acid increased the biological activity of free drugs, increased the stability of silibinin, and synergized the therapeutic effect of silibinin with glycyrrhizic acid. The IC50 of the co-encapsulated nano-liposomes was lower than the combination of free silibinin and glycyrrhizic acid on the HepG2 cell line. PMID:27540518

  14. Intrabilayer 64Cu Labeling of Photoactivatable, Doxorubicin-Loaded Stealth Liposomes.

    PubMed

    Luo, Dandan; Goel, Shreya; Liu, Hai-Jun; Carter, Kevin A; Jiang, Dawei; Geng, Jumin; Kutyreff, Christopher J; Engle, Jonathan W; Huang, Wei-Chiao; Shao, Shuai; Fang, Chao; Cai, Weibo; Lovell, Jonathan F

    2017-12-26

    Doxorubicin (Dox)-loaded stealth liposomes (similar to those in clinical use) can incorporate small amounts of porphyrin-phospholipid (PoP) to enable chemophototherapy (CPT). PoP is also an intrinsic and intrabilayer 64 Cu chelator, although how radiolabeling impacts drug delivery has not yet been assessed. Here, we show that 64 Cu can radiolabel the stable bilayer of preformed Dox-loaded PoP liposomes with inclusion of 1% ethanol without inducing drug leakage. Dox-PoP liposomes labeled with intrabilayer copper behaved nearly identically to unlabeled ones in vitro and in vivo with respect to physical parameters, pharmacokinetics, and CPT efficacy. Positron emission tomography and near-infrared fluorescence imaging visualized orthotopic mammary tumors in mice with passive liposome accumulation following administration. A single CPT treatment with 665 nm light (200 J/cm 2 ) strongly inhibited primary tumor growth. Liposomes accumulated in lung metastases, based on NIR imaging. These results establish the feasibility of CPT interventions guided by intrinsic multimodal imaging of Dox-loaded stealth PoP liposomes.

  15. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    PubMed

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  16. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins.

    PubMed

    Abd El Azim, Heba; Nafee, Noha; Ramadan, Alyaa; Khalafallah, Nawal

    2015-07-05

    This study aims at improving the buccal delivery of vitamin B6 (VB6) as a model highly water-soluble, low permeable vitamin. Two main strategies were combined; first VB6 was entrapped in liposomes, which were then formulated as mucoadhesive film. Both plain and VB6-loaded liposomes (LPs) containing Lipoid S100 and propylene glycol (∼ 200 nm) were then incorporated into mucoadhesive film composed of SCMC and HPMC. Results showed prolonged release of VB6 (72.65%, T50% diss 105 min) after 6h from LP-film compared to control film containing free VB6 (96.37%, T50% diss 30 min). Mucoadhesion was assessed both ex vivo on chicken pouch and in vivo in human. Mucoadhesive force of 0.2N and residence time of 4.4h were recorded. Ex vivo permeation of VB6, across chicken pouch mucosa indicated increased permeation from LP-systems compared to corresponding controls. Interestingly, incorporation of the vesicles in mucoadhesive film reduced the flux by 36.89% relative to LP-dispersion. Meanwhile, both films provided faster initial permeation than the liquid forms. Correlating the cumulative percent permeated ex vivo with the cumulative percent released in vitro indicated that LPs retarded VB6 release but improved permeation. These promising results represent a step forward in the field of buccal delivery of water-soluble vitamins. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A targeted drug delivery system based on dopamine functionalized nano graphene oxide

    NASA Astrophysics Data System (ADS)

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim

    2017-01-01

    The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.

  18. A nanostructure of functional targeting epirubicin liposomes dually modified with aminophenyl glucose and cyclic pentapeptide used for brain glioblastoma treatment

    PubMed Central

    Zhang, Cheng-Xiang; Zhao, Wei-Yu; Liu, Lei; Ju, Rui-Jun; Mu, Li-Min; Zhao, Yao; Zeng, Fan; Xie, Hong-Jun; Yan, Yan; Lu, Wan-Liang

    2015-01-01

    The objectives of the present study were to develop functional targeting epirubicin liposomes for transferring drugs across the blood-brain barrier (BBB), treating glioblastoma, and disabling neovascularization. The studies were performed on glioblastoma cells in vitro and on glioblastoma-bearing mice. The results showed that the constructed liposomes had a high encapsulation efficiency for drugs (>95%), suitable particle size (109 nm), and less leakage in the blood component-containing system; were significantly able to be transported across the BBB; and exhibited efficacies in killing glioblastoma cells and in destroying glioblastoma neovasculature in vitro and in glioblastoma-bearing mice. The action mechanisms of functional targeting epirubicin liposomes correlated with the following features: the long circulation in the blood system, the ability to be transported across the BBB via glucose transporter-1, and the targeting effects on glioblastoma cells and on the endothelial cells of the glioblastoma neovasculature via the integrin β3 receptor. In conclusion, functional targeting epirubicin liposomes could be used as a potential therapy for treating brain glioblastoma and disabling neovascularization in brain glioblastomas. PMID:26418720

  19. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi, E-mail: harasima@pharm.hokudai.ac.jp

    2010-06-25

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we providemore » a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.« less

  20. A novel method to label preformed liposomes with 64Cu for positron emission tomography (PET) imaging.

    PubMed

    Seo, Jai Woong; Zhang, Hua; Kukis, David L; Meares, Claude F; Ferrara, Katherine W

    2008-12-01

    Radiolabeling of liposomes with 64Cu (t(1/2)=12.7 h) is attractive for molecular imaging and monitoring drug delivery. A simple chelation procedure, performed at a low temperature and under mild conditions, is required to radiolabel preloaded liposomes without lipid hydrolysis or the release of the encapsulated contents. Here, we report a 64Cu postlabeling method for liposomes. A 64Cu-specific chelator, 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid (BAT), was conjugated with an artificial lipid to form a BAT-PEG-lipid. After incorporation of 0.5% (mol/mol) BAT-PEG-lipid during liposome formulation, liposomes were successfully labeled with 64Cu in 0.1 M NH4OAc pH 5 buffer at 35 degrees C for 30-40 min with an incorporation yield as high as 95%. After 48 h of incubation of 64Cu-liposomes in 50/50 serum/PBS solution, more than 88% of the 64Cu label was still associated with liposomes. After injection of liposomal 64Cu in a mouse model, 44+/-6.9, 21+/-2.7, 15+/-2.5, and 7.4+/-1.1 (n=4) % of the injected dose per cubic centimeter remained within the blood pool at 30 min, 18, 28, and 48 h, respectively. The biodistribution at 48 h after injection verified that 7.0+/-0.47 (n=4) and 1.4+/-0.58 (n=3) % of the injected dose per gram of liposomal 64Cu and free 64Cu remained in the blood pool, respectively. Our results suggest that this fast and easy 64Cu labeling of liposomes could be exploited in tracking liposomes in vivo for medical imaging and targeted delivery.

  1. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents.

    PubMed

    Maranhão, Raul C; Vital, Carolina G; Tavoni, Thauany M; Graziani, Silvia R

    2017-10-01

    The toxicity of chemotherapeutic agents, resulting from their low pharmacological index, introduces considerable discomfort and risk to cancer patients. Among several strategies to reduce the toxicity of chemotherapeutic agents, targeted drug delivery is the most promising one. Areas covered: Liposomes, micelles, albumin-based, polymeric, dendritic and lipid core nanoparticles have been used as carriers to concentrate anticancer drugs in neoplastic tissues, and clinical studies of those preparations are reviewed. In most clinical studies, drug delivery systems reduced drug toxicity. Lipid core nanoparticles (LDE) that bind to cell lipoprotein receptors have the ability to concentrate in neoplastic tissues and were the first artificial non-liposomal system shown in in vivo studies to possess targeting properties. The toxicity reduction achieved by LDE as vehicle of carmustine, etoposide and paclitaxel was singularly strong. Expert opinion: The reduced toxicity offered by drug delivery systems has expanded treatment population that may benefit from chemotherapy including feeble, overtreated and elderly patients that would otherwise be offered palliative therapy. Drug delivery systems may either prolong the duration of treatments or allow increases in drug dose.

  2. Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study.

    PubMed

    Kang, Weirong; Svirskis, Darren; Sarojini, Vijayalekshmi; McGregor, Ailsa L; Bevitt, Joseph; Wu, Zimei

    2017-05-30

    The efficacy of boron neutron capture therapy depends on the selective delivery of 10B to the target. Integrins αvβ3 are transmembrane receptors over-expressed in both glioblastoma cells and its neovasculature. In this study, a novel approach to dual-target glioblastoma vasculature and tumor cells was investigated. Liposomes (124 nm) were conjugated with a αvβ3 ligand, cyclic arginine-glycine-aspartic acid-tyrosine-cysteine peptide (c(RGDyC)-LP) (1% molar ratio) through thiol-maleimide coupling. Expression of αvβ3 in glioblastoma cells (U87) and human umbilical vein endothelial cells (HUVEC), representing tumor angiogenesis, was determined using Western Blotting with other cells as references. The results showed that both U87 and HUVEC had stronger expression of αvβ3 than other cell types, and the degree of cellular uptake of c(RGDyC)-LP correlated with the αvβ3-expression levels of the cells. In contrast, control liposomes without c(RGDyC) showed little cellular uptake, regardless of cell type. In an in vitro boron neutron capture therapy study, the c(RGDyC)-LP containing sodium borocaptate generated more rapid and significant lethal effects to both U87 and HUVEC than the control liposomes and drug solution. Interestingly, neutron irradiated U87 and HUVEC showed different types of subsequent cell death. In conclusion, this study has demonstrated the potential of a new dual-targeting strategy using c(RGDyC)-LP to improve boron neutron capture therapy for glioblastoma.

  3. Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study

    PubMed Central

    Kang, Weirong; Svirskis, Darren; Sarojini, Vijayalekshmi; McGregor, Ailsa L.; Bevitt, Joseph; Wu, Zimei

    2017-01-01

    The efficacy of boron neutron capture therapy depends on the selective delivery of 10B to the target. Integrins αvβ3 are transmembrane receptors over-expressed in both glioblastoma cells and its neovasculature. In this study, a novel approach to dual-target glioblastoma vasculature and tumor cells was investigated. Liposomes (124 nm) were conjugated with a αvβ3 ligand, cyclic arginine-glycine-aspartic acid-tyrosine-cysteine peptide (c(RGDyC)-LP) (1% molar ratio) through thiol-maleimide coupling. Expression of αvβ3 in glioblastoma cells (U87) and human umbilical vein endothelial cells (HUVEC), representing tumor angiogenesis, was determined using Western Blotting with other cells as references. The results showed that both U87 and HUVEC had stronger expression of αvβ3 than other cell types, and the degree of cellular uptake of c(RGDyC)-LP correlated with the αvβ3-expression levels of the cells. In contrast, control liposomes without c(RGDyC) showed little cellular uptake, regardless of cell type. In an in vitro boron neutron capture therapy study, the c(RGDyC)-LP containing sodium borocaptate generated more rapid and significant lethal effects to both U87 and HUVEC than the control liposomes and drug solution. Interestingly, neutron irradiated U87 and HUVEC showed different types of subsequent cell death. In conclusion, this study has demonstrated the potential of a new dual-targeting strategy using c(RGDyC)-LP to improve boron neutron capture therapy for glioblastoma. PMID:28402271

  4. siRNA-loaded cationic liposomes for cancer therapy: Development, characterization and efficacy evaluation

    NASA Astrophysics Data System (ADS)

    Ying, Bo

    Cancer is a major health problem in the United States and many other parts of the world. However, cancer treatment is severely limited by the lack of highly effective cytotoxic agents and selective delivery methods which can serve as the "magic bullet" (first raised by Dr. Paul Ehrlich, the goal of targeting a specific location without causing harm to surrounding tissues or to more distant regions in the body). The revolutionary finding that tumors cannot grow beyond a microscopic size without dedicated blood supply provided a highly effective alternative for the treatment of cancer. Currently, anti-angiogenic therapy and the discovery of RNA interference makes it possible to treat some conditions by silencing disorder-causing genes of targeting cells which are otherwise difficult to eradicate with more conventional therapies. However, before siRNA technology could be widely used as a therapeutic approach, the construct must be efficiently and safely delivered to target cells. Strategies used for siRNA delivery should minimize uptake by phagocytes, enzymatic degradation by nucleases and should be taken up preferentially, if not specifically, by the intended cell population. Kinesin spindle proteins (KSP) are the motor proteins which play critical roles during mitosis. Different from tubulins which are also present in post-mitotic cells, such as axons, KSP is exclusively expressed in mitotic cells, which makes them the ideal target for anti-mitotics. In the present study, we intend to develop, characterize and evaluate a liposome-based delivery system which can deliver KSP siRNA selectively to the tumor vasculature (thus inhibiting angiogenesis, destroying tumor vasculature and eventually, eradicating tumor growth). We first developed ten different liposome preparation types with different compositions of lipids. Next, the capacity for loading siRNA and efficiency of targeting the tumor vascular supply was evaluated using relevant cellular and tumor models

  5. Chitosan-coated liposome dry-powder formulations loaded with ghrelin for nose-to-brain delivery.

    PubMed

    Salade, Laurent; Wauthoz, Nathalie; Vermeersch, Marjorie; Amighi, Karim; Goole, Jonathan

    2018-06-11

    The nose-to-brain delivery of ghrelin loaded in liposomes is a promising approach for the management of cachexia. It could limit the plasmatic degradation of ghrelin and provide direct access to the brain, where ghrelin's specific receptors are located. Anionic liposomes coated with chitosan in either a liquid or a dry-powder formulation were compared. The powder formulation showed stronger adhesion to mucins (89 ± 4% vs 61 ± 4%), higher ghrelin entrapment efficiency (64 ± 2% vs 55 ± 4%), higher enzymatic protection against trypsin (26 ± 2% vs 20 ± 3%) and lower ghrelin storage degradation at 25°C (2.67 ± 1.1% vs 95.64 ± 0.85% after 4 weeks). The powder formulation was also placed in unit-dose system devices that were able to generate an appropriate aerosol characterized by a Dv50 of 38 ± 6 µm, a limited percentage of particles smaller than 10 µm of 4 ± 1% and a reproducible mass delivery (CV: 1.49%). In addition, the device was able to deposit a large amount of powder (52.04% w/w) in the olfactory zone of a 3D-printed nasal cast. The evaluated combination of the powder formulation and the device could provide a promising treatment for cachexia. Copyright © 2018. Published by Elsevier B.V.

  6. Conjugation of isoniazid to a zinc phthalocyanine via hydrazone linkage for pH-dependent liposomal controlled release

    NASA Astrophysics Data System (ADS)

    Nkanga, Christian Isalomboto; Krause, Rui Werner Maçedo

    2018-05-01

    Tuberculosis (TB) remains the leading cause of mortality from infectious diseases. Extended TB treatment and frequent adverse effects, due to poor bioavailability of anti-tubercular drugs (ATBDs), represent the main rationales behind liposomal encapsulation for controlled delivery. Liposomes have been reported as potential vehicles for targeted delivery of ATBDs due to their rapid uptake by macrophages, which are known as the main host cells for TB causative agent (Mycobacterium tuberculosis). Additionally, the need for controlled release of ATBDs arises because leakage is part of the key liposome challenges for hydrophilic compounds like isoniazid (INH). In this study, INH was conjugated to a highly hydrophobic photosensitizer, zinc (II) phthalocyanine (PC), through hydrazone bonding. The obtained conjugate (PC-INH) was encapsulated in liposomes by film hydration method. PC-INH loaded liposomes (PILs) were characterized using dynamic light scattering, transmission electron microscopy, energy-dispersive X-ray spectrometry and UV-Vis absorption spectrometry, which was used also for estimation of encapsulation efficiency (%EE). INH release was evaluated in different pH media using dialysis. Particle size, zeta potential and %EE of PILs were about 506 nm, - 55 mV and 72%, respectively. Over 12 h, PILs exhibited 22, 41, 97 and 100% of INH, respectively, released in pH 7.4, 6.4, 5.4 and 4.4 media. This pH-dependent behavior is attractive for site-specific delivery. These findings suggest the conjugation of chemotherapeutics to phthalocyanines using pH-labile linkages as a potential strategy for liposomal controlled release.

  7. Hemisynthetic trifluralin analogues incorporated in liposomes for the treatment of leishmanial infections.

    PubMed

    Carvalheiro, Manuela; Esteves, M Alexandra; Santos-Mateus, David; Lopes, Rui M; Rodrigues, M Armanda; Eleutério, Carla V; Scoulica, Effie; Santos-Gomes, Gabriela; Cruz, M Eugénia M

    2015-06-01

    Leishmaniasis, a vector-borne parasitic disease caused by Leishmania protozoa, is one of the most neglected tropical diseases in terms of drug discovery and development. Current treatment is based on a limited number of chemotherapeutic agents all of which present either/or resistance issues, severe toxicities and adverse reactions associated with extended treatment regimens, and high cost of therapy. Dinitroanilines are a new class of drugs with proven in vitro antileishmanial activity. In previous work a liposomal formulation of one dinitroaniline (TFL) was found to be active against Leishmania parasites in a murine model of visceral leishmaniasis (VL) and in the treatment of experimental canine leishmaniasis. In this study we have investigated the use of dinitroaniline analogues (TFL-A) associated to liposomes, as means to further improve TFL antileishmanial activity. The potential of the liposomal formulations was assessed in vitro against Leishmania infantum promastigotes and intracellular amastigotes and in vivo in a murine model of zoonotic VL. Free and liposomal TFL-A were active in vitro against Leishmania parasites, and they also exhibited reduced cytotoxicity and haemolytic activity. Treatment of infected mice with liposomal TFL-A reduced the amastigote loads in the spleen up to 97%, compared with the loads for untreated controls. These findings illustrate that chemical synthesis of new molecules associated with the use of Nano Drug Delivery Systems that naturally target the diseased organs could be a promising strategy for effective management of VL. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity.

    PubMed

    Yuba, Eiji; Sakaguchi, Naoki; Kanda, Yuhei; Miyazaki, Maiko; Koiwai, Kazunori

    2017-11-04

    (1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC) and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2) Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3) Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA) into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4) Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.

  9. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells.

    PubMed

    Kumar, Nitesh; Rai, Amita; Reddy, Neetinkumar D; Raj, P Vasanth; Jain, Prateek; Deshpande, Praful; Mathew, Geetha; Kutty, N Gopalan; Udupa, Nayanabhirama; Rao, C Mallikarjuna

    2014-10-01

    Silymarin, a hepatoprotective agent, has poor oral bioavailability. However, the current dosage form of the drug does not target the liver and inflammatory cells selectively. The aim of the present study was to develop lecithin-based carrier system of silymarin by incorporating phytosomal-liposomal approach to increase its oral bioavailability and to make it target-specific to the liver for enhanced hepatoprotection. The formulation was prepared by film hydration method. Release of drug was assessed at pH 1.2 and 7.4. Formulation was assessed for in vitro hepatoprotection on Chang liver cells, lipopolysaccharide-induced reactive oxygen species (ROS) production by RAW 267.4 (murine macrophages), in vivo efficacy against paracetamol-induced hepatotoxicity and pharmacokinetic study by oral route in Wistar rat. The formulation showed maximum entrapment (55%) for a lecithin-cholesterol ratio of 6:1. Comparative release profile of formulation was better than silymarin at pH 1.2 and pH 7.4. In vitro studies showed a better hepatoprotection efficacy for formulation (one and half times) and better prevention of ROS production (ten times) compared to silymarin. In in vivo model, paracetamol showed significant hepatotoxicity in Wistar rats assessed through LFT, antioxidant markers and inflammatory markers. The formulation was found more efficacious than silymarin suspension in protecting the liver against paracetamol toxicity and the associated inflammatory conditions. The liposomal formulation yielded a three and half fold higher bioavailability of silymarin as compared with silymarin suspension. Incorporating the phytosomal form of silymarin in liposomal carrier system increased the oral bioavailability and showed better hepatoprotection and better anti-inflammatory effects compared with silymarin suspension. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Liposomal Aloe vera trans-emulgel drug delivery of naproxen and nimesulide: A study

    PubMed Central

    Venkataharsha, Panuganti; Maheshwara, Ellutla; Raju, Y Prasanna; Reddy, Vayalpati Ashok; Rayadu, Bandugalla Sanjeev; Karisetty, Basappa

    2015-01-01

    Introduction: The present aim of this study was to formulate naproxen and nimesulide liposomal formulation for incorporation in Aloe vera transemulgel and to carry out in vitro and in vivo evaluation of the formulation. Material and Methods: A. vera gel was prepared and used as a gel base for formulation. Carbopol 934 is used as a gelling agent and Methyl paraben was used as a preservative for the formulation of the gel. Liposomes was formulated by using hydration method. The formulated naproxen and nimesulide liposomal formulation using A. vera trans-emul gel were evaluated for in vitro studies such as drug release, permeation study, and drug content and entrapment efficiency. Paw edema method in Wistar rats induced by carrageenan is used to study in vivo anti-inflammatory action. Result: From the in vitro studies such permeability drug release naproxen 65% (69.6), Nimesulide 65% (61.1), and commercial Nimsulide gel (60.82) at 240 min. In vivo data shows that formulated liposomal transemulgel formulation are superior in their efficacy compared to commercial and A. vera gel. The results are compared with the commercial formulations. Conclusion: From our results, it is concluded that the A. vera trans emul gel using nimesulide and naproxen liposomal formulation is stable and prepared gel base is effective for formulation with high drug release and drug content compared with commercial formulation with significant anti-inflammatory effect. PMID:25599030

  11. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications

    PubMed Central

    Xing, Hang; Hwang, Kevin; Lu, Yi

    2016-01-01

    Liposomes are nanocarriers comprised of lipid bilayers encapsulating an aqueous core. The ability of liposomes to encapsulate a wide variety of diagnostic and therapeutic agents has led to significant interest in utilizing liposomes as nanocarriers for theranostic applications. In this review, we highlight recent progress in developing liposomes as nanocarriers for a) diagnostic applications to detect proteins, DNA, and small molecule targets using fluorescence, magnetic resonance, ultrasound, and nuclear imaging; b) therapeutic applications based on small molecule-based therapy, gene therapy and immunotherapy; and c) theranostic applications for simultaneous detection and treatment of heavy metal toxicity and cancers. In addition, we summarize recent studies towards understanding of interactions between liposomes and biological components. Finally, perspectives on future directions in advancing the field for clinical translations are also discussed. PMID:27375783

  12. Application of Pharmacokinetic and Pharmacodynamic Analysis to the Development of Liposomal Formulations for Oncology

    PubMed Central

    Ait-Oudhia, Sihem; Mager, Donald E.; Straubinger, Robert M.

    2014-01-01

    Liposomal formulations of anticancer agents have been developed to prolong drug circulating lifetime, enhance anti-tumor efficacy by increasing tumor drug deposition, and reduce drug toxicity by avoiding critical normal tissues. Despite the clinical approval of numerous liposome-based chemotherapeutics, challenges remain in the development and clinical deployment of micro- and nano-particulate formulations, as well as combining these novel agents with conventional drugs and standard-of-care therapies. Factors requiring optimization include control of drug biodistribution, release rates of the encapsulated drug, and uptake by target cells. Quantitative mathematical modeling of formulation performance can provide an important tool for understanding drug transport, uptake, and disposition processes, as well as their role in therapeutic outcomes. This review identifies several relevant pharmacokinetic/pharmacodynamic models that incorporate key physical, biochemical, and physiological processes involved in delivery of oncology drugs by liposomal formulations. They capture observed data, lend insight into factors determining overall antitumor response, and in some cases, predict conditions for optimizing chemotherapy combinations that include nanoparticulate drug carriers. PMID:24647104

  13. [Development of a Novel Liposomal DDS by Manipulating Pharmacokinetics and Intracellular Trafficking for Drug Therapy and Nucleic Acid Medicine].

    PubMed

    Hatakeyama, Hiroto

    2018-01-01

     Nucleic acid therapy is expected to be a next generation medicine. We recently developed a multifunctional envelope-type nano device (MEND) for use as a novel delivery system. The modification of polyethylene glycol (PEG), i.e., PEGylation, is useful for achieving the delivery of MENDs to tumors via an enhanced permeability and retention (EPR) effect. However, PEGylation strongly inhibits the cellular uptake and endosomal escape of MEND, which results in significant loss of action, and therefore lost effectiveness, of the cargo therapeutic. For successful nucleic acid delivery in cancer treatment, the crucial problem associated with the use of PEG, known as the "PEG dilemma", must be solved. In this review, we describe the development and application of MEND in overcoming the PEG dilemma based on manipulating both the pharmacokinetics and intracellular trafficking of cellular uptake and endosomal release using a cleavable PEG lipid, a pH-sensitive fusogenic peptide, and a pH-sensitive cationic lipid. We also developed dual-ligand liposomes with a controlled diameter of around 300 nm, then modified these with a specific ligand and a cell penetrating peptide designed to target the neovasculature of tumors. Dual-ligand liposomes could induce an anti-tumor effect in drug resistant tumors by delivering drugs to tumor blood vessels, rather than to the cancer cells themselves. Here, we review our recent efforts to develop a novel liposomal drug delivery system (DDS) by manipulating pharmacokinetics and intracellular trafficking for drug therapy and nucleic acid medicine.

  14. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    PubMed

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  15. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  16. Synthesis and Functional Characterization of Novel Sialyl LewisX Mimic-Decorated Liposomes for E-selectin-Mediated Targeting to Inflamed Endothelial Cells.

    PubMed

    Chantarasrivong, Chanikarn; Ueki, Akiharu; Ohyama, Ryutaro; Unga, Johan; Nakamura, Shinya; Nakanishi, Isao; Higuchi, Yuriko; Kawakami, Shigeru; Ando, Hiromune; Imamura, Akihiro; Ishida, Hideharu; Yamashita, Fumiyoshi; Kiso, Makoto; Hashida, Mitsuru

    2017-05-01

    Sialyl LewisX (sLeX) is a natural ligand of E-selectin that is overexpressed by inflamed and tumor endothelium. Although sLeX is a potential ligand for drug targeting, synthesis of the tetrasaccharide is complicated with many reaction steps. In this study, structurally simplified novel sLeX analogues were designed and linked with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG) for E-selectin-mediated liposomal delivery. The sLeX structural simplification strategies include (1) replacement of the Gal-GlcNAc disaccharide unit with lactose to reduce many initial steps and (2) substitution of neuraminic acid with a negatively charged group, i.e., 3'-sulfo, 3'-carboxymethyl (3'-CM), or 3'-(1-carboxy)ethyl (3'-CE). While all the liposomes developed were similar in particle size and charge, the 3'-CE sLeX mimic liposome demonstrated the highest uptake in inflammatory cytokine-treated human umbilical vein endothelial cells (HUVECs), being even more potent than native sLeX-decorated liposomes. Inhibition studies using antiselectin antibodies revealed that their uptake was mediated primarily by overexpressed E-selectin on inflamed HUVECs. Molecular dynamics simulations were performed to gain mechanistic insight into the E-selectin binding differences among native and mimic sLeX. The terminally branched methyl group of the 3'-CE sLeX mimic oriented and faced the bulk hydrophilic solution during E-selectin binding. Since this state is entropically unfavorable, the 3'-CE sLeX mimic molecule might be pushed toward the binding pocket of E-selectin by a hydrophobic effect, leading to a higher probability of hydrogen-bond formation than native sLeX and the 3'-CM sLeX mimic. This corresponded with the fact that the 3'-CE sLeX mimic liposome exhibited much greater uptake than the 3'-CM sLeX mimic liposome.

  17. Nanoliposome is a Promising Carrier of Protein and Peptide Biomolecule for the Treatment of Cancer.

    PubMed

    Kumar Giri, Tapan; Giri, Ayan; Kumar Barman, Tapan; Maity, Subhasis

    2016-01-01

    Nano-liposomes are the newly developed delivery systems for cancer therapy that are finding a position particularly suitable as peptide and protein carriers. These are three-layered self-assembled structures with nanoparticulate carrier systems. The overall pharmacological properties of commonly used protein and peptide in cancer therapy can be improved by the incorporation of protein and peptide into the nano-liposome. The surface modifications can be made liposomes to make compatible with targeting ligands has made these nanocarriers for targeted delivery. This review discusses the method of preparation and characterization of liposome based protein peptide delivery for the treatment of cancer. This review also explores latest work intended for targeted treatment of cancer by nano-liposomal protein and peptide delivery system. This type of delivery is targeting protein and peptide to tumor site by avoiding the reticuloendothelial system. Methods of nano-liposome delivery containing protein and peptide are also highlighted.

  18. Enhanced depigmenting effects of N-glycosylation inhibitors delivered by pH-sensitive liposomes into HM3KO melanoma cells.

    PubMed

    Park, Ju Young; Choi, Hyunjung; Hwang, Jae Sung; Kim, Junoh; Chang, Ih-Seop

    2008-01-01

    Delivery activity of pH-sensitive 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE):cholesteryl hemisuccinate (CHEMS) liposomes was assessed as an in vitro intracellular carrier system to increase the bioavailability of depigmentation actives. N-glycosylation inhibitors have a glycosylation-inhibiting effect, which is useful for the skin depigmentation that operates by interfering with the maturation of tyrosinase. However, an N-glycosylation inhibitor does not easily pass through skin or even cellular membranes due to its water-soluble property. Therefore, it should be transported to target cells by an efficient delivery carrier to reduce the glycosylated tyrosinase. Glycosylation-inhibiting and depigmentation effects of N-butyldeoxynojirimycine (NB-DNJ) and 1-deoxynojirimycine (DNJ)-loaded liposomes were evaluated using Western blotting and measurement of synthesized melanin. Interestingly, it was found that the pH-sensitive liposomes increased the glycosylation-inhibiting and thus, pigment-lightening effects of N-glycosylation inhibitors in vitro. In addition, cargo materials loaded in pH-sensitive liposomes were found to be much more efficiently delivered into the cytoplasm, as observed in fluorescent-activated cell sorting (FACS) and confocal laser-scanning microscopic (CLSM) analysis. These results indicate that pH-sensitive DOPE:CHEMS liposomes have a strong potential as a carrier system to promote delivery efficiency and to enhance the biological effects of water-soluble actives for applications in cosmetics, personal care products, and pharmaceutics.

  19. Carrier-inside-carrier: polyelectrolyte microcapsules as reservoir for drug-loaded liposomes.

    PubMed

    Maniti, Ofelia; Rebaud, Samuel; Sarkis, Joe; Jia, Yi; Zhao, Jie; Marcillat, Olivier; Granjon, Thierry; Blum, Loïc; Li, Junbai; Girard-Egrot, Agnès

    2015-01-01

    Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.

  20. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles.

    PubMed

    Ju, Zhigang; Sun, Wei

    2017-11-01

    With the development of nanomedicine, a mass of nanocarriers have been exploited and utilized for targeted drug delivery, including liposomes, polymers, nanoparticles, viruses, and stem cells. Due to huge surface bearing capacity and flexible genetic engineering property, filamentous bacteriophage and phage-mimetic nanoparticles are attracting more and more attentions. As a rod-like bio-nanofiber without tropism to mammalian cells, filamentous phage can be easily loaded with drugs and directly delivered to the lesion location. In particular, chemical drugs can be conjugated on phage surface by chemical modification, and gene drugs can also be inserted into the genome of phage by recombinant DNA technology. Meanwhile, specific peptides/proteins displayed on the phage surface are able to conjugate with nanoparticles which will endow them specific-targeting and huge drug-loading capacity. Additionally, phage peptides/proteins can directly self-assemble into phage-mimetic nanoparticles which may be applied for self-navigating drug delivery nanovehicles. In this review, we summarize the production of phage particles, the identification of targeting peptides, and the recent applications of filamentous bacteriophages as well as their protein/peptide for targeting drug delivery in vitro and in vivo. The improvement of our understanding of filamentous bacteriophage and phage-mimetic nanoparticles will supply new tools for biotechnological approaches.

  1. PEGylated liposomal vancomycin: a glimmer of hope for improving treatment outcomes in MRSA pneumonia.

    PubMed

    Pumerantz, Andrew S

    2012-12-01

    Methicillin-resistant Staphylococcus aureus (MRSA) plays a significant role in the pandemic of multidrug resistant bacterial infections and is a major cause of hospital-acquired pneumonia. MRSA pneumonia carries a high morbidity and mortality rate especially in elderly diabetics with chronic kidney disease. S. aureus is highly virulent and successful respiratory pathogen. Vancomycin and linezolid are the only two antimicrobial agents FDA-approved to treat MRSA pneumonia. Standard vancomycin dosing is associated with high clinical failure rates and higher dosages are associated with increased nephrotoxicity. Pharmacokinetic and pharmacodynamic limitations are major contributors to poor outcomes with vancomycin. New agents are needed to improve treatment outcomes with MRSA pneumonia. Recently released antimicrobials with in vitro activity are not FDA-approved for treating MRSA pneumonia. Other novel agents are being investigated though none are in late-stage development. Pharmaceutical industry perception of low returns on investment, a Sisyphean regulatory environment, and obstacles to patentability have contributed to declining interest in both the development of novel antibiotics and the improvement of existing generic formulations. Despite decades of investigation into liposomal encapsulation as a drug delivery system that would increase efficacy and decrease toxicity, only liposomal amphotericin B and doxorubicin are commercially available. In this article, the pharmacokinetics and biodistribution of a novel PEGylated liposomal vancomycin formulation along with passive targeting and the enhanced permeability and retention effect of liposomal drug delivery; the pathogenesis of MRSA pneumonia; and recent patents of novel anti-MRSA agents, including inhalational liposomal vancomycin, are reviewed.

  2. PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: In vitro and in vivo investigations.

    PubMed

    Xin, Yuxuan; Qi, Qi; Mao, Zhenmin; Zhan, Xiaoping

    2017-08-07

    A novel ultrasound-responsive liposomal system for tumor targeting was prepared in order to increase the antitumor efficacy and decrease serious side effects. In this paper, PLGA nanoparticles were used ultrasound-responsive agents instead of conventional microbubbles. The PLGA-nanoparticles were prepared by an emulsion solvent evaporation method. The liposomes were prepared by a lipid film hydration method. Particle size, zeta potential, encapsulation efficiency and drug loading capacity of the liposomes were studied by light scattering analysis and dialysis. Transmission electron microscopy (TEM) and atomic force microscope (AFM) were used to investigate the morphology of liposomes. The release in vitro was carried out in the pH 7.4 phosphate buffer solutions, as a result, liposome L3 encapsulating PLGA-nanoparticles displayed good stability under simulative physiological conditions and quickly responsive release under the ultrasound. The release in vivo was carried out on the rats, as a result, liposome L3 showed higher bioavailability than traditional intravenous injectable administration, and liposome L3 showed higher elimination ratio after stimulation by ultrasound than L3 without stimulation. Thus, the novel ultrasound-responsive liposome encapsulating PLGA-nanoparticles has a potential to be developed as a new drug delivery system for anti-tumor drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study

    PubMed Central

    Niu, Ning-Kui; Yin, Juan-Juan; Yang, Yin-Xue; Wang, Zi-Li; Zhou, Zhi-Wei; He, Zhi-Xu; Chen, Xiao-Wu; Zhang, Xueji; Duan, Wei; Yang, Tianxin; Zhou, Shu-Feng

    2015-01-01

    signaling pathways were eukaryotic initiation factor 2 signaling, actin cytoskeleton signaling, remodeling of epithelial adherens junctions, epithelial adherens junction signaling, and Rho GDP-dissociation inhibitor signaling pathways. Collectively, the novel synthetic targeting liposomes represent a promising delivery system for anti-TB drugs to human macrophages with good selectivity and minimal cytotoxicity. PMID:26300629

  4. Strategies for improving the intratumoral distribution of liposomal drugs in cancer therapy

    PubMed Central

    Goins, Beth; Phillips, William T.; Bao, Ande

    2016-01-01

    Introduction A major limitation of current liposomal cancer therapies is the inability of liposome therapeutics to penetrate throughout the entire tumor mass. This inhomogeneous distribution of liposome therapeutics within the tumor has been linked to treatment failure and drug resistance. Both liposome particle transport properties and tumor microenvironment characteristics contribute to this challenge in cancer therapy. This limitation is relevant to both intravenously and intratumorally administered liposome therapeutics. Areas covered Strategies to improve the intratumoral distribution of liposome therapeutics are described. Combination therapies of intravenous liposome therapeutics with pharmacologic agents modulating abnormal tumor vasculature, interstitial fluid pressure, extracellular matrix components, and tumor associated macrophages are discussed. Combination therapies using external stimuli (hyperthermia, radiofrequency ablation, magnetic field, radiation, and ultrasound) with intravenous liposome therapeutics are discussed. Intratumoral convection-enhanced delivery (CED) of liposomal therapeutics is reviewed. Expert opinion Optimization of the combination therapies and drug delivery protocols are necessary. Further research should be conducted in appropriate cancer types with consideration of physiochemical features of liposomes and their timing sequence. More investigation of the role of tumor associated macrophages in intratumoral distribution is warranted. Intratumoral infusion of liposomes using CED is a promising approach to improve their distribution within the tumor mass. PMID:26981891

  5. Liposomes in tissue engineering and regenerative medicine

    PubMed Central

    Monteiro, Nelson; Martins, Albino; Reis, Rui L.; Neves, Nuno M.

    2014-01-01

    Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches. PMID:25401172

  6. Ciprofloxacin as ocular liposomal hydrogel.

    PubMed

    Hosny, Khaled Mohamed

    2010-03-01

    The purpose of this study was to prepare and characterize an ocular effective prolonged-release liposomal hydrogel formulation containing ciprofloxacin. Reverse-phase evaporation was used for preparation of liposomes consisting of soybean phosphatidylcholine (PC) and cholesterol (CH). The effect of PC/CH molar ratio on the percentage drug encapsulation was investigated. The effect of additives such as stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively, were studied. Morphology, mean size, encapsulation efficiency, and in vitro release of ciprofloxacin from liposomes were evaluated. For hydrogel preparation, Carbopol 940 was applied. In vitro transcorneal permeation through excised albino rabbit cornea was also determined. Optimal encapsulation efficiency of 73.04 +/- 3.06% was obtained from liposomes formulated with PC/CH at molar ratio of 5:3 and by increasing CH content above this limit, the encapsulation decreased. Positively charged liposomes showed superior entrapment efficiency (82.01 +/- 0.52) over the negatively charged and the neutral liposomes. Hydrogel containing liposomes with lipid content PC, CH, and SA in molar ratio 5:3:1, respectively, showed the best release and transcorneal permeation with the percentage permeation of 30.6%. These results suggest that the degree of encapsulation of ciprofloxacin into liposomes and prolonged in vitro release depend on composition of the vesicles. In addition, the polymer hydrogel used in preparation ensure steady and prolonged transcorneal permeation. In conclusion, ciprofloxacin liposomal hydrogel is a suitable delivery system for improving the ocular bioavailability of ciprofloxacin.

  7. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    PubMed Central

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R.; Dogra, Prashant; Melancon, Marites P.; Stafford, R. Jason; Miyazono, Kohei; Gelovani, Juri G.; Kataoka, Kazunori; Brinker, C. Jeffrey; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata

    2016-01-01

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407

  8. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    PubMed

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  9. Copper-64 Labeled Liposomes for Imaging Bone Marrow

    PubMed Central

    Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore

    2016-01-01

    Introduction Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [18F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64Cu incorporation into liposomes. Results PET imaging and biodistribution studies with 64Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69 %ID/g for 90 nm liposomes and 7.01 ± 0.92 %ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48 %ID/g in tumor and 14.22 ± 8.07 %ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49 %ID/g and 2.23 ± 1.00 %ID/g. Conclusion Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents. PMID:27694056

  10. Recent Trends in Nanotechnology-Based Drugs and Formulations for Targeted Therapeutic Delivery.

    PubMed

    Iqbal, Hafiz M N; Rodriguez, Angel M V; Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep

    2017-01-01

    In the recent past, a wider spectrum of nanotechnologybased drugs or drug-loaded devices and systems has been engineered and investigated with high interests. The key objective is to help for an enhanced/better quality of patient life in a secure way by avoiding/limiting drug abuse, or severe adverse effects of some in practice traditional therapies. Various methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, nanoparticles-based therapeutic agents are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable therapeutic drug delivery system (DDS) for multipurpose applications is essential and a core demand to tackle many human health related diseases. In this context, nanotechnology-based several advanced DDS have been engineered with novel characteristics for biomedical, pharmaceutical and cosmeceutical applications that include but not limited to the enhanced/improved bioactivity, bioavailability, drug efficacy, targeted delivery, and therapeutically safer with an extra advantage of overcoming demerits of traditional drug formulations/designs. This review work is focused on recent trends/advances in nanotechnology-based drugs and formulations designed for targeted therapeutic delivery. Moreover, information is also reviewed and given from recent patents and summarized or illustrated diagrammatically to depict a better understanding. Recent patents covering various nanotechnology-based approaches for several applications have also been reviewed. The drug-loaded nanoparticles are among versatile candidates with multifunctional characteristics for potential applications in biomedical, and tissue engineering sector. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals.

    PubMed

    Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui

    2017-01-01

    Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood-brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p -aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood-brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p -aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells.

  12. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals

    PubMed Central

    Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui

    2017-01-01

    Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood–brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p-aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood–brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p-aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells. PMID:28260885

  13. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors

    NASA Astrophysics Data System (ADS)

    Urbán, Patricia; Estelrich, Joan; Adeva, Alberto; Cortés, Alfred; Fernàndez-Busquets, Xavier

    2011-12-01

    Paul Ehrlich's dream of a 'magic bullet' that would specifically destroy invading microbes is now a major aspect of clinical medicine. However, a century later, the implementation of this medical holy grail continues being a challenge in three main fronts: identifying the right molecular or cellular targets for a particular disease, having a drug that is effective against it, and finding a strategy for the efficient delivery of sufficient amounts of the drug in an active state exclusively to the selected targets. In a previous work, we engineered an immunoliposomal nanovector for the targeted delivery of its contents exclusively to Plasmodium falciparum-infected red blood cells [pRBCs]. In preliminary assays, the antimalarial drug chloroquine showed improved efficacy when delivered inside immunoliposomes targeted with the pRBC-specific monoclonal antibody BM1234. Because difficulties in determining the exact concentration of the drug due to its low amounts prevented an accurate estimation of the nanovector performance, here, we have developed an HPLC-based method for the precise determination of the concentrations in the liposomal preparations of chloroquine and of a second antimalarial drug, fosmidomycin. The results obtained indicate that immunoliposome encapsulation of chloroquine and fosmidomycin improves by tenfold the efficacy of antimalarial drugs. The targeting antibody used binds preferentially to pRBCs containing late maturation stages of the parasite. In accordance with this observation, the best performing immunoliposomes are those added to Plasmodium cultures having a larger number of late form-containing pRBCs. An average of five antibody molecules per liposome significantly improves in cell cultures the performance of immunoliposomes over non-functionalized liposomes as drug delivery vessels. Increasing the number of antibodies on the liposome surface correspondingly increases performance, with a reduction of 50% parasitemia achieved with

  14. Liposomal curcumin and its application in cancer

    PubMed Central

    Lee, Robert J; Zhao, Ling

    2017-01-01

    Curcumin (CUR) is a yellow polyphenolic compound derived from the plant turmeric. It is widely used to treat many types of diseases, including cancers such as those of lung, cervices, prostate, breast, bone and liver. However, its effectiveness has been limited due to poor aqueous solubility, low bioavailability and rapid metabolism and systemic elimination. To solve these problems, researchers have tried to explore novel drug delivery systems such as liposomes, solid dispersion, microemulsion, micelles, nanogels and dendrimers. Among these, liposomes have been the most extensively studied. Liposomal CUR formulation has greater growth inhibitory and pro-apoptotic effects on cancer cells. This review mainly focuses on the preparation of liposomes containing CUR and its use in cancer therapy. PMID:28860764

  15. Liposomal curcumin and its application in cancer.

    PubMed

    Feng, Ting; Wei, Yumeng; Lee, Robert J; Zhao, Ling

    2017-01-01

    Curcumin (CUR) is a yellow polyphenolic compound derived from the plant turmeric. It is widely used to treat many types of diseases, including cancers such as those of lung, cervices, prostate, breast, bone and liver. However, its effectiveness has been limited due to poor aqueous solubility, low bioavailability and rapid metabolism and systemic elimination. To solve these problems, researchers have tried to explore novel drug delivery systems such as liposomes, solid dispersion, microemulsion, micelles, nanogels and dendrimers. Among these, liposomes have been the most extensively studied. Liposomal CUR formulation has greater growth inhibitory and pro-apoptotic effects on cancer cells. This review mainly focuses on the preparation of liposomes containing CUR and its use in cancer therapy.

  16. Preparation, Characterization, and Preliminary In Vitro Testing of Nanoceria-Loaded Liposomes

    PubMed Central

    Grillone, Agostina; Li, Tianshu; Battaglini, Matteo; Scarpellini, Alice; Takeoka, Shinji

    2017-01-01

    Cerium oxide nanoparticles (nanoceria), well known for their pro- and antioxidant features, have been recently proposed for the treatment of several pathologies, including cancer and neurodegenerative diseases. However, interaction between nanoceria and biological molecules such as proteins and lipids, short blood circulation time, and the need of a targeted delivery to desired sites are some aspects that require strong attention for further progresses in the clinical application of these nanoparticles. The aim of this work is the encapsulation of nanoceria into a liposomal formulation in order to improve their therapeutic potentialities. After the preparation through a reverse-phase evaporation method, size, Z-potential, morphology, and loading efficiency of nanoceria-loaded liposomes were investigated. Finally, preliminary in vitro studies were performed to test cell uptake efficiency and preserved antioxidant activity. Nanoceria-loaded liposomes showed a good colloidal stability, an excellent biocompatibility, and strong antioxidant properties due to the unaltered activity of the entrapped nanoceria. With these results, the possibility of exploiting liposomes as carriers for cerium oxide nanoparticles is demonstrated here for the first time, thus opening exciting new opportunities for in vivo applications. PMID:28926967

  17. Effective Delivery of Arsenic Trioxide to HPV-Positive Cervical Cancer Cells Using Optimised Liposomes: A Size and Charge Study.

    PubMed

    Akhtar, Anam; Wang, Scarlet Xiaoyan; Ghali, Lucy; Bell, Celia; Wen, Xuesong

    2018-04-04

    Despite the success of arsenic trioxide (ATO) in treating haematological malignancies, its potential to treat solid tumours has not been fully exploited, owing to its dose-limiting toxicity and poor pharmacokinetics. In order to overcome this hurdle, liposomal encapsulation of the drug with different surface charges (neutral, negative, and positive) and sizes (100, 200 and 400 nm) were synthesised and tested on human papilloma virus (HPV)-positive HeLa and HPV-negative HT-3 cervical cancer cell lines. Two epithelial cell lines-human keratinocytes (HK) and human colon cells (CRL-1790)-were used as controls. The synthesised liposomes were tested for their physico-chemical characteristics, drug loading efficiency, and toxicity on the studied cell lines. Neutral liposomes of 100 nm in size were the chosen formulation for delivering ATO into the studied cells, as they showed the least intrinsic cytotoxicity and the highest loading efficiency. The findings demonstrated that the optimised formulation of liposomes was an effective drug delivery method for HPV-infected cervical cancer cells. Furthermore, the toxicity vs. uptake ratio was highest for HeLa cells, while a reduced or minimal toxic effect was observed for non-HPV-infected cervical cancer cells and control cells. These findings may provide a promising therapeutic strategy for effectively managing cervical cancers.

  18. Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach.

    PubMed

    Malhi, Sarandeep; Gu, Xiaochen

    2015-07-01

    Cancer stem cells (CSCs) play an important role in the development of drug resistance, metastasis and recurrence. Current conventional therapies do not commonly target CSCs. Nanocarrier-based delivery systems targeting cancer cells have entered a new era of treatment, where specific targeting to CSCs may offer superior outcomes to efficient cancer therapies. This review discusses the involvement of CSCs in tumor progression and relevant mechanisms associated with CSCs resistance to conventional chemo- and radio-therapies. It highlights CSCs-targeted strategies that are either under evaluation or could be explored in the near future, with a focus on various nanocarrier-based delivery systems of drugs and nucleic acids to CSCs. Novel nanocarriers targeting CSCs are presented in a cancer-specific way to provide a current perspective on anti-CSCs therapeutics. The field of CSCs-targeted therapeutics is still emerging with a few small molecules and macromolecules currently proving efficacy in clinical trials. However considering the complexities of CSCs and existing delivery difficulties in conventional anticancer therapies, CSC-specific delivery systems would face tremendous technical and clinical challenges. Nanocarrier-based approaches have demonstrated significant potential in specific drug delivery and targeting; their success in CSCs-targeted drug delivery would not only significantly enhance anticancer treatment but also address current difficulties associated with cancer resistance, metastasis and recurrence.

  19. Novel biorelevant dissolution medium as a prognostic tool for polysaccharide-based colon-targeted drug delivery system.

    PubMed

    Yadav, Ankit Kumar; Sadora, Manik; Singh, Sachin Kumar; Gulati, Monica; Maharshi, Peddi; Sharma, Abhinav; Kumar, Bimlesh; Rathee, Harish; Ghai, Deepak; Malik, Adil Hussain; Garg, Varun; Gowthamrajan, K

    2017-01-01

    To overcome the limitations of the conventionally used methods for evaluation of orally administered colon-targeted delivery systems, a novel dissolution method using probiotics has been recently reported. In the present study, universal suitability of this medium composed of five different probiotics is established. Different delivery systems - mini tablets, liquisolid compacts, and microspheres coated with different polysaccharides - were prepared and subjected to sequential dissolution testing in medium with and without microbiota. The results obtained from fluid thioglycollate medium (FTM)-based probiotic medium for all the polysaccharide-based formulations showed statistically similar dissolution profile to that in the rat and goat cecal content media. Hence, it can be concluded that the developed FTM-based probiotic medium, once established, may eliminate the need for further animal sacrifice in the dissolution testing of polysaccharide-based colon-targeted delivery system.

  20. Inhalational System for Etoposide Liposomes: Formulation Development and In Vitro Deposition

    PubMed Central

    Parmar, J. J.; Singh, D. J.; Lohade, A. A.; Hegde, Darshana D.; Soni, P. S.; Samad, A.; Menon, Mala D.

    2011-01-01

    Etoposide is a semisynthetic compound, widely used in treatment of non small cell lung cancer. However, frequent dosing and adverse effects remain a major concern in the use of etoposide. Liposomal systems for pulmonary drug delivery have been particularly attractive because of their compatibility with lung surfactant components. In the present investigation, pulmonary liposomal delivery system of etoposide was prepared by film hydration method. Various parameters were optimized with respect to entrapment efficiency as well as particle size of etoposide liposomes. For better shelf life of etoposide liposomes, freeze drying using trehalose as cryoprotectant was carried out. The liposomes were characterized for entrapment efficiency, particle size, surface topography, and in vitro drug release was carried out in simulated lung fluid at 37° at pH 7.4. The respirable or fine particle fraction was determined by using twin stage impinger. The stability study of freeze dried as well as aqueous liposomal systems was carried out at 2-8° and at ambient temperature (28±4°). The freeze dried liposomes showed better fine particle fraction and drug content over the period of six months at ambient as well as at 2-8° storage condition compared to aqueous dispersion of liposomes. PMID:23112400

  1. Inhalational system for Etoposide liposomes: formulation development and in vitro deposition.

    PubMed

    Parmar, J J; Singh, D J; Lohade, A A; Hegde, Darshana D; Soni, P S; Samad, A; Menon, Mala D

    2011-11-01

    Etoposide is a semisynthetic compound, widely used in treatment of non small cell lung cancer. However, frequent dosing and adverse effects remain a major concern in the use of etoposide. Liposomal systems for pulmonary drug delivery have been particularly attractive because of their compatibility with lung surfactant components. In the present investigation, pulmonary liposomal delivery system of etoposide was prepared by film hydration method. Various parameters were optimized with respect to entrapment efficiency as well as particle size of etoposide liposomes. For better shelf life of etoposide liposomes, freeze drying using trehalose as cryoprotectant was carried out. The liposomes were characterized for entrapment efficiency, particle size, surface topography, and in vitro drug release was carried out in simulated lung fluid at 37° at pH 7.4. The respirable or fine particle fraction was determined by using twin stage impinger. The stability study of freeze dried as well as aqueous liposomal systems was carried out at 2-8° and at ambient temperature (28±4°). The freeze dried liposomes showed better fine particle fraction and drug content over the period of six months at ambient as well as at 2-8° storage condition compared to aqueous dispersion of liposomes.

  2. Delivery of Cargo to Lysosomes Using GNeosomes.

    PubMed

    Hamill, Kristina M; Wexselblatt, Ezequiel; Tong, Wenyong; Esko, Jeffrey D; Tor, Yitzhak

    2017-01-01

    Liposomes have been used to improve the intracellular delivery of a variety of cargos. Encapsulation of cargos in liposomes leads to improved plasma half-lives and minimized degradation. Here, we present a method for improving the selective delivery of liposomes to the lysosomes using a guanidinylated neomycin (GNeo) transporter. The method for synthesizing GNeo-lipids, incorporating them into liposomes, and the enhanced lysosomal delivery of encapsulated cargo are presented. GNeo-liposomes, termed GNeosomes, are capable of delivering a fluorescent dye to the lysosomes of Chinese hamster ovary cells as shown using confocal microscopy. GNeosomes can also be used to deliver therapeutic quantities of lysosomal enzymes to fibroblasts isolated from patients with a lysosomal storage disorder.

  3. Liposomal preparations of muramyl glycopeptides as immunomodulators and adjuvants.

    PubMed

    Turánek, Jaroslav; Ledvina, Miroslav; Kasná, Andrea; Vacek, Antonín; Hríbalova, Vera; Krejcí, Josef; Miller, Andrew D

    2006-04-12

    The need for safe and structurally defined immunomodulators and adjuvants is increasing in connection with the recently observed marked increase in the prevalence of pathological conditions characterized by immunodeficiency. Important groups of such compounds are muramyl glycopeptides, analogs of muramyl dipeptide (MDP), glucosaminyl-muramyl dipeptide (GMDP), and desmuramylpeptides. We have designed and synthesized new types of analogs with changes in both the sugar and the peptide parts of the molecule that show a high immunostimulating and adjuvant activity and suppressed adverse side effects. The introduction of lipophilic residues has also improved their incorporation into liposomes, which represent a suitable drug carrier. The proliposome-liposome method is based on the conversion of the initial proliposome preparation into liposome dispersion by dilution with the aqueous phase. The description of a home-made stirred thermostated cell and its link-up with a liquid delivery system for a rapid and automated preparation of multilamellar liposomes at strictly controlled conditions (sterility, temperature, dilution rate and schedule) is presented. The cell has been designed for laboratory-scale preparation of liposomes (300-1000 mg of phospholipid per run) in a procedure taking less than 90 min. The method can be readily scaled up. Examples of adjuvant and immunostimulatory effect of liposomal preparation in mice model will be presented.

  4. Design and syntheses of MMP inhibitors and photosensitive lipid nanoparticle formulations for drug delivery

    NASA Astrophysics Data System (ADS)

    Subramaniam, Rajesh

    Drug administration without any compromise to the quality of life and lifespan is the ideal goal for disease management. The molecular mechanisms of several pathologies have shown that site-specific delivery of target-specific drugs seems to be a promising avenue to achieve this goal. This thesis describes the initial steps that we have taken toward that goal. Matrix metalloproteinases (MMPs) are a family of about 23 isozymes in humans that were actively targeted for treating a multitude of pathologies. Clinical studies carried out on cancer patients have revealed the complexity of the working of this enzyme family and necessitated the development of isozyme-specific MMP inhibitors. Our studies toward the development of isozyme-specific inhibitors have resulted in the development of several inhibitors that seem to be selective toward some MMP isozymes. Our understanding on the molecular mechanism that confers this selectivity is documented in this thesis. Another aspect of discussion in the thesis is the development of photosensitive liposomes for drug delivery that could be triggered to release the drug by irradiation with light of appropriate wavelength. Development of such delivery vehicles, in principle, would confer external spatiotemporal control on drug delivery. This could potentially lead to better disease management by minimizing side effects and enhancing patient compatibility. The thesis discusses our attempts toward the development of photosensitive liposomes. These liposomes incorporated a photosensitive lipid (PSL) that would be cleaved upon irradiation with UV light, causing liposomal destabilization and release of the enclosed drug. The discussion includes: (i) the syntheses of the PSLs, (ii) formulation of the photosensitive liposomes that contained a model drug, (iii) light-mediated release of the drug and (iv) the mechanism of photocleavage of the PSL that leads to content release from liposomes. The thesis concludes with suggestions toward the

  5. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers

    PubMed Central

    Kebebe, Dereje; Liu, Yuanyuan; Wu, Yumei; Vilakhamxay, Maikhone; Liu, Zhidong; Li, Jiawei

    2018-01-01

    Cancer has become one of the leading causes of mortality globally. The major challenges of conventional cancer therapy are the failure of most chemotherapeutic agents to accumulate selectively in tumor cells and their severe systemic side effects. In the past three decades, a number of drug delivery approaches have been discovered to overwhelm the obstacles. Among these, nanocarriers have gained much attention for their excellent and efficient drug delivery systems to improve specific tissue/organ/cell targeting. In order to enhance targeting efficiency further and reduce limitations of nanocarriers, nanoparticle surfaces are functionalized with different ligands. Several kinds of ligand-modified nanomedicines have been reported. Cell-penetrating peptides (CPPs) are promising ligands, attracting the attention of researchers due to their efficiency to transport bioactive molecules intracellularly. However, their lack of specificity and in vivo degradation led to the development of newer types of CPP. Currently, activable CPP and tumor-targeting peptide (TTP)-modified nanocarriers have shown dramatically superior cellular specific uptake, cytotoxicity, and tumor growth inhibition. In this review, we discuss recent advances in tumor-targeting strategies using CPPs and their limitations in tumor delivery systems. Special emphasis is given to activable CPPs and TTPs. Finally, we address the application of CPPs and/or TTPs in the delivery of plant-derived chemotherapeutic agents. PMID:29563797

  6. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.

    PubMed

    Habibi, Neda; Kamaly, Nazila; Memic, Adnan; Shafiee, Hadi

    2016-02-01

    Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ability to target molecular recognition sites. Furthermore, these self-assembled nanostructures could be designed with novel peptide motifs, making them stimuli-responsive and achieving triggered drug delivery at disease sites. The goal of this work is to present a comprehensive review of the most recent studies on self-assembled peptides with a focus on their "smart" activity for formation of targeted and responsive drug-delivery carriers.

  7. Novel chitosan derivative for temperature and ultrasound dual-sensitive liposomal microbubble gel.

    PubMed

    Chen, Daquan; Yu, Hongyun; Mu, Hongjie; Wei, Junhua; Song, Zhenkun; Shi, Hong; Liang, Rongcai; Sun, Kaoxiang; Liu, Wanhui

    2013-04-15

    In this study, a novel liposome-loaded microbubble gel based on N-cholesteryl hemisuccinate-O-sulfate chitosan (NCHOSC) was designed. The structure of the NCHOSC was characterized by FTIR and (1)H NMR. The liposomal microbubble gel based on NCHOSC with a high encapsulation efficiency of curcumin was formed and improved the solubility of curcumin. The diameter of most liposomal microbubble was about 950 nm. The temperature-sensitive CS/GP gel could be formulated at room temperature and would form a gel at body temperature. Simultaneously, the ultrasound-sensitive induced release of curcumin was 85% applying ultrasound. The results of cytotoxicity assay indicated that encapsulated curcumin in Cur-LM or Cur-LM-G was less toxic. The anti-tumor efficacy in vivo suggested that Cur-LM-G by ultrasound suppressed tumor growth most efficiently. These findings have shed some light on the potential NCHOSC material used to liposome-loaded microbubble gel for temperature and ultrasound dual-sensitive drug delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Development In Drug Targeting And Delivery In Cervical Cancer.

    PubMed

    Aggarwal, Urvashi; Goyal, Amit Kumar; Rath, Goutam

    2017-10-09

    Cervical cancer is the second most common cancer in women. Standard treatment options available for cervical cancer including chemotherapy, surgery and radiation therapy associated with their own side effects and toxicities. Tumor-targeted delivery of anticancer drugs is perhaps one of the most appropriate strategies to achieve optimal outcomes from treatment and improve quality of life. Recently nanocarriers based drug delivery systems owing to their unique properties have been extensively investigated for anticancer drug delivery. In addition to that addressing the anatomical significance of cervical cancer, various local drug delivery strategies for the cancer treatment are introduced like: gels, nanoparticles, polymeric films, rods and wafers, lipid based nanocarrier. Localized drug delivery systems allows passive drug targeting results in high drug concentration at the target site. Further they can be tailor made to achieve both sustained and controlled release behavior, substantially improving therapeutic outcomes and minimizing side effects. This review summarizes the meaningful advances in drug delivery strategies to treat cervical cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Improved selectivity and cytotoxic effects of irinotecan via liposomal delivery: A comparative study on Hs68 and HeLa cells.

    PubMed

    Casadó, Ana; Mora, Margarita; Sagristá, Maria Lluïsa; Rello-Varona, Santi; Acedo, Pilar; Stockert, Juan Carlos; Cañete, Magdalena; Villanueva, Angeles

    2017-11-15

    Irinotecan (CPT-11) is an effective chemotherapeutic agent widely used to treat different cancers. Otherwise, the liposomal delivery of anti-tumor agents has been shown to be a promising strategy. The aim of this study has been to analyze the effect of liposomal CPT-11 (CPT-11lip) on two human cell lines (Hs68 and HeLa) to establish the suitability of this CPT-11 nanocarrier. We have demonstrated the highest uptake of CPT-11lip in comparison with that of CPT-11sol, in lactate buffer, and that CPT-11lip was internalized in the cells through an endocytic process whereas CPT-11sol does so by passive diffusion. CPT-11lip was not cytotoxic to normal fibroblast Hs68 cells, but induced a massive apoptosis accompanied by cell senescence in HeLa cells. CPT-11lip treatment modified the morphology of HeLa cells, induced different cell cycle alterations and accumulated into lysosomes in both cell lines. In particular, CPT-11lip treatment showed that surviving HeLa cells remained in a state of senescence whereas only a temporal growth arrest was induced in Hs68 cells. Results of RT-PCR indicated that the different responses in Hs68 (survival) and HeLa cells (apoptotic death), seemed to be induced by a p53- and p53- independent mechanism, respectively. An analysis of DNA damage also determined that released CPT-11 from liposomes was able to reach the nucleus and exert a genotoxic effect in both cell lines, which was repaired in Hs68 but not in HeLa cells. All results indicate that phospholipid-cholesterol liposomes possess optimum properties for CPT-11 delivery, being biocompatible and selectively cytotoxic against HeLa tumorigenic cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood-brain barrier transport investigations.

    PubMed

    Zidan, Ahmed S; Aldawsari, Hibah

    2015-01-01

    Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm) of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.

  11. Biomimetics in drug delivery systems: A critical review.

    PubMed

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Non-invasive magnetic resonance imaging follow-up of sono-sensitive liposome tumor delivery and controlled release after high-intensity focused ultrasound.

    PubMed

    Fowler, Robert Andrew; Fossheim, Sigrid L; Mestas, Jean-Louis; Ngo, Jacqueline; Canet-Soulas, Emmanuelle; Lafon, Cyril

    2013-12-01

    This work examines the use of lanthanide-based contrast agents and magnetic resonance imaging in monitoring liposomal behavior in vivo. Dysprosium (Dy) and gadolinium (Gd) chelates, Dy-diethylenetriaminepentaacetic acid bismethylamide (Dy-DTPA-BMA) and Gd-DTPA-BMA, were encapsulated in pegylated distearoylphosphatidylethanolamine-based (saturated) liposomes, and then intravenously injected into Copenhagen rats with subcutaneous Dunning AT2 xenografts. Liposome-encapsulated Dy chelate shortens transverse relaxation times (T(2) and T(2)*) of tissue; thus, liposomal accumulation in the tumor can be monitored by observing the decrease in T(2)* relaxation time over time. The tumor was treated at the time of maximum liposomal accumulation (48 h) with confocal, cavitating high-intensity focused ultrasound to induce liposomal payload release. Using liposome-encapsulated Gd chelate at high enough concentrations and saturated liposomal phospholipids induces an exchange-limited longitudinal (T(1)) relaxation when the liposomes are intact; when the liposomes are released, exchange limitation is relieved, thus allowing in vivo observation of payload release as a decrease in tumor T(1). Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles.

    PubMed

    Zununi Vahed, Sepideh; Fathi, Nazanin; Samiei, Mohammad; Maleki Dizaj, Solmaz; Sharifi, Simin

    2018-06-21

    Based on exceptional advantages of aptamers, increasing attention has been presented in the utilize of them as targeted ligands for cancer drug delivery. Recently, the progress of aptamer- targeted nanoparticles has presented new therapeutic systems for several types of cancer with decreased toxicity and improved efficacy. We highlight some of the promising formulations of aptamer-conjugated polymeric nanoparticles for specific targeted drug delivery to cancer cells. This review paper focuses on the current progresses in the use of the novel strategies to aptamer-targeted drug delivery for chemotherapy. An extensive literature review was performed using internet database, mainly PubMed based on MeSH keywords. The searches included full-text publications written in English without any limitation in date. The abstracts, reviews, books as well as studies without obvious relating of aptamers as targeted ligands for cancer drug delivery were excluded from the study. The reviewed literature revealed that aptamers with ability to modify and conjugate to various molecules can be used as targeted cancer therapy agents. However, development of aptamers unique to each individual's tumor to the development of personalized medicine seems to be needed.

  14. pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji

    2017-10-01

    Efficient vaccine carriers for cancer immunotherapy require two functions: antigen delivery to dendritic cells (DCs) and the activation of DCs, a so-called adjuvant effect. We previously reported antigen delivery system using liposomes modified with pH-sensitive polymers, such as 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG), for the induction of antigen-specific immune responses. We reported that inclusion of cationic lipids to MGlu-HPG-modified liposomes activates DCs and enhances antitumor effects. In this study, CpG-DNA, a ligand to Toll-like receptor 9 (TLR9) expressing in endosomes of DCs, was introduced to MGlu-HPG-modified liposomes containing cationic lipids using two complexation methods (Pre-mix and Post-mix) for additional activation of antigen-specific immunity. For Pre-mix, thin membrane of lipids and polymers were dispersed by a mixture of antigen/CpG-DNA. For Post-mix, CpG-DNA was added to pre-formed liposomes. Both Pre-mix and Post-mix delivered CpG-DNA to DC endosomes, where TLR9 is expressing, more efficiently than free CpG-DNA solution did. These liposomes promoted cytokine production from DCs and the expression of co-stimulatory molecules in vitro and induced antigen-specific immune responses in vivo. Both Pre-mix and Post-mix exhibited strong antitumor effects compared with conventional pH-sensitive polymer-modified liposomes. Results show that inclusion of multiple adjuvant molecules into pH-sensitive polymer-modified liposomes and suitable CpG-DNA complexation methods are important to design potent vaccine carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Efficacy and Safety of Vincristine Sulfate Liposome Injection in the Treatment of Adult Acute Lymphocytic Leukemia

    PubMed Central

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies that arise from clonal proliferation of immature lymphoid cells in the bone marrow, peripheral blood, and other organs. The vinca alkaloid vincristine is a standard component of chemotherapy regimens used to treat ALL, because of its well-defined mechanism of action, demonstrated anticancer activity, and ability to be combined with other agents. However, the dosage of vincristine is frequently capped because of neurotoxicity concerns, and patients with large body surface areas are, therefore, almost always underdosed. Liposomal formulations have the ability to “passively” accumulate at sites of increased vasculature permeability and reduce the adverse effects of encapsulated relative to free drug. Vincristine sulfate liposome injection (VSLI) is a sphingomyelin/cholesterol-based liposome-encapsulated formulation that is delivered weekly in a 1-hour infusion. Based on the pharmacokinetics of the liposomal delivery system, vincristine is slowly released from the liposome and delivered into the tissues more efficiently than with the standard preparation, allowing a higher dose. This increase in therapeutic index from reduced toxicity is a valuable difference between the two formulations. VSLI is indicated for the treatment of adults with second or greater relapse and clinically advanced Philadelphia chromosome-negative ALL. For the first time, studies will be able to exploit the delivery of higher and uncapped doses of vincristine in randomized studies comparing first-line chemotherapy with standard vincristine versus VSLI in both ALL and lymphoma to determine whether VSLI is superior to conventional vincristine. Implications for Practice: This review summarizes the development of vincristine sulfate liposome injection, a new formulation of vincristine. The pharmacokinetics of liposomal drug delivery are examined, the limitations and advantages of conventional and liposomal

  16. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer's disease.

    PubMed

    Agrawal, Mukta; Ajazuddin; Tripathi, Dulal K; Saraf, Swarnlata; Saraf, Shailendra; Antimisiaris, Sophia G; Mourtas, Spyridon; Hammarlund-Udenaes, Margareta; Alexander, Amit

    2017-08-28

    In this modern era, with the help of various advanced technologies, medical science has overcome most of the health-related issues successfully. Though, some diseases still remain unresolved due to various physiological barriers. One such condition is Alzheimer; a neurodegenerative disorder characterized by progressive memory impairment, behavioral abnormalities, mood swing and disturbed routine activities of the person suffering from. It is well known to all that the brain is entirely covered by a protective layer commonly known as blood brain barrier (BBB) which is responsible to maintain the homeostasis of brain by restricting the entry of toxic substances, drug molecules, various proteins and peptides, small hydrophilic molecules, large lipophilic substances and so many other peripheral components to protect the brain from any harmful stimuli. This functionally essential structure creates a major hurdle for delivery of any drug into the brain. Still, there are some provisions on BBB which facilitate the entry of useful substances in the brain via specific mechanisms like passive diffusion, receptor-mediated transcytosis, carrier-mediated transcytosis etc. Another important factor for drug transport is the selection of a suitable drug delivery systems like, liposome, which is a novel drug carrier system offering a potential approach to resolving this problem. Its unique phospholipid bilayer structure (similar to physiological membrane) had made it more compatible with the lipoidal layer of BBB and helps the drug to enter the brain. The present review work focused on various surface modifications with functional ligand (like lactoferrin, transferrin etc.) and carrier molecules (such as glutathione, glucose etc.) on the liposomal structure to enhance its brain targeting ability towards the successful treatment of Alzheimer disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A liposome-based energy conversion system for accelerating the multi-enzyme reactions.

    PubMed

    Matsumoto, Ryuhei; Kakuta, Masaya; Sugiyama, Taiki; Goto, Yoshio; Sakai, Hideki; Tokita, Yuichi; Hatazawa, Tsuyonobu; Tsujimura, Seiya; Shirai, Osamu; Kano, Kenji

    2010-11-14

    We report the first example of a liposome-based energy conversion system that is useful for entrapping enzymes and NAD coenzyme to accelerate multi-step enzymatic reactions. The liposome generates a much higher catalytic current compared with the non-liposome system, which is in good consistency with numerical simulations.

  18. Simultaneous delivery of cytotoxic and biologic therapeutics using nanophotoactivatable liposomes enhances treatment efficacy in a mouse model of pancreatic cancer.

    PubMed

    Tangutoori, Shifalika; Spring, Bryan Q; Mai, Zhiming; Palanisami, Akilan; Mensah, Lawrence B; Hasan, Tayyaba

    2016-01-01

    A lack of intracellular delivery systems has limited the use of biologics such as monoclonal antibodies (mAb) that abrogate molecular signaling pathways activated to promote escape from cancer treatment. We hypothesized that intracellular co-delivery of the photocytotoxic chromophore benzoporphyrin derivative monoacid A (BPD) and the anti-VEGF mAb bevacizumab in a nanophotoactivatable liposome (nanoPAL) might enhance the efficacy of photodynamic therapy (PDT) combined with suppression of VEGF-mediated signaling pathways. As a proof-of-concept we found that nanoPAL-PDT induced enhanced extra- and intracellular bevacizumab delivery and enhanced acute cytotoxicity in vitro. In an in vivo subcutaneous mouse model of pancreatic ductal adenocarcinoma, nanoPAL-PDT achieved significantly enhanced tumor reduction. We attribute this to the optimal incorporation of insoluble BPD into the lipid bilayer, enhancing photocytotoxicity, and the simultaneous spatiotemporal delivery of bevacizumab, ensuring efficient neutralization of the rapid but transient burst of VEGF following PDT. From the Clinical Editor: Most patients with pancreatic ductal adenocarcinoma (PDAC) by the time present the disease it is very advanced, which unavoidably translates to poor survival. For these patients, use of traditional chemotherapy often becomes ineffective due to tumor resistance to drugs. Photodynamic therapy (PDT) can be an effective modality against chemo-resistant cancers. In this article, the authors investigated the co-delivery of a photocytotoxic agent and anti-VEGF mAb using liposomes. This combination was shown to results in enhanced tumor killing. This method should be applicable to other combination of treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Targeted drug delivery across the blood brain barrier in Alzheimer's disease.

    PubMed

    Rocha, Sandra

    2013-01-01

    The discovery of drugs for Alzheimer's disease (AD) therapy that can also permeate the blood brain barrier (BBB) is very difficult owing to its specificity and restrictive nature. The BBB disruption or the administration of the drug directly into the brain is not an option due to toxic effects and low diffusion of the therapeutic molecule in the brain parenchyma. A promising approach for drug systemic delivery to the central nervous system is the use of nanosized carriers. The therapeutic potential of certain nanopharmaceuticals for AD has already been demonstrated in vivo after systemic delivery. They are based on i) conjugates of drug and monoclonal antibodies against BBB endogenous receptors; ii) cationized or end terminal protected proteins/peptides; iii) liposomes and polymeric nanoparticles coated with polysorbate 80, cationic macromolecules or antibodies against BBB receptors/amyloid beta-peptides. Optimization and further validation of these systems are needed.

  20. Design of dendrimer-based drug delivery nanodevices with enhanced therapeutic efficacies

    NASA Astrophysics Data System (ADS)

    Kannan, Rangaramanujam

    2007-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, `peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. They have significant potential compared to liposomes and nanoparticles, because of the reduced macrophage update, increased cellular transport, and the ability to modulate the local environment through functional groups. We are developing nanodevices based on dendritic systems for drug delivery, that contain a high drug payload, ligands, and imaging agents, resulting in `smart' drug delivery devices that can target, deliver, and signal. In collaboration with the Children's Hospital of Michigan, Karmanos Cancer Institute, and College of Pharmacy, we are testing the in vitro and in vivo response of these nanodevices, by adapting the chemistry for specific clinical applications such as asthma and cancer. These materials are characterized by UV/Vis spectroscopy, flow cytometry, fluorescence/confocal microscopy, and appropriate animal models. Our results suggest that: (1) We can prepare drug-dendrimer conjugates with drug payloads of greater than 50%, for a variety of drugs; (2) The dendritic polymers are capable of transporting and delivering drugs into cells faster than free drugs, with superior therapeutic efficiency. This can be modulated by the surface functionality of the dendrimer; (3) For chemotherapy drugs, the conjugates are a factor of 6-20 times more effective even in drug-resistant cell lines; (4) For corticosteroidal drugs, the dendritic polymers provide higher drug residence times in the lung, allowing for passive targeting. The ability of the drug-dendrimer-ligand conjugates to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.

  1. Specific targeting and toxicity of sulphonated aluminium phthalocyanine photosensitised liposomes directed to cells by monoclonal antibody in vitro.

    PubMed Central

    Morgan, J.; Gray, A. G.; Huehns, E. R.

    1989-01-01

    A partially purified fraction of the water soluble photosensitive dye sulphonated aluminium phthalocyanine (AlSPc) was encapsulated in liposomes which were then linked to a targeting monoclonal antibody 791T/36 using a heterobifunctional linking agent. The photocytotoxic effects of the liposomes were determined on two cell lines bearing an antigen with which the targeting antibody binds: 791T, an osteosarcoma and C170, a colorectal carcinoma; and a control cell line not bearing the antigen; DW-BCL, an Epstein-Barr virus immortalised B-cell line. Antibody dependent cytotoxicity was observed in 791T and C170 cells and was proportional to the number of antigens on the cells, the AlSPc concentration and the time of exposure to activating red light. No significant toxicity was seen using untargeted liposomes, control cells or free AlSPc fraction under similar conditions. Targeted cells and controls kept in the dark also showed no significant toxicity. A possible mechanism of action is postulated and simple adaptations which demonstrate the versatility of the model are discussed. Some suggestions as to the clinical situations to which this system might be applied in the form of photodynamic therapy (PDT) are made. PMID:2930700

  2. Comparison of the cellular transport mechanism of cationic, star-shaped polymers and liposomes in HaCat cells.

    PubMed

    Luo, Heng-Cong; Li, Na; Yan, Li; Mai, Kai-Jin; Sun, Kan; Wang, Wei; Lao, Guo-Juan; Yang, Chuan; Zhang, Li-Ming; Ren, Meng

    2017-01-01

    Several biological barriers must be overcome to achieve efficient nonviral gene delivery. These barriers include target cell uptake, lysosomal degradation, and dissociation from the carrier. In this study, we compared the differences in the uptake mechanism of cationic, star-shaped polymer/MMP-9siRNA complexes (β-CD-(D3)7/MMP-9siRNA complexes: polyplexes) and commercial liposome/MMP-9siRNA complexes (Lipofectamine ® 2000/MMP-9siRNA complexes: liposomes). The uptake pathway and transfection efficiency of the polyplexes and liposomes were determined by fluorescence microscopy, flow cytometry, and reverse transcriptase-polymerase chain reaction. The occurrence of intracellular processing was assessed by confocal laser scanning microscopy. Endosomal acidification inhibitors were used to explore the endosomal escape mechanisms of the polyplexes and lysosomes. We concluded that the polyplexes were internalized by non-caveolae- and non-clathrin-mediated pathways, with no lysosomal trafficking, thereby inducing successful transfection, while the majority of liposomes were internalized by clathrin-dependent endocytosis (CDE), caveolae-mediated endocytosis, and macropinocytosis, and only CDE induced successful transfection. Liposomes might escape more quickly than polyplexes, and the digestion effect of acidic organelles on liposomes was faint compared to the polyplexes, although both complexes escaped from endolysosomes via the proton sponge mechanism. This may be the key aspect that leads to the lower transfection efficiency of the β-CD-(D3)7/MMP-9siRNA complexes. The present study may offer some insights for the rational design of novel delivery systems with increased transfection efficiency but decreased toxicity.

  3. Enhanced Cytotoxicity of Folic Acid-Targeted Liposomes Co-Loaded with C6 Ceramide and Doxorubicin: In Vitro Evaluation on HeLa, A2780-ADR, and H69-AR Cells.

    PubMed

    Sriraman, Shravan Kumar; Pan, Jiayi; Sarisozen, Can; Luther, Ed; Torchilin, Vladimir

    2016-02-01

    Current research in cancer therapy is beginning to shift toward the use of combinational drug treatment regimens. However, the efficient delivery of drug combinations is governed by a number of complex factors in the clinical setting. Therefore, the ability to synchronize the pharmacokinetics of the individual therapeutic agents present in combination not only to allow for simultaneous tumor accumulation but also to allow for a synergistic relationship at the intracellular level could prove to be advantageous. In this work, we report the development of a novel folic acid-targeted liposomal formulation simultaneously co-loaded with C6 ceramide and doxorubicin [FA-(C6+Dox)-LP]. In vitro cytotoxicity assays showed that the FA-(C6+Dox)-LP was able to significantly reduce the IC50 of Dox when compared to that after the treatment with the doxorubicin-loaded liposomes (Dox-LP) as well as the untargeted drug co-loaded (C6+Dox)-LP on HeLa, A2780-ADR, and H69-AR cells. The analysis of the cell cycle distribution showed that while the C6 liposomes (C6-LP) did not cause cell cycle arrest, all the Dox-containing liposomes mediated cell cycle arrest in HeLa cells in the G2 phase at Dox concentrations of 0.3 and 1 μM and in the S phase at the higher concentrations. It was also found that this arrest in the S phase precedes the progression of the cells to apoptosis. The targeted FA-(C6+Dox)-LP were able to significantly enhance the induction of apoptotic events in HeLa cell monolayers as compared to the other treatment groups. Next, using time-lapse phase holographic imaging microscopy, it was found that upon treatment with the FA-(C6+Dox)-LP, the HeLa cells underwent rapid progression to apoptosis after 21 h as evidenced by a drastic drop in the average area of the cells after loss of cell membrane integrity. Finally, upon evaluation in a HeLa spheroid cell model, treatment with the FA-(C6+Dox)-LP showed significantly higher levels of cell death compared to those with C6-LP and

  4. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays.

    PubMed

    Pham, Xuan-Hung; Hahm, Eunil; Kim, Tae Han; Kim, Hyung-Mo; Lee, Sang Hun; Lee, Yoon-Sik; Jeong, Dae Hong; Jun, Bong-Hyun

    2017-06-23

    In this study, we prepared adenosine triphosphate (ATP) encapsulated liposomes, and assessed their applicability for the surface enhanced Raman scattering (SERS)-based assays with gold-silver alloy (Au@Ag)-assembled silica nanoparticles (NPs; SiO₂@Au@Ag). The liposomes were prepared by the thin film hydration method from a mixture of l-α-phosphatidylcholine, cholesterol, and PE-PEG2000 in chloroform; evaporating the solvent, followed by hydration of the resulting thin film with ATP in phosphate-buffered saline (PBS). Upon lysis of the liposome, the SERS intensity of the SiO₂@Au@Ag NPs increased with the logarithm of number of ATP-encapsulated liposomes after lysis in the range of 8 × 10⁶ to 8 × 10 10 . The detection limit of liposome was calculated to be 1.3 × 10 -17 mol. The successful application of ATP-encapsulated liposomes to SiO₂@Au@Ag NPs based SERS analysis has opened a new avenue for Raman label chemical (RCL)-encapsulated liposome-enhanced SERS-based immunoassays.

  5. Biocompatibility and light transmission of liposomal lenses.

    PubMed

    Danion, Anne; Doillon, Charles J; Giasson, Claude J; Djouahra, Saliha; Sauvageau, Patrick; Paradis, Renée; Vermette, Patrick

    2007-10-01

    To validate the biocompatibility and transmittance properties of contact lenses bearing intact liposomes. These liposomal lenses loaded with therapeutics can be used as ophthalmic drug delivery systems. The biocompatibility of soft contact lenses, coated with liposomes was evaluated through in vitro direct and indirect cytocompatibility assays on human corneal epithelial cells, on reconstructed human corneas and on ex vivo rabbit corneas. The direct and indirect transmission spectra of liposome-covered lenses were also evaluated to test if they transmit all wavelengths of the ultraviolet-visible spectrum, to thereby fulfill their optical function, without gross alteration of the colors perception and with a minimum of light dispersion. Contact lenses bearing layers of stable liposomes did not induce any significant changes in cell viability and in cell growth, compared with lenses bearing no liposome. Elution assays revealed that no cytotoxic compound leaks from the lenses whether bearing liposomes or not. Histological analyses of reconstructed human corneas and ex vivo rabbit corneas directly exposed to liposomal lenses revealed neither alteration to the cell nor to the tissue structures. Contact lenses bearing layers of liposomes did not significantly affect light transmission compared with control lenses without liposome at the wavelength of maximal photopic sensitivity, i.e., 550 nm. In addition, the contact lenses afford more eye protection in the ultraviolet spectrum, compared with the control lenses. Liposomal contact lenses are biocompatible and their transmittance properties are not affected in the visible light range.

  6. A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin.

    PubMed

    Saw, Phei Er; Park, Jinho; Jon, Sangyong; Farokhzad, Omid C

    2017-02-01

    A major problem with cancer chemotherapy begins when cells acquire resistance. Drug-resistant cancer cells typically upregulate multi-drug resistance proteins such as P-glycoprotein (P-gp). However, the lack of overexpressed surface biomarkers has limited the targeted therapy of drug-resistant cancers. Here we report a drug-delivery carrier decorated with a targeting ligand for a surface marker protein extra-domain B(EDB) specific to drug-resistant breast cancer cells as a new therapeutic option for the aggressive cancers. We constructed EDB-specific aptide (APT EDB )-conjugated liposome to simultaneously deliver siRNA(siMDR1) and Dox to drug-resistant breast cancer cells. APT EDB -LS(Dox,siMDR1) led to enhanced delivery of payloads into MCF7/ADR cells and showed significantly higher accumulation and retention in the tumors. While either APT EDB -LS(Dox) or APT EDB -LS(siMDR1) did not lead to appreciable tumor retardation in MCF7/ADR orthotropic model, APT EDB -LS(Dox,siMDR1) treatment resulted in significant reduction of the drug-resistant breast tumor. Taken together, this study provides a new strategy of drug delivery for drug-resistant cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Assessment of plaque vulnerability in atherosclerosis via intravascular photoacoustic imaging of targeted liposomal ICG J-aggregates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Harris, Justin T.; Dumani, Diego S.; Cook, Jason R.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.; Homan, Kimberly A.

    2017-03-01

    While molecular and cellular imaging can be used to visualize the conventional morphology characteristics of vulnerable plaques, there is a need to monitor other physiological factors correlated with high rupture rates; a high M1 activated macrophage concentration is one such indicator of high plaque vulnerability. Here, we present a molecularly targeted contrast agent for intravascular photoacoustic (IVPA) imaging consisting of liposomes loaded with indocyanine green (ICG) J-aggregates with high absorption at 890 nm, allowing for imaging in the presence of blood. This "Lipo-ICG" was targeted to a biomarker of M1 activated macrophages in vulnerable plaques: folate receptor beta (FRβ). The targeted liposomes accumulate in plaques through areas of endothelial dysfunction, while the liposome encapsulation prevents nonspecific interaction with lipids and endothelium. Lipo-ICG specifically interacts with M1 activated macrophages, causing a spectral shift and change in the 890/780 nm photoacoustic intensity ratio upon breakdown of J-aggregates. This sensing mechanism enables assessment of the M1 activated macrophage concentration, providing a measure of plaque vulnerability. In a pilot in vivo study utilizing ApoE deficient mouse models of atherosclerosis, diseased mice showed increased uptake of FRβ targeted Lipo-ICG in the heart and arteries vs. normal mice. Likewise, targeted Lipo-ICG showed increased uptake vs. two non-targeted controls. Thus, we successfully synthesized a contrast agent to detect M1 activated macrophages in high risk atherosclerotic plaques and exhibited targeting both in vitro and in vivo. This biocompatible agent could enable M1 macrophage detection, allowing better clinical decision making in treatment of atherosclerosis.

  8. Interaction of colistin and colistin methanesulfonate with liposomes: colloidal aspects and implications for formulation.

    PubMed

    Wallace, Stephanie J; Li, Jian; Nation, Roger L; Prankerd, Richard J; Boyd, Ben J

    2012-09-01

    Interaction of colistin and colistin methanesulfonate (CMS) with liposomes has been studied with the view to understanding the limitations to the use of liposomes as a more effective delivery system for pulmonary inhalation of this important class of antibiotic. Thus, in this study, liposomes containing colistin or CMS were prepared and characterized with respect to colloidal behavior and drug encapsulation and release. Association of anionic CMS with liposomes induced negative charge on the particles. However, degradation of the CMS to form cationic colistin over time was directly correlated with charge reversal and particle aggregation. The rate of degradation of CMS was significantly more rapid when associated with the liposome bilayer than when compared with the same concentration in aqueous solution. Colistin liposomes carried positive charge and were stable. Encapsulation efficiency for colistin was approximately 50%, decreasing with increasing concentration of colistin. Colistin was rapidly released from liposomes on dilution. Although the studies indicate limited utility of colistin or CMS liposomes for long duration controlled-release applications, colistin liposomes were highly stable and may present a potential opportunity for coformulation of colistin with a second antibiotic to colocalize the two drugs after pulmonary delivery. Copyright © 2012 Wiley Periodicals, Inc.

  9. Interaction of Colistin and Colistin Methanesulfonate with Liposomes: Colloidal Aspects and Implications for Formulation

    PubMed Central

    WALLACE, STEPHANIE J.; LI, JIAN; NATION, ROGER L.; PRANKERD, RICHARD J.; BOYD, BEN J.

    2012-01-01

    Interaction of colistin and colistin methanesulfonate (CMS) with liposomes has been studied with the view to understanding the limitations to the use of liposomes as a more effective delivery system for pulmonary inhalation of this important class of antibiotic. Thus, in this study, liposomes containing colistin or CMS were prepared and characterized with respect to colloidal behavior and drug encapsulation and release. Association of anionic CMS with liposomes induced negative charge on the particles. However, degradation of the CMS to form cationic colistin over time was directly correlated with charge reversal and particle aggregation. The rate of degradation of CMS was significantly more rapid when associated with the liposome bilayer than when compared with the same concentration in aqueous solution. Colistin liposomes carried positive charge and were stable. Encapsulation efficiency for colistin was approximately 50%, decreasing with increasing concentration of colistin. Colistin was rapidly released from liposomes on dilution. Although the studies indicate limited utility of colistin or CMS liposomes for long duration controlled-release applications, colistin liposomes were highly stable and may present a potential opportunity for coformulation of colistin with a second antibiotic to colocalize the two drugs after pulmonary delivery. PMID:22623044

  10. Liposomalization of oxaliplatin induces skin accumulation of it, but negligible skin toxicity.

    PubMed

    Nishida, Kentaro; Kashiwagi, Misaki; Shiba, Shunsuke; Muroki, Kiwamu; Ohishi, Akihiro; Doi, Yusuke; Ando, Hidenori; Ishida, Tatsuhiro; Nagasawa, Kazuki

    2017-12-15

    Liposomalization causes alteration of the pharmacokinetics of encapsulated drugs, and allows delivery to tumor tissues through passive targeting via an enhanced permeation and retention (EPR) effect. PEGylated liposomal doxorubicin (Doxil ® , Lipo-DXR), a representative liposomal drug, is well-known to reduce cardiotoxicity and increase the anti-tumor activity of DXR, but to induce the hand-foot syndrome (HFS) as a result of skin DXR accumulation, which is one of its severe adverse effects. We have developed a new liposomal preparation of oxaliplatin (l-OHP), an important anti-tumor drug for treatment of colorectal cancer, using PEGylated liposomes (Lipo-l-OHP), and showed that Lipo-l-OHP exhibits increased anti-tumor activity in tumor-bearing mice compared to the original preparation of l-OHP. However, whether Lipo-l-OHP causes HFS-like skin toxicity similar to Lipo-DXR remains to be determined. Administration of Lipo-l-OHP promoted accumulation of platinum in rat hind paws, however, it caused negligible morphological and histological alterations on the plantar surface of the paws. Administration of DiI-labeled empty PEGylated liposomes gave almost the same distribution profile of dyes into the dermis of hind paws with DXR as in the case of Lipo-DXR. Treatment with Lipo-l-OHP, Lipo-DXR, DiI-labeled empty PEGylated liposomes or empty PEGylated liposomes caused migration of CD68 + macrophages into the dermis of hind paws. These findings suggest that the skin toxicity on administration of liposomalized drugs is reflected in the proinflammatory characteristics of encapsulated drugs, and indicate that Lipo-l-OHP with a higher anti-cancer effect and no HFS may be an outstanding l-OHP preparation leading to an improved quality of life of cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    DOE PAGES

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; ...

    2016-02-02

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less

  12. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less

  13. Biophysical characterization of gold nanoparticles-loaded liposomes.

    PubMed

    Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed

    2012-10-01

    Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. pH-Sensitive PEGylated liposomes for delivery of an acidic dinitrobenzamide mustard prodrug: Pathways of internalization, cellular trafficking and cytotoxicity to cancer cells.

    PubMed

    Yang, Mimi M; Wilson, William R; Wu, Zimei

    2017-01-10

    This paper aims to develop and evaluate a pH-sensitive PEGylated liposomal (pPSL) system for tumor-targeted intracellular delivery of SN25860, a weakly acidic, poorly water-soluble dinitrobenzamide mustard prodrug which is activated by the E. coli nitroreductase nfB. pPSL and non pH-sensitive liposomes (nPSL), as reference, were formulated by thin-film hydration; an active drug loading method was developed with the aid of solubilizers. Cytotoxicity was evaluated in an nfsB-transfected EMT6 mouse mammary carcinoma cell line. Cellular uptake of liposomes was evaluated by both high performance liquid chromatography and flow cytometry. Intracellular trafficking was visualised by confocal microscopy. High drug loading (7.0±0.2% w/w) was achieved after systematic optimization of drug loading conditions. pPSL-SN25860 demonstrated a 21 and 24- fold increase in antiproliferative potency compared to nPSL-SN25860 and free drug, respectively. Cells treated with pPSL had a 1.6-2.5- fold increase in intracellular drug concentration compared to nPSL. This trend was consistent with flow cytometry results. Cells treated with chlorpromazine demonstrated reduced uptake of both nPSL (40%) and pPSL (46%), indicating clathrin-mediated endocytosis was the major pathway. Confocal microscopy showed that pPSL had not only undergone faster and greater endocytosis than nPSL but was also homogeneously distributed in the cytosol and nuclei suggesting endosome escape, in contrast to nPSL. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Preparation and properties evaluation of a novel pH-sensitive liposomes based on imidazole-modified cholesterol derivatives.

    PubMed

    Ju, Liang; Cailin, Fang; Wenlan, Wu; Pinghua, Yu; Jiayu, Gao; Junbo, Li

    2017-02-25

    As a new kind of drug carries, pH-sensitive liposomes have been widely studied in tumor therapy for their advantages of target ability and sustained-release. Here, we synthesized a pH-sensitive material, N-(3-Aminopropyl)imidazole-cholesterol (IM-Chol) and prepared a novel pH-sensitive liposomes using IM-Chol and phosphatidylcholine. IM-Chol was synthesized through amidation reaction between the amino group of N-(3-Aminopropyl)imidazole and acyl chloride group of cholesteryl chloroformate in a weak base solution. Optimal conditions to prepare liposomes were obtained by the orthogonal experiment with the higher encapsulation efficiency as the evaluation indicator. The properties of liposomes, such as particle size, zeta potential, morphology, encapsulation efficiency, drug release behavior and in vitro cell toxicity were evaluated by transmission electron microscopy (TEM), dynamic light scattering (DLS) and MTT assay respectively. The results showed that the average particle size of IM-Chol liposomes was 141nm (PDI 0.323). Liposomes can assemble into uniform spheres at pH 7.4, but under the condition of pH 5.0, the spherical structure of IM-Chol liposomes was broken, exhibiting pH-sensitive property. In vitro drug releasing studies demonstrated the controlled-release behavior of the curcumin (CUR) in the IM-Chol liposomes. The cumulative release of CUR reached to 72.5% in the first 24h at pH 5.0, faster than that at pH 7.4, which confirmed that the drug carrier displayed pH-sensitive release behaviors. In addition, the MTT assay was employed to test the cytotoxicity of IM-Chol liposomes and CUR IM-Chol liposomes. All cell viabilities were greater than 80% after incubating for 24h, even up to the highest dose of 500mg/L, indicating that IM-Chol liposomes had good biocompatibility. The tumor inhibitory results towards EC109 cells of free CUR and CUR-loaded IM-Chol liposomes indicated that IM-Chol liposomes indeed enhanced the cell killing effect of CUR. These results

  16. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach.

    PubMed

    Soema, Peter C; Willems, Geert-Jan; Jiskoot, Wim; Amorij, Jean-Pierre; Kersten, Gideon F

    2015-08-01

    In this study, the effect of liposomal lipid composition on the physicochemical characteristics and adjuvanticity of liposomes was investigated. Using a design of experiments (DoE) approach, peptide-containing liposomes containing various lipids (EPC, DOPE, DOTAP and DC-Chol) and peptide concentrations were formulated. Liposome size and zeta potential were determined for each formulation. Moreover, the adjuvanticity of the liposomes was assessed in an in vitro dendritic cell (DC) model, by quantifying the expression of DC maturation markers CD40, CD80, CD83 and CD86. The acquired data of these liposome characteristics were successfully fitted with regression models, and response contour plots were generated for each response factor. These models were applied to predict a lipid composition that resulted in a liposome with a target zeta potential. Subsequently, the expression of the DC maturation factors for this lipid composition was predicted and tested in vitro; the acquired maturation responses corresponded well with the predicted ones. These results show that a DoE approach can be used to screen various lipids and lipid compositions, and to predict their impact on liposome size, charge and adjuvanticity. Using such an approach may accelerate the formulation development of liposomal vaccine adjuvants. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Development and characterization of CD22-targeted pegylated-liposomal doxorubicin (IL-PLD).

    PubMed

    O'Donnell, Robert T; Martin, Shiloh M; Ma, Yunpeng; Zamboni, William C; Tuscano, Joseph M

    2010-06-01

    Non-Hodgkin's lymphoma (NHL) is the sixth most common cause of cancer deaths in the U.S. Most NHLs initially respond well to chemotherapy, but relapse is common and treatment is often limited due to the toxicity of chemotherapeutic agents. Pegylated-liposomal doxorubicin (PLD, Ben Venue Laboratories, Inc), a produces less myelotoxicity than non-liposomal (NL) doxorubicin. To further enhance efficacy and NHL targeting and to decrease toxicity, we conjugated an anti-CD22 monoclonal antibody (HB22.7) to the surface of PLD, thereby creating CD22-targeted immunoliposomal PLD (IL-PLD). HB22.7 was successfully conjugated to PLD and the resulting IL-PLD exhibits specific binding to CD22-expressing cells as assessed by immunofluorescence staining. IL-PLD exhibits more cytotoxicity than PLD in CD22 positive cell lines but does not increase killing of CD22 negative cells. The IC(50) of IL-PLD is 3.1 to 5.4 times lower than that of PLD in CD22+ cell lines while the IC(50) of IL-PLD is equal to that of PLD in CD22- cells. Furthermore, IL-PLD remained bound to the CD22+ cells after washing and continued to exert cytotoxic effects, while PLD and NL- doxorubicin could easily be washed from these cells.

  18. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery.

    PubMed

    Aravind, Athulya; Jeyamohan, Prashanti; Nair, Remya; Veeranarayanan, Srivani; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2012-11-01

    Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug-loaded PLGA-lecithin-PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The drug-loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF-7 and GI-1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug-loading studies indicated that under the same drug loading, the aptamer-targeted NPs show enhanced cancer killing effect compared to the corresponding non-targeted NPs. In addition, the PLGA-lecithin-PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer-PLGA-lecithin-PEG NPs are potential carrier candidates for differential targeted drug delivery. Copyright © 2012 Wiley Periodicals, Inc.

  19. Na{sub 3}[B{sub 20}H{sub 17}NH{sub 3}]: Synthesis and liposomal delivery to murine tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feakes, D.A.; Shelly, K.; Knobler, C.B.

    1994-04-12

    The polyhedral borane ion [n-B{sub 20}H{sub 18}]{sup 2{minus}} reacts with liquid ammonia in the presence of a suitable base to produce an apical-equatorial (ae) isomer of the [B{sub 20}H{sub 17}NH{sub 3}]{sup 3{minus}} ion, [1-(2{prime}-B{sub 10}H{sub 9})-2-NH{sub 3}B{sub 10}H{sub 8}]{sup 3{minus}}. The structure of this product has been confirmed by {sup 11}B NMR spectroscopy and x-ray crystallography. This species undergoes acid-catalyzed rearrangement to an apical-apical (a{sup 2}) isomer, [1-(1{prime}-B{sub 10}H{sub 9})-2-NH{sub 3}B{sub 10}H{sub 8}]{sup 3{minus}}, whose structure has been determined by {sup 11}B NMR spectroscopy. The sodium salts of both the ae and the a{sup 2} isomers of [B{sub 20}H{sub 17}NH{submore » 3}]{sup 3{minus}} have been encapsulated within small unilamellar liposomes, composed of distearoyl phosphatidyl-choline/cholesterol (1:1), and investigated as boron-delivery agents for boron neutron capture therapy (BNCT) of cancer. The biodistribution of boron was determined after the injection of liposomal suspensions into BALB/c mice bearing EMT6 tumors. Both [B{sub 20}H{sub 17}NH{sub 3}]{sup 3{minus}} isomers exhibited excellent tumor uptake and selectivity at very low injected doses, achieving peak tumor boron concentrations of 30-40 {mu}g of B/g of tissue and tumor/blood boron ratios of {approximately}5. The enhanced retention of the [B{sub 20}H{sub 17}NH{sub 3}]{sup 3{minus}} isomers by EMT6 tumors may be attributed to their facile intracellular oxidation. In another experiment, [ae-B{sub 20}H{sub 17}NH{sub 3}]{sup 3{minus}} was encapsulated in liposomes prepared with 5% PEG-2000-distearoyl phosphatidylethanolamine in the liposome membrane. As expected, these liposomes exhibited a longer circulation lifetime in the biodistribution experiment, resulting in the continued accumulation of boron in the tumor over the entire 48-hr experiment and reaching a maximum of 47 {mu}g of B/g of tumor.« less

  20. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models.

    PubMed Central

    Webb, M. S.; Harasym, T. O.; Masin, D.; Bally, M. B.; Mayer, L. D.

    1995-01-01

    This study reports on the development of a liposomal formulation of vincristine with significantly enhanced stability and biological properties. The in vitro and in vivo pharmacokinetic, tumour delivery and efficacy properties of liposomal vincristine formulations based on sphingomyelin (SM) and cholesterol were compared with liposomes composed of distearoylphosphatidylcholine (DSPC) and cholesterol. SM/cholesterol liposomes had significantly greater in vitro stability than did similar DSPC/cholesterol liposomes. SM/cholesterol liposomes also had significantly improved biological properties compared with DSPC/cholesterol. Specifically, SM/cholesterol liposomes administered intravenously retained 25% of the entrapped vincristine after 72 h in the circulation, compared with 5% retention in DSPC/cholesterol liposomes. The improved retention properties of SM/cholesterol liposomes resulted in plasma vincristine levels 7-fold higher than in DSPC/cholesterol liposomes. The improved circulation lifetime of vincristine in SM/cholesterol liposomes correlated with increased vincristine accumulation in peritoneal ascitic murine P388 tumours and in subcutaneous solid A431 human xenograft tumours. Increased vincristine delivery to tumours was also accompanied by increased anti-tumour efficacy. Treatment with SM/cholesterol liposomal formulations of vincristine resulted in greater than 50% cures in mice bearing ascitic P388 tumours, an activity that could not be achieved with the DSPC/cholesterol formulation. Similarly, treatment of mice with severe combined immunodeficiency (SCID) bearing solid human A431 xenograft tumours with SM/cholesterol vincristine formulations delayed the time required for 100% increase in tumour mass to > 40 days, compared with 5 days, 7 days and 14 days for mice receiving no treatment or treatment with free vincristine or DSPC/cholesterol formulations of vincristine respectively. PMID:7547237