Science.gov

Sample records for targeted paclitaxel delivery

  1. Construction of hydroxypropyl-β-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel

    NASA Astrophysics Data System (ADS)

    Miao, Qinghua; Li, Suping; Han, Siyuan; Wang, Zhi; Wu, Yan; Nie, Guangjun

    2012-08-01

    A novel amphiphilic copolymer with p-maleimidophenyl isocyanate-hydroxypropyl-β-cyclodextrin-polylactide-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine to generate copolymer nanoparticles (NPs) has been designed. In order to develop an active targeting system, integrin αvβ3-specific targeting peptide cyclo(Arg-Gly-Asp-D-Phe-Cys), cRGD, was conjugated to the surface of NPs (NPs-RGD). These NPs were used to encapsulate anti-tumor drug, paclitaxel. The resulting NPs exhibited high drug-loading capacity and controlled drug release in vitro at acidic pH. In vitro cytotoxicity assay demonstrates that paclitaxel-loaded NPs-RGD significantly inhibited B16 tumor cell (high αvβ3) proliferation relative to free paclitaxel and paclitaxel-loaded NPs at high concentrations. Paclitaxel-loaded NPs-RGD localized mainly in lysosomes in B16 cells as revealed by confocal microscopy. These results suggest a novel strategy for fabrication—functionalizing hydroxypropyl-β-cyclodextrin copolymer nanoparticles for targeting delivery of paclitaxel to integrin αvβ3-rich tumor cells. These nanocarriers can be readily extended to couple other bioactive molecules for active targeting and delivery of various chemotherapeutic drugs.

  2. Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles.

    PubMed

    Kim, Jin-Ho; Kim, Youngwook; Bae, Ki Hyun; Park, Tae Gwan; Lee, Jung Hee; Park, Keunchil

    2015-04-06

    Water-insoluble anticancer drugs, including paclitaxel, present severe clinical side effects when administered to patients, primarily associated with the toxicity of reagents used to solubilize the drugs. In efforts to develop alternative formulations of water-insoluble anticancer drugs suitable for intravenous administration, we developed biocompatible anticancer therapeutic solid lipid nanoparticles (SLNs), mimicking the structure and composition of natural particles, low-density lipoproteins (LDLs), for tumor-targeted delivery of paclitaxel. These therapeutic nanoparticles contained water-insoluble paclitaxel in the core with tumor-targeting ligand covalently conjugated on the polyethylene glycol (PEG)-modified surface (targeted PtSLNs). In preclinical human cancer xenograft mouse model studies, the paclitaxel-containing tumor-targeting SLNs exhibited pronounced in vivo stability and enhanced biocompatibility. Furthermore, these SLNs had superior antitumor activity to in-class nanoparticular therapeutics in clinical use (Taxol and Genexol-PM) and yielded long-term complete responses. The in vivo targeted antitumor activities of the SLN formulations in a mouse tumor model suggest that LDL-mimetic SLN formulations can be utilized as a biocompatible, tumor-targeting platform for the delivery of various anticancer therapeutics.

  3. Targeted delivery of paclitaxel and doxorubicin to cancer xenografts via the nanoparticle of nano-diamino-tetrac

    PubMed Central

    Sudha, Thangirala; Bharali, Dhruba J; Yalcin, Murat; Darwish, Noureldien HE; Debreli Coskun, Melis; Keating, Kelly A; Lin, Hung-Yun; Davis, Paul J; Mousa, Shaker A

    2017-01-01

    The tetraiodothyroacetic acid (tetrac) component of nano-diamino-tetrac (NDAT) is chemically bonded via a linker to a poly(lactic-co-glycolic acid) nanoparticle that can encapsulate anticancer drugs. Tetrac targets the plasma membrane of cancer cells at a receptor on the extracellular domain of integrin αvβ3. In this study, we evaluate the efficiency of NDAT delivery of paclitaxel and doxorubicin to, respectively, pancreatic and breast cancer orthotopic nude mouse xenografts. Intra-tumoral drug concentrations were 5-fold (paclitaxel; P<0.001) and 2.3-fold (doxorubicin; P<0.01) higher than with conventional systemic drug administration. Tumor volume reductions reflected enhanced xenograft drug uptake. Cell viability was estimated by bioluminescent signaling in pancreatic tumors and confirmed an increased paclitaxel effect with drug delivery by NDAT. NDAT delivery of chemotherapy increases drug delivery to cancers and increases drug efficacy. PMID:28243091

  4. Targeted delivery of paclitaxel and doxorubicin to cancer xenografts via the nanoparticle of nano-diamino-tetrac.

    PubMed

    Sudha, Thangirala; Bharali, Dhruba J; Yalcin, Murat; Darwish, Noureldien He; Debreli Coskun, Melis; Keating, Kelly A; Lin, Hung-Yun; Davis, Paul J; Mousa, Shaker A

    2017-01-01

    The tetraiodothyroacetic acid (tetrac) component of nano-diamino-tetrac (NDAT) is chemically bonded via a linker to a poly(lactic-co-glycolic acid) nanoparticle that can encapsulate anticancer drugs. Tetrac targets the plasma membrane of cancer cells at a receptor on the extracellular domain of integrin αvβ3. In this study, we evaluate the efficiency of NDAT delivery of paclitaxel and doxorubicin to, respectively, pancreatic and breast cancer orthotopic nude mouse xenografts. Intra-tumoral drug concentrations were 5-fold (paclitaxel; P<0.001) and 2.3-fold (doxorubicin; P<0.01) higher than with conventional systemic drug administration. Tumor volume reductions reflected enhanced xenograft drug uptake. Cell viability was estimated by bioluminescent signaling in pancreatic tumors and confirmed an increased paclitaxel effect with drug delivery by NDAT. NDAT delivery of chemotherapy increases drug delivery to cancers and increases drug efficacy.

  5. Novel thermo-sensitive core-shell nanoparticles for targeted paclitaxel delivery

    NASA Astrophysics Data System (ADS)

    Li, Yuanpei; Pan, Shirong; Zhang, Wei; Du, Zhuo

    2009-02-01

    Novel thermo-sensitive nanoparticles self-assembled from poly(N,N-diethylacrylamide- co-acrylamide)-block-poly(γ-benzyl L-glutamate) were designed for targeted drug delivery in localized hyperthermia. The lower critical solution temperature (LCST) of nanoparticles was adjusted to a level between physiological body temperature (37 °C) and that used in local hyperthermia (about 43 °C). The temperature-dependent performances of the core-shell nanoparticles were systemically studied by nuclear magnetic resonance (NMR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS), and atom force microscopy (AFM). The mean diameter of the nanoparticles increased slightly from 110 to 129 nm when paclitaxel (PTX), a poorly water-soluble anti-tumor drug, was encapsulated. A stability study in bovine serum albumin (BSA) solution indicated that the PTX loaded nanoparticles may have a long circulation time under physiological environments as the LCST was above physiological body temperature and the shell remained hydrophilic at 37 °C. The PTX release profiles showed thermo-sensitive controlled behavior. The proliferation inhibiting activity of PTX loaded nanoparticles was evaluated against Hela cells in vitro, compared with Taxol (a formulation of paclitaxel dissolved in Cremophor EL and ethanol). The cytotoxicity of PTX loaded nanoparticles increased obviously when hyperthermia was performed. The nanoparticles synthesized here could be an ideal candidate for thermal triggered anti-tumor PTX delivery system.

  6. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity.

    PubMed

    Esfandyari-Manesh, Mehdi; Darvishi, Behrad; Ishkuh, Fatemeh Azizi; Shahmoradi, Elnaz; Mohammadi, Ali; Javanbakht, Mehran; Dinarvand, Rassoul; Atyabi, Fatemeh

    2016-05-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC50) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells.

  7. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

    PubMed Central

    Zhang, Linhua; Zhu, Dunwan; Dong, Xia; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling

    2015-01-01

    The purpose of this study was to develop a novel lipid–polymer hybrid drug carrier comprised of folate (FA) modified lipid-shell and polymer-core nanoparticles (FLPNPs) for sustained, controlled, and targeted delivery of paclitaxel (PTX). The core-shell NPs consist of 1) a poly(ε-caprolactone) hydrophobic core based on self-assembly of poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) (PCL-PEG-PCL) amphiphilic copolymers, 2) a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG2000), 3) a targeting ligand (FA) on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol®, but higher than that of PTX-loaded LPNPs (without folate conjugation). In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol®. More importantly, PTX-loaded FLPNPs showed greater tumor growth inhibition (65.78%) than the nontargeted PTX-loaded LPNPs (48.38%) (P<0.05). These findings indicated that the PTX loaded-FLPNPs with mixed lipid monolayer shell and biodegradable polymer core would be a promising nanosized drug formulation for tumor-targeted therapy. PMID:25844039

  8. Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel.

    PubMed

    Bae, Ki Hyun; Lee, Yuhan; Park, Tae Gwan

    2007-02-01

    PEO-PPO-PEO/PEG shell cross-linked nanocapsules encapsulating an oil phase in their nanoreservoir structure was developed as a target-specific carrier for a water-insoluble drug, paclitaxel. Oil-encapsulating PEO-PPO-PEO/PEG composite nanocapsules were synthesized by dissolving an oil (Lipiodol) and an amine-reactive PEO-PPO-PEO derivative in dichloromethane and subsequently dispersing in an aqueous solution containing amine-functionalized six-arm-branched poly(ethylene glycol) by ultrasonication. The resultant shell cross-linked nanocapsules had a unique core/shell architecture with an average size of 110.7 +/- 9.9 nm at 37 degrees C, as determined by dynamic light scattering and transmission electron microscopy. Paclitaxel could be effectively solubilized in the inner Lipiodol phase surrounded by a cross-linked PEO-PPO-PEO/PEG shell layer. The paclitaxel-loaded nanocapsules were further conjugated with folic acid to achieve folate receptor targeted delivery. Confocal microscopy and flow cytometric analysis revealed that folate-mediated targeting significantly enhanced the cellular uptake and apoptotic effect against folate receptor overexpressing cancer cells. The present study suggested that these novel nanomaterials encapsulating an oil reservoir could be potentially applied for cancer cell targeted delivery of various water-insoluble therapeutic and diagnostic agents.

  9. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mu, Qingxin; Kievit, Forrest M.; Kant, Rajeev J.; Lin, Guanyou; Jeon, Mike; Zhang, Miqin

    2015-10-01

    Nanoparticles (NPs) for targeted therapy are required to have appropriate size, stability, drug loading and release profiles, and efficient targeting ligands. However, many of the existing NPs such as albumin, liposomes, polymers, gold NPs, etc. encounter size limit, toxicity and stability issues when loaded with drugs, fluorophores, and targeting ligands. Furthermore, antibodies are bulky and this can greatly affect the physicochemical properties of the NPs, whereas many small molecule-based targeting ligands lack specificity. Here, we report the utilization of biocompatible, biodegradable, small (~30 nm) and stable iron oxide NPs (IONPs) for targeted delivery of paclitaxel (PTX) to HER2/neu positive breast cancer cells using an anti-HER2/neu peptide (AHNP) targeting ligand. We demonstrate the uniform size and high stability of these NPs in biological medium, their effective tumour targeting in live mice, as well as their efficient cellular targeting and selective killing in human HER2/neu-positive breast cancer cells.Nanoparticles (NPs) for targeted therapy are required to have appropriate size, stability, drug loading and release profiles, and efficient targeting ligands. However, many of the existing NPs such as albumin, liposomes, polymers, gold NPs, etc. encounter size limit, toxicity and stability issues when loaded with drugs, fluorophores, and targeting ligands. Furthermore, antibodies are bulky and this can greatly affect the physicochemical properties of the NPs, whereas many small molecule-based targeting ligands lack specificity. Here, we report the utilization of biocompatible, biodegradable, small (~30 nm) and stable iron oxide NPs (IONPs) for targeted delivery of paclitaxel (PTX) to HER2/neu positive breast cancer cells using an anti-HER2/neu peptide (AHNP) targeting ligand. We demonstrate the uniform size and high stability of these NPs in biological medium, their effective tumour targeting in live mice, as well as their efficient cellular

  10. Targeted delivery of albumin bound paclitaxel in the treatment of advanced breast cancer.

    PubMed

    Di Costanzo, Francesco; Gasperoni, Silvia; Rotella, Virginia; Di Costanzo, Federica

    2009-02-18

    Taxanes are chemotherapeutic agents with a large spectrum of antitumor activity when used as monotherapy or in combination regimens. Paclitaxel and docetaxel have poor solubility and require a complex solvent system for their commercial formulation, Cremophor EL(R) (CrEL) and Tween 80(R) respectively. Both these biological surfactants have recently been implicated as contributing not only to the hypersensitivity reactions, but also to the degree of peripheral neurotoxicity and myelosuppression, and may antagonize the cytotoxicity. Nab-paclitaxel, or nanoparticle albumin-bound paclitaxel (ABI-007; Abraxane(R)), is a novel formulation of paclitaxel that does not employ the CrEL solvent system. Nab-paclitaxel demonstrates greater efficacy and a favorable safety profile compared with standard paclitaxel in patients with advanced disease (breast cancer, non-small cell lung cancer, melanoma, ovarian cancer). Clinical studies in breast cancer have shown that nab-paclitaxel is significantly more effective than standard paclitaxel in terms of overall objective response rate (ORR) and time to progression. Nab-paclitaxel in combination with gemcitabine, capecitabine or bevacizumab has been shown to be very active in patients with advanced breast cancer. An economic analysis showed that nab-paclitaxel would be an economically reasonable alternative to docetaxel or standard paclitaxel in metastatic breast cancer. Favorable tumor ORR and manageable toxicities have been reported for nab-paclitaxel as monotherapy or in combination treatment in advanced breast cancer.

  11. Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma

    PubMed Central

    Li, Ying; Zheng, Xuemin; Gong, Min; Zhang, Jianning

    2016-01-01

    The challenge of effectively delivering therapeutic agents to the brain has created an entire field of active research devoted to overcoming the blood brain barrier (BBB) and efficiently delivering drugs to the brain. Angiopep-2 can trigger transcytosis and traverse the BBB by recognizing low-density lipoprotein related protein-1 (LRP-1) expressed on the brain capillary endothelial cells. Here, we designed a novel strategy for the delivery of drugs to the brain. The novel drug delivery system was a combination of a receptor-targeting ligand, such as low-density lipoprotein related protein 1, and a cell-penetrating peptide (CPP). It was hypothesized that this conjugate will enhance the delivery of associated therapeutic cargo across the BBB and increase the permeability of a solid tumor. Our findings indicate that the combination of these two agents in a delivery vehicle significantly improved translocation of small molecules (paclitaxel) into the brain compared to the vehicle treatment, which contained only receptor-targeting ligand. The application of this strategy could potentially expand the horizons for the treatment of central nervous system disorders. PMID:27765902

  12. PEG-Farnesyl Thiosalicylic Acid Telodendrimer Micelles as an Improved Formulation for Targeted Delivery of Paclitaxel

    PubMed Central

    2015-01-01

    We have recently designed and developed a dual-functional drug carrier that is based on poly(ethylene glycol) (PEG)-derivatized farnesylthiosalicylate (FTS, a nontoxic Ras antagonist). PEG5K-FTS2 readily form micelles (20–30 nm) and hydrophobic drugs such as paclitaxel (PTX) could be effectively loaded into these micelles. PTX formulated in PEG5K-FTS2 micelles showed an antitumor activity that was more efficacious than Taxol in a syngeneic mouse model of breast cancer (4T1.2). In order to further improve our PEG-FTS micellar system, four PEG-FTS conjugates were developed that vary in the molecular weight of PEG (PEG2K vs PEG5K) and the molar ratio of PEG/FTS (1/2 vs 1/4) in the conjugates. These conjugates were characterized including CMC, drug loading capacity, stability, and their efficacy in delivery of anticancer drug PTX to tumor cells in vitro and in vivo. Our data showed that the conjugates with four FTS molecules were more effective than the conjugates with two molecules of FTS and that FTS conjugates with PEG5K were more effective than the counterparts with PEG2K in forming stable mixed micelles. PTX formulated in PEG5K-FTS4 micelles was the most effective formulation in inhibiting the tumor growth in vivo. PMID:24987803

  13. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model.

    PubMed

    Karra, Nour; Nassar, Taher; Ripin, Alina Nemirovski; Schwob, Ouri; Borlak, Jürgen; Benita, Simon

    2013-12-20

    Aberrant signaling of the epidermal growth factor receptor (EGFR) is common to a variety of human cancers and is also found to be over-expressed in most cases of non-small cell lung cancer. For the development of a molecularly targeted therapy, cetuximab-conjugated nanoparticles (immunonanoparticles, INPs) are designed and loaded with the lipophilic paclitaxel palmitate (pcpl) prodrug. Oleyl cysteineamide (OCA) is synthesized whereby its amphiphilic nature enables interfacial anchoring and thiol surface functionalization of PLGA NPs, facilitating bioconjugation to cetuximab by thioether bonds. It is demonstrated that the in vitro targeting efficiency and improved cellular internalization and cytotoxicity of this targeted delivery system in lung cancer cells over-expressing EGFR. A quantitative measure of the high binding affinity of INPs to EGFR is demonstrated using surface plasmon resonance. In vivo tolerability and enhanced efficacy of cetuximab pcpl INPs in a metastatic lung cancer model are reported. Its therapeutic efficacy in A549-luc-C8 lung tumors is shown using non-invasive bioluminescent imaging. Intravenous administration of cetuximab pcpl INPs to mice results in significantly higher inhibition of tumor growth and increased survival rates as compared to the non-targeted drug solution, drug-loaded nanoparticles or blank INPs. Pharmacokinetics and organ biodistribution of the prodrug and parent drug are evaluated by LC-MS/MS in lung tumor bearing mice. No enhanced total accumulation of nanoparticles or INPs is found at the tumor tissue. However, persistent pcpl levels with sustained conversion and release of paclitaxel are observed for the encapsulated prodrug possibly suggesting the formation of a drug reservoir. The overall results indicate the potential of this promising targeted platform for the improved treatment of lung cancer and other EGFR positive tumors.

  14. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles

    PubMed Central

    Shi, Yang; van der Meel, Roy; Theek, Benjamin; Blenke, Erik Oude; Pieters, Ebel H.E.; Fens, Marcel H.A.M.; Ehling, Josef; Schiffelers, Raymond M.; Storm, Gert; van Nostrum, Cornelus F.; Lammers, Twan; Hennink, Wim E.

    2015-01-01

    Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achieve prolonged circulation kinetics. As a result, PTX deposition in tumors is increased while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed paclitaxel (PTX)-loaded micelles which are stable without chemical crosslinking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol® or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses while they induced complete tumor regression in two different xenograft models (i.e. A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index. PMID:25831471

  15. Well-Defined Redox-Sensitive Polyethene Glycol-Paclitaxel Prodrug Conjugate for Tumor-Specific Delivery of Paclitaxel Using Octreotide for Tumor Targeting.

    PubMed

    Yin, Tingjie; Wu, Qu; Wang, Lei; Yin, Lifang; Zhou, Jianping; Huo, Meirong

    2015-08-03

    A redox-sensitive prodrug, octreotide(Phe)-polyethene glycol-disulfide bond-paclitaxel [OCT(Phe)-PEG-ss-PTX], was successfully developed for targeted intracellular delivery of PTX. The formulation emphasizes long-circulation-time polymer-drug conjugates, combined targeting based on EPR and OCT-receptor mediated endocytosis, sharp redox response, and programmed drug release. The nontargeted redox-sensitive prodrug, mPEG-ss-PTX, and the targeted insensitive prodrug, OCT(Phe)-PEG-PTX, were also synthesized as controls. These polymer-PTX conjugates, structurally confirmed by 1H NMR, exhibited approximately 23,000-fold increase in water solubility over parent PTX and possessed drug contents ranging from 11% to 14%. The redox-sensitivity of the objective OCT(Phe)-PEG-ss-PTX prodrug was verified by in vitro PTX release profile in simulated reducing conditions, and the SSTRs-mediated endocytosis was demonstrated by flow cytometry and confocal laser scanning microscopy analyses. Consequently, compared with mPEG-PTX and OCT(Phe)-PEG-PTX, the OCT(Phe)-PEG-ss-PTX exhibited much stronger cyotoxicity and apoptosis-inducing ability against NCI-H446 tumor cells (SSTRs overexpression), whereas a comparable cytotoxicity of these prodrugs was obtained against WI-38 normal cells (no SSTRs expression). Finally, the in vivo studies on NCI-H466 tumor-bearing nude mice demonstrated that the OCT(Phe)-PEG-ss-PTX possessed superior tumor-targeting ability and antitumor activity over mPEG-PTX, OCT(Phe)-PEG-PTX and Taxol, as well as minimal collateral damage. This targeted redox-sensitive polymer-PTX prodrug system is promising in tumor therapy.

  16. Octa-ammonium POSS-conjugated single-walled carbon nanotubes as vehicles for targeted delivery of paclitaxel

    PubMed Central

    Naderi, Naghmeh; Madani, Seyed Y.; Mosahebi, Afshin; Seifalian, Alexander M.

    2015-01-01

    Background Carbon nanotubes (CNTs) have unique physical and chemical properties. Furthermore, novel properties can be developed by attachment or encapsulation of functional groups. These unique properties facilitate the use of CNTs in drug delivery. We developed a new nanomedicine consisting of a nanocarrier, cell-targeting molecule, and chemotherapeutic drug and assessed its efficacy in vitro. Methods The efficacy of a single-walled carbon nanotubes (SWCNTs)-based nanoconjugate system is assessed in the targeted delivery of paclitaxel (PTX) to cancer cells. SWCNTs were oxidized and reacted with octa-ammonium polyhedral oligomeric silsesquioxanes (octa-ammonium POSS) to render them biocompatible and water dispersable. The functionalized SWCNTs were loaded with PTX, a chemotherapeutic agent toxic to cancer cells, and Tn218 antibodies for cancer cell targeting. The nanohybrid composites were characterized with transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and ultraviolet–visible–near-infrared (UV–Vis–NIR). Additionally, their cytotoxic effects on Colon cancer cell (HT-29) and Breast cancer cell (MCF-7) lines were assessed in vitro. Results TEM, FTIR, and UV–Vis–NIR studies confirmed side-wall functionalization of SWCNT with COOH-groups, PTX, POSS, and antibodies. Increased cell death was observed with PTX–POSS–SWCNT, PTX–POSS–Ab–SWCNT, and free PTX compared to functionalized-SWCNT (f-SWCNT), POSS–SWCNT, and cell-only controls at 48 and 72 h time intervals in both cell lines. At all time intervals, there was no significant cell death in the POSS–SWCNT samples compared to cell-only controls. Conclusion The PTX-based nanocomposites were shown to be as cytotoxic as free PTX. This important finding indicates successful release of PTX from the nanocomposites and further reiterates the potential of SWCNTs to deliver drugs directly to targeted cells and tissues. PMID:26356347

  17. A novel delivery vector for targeted delivery of the antiangiogenic drug paclitaxel to angiogenic blood vessels: TLTYTWS-conjugated PEG-PLA nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Mo, Xiao-hui; Zhao, Jian; Liang, Hui; Chen, Zhong-jian; Wang, Xiu-li

    2017-02-01

    Antiangiogenesis has been widely accepted as an attractive strategy to combat tumor growth, invasion, and metastasis. An actively targeting nanoparticle-based drug delivery system (nano-DDS) would provide an alternative method to achieve antiangiogenic antitumor therapy. In the present study, our group fabricated novel nano-DDS, TLTYTWS (TS) peptide-modified poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles (TS-NPs) encapsulating a drug with antiangiogenic potential, paclitaxel (Ptx) (TS-Ptx-NPs). The nanoparticles were uniformly spherical and had a unimodal particle size distribution and slightly negative zeta potential. TS-NPs accumulated significantly in human umbilical vein endothelial cells (HUVECs) via energy-dependent and caveolae- and lipid raft-mediated endocytosis and improved the antiproliferative, antimigratory, and antitube-forming abilities of paclitaxel in vitro. Following intravenous administration, TS-Ptx-NPs presented favorable pharmacokinetic profiles. Melanoma distribution assays confirmed that TS-NPs achieved higher accumulation and penetration at melanoma sites. These results collectively indicated that TLTYTWS-decorated nanoparticles can be considered to be a promising nano-DDS for chemotherapies targeting tumor angiogenesis and have great potential to improve the efficacy of antiangiogenic therapy in melanoma tumor-bearing nude mice.

  18. CD44 Receptor Targeting and Endosomal pH-Sensitive Dual Functional Hyaluronic Acid Micelles for Intracellular Paclitaxel Delivery.

    PubMed

    Liu, Yanhua; Zhou, Chengming; Wang, Wenping; Yang, Jianhong; Wang, Hao; Hong, Wei; Huang, Yu

    2016-12-05

    A novel CD44 receptor targeting and endosome pH-sensitive dual functional hyaluronic acid-deoxycholic acid-histidine (HA-DOCA-His) micellar system was designed for intracellular paclitaxel (PTX) delivery. The HA-DOCA-His micelles exhibited desirable endosome pH (5.0-6.0)-induced aggregation and deformation behavior verified by size distribution, critical micellar concentration, and zeta potential changes. The HA-DOCA-His micelles presented excellent encapsulation efficiency and loading capacity of 90.0% and 18.9% for PTX, respectively. The PTX release from HA-DOCA-His micelles was pH-dependent, with more rapid PTX release at pH 6.0 and 5.0 than those at pH 7.4 and 6.5. The cellular uptake performance of HA-DOCA-His micelles was enhanced comparing with pH-insensitive HA-DOCA micelles by qualitative and quantitative measurements. HA-DOCA-His micelles could be taken up via CD44-receptor mediated endocytosis, transported into endosomes, and triggered drug release to cytoplasm. In vitro cytotoxicity study exhibited PTX-loaded HA-DOCA-His micelles were more active in tumor cell growth inhibition in MCF-7 cells at pH 5.8 than those at pH 6.8 and pH 7.4. A superior antitumor efficacy was demonstrated with HA-DOCA-His micelles in a MCF-7 breast tumor model. These indicated that the dual functional HA-DOCA-His micelles combined targeted intracellular delivery and endosomal release strategies could be developed as a promising nanocarrier for anticancer efficacy improvement of PTX.

  19. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation.

    PubMed

    Ravar, Fatemeh; Saadat, Ebrahim; Gholami, Mehdi; Dehghankelishadi, Pouya; Mahdavi, Mehdi; Azami, Samira; Dorkoosh, Farid A

    2016-05-10

    Breast cancer is the leading cause of cancer death in women. Chemotherapy is regarded as the most essential strategy in inhibiting the proliferation of tumor cells. Paclitaxel is a widely used taxane; however, the side effects of available Cremophor-based formulations and also the limitations of passive targeting uncovered an essential need to develop tumor-specific targeted nanocarriers. A hyaluronic acid targeted liposomal formulation of paclitaxel was prepared in which, hyaluronic acid was electrostatistically attracted to the surface of liposomes. Liposomes, had a particle size of 106.4±3.2nm, a weakly negative zeta potential of -9.7±0.8mV and an acceptable encapsulation efficiency of 92.1±1.7%. The release profile of liposomes in buffer showed that 95% of PTX was released during 40h. Confocal laser scanning microscopy and flow cytometry analysis showed the greater cellular internalization of coumarin-loaded liposomes compared to free coumarin. MTT assay on 4T1 and T47D cells demonstrated the stronger cytotoxic activity of liposomes in comparison to free paclitaxel. Cell cycle analysis showed that cells were mainly blocked at G2/M phases after 48h treatment with liposomes. In vivo real time imaging on 4T1 tumor-bearing mice revealed that the liposomal formulation mainly accumulated in the tumor area. Liposomes also had better antitumor efficacy against Cremophor-based formulation. In conclusion, hyaluronic acid targeted paclitaxel liposome can serve as a promising targeted formulation of paclitaxel for future cancer chemotherapy.

  20. Biodistribution and Pharmacokinetic Analysis of Combination Lonidamine and Paclitaxel Delivery in an Orthotopic Animal Model of Multi-drug Resistant Breast Cancer Using EGFR-Targeted Polymeric Nanoparticles

    PubMed Central

    Milane, Lara; Duan, Zhen-feng; Amiji, Mansoor

    2011-01-01

    The aim of this study was to assess the biodistribution and pharmacokinetics of epidermal growth factor receptor (EGFR)-targeted polymer blend nanoparticles loaded with the anticancer drugs lonidamine and paclitaxel. Plasma, tumor, and tissue distribution profiles were quantified in an orthotopic animal model of multi-drug resistant (MDR) breast cancer and were compared to treatment with non-targeted nanoparticles and to treatment with drug solution. Poly(D,L-lactide-co-glycolide)/poly(ethylene glycol)/EGFR targeting peptide (PLGA/PEG/EFGR peptide) construct was synthesized for incorporation in poly(ε-caprolactone) (PCL) particles to achieve active EGFR targeting. An isocratic HPLC method was developed to quantify lonidamine and paclitaxel in mice plasma, tumors, and vital organs. The targeted nanoparticles demonstrated superior pharmacokinetic profile relative to drug solution and non-targeted nanoparticles, particularly for lonidamine delivery. The first target site of accumulation is the liver, followed by the kidneys, and then the tumor mass; maximal tumor accumulation occurs at 3 hours post-administration. Lonidamine/paclitaxel combination therapy administered via EGFR-targeted polymer blend nanocarriers may become a viable platform for the future treatment of MDR cancer. PMID:21220050

  1. Paclitaxel Nano-Delivery Systems: A Comprehensive Review

    PubMed Central

    Ma, Ping; Mumper, Russell J.

    2013-01-01

    Paclitaxel is one of the most effective chemotherapeutic drugs ever developed and is active against a broad range of cancers, such as lung, ovarian, and breast cancers. Due to its low water solubility, paclitaxel is formulated in a mixture of Cremophor EL and dehydrated ethanol (50:50, v/v) a combination known as Taxol. However, Taxol has some severe side effects related to Cremophor EL and ethanol. Therefore, there is an urgent need for the development of alternative Taxol formulations. The encapsulation of paclitaxel in biodegradable and non-toxic nano-delivery systems can protect the drug from degradation during circulation and in-turn protect the body from toxic side effects of the drug thereby lowering its toxicity, increasing its circulation half-life, exhibiting improved pharmacokinetic profiles, and demonstrating better patient compliance. Also, nanoparticle-based delivery systems can take advantage of the enhanced permeability and retention (EPR) effect for passive tumor targeting, therefore, they are promising carriers to improve the therapeutic index and decrease the side effects of paclitaxel. To date, paclitaxel albumin-bound nanoparticles (Abraxane®) have been approved by the FDA for the treatment of metastatic breast cancer and non-small cell lung cancer (NSCLC). In addition, there are a number of novel paclitaxel nanoparticle formulations in clinical trials. In this comprehensive review, several types of developed paclitaxel nano-delivery systems will be covered and discussed, such as polymeric nanoparticles, lipid-based formulations, polymer conjugates, inorganic nanoparticles, carbon nanotubes, nanocrystals, and cyclodextrin nanoparticles. PMID:24163786

  2. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel.

    PubMed

    Li, Jing; Huo, Meirong; Wang, Jing; Zhou, Jianping; Mohammad, Jumah M; Zhang, Yinlong; Zhu, Qinnv; Waddad, Ayman Y; Zhang, Qiang

    2012-03-01

    A targeted intracellular delivery system of paclitaxel (PTX) was successfully developed based on redox-sensitive hyaluronic acid-deoxycholic acid (HA-ss-DOCA) conjugates. The conjugates self-assembled into nano-size micelles in aqueous media and exhibited excellent drug-loading capacities (34.1%) and entrapment efficiency (93.2%) for PTX. HA-ss-DOCA micelles were sufficiently stable at simulated normal physiologic condition but fast disassembled in the presence of 20 mm reducing agent, glutathione. In vitro drug release studies showed that the PTX-loaded HA-ss-DOCA micelles accomplished rapid drug release under reducing condition. Intracellular release of fluorescent probe nile red indicated that HA-ss-DOCA micelles provide an effective approach for rapid transport of cargo into the cytoplasm. Enhanced cytotoxicity of PTX-loaded HA-ss-DOCA micelles further confirmed that the sensitive micelles are more potent for intracellular drug delivery as compared to the insensitive control. Based on flow cytometry and confocal microscopic analyses, observations revealed that HA-ss-DOCA micelles were taken up to human breast adenocarcinoma cells (MDA-MB-231) via HA-receptor mediated endocytosis. In vivo investigation of micelles in tumor-bearing mice confirmed that HA-ss-DOCA micelles possessed much higher tumor targeting capacity than the insensitive control. These results suggest that redox-sensitive HA-ss-DOCA micelles hold great potential as targeted intracellular delivery carriers of lipophilic anticancer drugs.

  3. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer

    PubMed Central

    Liu, Bo; Han, Li; Liu, Junyan; Han, Shumei; Chen, Zhen; Jiang, Lixi

    2017-01-01

    Background Cervical cancer is a major world health problem for women. Currently, cancer research focuses on improving therapy for cervical cancer using various treatment options such as co-delivery of chemotherapeutic agents by nanocarriers. Purpose The aim of this study was to develop trans-activating transcriptional activator (TAT)-modified solid lipid nanoparticles (SLNs) for co-delivery of paclitaxel (PTX) and α-tocopherol succinate-cisplatin prodrug (TOS-CDDP) (TAT PTX/TOS-CDDP SLNs) in order to achieve synergistic antitumor activity against cervical cancer. Methods Lipid prodrug of CDDP (TOS-CDDP) and TAT-containing polyethylene glycol-distearoyl-phosphatidylethanolamine (TAT-PEG-DSPE) were synthesized. TAT PTX/TOS-CDDP SLNs were prepared by emulsification and solvent evaporation method. Physicochemical characteristics of SLNs such as size, morphology, and release profiles were explored. In vitro and in vivo studies were carried out to assess the efficacy of their antitumor activity in target cells. Results TAT PTX/TOS-CDDP SLNs could be successfully internalized by HeLa cells and showed a synergistic effect in the suppression of cervical tumor cell growth. They exhibited high tumor tissue accumulation, superior antitumor efficiency, and much lower toxicity in vivo. Conclusion The present study indicates that the co-delivery system provides a promising platform as a combination therapy for the treatment of cervical cancer, and possibly other types of cancer as well. PMID:28203075

  4. High cytotoxicity and resistant-cell reversal of novel paclitaxel loaded micelles by enhancing the molecular-target delivery of the drug

    NASA Astrophysics Data System (ADS)

    You, Jian; Hu, Fu-Qiang; Du, Yong-Zhong; Yuan, Hong; Ye, Bang-Fu

    2007-12-01

    Many antitumor drugs, such as paclitaxel (PTX), are widely used in cancer chemotherapy. However, their clinical use is limited by systemic toxicity, rapid blood clearance, and the occurrence of resistance. To increase the therapeutic index of these drugs, the antitumor drug PTX was encapsulated in novel micelles with glycolipid-like structure, which were formed by stearate grafted chitosan oligosaccharide in aqueous medium. The micelles could load the poorly soluble antitumor drug (PTX) with high entrapment efficiency and drug loading. PTX release was retarded as a result of the encapsulation of the micelles. PTX loaded micelles present excellent internalization into tumor cells as well as resistant cells and subsequently reside in cytoplasm, which results in increased intracellular accumulation of PTX in its molecular-target site. Consequently, cytotoxicity of PTX loaded micelles was improved sharply and resistant cells were reversed. In conclusion, high cytotoxicity can be obtained and resistant cells can be reversed by enhancing PTX's molecular-target delivery and accumulation via the encapsulation of the micelles. The present micelles are a promising carrier candidate for effective therapy of antitumor drugs with the target molecule in cytoplasm.

  5. Targeting Paclitaxel-Loaded Nanoparticles to Ovarian Cancer

    DTIC Science & Technology

    2013-05-01

    Final Targeting Paclitaxel-Loaded Nanoparticles to Ovarian Cancer Stephen B. Howell showell@ucsd.edu University of California, San Diego La Jolla, CA...None provided. 24 3 Targeting paclitaxel-loaded nanoparticles to ovarian cancer W81XWH-09-1-0223 Table of Contents...N/A 4 Title: Targeting Paclitaxel-Loaded Nanoparticles to Ovarian Cancer Grant

  6. Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan–folic acid micelles

    PubMed Central

    Wang, Feihu; Chen, Yuxuan; Zhang, Dianrui; Zhang, Qiang; Zheng, Dandan; Hao, Leilei; Liu, Yue; Duan, Cunxian; Jia, Lejiao; Liu, Guangpu

    2012-01-01

    Background A critical disadvantage for successful chemotherapy with paclitaxel (PTX) is its nontargeting nature to cancer cells. Folic acid has been employed as a targeting ligand of various anticancer agents to increase their cellular uptake within target cells since the folate receptor is overexpressed on the surface of such tumor cells. In this study, a novel biodegradable deoxycholic acid-O-carboxymethylated chitosan–folic acid conjugate (DOMC-FA) was used to form micelles for encapsulating the anticancer drug PTX. Methods and results The drug-loading efficiency, encapsulation efficiency, in vitro drug release and physicochemical properties of PTX-loaded micelles were investigated in detail. In vitro cell culture studies were carried out in MCF-7 cells, a human breast carcinoma cell line, with folate receptor overexpressed on its surface. An increased level of uptake of folate-conjugated micelles compared to plain micelles in MCF-7 cells was observed, and the enhanced uptake of folate-micelles mainly on account of the effective process of folate receptor-mediated endocytosis. The MTT assay, morphological changes, and apoptosis test implied that the folate-conjugated micelles enhanced the cell death by folate-mediated active internalization, and the cytotoxicity of the FA-micellar PTX (DOMC-FA/PTX) to cancer cells was much higher than micelles without folate (DOMC/PTX) or the commercially available injectable preparation of PTX (Taxol). Conclusion Results indicate that the PTX-loaded DOMC-FA micelle is a successful anticancertargeted drug-delivery system for effective cancer chemotherapy. PMID:22287842

  7. Targeted Dual pH-Sensitive Lipid ECO/siRNA Self-Assembly Nanoparticles Facilitate In Vivo Cytosolic sieIF4E Delivery and Overcome Paclitaxel Resistance in Breast Cancer Therapy.

    PubMed

    Gujrati, Maneesh; Vaidya, Amita M; Mack, Margaret; Snyder, Dayton; Malamas, Anthony; Lu, Zheng-Rong

    2016-11-01

    RNAi-mediated knockdown of oncogenes associated with drug resistance can potentially enhance the efficacy of chemotherapy. Here, we have designed and developed targeted dual pH-sensitive lipid-siRNA self-assembly nanoparticles, RGD-PEG(HZ)-ECO/siRNA, which can efficiently silence the oncogene, eukaryotic translation initiation factor 4E (eIF4E), and consequently resensitize triple-negative breast tumors to paclitaxel. The dual pH-sensitive function of these nanoparticles facilitates effective cytosolic siRNA delivery in cancer cells, both in vitro and in vivo. Intravenous injection of RGD-PEG(HZ)-ECO/siRNA nanoparticles (1.0 mg-siRNA/kg) results in effective gene silencing for at least one week in MDA-MB-231 tumors. In addition, treatment of athymic nude mice with RGD-PEG(HZ)-ECO/sieIF4E every 6 days for 6 weeks down-regulates the overexpression of eIF4E and resensitizes paclitaxel-resistant MDA-MB-231 tumors to paclitaxel, resulting in significant tumor regression at a low dose, with negligible side effects. Moreover, repeated injections of the RGD-PEG(HZ)-ECO/siRNA nanoparticles in immunocompetent mice result in minimal immunogenicity, demonstrating their safety and low toxicity. These multifunctional lipid/siRNA nanoparticles constitute a versatile platform of delivery of therapeutic siRNA for treating cancer and other human diseases.

  8. Tumor targeting by conjugation of DHA to paclitaxel.

    PubMed

    Bradley, M O; Swindell, C S; Anthony, F H; Witman, P A; Devanesan, P; Webb, N L; Baker, S D; Wolff, A C; Donehower, R C

    2001-07-06

    Targeting an anti-cancer drug to tumors should increase the Area Under the drug concentration-time Curve (AUC) in tumors while decreasing the AUC in normal cells and should therefore increase the therapeutic index of that drug. Anti-tumor drugs typically have half-lives far shorter than the cell cycle transit times of most tumor cells. Tumor targeting, with concomitant long tumor exposure times, will increase the proportion of cells that move into cycle when the drug concentration is high, which should result in more tumor cell killing. In an effort to test that hypothesis, we conjugated a natural fatty acid, docosahexaenoic acid (DHA), through an ester bond to the paclitaxel 2'-oxygen. The resulting paclitaxel fatty acid conjugate (DHA-paclitaxel) does not assemble microtubules and is non-toxic. In the M109 mouse tumor model, DHA-paclitaxel is less toxic than paclitaxel and cures 10/10 tumored animals, whereas paclitaxel cures 0/10. One explanation for the conjugate's greater therapeutic index is that the fatty acid alters the pharmacokinetics of the drug to increase its AUC in tumors and decrease its AUC in normal cells. To test that possibility, we compared the pharmacokinetics of DHA-paclitaxel with paclitaxel in CD2F1 mice bearing approximately 125 mg sc M109 tumors. The mice were injected at zero time with a bolus of either DHA-paclitaxel or paclitaxel formulated in 10% cremophor/10% ethanol/80% saline. Animals were sacrificed as a function of time out to 14 days. Tumors and plasma were frozen and stored. The concentrations of paclitaxel and DHA-paclitaxel were analyzed by LC/MS/MS. The results show that DHA targets paclitaxel to tumors: tumor AUCs are 61-fold higher for DHA-paclitaxel than for paclitaxel at equitoxic doses and eight-fold higher at equimolar doses. Likewise, at equi-toxic doses, the tumor AUCs of paclitaxel derived from i.v. DHA-paclitaxel are 6.1-fold higher than for paclitaxel derived from i.v. paclitaxel. The tumor concentration of

  9. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptide-activated stimuli-sensitive polymeric micelles for delivery of paclitaxel

    NASA Astrophysics Data System (ADS)

    Lin, Meng Meng; Kang, Yoon Joong; Sohn, Youngjoo; Kim, Do Kyung

    2015-06-01

    A double targeting strategy of anti-neoplastic agent paclitaxel (PTX) was developed by incorporating magnetic nanoparticles and RGD peptide for enhanced cell cytotoxicity effect at lower dosage. A dual targeting mechanism including magnetic targeting and RGD ligand-specific targeting enhanced the overall cytotoxicity and reduced the effective dosage of PTX to achieve enhanced and sustained release of PTX in vitro. We addressed the issues of water-insolubility of oleic acid (OA)-stabilized SPIONs and low incorporation efficiency of hydrophobic PTX with SPION nanocarriers by using an amphiphilic polymer poly[( N-isopropylacrylamide-r-acrylamide)-b- l-lactic acid] (PNAL) as micelle-forming materials. A targeting moiety, GGGGRGD peptide, a RGD sequence-containing peptide with a short linker, is attached to the surface of PNAL-SPIONs via a homo-crosslinker. Confocal microscopy image analysis revealed that the cellular uptake was increased from (1.5 ± 0.5 % (PNAL) to 11.7 ± 0.8 % (RGD-PNAL-SPIONs) at 6 h incubation, once both RGD peptide and magnetic force attraction were incorporated into the carriers. Such multi-targeting nanocarriers showed promising potential in cancer-oriented diagnosis and therapy.

  10. The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors

    PubMed Central

    Sarisozen, Can; Abouzeid, Abraham H.; Torchilin, Vladimir P.

    2014-01-01

    Multicellular 3D cancer cell culture (spheroids) resemble to in vivo tumors in terms of shape, cell morphology, growth kinetics, gene expression and drug response. However, these characteristics cause very limited drug penetration into deeper parts of the spheroids. In this study, we used multi drug resistant (MDR) ovarian cancer cell spheroid and in vivo tumor models to evaluate the co-delivery of paclitaxel (PCL) and a potent NF-κB inhibitor curcumin (CUR). PCL and CUR were co-loaded into the polyethylene glycol-phosphatidyl ethanolamine (PEG-PE) based polymeric micelles modified with Transferrin (TF) as the targeting ligand. Cytotoxicity, cellular association and accumulation into the deeper layers were investigated in the spheroids and compared with the monolayer cell culture. Comparing to non-targeted micelles, flow cytometry and confocal imaging proved significantly deeper and higher micelle penetration into the spheroids with TF-targeting. Both in monolayers and spheroids, PCL cytotoxicity was significantly increased when co-delivered with CUR in non-targeted micelles or as single agent in TF-targeted micelles, whereas TF-modification of co-loaded micelles did not further enhance the cytotoxicity. In vivo tumor inhibition studies showed good correlation with the 3D cell culture experiments, which suggests the current spheroid model can be used as an intermediate model for evaluation of co-delivery of anticancer compounds in targeted micelles. PMID:25016976

  11. Fmoc-conjugated PEG-vitamin E2 micelles for tumor-targeted delivery of paclitaxel: enhanced drug-carrier interaction and loading capacity.

    PubMed

    Zhang, Yifei; Huang, Yixian; Zhao, Wenchen; Lu, Jianqin; Zhang, Peng; Zhang, Xiaolan; Li, Jiang; Gao, Xiang; Venkataramanan, Raman; Li, Song

    2014-11-01

    The purpose of this study is to develop an improved drug delivery system for enhanced paclitaxel (PTX) loading capacity and formulation stability based on PEG5K-(vitamin E)2 (PEG5K-VE2) system. PEG5K-(fluorenylmethoxycarbonyl)-(vitamin E)2 (PEG5K-FVE2) was synthesized using lysine as the scaffold. PTX-loaded PEG5K-FVE2 micelles were prepared and characterized. Fluorescence intensity of Fmoc in the micelles was measured as an indicator of drug-carrier interaction. Cytotoxicity of the micelle formulations was tested on various tumor cell lines. The therapeutic efficacy and toxicity of PTX-loaded micelles were investigated using a syngeneic mouse model of breast cancer (4T1.2). Our data suggest that the PEG5K-FVE2 micelles have a low CMC value of 4 μg/mL and small sizes (~60 nm). The PTX loading capacity of PEG5K-FVE2 micelles was much higher than that of PEG5K-VE2 micelles. The Fmoc/PTX physical interaction was clearly demonstrated by a fluorescence quenching assay. PTX-loaded PEG5K-FVE2 micelles exerted more potent cytotoxicity than free PTX or Taxol formulation in vitro. Finally, intravenous injection of PTX-loaded PEG5K-FVE2 micelles showed superior anticancer activity compared with PEG5K-VE2 formulation with minimal toxicity in a mouse model of breast cancer. In summary, incorporation of a drug-interactive motif (Fmoc) into PEG5K-VE2 micelles represents an effective strategy to improve the micelle formulation for the delivery of PTX.

  12. Polymeric nanoparticles for the intracellular delivery of paclitaxel in lung and breast cancer

    NASA Astrophysics Data System (ADS)

    Zubris, Kimberly Ann Veronica

    Nanoparticles are useful for addressing many of the difficulties encountered when administering therapeutic compounds. Nanoparticles are able to increase the solubility of hydrophobic drugs, improve pharmacokinetics through sustained release, alter biodistribution, protect sensitive drugs from low pH environments or enzymatic alteration, and, in some cases, provide targeting of the drug to the desired tissues. The use of functional nanocarriers can also provide controlled intracellular delivery of a drug. To this end, we have developed functional pH-responsive expansile nanoparticles for the intracellular delivery of paclitaxel. The pH-responsiveness of these nanoparticles occurs due to a hydrophobic to hydrophilic transition of the polymer occurring under mildly acidic conditions. These polymeric nanoparticles were systematically evaluated for the delivery of paclitaxel in vitro and in vivo to improve local therapy for lung and breast cancers. Nanoparticles were synthesized using a miniemulsion polymerization process and were subsequently characterized and found to swell when exposed to acidic environments. Paclitaxel was successfully encapsulated within the nanoparticles, and the particles exhibited drug release at pH 5 but not at pH 7.4. In addition, the uptake of nanoparticles was observed using flow cytometry, and the anticancer efficacy of the paclitaxel-loaded nanoparticles was measured using cancer cell lines in vitro. The potency of the paclitaxel-loaded nanoparticles was close to that of free drug, demonstrating that the drug was effectively delivered by the particles and that the particles could act as an intracellular drug depot. Following in vitro characterization, murine in vivo studies demonstrated the ability of the paclitaxel-loaded responsive nanoparticles to delay recurrence of lung cancer and to prevent establishment of breast cancer in the mammary fat pads with higher efficacy than paclitaxel alone. In addition, the ability of nanoparticles to

  13. Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19-9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer

    PubMed Central

    Xing, Lingxi; Shi, Qiusheng; Zheng, Kailiang; Shen, Ming; Ma, Jing; Li, Fan; Liu, Yang; Lin, Lizhou; Tu, Wenzhi; Duan, Yourong; Du, Lianfang

    2016-01-01

    Pancreatic cancer, one of the most lethal human malignancies with dismal prognosis, is refractory to existing radio-chemotherapeutic treatment modalities. There is a critical unmet need to develop effective approaches, especially for targeted pancreatic cancer drug delivery. Targeted and drug-loaded nanoparticles (NPs) combined with ultrasound-mediated microbubble destruction (UMMD) have been shown to significantly increase the cellular uptake in vitro and drug retention in vivo, suggesting a promising strategy for cancer therapy. In this study, we synthesized pancreatic cancer-targeting organic NPs that were modified with anti CA19-9 antibody and encapsulated paclitaxol (PTX). The three-block copolymer methoxy polyethylene glycol-polylacticco-glycolic acid-polylysine (mPEG-PLGA-PLL) constituted the skeleton of the NPs. We speculated that the PTX-NPs-anti CA19-9 would circulate long-term in vivo, "actively target" pancreatic cancer cells, and sustainably release the loaded PTX while UMMD would "passively target" the irradiated tumor and effectively increase the permeability of cell membrane and capillary gaps. Our results demonstrated that the combination of PTX-NPs-anti CA19-9 with UMMD achieved a low IC50, significant cell cycle arrest, and cell apoptosis in vitro. In mouse pancreatic tumor xenografts, the combined application of PTX-NP-anti CA19-9 NPs with UMMD attained the highest tumor inhibition rate, promoted the pharmacokinetic profile by increasing AUC, t1/2, and mean residence time (MRT), and decreased clearance. Consequently, the survival of the tumor-bearing nude mice was prolonged without obvious toxicity. The dynamic change in cellular uptake, targeted real-time imaging, and the concentration of PTX in the plasma and tumor were all closely associated with the treatment efficacy both in vitro and in vivo. Our study suggests that PTX-NP-anti CA19-9 NPs combined with UMMD is a promising strategy for the treatment of pancreatic cancer. PMID:27446491

  14. Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu

    2016-01-01

    The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery.

  15. c(RGDyK)-decorated Pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma

    PubMed Central

    Huang, YuKun; Liu, Wenchao; Gao, Feng; Fang, Xiaoling; Chen, Yanzuo

    2016-01-01

    Brain glioma therapy is an important challenge in oncology. Here, doxorubicin (DOX) and paclitaxel (PTX)-loaded cyclic arginine-glycine-aspartic acid peptide (c(RGDyK))-decorated Pluronic micelles (cyclic arginine-glycine-aspartic acid peptide-decorated Pluronic micelles loaded with doxorubicin and paclitaxel [RGD-PF-DP]) were designed as a potential targeted delivery system to enhance blood–brain barrier penetration and improve drug accumulation via integrin-mediated transcytosis/endocytosis and based on integrin overexpression in blood–brain barrier and glioma cells. The physicochemical characterization of RGD-PF-DP revealed a satisfactory size of 28.5±0.12 nm with uniform distribution and core-shell structure. The transport rates across the in vitro blood–brain barrier model, cellular uptake, cytotoxicity, and apoptosis of U87 malignant glioblastoma cells of RGD-PF-DP were significantly greater than those of non-c(RGDyK)-decorated Pluronic micelles. In vivo fluorescence imaging demonstrated the specificity and efficacy of intracranial tumor accumulation of RGD-PF-DP. RGD-PF-DP displayed an extended median survival time of 39 days, with no serious body weight loss during the regimen. No acute toxicity to major organs was observed in mice receiving treatment doses via intravenous administration. In conclusion, RGD-PF-DP could be a promising vehicle for enhanced doxorubicin and paclitaxel delivery in patients with brain glioma. PMID:27143884

  16. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy

    NASA Astrophysics Data System (ADS)

    Liu, Kuang-Kai; Zheng, Wen-Wei; Wang, Chi-Ching; Chiu, Yu-Chung; Cheng, Chia-Liang; Lo, Yu-Shiu; Chen, Chinpiao; Chao, Jui-I.

    2010-08-01

    A nanoparticle-conjugated cancer drug provides a novel strategy for cancer therapy. In this study, we manipulated nanodiamond (ND), a carbon nanomaterial, to covalently link paclitaxel for cancer drug delivery and therapy. Paclitaxel was bound to the surface of 3-5 nm sized ND through a succession of chemical modifications. The ND-paclitaxel conjugation was measured by atomic force microscope and nuclear magnetic resonance spectroscopy, and confirmed with infrared spectroscopy by the detection of deuterated paclitaxel. Treatment with 0.1-50 µg ml - 1 ND-paclitaxel for 48 h significantly reduced the cell viability in the A549 human lung carcinoma cells. ND-paclitaxel induced both mitotic arrest and apoptosis in A549 cells. However, ND alone or denatured ND-paclitaxel (after treatment with strong alkaline solution, 1 M NaOH) did not induce the damage effects on A549 cells. ND-paclitaxel was taken into lung cancer cells in a concentration-dependent manner using flow cytometer analysis. The ND-paclitaxel particles were located in the microtubules and cytoplasm of A549 cells observed by confocal microscopy. Furthermore, ND-paclitaxel markedly blocked the tumor growth and formation of lung cancer cells in xenograft SCID mice. Together, we provide a functional covalent conjugation of ND-paclitaxel, which can be delivered into lung carcinoma cells and preserves the anticancer activities on the induction of mitotic blockage, apoptosis and anti-tumorigenesis.

  17. Paclitaxel targets VEGF-mediated angiogenesis in ovarian cancer treatment

    PubMed Central

    Ai, Bin; Bie, Zhixin; Zhang, Shuai; Li, Ailing

    2016-01-01

    Ovarian cancer is one of the gynecologic cancers with the highest mortality, wherein vascular endothelial growth factor (VEGF) is involved in regulating tumor vascularization, growth, migration, and invasion. VEGF-mediated angiogenesis in tumors has been targeted in various cancer treatments, and anti-VEGF therapy has been used clinically for treatment of several types of cancer. Paclitaxel is a natural antitumor agent in the standard front-line treatment that has significant efficiency to treat advanced cancers, including ovarian cancer. Although platinum/paclitaxel-based chemotherapy has good response rates, most patients eventually relapse because the disease develops drug resistance. We aim to review the recent advances in paclitaxel treatment of ovarian cancer via antiangiogenesis. Single-agent therapy may be used in selected cases of ovarian cancer. However, to prevent drug resistance, drug combinations should be identified for optimal effectiveness and existing therapies should be improved. PMID:27648354

  18. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.

    PubMed

    Muley, Pratik; Kumar, Sunny; El Kourati, Fadoua; Kesharwani, Siddharth S; Tummala, Hemachand

    2016-03-16

    Micellization offers several advantages for the delivery of water insoluble drugs including a nanoparticulate 'core-shell' delivery system for drug targeting. Recently, hydrophobically modified polysaccharides (HMPs) are gaining recognition as micelle forming polymers to encapsulate hydrophobic drugs. In this manuscript, for the first time, we have evaluated the self-assembling properties of a lauryl carbamate derivative of the poly-fructose natural polymer inulin (Inutec SP1(®) (INT)) to form paclitaxel (PTX) loaded micelles. INT self-assembled into well-defined micellar structures in aqueous environment with a low critical micellar concentration of 27.8 μg/ml. INT micelles exhibited excellent hemocompatibility and low toxicity to cultured cells. PTX loaded INT micelles exhibited a mean size of 256.37 ± 10.45 nm with excellent drug encapsulation efficiency (95.66 ± 2.25%) and loading (8.69 ± 0.22%). PTX loaded micelles also displayed sustained release of PTX and enhanced anti-cancer efficacy in-vitro in mouse melanoma cells (B16F10) compared to Taxol formulation with Cremophor EL as solvent. In addition, PTX loaded INT micelles exhibited comparable in-vivo antitumor activity in B16F10 allograft mouse model at half the dose of Taxol. In conclusion, INT offers safe, inexpensive and natural alternative to widely used PEG-modified polymers for the formulation of micellar delivery systems for paclitaxel.

  19. Novel CD44 receptor targeting multifunctional "nano-eggs" based on double pH-sensitive nanoparticles for co-delivery of curcumin and paclitaxel to cancer cells and cancer stem cells

    NASA Astrophysics Data System (ADS)

    Chen, Daquan; Wang, Guohua; Song, Weiguo; Zhang, Qiang

    2015-10-01

    Most anticancer drugs cannot kill cancer stem cells (CSCs) effectively, which lead to the failure of anticancer chemotherapy, such as relapse and metastasis. In this study, we prepared a multifunctional oligosaccharides of hyaluronan (oHA) conjugates, oHA-histidine-menthone 1,2-glycerol ketal (oHM). The oHM conjugates possess pH-sensitive menthone 1,2-glycerol ketal (MGK) as hydrophobic moieties and oHA as the target of CD44 receptor. Anticancer drugs, curcumin(Cur) and paclitaxel(PTX), were loaded into oHM micelles via self-assembly. Then, oHM micelles were mineralized through controlled deposition of inorganic calcium and phosphate ions on the nanoparticular shell via a sequential addition method to fabricate the "nano-eggs." The formed nano-eggs had a smaller size (120.6 ± 4.5 nm) than oHM micelles (158.6 ± 6.4 nm), indicating that mineralization made the appearance of compact nanoparticles. Interestingly, when the nano-eggs were put into the acidic conditions (pH 6.5), their outer shell(inorganic minerals) will be destroyed with the larger size, while the "nano-eggs" were stable under pH 7.4. For both nano-eggs and oHM micelles, the Cur and PTX were released in a sustained manner depending on the pH of the solution. However, the nano-eggs showed much lower released than the oHM micelles due to the dissolution of the inorganic minerals and pH-sensitive ketal at mildly acidic environments (pH 6.5). In vivo study, the nano-eggs could get to the tumor site more effectively than oHM micelles. CSCs were sorted by a side population assay from MDA-MB-231 breast cancer cell lines over-expressing CD44 receptors. Antitumor activity was also evaluated on MDA-MB-231 xenografts in nude mice. The antitumor efficacy indicated that nano-eggs with co-delivery of Cur and PTX produced the strongest antitumor efficacy, and nano-eggs showed strong activity against cancer stem cells. These double pH-sensitive nano-eggs may provide a promising strategy for drug delivery to both

  20. Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform

    PubMed Central

    Mo, Jingxin; Eggers, Paul K.; Yuan, Zhi-xiang; Raston, Colin L.; Lim, Lee Yong

    2016-01-01

    A modular p-phosphonated calix[4]arene vesicle (PCV) loaded with paclitaxel (PTX) and conjugated with folic acid as a cancer targeting ligand has been prepared using a thin film-sonication method. It has a pH-responsive capacity to trigger the release of the encapsulated PTX payload under mildly acidic conditions. PTX-loaded PCV conjugated with alkyne-modified PEG-folic acid ligands prepared via click ligation (fP-PCVPTX) has enhanced potency against folate receptor (FR)-positive SKOV-3 ovarian tumour cells over FR-negative A549 lung tumour cells. Moreover, fP-PCVPTX is also four times more potent than the non-targeting PCVPTX platform towards SKOV-3 cells. Overall, as a delivery platform the PCVs have the potential to enhance efficacy of anticancer drugs by targeting a chemotherapeutic payload specifically to tumours and triggering the release of the encapsulated drug in the vicinity of cancer cells. PMID:27009430

  1. Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c(RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors.

    PubMed

    Jiang, Xinyi; Sha, Xianyi; Xin, Hongliang; Chen, Liangcen; Gao, Xihui; Wang, Xiao; Law, Kitki; Gu, Jijin; Chen, Yanzuo; Jiang, Ye; Ren, Xiaoqing; Ren, Qiuyue; Fang, Xiaoling

    2011-12-01

    Cyclic RGD peptide-decorated polymeric micellar-like nanoparticles (MNP) based on PEGylated poly (trimethylene carbonate) (PEG-PTMC) were prepared for active targeting to integrin-rich cancer cells. An amphiphilic diblock copolymer, α-carboxyl poly (ethylene glycol)-poly (trimethylene carbonate) (HOOC-PEG-PTMC), was synthesized by ring-opening polymerization. The c(RGDyK) ligand, a cyclic RGD peptide that can bind to the integrin proteins predominantly expressed on the surface of tumor cells with high affinity and specificity, was conjugated to the NHS-Activated PEG terminus of the copolymer. The c(RGDyK)-functionalized PEG-PTMC micellar nanoparticles encapsulating PTX (c(RGDyK)-MNP/PTX) was fabricated by the emulsion/solvent evaporation technique and characterized in terms of morphology, size and zeta potential. Cellular uptake of c(RGDyK)-MNP/PTX was found to be higher than that of MNP/PTX due to the integrin protein-mediated endocytosis effect. In vitro cytotoxicity, cell apoptosis and cell cycle arrest studies also revealed that c(RGDyK)-MNP/PTX was more potent than those of MNP/PTX and Taxol. Pharmacokinetic study in rats demonstrated that the polymeric micellar nanoparticles significantly enhanced the bioavailability of PTX than Taxol. In vivo multispectral fluorescent imaging indicated that c(RGDyK)-MNP/PTX had high specificity and efficiency in tumor active targeting. Therefore, the results demonstrated that c(RGDyK)-decorated PEG-PTMC MNP developed in this study could be a potential vehicle for delivering hydrophobic chemotherapeutic agents to integrin-rich tumors.

  2. Precise glioblastoma targeting by AS1411 aptamer-functionalized poly (l-γ-glutamylglutamine)-paclitaxel nanoconjugates.

    PubMed

    Luo, Zimiao; Yan, Zhiqiang; Jin, Kai; Pang, Qiang; Jiang, Ting; Lu, Heng; Liu, Xianping; Pang, Zhiqing; Yu, Lei; Jiang, Xinguo

    2017-03-15

    Chemotherapy is still the main adjuvant strategy after surgery in glioblastoma therapy. As the main obstacles of chemotherapeutic drugs for glioblastoma treatment, the blood brain barrier (BBB) and non-specific delivery to non-tumor tissues greatly limit the accumulation of drugs into tumor tissues and simultaneously cause serious toxicity to nearby normal tissues which altogether compromised the chemotherapeutic effect. In the present study, we established an aptamer AS1411-functionalized poly (l-γ-glutamyl-glutamine)-paclitaxel (PGG-PTX) nanoconjugates drug delivery system (AS1411-PGG-PTX), providing an advantageous solution of combining the precisely active targeting and the optimized solubilization of paclitaxel. The receptor nucleolin, highly expressed in glioblastoma U87 MG cells as well as neo-vascular endothelial cells, mediated the binding and endocytosis of AS1411-PGG-PTX nanoconjugates, leading to significantly enhanced uptake of AS1411-PGG-PTX nanoconjugates by tumor cells and three-dimension tumor spheroids, and intensive pro-apoptosis effect of AS1411-PGG-PTX nanoconjugates. In vivo fluorescence imaging and tissue distribution further demonstrated the higher tumor distribution of AS1411-PGG-PTX as compared with PGG-PTX. As a result, the AS1411-PGG-PTX nanoconjugates presented the best anti-glioblastoma effect with prolonged median survival time and most tumor cell apoptosis in vivo as compared with other groups. In conclusion, the AS1411-PGG-PTX nanoconjugates exhibited a promising targeting delivery strategy for glioblastoma therapy.

  3. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2013-10-01

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions.

  4. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R.; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  5. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity.

    PubMed

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  6. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth

    PubMed Central

    Yang, Ming; Yu, Tao; Wang, Ying-Ying; Lai, Samuel K.; Zeng, Qi; Miao, Bolong; Tang, Benjamin C.; Simons, Brian W.; Ensign, Laura; Liu, Guanshu; Chan, Kannie W. Y.; Juang, Chih-Yin; Mert, Olcay; Wood, Joseph; Fu, Jie; McMahon, Michael T.; Wu, T.-C.; Hung, Chien-Fu; Hanes, Justin

    2014-01-01

    Local delivery of chemotherapeutics in the cervicovaginal tract using nanoparticles may reduce adverse side effects associated with systemic chemotherapy, while improving outcomes for early stage cervical cancer. We hypothesize drug-loaded nanoparticles must rapidly penetrate cervicovaginal mucus (CVM) lining the female reproductive tract to effectively deliver their payload to underlying diseased tissues in a uniform and sustained manner. We develop paclitaxel-loaded nanoparticles, composed entirely of polymers used in FDA-approved products, which rapidly penetrate human CVM and provide sustained drug release with minimal burst effect. We further employ a mouse model with aggressive cervical tumors established in the cervicovaginal tract to compare paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (conventional particles , or CP) and similar particles coated with Pluronic® F127 (mucus-penetrating particles , or MPP). CP are mucoadhesive and, thus, aggregated in mucus, while MPP achieve more uniform distribution and close proximity to cervical tumors. Paclitaxel-MPP suppress tumor growth more effectively and prolong median survival of mice compared to free paclitaxel or paclitaxel-CP. Histopathological studies demonstrate minimal toxicity to the cervicovaginal epithelia, suggesting paclitaxel-MPP may be safe for intravaginal use. These results demonstrate for the first time the in vivo advantages of polymer-based MPP for treatment of tumors localized to a mucosal surface. PMID:24339398

  7. Molecular modeling of transmembrane delivery of paclitaxel by shock waves with nanobubbles

    NASA Astrophysics Data System (ADS)

    Lu, Xue-mei; Yuan, Bing; Zhang, Xian-ren; Yang, Kai; Ma, Yu-qiang

    2017-01-01

    The development of advanced delivery strategies for anticancer drugs that can permeate through cellular membranes is urgently required for biomedical applications. In this work, we investigated the dynamic transmembrane behavior of paclitaxel (PTX), a powerful anticancer drug, under the combined impact of shock waves and nanobubbles, by using atomistic molecular dynamics simulations. Our simulations show that the PTX molecule experiences complicated motion modes during the action process with the membrane, as a consequence of its interplay with the lipid bilayer and water, under the joint effect of the shock wave and nanobubble. Moreover, it was found that the transmembrane movement of PTX is closely associated with the conformation changes of PTX, as well as the structural changes of the membrane (e.g., compression and poration in membrane). The nanobubble collapse induced by the shock wave, the proper PTX location with respect to the nanobubble, and a suitable nanobubble size and shock impulse are all necessary for the delivery of PTX into the cell. This work provides a molecular understanding of the interaction mechanism between drug molecules and cell membranes under the influence of shock waves and nanobubbles, and paves the way for exploiting targeted drug delivery systems that combine nanobubbles and ultrasound.

  8. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer.

    PubMed

    He, Zelai; Shi, Zengfang; Sun, Wenjie; Ma, Jing; Xia, Junyong; Zhang, Xiangyu; Chen, Wenjun; Huang, Jingwen

    2016-06-01

    In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles.

  9. Thermosensitive and mucoadhesive sol-gel composites of paclitaxel/dimethyl-β-cyclodextrin for buccal delivery.

    PubMed

    Choi, Soon Gil; Lee, Sang-Eun; Kang, Bong-Seok; Ng, Choon Lian; Davaa, Enkhzaya; Park, Jeong-Sook

    2014-01-01

    The purpose of this study was to develop a buccal paclitaxel delivery system using the thermosensitive polymer Pluronic F127 (PF127) and the mucoadhesive polymer polyethylene oxide (PEO). The anticancer agent paclitaxel is usually used to treat ovarian, breast, and non-small-cell lung cancer. To improve its aqueous solubility, paclitaxel was incorporated into an inclusion complex with (2,6-di-O-methyl)-β-cyclodextrin (DMβCD). The formation of the paclitaxel inclusion complex was evaluated using various techniques, including x-ray diffractometry (XRD), Fourier-transform infrared (FT-IR) spectrophotometry, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Hydrogels were prepared using a cold method. Concentrations of 18, 20, and 23% (w/v) PF127 were dissolved in distilled water including paclitaxel and stored overnight in a refrigerator at 4 °C. PEO was added at concentrations of 0.1, 0.2, 0.4, 0.8, and 1% (w/v). Each formulation included paclitaxel (0.5 mg/mL). The sol-gel transition temperature of the hydrogels was measured using the tube-inverting method. Drug release from the hydrogels was measured using a Franz diffusion cell containing pH 7.4 phosphate-buffered solution (PBS) buffer at 37 °C. The cytotoxicity of each formulation was measured using the MTT assay with a human oral cancer cell (KB cell). The sol-gel transition temperature of the hydrogel decreased when PF127 was present and varied according to the presence of mucoadhesive polymers. The in vitro release was sustained and the release rate was slowed by the addition of the mucoadhesive polymer. The cytotoxicity of the blank formulation was low, although the drug-loaded hydrogel showed acceptable cytotoxicity. The results of our study suggest that the combination of a PF 127-based mucoadhesive hydrogel formulation and inclusion complexes improves the in vitro release and cytotoxic effect of paclitaxel.

  10. Somatostatin receptor-mediated specific delivery of paclitaxel prodrugs for efficient cancer therapy.

    PubMed

    Huo, Meirong; Zhu, Qinnv; Wu, Qu; Yin, Tingjie; Wang, Lei; Yin, Lifang; Zhou, Jianping

    2015-06-01

    In this study, a novel PTX prodrug, octreotide(Phe)-polyethene glycol-paclitaxel [OCT(Phe)-PEG-PTX], was successfully synthesized and used for targeted cancer therapy. A nontargeting conjugate, mPEG-PTX, was also synthesized and used as a control. Chemical structures of OCT(Phe)-PEG-PTX and mPEG-PTX were confirmed using (1) H nuclear magnetic resonance and circular dichroism. The drug contents in both the conjugates were 12.0% and 14.0%, respectively. Compared with the parent drug (PTX), OCT(Phe)-PEG-PTX, and mPEG-PTX prodrugs showed a 20,000- and 30,000-fold increase in water solubility, respectively. PTX release from mPEG-PTX and OCT(Phe)-PEG-PTX exhibited a pH-dependent profile. Moreover, compared with mPEG-PTX, OCT(Phe)-PEG-PTX exhibited significantly stronger cytotoxicity against NCI-H446 cells (SSTR overexpression) but comparable cytotoxicity against WI-38 cells (no SSTR expression). Results of confocal laser scanning microscopy revealed that the targeting prodrug labeled with fluorescence probe was selectively taken into tumor cells via SSTR-mediated endocytosis. In vivo investigation of prodrugs in nude mice bearing NCI-H446 cancer xenografts confirmed that OCT(Phe)-PEG-PTX prodrug exhibited stronger antitumor efficacy and lower systemic toxicity than mPEG-PTX and commercial Taxol. These results suggested that OCT(Phe)-PEG-PTX is a promising anticancer drug delivery system for targeted cancer therapy.

  11. Targeting of albumin-embedded paclitaxel nanoparticles to tumors

    PubMed Central

    Karmali, Priya Prakash; Kotamraju, Venkata Ramana; Kastantin, Mark; Black, Matthew; Missirlis, Dimitris; Tirrell, Matthew; Ruoslahti, Erkki

    2010-01-01

    We have used tumor-homing peptides to target abraxane, a clinically approved paclitaxel-albumin nanoparticle, to tumors in mice. The targeting was accomplished with two peptides, CREKA, and LyP-1 (CGQKRTRGC). Fluorescein (FAM)-labeled CREKA-abraxane, when injected intravenously into mice bearing MDA-MB-435 human cancer xenografts, accumulated in tumor blood vessels, forming aggregates that contained red blood cells and fibrin. FAM-LyP-1-abraxane co-localized with extravascular islands expressing its receptor, p32. Self-assembled mixed micelles carrying the homing peptide and the label on different subunits accumulated in the same areas of tumors as LyP-1-abraxane, showing that Lyp-1 can deliver intact nanoparticles into extravascular sites. Untargeted, FAM-abraxane was detected in the form of a faint meshwork in tumor interstitium. LyP-1-abraxane produced a statistically highly significant inhibition of tumor growth compared to untargeted abraxane. These results show that nanoparticles can be effectively targeted into extravascular tumor tissue and that targeting can enhance the activity of a therapeutic nanoparticle. PMID:18829396

  12. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells.

    PubMed

    Wang, Chunxia; Ho, Paul C; Lim, Lee Yong

    2010-11-15

    The purpose of this study was to investigate the potentiation of the anticancer activity and enhanced cellular retention of paclitaxel-loaded PLGA nanoparticles after surface conjugation with wheat germ agglutinin (WGA) against colon cancer cells. Glycosylation patterns of representative colon cancer cells confirmed the higher expression levels of WGA-binding glycoproteins in the Caco-2 and HT-29 cells, than in the CCD-18Co cells. Cellular uptake and in vitro cytotoxicity of WNP (final formulation) against colon cell lines was evaluated alongside control formulations. Confocal microscopy and quantitative analysis of intracellular paclitaxel were used to monitor the endocytosis and retention of nanoparticles inside the cells. WNP showed enhanced anti-proliferative activity against Caco-2 and HT-29 cells compared to corresponding nanoparticles without WGA conjugation (PNP). The greater efficacy of WNP was associated with higher cellular uptake and sustained intracellular retention of paclitaxel, which in turn was attributed to the over-expression of N-acetyl-D-glucosamine-containing glycoprotein on the colon cell membrane. WNP also demonstrated increased intracellular retention in the Caco-2 (30% of uptake) and HT-29 (40% of uptake) cells, following post-uptake incubation with fresh medium, compared to the unconjugated PNP nanoparticles (18% in Caco-2) and (27% in HT-29), respectively. Cellular trafficking study of WNP showed endocytosed WNP could successful escape from the endo-lysosome compartment and release into the cytosol with increasing incubation time. It may be concluded that WNP has the potential to be applied as a targeted delivery platform for paclitaxel in the treatment of colon cancer.

  13. Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan

    NASA Astrophysics Data System (ADS)

    Mansouri, Mona; Nazarpak, Masoumeh Haghbin; Solouk, Atefeh; Akbari, Somaye; Hasani-Sadrabadi, Mohammad Mahdi

    2017-01-01

    Concerns over cancer treatment have largely focused on chemotherapy and its consequent side effects. Utilizing nanocarriers is thought to be a panacea for mitigating the limitations of chemotherapy, and increasing its safety and efficacy. Magnetically driven Paclitaxel delivery systems are among the commonly investigated types of nanocarriers over the last two decades. In this context, we tried to highlight the application of an AC magnetic field and validate its consequential effects on drug delivery pattern and cell death in such nanodevices. So the aim of this study is to develop an appropriate matrix (Palmitoyl chitosan) co-encapsulated with superparamagnetic iron oxide nanoparticles (SPIONs) and anticancer drug, Paclitaxel (PTX) via the nanoprecipitation process. Synthesized nanoparticles were characterized by Dynamic Light Scattering (DLS) and their magnetic properties were investigated by Vibrating Sample Magnetometer (VSM). At initial loading of 10 wt% Paclitaxel, the maximum loading efficiency of nanoparticles with and without SPIONs was in the range of 69% and 72.3%, respectively. In addition, in vitro release data revealed that by the application of a magnetic field, release kinetic changed to the magnetic responsive pattern. Encapsulating anticancer drug in a synthesized nanosystem not only increased the amount of drug in cancer cells but also enhanced cell death (MCF-7) due to hyperthermic effects of SPIONs in the presence of an external magnetic field. In summary, these findings indicate that the resultant nanoparticles may serve as a biocompatible and biodegradable carrier for the precise delivery of powerful cytotoxic anticancer agents such as PTX.

  14. SPARC independent delivery of nab-paclitaxel without depleting tumor stroma in patient-derived pancreatic cancer xenografts

    PubMed Central

    Kim, Harrison; Samuel, Sharon L.; Lopez-Casas, Pedro P.; Grizzle, William E.; Hidalgo, Manuel; Kovar, Joy; Oelschlager, Denise K.; Zinn, Kurt R.; Warram, Jason M.; Buchsbaum, Donald J.

    2016-01-01

    The study goal was to examine the relationship between nab-paclitaxel delivery and SPARC (secreted protein acidic and rich in cysteine) expression in pancreatic tumor xenografts and to determine the anti-stromal effect of nab-paclitaxel, which may affect tumor vascular perfusion. SPARC positive and negative mice bearing Panc02 tumor xenografts (n=5–6/group) were injected with IRDye 800CW (IR800)-labeled nab-paclitaxel. After 24 hours, tumors were collected and stained with DL650-labeled anti-SPARC antibody, and the correlation between nab-paclitaxel and SPARC distributions was examined. Eight groups of mice bearing either Panc039 or Panc198 patient-derived xenografts (PDXs) (4 groups/model, 5 animals/group) were untreated (served as control) or treated with gemcitabine (100 mg/kg BW, i.p., twice per week), nab-paclitaxel (30 mg/kg BW, i.v., for 5 consecutive days), and these agents in combination, respectively, for 3 weeks, and tumor volume and perfusion changes were assessed using T2-weighted magnetic resonance imaging (MRI) and dynamic contrast-enhanced (DCE) MRI, respectively. All tumors were collected and stained with Masson’s Trichrome Stain, followed by a blinded comparative analysis of tumor stroma density. IR800-nab-paclitaxel was mainly distributed in tumor stromal tissue, but nab-paclitaxel and SPARC distributions were minimally correlated in either SPARC positive or negative animals. Nab-paclitaxel treatment did not decrease tumor stroma nor increase tumor vascular perfusion in either PDX model when compared to control groups. These data suggest that the specific tumor delivery of nab-paclitaxel is not directly related to SPARC expression, and nab-paclitaxel does not deplete tumor stroma in general. PMID:26832793

  15. Thermosensitive and Mucoadhesive Sol-Gel Composites of Paclitaxel/Dimethyl-β-Cyclodextrin for Buccal Delivery

    PubMed Central

    Kang, Bong-Seok; Ng, Choon Lian; Davaa, Enkhzaya; Park, Jeong-Sook

    2014-01-01

    The purpose of this study was to develop a buccal paclitaxel delivery system using the thermosensitive polymer Pluronic F127 (PF127) and the mucoadhesive polymer polyethylene oxide (PEO). The anticancer agent paclitaxel is usually used to treat ovarian, breast, and non-small-cell lung cancer. To improve its aqueous solubility, paclitaxel was incorporated into an inclusion complex with (2,6-di-O-methyl)-β-cyclodextrin (DMβCD). The formation of the paclitaxel inclusion complex was evaluated using various techniques, including x-ray diffractometry (XRD), Fourier-transform infrared (FT-IR) spectrophotometry, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Hydrogels were prepared using a cold method. Concentrations of 18, 20, and 23% (w/v) PF127 were dissolved in distilled water including paclitaxel and stored overnight in a refrigerator at 4°C. PEO was added at concentrations of 0.1, 0.2, 0.4, 0.8, and 1% (w/v). Each formulation included paclitaxel (0.5 mg/mL). The sol-gel transition temperature of the hydrogels was measured using the tube-inverting method. Drug release from the hydrogels was measured using a Franz diffusion cell containing pH 7.4 phosphate-buffered solution (PBS) buffer at 37°C. The cytotoxicity of each formulation was measured using the MTT assay with a human oral cancer cell (KB cell). The sol-gel transition temperature of the hydrogel decreased when PF127 was present and varied according to the presence of mucoadhesive polymers. The in vitro release was sustained and the release rate was slowed by the addition of the mucoadhesive polymer. The cytotoxicity of the blank formulation was low, although the drug-loaded hydrogel showed acceptable cytotoxicity. The results of our study suggest that the combination of a PF 127-based mucoadhesive hydrogel formulation and inclusion complexes improves the in vitro release and cytotoxic effect of paclitaxel. PMID:25275485

  16. Antibody-targeted paclitaxel loaded nanoparticles for the treatment of CD20+ B-cell lymphoma

    PubMed Central

    Nevala, Wendy K.; Butterfield, John T.; Sutor, Shari L.; Knauer, Daniel J.; Markovic, Svetomir N.

    2017-01-01

    We developed a nano-antibody targeted chemotherapy (nATC) delivery strategy in which tumor specific and clinically relevant antibodies (rituximab, anti-CD20) are non-covalently bound to the albumin scaffold of nab-paclitaxel (ABX). We define the nanoparticle formed when the 2 drugs are bound (AR160). The newly created nATC retains the cytotoxicity of ABX and CD20 affinity of rituximab in vitro. We describe the binding characteristics of the ABX and rituximab in AR160 using peptide mapping/Biacore approach. Flow-based methods, including ImageStream and nanoparticle tracking, were used to characterize the AR160 particles in vitro. A mouse model of human B-cell lymphoma was utilized to test in vivo efficacy of AR160 therapy, which suggested improved tumor targeting (biodistribution) as the most likely mechanism of AR160 therapeutic superiority over ABX or rituximab alone. These data suggest a novel platform for nATC delivery using a slight modification of existing cancer drugs with significantly improved treatment efficacy. PMID:28378801

  17. Antibody-targeted paclitaxel loaded nanoparticles for the treatment of CD20(+) B-cell lymphoma.

    PubMed

    Nevala, Wendy K; Butterfield, John T; Sutor, Shari L; Knauer, Daniel J; Markovic, Svetomir N

    2017-04-05

    We developed a nano-antibody targeted chemotherapy (nATC) delivery strategy in which tumor specific and clinically relevant antibodies (rituximab, anti-CD20) are non-covalently bound to the albumin scaffold of nab-paclitaxel (ABX). We define the nanoparticle formed when the 2 drugs are bound (AR160). The newly created nATC retains the cytotoxicity of ABX and CD20 affinity of rituximab in vitro. We describe the binding characteristics of the ABX and rituximab in AR160 using peptide mapping/Biacore approach. Flow-based methods, including ImageStream and nanoparticle tracking, were used to characterize the AR160 particles in vitro. A mouse model of human B-cell lymphoma was utilized to test in vivo efficacy of AR160 therapy, which suggested improved tumor targeting (biodistribution) as the most likely mechanism of AR160 therapeutic superiority over ABX or rituximab alone. These data suggest a novel platform for nATC delivery using a slight modification of existing cancer drugs with significantly improved treatment efficacy.

  18. EGFR-targeted poly(ethylene glycol)-distearoylphosphatidylethanolamine micelle loaded with paclitaxel for laryngeal cancer: preparation, characterization and in vitro evaluation.

    PubMed

    Ren, Henglei; Gao, Chunli; Zhou, Liang; Liu, Min; Xie, Cao; Lu, Weiyue

    2015-01-01

    The objective of this study was to evaluate the potential of using polymeric micelles modified with a peptide (termed GE11) ligand of epidermal growth factor receptor as the targeted carriers to achieve increased accumulation in laryngeal cancer and enhanced intracellular delivery for the encapsulated anticancer drugs. Poly (ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) micelles containing paclitaxel were prepared via film-hydration method followed by investigation of in vitro release of paclitaxel in phosphate-buffered saline. The average size of GE11-PEG-DSPE/paclitaxel micelle and mPEG-DSPE/paclitaxel were 35 ± 2.8 nm [the polydispersity index (PDI) = 0.207] and 28 ± 2.1 nm (PDI = 0.154), respectively. Micelles with or without GE11-modified had similar physicochemical properties. Transmission electron microscopy showed that the micelles were homogeneous and spherical in shape. Encapsulation efficiency and drug loading of the micelle were 74.11 ± 3.89% and 3.58 ± 2.82%, respectively. The in vitro targeting characteristic of GE11-modified micelles was investigated by observing the level of cellular uptake of fluorescent coumarin-6-loaded micelles on EGFR over-expressed human laryngeal cancer cell line Hep-2 and EGFR low-expressed human leukemic cell line U-937. Hep-2 cell proliferation was significantly inhibited by GE11-PEG-DSPE/paclitaxel micelle compared to mPEG-DSPE/paclitaxel micelle and Taxol in vitro. Our results suggested that GE11-PEG-DSPE micelle could be a promising strategy for enhancing paclitaxel's chemotherapeutic effects on EGFR over-expressed cancer cells.

  19. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals.

    PubMed

    Sohn, Jeong Sun; Yoon, Doo-Soo; Sohn, Jun Youn; Park, Jeong-Sook; Choi, Jin-Seok

    2017-03-01

    To overcome the toxicity of excipient or blank nanoparticles for drug delivery nano-system, the surface modified paclitaxel nanocrystals (PTX-NC) have been developed. PTX-NCs were prepared by nano-precipitation method. The surface of PTX-NCs were modified by grafting with apo-transferrin (Tf) or hyaluronic acid (HA). The physical properties of PTX-NCs were evaluated by field emission scanning electron microscope (FE-SEM), zeta-sizer, zeta-potential, differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectrometry. In vitro drug release study was performed in phosphate buffered saline (PBS) with or without 0.5% (w/v) Tween 80 for 24h. Cellular uptake was studied at time intervals of 0.5, 1, and 2h in MCF-7 cells, and cell growth inhibition study was performed for 24h using MCF-7 cells (cancer cells), and HaCaT cells (normal cells). Three different types of PTX-NCs with a mean size of 236.0±100.6nm (PTX-NC), 302.0±152.0nm (Tf-PTX-NC) and 339±180.6nm (HA-PTX-NC) were successfully prepared. The drug release profiles showed 29.1%/6.9% (PTX (pure)), 40.7%/23.9% (PTX-NC), 50.5%/25.1% (Tf-PTX-NC) and 46.8/24.8% (HA-PTX-NC) in PBS with/without 0.5% (w/v) Tween 80 for 24h, respectively. As per the results, the drug release of PTX-NCs showed the faster release as compared to that of PTX (pure). Surface modified PTX-NCs exhibited higher values for cell permeability than unmodified PTX-NC in the cellular uptake study. Surface modified PTX-NCs inhibited the cell growth approximately to 60% in MCF-7 cells, however effect of surface modified PTX-NCs on normal cell line was lower than the PTX-NC and PTX (pure). In conclusion, biological macromolecules (Tf or HA) surface modified PTX-NC enhanced the cellular uptake and the cell growth inhibition.

  20. Targeting Paclitaxel-Loaded Nanoparticles to Ovarian Cancer

    DTIC Science & Technology

    2010-05-01

    Selective Integrin avb3 Antagonists. J Am Chem Soc. 1996;118:7461-72. 11. Jolimaitre P , Poirier C, Richard A, Blanpain A, Delord B, Roux D, et al...Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell. 2009;16:510-20. 15. Laakkonen P , Porkka K, Hoffman JA, Ruoslahti...E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med. 2002;8:751-5. 16. Laakkonen P , Akerman ME, Biliran H

  1. Targeting of apoptotic pathways by SMAC or BH3 mimetics distinctly sensitizes paclitaxel-resistant triple negative breast cancer cells.

    PubMed

    Panayotopoulou, Effrosini G; Müller, Anna-Katharina; Börries, Melanie; Busch, Hauke; Hu, Guohong; Lev, Sima

    2017-02-06

    Standard chemotherapy is the only systemic treatment for triple-negative breast cancer (TNBC), and despite the good initial response, resistance remains a major therapeutic obstacle. Here, we employed a High-Throughput Screen to identify targeted therapies that overcome chemoresistance in TNBC. We applied short-term paclitaxel treatment and screened 320 small-molecule inhibitors of known targets to identify drugs that preferentially and efficiently target paclitaxel-treated TNBC cells. Among these compounds the SMAC mimetics (BV6, Birinapant) and BH3-mimetics (ABT-737/263) were recognized as potent targeted therapy for multiple paclitaxel-residual TNBC cell lines. However, acquired paclitaxel resistance through repeated paclitaxel pulses result in desensitization to BV6, but not to ABT-263, suggesting that short- and long-term paclitaxel resistance are mediated by distinct mechanisms. Gene expression profiling of paclitaxel-residual, -resistant and naïve MDA-MB-231 cells demonstrated that paclitaxel-residual, as opposed to -resistant cells, were characterized by an apoptotic signature, with downregulation of anti-apoptotic genes (BCL2, BIRC5), induction of apoptosis inducers (IL24, PDCD4), and enrichment of TNFα/NF-κB pathway, including upregulation of TNFSF15, coupled with cell-cycle arrest. BIRC5 and FOXM1 downregulation and IL24 induction was also evident in breast cancer patient datasets following taxane treatment. Exposure of naïve or paclitaxel-resistant cells to supernatants of paclitaxel-residual cells sensitized them to BV6, and treatment with TNFα enhanced BV6 potency, suggesting that sensitization to BV6 is mediated, at least partially, by secreted factor(s). Our results suggest that administration of SMAC or BH3 mimetics following short-term paclitaxel treatment could be an effective therapeutic strategy for TNBC, while only BH3-mimetics could effectively overcome long-term paclitaxel resistance.

  2. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles

    PubMed Central

    Zhu, Xu; Guo, Jun; He, Cancan; Geng, Huaxiao; Yu, Gengsheng; Li, Jinqing; Zheng, Hairong; Ji, Xiaojuan; Yan, Fei

    2016-01-01

    Paclitaxel (PTX) has been recognized as a promising drug for intervention of vascular reconstructions. However, it is still difficult to achieve local drug delivery in a spatio-temporally controllable manner under real-time image guidance. Here, we introduce an ultrasound (US) triggered image-guided drug delivery approach to inhibit vascular reconstruction via paclitaxel (PTX)-loaded microbubbles (PLM) in a rabbit iliac balloon injury model. PLM was prepared through encapsulating PTX in the shell of lipid microbubbles via film hydration and mechanical vibration technique. Our results showed PLM could effectively deliver PTX when exposed to US irradiation and result in significantly lower viability of vascular smooth muscle cells. Ultrasonographic examinations revealed the US signals from PLM in the iliac artery were greatly increased after intravenous administration of PLM, making it possible to identify the restenosis regions of iliac artery. The in vivo anti-restenosis experiments with PLM and US greatly inhibited neointimal hyperplasia at the injured site, showing an increased lumen area and reduced the ratio of intima area and the media area (I/M ratio). No obvious functional damages to liver and kidney were observed for those animals. Our study provided a promising approach to realize US triggered image-guided PTX delivery for therapeutic applications against iliac restenosis. PMID:26899550

  3. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles.

    PubMed

    Zhu, Xu; Guo, Jun; He, Cancan; Geng, Huaxiao; Yu, Gengsheng; Li, Jinqing; Zheng, Hairong; Ji, Xiaojuan; Yan, Fei

    2016-02-22

    Paclitaxel (PTX) has been recognized as a promising drug for intervention of vascular reconstructions. However, it is still difficult to achieve local drug delivery in a spatio-temporally controllable manner under real-time image guidance. Here, we introduce an ultrasound (US) triggered image-guided drug delivery approach to inhibit vascular reconstruction via paclitaxel (PTX)-loaded microbubbles (PLM) in a rabbit iliac balloon injury model. PLM was prepared through encapsulating PTX in the shell of lipid microbubbles via film hydration and mechanical vibration technique. Our results showed PLM could effectively deliver PTX when exposed to US irradiation and result in significantly lower viability of vascular smooth muscle cells. Ultrasonographic examinations revealed the US signals from PLM in the iliac artery were greatly increased after intravenous administration of PLM, making it possible to identify the restenosis regions of iliac artery. The in vivo anti-restenosis experiments with PLM and US greatly inhibited neointimal hyperplasia at the injured site, showing an increased lumen area and reduced the ratio of intima area and the media area (I/M ratio). No obvious functional damages to liver and kidney were observed for those animals. Our study provided a promising approach to realize US triggered image-guided PTX delivery for therapeutic applications against iliac restenosis.

  4. Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery.

    PubMed

    Wu, Puyuan; Liu, Qin; Li, Rutian; Wang, Jing; Zhen, Xu; Yue, Guofeng; Wang, Huiyu; Cui, Fangbo; Wu, Fenglei; Yang, Mi; Qian, Xiaoping; Yu, Lixia; Jiang, Xiqun; Liu, Baorui

    2013-12-11

    Non-toxic, safe materials and preparation methods are among the most important factors when designing nanoparticles (NPs) for future clinical application. Here we report a novel and facile method encapsulating anticancer drug paclitaxel (PTX) into silk fibroin (SF), a biocompatible and biodegradable natural polymer, without adding any toxic organic solvents, surfactants or other toxic agents. The paclitaxel loaded silk fibroin nanoparticles (PTX-SF-NPs) with a diameter of 130 nm were formed in an aqueous solution at room temperature by self-assembling of SF protein, which demonstrated mainly silk I conformation in the NPs. In cellular uptake experiments, coumarin-6 loaded SF NPs were taken up efficiently by two human gastric cancer cell lines BGC-823 and SGC-7901. In vitro cytotoxicity studies demonstrated that PTX kept its pharmacological activity when incorporating into PTX-SF-NPs, while SF showed no cytotoxicity to cells. The in vivo antitumor effects of PTX-SF-NPs were evaluated on gastric cancer nude mice exnograft model. We found that locoregional delivery of PTX-SF-NPs demonstrated superior antitumor efficacy by delaying tumor growth and reducing tumor weights compared with systemic administration. Furthermore, the organs of mice in NP treated groups didn't show obvious toxicity, indicating the in vivo safety of SF NPs. These results suggest that SF NPs are promising drug delivery carriers, and locoregional delivery of SF NPs could be a potential future clinical cancer treatment regimen.

  5. Development of chitosan graft pluronic®F127 copolymer nanoparticles containing DNA aptamer for paclitaxel delivery to treat breast cancer cells

    NASA Astrophysics Data System (ADS)

    Thach Nguyen, Kim; Le, Duc Vinh; Do, Dinh Ho; Huan Le, Quang

    2016-06-01

    HER-2/ErbB2/Neu(HER-2), a member of the epidermal growth factor receptor family, is specifically overexpressed on the surface of breast cancer cells and serves a therapeutic target for breast cancer. In this study, we aimed to isolate DNA aptamer (Ap) that specifically bind to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. We developed a novel multifunctional composite micelle with surface modification of Ap for targeted delivery of paclitaxel. This binary mixed system consisting of Ap modified pluronic®F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Polymeric micelles had a spherical shape and were self-assemblies of block copolymers of approximately 86.22 ± 1.45 nm diameter. PTX could be loaded with high encapsulation efficiency (83.28 ± 0.13%) and loading capacity (9.12 ± 0.34%). The release profile were 29%-35% in the first 12 h and 85%-93% after 12 d at pH 7.5 of receiving media. The IC50 doses by MTT assay showed the greater activity of nanoparticles loaded paclitaxel over free paclitaxel and killed cells up to 95% after 6 h. These results demonstrated unique assembly with the capacity to function as an efficient detection and delivery vehicle in the biological living system.

  6. Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles.

    PubMed

    Colby, Aaron H; Liu, Rong; Schulz, Morgan D; Padera, Robert F; Colson, Yolonda L; Grinstaff, Mark W

    2016-01-07

    Drug dose, high local target tissue concentration, and prolonged duration of exposure are essential criteria in achieving optimal drug performance. However, systemically delivered drugs often fail to effectively address these factors with only fractions of the injected dose reaching the target tissue. This is especially evident in the treatment of peritoneal cancers, including mesothelioma, ovarian, and pancreatic cancer, which regularly employ regimens of intravenous and/or intraperitoneal chemotherapy (e.g., gemcitabine, cisplatin, pemetrexed, and paclitaxel) with limited results. Here, we show that a "two-step" nanoparticle (NP) delivery system may address this limitation. This two-step approach involves the separate administration of NP and drug where, first, the NP localizes to tumor. Second, subsequent administration of drug then rapidly concentrates into the NP already stationed within the target tissue. This two-step method results in a greater than 5-fold increase in intratumoral drug concentrations compared to conventional "drug-alone" administration. These results suggest that this unique two-step delivery may provide a novel method for increasing drug concentrations in target tissues.

  7. Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles

    NASA Astrophysics Data System (ADS)

    Colby, Aaron H.; Liu, Rong; Schulz, Morgan D.; Padera, Robert F.; Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Drug dose, high local target tissue concentration, and prolonged duration of exposure are essential criteria in achieving optimal drug performance. However, systemically delivered drugs often fail to effectively address these factors with only fractions of the injected dose reaching the target tissue. This is especially evident in the treatment of peritoneal cancers, including mesothelioma, ovarian, and pancreatic cancer, which regularly employ regimens of intravenous and/or intraperitoneal chemotherapy (e.g., gemcitabine, cisplatin, pemetrexed, and paclitaxel) with limited results. Here, we show that a “two-step” nanoparticle (NP) delivery system may address this limitation. This two-step approach involves the separate administration of NP and drug where, first, the NP localizes to tumor. Second, subsequent administration of drug then rapidly concentrates into the NP already stationed within the target tissue. This two-step method results in a greater than 5-fold increase in intratumoral drug concentrations compared to conventional “drug-alone” administration. These results suggest that this unique two-step delivery may provide a novel method for increasing drug concentrations in target tissues.

  8. Targeting Paclitaxel-Loaded Nanoparticles to Ovarian Cancer

    DTIC Science & Technology

    2011-05-01

    displaced even by very high concentrations of the free ligand. KEY RESEARCH ACCOMPLISHMENTS Background Despite of the improvements in the...scintillation counter. The amount of [3H]-paclitaxel in each tumor was expressed as DPM/g tumor (Figure 6). HEY also has the greatest tritium count... separate Nexil molecules. The next most important step in the validation of Nexil-DTPA as a patient selection tool would be to prove that tumors

  9. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting

    NASA Astrophysics Data System (ADS)

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang

    2016-06-01

    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy.

  10. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting

    PubMed Central

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang

    2016-01-01

    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy. PMID:27278751

  11. Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo

    PubMed Central

    Wang, Wei; Xi, Mei; Duan, Xuezhong; Wang, Yong; Kong, Fansheng

    2015-01-01

    Purpose Combination anticancer therapy is promising to generate synergistic anticancer effects to maximize the treatment effect and overcome multidrug resistance. The aim of the study reported here was to develop multifunctional, dual-ligand, modified, self-assembled nanoparticles (NPs) for the combination delivery of baicalein (BCL) and paclitaxel (PTX) prodrugs. Methods Prodrug of PTX and prodrug of BCL, containing dual-targeted ligands of folate (FA) and hyaluronic acid (HA), were synthesized. Multifunctional self-assembled NPs for combination delivery of PTX prodrug and BCL prodrug (PTX-BCL) were prepared and the synergistic antitumor effect was evaluated in vitro and in vivo. The in vitro transfection efficiency of the novel modified vectors was evaluated in human lung cancer A549 cells and drug-resistant lung cancer A549/PTX cells. The in vivo antitumor efficiency and systemic toxicity of different formulations were further investigated in mice bearing A549/PTX drug-resistant human lung cancer xenografts. Results The size of the PTX-BCL NPs was approximately 90 nm, with a positive zeta potential of +3.3. The PTX-BCL NPs displayed remarkably better antitumor activity over a wide range of drug concentrations, and showed an obvious synergism effect with CI50 values of 0.707 and 0.513, indicating that double-ligand modification and the co-delivery of PTX and BCL prodrugs with self-assembled NPs had remarkable superiority over other formulations. Conclusion The prepared PTX-BCL NP drug-delivery system was proven efficient by its targeting of drug-resistant human lung cancer cells and delivering of BCL and PTX prodrugs. Enhanced synergistic anticancer effects were achieved by PTX-BCL NPs, and multidrug resistance of PTX was overcome by this promising targeted nanomedicine. PMID:26045664

  12. Endocytosis of fluorescent cyclodextrins by intestinal Caco-2 cells and its role in paclitaxel drug delivery.

    PubMed

    Réti-Nagy, Katalin; Malanga, Milo; Fenyvesi, Éva; Szente, Lajos; Vámosi, György; Váradi, Judit; Bácskay, Ildikó; Fehér, Pálma; Ujhelyi, Zoltán; Róka, Eszter; Vecsernyés, Miklós; Balogh, György; Vasvári, Gábor; Fenyvesi, Ferenc

    2015-12-30

    Cyclodextrins are widely used excipients in pharmaceutical formulations. They are mainly utilized as solubilizers and absorption enhancers, but recent results revealed their effects on cell membranes and pharmacological barriers. In addition to the growing knowledge on their interaction with plasma membranes, it was confirmed that cyclodextrins are able to enter cells by endocytosis. The number of the tested cyclodextrins was limited, and the role of this mechanism in drug absorption and delivery is not known. Our aim was to examine the endocytosis of fluorescently labeled hydroxypropyl-β-cyclodextrin, random methyl-β-cyclodextrin and soluble β-cyclodextrin polymer, and the cellular uptake of the fluorescent paclitaxel derivative-random methyl-β-cyclodextrin complex. The studied cyclodextrin derivatives were able to enter Caco-2 intestinal cells and localized in vesicles in the cytoplasm, while their permeability was very limited through Caco-2 monolayers. We demonstrated for the first time that the fluorescent paclitaxel derivative and rhodamine-labeled random methyl-β-cyclodextrin were detected in the same intracellular vesicles after treating cells with their inclusion complex. These results indicate that the endocytosis of cyclodextrin complexes can contribute to drug absorption processes.

  13. Synthesis and biological evaluation (in vitro and in vivo) of cyclic arginine-glycine-aspartate (RGD) peptidomimetic-paclitaxel conjugates targeting integrin αVβ3.

    PubMed

    Colombo, Raffaele; Mingozzi, Michele; Belvisi, Laura; Arosio, Daniela; Piarulli, Umberto; Carenini, Nives; Perego, Paola; Zaffaroni, Nadia; De Cesare, Michelandrea; Castiglioni, Vittoria; Scanziani, Eugenio; Gennari, Cesare

    2012-12-13

    A small library of integrin ligand-paclitaxel conjugates 10-13 was synthesized with the aim of using the tumor-homing cyclo[DKP-RGD] peptidomimetics for site-directed delivery of the cytotoxic drug. All the paclitaxel-RGD constructs 10-13 inhibited biotinylated vitronectin binding to the purified αVβ3 integrin receptor at low nanomolar concentration and showed in vitro cytotoxic activity against a panel of human tumor cell lines similar to that of paclitaxel. Among the cell lines, the cisplatin-resistant IGROV-1/Pt1 cells expressed high levels of integrin αVβ3, making them attractive to be tested in in vivo models. cyclo[DKP-f3-RGD]-PTX 11 displayed sufficient stability in physiological solution and in both human and murine plasma to be a good candidate for in vivo testing. In tumor-targeting experiments against the IGROV-1/Pt1 human ovarian carcinoma xenotransplanted in nude mice, compound 11 exhibited a superior activity compared with paclitaxel, despite the lower (about half) molar dosage used.

  14. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes

    PubMed Central

    Gao, Menghua; Xu, Yuzhen; Qiu, Liyan

    2015-01-01

    A novel composite liposomal system co-encapsulating paclitaxel (PTX) with chloroquine phosphate (CQ) was designed for treating PTX-resistant carcinoma. It was confirmed that liposomal CQ can sensitize PTX by means of autophagy inhibition and competitively binding with multidrug-resistance transporters. Furthermore, according to the in vitro cytotoxicity and apoptosis assay, real-time observation of cellular uptake, and in vivo tissue distribution study, co-encapsulation of PTX and CQ in liposomes was validated as superior to the mixture of PTX liposome plus CQ liposome due to the simultaneous delivery and synergetic effect of the two drugs. Consequently, this composite liposome achieved significantly stronger anticancer efficacy in vivo than the PTX liposome plus CQ liposome mixture. This study helps to guide and enlighten ongoing and future clinical trials about the optimal administration modes for drug combination therapy. PMID:26543365

  15. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes.

    PubMed

    Gao, Menghua; Xu, Yuzhen; Qiu, Liyan

    2015-01-01

    A novel composite liposomal system co-encapsulating paclitaxel (PTX) with chloroquine phosphate (CQ) was designed for treating PTX-resistant carcinoma. It was confirmed that liposomal CQ can sensitize PTX by means of autophagy inhibition and competitively binding with multidrug-resistance transporters. Furthermore, according to the in vitro cytotoxicity and apoptosis assay, real-time observation of cellular uptake, and in vivo tissue distribution study, co-encapsulation of PTX and CQ in liposomes was validated as superior to the mixture of PTX liposome plus CQ liposome due to the simultaneous delivery and synergetic effect of the two drugs. Consequently, this composite liposome achieved significantly stronger anticancer efficacy in vivo than the PTX liposome plus CQ liposome mixture. This study helps to guide and enlighten ongoing and future clinical trials about the optimal administration modes for drug combination therapy.

  16. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Lv, Piping; Chen, Zhongke; Ni, Dezhi; Zhang, Lijun; Yue, Hua; Yue, Zhanguo; Wei, Wei; Ma, Guanghui

    2015-02-01

    Combination chemotherapy has been proven promising for cancer treatment, but unsatisfactory therapeutic data and increased side effects slow down the development in the clinic. In this study, we develop an effective approach to co-encapsulate a hydrophilic-hydrophobic chemotherapeutic drug pair (paclitaxel and doxorubicin) into magnetic O-carboxymethyl-chitosan nanoparticles. To endow them with the ability of programmed delivery, these carriers are further camouflaged with an Arg-Gly-Asp anchored erythrocyte membrane. Compared with the traditional polyethylene glycol coating method, this biomimetic decoration strategy is demonstrated to be superior in prolonging circulation time, improving tumor accumulation, facilitating tumor uptake, and tuning intracellular fate. These outstanding properties enable the as-designed nanodevice to exhibit greater tumor growth inhibition ability and much lower side effects than the combined use of commercial formulations.Combination chemotherapy has been proven promising for cancer treatment, but unsatisfactory therapeutic data and increased side effects slow down the development in the clinic. In this study, we develop an effective approach to co-encapsulate a hydrophilic-hydrophobic chemotherapeutic drug pair (paclitaxel and doxorubicin) into magnetic O-carboxymethyl-chitosan nanoparticles. To endow them with the ability of programmed delivery, these carriers are further camouflaged with an Arg-Gly-Asp anchored erythrocyte membrane. Compared with the traditional polyethylene glycol coating method, this biomimetic decoration strategy is demonstrated to be superior in prolonging circulation time, improving tumor accumulation, facilitating tumor uptake, and tuning intracellular fate. These outstanding properties enable the as-designed nanodevice to exhibit greater tumor growth inhibition ability and much lower side effects than the combined use of commercial formulations. Electronic supplementary information (ESI) available. See DOI

  17. Cysteine modified and bile salt based micelles: preparation and application as an oral delivery system for paclitaxel.

    PubMed

    Xu, Wei; Fan, Xiaohui; Zhao, Yanli; Li, Lingbing

    2015-04-01

    The aim of the present study is to construct a cysteine modified polyion complex micelles made of Pluronic F127-chitosan (PF127-CS), Pluronic F127-cysteine (PF127-cysteine) and sodium cholate (NaC) and to evaluate the potential of the micelles as an oral drug delivery system for paclitaxel. Systematic studies on physicochemical properties including size distribution, zeta-potential and morphology were conducted to validate the formation of micelle structure. Compared with Pluronic micelles, drug-loading capacity of PF127-CS/PF127-cysteine/NaC micelles was increased from 3.35% to 12.77%. Both the critical micelle concentration and the stability test confirmed that the PF127-CS/PF127-cysteine/NaC micelles were more stable in aqueous solution than sodium cholate micelles. Pharmacokinetic study demonstrated that when oral administration the area under the plasma concentration-time curve (AUC0-∞) and the absolute bioavailability of paclitaxel-loaded micelles were five times greater than that of the paclitaxel solution. In general, PF127-CS/PF127-cysteine/NaC micelles were proven to be a potential oral drug delivery system for paclitaxel.

  18. Well-defined, size-tunable, multi-functional micelles for efficient paclitaxel delivery for cancer treatment

    PubMed Central

    Luo, Juntao; Xiao, Kai; Li, Yuanpei; Lee, Joyce S.; Shi, Lifang; Tan, Yih-Horng; Xing, Li; Cheng, R. Holland; Liu, Gang-Yu; Lam, Kit S.

    2010-01-01

    We have developed a well-defined and biocompatible amphiphilic telodendrimer system (PEG-b-dendritic oligo-cholic acid) which can self-assemble into multifunctional micelles in aqueous solution for efficient delivery of hydrophobic drugs such as paclitaxel. In this telodendrimer system, cholic acid is essential for the formation of stable micelles with high drug loading capacity, owing to its facial amphiphilicity. A series of telodendrimers with variable length of PEG chain and number of cholic acid in the dendritic blocks were synthesized. The structure and molecular weight of each of these telodendrimers were characterized, and their critical micellization concentration (CMC), drug-loading properties, particle sizes and cytotoxicity were examined and evaluated for further optimization for anticancer drug delivery. The sizes of the micelles, with and without paclitaxel loading, could be tuned from 11.5 to 21 nm and from 15 to 141 nm, respectively. Optical imaging studies in xenograft models demonstrated preferential uptakes of the smaller paclitaxel-loaded micelles (17–60 nm) by the tumor, and the larger micelles (150 nm) by the liver and lung. The toxicity and anti-tumor efficacy profiles of these paclitaxel-loaded micelles in xenograft models were found to be superior to those of Taxol® and Abraxane®. PMID:20536174

  19. TARGETED DELIVERY OF INHALED PROTEINS

    EPA Science Inventory

    ETD-02-047 (Martonen) GPRA # 10108

    TARGETED DELIVERY OF INHALED PROTEINS
    T. B. Martonen1, J. Schroeter2, Z. Zhang3, D. Hwang4, and J. S. Fleming5
    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park...

  20. Effective Drug Delivery, in vitro and in vivo, By Carbon-Based Nanovectors Non-Covalently Loaded With Unmodified Paclitaxel

    PubMed Central

    Berlin, Jacob M.; Leonard, Ashley D.; Pham, Tam T.; Sano, Daisuke; Marcano, Daniela C.; Yan, Shayou; Fiorentino, Stefania; Milas, Zvonimir L.; Kosynkin, Dmitry V.; Katherine Price, B.; Lucente-Schultz, Rebecca M.; Wen, XiaoXia; Gabriela Raso, M.; Craig, Suzanne L.; Tran, Hai T.; Myers, Jeffrey N.; Tour, James M.

    2010-01-01

    Many new drugs have low aqueous solubility and high therapeutic efficacy. Paclitaxel (PTX) is a classic example of this type of compound. Here we show that extremely small (<40 nm) hydrophilic carbon clusters (HCCs) that are PEGylated (PEG-HCCs) are effective drug delivery vehicles when simply mixed with paclitaxel. This formulation of PTX sequestered in PEG-HCCs (PTX/PEG-HCCs) is stable for at least twenty weeks. The PTX/PEG-HCCs formulation was as effective as PTX in a clinical formulation in reducing tumor volumes in an orthotopic murine model of oral squamous cell carcinoma. Preliminary toxicity and biodistribution studies suggest that the PEG-HCCs are not acutely toxic and, like many other nanomaterials, are primarily accumulated in the liver and spleen. This work demonstrates that carbon nanomaterials are effective drug delivery vehicles in vivo when non-covalently loaded with an unmodified drug. PMID:20681596

  1. Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery.

    PubMed

    Wang, Yonglu; Li, Xueming; Wang, Liyao; Xu, Yuanlong; Cheng, Xiaodan; Wei, Ping

    2011-01-01

    Paclitaxel is a diterpenoid isolated from Taxus brevifolia. It is effective for various cancers, especially ovarian and breast cancer. Due to its aqueous insolubility, it is administered dissolved in ethanol and Cremophor EL (BASF, Ludwigshafen, Germany), which can cause serious allergic reactions. In order to eliminate Cremophor EL, paclitaxel was formulated as a nanosuspension by high-pressure homogenization. The nanosuspension was lyophilized to obtain the dry paclitaxel nanoparticles (average size, 214.4 ± 15.03 nm), which enhanced both the physical and chemical stability of paclitaxel nanoparticles. Paclitaxel dissolution was also enhanced by the nanosuspension. Differential scanning calorimetry showed that the crystallinity of paclitaxel was preserved during the high-pressure homogenization process. The pharmacokinetics and tissue distribution of paclitaxel were compared after intravenous administration of paclitaxel nanosuspension and paclitaxel injection. In rat plasma, paclitaxel nanosuspension exhibited a significantly (P < 0.01) reduced area under the concentration curve (AUC)(0-∞) (20.343 ± 9.119 μg · h · mL(-1) vs 5.196 ± 1.426 μg · h · mL(-1)), greater clearance (2.050 ± 0.616 L · kg(-1) · h(-1) vs 0.556 ± 0.190 L · kg(-1) · h(-1)), and shorter elimination half-life (5.646 ± 2.941 vs 3.774 ± 1.352 hours) compared with the paclitaxel solution. In contrast, the paclitaxel nanosuspension resulted in a significantly greater AUC(0-∞) in liver, lung, and spleen (all P < 0.01), but not in heart or kidney.

  2. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles.

    PubMed

    Xu, Qing; Liu, Yuexian; Su, Shishuai; Li, Wei; Chen, Chunying; Wu, Yan

    2012-02-01

    Targeted delivery strategies are becoming increasingly important. Herein, a novel hyperbranched amphiphilic poly[(amine-ester)-co-(D,L-lactide)]/1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer (HPAE-co-PLA/DPPE) with RGD peptide (cRGDfK) and transferrin (Tf) on the periphery was synthesized and used to prepare paclitaxel-loaded nanoparticles (NPs) for dual-targeting chemotherapy. These NPs show satisfactory size distribution, high encapsulated efficiency and a pH-dependent release profile. The intrinsic fluorescence of the hyperbranched copolymer renders the detection and tracking of NPs in vitro and in vivo conveniently. In vitro cytotoxicity studies proved that the presence of cRGDfK enhanced the cytotoxic efficiency by 10 folds in α(ν)β(3) integrin over-expressed human umbilical vein endothelial cells, while Tf improved cytotoxicity by 2 folds in Tf receptor over-expressed human cervical carcinoma cells. The drug-loaded NPs can be efficiently transported into the vascular endothelial cells and the target tumor cells. These results indicate that the cRGDfK and Tf decorated HPAE-co-PLA/DPPE could deliver chemotherapies specifically inside the cell via receptor-mediated endocytosis with greater efficacy. Therefore, such a fluorescent nanocarrier prepared from non-cytotoxic and biodegradable polymers is promising for drug delivery in tumor therapy.

  3. Development and optimization of transferrin-conjugated nanostructured lipid carriers for brain delivery of paclitaxel using Box-Behnken design.

    PubMed

    Emami, Jaber; Rezazadeh, Mahboubeh; Sadeghi, Hojjat; Khadivar, Khashayar

    2017-05-01

    The treatment of brain cancer remains one of the most difficult challenges in oncology. The purpose of this study was to develop transferrin-conjugated nanostructured lipid carriers (Tf-NLCs) for brain delivery of paclitaxel (PTX). PTX-loaded NLCs (PTX-NLCs) were prepared using solvent evaporation method and the impact of various formulation variables were assessed using Box-Behnken design. Optimized PTX-NLC was coupled with transferrin as targeting ligand and in vitro cytotoxicity of it was investigated against U-87 brain cancer cell line. As a result, 14.1 mg of cholesterol, 18.5 mg of triolein, and 0.5% poloxamer were used to prepare the optimal formulation. Mean particle size (PS), zeta potential (ZP), entrapment efficiency (EE), drug loading (DL), mean release time (MRT) of adopted formulation were confirmed to be 205.4 ± 11 nm, 25.7 ± 6.22 mV, 91.8 ± 0.5%, 5.38 ± 0.03% and 29.3 h, respectively. Following conjugation of optimized PTX-NLCs with transferrin, coupling efficiency was 21.3 mg transferrin per mmol of stearylamine; PS and MRT were increased while ZP, EE and DL decreased non-significantly. Tf-PTX-NLCs showed higher cytotoxic activity compared to non-targeted NLCs and free drug. These results indicated that the Tf-PTX-NLCs could potentially be exploited as a delivery system in brain cancer cells.

  4. Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage

    NASA Astrophysics Data System (ADS)

    Sousa-Herves, Ana; Würfel, Patrick; Wegner, Nicole; Khandare, Jayant; Licha, Kai; Haag, Rainer; Welker, Pia; Calderón, Marcelo

    2015-02-01

    In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by 1H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes.In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by 1H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These

  5. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides

    PubMed Central

    Sun, Jiawei; Jiang, Lei; Lin, Yi; Gerhard, Ethan Michael; Jiang, Xuehua; Li, Li; Yang, Jian; Gu, Zhongwei

    2017-01-01

    Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Here, multistage tumor-targeting liposomes containing two targeted peptide-modified lipids, cRGD-PEG2000-DSPE and KLA-PEG2000-DSPE, were developed for encapsulation of the anticancer drug paclitaxel (PTX, RGD-KLA/PTX-Lips). Compared with Taxol (free PTX), RGD/PTX-Lips and KLA/PTX-Lips, the half-maximal inhibitory concentration (IC50) value of RGD-KLA/PTX-Lips in vitro was 1.9-, 36.7- and 22.7-fold lower with 4T1 cells, respectively, because of higher levels of cellular uptake. Similar results were also observed with human umbilical vascular endothelial cells (HUVECs). An apoptosis assay showed that the total apoptotic ratio of RGD-KLA/PTX-Lips was the highest because of the mitochondria-targeted drug delivery and the activation of mitochondrial apoptosis pathways, as evidenced by visible mitochondrial localization, decreased mitochondrial membrane potential, release of cytochrome c and increased activities of caspase-9 and caspase-3. The strongest tumor growth inhibition (TGI; 80.6%) and antiangiogenesis effects without systemic toxicity were also observed in RGD-KLA/PTX-Lip-treated 4T1 tumor xenograft BALB/c mice. In conclusion, these multistage tumor-targeting liposomes represent a promising anticancer drug delivery system (DDS) capable of maximizing anticancer therapeutic efficacy and minimizing systemic toxicity. PMID:28280323

  6. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid-ceramide nanoparticles for targeted photodynamic therapy in lung cancer.

    PubMed

    Chang, Ji-Eun; Cho, Hyun-Jong; Yi, Eunjue; Kim, Dae-Duk; Jheon, Sanghoon

    2016-05-01

    To increase the therapeutic efficacy of photodynamic therapy (PDT) in treating lung cancer, we developed both photosensitizer and anticancer drug encapsulated hyaluronic acid-ceramide nanoparticles. Based on our previous study, a co-delivery system of photosensitizers and anticancer agents greatly improves the therapeutic effect of PDT. Furthermore, hyaluronic acid-ceramide-based nanoparticles are ideal targeting carriers for lung cancer. In vitro phototoxicity in A549 (human lung adenocarcinoma) cells and in vivo antitumor efficacy in A549 tumor-bearing mice treated with hypocrellin B (HB)-loaded nanoparticles (HB-NPs) or hypocrellin B and paclitaxel loaded nanoparticles (HB-P-NPs) were evaluated. Cell viability assay, microscopic analysis and FACS analysis were performed for the in vitro studies and HB-P-NPs showed enhanced phototoxicity compared with HB-NPs. In the animal study, the tumor volume change and the histological analysis was studied and the anticancer efficacy improved in the order of free HBtargeted delivery improved the effects of PDT in lung cancer in mice.

  7. Liposomal formulation for co-delivery of paclitaxel and lapatinib, preparation, characterization and optimization.

    PubMed

    Ravar, Fatemeh; Saadat, Ebrahim; Kelishadi, Pouya Dehghan; Dorkoosh, Farid A

    2016-09-01

    Paclitaxel (PTX) is one of the most promising natural anticancer agents with a wide therapeutic range which is limited by its hydrophobic nature, low therapeutic index and more importantly, the emergence of multidrug resistance (MDR). Lapatinib (LPT) is a dual tyrosine kinase inhibitor with a significant potential to inhibit p-glycoproteins which form one of the main groups of proteins responsible for efflux pump mediated MDR. To overcome the PTX related MDR, a novel liposomal formulation was optimized for co-delivery of PTX and LPT by applying the D-optimal response surface methodology. The encapsulation efficiency (EE%) of the optimized formulation for LPT and PTX was 52 ± 3% and 68 ± 5, respectively. The optimized formulation showed a narrow size distribution with the average of 235 ± 12 nm. The transmission electron microscopy image showed that liposomes were round in shape and discrete. The release profile exhibited 93% and 71% drug release for PTX and LPT after 40 h in the sink condition. The differential scanning calorimetry analysis indicated the conversion of both drugs from crystalline state to molecular state in the optimized lyophilized formulation. The cytotoxicity of the prepared formulation was studied against 4T1 murine mammary cells. The liposomal formulation showed better cytotoxicity in comparison to the binary mixture of free drugs.

  8. Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage.

    PubMed

    Sousa-Herves, Ana; Würfel, Patrick; Wegner, Nicole; Khandare, Jayant; Licha, Kai; Haag, Rainer; Welker, Pia; Calderón, Marcelo

    2015-03-07

    In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by (1)H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes.

  9. Self-assembled polymeric nanoparticle of PEGylated chitosan-ceramide conjugate for systemic delivery of paclitaxel.

    PubMed

    Battogtokh, Gantumur; Ko, Young Tag

    2014-11-01

    Chitosan has been widely explored as one of the most favorable biomaterials for various pharmaceutical applications due to its biodegradability and biocompatibility. Here, we report novel PEGylated-chitosan-ceramide (PEG-CS-CE) that forms stable polymeric nanoparticles capable of functioning as efficient carriers of hydrophobic drug molecules. The chitosan-ceramide conjugate (CS-CE) was linked with amine-polyethyleneglycol (NH2-PEG2000) by using dicyclohexylcarbodiimide/N-hydroxysuccinimide (DCC-NHS) to obtain PEG-CS-CE that could exhibit steric stabilization in biological environments. The structure of the conjugate was determined by proton ((1)H) NMR and FT-IR spectrometry. Under suitable conditions, the PEG-CS-CE self-assembled to form colloidally stable nanoparticles with a mean diameter of ∼ 200 nm. Further, hydrophobic anti-tumor agent paclitaxel (PTX) was incorporated into the polymeric nanoparticle with 90% loading efficiency and 11.3% loading capacity via an emulsion-solvent evaporation method. The PTX-loaded PEG-CS-CE nanoparticle showed sustained release and exhibited higher cellular uptake and a comparable cytotoxic efficacy to that of free PTX on B16F10 melanoma and MCF-7 human breast adenocarcinoma cell lines. The empty nanoparticle showed no toxicity, indicating that the co-polymer is safe to use in drug delivery. The polymeric nanoparticle PEG-CS-CE developed by us represent promising nanocarriers of hydrophobic drug molecules.

  10. The ClC-3 chloride channel associated with microtubules is a target of paclitaxel in its induced-apoptosis.

    PubMed

    Zhang, Haifeng; Li, Huarong; Yang, Lili; Deng, Zhiqin; Luo, Hai; Ye, Dong; Bai, Zhiquan; Zhu, Linyan; Ye, Wencai; Wang, Liwei; Chen, Lixin

    2013-01-01

    Recent evidences show that cationic fluxes play a pivotal role in cell apoptosis. In this study, the roles of Cl(-) channels in paclitaxel-induced apoptosis were investigated in nasopharyngeal carcinoma CNE-2Z cells. Chloride current and apoptosis were induced by paclitaxel and inhibited by chloride channel blockers. Paclitaxel-activated current possessed similar properties to volume-activated chloride current. After ClC-3 was knocked-down by ClC-3-siRNA, hypotonicity-activated and paclitaxel-induced chloride currents were obviously decreased, indicating that the chloride channel involved in paclitaxel-induced apoptosis may be ClC-3. In early apoptotic cells, ClC-3 was up-regulated significantly; over-expressed ClC-3 was accumulated in cell membrane to form intercrossed filaments, which were co-localized with α-tubulins; changes of ultrastructures and decrease of flexibility in cell membrane were detected by atomic force microscopy. These suggest that ClC-3 is a critical target of paclitaxel and the involvement of ClC-3 in apoptosis may be associated with its accumulation with membrane microtubules and its over activation.

  11. A First-Time-In-Human Phase I Clinical Trial of Bispecific Antibody-Targeted, Paclitaxel-Packaged Bacterial Minicells

    PubMed Central

    Rosenthal, Mark; McArthur, Grant A.; Pattison, Scott T.; Pattison, Stacey L.; MacDiarmid, Jennifer; Brahmbhatt, Himanshu; Scott, Andrew M.

    2015-01-01

    Background We have harnessed a novel biological system, the bacterial minicell, to deliver cancer therapeutics to cancer cells. Preclinical studies showed that epidermal growth factor receptor (EGFR)-targeted, paclitaxel-loaded minicells (EGFRminicellsPac) have antitumor effects in xenograft models. To examine the safety of the minicell delivery system, we initiated a first-time-in-human, open-label, phase I clinical study of EGFRminicellsPac in patients with advanced solid tumors. Methodology Patients received 5 weekly infusions followed by a treatment free week. Seven dose levels (1x108, 1x109, 3x109, 1x1010, 1.5x1010, 2x1010, 5x1010) were evaluated using a 3+3 dose-escalation design. Primary objectives were safety, tolerability and determination of the maximum tolerated dose. Secondary objectives were assessment of immune/inflammatory responses and antitumor activity. Principal Findings Twenty eight patients were enrolled, 22 patients completed at least one cycle of EGFRminicellsPac; 6 patients did not complete a cycle due to rapidly progressive disease. A total of 236 doses was delivered over 42 cycles, with a maximum of 45 doses administered to a single patient. Most common treatment-related adverse events were rigors and pyrexia. No deaths resulted from treatment-related adverse events and the maximum tolerated dose was defined as 1x1010 EGFRminicellsPac. Surprisingly, only a mild self-limiting elevation in the inflammatory cytokines IL-6, IL-8 and TNFα and anti-inflammatory IL-10 was observed. Anti-LPS antibody titers peaked by dose 3 and were maintained at that level despite repeat dosing with the bacterially derived minicells. Ten patients (45%; n = 22) achieved stable disease as their best response. Conclusions/Significance This is the first study in humans of a novel biological system that can provide targeted delivery of a range of chemotherapeutic drugs to solid tumor cells. Bispecific antibody-targeted minicells, packaged with the chemotherapeutic

  12. Enhanced delivery of Paclitaxel using electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells.

    PubMed

    Yu, Kongtong; Zhao, Jinlong; Zhang, Zunkai; Gao, Yin; Zhou, Yulin; Teng, Lesheng; Li, Youxin

    2016-01-30

    We have developed a novel nanoparticle delivery system fabricated from polyethylenimine (PEI) and poly(d,l-lactide-co-glycolide) (PLGA), which were able to deliver the chemotherapeutic agent Paclitaxel, while the biomacromolecule Herceptin acted as a targeting ligand that was conjugated onto the surfaces of the nanoparticles via electrostatic interactions. In this study, these electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles (eHER-PPNs) were optimized and employed as vectors to target HER2-positive breast cancer cells. The eHER-PPNs had an average diameter of ∼ 280 nm and a neutral surface charge (1.00 ± 0.73 mV), which remained stable under physiological conditions. The anticancer effects of eHER-PPNs were investigated in HER2-positive BT474 cells and HER2-negative MCF7 cells. The eHER-PPNs showed enhanced cytotoxicity that was dependent on the receptor expression levels and the incubation time. These conjugated nanoparticles deliver Paclitaxel more efficiently (p<0.001) than unmodified PPNs, Herceptin and the combined effects of these two monotherapies. Furthermore, the chemically-conjugated Herceptin-bearing PEI/PLGA nanoparticles (cHER-PPNs) were fabricated as a comparison. The eHER-PPNs exhibited lower cell viability (46.7%) than that of cHER-PPNs (65.1%). The targeting ability of eHER-PPNs was demonstrated through confocal microscopy images and flow cytometry, which showed that eHER-PPNs displayed higher cellular uptake efficiency (p<0.001) in comparison with cHER-PPNs. Therefore, eHER-PPNs could provide promising platforms for the delivery of therapeutic drugs against HER2-positive breast cancers.

  13. Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel.

    PubMed

    Eldar-Boock, Anat; Miller, Keren; Sanchis, Joaquin; Lupu, Ruth; Vicent, María J; Satchi-Fainaro, Ronit

    2011-05-01

    Angiogenesis plays a prominent role in cancer progression. Anti-angiogenic therapy therefore, either alone or in combination with conventional cytotoxic therapy, offers a promising therapeutic approach. Paclitaxel (PTX) is a widely-used potent cytotoxic drug that also exhibits anti-angiogenic effects at low doses. However, its use, at its full potential, is limited by severe side effects. Here we designed and synthesized a targeted conjugate of PTX, a polymer and an integrin-targeted moiety resulting in a polyglutamic acid (PGA)-PTX-E-[c(RGDfK)(2)] nano-scaled conjugate. Polymer conjugation converted PTX to a macromolecule, which passively targets the tumor tissue exploiting the enhanced permeability and retention effect, while extravasating via the leaky tumor neovasculature. The cyclic RGD peptidomimetic enhanced the effects previously seen for PGA-PTX alone, utilizing the additional active targeting to the α(v)β(3) integrin overexpressed on tumor endothelial and epithelial cells. This strategy is particularly valuable when tumors are well-vascularized, but they present poor vascular permeability. We show that PGA is enzymatically-degradable leading to PTX release under lysosomal acidic pH. PGA-PTX-E-[c(RGDfK)(2)] inhibited the growth of proliferating α(v)β(3)-expressing endothelial cells and several cancer cells. We also showed that PGA-PTX-E-[c(RGDfK)(2)] blocked endothelial cells migration towards vascular endothelial growth factor; blocked capillary-like tube formation; and inhibited endothelial cells attachment to fibrinogen. Orthotopic studies in mice demonstrated preferential tumor accumulation of the RGD-bearing conjugate, leading to enhanced anti-tumor efficacy and a marked decrease in toxicity as compared with free PTX-treated mice.

  14. Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel

    PubMed Central

    Eldar-Boock, Anat; Miller, Keren; Sanchis, Joaquin; Lupu, Ruth; Vicent, María J.; Satchi-Fainaro, Ronit

    2011-01-01

    Angiogenesis plays a prominent role in cancer progression. Anti-angiogenic therapy therefore, either alone or in combination with conventional cytotoxic therapy, offers a promising therapeutic approach. Paclitaxel (PTX) is a widely-used potent cytotoxic drug that also exhibits anti-angiogenic effects at low doses. However, its use, at its full potential, is limited by severe side effects. Here we designed and synthesized a targeted conjugate of PTX, a polymer and an integrin-targeted moiety resulting in a polyglutamic acid (PGA)-PTX-E-[c(RGDfK)2] nano-scaled conjugate. Polymer conjugation converted PTX to a macromolecule, which passively targets the tumor tissue exploiting the enhanced permeability and retention effect, while extravasating via the leaky tumor neovasculature. The cyclic RGD peptidomimetic enhanced the effects previously seen for PGA-PTX alone, utilizing the additional active targeting to the αvβ3 integrin overexpressed on tumor endothelial and epithelial cells. This strategy is particularly valuable when tumors are well-vascularized, but they present poor vascular permeability. We show that PGA is enzymatically-degradable leading to PTX release under lysosomal acidic pH. PGA-PTX-E-[c(RGDfK)2] inhibited the growth of proliferating αvβ3-expressing endothelial cells and several cancer cells. We also showed that PGA-PTX-E-[c(RGDfK)2] blocked endothelial cells migration towards vascular endothelial growth factor; blocked capillary-like tube formation; and inhibited endothelial cells attachment to fibrinogen. Orthotopic studies in mice demonstrated preferential tumor accumulation of the RGD-bearing conjugate, leading to enhanced antitumor efficacy and a marked decrease in toxicity as compared with free PTX-treated mice. PMID:21376390

  15. Specific tumor delivery of paclitaxel using glycolipid-like polymer micelles containing gold nanospheres.

    PubMed

    You, Jian; Wang, Zuhua; Du, Yongzhong; Yuan, Hong; Zhang, Peizun; Zhou, Jialin; Liu, Fei; Li, Chun; Hu, Fuqiang

    2013-06-01

    It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1-48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1-4 h) in vitro. Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR

  16. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    NASA Astrophysics Data System (ADS)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  17. Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles.

    PubMed

    You, Jin-Oh; Auguste, Debra T

    2008-04-01

    pH-Sensitive poly(N,N-dimethylaminoethyl methacrylate (DMAEMA)/2-hydroxyethyl methacrylate (HEMA)) nanoparticles were prepared for the triggered release of paclitaxel within a tumor microenvironment. Tumors exhibit a lower extracellular pH than normal tissues. We show that paclitaxel release from DMAEMA/HEMA particles can be actively triggered by small, physiological changes in pH (within 0.2-0.6 pH units). Monodispersed nanoparticles were synthesized by forming an O/W emulsion followed by photopolymerization. Particles were characterized by transmission electron microscopy, dynamic light scattering, electrophoresis, and cytotoxicity. High release rates and swelling ratios are achieved at low pH, low crosslinking density, and high content of DMAEMA. Paclitaxel release is limited to 9% of the payload at pH 7.4 after a 2-h incubation at 37 degrees C. After adjusting to pH 6.8, 25% of the payload is released within 2h. Cell viability studies indicate that pH-sensitive DMAEMA/HEMA nanoparticles are not cytotoxic and may be used as an efficient, feedback-regulated drug delivery carrier.

  18. Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers.

    PubMed

    Zhang, Fuwu; Zhang, Shiyi; Pollack, Stephanie F; Li, Richen; Gonzalez, Amelia M; Fan, Jingwei; Zou, Jiong; Leininger, Sarah E; Pavía-Sanders, Adriana; Johnson, Rachel; Nelson, Laura D; Raymond, Jeffery E; Elsabahy, Mahmoud; Hughes, Dennis M P; Lenox, Mark W; Gustafson, Tiffany P; Wooley, Karen L

    2015-02-11

    Nanomaterials have great potential to offer effective treatment against devastating diseases by providing sustained release of high concentrations of therapeutic agents locally, especially when the route of administration allows for direct access to the diseased tissues. Biodegradable polyphosphoester-based polymeric micelles and shell cross-linked knedel-like nanoparticles (SCKs) have been designed from amphiphilic block-graft terpolymers, PEBP-b-PBYP-g-PEG, which effectively incorporate high concentrations of paclitaxel (PTX). Well-dispersed nanoparticles physically loaded with PTX were prepared, exhibiting desirable physiochemical characteristics. Encapsulation of 10 wt% PTX, into either micelles or SCKs, allowed for aqueous suspension of PTX at concentrations up to 4.8 mg/mL, as compared to <2.0 μg/mL for the aqueous solubility of the drug alone. Drug release studies indicated that PTX released from these nanostructures was defined through a structure-function relationship, whereby the half-life of sustained PTX release was doubled through cross-linking of the micellar structure to form SCKs. In vitro, physically loaded micellar and SCK nanotherapeutics demonstrated IC50 values against osteosarcoma cell lines, known to metastasize to the lungs (CCH-OS-O and SJSA), similar to the pharmaceutical Taxol formulation. Evaluation of these materials in vivo has provided an understanding of the effects of nanoparticle structure-function relationships on intratracheal delivery and related biodistribution and pharmacokinetics. Overall, we have demonstrated the potential of these novel nanotherapeutics toward future sustained release treatments via administration directly to the sites of lung metastases of osteosarcoma.

  19. Improved cytotoxicity of paclitaxel loaded in nanosized lipid carriers by intracellular delivery

    NASA Astrophysics Data System (ADS)

    Miao, Jing; Du, Yongzhong; Yuan, Hong; Zhang, Xingguo; Li, Qian; Rao, Yuefeng; Zhao, Mengdan; Hu, Fuqiang

    2015-01-01

    Nanosized lipid carriers (NLC) can improve the limited drug-loading (DL) capacity and drug expulsion during storage, and adjust the drug release profile of solid lipid nanoparticles (SLN). In this study, Paclitaxel (PTX)-loaded NLC were prepared by solvent diffusion method using monostearin as solid lipid and oleic acid (OA) as liquid lipid matrix. The blank NLC with different OA content (the size range was from 89.5 ± 7.4 to 160.2 ± 34.6 nm) showed smaller size than the blank SLN (the size was 272.7 ± 43.6 nm), while the PTX-loaded NLC (the size range was from 481.3 ± 29.8 to 561.7 ± 38.3 nm) showed little bigger size, higher DL capacity, and faster drug in vitro release rate comparing with SLN (the size was 437.3 ± 68.2 nm). The 50 % cellular growth inhibitions (IC50) of PTX-loaded NLC with 0, 5, 10, and 20 wt % OA were 0.92 ± 0.06, 0.69 ± 0.04, 0.25 ± 0.02, and 0.12 ± 0.02 µg mL-1, respectively, while the IC50 of TaxolTM was 1.72 ± 0.09 µg mL-1. For analyzing cellular drug effect, cellular uptakes of fluorescent NLC and intracellular drug concentration were investigated. As the incorporation of OA into solid lipid matrix could accelerate both the cellular uptake and the PTX delivery, loaded by NLC, the cytotoxicity of PTX could be enhanced, and further enhanced by increasing OA content in NLC.

  20. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    PubMed Central

    Yang, Xiaoqian; lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-01-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer. PMID:25687880

  1. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  2. pH and glutathion-responsive hydrogel for localized delivery of paclitaxel.

    PubMed

    Pérez, Elena; Fernández, Ana; Olmo, Rosa; Teijón, Jose M; Blanco, M Dolores

    2014-04-01

    pH and glutathion (GSH)- responsive nanogels (NGs) based on poly-N-isopropylacrilamide (NIPA), N-hydroxyethyl acrylamide (HEAA) and tert-butyl 2-acrylamidoethyl carbamate (2AAECM) were synthesized by a microemulsion polymerization method using N, N'-cystaminebisacrylamide (CBA) as a crosslinking agent and evaluated for passive targeting of paclitaxel (PTX). Physicochemical characterizations of unloaded and PTX-loaded NGs, such as particle size, morphology, encapsulation efficiency and in vitro PTX release were also assessed. Electron microscopy techniques (SEM and TEM) as well as dynamic light scattering (DLS) analysis showed nanosized spherical hydrogels. FTIR spectra confirmed the synthesis of nanogels by free radical polymerization among vinyl groups of monomers. In vitro release was analyzed by high-performance liquid chromatography (HPLC) and differences between two NG formulations were obtained. Nanogels released almost 64% of PTX after 50h at GSH concentrations equivalent to that in the cellular cytosol, whereas less PTX was released from NGs at pH and GSH levels similar to plasma. Cellular uptake and cytotoxicity were also demonstrated by using coumarin-6 and MTT assays, respectively, for three tumor cell lines (MCF7, HeLa and T47D). Cellular uptake assays revealed rapid uptake within 2h and intracellular accumulation of coumarin-6-loaded nanogels after 48 h incubation. MTT assays showed changes in cell viability at different concentrations of PTX formulations, as well as pure PTX (10 μM, 20 μM and 30 μM). To investigate PTX effect on cell viability, changes in cell cycle were examined by flow cytometry and a G2/M cell arrest was demonstrated. Overall, synthesized nanogels may be used as potential carriers for hydrophobic anticancer drugs.

  3. Biological evaluation of redox-sensitive micelles based on hyaluronic acid-deoxycholic acid conjugates for tumor-specific delivery of paclitaxel.

    PubMed

    Li, Jing; Yin, Tingjie; Wang, Lei; Yin, Lifang; Zhou, Jianping; Huo, Meirong

    2015-04-10

    Tumor-targeted drug delivery and microenvironment-responsive drug release are attractive strategies in cancer treatment. Our previous study demonstrated that redox-sensitive micelles based on hyaluronic acid-deoxycholic acid (HA-ss-DOCA) conjugates exhibited excellent drug-loading capacities (34.1%) for paclitaxel (PTX) and rapid drug release in response to reducing agent, glutathione. In the present study, the physicochemical and biological properties of PTX-loaded HA-ss-DOCA (PTX-HA-ss-DOCA) micelles were investigated further. The micelles have an average size of about 120 nm and a zeta potential of about -36 mV. Transmission electron microscopy and wide-angle X-ray diffraction analysis demonstrated redox-sensitive degradation of micelles in the presence of glutathione. Moreover, the encapsulated payload was effectively released from HA-ss-DOCA micelles into cytoplasm and then rapidly transported into nuclei. In vitro cytotoxicity and cell apoptosis assay further revealed that HA significantly improved the tumor-specific drug delivery of HA-ss-DOCA micelles via receptor-mediated endocytosis, while efficient intracellular drug release and transportation lead to marked inhibition of tumor cell growth, as compared to Taxol(®) and insensitive micelles. More importantly, PTX-HA-ss-DOCA micelles demonstrated superior in vivo antitumor activity compared with Taxol(®) and insensitive control, and decreased systemic toxicity. Herein we present data which provide valuable insight into the design and development of tumor-specific drug delivery systems.

  4. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles.

    PubMed

    Kouchakzadeh, Hasan; Safavi, Maryam Sadat; Shojaosadati, Seyed Abbas

    2015-01-01

    Albumin nanoparticles are one of the most important drug carriers for the delivery of therapeutic drugs, especially for the treatment of malignancies. This potential is due to their high binding capacity for both hydrophobic and hydrophilic drugs and the possibility of surface modification. Accumulation of albumin-bound drugs in the tumor interstitium occurs by the enhanced permeability and retention effect, which is also facilitated by the 60-kDa glycoprotein transcytosis pathway and binding to secreted protein, acidic and rich in cysteine located in the tumor extracellular matrix. In addition, specific ligands such as monoclonal antibodies, folic acid, transferrin, and peptides can be conjugated to the surface of albumin nanoparticles to actively target the drug to its site of action. The albumin-bound paclitaxel, Abraxane, is one of the several therapeutic nanocarriers that have been approved for clinical use. By the development of Abraxane that demonstrates a higher response rate and improved tolerability and therapeutic efficiency in comparison with solvent-based formulation, and with consideration of its commercial success, albumin is attracting the interest of many biotechnological and pharmaceutical companies. This chapter explores the current targeted and nontargeted albumin-based nanoparticles that are in various stages of development for the delivery of therapeutic agents in order to enhance the efficacy of cancer treatment.

  5. Targeted delivery of nano-PTX to the brain tumor-associated macrophages

    PubMed Central

    Zou, Lei; Tao, Youhua; Payne, Gregory; Do, Linh; Thomas, Tima; Rodriguez, Juan; Dou, Huanyu

    2017-01-01

    Nanoparticles containing mixed lipid monolayer shell, biodegradable polymer core and rabies virus glycoprotein (RVG) peptide as brain targeting ligand, were developed for brain targeted delivery of paclitaxel (PTX) to treat malignant glioma. RVG conjugated PTX loaded NPs (RVG-PTX-NPs) had the desirable size (~140 nm), narrow size distribution and spherical shape. RVG-PTX-NPs showed poor uptake by neurons and selective targeting to the brain tumor associated macrophages (TAMs) with controlled release and tumor specific toxicity. In vivo studies revealed that RVG-PTX-NPs were significant to cross the blood-brain barrier (BBB) and had specific targeting to the brain. Most importantly, RVG-PTX-NPs showed effectiveness for anti-glioma therapy on human glioma of mice model. We concluded that RVG-PTX-NPs provided an effective approach for brain-TAMs targeted delivery for the treatment of glioma. PMID:28036254

  6. The Effect of Short-term Intra-arterial Delivery of Paclitaxel on Neointimal Hyperplasia and the Local Thrombotic Environment after Angioplasty

    SciTech Connect

    Yajun, E; He Nengshu Fan Hailun

    2013-08-01

    PurposeTo evaluate the effects of short-term intra-arterial delivery of paclitaxel on neointimal hyperplasia and the local thrombotic environment after angioplasty.MethodsAn experimental common carotid artery injury model was established in 60 rats, which were divided into experimental groups (40 rats) and controls (20 rats). Local intra-arterial administration of paclitaxel was applied at 2 doses (90 and 180 {mu}g/30 {mu}l), and the effects of short-term delivery of paclitaxel on neointimal hyperplasia and the expression of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (t-PA) were evaluated at days 15 and 30 by hematoxylin and eosin staining and immunohistochemistry.ResultsAt 15 and 30 days after injury, neointimal thickness and area, the ratio of intimal area to medial area and the stenotic rate were all significantly decreased in the group provided the high concentrations (180 {mu}g/30 {mu}l) of paclitaxel for 2 min or 10 min and in the group provided the low concentration (90 {mu}g/30 {mu}l) of paclitaxel for 10 min (p < 0.05). At 30 days after injury, there were no significant changes in TF expression among all experimental groups. PAI-1 expression increased in the neointima of the high concentration 10 min group (p < 0.05), while t-PA expression decreased in the neointima of the high concentration 2 min group (p < 0.05).ConclusionIn the rat common carotid artery injury model, the short-term delivery of paclitaxel could effectively inhibit neointimal hyperplasia in the long term, with very little influence on the local expression of TF and PAI-1.

  7. Engineered Polymer-Transferrin Conjugates as Self-Assembling Targeted Drug Delivery Systems.

    PubMed

    Makwana, Hiteshri; Mastrotto, Francesca; Magnusson, Johannes Pall; Sleep, Darrell; Hay, Joanna; Nicholls, Karl J; Allen, Stephanie; Alexander, Cameron

    2017-03-28

    Polymer-protein conjugates can be engineered to self-assemble into discrete and well-defined drug delivery systems which combine the advantages of receptor targeting and controlled drug release. We designed specific conjugates of the iron-binding and transport protein, transferrin (Tf), to combine the advantages of this serum-stable protein as a targeting agent for cancer cells with self-assembling polymers to act as carriers of cytotoxic drugs. Tf variants were expressed with cysteine residues at sites spanning different regions of the protein surface and the polymer conjugates grown from these variants were compared with polymer conjugates grown from non-selectively derivatised sites on native Tf. The resulting synthetic biopolymer hybrids were evaluated for self-assembly properties, size and topology, ability to carry an anti-cancer drug (paclitaxel) and cytotoxicity with and without a drug payload in a representative human colon cancer cell line. The results demonstrated that the engineered Tf variant polymer conjugates formed better-defined self-assembled nanoparticles than the non-selectively derivatised conjugates and showed greater efficacy in paclitaxel delivery. A polymer conjugate grown from a specific Tf variant, S415C was found to be taken up rapidly into cancer cells expressing the Tf-receptor, and, while tolerated well by cells in the absence of drugs, was as cytotoxic as free paclitaxel when loaded with the drug. Importantly, the S415C conjugate polymer was not the most active variant in Tf-receptor binding, suggesting that the nanoscale self-assembly of the polymer-protein hybrid is also a key factor in delivery efficacy. The data overall suggest new design rules for polymer-biopolymer hybrids and therapeutic delivery systems which include engineering specific residues for conjugation which mediate nanoscale assembly as well as control of ligand-receptor interactions to target specific cell types.

  8. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin increases chemosensitivity of CaSki cells to paclitaxel.

    PubMed

    Faried, L S; Faried, A; Kanuma, T; Nakazato, T; Tamura, T; Kuwano, H; Minegishi, T

    2006-05-01

    Paclitaxel, a potent anti-neoplastic agent, has been found to be effective against several tumours, including cervical cancer. However, the exact mechanism underlying the cytotoxic effects of pacitaxel, especially in the survival-signalling pathway, is poorly understood. The aim of this study was to investigate the molecular pathway of the cytotoxic effect of paclitaxel in human cervical cancer cell lines. Four human cervical cancer cell lines were treated for 24 h with various concentration of paclitaxel, and the sensitivity was analysed by an MTT assay. The cell cycle progression and sub-G1 population were analysed by flow cytometry. Apoptosis was further measured by DNA fragmentation and microscope examination. The protein expression was determined by Western blot analysis. Our results showed that HeLa cells demonstrated the highest sensitivity to paclitaxel, whereas CaSki cells showed the lowest. In cervical cancer cells, paclitaxel induced apoptosis through an intrinsic pathway with prior G2/M arrest. In addition, we showed that paclitaxel downregulated the phosphorylation of Akt in both HeLa and CaSki cells. Interestingly, in CaSki cells, which were more suggestive of a resistant phenotype, paclitaxel induced the activation of mTOR as a downstream target of Akt. Pre-treatment with rapamycin inhibited activation of mTOR signalling and significantly enhanced the sensitivity of CaSki cells to paclitaxel by increasing apoptotic cell death. This effect was mediated, at least partly, through caspase activation. Overall, paclitaxel exerts its anti-tumour effects on cervical cancer cells by inducing apoptosis through intrinsic pathway, and rapamycin targeted to mTOR can sensitise paclitaxel-resistant cervical cancer cells.

  9. Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment.

    PubMed

    Chirio, Daniela; Gallarate, Marina; Peira, Elena; Battaglia, Luigi; Muntoni, Elisabetta; Riganti, Chiara; Biasibetti, Elena; Capucchio, Maria Teresa; Valazza, Alberto; Panciani, Pierpaolo; Lanotte, Michele; Annovazzi, Laura; Caldera, Valentina; Mellai, Marta; Filice, Gaetano; Corona, Silvia; Schiffer, Davide

    2014-11-01

    Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600 nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan into the formulation allowed to obtain positive SLN with Zeta potential in the 8-20 mV range and encapsulation efficiency in the 25–90% range.Blood–brain barrier (BBB) permeability, tested in vitro through hCMEC/D3 cells monolayer, showed a significantly increase in the permeation of Coumarin-6, used as model drug, when vehicled in SLN. Positive-charged SLN do not seem to enhance permeation although stearylamine-positive SLN resulted the best permeable formulation after 24 h.Cytotoxicity studies on NO3 glioblastoma cell line demonstrated the maintenance of cytotoxic activity of all paclitaxel-loaded SLN that was always unmodified or greater compared with free drug. No difference in cytotoxicity was noted between neutral and charged SLN.Co-culture experiments with hCMEC/D3 and different glioblastoma cells evidenced that, when delivered in SLN, paclitaxel increased its cytotoxicity towards glioblastoma cells.

  10. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma

    NASA Astrophysics Data System (ADS)

    Reddy, Teegala Lakshminarayan; Garikapati, Koteswara Rao; Reddy, S. Gopal; Reddy, B. V. Subba; Yadav, J. S.; Bhadra, Utpal; Bhadra, Manika Pal

    2016-10-01

    pH-sensitive drug carriers that are sensitive to the acidic (pH = ~6.5) microenvironments of tumor tissues have been primarily used as effective drug/gene/siRNA/microRNA carriers for releasing their payloads to tumor cells/tissues. Resistance to various drugs has become a big hurdle in systemic chemotherapy in cancer. Therefore delivery of chemotherapeutic agents and siRNA’s targeting anti apoptotic genes possess advantages to overcome the efflux pump mediated and anti apoptosis-related drug resistance. Here, we report the development of nanocarrier system prepared from kojic acid backbone-based cationic amphiphile containing endosomal pH-sensitive imidazole ring. This pH-sensitive liposomal nanocarrier effectively delivers anti-cancer drug (Paclitaxel; PTX) and siRNA (Bcl-2), and significantly inhibits cell proliferation and reduces tumor growth. Tumor inhibition response attributes to the synergistic effect of PTX potency and MDR reversing ability of Bcl-2 siRNA in the tumor supporting that kojic acid based liposomal pH-sensitive nanocarrier as efficient vehicle for systemic co-delivery of drugs and siRNA.

  11. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma

    PubMed Central

    Reddy, Teegala Lakshminarayan; Garikapati, Koteswara Rao; Reddy, S. Gopal; Reddy, B. V. Subba; Yadav, J. S.; Bhadra, Utpal; Bhadra, Manika Pal

    2016-01-01

    pH-sensitive drug carriers that are sensitive to the acidic (pH = ~6.5) microenvironments of tumor tissues have been primarily used as effective drug/gene/siRNA/microRNA carriers for releasing their payloads to tumor cells/tissues. Resistance to various drugs has become a big hurdle in systemic chemotherapy in cancer. Therefore delivery of chemotherapeutic agents and siRNA’s targeting anti apoptotic genes possess advantages to overcome the efflux pump mediated and anti apoptosis-related drug resistance. Here, we report the development of nanocarrier system prepared from kojic acid backbone-based cationic amphiphile containing endosomal pH-sensitive imidazole ring. This pH-sensitive liposomal nanocarrier effectively delivers anti-cancer drug (Paclitaxel; PTX) and siRNA (Bcl-2), and significantly inhibits cell proliferation and reduces tumor growth. Tumor inhibition response attributes to the synergistic effect of PTX potency and MDR reversing ability of Bcl-2 siRNA in the tumor supporting that kojic acid based liposomal pH-sensitive nanocarrier as efficient vehicle for systemic co-delivery of drugs and siRNA. PMID:27786239

  12. MRI-visible liposome nanovehicles for potential tumor-targeted delivery of multimodal therapies

    NASA Astrophysics Data System (ADS)

    Ren, Lili; Chen, Shizhen; Li, Haidong; Zhang, Zhiying; Ye, Chaohui; Liu, Maili; Zhou, Xin

    2015-07-01

    Real-time diagnosis and monitoring of disease development, and therapeutic responses to treatment, are possible by theranostic magnetic resonance imaging (MRI). Here we report the synthesis of a multifunctional liposome, which contains Gd-DOTA (an MRI probe), paclitaxel and c(RGDyk) (a targeted peptide). This nanoparticle overcame the insolubility of paclitaxel, reduced the side effects of FDA-approved formulation of PTX-Cre (Taxol®) and improved drug delivery efficiency to the tumor. c(RGDyk) modification greatly enhanced the cytotoxicity of the drug in tumor cells A549. The T1 relaxivity in tumor cells treated with the targeted liposome formulation was increased 16-fold when compared with the non-targeted group. In vivo, the tumors in mice were visualized using T1-weighted imaging after administration of the liposome. Also the tumor growth could be inhibited well after the treatment. Fluorescence images in vitro and ex vivo also showed the targeting effect of this liposome in tumor cells, indicating that this nanovehicle could limit the off-target side effects of anticancer drugs and contrast agents. These findings lay the foundation for further tumor inhibition study and application of this delivery vehicle in cancer therapy settings.

  13. Combined Delivery of Let-7b MicroRNA and Paclitaxel via Biodegradable Nanoassemblies for the Treatment of KRAS Mutant Cancer.

    PubMed

    Dai, Xin; Fan, Wei; Wang, Yingzhe; Huang, Lijie; Jiang, Ying; Shi, Lei; Mckinley, DeAngelo; Tan, Wen; Tan, Chalet

    2016-02-01

    In the present study, we synthesized a novel cationic copolymer composed of polyethylene glycol 5000 (PEG5K), vitamin E (VE), and diethylenetriamine (DET) at 1:4:20 molar ratio. The resulting PEG5K-VE4-DET20 copolymer formed nanoassemblies when mixed with the neutral PEG5K-VE4 copolymer at 1:8 weight ratio, which were investigated as the nanocarriers for combined delivery of paclitaxel and let-7b mimic. We found that the PEG5K-VE4-DET20 nanoassemblies could entrap paclitaxel for an extended period and burst release the drug in the presence of cathepsin B, demonstrating the biodegradability of the copolymers. At N/P ratio of 12:1, the PEG5K-VE4-DET20 nanoassemblies formed stable polyplexes with let-7b mimic, which were efficiently taken up by tumor cells and underwent endosomal escape. In non-small cell lung cancer A549 cells that harbor mutant KRAS, paclitaxel and let-7b mimic-loaded nanoassemblies (N-PTX/let-7b) markedly potentiated the cytotoxicity of paclitaxel, induced apoptosis, and diminished the invasiveness of tumor cells. In mice bearing subcutaneous A549 xenografts, intravenous administration of N-PTX/let-7b retarded tumor growth more efficaciously than Taxol. Our study demonstrates the promise of the PEG5K-VE4-DET20 nanoassemblies for concurrent delivery of hydrophobic drugs and miRNA mimics.

  14. Targeted delivery of therapeutics to endothelium

    PubMed Central

    Simone, Eric; Ding, Bi-Sen

    2009-01-01

    The endothelium is a target for therapeutic and diagnostic interventions in a plethora of human disease conditions including ischemia, inflammation, edema, oxidative stress, thrombosis and hemorrhage, and metabolic and oncological diseases. Unfortunately, drugs have no affinity to the endothelium, thereby limiting the localization, timing, specificity, safety, and effectiveness of therapeutic interventions. Molecular determinants on the surface of resting and pathologically altered endothelial cells, including cell adhesion molecules, peptidases, and receptors involved in endocytosis, can be used for drug delivery to the endothelial surface and into intracellular compartments. Drug delivery platforms such as protein conjugates, recombinant fusion constructs, targeted liposomes, and stealth polymer carriers have been designed to target drugs and imaging agents to these determinants. We review endothelial target determinants and drug delivery systems, describe parameters that control the binding of drug carriers to the endothelium, and provide examples of the endothelial targeting of therapeutic enzymes designed for the treatment of acute vascular disorders including ischemia, oxidative stress, inflammation, and thrombosis. PMID:18815813

  15. [Site-specific drug delivery systems. I. Colon targeted delivery].

    PubMed

    Szente, Virág; Zelkó, Romána

    2007-01-01

    Colon specific drug delivery has gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon like Chron's disease, ulcerative colitis, irritable bowel syndrome, cancer or infections, but also for the potential it holds for the systemic delivery of proteins (e.g. insulin) and therapeutic peptides. These systems enable the protection of healthy tissues from the side effects of drugs and the drug intake of targeted cells, as well. The formulation of colon specific drug delivery systems is of great impact in the case of diseases having circadian rhythm (midnight gerd). Such circadian rhythm release drug delivery systems are designed to provide a plasma concentration--time profile, which varies according to physiological need at different times during the dosing period, i.e., mimicking the circadian rhythm and severity/manifestation of gastric acid secretion (and/or midnight gerd). In general four primary approaches have been proposed for colon targeted delivery namely pH-dependent systems, time dependent systems, colonic microflora activated systems and prodrugs.

  16. A Dicarboxylic Fatty Acid Derivative of Paclitaxel for Albumin Assisted Drug Delivery

    PubMed Central

    Hackett, Michael J.; Joolakanti, Shyamsunder; Hartranft, Megan E.; Guley, Patrick C.; Cho, Moo J.

    2013-01-01

    Paclitaxel is a potent chemotherapy for many cancers but it suffers from very poor solubility. Consequently the TAXOL formulation uses copious amounts of the surfactant Cremophor EL to solubilize the drug for injection resulting in severe hypersensitivity and neutropenia. In contrast to Cremophor EL, presented is a way to solubilize paclitaxel (PTX) by conjugation of a dicarboxylic fatty acid for specific binding to the ubiquitous protein, serum albumin. The conjugation chemistry was simplified to a single step using the activated anhydride form of 3-pentadecylglutaric (PDG) acid which is reactive to a variety of nucleophiles. The PDG derivative is less cytotoxic than the parent compound and was found to slowly hydrolyze to PTX (~5% over 72 h) in serum, tumor cytosol, and tumor tissue homogenate. When injected intravenously to tumor bearing mice, [3H]-PTX in the TAXOL formulation was cleared rapidly with a half-life of 7 hours. In the case of the PDG derivative of PTX, the drug is quickly distributed and approximately 20% of the injected dose remained in the vasculature experiencing a 23-h half-life. These improvements from modifying PTX with the PDG fatty acid present the opportunity for PDG to become a generic modification for the improvement of many therapeutics. PMID:22674061

  17. The Formulation of Aptamer-Coated Paclitaxel-Polylactide Nanoconjugates and Their Targeting to Cancer Cells

    PubMed Central

    Tong, Rong; Yala, Linda; Fan, Timothy M.; Cheng, Jianjun

    2011-01-01

    Paclitaxel-polylactide (Ptxl-PLA) conjugate nanoparticles, termed as nanoconjugates (NCs), were prepared through Ptxl/(BDI)ZnN(TMS)2 (BDI = 2-((2,6-diisopropylphenyl)-amido)-4-((2,6-diisopropylphenyl)-imino)-2-pentene)-mediated controlled polymerization of lactide (LA) followed by nanoprecipitation. Nanoprecipitation of Ptxl-PLA resulted in sub-100 nm NCs with monomodal particle distributions and low polydispersities. The sizes of Ptxl-PLA NCs could be precisely controlled by using appropriate water-miscible solvents and by controlling the concentration of Ptxl-PLA during nanoprecipitation. Co-precipitation of a mixture of PLA-PEG-PLA (PLA = 14 kDa; PEG = 5kDa) and Ptxl-PLA in PBS resulted in NCs that could stay non-aggregated in PBS for an extended period of time. To develop solid formulations of NCs, we evaluated a series of lyoprotectants, aiming to identify candidates that could effectively reduce or eliminate NC aggregation during lyophilization. Albumin was found to be an excellent lyoprotectant for the preparation of NCs in solid form, allowing lyophilized NCs to be readily dispersed in PBS without noticeable aggregates. Aptamer-NCs bioconjugates were prepared and found to be able to effectively target prostate-specific membrane antigen in a cell-specific manner. PMID:20122727

  18. Controlled delivery of paclitaxel from stent coatings using poly(hydroxystyrene-b-isobutylene-b-hydroxystyrene) and its acetylated derivative.

    PubMed

    Sipos, Laszlo; Som, Abhijit; Faust, Rudolf; Richard, Robert; Schwarz, Marlene; Ranade, Shrirang; Boden, Mark; Chan, Ken

    2005-01-01

    A poly(styrene-b-isobutylene-b-styrene) (SIBS) triblock polymer is employed as the polymer drug carrier for the TAXUS Express2 Paclitaxel-Eluting Coronary Stent system (Boston Scientific Corp.). It has been shown that the release of paclitaxel (PTx) from SIBS can be modulated by modification of either drug-loading ratio or altering the triblock morphology by blending. In the present work, results toward achieving release modulation of PTx by chemical modification of the styrenic portion (using hydroxystyrene or its acetylated version) of the SIBS polymer system are reported. The synthesis of the precursor poly[(p-tert-butyldimethylsilyloxystyrene)]-b-isobutylene-b-[(p-tert-butyldimethylsilyloxystyrene] triblock copolymers was accomplished by living sequential block copolymerization of isobutylene (IB) and p-(tert-butyldimethylsiloxy)styrene (TBDMS) utilizing the capping-tuning technique in a one-pot procedure in methylcyclohexane/CH3Cl at -80 degrees C. This procedure involved the living cationic polymerization of IB with the 5-tert-butyl-1,3-bis(1-chloro-1-methylethyl)benzene/TiCl4 initiating system and capping of living difunctional polyisobutylene (PIB) chain ends with 1,1-ditolylethylene (DTE) followed by addition of titanium(IV) isopropoxide (Ti(OIp)4) to lower the Lewis acidity before the introduction of TBDMS. Deprotection of the product with tetrabutylammonium fluoride yielded poly(hydroxystyrene-b-isobutylene-b-hydroxystyrene), which was quantitatively acetylated to obtain the acetylated derivative. The hydroxystyrene and acetoxystyrene triblock copolymers have acceptable mechanical properties for use as drug delivery coatings for coronary stent applications. It was concluded that the hydrophilic nature of the endblocks and polarity effects on the drug/polymer miscibility lead to enhanced release of PTx from these polymers. The drug-polymer miscibility was confirmed by differential scanning calorimetry and atomic force microscopy evaluations.

  19. Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors.

    PubMed

    Zhou, Zilan; Kennell, Carly; Lee, Joo-Youp; Leung, Yuet-Kin; Tarapore, Pheruza

    2017-02-01

    In this study, a development of a novel calcium phosphate-polymer hybrid nanoparticle system is reported.The nanoparticle system can co-encapsulate and co-deliver a combination of therapeutic agents with different physicochemical properties (i.e., inhibitors for microRNA-221 and microRNA-222 (miRi-221/222) and paclitaxel (pac)).miRi-221/222 are hydrophilic and were encapsulated with calcium phosphate by co-precipitation in a water-in-oil emulsion.The precipitates were then coated with an anionic lipid, dioleoylphosphatidic acid (DOPA), to co-encapsulate hydrophobic paclitaxel outside the hydrophilic precipitates and inside the same nanoparticle.The nanoparticles formed by following this approach had a size of about ≤100nm and contained both lipid-coated calcium phosphate/miRi and paclitaxel.This nanoparticle system was found to simultaneously deliver paclitaxel and miRi-221/222 to their intracellular targets, leading to inhibit proliferative mechanisms of miR-221/222 and thus significantly enhancing the therapeutic efficacy of paclitaxel.

  20. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  1. Thermoresponsive Delivery of Paclitaxel by β-Cyclodextrin-Based Poly(N-isopropylacrylamide) Star Polymer via Inclusion Complexation.

    PubMed

    Song, Xia; Wen, Yuting; Zhu, Jing-Ling; Zhao, Feng; Zhang, Zhong-Xing; Li, Jun

    2016-12-12

    Paclitaxel (PTX), a hydrophobic anticancer drug, is facing several clinical limitations such as low bioavailability and drug resistance. To solve the problems, a well-defined β-cyclodextrin-poly(N-isopropylacrylamide) star polymer was synthesized and used as a nanocarrier to improve the water solubility and aim to thermoresponsive delivery of PTX to cancer cells. The star polymer was able to form supramolecular self-assembled inclusion complex with PTX via host-guest interaction at room temperature, which is below the low critical solution temperature (LCST) of the star polymer, significantly improving the solubilization of PTX. At body temperature (above LCST), the phase transition of poly(N-isopropylacrylamide) segments induced the formation of nanoparticles, which greatly enhanced the cellular uptake of the polymer-drug complex, resulting in efficient thermoresponsive delivery of PTX. In particular, the polymer-drug complex exhibited better antitumor effects than the commercial formulation of PTX in overcoming the multi-drug resistance in AT3B-1 cells.

  2. Implications of nanoscale based drug delivery systems in delivery and targeting tubulin binding agent, noscapine in cancer cells.

    PubMed

    Chandra, Ramesh; Madan, Jitender; Singh, Prashant; Chandra, Ankush; Kumar, Pradeep; Tomar, Vartika; Dass, Sujata K

    2012-12-01

    Noscapine, a tubulin binding anticancer agent undergoing Phase I/II clinical trials, inhibits tumor growth in nude mice bearing human xenografts of breast, lung, ovarian, brain, and prostrate origin. The analogues of noscapine like 9-bromonoscapine (EM011) are 5 to 10-fold more active than parent compound, noscapine. Noscapinoids inhibit the proliferation of cancer cells that are resistant to paclitaxel and epothilone. Noscapine also potentiated the anticancer activity of doxorubicin in a synergistic manner against triple negative breast cancer (TNBC). However, physicochemical and pharmacokinetic (ED50˜300-600 mg/kg bodyweight) limitations of noscapine present hurdle in development of commercial anticancer formulations. Therefore, objectives of the present review are to summarize the chemotherapeutic potential of noscapine and implications of nanoscale based drug delivery systems in enhancing the therapeutic efficacy of noscapine in cancer cells. We have constructed noscapine-enveloped gelatin nanoparticles, NPs and poly (ethylene glycol) grafted gelatin NPs as well as inclusion complex of noscapine in β-cyclodextrin (β-CD) and evaluated their physicochemical characteristics. The Fe3O4 NPs were also used to incorporate noscapine in its polymeric nanomatrix system where molecular weight of the polymer governed the encapsulation efficiency of drug. The enhanced noscapine delivery using μPAR-targeted optical-MR imaging trackable NPs offer a great potential for image directed targeted delivery of noscapine. Human Serum Albumin NPs (150-300 nm) as efficient noscapine drug delivery systems have also been developed for potential use in breast cancer.

  3. D-α-tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery

    PubMed Central

    Wu, Yupei; Chu, Qian; Tan, Songwei; Zhuang, Xiangting; Bao, Yuling; Wu, Tingting; Zhang, Zhiping

    2015-01-01

    Paclitaxel (PTX) is one of the most effective antineoplastic drugs. Its current clinical administration Taxol® is formulated in Cremophor EL, which causes serious side effects. Nanoparticles (NP) with lower systemic toxicity and enhanced therapeutic efficiency may be an alternative formulation of the Cremophor EL-based vehicle for PTX delivery. In this study, novel amphipathic 4-arm-PEG-TPGS derivatives, the conjugation of D-α-tocopherol polyethylene glycol succinate (TPGS) and 4-arm-polyethylene glycol (4-arm-PEG) with different molecular weights, have been successfully synthesized and used as carriers for the delivery of PTX. These 4-arm-PEG-TPGS derivatives were able to self-assemble to form uniform NP with PTX encapsulation. Among them, 4-arm-PEG5K-TPGS NP exhibited the smallest particle size, highest drug-loading efficiency, negligible hemolysis rate, and high physiologic stability. Therefore, it was chosen for further in vitro and in vivo investigations. Facilitated by the effective uptake of the NP, the PTX-loaded 4-arm-PEG5K-TPGS NP showed greater cytotoxicity compared with free PTX against human ovarian cancer (A2780), non-small cell lung cancer (A549), and breast adenocarcinoma cancer (MCF-7) cells, as well as a higher apoptotic rate and a more significant cell cycle arrest effect at the G2/M phase in A2780 cells. More importantly, PTX-loaded 4-arm-PEG5K-TPGS NP resulted in a significantly improved tumor growth inhibitory effect in comparison to Taxol® in S180 sarcoma-bearing mice models. This study suggested that 4-arm-PEG5K-TPGS NP may have the potential as an anticancer drug delivery system. PMID:26316751

  4. Design and Characterization of PEG-Derivatized Vitamin E as a Nanomicellar Formulation for Delivery of Paclitaxel

    PubMed Central

    Lu, Jianqin; Huang, Yixian; Zhao, Wenchen; Chen, Yichao; Li, Jiang; Gao, Xiang; Venkataramanan, Raman; Li, Song

    2013-01-01

    Various PEG-Vitamin E conjugates including D-alpha-tocopheryl polyethylene glycol succinate 1000 (TPGS) have been extensively studied as a nonionic surfactant in various drug delivery systems. However, limited information is available about the structure-activity relationship of PEG-Vitamin E conjugates as a micellar formulation for paclitaxel (PTX). In this study, four PEG-Vitamin E conjugates were developed that vary in the molecular weight of PEG (PEG2K vs PEG5K) and the molar ratio of PEG/Vitamin E (1/1 vs 1/2) in the conjugates. These conjugates were systematically characterized with respect to CMC, PTX loading efficiency, stability, and their efficiency in delivery of PTX to tumor cells in vitro and in vivo. Our data show that PEG5K-conjugates have lower CMC values and are more effective in PTX loading with respect to both loading capacity and stability. The conjugates with two Vitamin E molecules also worked better than the conjugates with one molecule of Vitamin E, particularly for PEG2K-system. Furthermore, all of the PEG-Vitamin E conjugates can inhibit P-gp function with their activity being comparable to that of TPGS. More importantly, PTX-loaded PEG5K-VE2 resulted in significantly improved tumor growth inhibitory effect in comparison to PTX formulated in PEG2K-VE or PEG2K-VE2, as well as Cremophor EL (Taxol) in a syngeneic mouse model of breast cancer (4T1.2). Our study suggests that PEG5K-Vitmin E2 may hold promise as an improved micellar formulation for in vivo delivery of anticancer agents such as PTX. PMID:23768151

  5. Paclitaxel Injection

    MedlinePlus

    Paclitaxel injection manufactured with human albumin is used to treat breast cancer that has not improved or that has come back after treatment with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to ...

  6. Prodrug Strategies for Paclitaxel

    PubMed Central

    Meng, Ziyuan; Lv, Quanxia; Lu, Jun; Yao, Houzong; Lv, Xiaoqing; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective. PMID:27223283

  7. Inhibitory effect of sustained perivascular delivery of paclitaxel on neointimal hyperplasia in the jugular vein after open cutdown central venous catheter placement in rats

    PubMed Central

    Kim, Seongyup; Kim, Younglim; Hwang, Ji Woong

    2017-01-01

    Purpose Inhibitory effect of paclitaxel on neointimal hyperplasia after open cutdown has not been elucidated. Methods For the control group (n = 16), silicone 2.7-Fr catheters were placed via the right external jugular vein with the cutdown method. For the treatment group (n = 16), a mixture of 0.65 mg of paclitaxel and 1 mL of fibrin glue was infiltrated around the exposed vein after cutdown. After scheduled intervals (1, 2, 4, and 8 weeks), the vein segment was harvested and morphometric analysis was performed on cross-sections. Results Proliferation of smooth muscle cell (SMC) was strongly suppressed in the treatment group, and the ratio of neointima to vein wall was significantly reduced in the treatment group (8 weeks; 0.63 ± 0.08 vs. 0.2 ± 0.08, P < 0.05). Luminal patency was significantly more preserved in the treatment group, and the luminal area was significantly wider in the paclitaxel-treated group compared to the control group (8 weeks; 1.91 ± 0.43 mm2 vs. 5.1 ± 0.43 mm2, P < 0.05). Mean SMC counts measured at 1 and 2 weeks after cutdown were significantly lower in the treatment group (2 weeks; 115 ± 22 vs. 62 ± 22). Paclitaxel was undetectable in systemic circulation (<10 ng/mL). Conclusion Sustained perivascular delivery of paclitaxel with fibrin glue was effective in inhibiting neointimal hyperplasia in rat jugular vein after open cutdown. PMID:28203557

  8. Solid-Nanoemulsion Preconcentrate for Oral Delivery of Paclitaxel: Formulation Design, Biodistribution, and γ Scintigraphy Imaging

    PubMed Central

    Ahmad, Javed; Mir, Showkat R.; Kohli, Kanchan; Chuttani, Krishna; Mishra, Anil K.; Panda, A. K.

    2014-01-01

    Aim of present study was to develop a solid nanoemulsion preconcentrate of paclitaxel (PAC) using oil [propylene glycol monocaprylate/glycerol monooleate, 4 : 1 w/w], surfactant [polyoxyethylene 20 sorbitan monooleate/polyoxyl 15 hydroxystearate, 1 : 1 w/w], and cosurfactant [diethylene glycol monoethyl ether/polyethylene glycol 300, 1 : 1 w/w] to form stable nanocarrier. The prepared formulation was characterized for droplet size, polydispersity index, and zeta potential. Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to assess surface morphology and drug encapsulation and its integrity. Cumulative drug release of prepared formulation through dialysis bag and permeability coefficient through everted gut sac were found to be remarkably higher than the pure drug suspension and commercial intravenous product (Intaxel), respectively. Solid nanoemulsion preconcentrate of PAC exhibited strong inhibitory effect on proliferation of MCF-7 cells in MTT assay. In vivo systemic exposure of prepared formulation through oral administration was comparable to that of Intaxel in γ scintigraphy imaging. Our findings suggest that the prepared solid nanoemulsion preconcentrate can be used as an effective oral solid dosage form to improve dissolution and bioavailability of PAC. PMID:25114933

  9. Novel titanium oxide nanoparticles for effective delivery of paclitaxel to human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mund, R.; Panda, N.; Nimesh, S.; Biswas, A.

    2014-12-01

    Novel titanium oxide (TiO2) nanoparticles were fabricated via a modified propanol drying step. These nanoparticles were loaded with anti-cancer drug paclitaxel (PTX) to yield PTX-TiO2 nanocomposites. The nanocomposites were characterized for their size and surface morphology employing nanoparticle tracking analysis (NTA) and scanning electron microscopy (SEM). The SEM images showed spherical particles with smooth surface and narrow size distribution of 30-40 nm, which was also supported by NTA analysis data. The drug loading efficiency of the air-dried nanoparticles was observed to be 63.61 % while those prepared through propanol-induced drying step showed 69.70 %, thereby demonstrating higher efficiency of the latter. In vitro pH-dependent release of the loaded PTX was observed with higher release at acidic pH compared with physiological pH. Cell uptake studies suggested of time-dependent internalization of nanocomposites with significant improvement in uptake by increasing incubation time from 2 to 24 h, as evidenced by flow cytometry. Further, the cell viability as a measure of anti-cancer activity revealed that cell viability upon exposure to PTX only was 40.5 % while that of PTX-TiO2 nanocomposite showed 21.6 % viability after 24 h, suggesting better anti-cancer efficacy of nanocomposites. Apoptosis studies revealed that cells treated with PTX-TiO2 nanocomposites possessed more amount of apoptotic bodies as compared to those treated with PTX only.

  10. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    NASA Astrophysics Data System (ADS)

    Mandal, Biman B.; Kundu, S. C.

    2009-09-01

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  11. Targeted intracellular delivery of therapeutics: an overview.

    PubMed

    Rawat, A; Vaidya, B; Khatri, K; Goyal, A K; Gupta, P N; Mahor, S; Paliwal, R; Rai, S; Vyas, S P

    2007-09-01

    During the last decade, intracellular drug delivery has become an emerging area of research in the medical and pharmaceutical field. Many therapeutic agents such as drugs and DNA/oligonucleotides can be delivered not just to the cell but also to a particular compartment of that cell to achieve better activity e.g. proapoptotic drugs to the mitochondria, antibiotics and enzymes to the lysosomes and various anticancer drugs and gene to the nucleus. The lipidic nature of biological membrans is the major obstacle to the intracellular delivery of macromolecular and ionic drugs. Additionally, after endocytosis, the lysosome, the major degradation compartment, needs to be avoided for better activity. To avoid these problems, various carriers have been investigated for efficient intracellular delivery, either by direct entry to cytoplasm or by escaping the endosomal compartment. These include cell penetrating peptides, and carrier systems such as liposomes, cationic lipids and polymers, polymeric nanoparticles, etc. Various properties of these carriers, including size, surface charge, composition and the presence of cell specific ligands, alter their efficacy and specificity towards particular cells. This review summarizes various aspects of targeted intracellular delivery of therapeutics including pathways, mechanisms and approaches. Various carrier constructs having potential for targeted intracellular delivery are also been discussed.

  12. PEG-Farnesylthiosalicylate Conjugate as a Nanomicellar Carrier for Delivery of Paclitaxel

    PubMed Central

    Zhang, Xiaolan; Lu, Jianqin; Huang, Yixian; Zhao, Wenchen; Li, Jiang; Gao, Xiang; Venkataramanan, Raman; Sun, Min; Stolz, Donna D.; Zhang, Lin; Li, Song

    2013-01-01

    S-trans, trans-farnesylthiosalicylic acid (FTS) is a synthetic small molecule that acts as a potent and especially nontoxic Ras antagonist. It inhibits both oncogenically activated Ras and growth factor receptor-mediated Ras activation, resulting in the inhibition of Ras-dependent tumor growth. In this work, a FTS conjugate with polyethylene glycol (PEG) through a labile ester linkage, PEG5K-FTS2(L), was developed. PEG5K-FTS2 conjugate readily forms micelles in aqueous solutions with a critical micelle concentration of 0.68 μM and hydrophobic drugs such as paclitaxel (PTX) could be effectively loaded into these particles. Both drug-free and PTX- loaded micelles were spherical in shape with a uniform size of 20 ~ 30 nm. The release of PTX from PTX-loaded PEG5K-FTS2 micelles was significantly slower than that from Taxol formulation. In vitro cytotoxicity studies with several tumor cell lines showed that PEG5K-FTS2(L) was comparable to FTS in antitumor activity. Western immunoblotting showed that total Ras levels were downregulated in several cancer cell lines treated with FTS or PEG5K-FTS2(L). The micellar formulation of PTX exhibited more in vitro cytotoxic activity against several tumor cell lines compared with free PTX, suggesting a possible synergistic effect between the carrier and the codelivered drug. The anti-tumor activity of the PTX loaded PEG5K-FTS2(L) micelles in a syngeneic murine breast cancer model was found to be significantly higher than that of Taxol, which may be attributed to their preferential tumor accumulation and a possible synergistic effect between PEG5K-FTS2 carrier and loaded PTX. PMID:23425093

  13. Controlled delivery of paclitaxel from stent coatings using novel styrene maleic anhydride copolymer formulations.

    PubMed

    Richard, Robert; Schwarz, Marlene; Chan, Ken; Teigen, Nikolai; Boden, Mark

    2009-08-01

    The controlled release of paclitaxel (PTx) from stent coatings comprising an elastomeric polymer blended with a styrene maleic anhydride (SMA) copolymer is described. The coated stents were characterized for morphology by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and for drug release using high-performance liquid chromatography (HPLC). Differential scanning calorimetry (DSC) was used to measure the extent of interaction between the PTx and polymers in the formulation. Coronary stents were coated with blends of poly(b-styrene-b-isobutylene-b-styrene) (SIBS) and SMA containing 7% or 14% maleic anhydride (MA) by weight. SEM examination of the stents showed that the coating did not crack or delaminate either before or after stent expansion. Examination of the coating surface via AFM after elution of the drug indicated that PTx resides primarily in the SMA phase and provided information about the mechanism of PTx release. The addition of SMA altered the release profile of PTx from the base elastomer coatings. In addition, the presence of the SMA enabled tunable release of PTx from the elastomeric stent coatings, while preserving mechanical properties. Thermal analysis reveled no shift in the glass transition temperatures for any of the polymers at all drug loadings studied, indicating that the PTx is not miscible with any component of the polymer blend. An in vivo evaluation indicated that biocompatibility and vascular response results for SMA/SIBS-coated stents (without PTx) are similar to results for SIBS-only-coated and bare stainless steel control stents when implanted in the non-injured coronary arteries of common swine for 30 and 90 days.

  14. In vitro evaluation of paclitaxel coatings for delivery via drug-coated balloons.

    PubMed

    Kempin, Wiebke; Kaule, Sebastian; Reske, Thomas; Grabow, Niels; Petersen, Svea; Nagel, Stefan; Schmitz, Klaus-Peter; Weitschies, Werner; Seidlitz, Anne

    2015-10-01

    Lately, drug-coated balloons have been introduced in interventional cardiology as an approach to treat occluded blood vessel. They were developed for the rapid transfer of antiproliferative drugs during the angioplasty procedure in stenosed vessels with the intent to reduce the risk of restenosis. In this study five different paclitaxel (PTX) balloon coatings were tested in vitro in order to examine how solvents and additives influence coating stability and drug transfer rates. PTX-coated balloons were advanced through a guiding catheter and a simulated coronary artery pathway under perfusion and were then inflated in a hydrogel acceptor compartment. The fractions transferred to the gel, remaining on the balloon and the PTX lost in the simulated coronary pathway were then analysed. The results obtained suggest that the solvent used for the coating process strongly influences the surface structure and the stability of the coating. Ethanol/water and acetone based PTX coatings showed the lowest drug transfer rates to the simulated vessel wall (both <1%) due to their high drug losses during the prior passage through the coronary artery model (more than 95%). Balloons coated with PTX from ethyl acetate-solutions showed smaller drug loss (83%±9%), but most of the remaining PTX was not transferred (mean balloon residue approximately 15%). Beside the solvent, the use of additives seemed to have a great impact on transfer properties. The balloon pre-treatment with a crosslinked polyvinylpyrrolidone (PVP) film was able to increase the PTX transfer rate from less than 1% (without PVP) to approximately 6%. The best results in this study were obtained for balloon coatings with commercially available SeQuent© Please balloons containing the contrast agent iopromide. For this formulation drug transfer rates of approximately 17% were determined. Fluorescence microscopic imaging could visualize the particulate transfer of labelled PTX from the balloon surface during dilatation

  15. Therapeutic targeting of erbB3 with MM-121/SAR256212 enhances antitumor activity of paclitaxel against erbB2-overexpressing breast cancer

    PubMed Central

    2013-01-01

    Introduction Elevated expression of erbB3 rendered erbB2-overexpressing breast cancer cells resistant to paclitaxel via PI-3 K/Akt-dependent upregulation of Survivin. It is unclear whether an erbB3-targeted therapy may abrogate erbB2-mediated paclitaxel resistance in breast cancer. Here, we study the antitumor activity of an anti-erbB3 antibody MM-121/SAR256212 in combination with paclitaxel against erbB2-overexpressing breast cancer. Methods Cell growth assays were used to determine cell viability. Cells undergoing apoptosis were quantified by a specific apoptotic ELISA. Western blot analyses were performed to assess the protein expression and activation. Lentiviral vector containing shRNA was used to specifically knockdown Survivin. Tumor xenografts were established by inoculation of BT474-HR20 cells into nude mice. The tumor-bearing mice were treated with paclitaxel and/or MM-121/SAR256212 to determine whether the antibody (Ab) enhances paclitaxel’s antitumor activity. Immunohistochemistry was carried out to study the combinatorial effects on tumor cell proliferation and induction of apoptosis in vivo. Results MM-121 significantly facilitated paclitaxel-mediated anti-proliferative/anti-survival effects on SKBR3 cells transfected with a control vector or erbB3 cDNA. It specifically downregulated Survivin associated with inactivation of erbB2, erbB3, and Akt. MM-121 enhances paclitaxel-induced poly(ADP-ribose) polymerase (PARP) cleavage, activation of caspase-8 and -3, and apoptosis in both paclitaxel-sensitive and -resistant cells. Specific knockdown of Survivin in the trastuzumab-resistant BT474-HR20 cells dramatically enhanced paclitaxel-induced apoptosis, suggesting that increased Survivin caused a cross-resistance to paclitaxel. Furthermore, the studies using a tumor xenograft model-established from BT474-HR20 cells revealed that either MM-121 (10 mg/kg) or low-dose (7.5 mg/kg) paclitaxel had no effect on tumor growth, their combinations significantly

  16. Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer

    NASA Astrophysics Data System (ADS)

    Pan, Amy; Zhang, Hongyong; Li, Yuanpei; Lin, Tzu-yin; Wang, Fuli; Lee, Joyce; Cheng, Mingshan; Dall'Era, Marc; Li, Tianhong; deVere White, Ralph; Pan, Chong-Xian; Lam, Kit S.

    2016-10-01

    Chemotherapy commonly used in the treatment of advanced bladder cancer is only moderately effective and associated with significant toxicity. There has been no appreciable improvement in overall survival over the last three decades. The goal of this project is to develop and characterize bladder cancer-specific nanometer-scale micelles loaded with the chemotherapeutic drug paclitaxel (PTX) and determine the anti-tumor activity and toxicity. Micelle-building-material telodendrimers were synthesized through the stepwise conjugation of eight cholic acid units at one terminus of polyethylene glycol (PEG) and a bladder cancer-specific targeting peptide named PLZ4 at the other terminus. To synthesize disulfide-crosslinked PLZ4 nanomicelles (DC-PNM), cysteine was introduced between the cholic acid and PEG. DC-PNM-PTX was synthesized through the evaporation method by loading PTX in the core. The loading capacity of PTX in DC-PNM was 25% (W/W). The loading efficiency was over 99%. DC-PNM-PTX was spherical with the median size of 25 nm. The stability of DC-PNM-PTX was determined in a solution containing sodium docecyl sulfate (SDS). It was stable in a SDS solution, but dissolved within 5 min after the addition of glutathione at the physiological intracellular concentration of 10 mM. In vivo targeting and anti-tumor activity were determined in immunodeficient mice carrying patient-derived bladder cancer xenografts (PDXs). After intravenous administration, DC-PNM specifically targeted the bladder cancer PDXs, but very little to the lung cancer xenografts in the same mice (p < 0.001). DC-PNM loaded with PTX overcame cisplatin resistance, and improved the median survival from 55 d with free PTX to 69.5 d (p = 0.03) of mice carrying PDXs. In conclusion, DC-PNM remained stable in the SDS solution, specifically targeted the bladder cancer xenografts in vivo, and improved the anti-cancer efficacy of PTX.

  17. Biopolymer based nanosystem for doxorubicin targeted delivery

    PubMed Central

    Csikós, Zsuzsanna; Kerekes, Krisztina; Fazekas, Erika; Kun, Sándor; Borbély, János

    2017-01-01

    This study describes formation of an actively and passively targeted, water-soluble drug delivery system (DDS) which contains doxorubicin (DOX). The system comprises two biocompatible and biodegradable polymers: poly-γ-glutamic acid (PGA) and chitosan (CH). Self-assembly of these biopolymers in aqueous medium results stable nanoparticles (NPs) with a hydrodynamic size of 80-150 nm and slightly negative surface charge. Folic acid (FA) was used as targeting agent bonded to the polyanion (PA) and also to the surface of the NPs. The NP’s physical stability, active targeting effect, cellular toxicity, release profile and in vivo anti-tumor efficacy were investigated. It was found that the targeted, self-assembled nanoparticles are stable at 4°C for several months, cause better in vitro toxicity effect on folate receptor (FR) positive cell lines than the doxorubicin or the non-targeted nanosystem and based on its release profile it is expected, that the nanosystem will remain stable during the circulation in the body. Pharmacodynamic studies demonstrated that the DOX-loaded nanoparticles can deliver greater tumor growth inhibition than the free drug molecules and the liposomal compound, with less general toxicity. It was observed that the overall survival is the main benefit of the biopolymer based drug delivery system.

  18. Prophylactic cannabinoid administration blocks the development of paclitaxel-induced neuropathic nociception during analgesic treatment and following cessation of drug delivery

    PubMed Central

    2014-01-01

    Background Chemotherapeutic treatment results in chronic pain in an estimated 30-40 percent of patients. Limited and often ineffective treatments make the need for new therapeutics an urgent one. We compared the effects of prophylactic cannabinoids as a preventative strategy for suppressing development of paclitaxel-induced nociception. The mixed CB1/CB2 agonist WIN55,212-2 was compared with the cannabilactone CB2-selective agonist AM1710, administered subcutaneously (s.c.), via osmotic mini pumps before, during, and after paclitaxel treatment. Pharmacological specificity was assessed using CB1 (AM251) and CB2 (AM630) antagonists. The impact of chronic drug infusion on transcriptional regulation of mRNA markers of astrocytes (GFAP), microglia (CD11b) and cannabinoid receptors (CB1, CB2) was assessed in lumbar spinal cords of paclitaxel and vehicle-treated rats. Results Both WIN55,212-2 and AM1710 blocked the development of paclitaxel-induced mechanical and cold allodynia; anti-allodynic efficacy persisted for approximately two to three weeks following cessation of drug delivery. WIN55,212-2 (0.1 and 0.5 mg/kg/day s.c.) suppressed the development of both paclitaxel-induced mechanical and cold allodynia. WIN55,212-2-mediated suppression of mechanical hypersensitivity was dominated by CB1 activation whereas suppression of cold allodynia was relatively insensitive to blockade by either CB1 (AM251; 3 mg/kg/day s.c.) or CB2 (AM630; 3 mg/kg/day s.c.) antagonists. AM1710 (0.032 and 3.2 mg/kg /day) suppressed development of mechanical allodynia whereas only the highest dose (3.2 mg/kg/day s.c.) suppressed cold allodynia. Anti-allodynic effects of AM1710 (3.2 mg/kg/day s.c.) were mediated by CB2. Anti-allodynic efficacy of AM1710 outlasted that produced by chronic WIN55,212-2 infusion. mRNA expression levels of the astrocytic marker GFAP was marginally increased by paclitaxel treatment whereas expression of the microglial marker CD11b was unchanged. Both WIN55

  19. β-Cyclodextrin-Based Inclusion Complexation Bridged Biodegradable Self-Assembly Macromolecular Micelle for the Delivery of Paclitaxel

    PubMed Central

    Chen, Yanzuo; Huang, Yukun; Qin, Dongdong; Liu, Wenchao; Song, Chao; Lou, Kaiyan; Wang, Wei; Gao, Feng

    2016-01-01

    In this study, a novel adamantanamine-paclitaxel (AD-PTX) incorporated oligochitosan- carboxymethyl-β-cyclodextrin (CSO-g-CM-β-CD) self-assembly macromolecular (CSO-g-CM-β-CD@AD-PTX) micelle was successfully prepared in water through sonication. The formed molecules were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (NMR) spectroscopy, two-dimensional NMR, elemental analysis, and liquid chromatography-mass spectrometry, while the correspondent micelles were characterized by dynamic light scattering and transmission electron microscopy. We showed that the macromolecular micelle contained a spherical core-shell structure with a diameter of 197.1 ± 3.3 nm and zeta potential of −19.1 ± 4.3 mV. The CSO-g-CM-β-CD@AD-PTX micelle exhibited a high drug-loading efficacy up to 31.3%, as well as a critical micelle concentration of 3.4 × 10-7 M, which indicated good stability. Additionally, the in vitro release profile of the CSO-g-CM-β-CD@AD-PTX micelle demonstrated a long-term release pattern, 63.1% of AD-PTX was released from the micelle during a 30-day period. Moreover, the CSO-g-CM-β-CD@AD-PTX micelle displayed cytotoxicity at a sub-μM scale similar to PTX in U87 MG cells, and CSO-g-CM-β-CD exhibited a good safety profile by not manifesting significant toxicity at concentrations up to 100 μM. These results indicated that β-CD-based inclusion complexation resulting in biodegradable self-assembled macromolecular micelles can be utilized as nanocarrier, and may provide a promising platform for drug delivery in the future medical applications. PMID:26964047

  20. Paclitaxel-loaded Polymersomes for Enhanced Intraperitoneal Chemotherapy

    PubMed Central

    Simón-Gracia, Lorena; Hunt, Hedi; Scodeller, Pablo D; Gaitzsch, Jens; Braun, Gary B; Willmore, Anne-Mari A; Ruoslahti, Erkki; Battaglia, Giuseppe; Teesalu, Tambet

    2016-01-01

    Peritoneal carcinomatosis is present in more than 60% of gastric cancer, 40% of ovarian cancer, and 35% of colon cancer patients. It is the second most common cause of cancer mortality, with a median survival of 1–3 months. Cytoreductive surgery combined with intraperitoneal chemotherapy is the current clinical treatment, but achieving curative drug accumulation and penetration in peritoneal carcinomatosis lesions remains an unresolved challenge. Here we employed flexible and pH-sensitive polymersomes for payload delivery to peritoneal gastric (MKN-45P) and colon (CT26) carcinoma in mice. Polymersomes were loaded with Paclitaxel® and in vitro drug release was studied as a function of pH and time. Paclitaxel-loaded polymersomes remained stable in aqueous solution at neutral pH for up to four months. In cell viability assay on cultured cancer cell lines (MKN-45P, SKOV3, CT26), Paclitaxel-loaded polymersomes were more toxic than free drug or albumin-bound Paclitaxel (Abraxane®). Intraperitoneally administered fluorescent polymersomes accumulated in malignant lesions, and immunofluorescence revealed intense signal inside tumors with no detectable signal in control organs. A dual targeting of tumors was observed: direct (circulation independent) penetration, and systemic, blood vessel-associated accumulation. Finally, we evaluated preclinical antitumor efficacy of polymersomes-paclitaxel in treatment of MKN-45P disseminated gastric carcinoma using a total dose of 7 mg/kg. Experimental therapy with polymersome-Paclitaxel improved the therapeutic index of drug over Paclitaxel-Cremophor and Abraxane®, as evaluated by intraperitoneal tumor burden and number of metastatic nodules. Our findings underline the potential utility of the polymersome platform for delivery of drugs and imaging agents to peritoneal carcinomatosis lesions. PMID:26880267

  1. Nanogel Carrier Design for Targeted Drug Delivery

    PubMed Central

    Eckmann, D. M.; Composto, R. J.; Tsourkas, A.; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanogel drug carrier design. In particular, we highlight published studies of nanogel design, descriptions of nanogel functional characteristics and their behavior in biological models. These studies form a compendium of information that supports the scientific and clinical rationale for development of this carrier for targeted therapeutic interventions. PMID:25485112

  2. Characterization of the paclitaxel loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer targeting HER-2 overexpressing breast cancer cells

    NASA Astrophysics Data System (ADS)

    Thach Nguyen, Kim; Nguyen, Thu Ha; Do, Dinh Ho; Huan Le, Quang

    2017-03-01

    In this work we report the isolation of DNA aptamer that is specifically bound to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. Paclitaxel (PTX) loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer was synthesized and its structure was confirmed by TEM image. This binary mixed system consisting of DNA aptamer modified Pluronic F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Morphology images confirmed the existence of PTX micelles, with an average size of approximately 86.22 ± 1.45 nm diameters. Drug release profile showed that the PTX conjugate maintained a sustained PTX release. From in vitro cell experiment it was shown that 89%–93%, 50%–58%, 55%–62%, 24%–28% and 2%–7% of the SK-BR-3, NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31, respectively, were dead after 6–48 h. These results demonstrated a novel DNA aptamer-micelle assembly for efficient detection and a system for the delivery of PTX targeting specific HER-2 overexpressing. We have also successfully cultivated cancer tissues of explants from Vietnamese patients on a type I collagen substrate. The NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31cell lines were used as cellular model sources for the study of chemotherapy drug in cancer.

  3. Targeted delivery of colloids by swimming bacteria

    NASA Astrophysics Data System (ADS)

    Koumakis, N.; Lepore, A.; Maggi, C.; di Leonardo, R.

    2013-10-01

    The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems.

  4. Injected nanocrystals for targeted drug delivery

    PubMed Central

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  5. Synthesis of a novel, sequentially active-targeted drug delivery nanoplatform for breast cancer therapy.

    PubMed

    Satsangi, Arpan; Roy, Sudipa S; Satsangi, Rajiv K; Tolcher, Anthony W; Vadlamudi, Ratna K; Goins, Beth; Ong, Joo L

    2015-08-01

    Breast cancer is the leading cause of cancer deaths among women. Paclitaxel (PTX), an important breast cancer medicine, exhibits reduced bioavailability and therapeutic index due to high hydrophobicity and indiscriminate cytotoxicity. PTX encapsulation in one-level active targeting overcomes such barriers, but enhances toxicity to normal tissues with cancer-similar expression profiles. This research attempted to overcome this challenge by increasing selectivity of cancer cell targeting while maintaining an ability to overcome traditional pharmacological barriers. Thus, a multi-core, multi-targeting construct for tumor specific delivery of PTX was fabricated with (i) an inner-core prodrug targeting the cancer-overexpressed cathepsin B through a cathepsin B-cleavable tetrapeptide that conjugates PTX to a poly(amidoamine) dendrimer, and (ii) the encapsulation of this prodrug (PGD) in an outer core of a RES-evading, folate receptor (FR)-targeting liposome. Compared to traditional FR-targeting PTX liposomes, this sequentially active-targeted dendrosome demonstrated better prodrug retention, an increased cytotoxicity to cancer cells (latter being true when FR and cathepsin B activities were both at moderate-to-high levels) and higher tumor reduction. This research may eventually evolve a product platform with reduced systemic toxicity inherent with traditional chemotherapy and localized toxicity inherent to single-target nanoplatforms, thereby allowing for better tolerance of higher therapeutic load in advanced disease states.

  6. Globular protein-coated Paclitaxel nanosuspensions: interaction mechanism, direct cytosolic delivery, and significant improvement in pharmacokinetics.

    PubMed

    Li, Yongji; Wu, Zhannan; He, Wei; Qin, Chao; Yao, Jing; Zhou, Jianping; Yin, Lifang

    2015-05-04

    , respectively, and prolonged T1/2 by 314-fold. As expected, PTX-NS had better in vitro and in vivo antitumor activity compared to PTX alone. Additionally, β-LG is cyto- and bio-compatible, and PTX-NS is not toxic to healthy tissues. In conclusion, the present study has suggested the high potency of globular proteins, such as β-LG, as novel biomaterials for nanosuspension platform to improve the drug delivery for disease treatment.

  7. The Na⁺/H⁺ exchanger (NHE1) as a novel co-adjuvant target in paclitaxel therapy of triple-negative breast cancer cells.

    PubMed

    Amith, Schammim Ray; Wilkinson, Jodi Marie; Baksh, Shairaz; Fliegel, Larry

    2015-01-20

    Dysregulation of Na⁺/H⁺ exchanger isoform one (NHE1) activity is a hallmark of cells undergoing tumorigenesis and metastasis, the leading cause of patient mortality. The acidic tumor microenvironment is thought to facilitate the development of resistance to chemotherapy drugs and to promote extracellular matrix remodeling leading to metastasis. Here, we investigated NHE1 as a co-adjuvant target in paclitaxel chemotherapy of metastatic breast cancer. We generated a stable NHE1-knockout of the highly invasive, triple-negative, MDA-MB-231 breast cancer cells. The NHE1-knockout cells proliferated comparably to parental cells, but had markedly lower rates of migration and invasion in vitro. In vivo xenograft tumor growth in athymic nude mice was also dramatically decreased compared to parental MDA-MB-231 cells. Loss of NHE1 expression also increased the susceptibility of knockout cells to paclitaxel-mediated cell death. NHE1 inhibition, in combination with paclitaxel, resulted in a dramatic decrease in viability, and migratory and invasive potential of triple-negative breast cancer cells, but not in hormone receptor-positive, luminal MCF7 cells. Our data suggest that NHE1 is critical in triple-negative breast cancer metastasis, and its chemical inhibition boosts the efficacy of paclitaxel in vitro, highlighting NHE1 as a novel, potential co-adjuvant target in breast cancer chemotherapy.

  8. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, G Devanand; Ramasamy, S; Reddy, G Pramod; Kumar, J

    2013-08-01

    Targeted drug delivery using nanocrystalline materials delivers the drug at the diseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells.

  9. The class I HDAC inhibitor Romidepsin targets inflammatory breast cancer tumor emboli and synergizes with paclitaxel to inhibit metastasis.

    PubMed

    Robertson, Fredika M; Chu, Khoi; Boley, Kimberly M; Ye, Zaiming; Liu, Hui; Wright, Moishia C; Moraes, Ricardo; Zhang, Xuejun; Green, Tessa L; Barsky, Sanford H; Heise, Carla; Cristofanilli, Massimo

    2013-01-01

    Inflammatory breast cancer (IBC) is the most metastatic variant of locally advanced breast cancer. IBC has distinctive characteristics including invasion of tumor emboli into the skin and rapid disease progression. Given our previous studies suggesting that HDAC inhibitors have promise in targeting IBC, the present study revealed that the class I HDAC inhibitor Romidepsin (FK-288, Istodax; Celgene Corporation, Summit, NJ) potently induced destruction of IBC tumor emboli and lymphatic vascular architecture. associated with inhibition of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1alpha, (HIF1alpha) proteins in the Mary-X pre-clinical model of IBC. Romidepsin treatment induced clinically relevant biomarkers in including induction of acetylated Histone 3 (Ac-H3) proteins, apoptosis, and increased p21WAF1/CIP1. Romidepsin, alone and synergistically when combined with Paclitaxel, effectively eliminated both primary tumors and metastatic lesions at multiple sites formed by the SUM149 IBC cell line. This is the first report of the ability of an HDAC inhibitor to eradicate IBC tumor emboli, to destroy the integrity of lymphatic vessel architecture and to target metastasis. Furthermore, Romidepsin, in combination with a taxane, warrants evaluation as a therapeutic strategy that may effectively target the skin involvement and rapid metastasis that are hallmarks of IBC.

  10. Design and characterization of novel EphA2 agonists for targeted delivery of chemotherapy to cancer cells

    PubMed Central

    Quinn, Bridget A.; Zharkikh, Irina; Purves, Angela; Stebbins, John L.; Oshima, Robert G.; Fisher, Paul B.; Pellecchia, Maurizio

    2015-01-01

    The development of novel, targeted delivery agents for anti-cancer therapies requires the design and optimization of potent and selective tumor-targeting agents that are stable and amenable to conjugation with chemotherapeutic drugs. While short peptides represent potentially an excellent platform for these purposes, they often get degraded and are eliminated too rapidly in vivo. In this manuscript, we used a combination of NMR-guided structure activity relationships along with biochemical and cellular studies to derive a novel tumor homing agent, named 123B9, targeting the EphA2 tyrosine kinase receptor ligand binding domain. Conjugating 123B9 to the chemotherapeutic drug paclitaxel (PTX) via a stable linker results in an agent that is significantly more effective than the unconjugated drug in both a pancreatic cancer xenograft model and a melanoma lung colonization and metastases model. Hence, 123B9 could represent a promising strategy for the development of novel targeted therapies for cancer. PMID:26165155

  11. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer

    PubMed Central

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-01-01

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  12. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression

    PubMed Central

    Puvvada, Nagaprasad; Rajput, Shashi; Kumar, B.N. Prashanth; Sarkar, Siddik; Konar, Suraj; Brunt, Keith R.; Rao, Raj R.; Mazumdar, Abhijit; Das, Swadesh K.; Basu, Ranadhir; Fisher, Paul B.; Mandal, Mahitosh; Pathak, Amita

    2015-01-01

    Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues. PMID:26145450

  13. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression

    NASA Astrophysics Data System (ADS)

    Puvvada, Nagaprasad; Rajput, Shashi; Kumar, B. N. Prashanth; Sarkar, Siddik; Konar, Suraj; Brunt, Keith R.; Rao, Raj R.; Mazumdar, Abhijit; Das, Swadesh K.; Basu, Ranadhir; Fisher, Paul B.; Mandal, Mahitosh; Pathak, Amita

    2015-07-01

    Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues.

  14. Toward Intracellular Targeted Delivery of Cancer Therapeutics

    PubMed Central

    Pandya, Hetal; Debinski, Waldemar

    2013-01-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells. PMID:22671766

  15. Liposomal paclitaxel formulations.

    PubMed

    Koudelka, Stěpán; Turánek, Jaroslav

    2012-11-10

    Over the past three decades, taxanes represent one of the most important new classes of drugs approved in oncology. Paclitaxel (PTX), the prototype of this class, is an anti-cancer drug approved for the treatment of breast and ovarian cancer. However, notwithstanding a suitable premedication, present-day chemotherapy employing a commercial preparation of PTX (Taxol®) is associated with serious side effects and hypersensitivity reactions. Liposomes represent advanced and versatile delivery systems for drugs. Generally, both in vivo mice tumor models and human clinical trials demonstrated that liposomal PTX formulations significantly increase a maximum tolerated dose (MTD) of PTX which outperform that for Taxol®. Liposomal PTX formulations are in various stages of clinical trials. LEP-ETU (NeoPharm) and EndoTAG®-1 (Medigene) have reached the phase II of the clinical trials; Lipusu® (Luye Pharma Group) has already been commercialized. Present achievements in the preparation of various liposomal formulations of PTX, the development of targeted liposomal PTX systems and the progress in clinical testing of liposomal PTX are discussed in this review summarizing about 30 years of liposomal PTX development.

  16. Therapeutic Efficacy and Safety of Paclitaxel/Lonidamine Loaded EGFR-Targeted Nanoparticles for the Treatment of Multi-Drug Resistant Cancer

    PubMed Central

    Milane, Lara; Duan, Zhenfeng; Amiji, Mansoor

    2011-01-01

    The treatment of multi-drug resistant (MDR) cancer is a clinical challenge. Many MDR cells over-express epidermal growth factor receptor (EGFR). We exploit this expression through the development of EGFR-targeted, polymer blend nanocarriers for the treatment of MDR cancer using paclitaxel (a common chemotherapeutic agent) and lonidamine (an experimental drug; mitochondrial hexokinase 2 inhibitor). An orthotopic model of MDR human breast cancer was developed in nude mice and used to evaluate the safety and efficacy of nanoparticle treatment. The efficacy parameters included tumor volume measurements from day 0 through 28 days post-treatment, terminal tumor weight measurements, tumor density and morphology assessment through hematoxylin and eosin staining of excised tumors, and immunohistochemistry of tumor sections for MDR protein markers (P-glycoprotein, Hypoxia Inducible Factor, EGFR, Hexokinase 2, and Stem Cell Factor). Toxicity was assessed by tracking changes in animal body weight from day 0 through 28 days post-treatment, by measuring plasma levels of the liver enzymes ALT (Alanine Aminotransferase) and LDH (lactate dehydrogenase), and by white blood cell and platelet counts. In these studies, this nanocarrier system demonstrated superior efficacy relative to combination (paclitaxel/lonidamine) drug solution and single agent treatments in nanoparticle and solution form. The combination nanoparticles were the only treatment group that decreased tumor volume, sustaining this decrease until the 28 day time point. In addition, treatment with the EGFR-targeted lonidamine/paclitaxel nanoparticles decreased tumor density and altered the MDR phenotype of the tumor xenografts. These EGFR-targeted combination nanoparticles were considerably less toxic than solution treatments. Due to the flexible design and simple conjugation chemistry, this nanocarrier system could be used as a platform for the development of other MDR cancer therapies; the use of this system for EGFR-targeted

  17. Nab-paclitaxel: a flattering facelift.

    PubMed

    Viúdez, A; Ramírez, N; Hernández-García, I; Carvalho, F L; Vera, R; Hidalgo, M

    2014-12-01

    The application of nanotechnology in oncology has increased the efficacy and efficiency of some cytotoxic agents. The paradigm in this field is nab-paclitaxel, a soluble form of paclitaxel that is linked to albumin nanoparticles. The development of nanotechnology as a delivery system for paclitaxel has provided better pharmacokinetic and pharmacodynamic characteristics, neutralizing its hydrophobicity. This procedure significantly improves the treatment of metastatic breast cancer compared to conventional paclitaxel-based therapies, including other type of cancers such as metastatic pancreatic cancer, stage IIIB-IV non-small cell lung cancer (NSCLC) and metastatic melanoma. In these last cases, significant differences were found in primary end-points for patients treated with nab-paclitaxel-based chemotherapy compared to those treated with conventional treatments. The application of nanotechnology in cancer treatment may also improve the efficacy of other known drugs, as a result of improved pharmacokinetic and pharmacodynamic profiles, similarly to paclitaxel.

  18. Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy.

    PubMed

    Giovinazzi, Serena; Bellapu, Dhruv; Morozov, Viacheslav M; Ishov, Alexander M

    2013-08-15

    Microtubule-poisoning drugs, such as Paclitaxel (or Taxol, PTX), are powerful and commonly used anti-neoplastic agents for the treatment of several malignancies. PTX triggers cell death, mainly through a mitotic arrest following the activation of the spindle assembly checkpoint (SAC). Cells treated with PTX slowly slip from this mitotic block and die by mitotic catastrophe. However, cancer cells can acquire or are intrinsically resistant to this drug, posing one of the main obstacles for PTX clinical effectiveness. In order to override PTX resistance and increase its efficacy, we investigated both the enhancement of mitotic slippage and the block of mitotic exit. To test these opposing strategies, we used physiological hyperthermia (HT) to force exit from PTX-induced mitotic block and the anaphase-promoting complex/cyclosome (APC/C) inhibitor, proTAME, to block mitotic exit. We observed that application of HT on PTX-treated cells forced mitotic slippage, as shown by the rapid decline of cyclin B levels and by microscopy analysis. Similarly, HT induced mitotic exit in cells blocked in mitosis by other antimitotic drugs, such as Nocodazole and the Aurora A inhibitor MLN8054, indicating a common effect of HT on mitotic cells. On the other hand, proTAME prevented mitotic exit of PTX and MLN8054 arrested cells, prolonged mitosis, and induced apoptosis. In addition, we showed that proTAME prevented HT-mediated mitotic exit, indicating that stress-induced APC/C activation is necessary for HT-induced mitotic slippage. Finally, HT significantly increased PTX cytotoxicity, regardless of cancer cells' sensitivity to PTX, and this activity was superior to the combination of PTX with pro-TAME. Our data suggested that forced mitotic exit of cells arrested in mitosis by anti-mitotic drugs, such as PTX, can be a more successful anticancer strategy than blocking mitotic exit by inactivation of the APC/C.

  19. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response.

    PubMed

    Jiang, Lei; Li, Li; He, Xiaodan; Yi, Qiangying; He, Bin; Cao, Jun; Pan, Weisan; Gu, Zhongwei

    2015-06-01

    Mitochondrion-orientated transportation of smart liposomes has been developed as a promising strategy to deliver anticancer drugs directly to tumor sites, and these have a tremendous potential for killing cancer cells, especially those with multidrug resistance (MDR). Herein we report a novel dual-functional liposome system possessing both extracellular pH response and mitochondrial targeting properties to enhance drug accumulation in mitochondria and trigger apoptosis of drug-resistant cancer cells. Briefly, peptide D[KLAKLAK]2 (KLA) was modified with 2, 3-dimethylmaleic anhydride (DMA) and combined with 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to yield a DSPE-KLA-DMA (DKD) lipid. This dual-functional DKD was then mixed with other commercially available lipids to fabricate liposomes. In vitro anticancer efficacy of this liposome system was evaluated in human lung cancer A549 cells and drug-resistant lung cancer A549/Taxol cells. At tumor extracellular pH (∼6.8), liposomes could reverse their surface charge (negative to positive), facilitating liposome internalization. After cellular uptake, KLA peptide directed delivery-enabled selective accumulation of these liposomes into mitochondria and favored release of their cargo paclitaxel (PTX) into desired sites. Specifically, enhanced apoptosis of MDR cancer cells through mitochondrial signaling pathways was evidenced by release of cytochrome c and increased activity of caspase-9 and -3. These dual-functional liposomes had the greatest efficacy for treating A549 cells and A549/Taxol cells in vitro, and in treating drug-resistant lung cancer A549/Taxol cells xenografted onto nude mice (tumor growth inhibition 86.7%). In conclusion, dual-functional liposomes provide a novel and versatile approach for overcoming MDR in cancer treatment.

  20. Nanoparticle-based targeted drug delivery

    PubMed Central

    Singh, Rajesh; Lillard, James W.

    2009-01-01

    Nanotechnology could be defined as the technology that has allowed for the control, manipulation, study, and manufacture of structures and devices in the “nanometer” size range. These nano-sized objects, e.g., “nanoparticles”, take on novel properties and functions that differ markedly from those seen from items made of identical materials. The small size, customized surface, improved solubility, and multi-functionality of nanoparticles will continue to open many doors and create new biomedical applications. Indeed, the novel properties of nanoparticles offer the ability to interact with complex cellular functions in new ways. This rapidly growing field requires cross-disciplinary research and provides opportunities to design and develop multifunctional devices that can target, diagnose, and treat devastating diseases such as cancer. This article presents an overview of nanotechnology for the biologist and discusses the attributes of our novel XPclad© nanoparticle formulation that has shown efficacy in treating solid tumors, for single dose vaccination, and oral delivery of therapeutic proteins. PMID:19186176

  1. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells’ sensitivity to paclitaxel

    PubMed Central

    Mäki-Jouppila, Jenni; Chen, Ping; Elgaaen, Bente Vilming; Straume, Anne Hege; Huhtinen, Kaisa; Cárpen, Olli; Lønning, Per Eystein; Davidson, Ben; Hautaniemi, Sampsa; Kallio, Marko J.

    2016-01-01

    The molecular pathways that contribute to the proliferation and drug response of cancer cells are highly complex and currently insufficiently characterized. We have identified a previously unknown microRNA-based mechanism that provides cancer cells means to stimulate tumorigenesis via increased genomic instability and, at the same time, evade the action of clinically utilized microtubule drugs. We demonstrate miR-493-3p to be a novel negative regulator of mitotic arrest deficient-2 (MAD2), an essential component of the spindle assembly checkpoint that monitors the fidelity of chromosome segregation. The microRNA targets the 3′ UTR of Mad2 mRNA thereby preventing translation of the Mad2 protein. In cancer cells, overexpression of miR-493-3p induced a premature mitotic exit that led to increased frequency of aneuploidy and cellular senescence in the progeny cells. Importantly, excess of the miR-493-3p conferred resistance of cancer cells to microtubule drugs. In human neoplasms, miR-493-3p and Mad2 expression alterations correlated with advanced ovarian cancer forms and high miR-493-3p levels were associated with reduced survival of ovarian and breast cancer patients with aggressive tumors, especially in the paclitaxel therapy arm. Our results suggest that intratumoral profiling of miR-493-3p and Mad2 levels can have diagnostic value in predicting the efficacy of taxane chemotherapy. PMID:26943585

  2. Synthesis and Preliminary Biological Evaluation of High-drug Load Paclitaxel-Antibody Conjugates for Tumor-targeted Chemotherapy1

    PubMed Central

    Quiles, Sherly; Raisch, Kevin P.; Sanford, Leisa L.; Bonner, James A.; Safavy, Ahmad

    2009-01-01

    The goal of this study was to design paclitaxel (PTX)-monoclonal antibody (MAb) prodrug conjugates (PTXMAbs) with the ability to deliver therapeutically significant doses of the drug to the tumor while avoiding the previously observed solubility limitations of conjugates with PTX : MAb molar ratios of >3. New PTX conjugates were synthesized using the discrete poly(ethylene glycol) (dPEG) as linkers. These compounds, PTX-L-Lys[(dPEG12)3-dPEG4]-dPEG6-NHS (9a and 9b, for L=GL or SX, respectively), were then conjugated to the anti-epidermal growth factor receptor MAb, C225 at increasing PTX : C225 ratios, producing completely soluble conjugates. Unlike the earlier PTXMAbs, buffered solutions of these conjugates remained homogeneous for extended periods of time. Fluorescence-activated cell sorting (FACS) analysis indicated preserved immunogenicity of the conjugates at all 4 substitution ratios, while cytotoxicity studies in MDA-MB-468 breast cancer cells indicated preservation of drug cytotoxicity. These conjugates may have potential in the development of high-drug-load tumor-targeting taxanes. PMID:19958000

  3. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel.

    PubMed

    Desai, Neil; Trieu, Vuong; Yao, Zhiwen; Louie, Leslie; Ci, Sherry; Yang, Andrew; Tao, Chunlin; De, Tapas; Beals, Bridget; Dykes, Donald; Noker, Patricia; Yao, Rosie; Labao, Elizabeth; Hawkins, Michael; Soon-Shiong, Patrick

    2006-02-15

    ABI-007, an albumin-bound, 130-nm particle form of paclitaxel, was developed to avoid Cremophor/ethanol-associated toxicities in Cremophor-based paclitaxel (Taxol) and to exploit albumin receptor-mediated endothelial transport. We studied the antitumor activity, intratumoral paclitaxel accumulation, and endothelial transport for ABI-007 and Cremophor-based paclitaxel. Antitumor activity and mortality were assessed in nude mice bearing human tumor xenografts [lung (H522), breast (MX-1), ovarian (SK-OV-3), prostate (PC-3), and colon (HT29)] treated with ABI-007 or Cremophor-based paclitaxel. Intratumoral paclitaxel concentrations (MX-1-tumored mice) were compared for radiolabeled ABI-007 and Cremophor-based paclitaxel. In vitro endothelial transcytosis and Cremophor inhibition of paclitaxel binding to cells and albumin was compared for ABI-007 and Cremophor-based paclitaxel. Both ABI-007 and Cremophor-based paclitaxel caused tumor regression and prolonged survival; the order of sensitivity was lung > breast congruent with ovary > prostate > colon. The LD(50) and maximum tolerated dose for ABI-007 and Cremophor-based paclitaxel were 47 and 30 mg/kg/d and 30 and 13.4 mg/kg/d, respectively. At equitoxic dose, the ABI-007-treated groups showed more complete regressions, longer time to recurrence, longer doubling time, and prolonged survival. At equal dose, tumor paclitaxel area under the curve was 33% higher for ABI-007 versus Cremophor-based paclitaxel, indicating more effective intratumoral accumulation of ABI-007. Endothelial binding and transcytosis of paclitaxel were markedly higher for ABI-007 versus Cremophor-based paclitaxel, and this difference was abrogated by a known inhibitor of endothelial gp60 receptor/caveolar transport. In addition, Cremophor was found to inhibit binding of paclitaxel to endothelial cells and albumin. Enhanced endothelial cell binding and transcytosis for ABI-007 and inhibition by Cremophor in Cremophor-based paclitaxel may account in

  4. Feasibility Study of EndoTAG-1, a Tumor Endothelial Targeting Agent, in Combination with Paclitaxel followed by FEC as Induction Therapy in HER2-Negative Breast Cancer

    PubMed Central

    Lemort, Marc; Wilke, Celine; Vanderbeeken, Marie-Catherine; D’Hondt, Veronique; De Azambuja, Evandro; Gombos, Andrea; Lebrun, Fabienne; Dal Lago, Lissandra; Bustin, Fanny; Maetens, Marion; Ameye, Lieveke; Veys, Isabelle; Michiels, Stefan; Paesmans, Marianne; Larsimont, Denis; Sotiriou, Christos; Nogaret, Jean-Marie; Piccart, Martine; Awada, Ahmad

    2016-01-01

    Background EndoTAG-1, a tumor endothelial targeting agent has shown activity in metastatic triple-negative breast cancer (BC) in combination with paclitaxel. Methods HER2-negative BC patients candidates for neoadjuvant chemotherapy were scheduled to receive 12 cycles of weekly EndoTAG-1 22mg/m2 plus paclitaxel 70mg/m2 followed by 3 cycles of FEC (Fluorouracil 500mg/m2, Epirubicin 100mg/m2, Cyclophosphamide 500mg/m2) every 3 weeks followed by surgery. Primary endpoint was percent (%) reduction in Magnetic Resonance Imaging (MRI) estimated Gadolinium (Gd) enhancing tumor volume at the end of EndoTAG-1 plus paclitaxel administration as compared to baseline. Safety, pathological complete response (pCR) defined as no residual tumor in breast and axillary nodes at surgery and correlation between % reduction in MRI estimated tumor volume and pCR were also evaluated. Results Fifteen out of 20 scheduled patients were included: Six patients with estrogen receptor (ER)-negative/HER2-negative and 9 with ER-positive/HER2-negative BC. Nine patients completed treatment as per protocol. Despite premedication and slow infusion rates, grade 3 hypersensitivity reactions to EndoTAG-1 were observed during the 1st, 2nd, 3rd and 6th weekly infusion in 4 patients, respectively, and required permanent discontinuation of the EndoTAG-1. Moreover, two additional patients stopped EndoTAG-1 plus paclitaxel after 8 and 9 weeks due to clinical disease progression. Two patients had grade 3 increases in transaminases and 1 patient grade 4 neutropenia. pCR was achieved in 5 of the 6 ER-/HER2- and in none of the 9 ER+/HER2- BC patients. The mean % reduction in MRI estimated tumor volume at the end of EndoTAG-1 plus paclitaxel treatment was 81% (95% CI, 66% to 96%, p<0.001) for the 15 patients that underwent surgery; 96% for patients with pCR and 73% for patients with no pCR (p = 0.04). Conclusions The EndoTAG-1 and paclitaxel combination showed promising preliminary activity as preoperative treatment

  5. Targeted Delivery Systems for Molecular Therapy in Skeletal Disorders

    PubMed Central

    Dang, Lei; Liu, Jin; Li, Fangfei; Wang, Luyao; Li, Defang; Guo, Baosheng; He, Xiaojuan; Jiang, Feng; Liang, Chao; Liu, Biao; Badshah, Shaikh Atik; He, Bing; Lu, Jun; Lu, Cheng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Abnormalities in the integral components of bone, including bone matrix, bone mineral and bone cells, give rise to complex disturbances of skeletal development, growth and homeostasis. Non-specific drug delivery using high-dose systemic administration may decrease therapeutic efficacy of drugs and increase the risk of toxic effects in non-skeletal tissues, which remain clinical challenges in the treatment of skeletal disorders. Thus, targeted delivery systems are urgently needed to achieve higher drug delivery efficiency, improve therapeutic efficacy in the targeted cells/tissues, and minimize toxicities in non-targeted cells/tissues. In this review, we summarize recent progress in the application of different targeting moieties and nanoparticles for targeted drug delivery in skeletal disorders, and also discuss the advantages, challenges and perspectives in their clinical translation. PMID:27011176

  6. Targeted delivery of magnetic aerosol droplets to the lung.

    PubMed

    Dames, Petra; Gleich, Bernhard; Flemmer, Andreas; Hajek, Kerstin; Seidl, Nicole; Wiekhorst, Frank; Eberbeck, Dietmar; Bittmann, Iris; Bergemann, Christian; Weyh, Thomas; Trahms, Lutz; Rosenecker, Joseph; Rudolph, Carsten

    2007-08-01

    The inhalation of medical aerosols is widely used for the treatment of lung disorders such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, respiratory infection and, more recently, lung cancer. Targeted aerosol delivery to the affected lung tissue may improve therapeutic efficiency and minimize unwanted side effects. Despite enormous progress in optimizing aerosol delivery to the lung, targeted aerosol delivery to specific lung regions other than the airways or the lung periphery has not been adequately achieved to date. Here, we show theoretically by computer-aided simulation, and for the first time experimentally in mice, that targeted aerosol delivery to the lung can be achieved with aerosol droplets comprising superparamagnetic iron oxide nanoparticles--so-called nanomagnetosols--in combination with a target-directed magnetic gradient field. We suggest that nanomagnetosols may be useful for treating localized lung disease, by targeting foci of bacterial infection or tumour nodules.

  7. Perspectives on Dual Targeting Delivery Systems for Brain Tumors.

    PubMed

    Gao, Huile

    2017-03-01

    Brain tumor remains one of the most serious threats to human beings. Different from peripheral tumors, drug delivery to brain tumor is largely restricted by the blood brain barrier (BBB). To fully conquer this barrier and specifically deliver drugs to brain tumor, dual targeting delivery systems were explored, which are functionalized with two active targeting ligands: one to the BBB and the other to the brain tumor. The development of dual targeting delivery system is still in its early stage, and attentions need to be paid to issues and concerns that remain unresolved in future studies.

  8. Dendrimeric micelles for controlled drug release and targeted delivery

    PubMed Central

    Ambade, Ashootosh V.; Savariar, Elamprakash N.; Thayumanavan, S.

    2008-01-01

    This review highlights the developments in dendrimer-based micelles for drug delivery. Dendrimers, the perfectly branched monodisperse macromolecules, have certain structural advantages that make them attractive candidates as drug carriers for controlled release or targeted delivery. As polymeric micelle-based approaches precede the work in dendrimers, these are also discussed briefly. The review concludes with a perspective on possible applications of biaryl-based dendrimeric micelles that exhibit environment-dependent conformations, in drug delivery. PMID:16053329

  9. Targeted Sequencing Reveals Low-Frequency Variants in EPHA Genes as Markers of Paclitaxel-Induced Peripheral Neuropathy.

    PubMed

    Apellániz-Ruiz, María; Tejero, Héctor; Inglada-Pérez, Lucía; Sánchez-Barroso, Lara; Gutiérrez-Gutiérrez, Gerardo; Calvo, Isabel; Castelo, Beatriz; Redondo, Andrés; García-Donás, Jesús; Romero-Laorden, Nuria; Sereno, María; Merino, María; Currás-Freixes, María; Montero-Conde, Cristina; Mancikova, Veronika; Åvall-Lundqvist, Elisabeth; Green, Henrik; Al-Shahrour, Fátima; Cascón, Alberto; Robledo, Mercedes; Rodríguez-Antona, Cristina

    2017-03-01

    Purpose: Neuropathy is the dose-limiting toxicity of paclitaxel and a major cause for decreased quality of life. Genetic factors have been shown to contribute to paclitaxel neuropathy susceptibility; however, the major causes for interindividual differences remain unexplained. In this study, we identified genetic markers associated with paclitaxel-induced neuropathy through massive sequencing of candidate genes.Experimental Design: We sequenced the coding region of 4 EPHA genes, 5 genes involved in paclitaxel pharmacokinetics, and 30 Charcot-Marie-Tooth genes, in 228 cancer patients with no/low neuropathy or high-grade neuropathy during paclitaxel treatment. An independent validation series included 202 paclitaxel-treated patients. Variation-/gene-based analyses were used to compare variant frequencies among neuropathy groups, and Cox regression models were used to analyze neuropathy along treatment.Results: Gene-based analysis identified EPHA6 as the gene most significantly associated with paclitaxel-induced neuropathy. Low-frequency nonsynonymous variants in EPHA6 were present exclusively in patients with high neuropathy, and all affected the ligand-binding domain of the protein. Accumulated dose analysis in the discovery series showed a significantly higher neuropathy risk for EPHA5/6/8 low-frequency nonsynonymous variant carriers [HR, 14.60; 95% confidence interval (CI), 2.33-91.62; P = 0.0042], and an independent cohort confirmed an increased neuropathy risk (HR, 2.07; 95% CI, 1.14-3.77; P = 0.017). Combining the series gave an estimated 2.5-fold higher risk of neuropathy (95% CI, 1.46-4.31; P = 9.1 × 10(-4)).Conclusions: This first study sequencing EPHA genes revealed that low-frequency variants in EPHA6, EPHA5, and EPHA8 contribute to the susceptibility to paclitaxel-induced neuropathy. Furthermore, EPHA's neuronal injury repair function suggests that these genes might constitute important neuropathy markers for many neurotoxic drugs. Clin Cancer Res; 23

  10. Enhanced transfection efficiency and targeted delivery of self-assembling h-R3-dendriplexes in EGFR-overexpressing tumor cells.

    PubMed

    Li, Jun; Li, Shengnan; Xia, Songyun; Feng, Jinfeng; Zhang, Xuedi; Hao, Yanli; Chen, Lei; Zhang, Xiaoning

    2015-09-22

    The efficient gene transfection, cellular uptake and targeted delivery in vivo are key issues for non-viral gene delivery vectors in cancer therapy. To solve these issues, we designed a new targeted gene delivery system based on epidermal growth factor receptor (EGFR) targeting strategy. An anti-EGFR monoclonal antibody h-R3 was introduced to dendriplexes of PAMAM and DNA via electrostatic interactions to form self-assembled h-R3-PAMAM-DNA complexes (h-R3-dendriplexes). Dendriplexes h-R3-dendriplexes represented excellent DNA encapsulation ability and formed unique nanostructures. Compared to dendriplexes, h-R3-dendriplexes presented lower cytotoxicity, higher gene transfection efficiency, excellent endosome escape ability and high nuclear accumulation in the EGFR-overexpressing HepG2 cells. Both ex vivo fluorescence imaging and confocal results of frozen section revealed that h-R3-dendriplexes showed higher targeted delivery and much better gene expression in the tumors than dendriplexes at the same N/P ratio, and h-R3-dendriplexes had accumulation primarily in the tumor and kidney. Moreover, h-R3-dendriplexes for p53 delivery indicated efficient cell growth inhibition and potentiated paclitaxel-induced cell death. These results indicate that the h-R3-dendriplexes represent a great potential to be used as efficient targeted gene delivery carriers in EGFR-overexpressing tumor cells.

  11. β-Lapachone and Paclitaxel Combination Micelles with Improved Drug Encapsulation and Therapeutic Synergy as Novel Nanotherapeutics for NQO1-Targeted Cancer Therapy.

    PubMed

    Zhang, Ling; Chen, Zhen; Yang, Kuan; Liu, Chun; Gao, Jinming; Qian, Feng

    2015-11-02

    β-Lapachone (LPC) is a novel cytotoxic agent that is bioactivated by NADP(H): quinone oxidoreductase 1 (NQO1), an enzyme elevated in a variety of tumors, such as non-small cell lung cancer (NSCLC), pancreatic cancer, liver cancer, and breast cancer. Despite its unique mechanism of action, its clinical evaluation has been largely hindered by low water solubility, short blood half-life, and narrow therapeutic window. Although encapsulation into poly(ethylene glycol)-b-poly(D,L-lactic acid) (PEG-PLA) micelles could modestly improve its solubility and prolong its half-life, the extremely fast intrinsic crystallization tendency of LPC prevents drug loading higher than ∼2 wt %. The physical stability of the LPC-loaded micelles is also far from satisfactory for further development. In this study, we demonstrate that paclitaxel (PTX), a front-line drug for many cancers, can provide two functions when coencapsulated together with LPC in the PEG-PLA micelles; first, as a strong crystallization inhibitor for LPC, thus to significantly increase the LPC encapsulation efficiency in the micelle from 11.7 ± 2.4% to 100.7 ± 2.2%. The total drug loading efficiency of both PTX and LPC in the combination polymeric micelle reached 100.3 ± 3.0%, and the drug loading density reached 33.2 ± 1.0%. Second, the combination of LPC/PTX demonstrates strong synergistic cytotoxicity effect against the NQO1 overexpressing cancer cells, including A549 NSCLC cells, and several pancreatic cancer cells (combination index <1). In vitro drug release study showed that LPC was released faster than PTX either in phosphate-buffered saline (PH = 7.4) or in 1 M sodium salicylate, which agrees with the desired dosing sequence of the two drugs to exert synergistic pharmacologic effect at different cell checkpoints. The PEG-PLA micelles coloaded with LPC and PTX offer a novel nanotherapeutic, with high drug loading, sufficient physical stability, and biological synergy to increase drug delivery efficiency

  12. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis

    PubMed Central

    Li, Yinghua; Guo, Min; Lin, Zhengfang; Zhao, Mingqi; Xiao, Misi; Wang, Changbing; Xu, Tiantian; Chen, Tianfeng; Zhu, Bing

    2016-01-01

    Hepatocarcinoma is the third leading cause of cancer-related deaths around the world. Recently, a novel emerging nanosystem as anticancer therapeutic agents with intrinsic therapeutic properties has been widely used in various medical applications. In this study, surface decoration of functionalized silver nanoparticles (AgNPs) by polyethylenimine (PEI) and paclitaxel (PTX) was synthesized. The purpose of this study was to evaluate the effect of Ag@ PEI@PTX on cytotoxic and anticancer mechanism on HepG2 cells. The transmission electron microscope image and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that Ag@PEI@PTX had satisfactory size distribution and high stability and selectivity between cancer and normal cells. Ag@PEI@PTX-induced HepG2 cell apoptosis was confirmed by accumulation of the sub-G1 cells population, translocation of phosphatidylserine, depletion of mitochondrial membrane potential, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Furthermore, Ag@PEI@PTX enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of AKT, p53, and MAPK were activated to advance cell apoptosis. In conclusion, the results reveal that Ag@ PEI@PTX may provide useful information on Ag@PEI@PTX-induced HepG2 cell apoptosis and as appropriate candidate for chemotherapy of cancer. PMID:27994465

  13. Design of Nanoparticle-Based Carriers for Targeted Drug Delivery

    PubMed Central

    Ren, Muqing; Duval, Kayla; Guo, Xing; Chen, Zi

    2016-01-01

    Nanoparticles have shown promise as both drug delivery vehicles and direct antitumor systems, but they must be properly designed in order to maximize efficacy. Computational modeling is often used both to design new nanoparticles and to better understand existing ones. Modeled processes include the release of drugs at the tumor site and the physical interaction between the nanoparticle and cancer cells. In this article, we provide an overview of three different targeted drug delivery methods (passive targeting, active targeting and physical targeting), compare methods of action, advantages, limitations, and the current stage of research. For the most commonly used nanoparticle carriers, fabrication methods are also reviewed. This is followed by a review of computational simulations and models on nanoparticle-based drug delivery. PMID:27398083

  14. Oral delivery of paclitaxel nanocrystal (PNC) with a dual Pgp-CYP3A4 inhibitor: preparation, characterization and antitumor activity.

    PubMed

    Patel, Ketan; Patil, Anand; Mehta, Miten; Gota, Vikram; Vavia, Pradeep

    2014-09-10

    Several molecular inheritances have severely restrained the peroral delivery of taxanes. The main objective of the present investigation was to develop a paclitaxel (PTX) formulation which can circumvent the hurdles of its extremely poor solubility and permeability, Pgp efflux and high pre-systemic metabolism. Positively charged PTX nanocrystals of 209 nm were prepared by sonoprecipitation with high pressure homogenization technique, wherein an arginine based surfactant was explored as a stabilizer. The BET surface area analysis revealed that the surface area of PNC was 8.53 m(2)/gm, reflecting significant rise in surface area with nanonization of PTX. The DSC and XRD pattern suggested that the PTX is in the form of the most stable dihydrate crystal. The PNC showed very rapid dissolution profile compared to plain PTX in both sinks and non-sink conditions. Clarithromycin (CLM) was evaluated as a better alternative to cyclosporin A in improving PTX permeability. The PNC-CLM showed remarkable enhancement of 453% in relative bioavailability along with maintaining the therapeutic concentration of PTX for 8h. Efficacy data in B16 F10 melanoma tumor bearing mice showed substantial reduction in tumor volume and improvement in percentage survival compared to the control group.

  15. Targeted Nanomedicine for Suppression of CD44 and Simultaneous Cell Death Induction in Ovarian Cancer: an Optimal Delivery of siRNA and Anticancer Drug

    PubMed Central

    Shah, Vatsal; Taratula, Oleh; Garbuzenko, Olga B.; Taratula, Olena R.; Rodriguez-Rodriguez, Lorna; Minko, Tamara

    2013-01-01

    Purpose: The proposed project is aimed at enhancing the efficiency of epithelial ovarian cancer treatment and reducing adverse side effects of chemotherapy using nanotechnology. Overexpression of the CD44 membrane receptor results in tumor initiation, growth, tumor stem cells specific behavior, development of drug resistance, and metastases. We hypothesize that a developed cancer targeted delivery system which combines CD44 siRNA with paclitaxel would successfully deliver its payload inside cancer cells, effectively induce cell death, and prevent metastases. Experimental Design: We synthesized, characterized, and tested a nanoscale-based drug delivery system containing a modified Polypropylenimine (PPI) dendrimer as a carrier; anticancer drug paclitaxel as a cell death inducer; a synthetic analog of luteinizing hormone-releasing hormone (LHRH) peptide as a tumor targeting moiety, and siRNA targeted to CD44 mRNA. The proposed NDDS was tested in vitro and in vivo using metastatic ovarian cancer cells isolated from patients with malignant ascites. Results: We found that in contrast to cells isolated from primary tumors, CD44 was highly overexpressed in metastatic cancer cells. Treatment with the proposed tumor-targeted nanoscale-based nucleic acid and drug delivery system led to the suppression of CD44 mRNA and protein, efficient induction of cell death, effective tumor shrinkage, and prevention of adverse side effects on healthy organs. Conclusion: We show a high therapeutic potential for combinatorial treatment of ovarian carcinoma with a novel drug delivery system that effectively transports siRNA targeting to CD44 mRNA simultaneously with cytotoxic agents. PMID:24036854

  16. Acoustic cavitation induced generation of stabilizer-free, extremely stable reduced graphene oxide nanodispersion for efficient delivery of paclitaxel in cancer cells.

    PubMed

    Geetha Bai, Renu; Muthoosamy, Kasturi; Shipton, Fiona Natalia; Manickam, Sivakumar

    2017-05-01

    Graphene is one of the highly explored nanomaterials due to its unique and extraordinary properties. In this study, by utilizing a hydrothermal reduction method, graphene oxide (GO) was successfully converted to reduced graphene oxide (RGO) without using any toxic reducing agents. Following this, with the use of ultrasonic cavitation, profoundly stable few layer thick RGO nanodispersion was generated without employing any stabilizers or surfactants. During ultrasonication, shockwaves from the collapse of bubbles cause a higher dispersing energy to the graphene nanosheets which surpass the forces of Van der Waal's and π-π stacking and thus pave the way to form a stable aqueous nanodispersion of graphene. Ultrasonication systems with different power intensity have been employed to determine the optimum conditions for obtaining the most stable RGO dispersion. The optimised conditions of ultrasonic treatments led to the development of a very stable reduced graphene oxide (RGO) aqueous dispersion. The stability was observed for two years and was analyzed by using Zetasizer by measuring the particle size and zeta potential at regular intervals and found to have exceptional stability. The excellent stability at physiological pH promotes its utilization in nano drug delivery application as a carrier for Paclitaxel (Ptx), an anticancer drug. The in vitro cytotoxicity analysis of Ptx loaded RGO nanodispersion by MTT assay performed on the cell lines revealed the potential of the nanodispersion as a suitable drug carrier. Studies on normal lung cells, MRC-5 and nasopharyngeal cancer cells, HK-1 supported the biocompatibility of RGO-Ptx towards normal cell line. This investigation shows the potential of exceptionally stable RGO-Ptx nanodispersion in nano drug delivery applications.

  17. Development of multifunctional lipid nanocapsules for the co-delivery of paclitaxel and CpG-ODN in the treatment of glioblastoma.

    PubMed

    Lollo, Giovanna; Vincent, Marie; Ullio-Gamboa, Gabriela; Lemaire, Laurent; Franconi, Florence; Couez, Dominique; Benoit, Jean-Pierre

    2015-11-30

    In this work, multifunctional lipid nanocapsules (M-LNC) were designed to combine the activity of the cytotoxic drug paclitaxel (PTX) with the immunostimulant CpG. This nanosystem, consisting of modified lipid nanocapsules coated with a cationic polymeric shell composed of chitosan (CS), was able to allocate the hydrophobic drug PTX in the inner oily core, and to associate onto the surface the genetic material CpG. The CS-coated LNC (CS-LNC), showed a narrow size distribution with an average size of 70 nm and a positive zeta potential (+25 mV). They encapsulated PTX in a high amount (98%), and, due to the cationic surface charge, were able to adsorb CpG without losing stability. As a preliminary in vitro study, the apoptotic effect on GL261 glioma cells was investigated. The drug-loaded CS-LNC exhibited the ability to interact with glioma cells and induce an important apoptotic effect in comparison with blank systems. Finally, the M-LNC made of CS-LNC loaded with both CpG and PTX were tested in vivo, injected via convention enhanced delivery (CED) in GL261-glioma-bearing mice. The results showed that the overall survival of mice treated with the M-LNC was significantly increased in comparison with the control, Taxol(®), or the separated injection of PTX-loaded LNC and CpG. This effect was also confirmed by magnetic resonance imaging (MRI) which revealed the reduction of tumor growth in the animals treated with CpG and PTX-loaded M-LNC. All these findings suggested that the developed M-LNC could potentiate both CpG immunopotency and PTX antitumor activity by enhancing its delivery into the tumor microenvironment.

  18. PEG-Derivatized Embelin as a Nanomicellar Carrier For Delivery of Paclitaxel to Breast and Prostate Cancers

    PubMed Central

    Lu, Jianqin; Huang, Yixian; Zhao, Wenchen; Marquez, Rebecca T.; Meng, Xiaojie; Li, Jiang; Gao, Xiang; Venkataramanan, Raman; Wang, Zhou; Li, Song

    2012-01-01

    Paclitaxel (PTX) is one of the most effective chemotherapeutic agents for a wide spectrum of cancers, but its therapeutic benefit is often limited by severe side effects. We have developed a micelle-based PTX formulation based on a simple conjugate derived from polyethylene glycol 5000 (PEG5K) and embelin (EB). Embelin is a natural product and exhibits antitumor activity through blocking the activity of X-linked inhibitor of apoptosis protein (XIAP). PEG5K-EB2 conjugate self-assembles to form stable micelles in aqueous solution and efficiently encapsulates hydrophobic drugs such as PTX. PEG5K-EB2 micelles have a relatively low CMC of 0.002mg/mL (0.35μM) with sizes in the range of 20 ~ 30 nm with or without loaded PTX. In vitro cell uptake study showed that the PEG5K-EB2 micelles were efficiently taken up by tumor cells. In vitro release study showed that PTX formulated in PEG5K-EB2 micelles was slowly released over 5 days with much slower release kinetics than that of Taxol formulation. PTX formulated in PEG5K-EB2 micelles exhibited more potent cytotoxicity than Taxol in several cultured tumor cell lines. Total body near infrared fluorescence (NIRF) imaging showed that PEG5K-EB2 micelles were selectively accumulated at tumor site with minimal uptake in major organs including liver and spleen. PTX-loaded PEG5K-EB2 micelles demonstrated an excellent safety profile with a maximum tolerated dose (MTD) of 100–120 mg PTX/kg in mice, which was significantly higher than that for Taxol (15–20 mg PTX/kg). Finally, PTX formulated in PEG5K-EB2 micelles showed superior anti-tumor activity compared to Taxol in murine models of breast and prostate cancers. PMID:23182923

  19. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy.

    PubMed

    Schleich, Nathalie; Po, Chrystelle; Jacobs, Damien; Ucakar, Bernard; Gallez, Bernard; Danhier, Fabienne; Préat, Véronique

    2014-11-28

    Multifunctional nanoparticles combining therapy and imaging have the potential to improve cancer treatment by allowing personalized therapy. Herein, we aimed to compare in vivo different strategies in terms of targeting capabilities: (1) passive targeting via the EPR effect, (2) active targeting of αvβ3 integrin via RGD grafting, (3) magnetic targeting via a magnet placed on the tumor and (4) the combination of magnetic targeting and active targeting of αvβ3 integrin. For a translational approach, PLGA-based nanoparticles loaded with paclitaxel and superparamagnetic iron oxides were used. Electron Spin Resonance spectroscopy and Magnetic Resonance Imaging (MRI) were used to both quantify and visualize the accumulation of multifunctional nanoparticles into the tumors. We demonstrate that compared to untargeted or single targeted nanoparticles, the combination of both active strategy and magnetic targeting drastically enhanced (i) nanoparticle accumulation into the tumor tissue with an 8-fold increase compared to passive targeting (1.12% and 0.135% of the injected dose, respectively), (ii) contrast in MRI (imaging purpose) and (iii) anti-cancer efficacy with a median survival time of 22 days compared to 13 for the passive targeting (therapeutic purpose). Double targeting of nanoparticles to tumors by different mechanisms could be a promising translational approach for the management of therapeutic treatment and personalized therapy.

  20. Synthetic LDL as targeted drug delivery vehicle

    SciTech Connect

    Forte, Trudy M; Nikanjam, Mina

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  1. Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery

    NASA Astrophysics Data System (ADS)

    Nag, Okhil K.; Naciri, Jawad; Spillmann, Christopher M.; Delehanty, James B.

    2016-03-01

    In addition to maintaining the structural integrity of the cell, the plasma membrane regulates multiple important cellular processes, such as endocytosis and trafficking, apoptotic pathways and drug transport. The modulation or tracking of such cellular processes by means of controlled delivery of drugs or imaging agents via nanoscale delivery systems is very attractive. Nanoparticle-mediated delivery systems that mediate long-term residence (e.g., days) and controlled release of the cargoes in the plasma membrane while simultaneously not interfering with regular cellular physiology would be ideal for this purpose. Our laboratory has developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs which can be slowly released from the particle over time. Here we highlight the utility of these nanopreparations for membrane delivery and imaging.

  2. Strategies on the nuclear-targeted delivery of genes

    PubMed Central

    Yao, Jing; Fan, Ying; Li, Yuanke; Huang, Leaf

    2016-01-01

    To improve the nuclear-targeted delivery of non-viral vectors, extensive effort has been carried out on the development of smart vectors which could overcome multiple barriers. The nuclear envelope presents a major barrier to transgene delivery. Viruses are capable of crossing the nuclear envelope to efficiently deliver their genome into the nucleus through the specialized protein components. However, non-viral vectors are preferred over viral ones because of the safety concerns associated with the latter. Non-viral delivery systems have been designed to include various types of components to enable nuclear translocation at the periphery of the nucleus. This review summarizes the progress of research regarding nuclear transport mechanisms. “Smart” non-viral vectors that have been modified by peptides and other small molecules are able to facilitate the nuclear translocation and enhance the efficacy of gene expression. The resulting technology may also enhance delivery of other macromolecules to the nucleus. PMID:23964565

  3. Delivery of Therapeutic RNAs Into Target Cells IN VIVO

    NASA Astrophysics Data System (ADS)

    Ng, Mei Ying; Hagen, Thilo

    2014-02-01

    RNA-based therapy is one of the most promising approaches to treat human diseases. Specifically, the use of short interfering RNA (siRNA) siRNA and microRNA (miRNA) mimics for in vivo RNA interference has immense potential as it directly lowers the expression of the therapeutic target protein. However, there are a number of major roadblocks to the successful implementation of siRNA and other RNA based therapies in the clinic. These include the instability of RNAs in vivo and the difficulty to efficiently deliver the RNA into the target cells. Hence, various innovative approaches have been taken over the years to develop effective RNA delivery methods. These methods include liposome-, polymeric nanoparticle- and peptide-mediated cellular delivery. In a recent innovative study, bioengineered bacterial outer membrane vesicles were used as vehicles for effective delivery of siRNA into cells in vivo.

  4. Bioengineered Silk Gene Delivery System for Nuclear Targeting

    PubMed Central

    Yigit, Sezin; Tokareva, Olena; Varone, Antonio; Georgakoudi, Irene

    2015-01-01

    Gene delivery research has gained momentum with the use of lipophilic vectors that mimic viral systems to increase transfection efficiency. However, maintaining cell viability with these systems remains a major challenge. Therefore biocompatible and nontoxic biopolymers that are designed by combining non-immunological viral mimicking components with suitable carriers have been explored to address these limitations. In the present study recombinant DNA technology was used to design a multi-functional gene delivery system for nuclear targeting, while also supporting cell viability. Spider dragline silk recombinant proteins were modified with DNA condensing units and the proton sponge endosomal escape pathway was utilized for enhanced delivery. Short-term transfection efficiency in a COS-7 cell line (adherent kidney cells isolated from African green monkey) was enhanced compared to lipofectamine and polyethyleneimine (PEI), as was cell viability with these recombinant bio-polyplexes. Endosomal escape and consequent nuclear targeting were shown with fluorescence microscopy. PMID:24889658

  5. 'Smart' non-viral delivery systems for targeted delivery of RNAi to the lungs.

    PubMed

    Ramsey, Joanne M; Hibbitts, Alan; Barlow, James; Kelly, Ciara; Sivadas, Neeraj; Cryan, Sally-Ann

    2013-01-01

    The emergence of RNAi offers a potentially exciting new therapeutic paradigm for respiratory diseases. However, effective delivery remains a key requirement for their translation into the clinic and has been a major factor in the limited clinical success seen to date. Inhalation offers tissue-specific targeting of the RNAi to treat respiratory diseases and a diminished risk of off-target effects. In order to deliver RNAi directly to the respiratory tract via inhalation, 'smart' non-viral carriers are required to protect the RNAi during delivery/aerosolization and enhance cell-specific uptake to target cells. Here, we review the state-of-the-art in therapeutic aerosol bioengineering, and specifically non-viral siRNA delivery platforms, for delivery via inhalation. This includes developments in inhaler device engineering and particle engineering, including manufacturing methods and excipients used in therapeutic aerosol bioengineering that underpin the development of smart, cell type-specific delivery systems to target siRNA to respiratory epithelial cells and/or alveolar macrophages.

  6. Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Moyer, Tyson

    The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty

  7. Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods

    PubMed Central

    Wang, Yanjie; Strohm, Eric M.; Sun, Yang; Wang, Zhaoxia; Zheng, Yuanyi; Wang, Zhigang; Kolios, Michael C.

    2016-01-01

    In this study, optical-triggered multifunctional theranostic agents for photoacoustic/fluorescent imaging and cancer therapy have been developed. This system consists of a perfluorohexane liquid and gold nanoparticles (GNPs) in the core, stabilized by a Poly (lactide-co-glycolic acid) (PLGA) polymer shell. When cancer cells containing PLGA-GNPs were exposed to laser pulses, cell viability decreased due to the vaporization of the particles in and around the cells. The particle chemo drug loading and delivery capacity was also investigated in vitro experiments. These particles show potential as photoacoustic imaging and therapy agents for future clinical translation in cancer therapy. PMID:27867720

  8. Systems approaches to design of targeted therapeutic delivery.

    PubMed

    Myerson, Jacob W; Brenner, Jacob S; Greineder, Colin F; Muzykantov, Vladimir R

    2015-01-01

    Targeted drug delivery aims to improve therapeutic effects and enable mechanisms that are not feasible for untargeted agents (e.g., due to impermeable biological barriers). To achieve targeting, a drug or its carrier should possess properties providing specific accumulation from circulation at the desired site. There are several examples of systems-inspired approaches that have been applied to achieve this goal. First, proteomics analysis of plasma membrane fraction of the vascular endothelium has identified a series of target molecules and their ligands (e.g., antibodies) that deliver conjugated cargoes to well-defined vascular cells and subcellular compartments. Second, selection of ligands binding to cells of interest using phage display libraries in vitro and in vivo has provided peptides and polypeptides that bind to normal and pathologically altered cells. Finally, large-scale high-throughput combinatorial synthesis and selection of lipid- and polymer-based nanocarriers varying their chemical components has yielded a series of carriers accumulating in diverse organs and delivering RNA interference agents to diverse cells. Together, these approaches offer a basis for systems-based design and selection of targets, targeting molecules, and targeting vehicles. Current studies focus on expanding the arsenal of these and alternative targeting strategies, devising drug delivery systems capitalizing on these strategies and evaluation of their benefit/risk ratio in adequate animal models of human diseases. These efforts, combined with better understanding of mechanisms and unintended consequences of these targeted interventions, need to be ultimately translated into industrial development and the clinical domain.

  9. Hydrotropic polymeric mixed micelles based on functional hyperbranched polyglycerol copolymers as hepatoma-targeting drug delivery system.

    PubMed

    Zhang, Xuejiao; Zhang, Xinge; Yu, Peien; Han, Yucai; Li, Yangguang; Li, Chaoxing

    2013-01-01

    Mixed copolymer nanoparticles (NPs) self-assembled from β-cyclodextrin-grafted hyperbranched polyglycerol (HPG-g-CD) and lactobionic acid (LA)-grafted hyperbranched polyglycerol (HPG-g-LA) were applied as carriers for a hydrophobic antitumor drug, paclitaxel (PTX), achieving hepatocellular carcinoma-targeted delivery. The resulting NPs exhibited high drug loading capacity and substantial stability in aqueous solution. In vitro drug release studies demonstrated a controlled drug release profile with increased release at acidic pH. Remarkably, tumor proliferation assays showed that PTX-loaded mixed copolymer NPs inhibited asialoglycoprotein (ASGP) receptor positive HepG2 cell proliferation in a concentration-dependent manner in comparison with ASGP receptor negative BGC-823 cells. Moreover, the competition assay demonstrated that the small molecular LA inhibited the cellular uptake of the PTX-loaded mixed copolymer NPs, indicating the ASGP receptor-mediated endocytosis in HepG2 cells. In addition, the intracellular uptake tests by confocal laser scanning microscopy showed that the mixed copolymer NPs were more efficiently taken up by HepG2 cells compared with HPG-g-CD NPs. These results suggest a feasible application of the mixed copolymer NPs as nanocarriers for hepatoma-targeted delivery of potent antitumor drugs.

  10. Polysaccharide-Gold Nanocluster Supramolecular Conjugates as a Versatile Platform for the Targeted Delivery of Anticancer Drugs

    NASA Astrophysics Data System (ADS)

    Li, Nan; Chen, Yong; Zhang, Ying-Ming; Yang, Yang; Su, Yue; Chen, Jia-Tong; Liu, Yu

    2014-02-01

    Through the high affinity of the β-cyclodextrin (β-CD) cavity for adamantane moieties, novel polysaccharide-gold nanocluster supramolecular conjugates (HACD-AuNPs) were successfully constructed from gold nanoparticles (AuNPs) bearing adamantane moieties and cyclodextrin-grafted hyaluronic acid (HACD). Due to their porous structure, the supramolecular conjugates could serve as a versatile and biocompatible platform for the loading and delivery of various anticancer drugs, such as doxorubicin hydrochloride (DOX), paclitaxel (PTX), camptothecin (CPT), irinotecan hydrochloride (CPT-11), and topotecan hydrochloride (TPT), by taking advantage of the controlled association/dissociation of drug molecules from the cavities formed by the HACD skeletons and AuNPs cores as well as by harnessing the efficient targeting of cancer cells by hyaluronic acid. Significantly, the release of anticancer drugs from the drug@HACD-AuNPs system was pH-responsive, with more efficient release occurring under a mildly acidic environment, such as that in a cancer cell. Taking the anticancer drug DOX as an example, cell viability experiments revealed that the DOX@HACD-AuNPs system exhibited similar tumor cell inhibition abilities but lower toxicity than free DOX due to the hyaluronic acid reporter-mediated endocytosis. Therefore, the HACD-AuNPs supramolecular conjugates may possess great potential for the targeted delivery of anticancer drugs.

  11. Colon targeting: an emerging frontier for oral insulin delivery.

    PubMed

    Patel, Mayur Mahendrakumar

    2013-06-01

    Subcutaneous administration of insulin is associated with several limitations such as discomfort, local pain, irritation, infections, immune reactions and lipoatrophy as well as lipohypertrophy manifestations at the injection site. To overcome these drawbacks, enormous research is currently going on worldwide for designing of an alternative noninvasive route of administration. Pulmonary and oral route seem to be the most promising ones, with respect to the market value. However, after the letdown by pulmonary delivery of insulin, oral colon targeted delivery of insulin has gained tremendous interest among researchers. Although bioavailability remains a challenge for oral colon specific delivery of insulin, the employment of protease inhibitors, permeation enhancers and polymeric delivery systems have proved to be advantageous to overcome the said problem. This Editorial article is not intended to offer a comprehensive review on drug delivery, but shall familiarize the readers with the strategies employed for attaining non-erratic bioavailability of insulin, and to highlight some of the formulation technologies that have been developed for attaining oral colon-specific delivery of insulin.

  12. Prostate Cancer Relevant Antigens and Enzymes for Targeted Drug Delivery

    PubMed Central

    Barve, Ashutosh; Jin, Wei; Cheng, Kun

    2014-01-01

    Chemotherapy is one of the most widely used approaches in combating advanced prostate cancer, but its therapeutic efficacy is usually insufficient due to lack of specificity and associated toxicity. Lack of targeted delivery to prostate cancer cells is also the primary obstacles in achieving feasible therapeutic effect of other promising agents including peptide, protein, and nucleic acid. Consequently, there remains a critical need for strategies to increase the selectivity of anti-prostate cancer agents. This review will focus on various prostate cancer-specific antigens and enzymes that could be exploited for prostate cancer targeted drug delivery. Among various targeting strategies, active targeting is the most advanced approach to specifically deliver drugs to their designated cancer cells. In this approach, drug carriers are modified with targeting ligands that can specifically bind to prostate cancer-specific antigens. Moreover, there are several specific enzymes in the tumor microenvironment of prostate cancer that can be exploited for stimulus-responsive drug delivery systems. These systems can specifically release the active drug in the tumor microenvironment of prostate cancer, leading to enhanced tumor penetration efficiency. PMID:24878184

  13. Delivery of Polymeric Nanoparticles to Target Vascular Diseases

    PubMed Central

    Agyare, Edward; Kandimalla, Karunyna

    2015-01-01

    Current advances in nanotechnology have paved the way for the early detection, prevention and treatment of various diseases such as vascular disorders and cancer. These advances have provided novel approaches or modalities of incorporating or adsorbing therapeutic, biosensor and targeting agents into/on nanoparticles. With significant progress, nanomedicine for vascular therapy has shown significant advantages over traditional medicine because of its ability to selectively target the disease site and reduce adverse side effects. Targeted delivery of nanoparticles to vascular endothelial cells or the vascular wall provides an effective and more efficient way for early detection and/or treatment of vascular diseases such as atherosclerosis, thrombosis and Cerebrovascular Amyloid Angiopathy (CAA). Clinical applications of biocompatible and biodegradable polymers in areas such as vascular graft, implantable drug delivery, stent devices and tissue engineering scaffolds have advanced the candidature of polymers as potential nano-carriers for vascular-targeted delivery of diagnostic agents and drugs. This review focuses on the basic aspects of the vasculature and its associated diseases and relates them to polymeric nanoparticle-based strategies for targeting therapeutic agents to diseased vascular site. PMID:26069867

  14. Ex vivo investigation of magnetically targeted drug delivery system

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Fukui, S.; Fujimoto, S.; Mishima, F.; Takeda, S.; Izumi, Y.; Ohtani, S.; Fujitani, Y.; Nishijima, S.

    2007-03-01

    In conventional systemic drug delivery the drug is administered by intravenous injection; it then travels to the heart from where it is pumped to all regions of the body. When the drug is aimed at a small target region, this method is extremely inefficient and leads to require much larger doses than those being necessary. In order to overcome this problem a number of targeted drug delivery methods are developed. One of these, magnetically targeted drug delivery system (MT-DDS) will be a promising way, which involves binding a drug to small biocompatible magnetic particles, injecting these into the blood stream and using a high gradient magnetic field to pull them out of suspension in the target region. In the present paper, we describe an ex vivo experimental work. It is also reported that navigation and accumulation test of the magnetic particles in the Y-shaped glass tube was performed in order to examine the threshold of the magnetic force for accumulation. It is found that accumulation of the magnetic particles was succeeded in the blood vessel when a permanent magnet was placed at the vicinity of the blood vessel. This result indicates the feasibility of the magnetically drug targeting in the blood vessel.

  15. Targeted drug delivery using genetically engineered diatom biosilica.

    PubMed

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H

    2015-11-10

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.

  16. The role of acoustofluidics in targeted drug delivery

    PubMed Central

    Bose, Nilanjana; Zhang, Xunli; Maiti, Tapas K.; Chakraborty, Suman

    2015-01-01

    With the fast development of acoustic systems in clinical and therapeutic applications, acoustically driven microbubbles have gained a prominent role as powerful tools to carry, transfer, direct, and target drug molecules in cells, tissues, and tumors in the expanding fields of targeted drug delivery and gene therapy. The aim of the present study is to establish a biocompatible acoustic microfluidic system and to demonstrate the generation of an acoustic field and its effects on microbubbles and biological cells in the microfluidic system. The acoustic field creates non-linear oscillations of the microbubble-clusters, which results in generation of shear stress on cells in such microsystems. This effectively helps in delivering extracellular probes in living cells by sonoporation. The sonoporation is investigated under the combined effects of acoustic stress and hydrodynamic stress during targeted drug and gene delivery. PMID:26339329

  17. Non-Spherical Particles for Targeted Drug Delivery

    PubMed Central

    Chen, Jinrong; Clay, Nicholas; Kong, Hyunjoon

    2015-01-01

    Nano- and microparticles loaded with various bioimaging contrast agents or therapeutic molecules have been increasingly used for the diagnosis and treatment of diseases and tissue defects. These particles, often a filled or hollow sphere, can extend the lifetime of encapsulated biomedical modalities in circulation and in target tissue. However, there is a great need to improve the drug loading and targeting efficiency of these particles. Recently, several simulation and in vitro experimental studies reported that particle shape plays a pivotal role in the targeted delivery of molecules. To better understand these findings and subsequently expedite the use of particles in biomedical applications, this review paper summarizes the methods to prepare non-spherical nano- and micro-scaled particles. In addition, this review covers studies reporting the effects of particle shape on the loading, delivery and release of encapsulated bioactive cargos. Finally, it discusses future directions to further improve the properties of non-spherical particles. PMID:25838583

  18. Active Targeted Drug Delivery for Microbes Using Nano-Carriers

    PubMed Central

    Lin, Yung-Sheng; Lee, Ming-Yuan; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nano-carriers utilized targeting ligands on their surface called ‘active target’ provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced. PMID:25877093

  19. Polymeric Nanomaterials for Islet Targeting and Immunotherapeutic Delivery

    PubMed Central

    Ghosh, Kaustabh; Kanapathipillai, Mathumai; Korin, Netanel; McCarthy, Jason R.; Ingber, Donald E.

    2012-01-01

    Here we report a proof-of-concept for development of pancreatic islet-targeting nanoparticles for immunomodulatory therapy of autoimmune Type 1 Diabetes. Modified with a unique islet-homing peptide, these polymeric nanomaterials exhibit 3-fold greater binding to islet endothelial cells and a 200-fold greater anti-inflammatory effect through targeted islet endothelial cell delivery of an immunosuppressant drug. Our findings also underscore the need to carefully tailor drug loading and nanoparticle dosage to achieve maximal vascular targeting and immunosuppression. PMID:22196766

  20. Pharmacytes: an ideal vehicle for targeted drug delivery.

    PubMed

    Freitas, Robert A

    2006-01-01

    An ideal nanotechnology-based drug delivery system is a pharmacyte--a self-powered, computer-controlled medical nanorobot system capable of digitally precise transport, timing, and targeted delivery of pharmaceutical agents to specific cellular and intracellular destinations within the human body. Pharmacytes may be constructed using future molecular manufacturing technologies such as diamond mechanosynthesis which are currently being investigated theoretically using quantum ab initio and density-functional computational methods. Pharmacytes will have many applications in nanomedicine such as initiation of apoptosis in cancer cells and direct control of cell signaling processes.

  1. Targeted Drug Delivery to Treat Pain and Cerebral Hypoxia

    PubMed Central

    Davis, Thomas P.

    2013-01-01

    Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic anion–transporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia. PMID:23343976

  2. Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures

    NASA Astrophysics Data System (ADS)

    Kannan, Rangaramanujam; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2002-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, ‘peripheral’ functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, in-vitro drug loading, in-vitro drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Polyamidoamine and Polyol dendrimers, with different generations and end-groups are studied, with drugs such as Ibuprofen and Methotrexate. Our results indicate that a large number of drug molecules can be encapsulated/attached to the dendrimers, depending on the end groups. The drug-encapsulated dendrimer is able to enter the cells rapidly and deliver the drug. Targeting strategies being explored

  3. A smart multifunctional drug delivery nanoplatform for targeting cancer cells

    NASA Astrophysics Data System (ADS)

    Hoop, M.; Mushtaq, F.; Hurter, C.; Chen, X.-Z.; Nelson, B. J.; Pané, S.

    2016-06-01

    Wirelessly guided magnetic nanomachines are promising vectors for targeted drug delivery, which have the potential to minimize the interaction between anticancer agents and healthy tissues. In this work, we propose a smart multifunctional drug delivery nanomachine for targeted drug delivery that incorporates a stimuli-responsive building block. The nanomachine consists of a magnetic nickel (Ni) nanotube that contains a pH-responsive chitosan hydrogel in its inner cavity. The chitosan inside the nanotube serves as a matrix that can selectively release drugs in acidic environments, such as the extracellular space of most tumors. Approximately a 2.5 times higher drug release from Ni nanotubes at pH = 6 is achieved compared to that at pH = 7.4. The outside of the Ni tube is coated with gold. A fluorescein isothiocyanate (FITC) labeled thiol-ssDNA, a biological marker, was conjugated on its surface by thiol-gold click chemistry, which enables traceability. The Ni nanotube allows the propulsion of the device by means of external magnetic fields. As the proposed nanoarchitecture integrates different functional building blocks, our drug delivery nanoplatform can be employed for carrying molecular drug conjugates and for performing targeted combinatorial therapies, which can provide an alternative and supplementary solution to current drug delivery technologies.Wirelessly guided magnetic nanomachines are promising vectors for targeted drug delivery, which have the potential to minimize the interaction between anticancer agents and healthy tissues. In this work, we propose a smart multifunctional drug delivery nanomachine for targeted drug delivery that incorporates a stimuli-responsive building block. The nanomachine consists of a magnetic nickel (Ni) nanotube that contains a pH-responsive chitosan hydrogel in its inner cavity. The chitosan inside the nanotube serves as a matrix that can selectively release drugs in acidic environments, such as the extracellular space of

  4. Aptamer-Mediated Targeted Delivery of Therapeutics: An Update

    PubMed Central

    Catuogno, Silvia; Esposito, Carla L.; de Franciscis, Vittorio

    2016-01-01

    The selective delivery of drugs in a cell- or tissue-specific manner represents the main challenge for medical research; in order to reduce the occurrence of unwanted off-target effects. In this regard, nucleic acid aptamers have emerged as an attractive class of carrier molecules due to their ability to bind with high affinity to specific ligands; their high chemical flexibility; as well as tissue penetration capability. To date, different aptamer-drug systems and aptamer–nanoparticles systems, in which nanoparticles function together with aptamers for the targeted delivery, have been successfully developed for a wide range of therapeutics, including toxins; peptides; chemotherapeutics and oligonucleotides. Therefore, aptamer-mediated drug delivery represents a powerful tool for the safe and effective treatment of different human pathologies, including cancer; neurological diseases; immunological diseases and so on. In this review, we will summarize recent progress in the field of aptamer-mediated drug delivery and we will discuss the advantages, the achieved objectives and the challenges to be still addressed in the near future, in order to improve the effectiveness of therapies. PMID:27827876

  5. Nanostructured lipid carriers (NLCs) for drug delivery and targeting.

    PubMed

    Fang, Chia-Lang; Al-Suwayeh, Saleh A; Fang, Jia-You

    2013-01-01

    Nanostructured lipid carriers (NLCs) are drug-delivery systems composed of both solid and liquid lipids as a core matrix. It was shown that NLCs reveal some advantages for drug therapy over conventional carriers, including increased solubility, the ability to enhance storage stability, improved permeability and bioavailability, reduced adverse effect, prolonged half-life, and tissue-targeted delivery. NLCs have attracted increasing attention in recent years. This review describes recent developments in drug delivery using NLCs strategies. The structures, preparation techniques, and physicochemical characterization of NLCs are systematically elucidated in this review. The potential of NLCs to be used for different administration routes is highlighted. Special attention is paid to parenteral injection and topical delivery since these are the most common routes for investigating NLCs. Relevant issues for the introduction of NLCs to market, including pharmaceutical and cosmetic applications, are discussed. The related patents of NLCs for drug delivery are also reviewed. Finally, the future development and current obstacles needing to be resolved are elucidated.

  6. Prodrugs - an efficient way to breach delivery and targeting barriers.

    PubMed

    Huttunen, Kristiina M; Rautio, Jarkko

    2011-01-01

    The study of prodrugs that are chemically modified bioreversible derivatives of active drug compounds to alter their undesired properties has been expanded widely during the last decades. Despite the commercial success the prodrugs have afforded, the concept is still quite unknown among many scientist. Furthermore, many scientists regard prodrugs as a pure interest of academic research groups and not as a feasible solution to improve the delivery or targeting properties of new chemical entities, drug candidates failed in clinical trials, or drugs withdrawn from the market. Although there are still unmet needs that require addressing, prodrugs should be seen as fine-tuning tools for the successful drug research and development. This review represents the potential of prodrugs to improve the drug delivery by enhanced aqueous solubility or permeability as well as describes several targeted prodrug strategies.

  7. Receptor-Mediated Drug Delivery Systems Targeting to Glioma

    PubMed Central

    Wang, Shanshan; Meng, Ying; Li, Chengyi; Qian, Min; Huang, Rongqin

    2015-01-01

    Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS). The complexity of glioma, especially the existence of the blood-brain barrier (BBB), makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications.

  8. Breakable mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A; Robinet, Eric; De Cola, Luisa

    2016-04-07

    "Pop goes the particle". Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.

  9. Breakable mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A.; Robinet, Eric; de Cola, Luisa

    2016-03-01

    ``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. Electronic supplementary information (ESI) available: Full experimental procedures, additional SEM and TEM images of particles, complete UV-Vis and PL-monitored characterization of the breakdown of

  10. [Cytological Study in vitro on Co-delivery of siRNA and Paclitaxel within Solid Lipid Nanoparticles to Overcome Multidrug Resistance in Tumors].

    PubMed

    Huang, Rui; Yao, Xinyu; Chen, Yuan; Sun, Xun; Lin, Yunzhu

    2016-02-01

    Multidrug resistance (MDR) remains the major obstacle to the success of clinical cancer chemotherapy. P-glycoprotein (P-gp), encoded by the MDR1, is an important part with complex mechanisms associated with the MDR. In order to overcome the MDR of tumors, we in the present experimental design incorporated small interfering RNA (siRNA) targeting MDR1 gene and anticancer drug paclitaxel (PTX) into the solid lipid nanoparticles (SLNs) to achieve the combinational therapeutic effects of genetherapy and chemotherapy. In this study, siRNA-PTX-SLNs were successfully prepared. The cytotoxicity of blank SLNs and siRNA-PTX-SLNs in MCF-7 cells and MCF-7/ADR cells were detected by MTT; and the uptake efficiency of PTX in MCF-7/ADR cells were detected via HPLC method; quantitative real-time PCR and flow cytometry were performed to investigate the silencing effect of siRNA-PTX- SLNs on MDR1 gene in MCF-7/ADR cells. The results showed that PTX loaded SLNs could significantly inhibit the growth of tumor cells, and more importantly, the MDR tumor cells treated with siRNA-PTX-SLNs showed the lowest viability. HPLC study showed that SLNs could enhance the cellular uptake for PTX. Meanwhile, siRNA delivered by SLNs significantly decreased the P-gp expression in MDR tumor cells, thus increased the cellular accumulation of rhodamine123 as a P-gp substrate. In conclusion, the MDR1 gene could be silenced by siRNA-PTX-SLNs, which could promote the growth inhibition efficiency of PTX on tumor cells, leading to synergetic effect on MDR tumor therapy.

  11. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine

    PubMed Central

    Cores, Jhon; Caranasos, Thomas G.; Cheng, Ke

    2015-01-01

    Stem cells play a special role in the body as agents of self-renewal and auto-reparation for tissues and organs. Stem cell therapies represent a promising alternative strategy to regenerate damaged tissue when natural repairing and conventional pharmacological intervention fail to do so. A fundamental impediment for the evolution of stem cell therapies has been the difficulty of effectively targeting administered stem cells to the disease foci. Biocompatible magnetically responsive nanoparticles are being utilized for the targeted delivery of stem cells in order to enhance their retention in the desired treatment site. This noninvasive treatment-localization strategy has shown promising results and has the potential to mitigate the problem of poor long-term stem cell engraftment in a number of organ systems post-delivery. In addition, these same nanoparticles can be used to track and monitor the cells in vivo, using magnetic resonance imaging. In the present review we underline the principles of magnetic targeting for stem cell delivery, with a look at the logic behind magnetic nanoparticle systems, their manufacturing and design variants, and their applications in various pathological models. PMID:26133387

  12. New targets and delivery systems for antifungal therapy.

    PubMed

    Walsh, T J; Viviani, M A; Arathoon, E; Chiou, C; Ghannoum, M; Groll, A H; Odds, F C

    2000-01-01

    Development of new approaches for treatment of invasive fungal infections encompasses new delivery systems for approved and investigational compounds, as well as exploiting the cell membrane, cell wall and virulence factors as putative antifungal targets. Novel delivery systems consisting of cyclodextrins, cochleates, nanoparticles/nanospheres and long circulating ('stealth') liposomes, substantially modulate the pharmacokinetics of existing compounds, and may also be useful to enhance the delivery of antifungal agents to sites of infection. Further insights into the structure-activity relationship of the antifungal triazoles that target the biosynthesis of ergosterol in the fungal cell membrane have led to the development of highly potent broad spectrum agents, including posaconazole, ravuconazole and voriconazole. Similarly, a novel generation of cell-wall active semisynthetic echinocandin 1,3 beta-glucan inhibitors (caspofungin, FK463, and VER-002) has entered clinical development. These agents have potent and broad-spectrum activity against Candida spp, and potentially useful activity against Aspergillus spp. and Pneumocystis carinii. The ongoing convergence of the fields of molecular pathogenesis, antifungal pharmacology and vaccine development will afford the opportunity to develop novel targets to complement the existing antifungal armamentarium.

  13. Yeast Microcapsule-Mediated Targeted Delivery of Diverse Nanoparticles for Imaging and Therapy via the Oral Route.

    PubMed

    Zhou, Xing; Zhang, Xiangjun; Han, Songling; Dou, Yin; Liu, Mengyu; Zhang, Lin; Guo, Jiawei; Shi, Qing; Gong, Genghao; Wang, Ruibing; Hu, Jiang; Li, Xiaohui; Zhang, Jianxiang

    2017-02-08

    Targeting of nanoparticles to distant diseased sites after oral delivery remains highly challenging due to the existence of many biological barriers in the gastrointestinal tract. Here we report targeted oral delivery of diverse nanoparticles in multiple disease models, via a "Trojan horse" strategy based on a bioinspired yeast capsule (YC). Diverse charged nanoprobes including quantum dots (QDs), iron oxide nanoparticles (IONPs), and assembled organic fluorescent nanoparticles can be effectively loaded into YC through electrostatic force-driven spontaneous deposition, resulting in different diagnostic YC assemblies. Also, different positive nanotherapies containing an anti-inflammatory drug indomethacin (IND) or an antitumor drug paclitaxel (PTX) are efficiently packaged into YC. YCs containing either nanoprobes or nanotherapies may be rapidly endocytosed by macrophages and maintained in cells for a relatively long period of time. Post oral administration, nanoparticles packaged in YC are first transcytosed by M cells and sequentially endocytosed by macrophages, then transported to neighboring lymphoid tissues, and finally delivered to remote diseased sites of inflammation or tumor in mice or rats, all through the natural route of macrophage activation, recruitment, and deployment. For the examined acute inflammation model, the targeting efficiency of YC-delivered QDs or IONPs is even higher than that of control nanoprobes administered at the same dose via intravenous injection. Assembled IND or PTX nanotherapies orally delivered via YCs exhibit remarkably potentiated efficacies as compared to nanotherapies alone in animal models of inflammation and tumor, which is consistent with the targeting effect and enhanced accumulation of drug molecules at diseased sites. Consequently, through the intricate transportation route, nanoprobes or nanotherapies enveloped in YC can be preferentially delivered to desired targets, affording remarkably improved efficacies for the

  14. Exploiting EPR in polymer drug conjugate delivery for tumor targeting.

    PubMed

    Modi, Sweta; Prakash Jain, Jay; Domb, A J; Kumar, Neeraj

    2006-01-01

    Treatment of tumor tissue without affecting normal cells has always been formidable task for drug delivery scientists and this task is effectively executed by polymer drug conjugate (PDC) delivery. The novelty of this concept lies in the utilization of a physical mechanism called enhanced permeability and retention (EPR) for targeting tumors. EPR is a physiological phenomenon that is customary for fast growing tumor and solves the problem of targeting the miscreant tissue. PDCs offer added advantages of reduced deleterious effects of anticancer drugs and augmentation of its formulation capability (e.g. Solubility). There are now at least eleven PDCs that have entered phase I/II/III clinical trial as anticancer drugs. PDCs once entered into the tumor tissue, taking advantage of EPR, are endocytosed into the cell either by simple or receptor mediated endocytosis. Various polymeric carriers have been used with hydrolyzable linker arm for conjugation with bioactive moiety. The hydrolyzable linkages of PDC are broken down by acid hydrolyses of lysosomes and releases the drug. High concentrations of the chemotherapeutic agent are maintained near the nucleus, the target site. Passive targeting by PDCs is due to the physiological event of EPR, which is becoming one of the major thrust areas for targeting solid tumors.

  15. Systems approaches to design of targeted therapeutic delivery

    PubMed Central

    Myerson, Jacob W.; Brenner, Jacob S.; Greineder, Colin F.; Muzykantov, Vladimir R.

    2016-01-01

    Targeted drug delivery aims to improve therapeutic effects and enable mechanisms that are not feasible for untargeted agents (e.g., due to impermeable biological barriers). To achieve targeting, a drug or its carrier should possess properties providing specific accumulation from circulation at the desired site. There are several examples of systems-inspired approaches that have been applied to achieve this goal. First, proteomics analysis of plasma membrane fraction of the vascular endothelium has identified a series of target molecules and their ligands (e.g., antibodies) that deliver conjugated cargoes to well-defined vascular cells and subcellular compartments. Second, selection of ligands binding to cells of interest using phage display libraries in vitro and in vivo has provided peptides and polypeptides that bind to normal and pathologically altered cells. Finally, large-scale high-throughput combinatorial synthesis and selection of lipid- and polymer-based nanocarriers varying their chemical components has yielded a series of carriers accumulating in diverse organs and delivering RNA interference agents to diverse cells. Together, these approaches offer a basis for systems-based design and selection of targets, targeting molecules, and targeting vehicles. Current studies focus on expanding the arsenal of these and alternative targeting strategies, devising drug delivery systems capitalizing on these strategies and evaluation of their benefit/risk ratio in adequate animal models of human diseases. These efforts, combined with better understanding of mechanisms and unintended consequences of these targeted interventions, need to be ultimately translated into industrial development and the clinical domain. PMID:25946066

  16. Targeted multidrug delivery system to overcome chemoresistance in breast cancer

    PubMed Central

    Tang, Yuan; Soroush, Fariborz; Tong, Zhaohui; Kiani, Mohammad F; Wang, Bin

    2017-01-01

    Chemotherapy has been widely used in breast cancer patients to reduce tumor size. However, most anticancer agents cannot differentiate between cancerous and normal cells, resulting in severe systemic toxicity. In addition, acquired drug resistance during the chemotherapy treatment further decreases treatment efficacy. With the proper treatment strategy, nanodrug carriers, such as liposomes/immunoliposomes, may be able to reduce undesired side effects of chemotherapy, to overcome the acquired multidrug resistance, and to further improve the treatment efficacy. In this study, a novel combinational targeted drug delivery system was developed by encapsulating antiangiogenesis drug bevacizumab into liposomes and encapsulating chemotherapy drug doxorubicin (DOX) into immunoliposomes where the human epidermal growth factor receptor 2 (HER2) antibody was used as a targeting ligand. This novel combinational system was tested in vitro using a HER2 positive and multidrug resistant breast cancer cell line (BT-474/MDR), and in vivo using a xenograft mouse tumor model. In vitro cell culture experiments show that immunoliposome delivery led to a high cell nucleus accumulation of DOX, whereas free DOX was observed mostly near the cell membrane and in cytoplasm due to the action of P-gp. Combining liposomal bevacizumab with immunoliposomal DOX achieved the best tumor growth inhibition and the lowest toxicity. Tumor size decreased steadily within a 60-day observation period indicating a potential synergistic effect between DOX and bevacizumab through the targeted delivery. Our findings clearly indicate that tumor growth was significantly delayed in the combinational liposomal drug delivery group. This novel combinational therapy has great potential for the treatment of patients with HER2/MDR double positive breast cancer. PMID:28176940

  17. Magnetic nanoparticles as targeted delivery systems in oncology

    PubMed Central

    Prijic, Sara; Sersa, Gregor

    2011-01-01

    Background Many different types of nanoparticles, magnetic nanoparticles being just a category among them, offer exciting opportunities for technologies at the interfaces between chemistry, physics and biology. Some magnetic nanoparticles have already been utilized in clinical practice as contrast enhancing agents for magnetic resonance imaging (MRI). However, their physicochemical properties are constantly being improved upon also for other biological applications, such as magnetically-guided delivery systems for different therapeutics. By exposure of magnetic nanoparticles with attached therapeutics to an external magnetic field with appropriate characteristics, they are concentrated and retained at the preferred site which enables the targeted delivery of therapeutics to the desired spot. Conclusions The idea of binding chemotherapeutics to magnetic nanoparticles has been around for 30 years, however, no magnetic nanoparticles as delivery systems have yet been approved for clinical practice. Recently, binding of nucleic acids to magnetic nanoparticles has been demonstrated as a successful non-viral transfection method of different cell lines in vitro. With the optimization of this method called magnetofection, it will hopefully become another form of gene delivery for the treatment of cancer. PMID:22933928

  18. Internalized compartments encapsulated nanogels for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen

    2016-04-01

    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The

  19. Tumor Targeting and Drug Delivery by Anthrax Toxin

    PubMed Central

    Bachran, Christopher; Leppla, Stephen H.

    2016-01-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery. PMID:27376328

  20. Nano-enhanced optical delivery into targeted cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wright, Weldon; Pradhan, Sanjay

    2016-03-01

    Nano-enhanced optical field of gold nanoparticles allowed the use of a continuous wave (cw) laser beam for efficient delivery of exogenous impermeable materials into targeted cells. Using this Nano-enhanced Optical Delivery (NOD) method, we show that large molecules could be delivered with low power cw laser with exposure time ~ 1sec. At such low power (and exposure), the non-targeted cells (not bound to gold nanoparticles) were not adversely affected by the laser beam. Further, by varying the size of the gold nanoparticles, cells could be exclusively sensitized to selective wavelengths of laser beam. In contrast other nanoparticles, gold nanoparticles were found to have lower cytotoxicity, making it better suited for clinical NOD. Further, as compared with pulsed lasers, cw (diode) lasers are compact, easy-to-use and therefore, NOD using cw laser beam has significant translational potential for delivery of impermeable bio-molecules to tissues in different organs. We will present optimization of NOD parameters for delivering different molecules to different cells. Success of this NOD method may lead to a new clinical approach for treating AMD and RP patients with geographic atrophy in retina.

  1. Cartilage-targeting drug delivery: can electrostatic interactions help?

    PubMed

    Bajpayee, Ambika G; Grodzinsky, Alan J

    2017-03-01

    Current intra-articular drug delivery methods do not guarantee sufficient drug penetration into cartilage tissue to reach cell and matrix targets at the concentrations necessary to elicit the desired biological response. Here, we provide our perspective on the utilization of charge-charge (electrostatic) interactions to enhance drug penetration and transport into cartilage, and to enable sustained binding of drugs within the tissue's highly negatively charged extracellular matrix. By coupling drugs to positively charged nanocarriers that have optimal size and charge, cartilage can be converted from a drug barrier into a drug reservoir for sustained intra-tissue delivery. Alternatively, a wide variety of drugs themselves can be made cartilage-penetrating by functionalizing them with specialized positively charged protein domains. Finally, we emphasize that appropriate animal models, with cartilage thickness similar to that of humans, must be used for the study of drug transport and retention in cartilage.

  2. Delivery and targeting of nanoparticles into hair follicles.

    PubMed

    Fang, Chia-Lang; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-01-01

    It has been demonstrated that nanoparticles used for follicular delivery provide some advantages over conventional pathways, including improved skin bioavailability, enhanced penetration depth, prolonged residence duration, fast transport into the skin and tissue targeting. This review describes recent developments using nanotechnology approaches for drug delivery into the follicles. Different types of nanosystems may be employed for management of follicular permeation, such as polymeric nanoparticles, metallic nanocrystals, liposomes, and lipid nanoparticles. This review systematically introduces the mechanisms of follicles for nanoparticulate penetration, highlighting the therapeutic potential of drug-loaded nanoparticles for treating skin diseases. Special attention is paid to the use of nanoparticles in treating appendage-related disorders, in particular, nanomedical strategies for treating alopecia, acne, and transcutaneous immunization.

  3. An in vitro demonstration of overcoming drug resistance in SKOV3 TR and MCF7 ADR with targeted delivery of polymer pro-drug conjugates.

    PubMed

    Bhattarai, Prashant; Vance, Dylan; Hatefi, Arash; Khaw, Ban An

    2017-01-05

    Drug resistance is a common phenomenon that occurs in cancer chemotherapy. Delivery of chemotherapeutic agents as polymer pro-drug conjugates (PPDCs) pretargeted with bispecific antibodies could circumvent drug resistance in cancer cells. To demonstrate this approach to overcome drug resistance, Paclitaxel (Ptxl)-resistant SKOV3 TR human ovarian- and doxorubicin (Dox)-resistant MCF7 ADR human mammary-carcinoma cell lines were used. Pre-targeting over-expressed biotin or HER2/neu receptors on cancer cells was conducted by biotinylated anti-DTPA or anti-HER2/neu affibody - anti-DTPA Fab bispecific antibody complexes. The targeting PPDCs are either D-Dox-PGA or D-Ptxl-PGA. Cytotoxicity studies demonstrate that the pretargeted approach increases cytotoxicity of Ptxl or Dox in SKOV3 TR or MCF7 ADR resistant cell lines by 5.4 and 27 times, respectively. Epifluorescent microscopy - used to track internalization of D-Dox-PGA and Dox in MCF7 ADR cells - shows that the pretargeted delivery of D-Dox-PGA resulted in a 2- to 4-fold increase in intracellular Dox concentration relative to treatment with free Dox. The mechanism of internalization of PPDCs is consistent with endocytosis. Enhanced drug delivery and intracellular retention following pretargeted delivery of PPDCs resulted in greater tumor cell toxicity in the current in vitro studies.

  4. Mesoporous silica nanoparticles in target drug delivery system: A review

    PubMed Central

    Bharti, Charu; Nagaich, Upendra; Pal, Ashok Kumar; Gulati, Neha

    2015-01-01

    Due to lack of specification and solubility of drug molecules, patients have to take high doses of the drug to achieve the desired therapeutic effects for the treatment of diseases. To solve these problems, there are various drug carriers present in the pharmaceuticals, which can used to deliver therapeutic agents to the target site in the body. Mesoporous silica materials become known as a promising candidate that can overcome above problems and produce effects in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles (MSNs) are widely used as a delivery reagent because silica possesses favorable chemical properties, thermal stability, and biocompatibility. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release of the target site. The properties of mesoporous, including pore size, high drug loading, and porosity as well as the surface properties, can be altered depending on additives used to prepare MSNs. Active surface enables functionalization to changed surface properties and link therapeutic molecules. They are used as widely in the field of diagnosis, target drug delivery, bio-sensing, cellular uptake, etc., in the bio-medical field. This review aims to present the state of knowledge of silica containing mesoporous nanoparticles and specific application in various biomedical fields. PMID:26258053

  5. An Efficient Targeted Drug Delivery through Apotransferrin Loaded Nanoparticles

    PubMed Central

    Kishore, Golla; Kondapi, Anand Kumar

    2009-01-01

    Background Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. Methodology/Principal Findings Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano) have diameters of 25–50 ηm, which increase to 60–80 ηm upon direct loading of drug (direct-nano), and showed further increase in dimension (75–95 ηm) in conjugated nanoparticles (conj-nano). The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a) localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus) (b) pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c) the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in regression

  6. Cancer nanomedicine: from targeted delivery to combination therapy.

    PubMed

    Xu, Xiaoyang; Ho, William; Zhang, Xueqing; Bertrand, Nicolas; Farokhzad, Omid

    2015-04-01

    The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of various diseases, including cancer. The unique properties of nanoparticles (NPs), such as large surface-to-volume ratio, small size, the ability to encapsulate various drugs, and tunable surface chemistry, give them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make NPs a mode of treatment potentially superior to conventional cancer therapies. This review highlights the most recent developments in cancer treatment using NPs as drug delivery vehicles, including promising opportunities in targeted and combination therapy.

  7. Modular Nanotransporters for Targeted Intracellular Delivery of Drugs: Folate Receptors as Potential Targets

    PubMed Central

    Slastnikova, Tatiana A.; Rosenkranz, Andrey A.; Zalutsky, Michael R.; Sobolev, Alexander S.

    2015-01-01

    The review is devoted to a subcellular drug delivery system, modular nanotransporters (MNT) that can penetrate into target cells and deliver a therapeutic into their subcellular compartments, particularly into the nucleus. The therapeutics which need such type of delivery belong to two groups: (i) those that exert their effect only when delivered into a certain cell compartment (like DNA delivered into the nucleus); and (ii) those drugs that are capable of exerting their effect in different parts of the cells, however there can be found a cell compartment that is the most sensitive to their effect. A particular interest attract such cytotoxic agents as Auger electron emitters which are known to be ineffective outside the cell nucleus, whereas they possess high cytotoxicity in the vicinity of nuclear DNA through the induction of non-reparable double-strand DNA breaks. The review discusses main approaches permitting to choose internalizable receptors permitting both recognition of target cells and penetration into them. Special interest attract folate receptors which become accessible to blood circulating therapeutics after malignant transformation or on activated macrophages which makes them an attractive target for both several oncological and inflammatory diseases, like atherosclerosis. In vitro and in vivo experiments demonstrated that MNT is a promising platform for targeted delivery of different therapeutics into the nuclei of target cells. PMID:25312738

  8. Targeted Intracellular Delivery of Proteins with Spatial and Temporal Control

    PubMed Central

    2015-01-01

    While a host of methods exist to deliver genetic materials or small molecules to cells, very few are available for protein delivery to the cytosol. We describe a modular, light-activated nanocarrier that transports proteins into cells by receptor-mediated endocytosis and delivers the cargo to the cytosol by light triggered endosomal escape. The platform is based on hollow gold nanoshells (HGN) with polyhistidine tagged proteins attached through an avidity-enhanced, nickel chelation linking layer; here, we used green fluorescent protein (GFP) as a model deliverable cargo. Endosomal uptake of the GFP loaded nanocarrier was mediated by a C-end Rule (CendR) internalizing peptide fused to the GFP. Focused femtosecond pulsed-laser excitation triggered protein release from the nanocarrier and endosome disruption, and the released protein was capable of targeting the nucleoli, a model intracellular organelle. We further demonstrate the generality of the approach by loading and releasing Sox2 and p53. This method for targeting of individual cells, with resolution similar to microinjection, provides spatial and temporal control over protein delivery. PMID:25490248

  9. Functionalized mesoporous silicon for targeted-drug-delivery.

    PubMed

    Tabasi, Ozra; Falamaki, Cavus; Khalaj, Zahra

    2012-10-01

    The present work concerns a preliminary step in the production of anticancer drug loaded porous silicon (PSi) for targeted-drug-delivery applications. A successful procedure for the covalent attachment of folic acid, polyethylene glycol (PEG) and doxorubicin to hydrophilic mesoporous silicon layers is presented. A systematic approach has been followed to obtain the optimal composition of the N,N'-dicyclohexylcarbodiimide (DCC)/N-hydroxysuccimide (NHS) in dimethylsulfoxide (DMSO) solution for the surface activation process of the undecylenic acid (UD) grafted molecules to take place with minimal undesired byproduct formation. The effect of reactant concentration and kind of solvent (aqueous or DMSO) on the attachment of folic acid to the activated PSi layer has been investigated. The covalent attachment of the doxorubicin molecules to the PSi layer functionalized with folic acid and PEG is discussed. The drug release kinetics as a function of pH has been studied. The functionalized PSi particles show a high cytotoxicity compared to the equivalent amount of free drug. Cell toxicity tests show clearly that the incorporation of folate molecules increases substantially the toxicity of the loaded PSi particles. Accordingly this new functionalized PSi may be considered a proper candidate for targeted drug delivery.

  10. Overexpression of microRNA-24 increases the sensitivity to paclitaxel in drug-resistant breast carcinoma cell lines via targeting ABCB9

    PubMed Central

    Gong, Jian-Ping; Yang, Liu; Tang, Jun-Wei; Sun, Peng; Hu, Qing; Qin, Jian-Wei; Xu, Xiao-Ming; Sun, Bei-Cheng; Tang, Jin-Hai

    2016-01-01

    Paclitaxel has been widely used in the treatment of breast cancer. However, the development of drug resistance often increases the failure of chemotherapy. Growing evidence has reported the significant role of microRNAs (miRs) in drug resistance. The present study identified that miR-24 was significantly downregulated in paclitaxel-resistant (PR) breast cancer patients and in MCF-7/PR human breast carcinoma cells, and that overexpression of miR-24 could increase the effect of paclitaxel on drug-resistant breast carcinoma cells. Furthermore, miR-24 could directly bind to the 3′-untranslated region of ATP binding cassette B9 to downregulate its expression, thereby reducing drug transportation and improving the anti-tumor effect of paclitaxel on breast cancer cells. In vivo experiments also demonstrated that overexpression of miR-24 could increase the sensitivity of drug-resistant MCF-7 cells to paclitaxel. In conclusion, the present results suggested a novel function for miR-24 in reducing paclitaxel resistance in breast cancer, which may be of important clinical significance. PMID:27895747

  11. Targeted drug delivery and enhanced intracellular release using functionalized liposomes

    NASA Astrophysics Data System (ADS)

    Garg, Ashish

    The ability to target cancer cells using an appropriate drug delivery system can significantly reduce the associated side effects from cancer therapies and can help in improving the overall quality of life, post cancer survival. Integrin alpha5beta1 is expressed on several types of cancer cells, including colon cancer and plays an important role in tumor growth and metastasis. Thus, the ability to target the integrin alpha 5beta1 using an appropriate drug delivery nano-vector can significantly help in inhibiting tumor growth and reducing tumor metastasis. The work in this thesis focuses on designing and optimizing, functionalized stealth liposomes (liposomes covered with polyethylene glycol (PEG)) that specifically target the integrin alpha5beta1. The PEG provides a steric barrier allowing the liposomes to circulate in the blood for longer duration and the functionalizing moiety, PR_b peptide specifically recognizes and binds to integrin alpha5beta1 expressing cells. The work demonstrates that by optimizing the amount of PEG and PR_b on the liposomal interface, nano-vectors can be engineered that bind to CT26.WT colon cancer cells in a specific manner and internalize through alpha 5beta1-mediated endocytosis. To further improve the efficacy of the system, PR_b functionalized pH-sensitive stealth liposomes that exhibit triggered release under mild acidic conditions present in endocytotic vesicles were designed. The study showed that PR_b functionalized pH-sensitive stealth liposomes, undergo destabilization under mildly acidic conditions and incorporation of the PR_b peptide does not significantly affect the pH-sensitivity of the liposomes. PR_b functionalized pH-sensitive stealth liposomes bind to CT26.WT colon carcinoma cells that express integrin alpha5beta 1, undergo cellular internalization, and release their load intracellularly in a short period of time as compared to other formulations. PR_b-targeted pH-sensitive stealth liposomes encapsulating 5

  12. Optimization, in vitro cytotoxicity and penetration capability of deformable nanovesicles of paclitaxel for dermal chemotherapy in Kaposi sarcoma.

    PubMed

    Pathak, Kamla; Sharma, Vijay; Sharma, Meenu

    2016-11-01

    Although much research has been published on ways to overcome the low oral bioavailability of paclitaxel, exploration of novel drug delivery systems that can target paclitaxel deep in to the dermal areas in AIDS-related Kaposi sarcoma (KS) have not yet been reported. Our aim was to develop deformable nanovesicles of paclitaxel capable of being used in dermal chemotherapy, especially deep into the dermal areas of AIDS related KS. Deformable nanovesicular formulations (TS1-TS15) composed of soya lecithin and span80 were prepared by the rotary evaporation sonication method within the constraints of our Box-Behnken design. The formulations were subjected to vesicle characterization and ex vivo permeation. The optimized vesicular suspension was formulated as a gel and assessed for in vitro cytotoxicity and penetration characteristics by confocal laser scanning microscopy (CLSM). TS9 with vesicle size characteristics of 185.76 ± 2.15 nm, zeta potential of -23.2 mV, deformability index = 138.02 and cumulative drug permeation of 89.80 ± 1.84% was identified as the optimized formulation. TEM revealed spherical vesicles with firm boundaries that were stable at 4 °C. TS9 was developed as carbopol 934P gel (TG) and compared with the control gel (CG) made with the pure drug (paclitaxel). TG showed significantly higher (p < 0.05) in vitro drug permeation and flux compared to the CG. In vitro cytotoxicity study on KSY-1 cell lines revealed higher IC50 (≤17) for TS against IC50 ≤19 for TG. CLSM confirmed the penetrating potential of transfersomes via TG to the dermal layers of skin, the proposed target site. Conclusively, deformable nonovesicles of paclitaxel appear as a feasible alternative to the conventional formulations of paclitaxel in the management of AIDS-related KS.

  13. Targeted Delivery of Anticancer Agents via a Dual Function Nanocarrier with an Interfacial Drug-Interactive Motif

    PubMed Central

    2015-01-01

    We have developed a dual-function drug carrier, polyethylene glycol (PEG)-derivatized farnesylthiosalicylate (FTS). Here we report that incorporation of a drug-interactive motif (Fmoc) into PEG5k–FTS2 led to further improvement in both drug loading capacity and formulation stability. Doxorubicin (DOX) formulated in PEG5k–Fmoc–FTS2 showed sustained release kinetics slower than those of DOX loaded in PEG5k–FTS2. The maximum tolerated dose of DOX- or paclitaxel (PTX)-loaded PEG5k–Fmoc–FTS2 was significantly higher than that of the free drug. Pharmacokinetics and biodistribution studies showed that DOX/PEG5k–Fmoc–FTS2 mixed micelles were able to retain DOX in the bloodstream for a significant amount of time and efficiently deliver the drug to tumor sites. More importantly, drug (DOX or PTX)-loaded PEG5k–Fmoc–FTS2 led to superior antitumor activity over other treatments including drugs formulated in PEG5k–FTS2 in breast cancer and prostate cancer models. Our improved dual function carrier with a built-in drug-interactive motif represents a simple and effective system for targeted delivery of anticancer agents. PMID:25325795

  14. Advanced drug delivery and targeting technologies for the ocular diseases

    PubMed Central

    Barar, Jaleh; Aghanejad, Ayuob; Fathi, Marziyeh; Omidi, Yadollah

    2016-01-01

    Introduction: Ocular targeted therapy has enormously been advanced by implementation of new methods of drug delivery and targeting using implantable drug delivery systems (DDSs) or devices (DDDs), stimuli-responsive advanced biomaterials, multimodal nanomedicines, cell therapy modalities and medical bioMEMs. These technologies tackle several ocular diseases such as inflammation-based diseases (e.g., scleritis, keratitis, uveitis, iritis, conjunctivitis, chorioretinitis, choroiditis, retinitis, retinochoroiditis), ocular hypertension and neuropathy, age-related macular degeneration and mucopolysaccharidosis (MPS) due to accumulation of glycosaminoglycans (GAGs). Such therapies appear to provide ultimate treatments, even though much more effective, yet biocompatible, noninvasive therapies are needed to control some disabling ocular diseases/disorders. Methods: In the current study, we have reviewed and discussed recent advancements on ocular targeted therapies. Results: On the ground that the pharmacokinetic and pharmacodynamic analyses of ophthalmic drugs need special techniques, most of ocular DDSs/devices developments have been designed to localized therapy within the eye. Application of advanced DDSs such as Subconjunctival insert/implants (e.g., latanoprost implant, Gamunex-C), episcleral implant (e.g., LX201), cationic emulsions (e.g., Cationorm™, Vekacia™, Cyclokat™), intac/punctal plug DDSs (latanoprost punctal plug delivery system, L-PPDS), and intravitreal implants (I-vitaion™, NT-501, NT- 503, MicroPump, Thethadur, IB-20089 Verisome™, Cortiject, DE-102, Retisert™, Iluvein™ and Ozurdex™) have significantly improved the treatment of ocular diseases. However, most of these DDSs/devices are applied invasively and even need surgical procedures. Of these, use of de novo technologies such as advanced stimuli-responsive nanomaterials, multimodal nanosystems (NSs)/nanoconjugates (NCs), biomacromolecualr scaffolds, and bioengineered cell therapies

  15. Nanosized Drug Delivery Systems in Gastrointestinal Targeting: Interactions with Microbiota

    PubMed Central

    Karavolos, Michail; Holban, Alina

    2016-01-01

    The new age of nanotechnology has signaled a stream of entrepreneurial possibilities in various areas, form industry to medicine. Drug delivery has benefited the most by introducing nanostructured systems in the transport and controlled release of therapeutic molecules at targeted sites associated with a particular disease. As many nanosized particles reach the gastrointestinal tract by various means, their interactions with the molecular components of this highly active niche are intensively investigated. The well-characterized antimicrobial activities of numerous nanoparticles are currently being considered as a reliable and efficient alternative to the eminent world crisis in antimicrobial drug discovery. The interactions of nanosystems present in the gastrointestinal route with host microbiota is unavoidable; hence, a major research initiative is needed to explore the mechanisms and effects of these nanomaterials on microbiota and the impact that microbiota may have in the outcome of therapies entailing drug delivery nanosystems through the gastrointestinal route. These coordinated studies will provide novel techniques to replace or act synergistically with current technologies and help develop new treatments for major diseases via the discovery of unique antimicrobial molecules. PMID:27690060

  16. Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway.

    PubMed

    Cai, Jiangxia; Chen, Siying; Zhang, Weipeng; Zheng, Xiaowei; Hu, Sasa; Pang, Chengsen; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2014-10-15

    Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel. The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation. These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.

  17. Possibilities of acoustic thermometry for controlling targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Nemchenko, O. Yu.; Less, Yu. A.; Kazanskii, A. S.; Mansfel'd, A. D.

    2015-07-01

    Model acoustic thermometry experiments were conducted during heating of an aqueous liposome suspension. Heating was done to achieve the liposome phase transition temperature. At the moment of the phase transition, the thermal acoustic signal achieved a maximum and decreased, despite continued heating. During subsequent cooling of the suspension, when lipids again passed through the phase transition point, the thermal acoustic signal again increased, despite a reduction in temperature. This effect is related to an increase in ultrasound absorption by the liposome suspension at the moment of the lipid phase transition. The result shows that acoustic thermography can be used to control targeted delivery of drugs mixed in thermally sensitive liposomes, the integrity of which is violated during heating to the phase transition temperature.

  18. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel.

    PubMed

    Muntimadugu, Eameema; Kumar, Rajendra; Saladi, Shantikumar; Rafeeqi, Towseef Amin; Khan, Wahid

    2016-07-01

    This combinational therapy is mainly aimed for complete eradication of tumor by killing both cancer cells and cancer stem cells. Salinomycin (SLM) was targeted towards cancer stem cells whereas paclitaxel (PTX) was used to kill cancer cells. Drug loaded poly (lactic-co-glycolic acid) nanoparticles were prepared by emulsion solvent diffusion method using cationic stabilizer. Size of the nanoparticles (below 150nm) was determined by dynamic light scattering technique and transmission electron microscopy. In vitro release study confirmed the sustained release pattern of SLM and PTX from nanoparticles more than a month. Cytotoxicity studies on MCF-7 cells revealed the toxicity potential of nanoparticles over drug solutions. Hyaluronic acid (HA) was coated onto the surface of SLM nanoparticles for targeting CD44 receptors over expressed on cancer stem cells and they showed the highest cytotoxicity with minimum IC50 on breast cancer cells. Synergistic cytotoxic effect was also observed with combination of nanoparticles. Cell uptake studies were carried out using FITC loaded nanoparticles. These particles showed improved cellular uptake over FITC solution and HA coating further enhanced the effect by 1.5 folds. CD44 binding efficiency of nanoparticles was studied by staining MDA-MB-231 cells with anti CD44 human antibody and CD44(+) cells were enumerated using flow cytometry. CD44(+) cell count was drastically decreased when treated with HA coated SLM nanoparticles indicating their efficiency towards cancer stem cells. Combination of HA coated SLM nanoparticles and PTX nanoparticles showed the highest cytotoxicity against CD44(+) cells. Hence combinational therapy using conventional chemotherapeutic drug and cancer stem cell inhibitor could be a promising approach in overcoming cancer recurrence due to resistant cell population.

  19. Initial experience with paclitaxel-coated stents.

    PubMed

    Grube, Eberhard; Büllesfeld, Lutz

    2002-12-01

    Local delivery of immunosuppressive or antiproliferative agents using a drug-eluting stent is a new technology that is supposed to inhibit in-stent restenosis, thus providing a biological and mechanical solution. This technique is a very promising. To date, several agents have been used, including paclitaxel, QP-2, rapamycin, actinomycin D, dexamethason, tacrolimus, and everolimus. Several studies, published recently or still ongoing, have evaluated these drugs as to their release kinetics, effective dosage, safety in clinical practice, and benefit. These studies include: SCORE (paclitaxel derivative), TAXUS I-VI, ELUTES, ASPECT, DELIVER (paclitaxel), RAVEL, SIRIUS (sirolimus), ACTION (actinomycin), EVIDENT, PRESENT (tacrolimus), EMPEROR (dexamethason), and FUTURE (everolimus). Paclitaxel was one of the first stent-based antiproliferative agents under clinical investigation that provided profound inhibition of neointimal thickening depending on delivery duration and drug dosage. The randomized, multicenter SCORE trail (Quanam stent, paclitaxel-coated) enrolled 266 patients at 17 sites. At 6-month's follow-up, a drop of 83% in stent restenosis using the drug-eluting stent could be achieved (6.4% drug-eluting stent vs 36.9% control group), which was attributable to a remarkable decrease in intimal proliferation. Unfortunately, due to frequent stent thrombosis and side-branch occlusions, the reported 30-day MACE rate was 10.2%. The randomized TAXUS-I safety trial (BSC, NIRx, paclitaxel-coated) also demonstrated beneficial reduction of restenotic lesions at 6-month's follow-up (0% vs 10%) but was associated with the absence of thrombotic events presumably due to less drug dosage. The ongoing TAXUS II-VI trials are addressing additional insight regarding the efficacy of the TAXUS paclitaxel-eluting stent. ASPECT and ELUTES evaluated paclitaxel-coated stents (i.e., Cook and Supra G), including subgroups with different drug dosages. With respect to stent restenosis and

  20. Enhanced oral delivery of paclitaxel using acetylcysteine functionalized chitosan-vitamin E succinate nanomicelles based on a mucus bioadhesion and penetration mechanism.

    PubMed

    Lian, He; Zhang, Tianhong; Sun, Jin; Liu, Xiaohong; Ren, Guolian; Kou, Longfa; Zhang, Youxi; Han, Xiaopeng; Ding, Wenya; Ai, Xiaoyu; Wu, Chunnuan; Li, Lin; Wang, Yongjun; Sun, Yinghua; Wang, Siling; He, Zhonggui

    2013-09-03

    In addition to being a physiological protective barrier, the gastrointestinal mucosal membrane is also a primary obstacle that hinders the oral absorption of many therapeutic compounds, especially drugs with a poor permeability. In order to resolve this impasse, we have designed multifunctional nanomicelles based on the acetylcysteine functionalized chitosan-vitamin E succinate copolymer (CS-VES-NAC, CVN), which exhibit marked bioadhesion, possess the ability to penetrate mucus, and enhance the oral absorption of a hydrophobic drug with a poor penetrative profile, paclitaxel. The intestinal absorption (Ka = 0.38 ± 0.04 min(-1), Papp = 0.059 cm · min(-1)) of CVN nanomicelles was greatly improved (4.5-fold) in comparison with paclitaxel solution, and CLSM (confocal laser scanning microscope) pictures also showed not only enhanced adhesion to the intestinal surface but improved accumulation within intestinal villi. The in vivo pharmacokinetics indicated that the AUC0-t (586.37 ng/mL · h) of CVN nanomicelles was markedly enhanced compared with PTX solution. In summary, the novel multifunctional CVN nanomicelles appear to be a promising nanocarrier for insoluble and poorly permeable drugs due to their high bioadhesion and permeation-enhancing capability.

  1. Electrospun Nanofibers of Guar Galactomannan for Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Chu, Hsiao Mei Annie

    2011-12-01

    Guar galactomannan is a biodegradable polysaccharide used widely in the food industry but also in the cosmetics, pharmaceutical, oil drilling, textile and paper industries. Guar consists of a mannose backbone and galactose side groups that are both susceptible to enzyme degradation, a unique property that can be explored for targeted drug delivery especially since those enzymes are naturally secreted by the microflora in human colon. The present study can be divided into three parts. In the first part, we discuss ways to modify guar to produce nanofibers by electrospinning, a process that involves the application of an electric field to a polymer solution or melt to facilitate production of fibers in the sub-micron range. Nanofibers are currently being explored as the next generation of drug carriers due to its many advantages, none more important than the fact that nanofibers are on a size scale that is a fraction of a hair's width and have large surface-to-volume ratio. The incorporation and controlled release of nano-sized drugs is one way in which nanofibers are being utilized in drug delivery. In the second part of the study, we explore various methods to crosslink guar nanofibers as a means to promote water-resistance in a potential drug carrier. The scope and utility of water-resistant guar nanofibers can only be fully appreciated when subsequent drug release studies are carried out. To that end, the third part of our study focuses on understanding the kinetics and diffusion mechanisms of a model drug, Rhodamine B, through moderately-swelling (crosslinked) hydrogel nanofibers in comparison to rapidly-swelling (non-crosslinked) nanofibers. Along the way, our investigations led us to a novel electrospinning set-up that has a unique collector designed to capture aligned nanofibers. These aligned nanofiber bundles can then be twisted to hold them together like yarn. From a practical standpoint, these yarns are advantageous because they come freely suspended and

  2. A novel double-targeted nondrug delivery system for targeting cancer stem cells

    PubMed Central

    Qiao, Shupei; Zhao, Yufang; Geng, Shuai; Li, Yong; Hou, Xiaolu; Liu, Yi; Lin, Feng-Huei; Yao, Lifen; Tian, Weiming

    2016-01-01

    Instead of killing cancer stem cells (CSCs), the conventional chemotherapy used for cancer treatment promotes the enrichment of CSCs, which are responsible for tumor growth, metastasis, and recurrence. However, most therapeutic agents are only able to kill a small proportion of CSCs by targeting one or two cell surface markers or dysregulated CSC pathways, which are usually shared with normal stem cells (NSCs). In this study, we developed a novel nondrug delivery system for the dual targeting of CSCs by conjugating hyaluronic acid (HA) and grafting the doublecortin-like kinase 1 (DCLK1) monoclonal antibody to the surface of poly(ethylene glycol) (PEG)–poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which can specifically target CD44 receptors and the DCLK1 surface marker – the latter was shown to possess the capacity to distinguish between CSCSs and NSCs. The size and morphology of these NPs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). This was followed by studies of NP encapsulation efficiency and in vitro drug release properties. Then, the cytotoxicity of the NPs was tested via Cell Counting Kit-8 assay. Finally, the 4T1 CSCs were obtained from the alginate-based platform, which we developed as an in vitro tumor model. Tumor-bearing nude mice were used as in vivo models to systematically detect the ability of NPs to target CSCs. Our results showed that the DCLK1–HA–PEG–PLGA NPs exhibited a targeting effect toward CSCs both in vitro and in vivo. These findings have important implications for the rational design of drug delivery systems that target CSCs with high efficacy. PMID:27994463

  3. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis

    PubMed Central

    Soni, Maheshkumar P.; Shelkar, Nilakash; Gaikwad, Rajiv V.; Vanage, Geeta R.; Samad, Abdul; Devarajan, Padma V.

    2014-01-01

    Background: Buparvaquone (BPQ), a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES) organs. The present study investigates development of solid lipid nanoparticles (SLN) of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80°C). Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size <1.3. Differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and scanning electron microscope (SEM) study was performed on optimized formulation. Formulation was investigated for in vitro serum stability, hemolysis and cell uptake study. Pharmacokinetic and biodistribution study was performed in Holtzman rat. Results: Based on solubility in lipid; glyceryl monostearate (GMS) was selected for preparation of BPQ SLN. Batches of BPQ SLN were optimized for average particle size and entrapment efficiency at <100 mg solid content. A combination of Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4°C and 25°C. Low hemolytic potential (<8%) and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52%) uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed longer

  4. Chitosan coatings to control release and target tissues for therapeutic delivery.

    PubMed

    Jennings, Jessica Amber; Wells, Carlos Montez; McGraw, Gregory S; Velasquez Pulgarin, Diego A; Whitaker, Marsalas D; Pruitt, Reginald L; Bumgardner, Joel David

    2015-07-01

    The natural biopolymer chitosan has versatile applications in therapeutic delivery. Coating drug delivery matrices or biomaterials with chitosan offers several advantages in drug delivery, including control of drug release, slowing degradation rate and improving biocompatibility. Advanced uses of chitosan in coating form include targeting drug delivery vehicles to specific tissue as well as providing a stimulus-controlled release response. The present review summarizes the current applications of chitosan coatings in the context of different biomaterial delivery technologies, as well as future directions of chitosan coatings for drug delivery technologies under development.

  5. Local drug delivery - the early Berlin experience: single drug administration versus sustained release.

    PubMed

    Speck, Ulrich; Scheller, Bruno; Rutsch, Wolfgang; Laule, Michael; Stangl, Verena

    2011-05-01

    Our initial investigations into restenosis inhibition by local drug delivery were prompted by reports on an improved outcome of coronary interventions, including a lower rate of target lesion revascularisation, when the intervention was performed with an ionic instead of non-ionic contrast medium. Although this was not confirmed in an animal study, the short exposure of the vessel wall to paclitaxel dissolved in contrast agent or coated on balloons proved to be efficacious. A study comparing three methods of local drug delivery to the coronary artery in pigs indicated the following order of efficacy in inhibiting neointimal proliferation: paclitaxel-coated balloons > sirolimus-eluting stents, sustained drug release > paclitaxel in contrast medium. Cell culture experiments confirmed that cell proliferation can be inhibited by very short exposure to the drug. Shorter exposure times require higher drug concentrations. Effective paclitaxel concentrations in porcine arteries are achieved when the drug is dissolved in contrast medium or coated on balloons. Paclitaxel is an exceptional drug in that it stays in the treated tissue for a long time. This may explain the long-lasting efficacy of paclitaxel-coated balloons, but does not disprove the hypothesis that the agent blocks a process initiating long-lasting excessive neointimal proliferation, which occurs early after vessel injury.

  6. Transporter targeted gatifloxacin prodrugs: synthesis, permeability, and topical ocular delivery.

    PubMed

    Vooturi, Sunil K; Kadam, Rajendra S; Kompella, Uday B

    2012-11-05

    In this work, we aim to design and synthesize prodrugs of gatifloxacin targeting organic cation transporter (OCT), monocarboxylate transporter (MCT), and ATB (0, +) transporters and to identify a prodrug with enhanced delivery to the back of the eye. Dimethylamino-propyl, carboxy-propyl, and amino-propyl(2-methyl) derivatives of gatifloxacin (GFX), DMAP-GFX, CP-GFX, and APM-GFX, were designed and synthesized to target OCT, MCT, and ATB (0, +) transporters, respectively. An LC-MS method was developed to analyze drug and prodrug levels in various studies. Solubility and log D (pH 7.4) were measured for prodrugs and the parent drug. The permeability of the prodrugs was determined in the cornea, conjunctiva, and sclera-choroid-retinal pigment epitheluim (SCRPE) and compared with gatifloxacin using an Ussing chamber assembly. Permeability mechanisms were elucidated by determining the transport in the presence of transporter specific inhibitors. 1-Methyl-4-phenylpyridinium iodide (MPP+), nicotinic acid sodium salt, and α-methyl-DL-tryptophan were used to inhibit OCT, MCT, and ATB (0, +) transporters, respectively. A prodrug selected based on in vitro studies was administered as an eye drop to pigmented rabbits, and the delivery to various eye tissues including vitreous humor was compared with gatifloxacin dosing. DMAP-GFX exhibited 12.8-fold greater solubility than GFX. All prodrugs were more lipophilic, with the measured log D (pH 7.4) values ranging from 0.05 to 1.04, when compared to GFX (log D: -1.15). DMAP-GFX showed 1.4-, 1.8-, and 1.9-fold improvement in permeability across the cornea, conjunctiva, and SCRPE when compared to GFX. Moreover, it exhibited reduced permeability in the presence of MPP+ (competitive inhibitor of OCT), indicating OCT-mediated transport. CP-GFX showed 1.2-, 2.3-, and 2.5-fold improvement in permeability across the cornea, conjunctiva, and SCRPE, respectively. In the presence of nicotinic acid (competitive inhibitor of MCT), the

  7. Mucoadhesive platforms for targeted delivery to the colon.

    PubMed

    Varum, Felipe J O; Veiga, Francisco; Sousa, João S; Basit, Abdul W

    2011-11-25

    A novel platform system, comprising a mucoadhesive core and a rapid release carrier, was designed for targeted drug delivery to the colon. Prednisolone pellets containing different carbomers, including Carbopol 971P, Carbopol 974P and Polycarbophil AA-1, with or without organic acids, were produced by extrusion-spheronization. Mucoadhesive pellets were coated with a new enteric double-coating system, which dissolves at pH 7. This system comprises an inner layer of partially neutralized Eudragit S and buffer salt and an outer coating of standard Eudragit S. A single layer of standard Eudragit S was also applied for comparison purposes. Dissolution of the coated pellets was assessed in USP II apparatus in 0.1N HCl followed by Krebs bicarbonate buffer pH 7.4. Visualization of the coating dissolution process was performed by confocal laser scanning microscopy using fluorescent markers in both layers. The mucoadhesive properties of uncoated, single-coated and-double coated pellets were evaluated ex vivo on porcine colonic mucosa. Mucoadhesive pellets coated with a single layer of Eudragit S release its cargo after a lag time of 120 min in Krebs buffer. In contrast, drug release from the double-coated mucoadhesive pellets was significantly accelerated, starting at 75 min. In addition, the mucoadhesive properties of the core of the double coated pellets were higher than those from single-coated pellets after the core had been exposed to the buffer medium. This novel platform technology has the potential to target the colon and overcome the variability in transit and harmonize drug release and bioavailability.

  8. Modern prodrug design for targeted oral drug delivery.

    PubMed

    Dahan, Arik; Zimmermann, Ellen M; Ben-Shabat, Shimon

    2014-10-14

    The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options.

  9. Long Circulating Lectin Conjugated Paclitaxel Loaded Magnetic Nanoparticles: A New Theranostic Avenue for Leukemia Therapy

    PubMed Central

    Singh, Abhalaxmi; Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2011-01-01

    Amongst all leukemias, Bcr-Abl positive chronic myelogenous leukemia (CML) confers resistance to native drug due to multi drug resistance and also resistance to p53 and fas ligand pathways. In the present study, we have investigated the efficacy of microtubule stabilizing paclitaxel loaded magnetic nanoparticles (pac-MNPs) to ascertain its cytotoxic effect on Bcr-Abl positive K562 cells. For active targeted therapy, pac-MNPs were functionalized with lectin glycoprotein which resulted in higher cellular uptake and lower IC50 value suggesting the efficacy of targeted delivery of paclitaxel. Both pac-MNPs and lectin conjugated pac-MNPs have a prolonged circulation time in serum suggesting increased bioavailability and therapeutics index of paclitaxel in vivo. Further, the molecular mechanism pertaining to pac-induced cytotoxicity was analyzed by studying the involvement of different apoptotic pathway proteins by immunoblotting and quantitative PCR. Our study revealed simultaneous activation of JNK pathway leading to Bcr-Abl instability and the extrinsic apoptotic pathway after pac-MNPs treatment in two Bcr-Abl positive cell lines. In addition, the MRI data suggested the potential application of MNPs as imaging agent. Thus our in vitro and in vivo results strongly suggested the pac-MNPs as a future prospective theranostic tool for leukemia therapy. PMID:22110595

  10. Development and Evaluation of Transferrin-Stabilized Paclitaxel Nanocrystal Formulation

    PubMed Central

    Lu, Ying; Wang, Zhao-hui; Li, Tonglei; McNally, Helen; Park, Kinam; Sturek, Michael

    2014-01-01

    The aim of the present study was to prepare and evaluate a paclitaxel nanocrystal-based formulation stabilized by serum protein transferrin in a non-covalent manner. The pure paclitaxel nanocrystals were first prepared using an antisolvent precipitation method augmented by sonication. The serum protein transferrin was selected for use after evaluating the stabilizing effect of several serum proteins including albumin and immunoglobulin G. The formulation contained approximately 55~60% drug and was stable for at least 3 months at 4 °C. In vivo antitumor efficacy studies using mice inoculated with KB cells demonstrate significantly higher tumor inhibition rate of 45.1% for paclitaxel-transferrin formulation compared to 28.8% for paclitaxel nanosuspension treatment alone. Interestingly, the Taxol® formulation showed higher antitumor activity than the paclitaxel-transferrin formulation, achieving a 93.3% tumor inhibition rate 12 days post initial dosing. However, the paclitaxel-transferrin formulation showed a lower level of toxicity, which is indicated by steady increase in body weight of mice over the treatment period. In comparison, treatment with Taxol® resulted in toxicity issues as body weight decreased. These results suggest the potential benefit of using a serum protein in a non-covalent manner in conjunction with paclitaxel nanocrystals as a promising drug delivery model for anticancer therapy. PMID:24378441

  11. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.

  12. Polymeric Micelles for Delivery of Poorly Soluble Drugs: Preparation and Anticancer Activity In Vitro of Paclitaxel Incorporated into Mixed Micelles Based on Poly(ethylene Glycol)-Lipid Conjugate and Positively Charged Lipids

    PubMed Central

    WANG, JUNPING; MONGAYT, DIMITRY; TORCHILIN, VLADIMIR P.

    2006-01-01

    Paclitaxel-loaded mixed polymeric micelles consisting of poly(ethylene glycol)-distearoyl phosphoethanolamine conjugates (PEG-PE), solid triglycerides (ST), and cationic Lipofectin® lipids (LL) have been prepared. Micelles with the optimized composition (PEG-PE/ST/LL/paclitaxel = 12/12/2/1 by weight) had an average micelle size of about 100 nm, and zeta-potential of about 26 mV. Micelles were stable and did not release paclitaxel when stored at 4°C in the darkness (just 2.9% of paclitaxel have been lost after 4 months with the particle size remaining unchanged). The release of paclitaxel from such micelles at room temperature was also insignificant. However, at 37°C, approx. 16% of paclitaxel was released from PEG-PE/ST/LL/paclitaxel micelles in 72 h, probably, because of phase transition in the ST-containing micelle core. In vitro anticancer effects of PEG-PE/ST/LL/paclitaxel and control micelles were evaluated using human mammary adenocarcinoma (BT-20) and human ovarian carcinoma (A2780) cell lines. Paclitaxel in PEG-PE/ST/LL micelles demonstrated the maximum anti-cancer activity. Cellular uptake of fluorescently-labeled paclitaxel-containing micelles by BT-20 cells was investigated using a fluorescence microscopy. It seems that PEG-PE/ST/LL micelles, unlike micelles without the LL component, could escape from endosomes and enter the cytoplasm of BT-20 cancer cells thus increasing the anticancer efficiency of the micellar paclitaxel. PMID:15848957

  13. Microemulsion-based drug delivery system for transnasal delivery of Carbamazepine: preliminary brain-targeting study.

    PubMed

    Patel, Rashmin Bharatbhai; Patel, Mrunali Rashmin; Bhatt, Kashyap K; Patel, Bharat G; Gaikwad, Rajiv V

    2016-01-01

    This study reports the development and evaluation of Carbamazepine (CMP)-loaded microemulsions (CMPME) for intranasal delivery in the treatment of epilepsy. The CMPME was prepared by the spontaneous emulsification method and characterized for physicochemical parameters. All formulations were radiolabeled with (99m)Tc (technetium) and biodistribution of CMP in the brain was investigated using Swiss albino rats. Brain scintigraphy imaging in rats was also performed to determine the uptake of the CMP into the brain. CMPME were found crystal clear and stable with average globule size of 34.11 ± 1.41 nm. (99m)Tc-labeled CMP solution (CMPS)/CMPME/CMP mucoadhesive microemulsion (CMPMME) were found to be stable and suitable for in vivo studies. Brain/blood ratio at all sampling points up to 8 h following intranasal administration of CMPMME compared to intravenous CMPME was found to be 2- to 3-fold higher signifying larger extent of distribution of the CMP in brain. Drug targeting efficiency and direct drug transport were found to be highest for CMPMME post-intranasal administration compared to intravenous CMP. Rat brain scintigraphy also demonstrated higher intranasal uptake of the CMP into the brain. This investigation demonstrates a prompt and larger extent of transport of CMP into the brain through intranasal CMPMME, which may prove beneficial for treatment of epilepsy.

  14. Development of a successive targeting liposome with multi-ligand for efficient targeting gene delivery

    PubMed Central

    Ma, Kun; Shen, Haijun; Shen, Song; Xie, Men; Mao, Chuanbin; Qiu, Liyan; Jin, Yi

    2012-01-01

    Background A successful gene delivery system needs to breakthrough several barriers to allow efficient transgenic expression. In the present study, successive targeting liposomes (STL) were constructed by integrating various targeting groups into a nanoparticle to address this issue. Methods Polyethylenimine (PEI) 1800-triamcinolone acetonide (TA) with nuclear targeting capability was synthesized by a two-step reaction. Lactobionic acid was connected with cholesterol to obtain a compound of [(2-lactoylamido) ethylamino]formic acid cholesterol ester (CHEDLA) with hepatocyte-targeting capability. The liposome was modified with PEI 1800-TA and CHEDLA to prepare successive targeting liposome (STL). Its physicochemical properties and transfection efficiency were investigated both in vitro and in vivo. Results The diameter of STL was approximately 100 nm with 20 mV of potential. The confocal microscopy observation and potential assay verified that lipid bilayer of STL was decorated with PEI 1800-TA. Cytotoxicity of STL was significantly lower than that of PEI 1800-TA and PEI 25K. The transfection efficiency of 10% CHEDLA STL in HepG2 cells was the higher than of the latter two with serum. Its transfection efficiency was greatly reduced with excessive free galactose, indicating that STL was absorbed via galactose receptor-mediated endocytosis. The in vivo study in mice showed that 10% CHEDLA STL had better transgenic expression in liver than the other carriers. Conclusions STL with multi-ligand was able to overcome the various barriers to target nucleus and special cells and present distinctive transgenic expression. Therefore, it has a great potential for gene therapy as a nonviral carrier. PMID:21574214

  15. A stabilized peptide ligand for multifunctional glioma targeted drug delivery.

    PubMed

    Ying, Man; Shen, Qing; Zhan, Changyou; Wei, Xiaoli; Gao, Jie; Xie, Cao; Yao, Bingxin; Lu, Weiyue

    2016-12-10

    Peptide ligands consisting of l-amino acids are subject to proteolysis in vivo. When modified on the surface of nanocarriers, those peptide ligands would readily degrade and the targeting efficacy is significantly attenuated. It has received increasing scrutiny to design stable peptide ligands for targeted drug delivery. Here, we present the design of a stable peptide ligand by the formation of a head-to-tail amide bond as an example. Even though the linear l-peptide A7R (termed (L)A7R) can bind specifically to vascular endothelial growth factor receptor 2 (VEGFR2) and neuropilin-1 (NRP-1) that are overexpressed on glioma cells, neovasculature and glioma vasculogenic mimicry (VM), the tumor-homing capacity of (L)A7R is greatly impaired in vivo due to proteolysis (e.g. in the serum). A cyclic A7R (cA7R) peptide was identified by computer-aided peptide design and synthesized with high yield by combining solid phase peptide synthesis and native chemical ligation. The binding of cA7R to both receptors was theoretically and experimentally assessed. In our simulated model hydrophobic and ionic interactions dominated the binding of (L)A7R to receptors. It is very interesting that cA7R adopting a different structure from (L)A7R retained high binding affinities to receptors without affecting the hydrophobic and ionic interactions. After head-to-tail cyclization by the formation of an amide bond, cA7R exhibited exceptional stability in mouse serum. Either cA7R or (L)A7R was conjugated on the surface of doxorubicin (DOX) loaded liposomes (cA7R-LS/DOX or (L)A7R-LS/DOX). The results of in vitro cellular assays indicated that cA7R-LS/DOX not only displayed stronger anti-proliferative effect against glioma cells, but also demonstrated to be more efficient in destruction of VM and HUVEC tubes in comparison to (L)A7R-LS/DOX and plain liposomes (LS/DOX, without peptide conjugation). cA7R conjugation could achieve significantly higher accumulation of liposomes in glioma than did (L

  16. Dual responsive PNIPAM-chitosan targeted magnetic nanopolymers for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yadavalli, Tejabhiram; Ramasamy, Shivaraman; Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal; Chennakesavulu, Ramasamy

    2015-04-01

    A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation.

  17. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery

    PubMed Central

    Pan, Dipanjan; Pham, Christine TN; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

    2016-01-01

    Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a ‘magic bullet’ to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a ‘Grail Quest’ by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made ‘made the turn’ toward meaningful translational success. PMID:26296541

  18. Synthesis and evaluation of airway targeted PLGA nanoparticles for drug delivery in obstructive lung diseases.

    PubMed

    Vij, Neeraj

    2012-01-01

    Chronic airway inflammation is a hallmark of chronic obstructive airway diseases, including asthma, COPD (chronic obstructive pulmonary disease), and CF (cystic fibrosis). It is also a major challenge in delivery and therapeutic efficacy of nano-based delivery systems in these chronic airway conditions as nanoparticle (NP) need to bypass airways defense mechanisms as we recently discussed. NPs which are capable of overcoming airways defense mechanisms should allow targeted drug delivery to disease cells. Over the last decade there has been increasing interest in development of targeted NPs for cancer but relatively little effort on designing novel systems for treating chronic inflammatory and obstructive airway conditions. Here we describe methods for preparing drug loaded multifunctional nanoparticles for targeted delivery to specific cell types in airways. The formulations and methods for selective drug delivery, discussed here are currently under preclinical development in our laboratory for treating chronic airway conditions such as COPD, CF, and asthma.

  19. Specific targeting delivery to MUC1 overexpressing tumors by albumin-chitosan nanoparticles conjugated to DNA aptamer.

    PubMed

    Esfandyari-Manesh, Mehdi; Mohammadi, Ali; Atyabi, Fatemeh; Nabavi, Seyedeh Maryam; Ebrahimi, Seyedeh Masoumeh; Shahmoradi, Elnaz; Varnamkhasti, Behrang Shiri; Ghahremani, Mohammad Hossein; Dinarvand, Rassoul

    2016-12-30

    Chitosan-coated human serum albumin nanoparticles were functionalized by MUC1 aptamer to obtain a selective drug carrier toward cancers overexpressing MUC1. The negative charges of albumin nanoparticles were shifted to positive charges by surface modification with chitosan, and MUC1 was conjugated through an acrylate spacer. The cytotoxicity of targeted nanoparticles was significantly more than non-aptamer nanoparticles, and also the chitosan-coated nanoparticles had more cytotoxic effects than the negatively charged albumin nanoparticles. The IC50 of targeted nanoparticles was 28 and 26% of free paclitaxel in MCF7 and T47D cells at 48h, respectively. Confocal laser scanning electron microscopy showed that aptamer conjugation and positive charge increase the cellular uptake. 66% of paclitaxel was released within 32h, but 100% of drug was released at pH=5.5 (similar cancer cells). The paclitaxel plasma amount was at a good level of 17.6% at 2h for increasing the chance of cellular uptake.

  20. [Level of evidence for therapeutic drug monitoring for paclitaxel].

    PubMed

    Gerritsen-van Schieveen, Pauline; Royer, Bernard

    2010-01-01

    Paclitaxel is an anticancer drug which displays pharmacokinetic properties which can lead to therapeutic drug monitoring requirement. The most effective pharmacokinetic parameter seems to be the time during which the plasma concentration is over 0.05 micromol/L. However, this target needs to be validated with new weekly schedules of administration. These reasons lead to consider the level of evidence of therapeutic drug monitoring of paclitaxel as potentially useful.

  1. Multifunctional magnetic silica nanotubes for MR imaging and targeted drug delivery.

    PubMed

    Huang, Liang; Ao, Lijiao; Wang, Wei; Hu, Dehong; Sheng, Zonghai; Su, Wu

    2015-03-04

    A multifunctional drug delivery vehicle consisting of a tubular shaped silica host, a compact superparamagnetic iron oxide nanoparticle layer and a hyaluronic acid surface coating was developed as a theranostic platform, for in vivo MR imaging and magnetically guided/cancer targeted drug delivery.

  2. Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies

    PubMed Central

    Nie, Shufang; Hsiao, WL Wendy; Pan, Weisan; Yang, Zhijun

    2011-01-01

    Purpose To develop an in situ gel system comprising liposome-containing paclitaxel (PTX) dispersed within the thermoreversible gel (Pluronic® F127 gel) for controlled release and improved antitumor drug efficiency. Methods The dialysis membrane and membrane-less diffusion method were used to investigate the in vitro drug release behavior. Differential scanning calorimetry (DSC) thermal analysis was used to investigate the “micellization” and “sol/gel transition” process of in situ gel systems. In vitro cytotoxicity and drug uptake in KB cancer cells were determined by MTT, intercellular drug concentration, and fluorescence intensity assay. Results The in vitro release experiment performed with a dialysis membrane model showed that the liposomal gel exhibited the longest drug-release period compared with liposome, general gel, and commercial formulation Taxol®. This effect is presumably due to the increased viscosity of liposomal gel, which has the effect of creating a drug reservoir. Both drug and gel release from the in situ gel system operated under zero-order kinetics and showed a correlation of release of PTX with gel, indicating a predominating release mechanism of the erosion type. Dispersing liposomes into the gel replaced larger gel itself for achieving the same gel dissolution rate. Both the critical micelle temperature and the sol/gel temperature, detected by DSC thermal analysis, were shifted to lower temperatures by adding liposomes. The extent of the shifts depended on the amount of embedded liposomes. MTT assay and drug uptake studies showed that the treatment with PTX-loaded liposomal 18% Pluronic F127 yielded cytotoxicities, intercellular fluorescence intensity, and drug concentration in KB cells much higher than that of conventional liposome, while blank liposomal 18% Pluronic F127 gel was far less than the Cremophor EL® vehicle and empty liposomes. Conclusions A thermosensitive hydrogel with embedded liposome is a promising carrier for

  3. Cell-mediated Delivery and Targeted Erosion of Noncovalently Crosslinked Hydrogels

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2013-01-01

    A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin.

  4. [Targeted Delivery of Quantum Dots to HER2-Expressing Tumor Using Recombinant Antibodies].

    PubMed

    Balalaeva, I V; Zdobnova, T A; Sokolova, E A; Deyev, S M

    2015-01-01

    Targeted delivery of semiconductor quantum dots (Q Ds) to tumors overexpressing HER2 cancer marker has been. demonstrated on immunocompromised mice bearing human breast cancer xenografts. To obtain targeted QDs complexes we applied the approach based on the use of protein adaptor system, RNAase barnase and its inhibitor barstar. Specific binding to target cancer marker was achieved through bivalent fusion protein containing two fragments of4D5scFv recombinant antibody and a fragment of barnase. QDs were conjugated to barstar, and final assembly of targeted complexes was obtained through non-covalent specific interaction of barstar, attached to QD, and barnase, that is part of the recombinant targeting protein. The efficient delivery of QDs to HER2-expressing tumor demonstrates the possibilities and prospects of the approach for targeted delivery of nanoparticles to cancer cells in vivo as the way to improve the efficiency of diagnosis and promote development of therapies based on the use of nanoparticles.

  5. A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy

    DTIC Science & Technology

    2013-10-01

    TITLE: A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy PRINCIPAL...Drug Delivery Using Nanoparticles in Breast Cancer Diagnostics and Therapy 5a. CONTRACT NUMBER W81XWH-10-1-0767 5b. GRANT NUMBER 5c. PROGRAM...graduate and 3 undergraduate students from 7 departments at the Howard University have been trained in the use of nanoparticles as targeted drug

  6. Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis

    DTIC Science & Technology

    2015-12-01

    AWARD NUMBER: W81XWH-13-1-0495 TITLE: Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis 5b. GRANT...flow and thrombin concentration affect drug release. The proposed proof-of-concept experiments will validate our concept of platelet contraction

  7. Coupled Particulate and Continuum Model for Nanoparticle Targeted Delivery

    PubMed Central

    Tan, Jifu; Wang, Shunqiang; Yang, Jie; Liu, Yaling

    2013-01-01

    Prediction of nanoparticle (NP) distribution in a vasculature involves transport phenomena at various scales and is crucial for the evaluation of NP delivery efficiency. A combined particulate and continuum model is developed to model NP transport and delivery processes. In the particulate model ligand-receptor binding kinetics is coupled with Brownian dynamics to study NP binding on a microscale. An analytical formula is derived to link molecular level binding parameters to particulate level adhesion and detachment rates. The obtained NP adhesion rates are then coupled with a convection-diffusion-reaction model to study NP transport and delivery at macroscale. The binding results of the continuum model agree well with those from the particulate model. The effects of shear rate, particle size and vascular geometry on NP adhesion are investigated. Attachment rates predicted by the analytical formula also agree reasonably well with the experimental data reported in literature. The developed coupled model that links ligand-receptor binding dynamics to NP adhesion rate along with macroscale transport and delivery processes may serve as a faster evaluation and prediction tool to determine NP distribution in complex vascular networks. PMID:23729869

  8. Nanostructured lipid carriers and their current application in targeted drug delivery.

    PubMed

    Jaiswal, Piyush; Gidwani, Bina; Vyas, Amber

    2016-01-01

    In the last few decades, various drug-delivery technologies have emerged and a fascinating part of this has been the development of nanoscale drug delivery devices. Nanoparticles (NPs) and other colloidal drug-delivery systems modify the kinetics, drug distribution in the body and release profile of an associated drug. Nanostructured lipid carriers (NLCs) have been reported to be an alternative system to emulsions, liposomes, microparticles, solid lipid nanoparticles (SLNs) and their polymeric counterparts due to their numerous advantages. This paper basically reviews the types of NLCs, mechanism of skin penetration, stability related issues along with their production techniques, characterisation and applications towards targeted drug delivery.

  9. Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification.

    PubMed

    Mitra, Shouvik; Sasmal, Himadri Sekhar; Kundu, Tanay; Kandambeth, Sharath; Illath, Kavya; Díaz Díaz, David; Banerjee, Rahul

    2017-03-29

    Covalent organic nanosheets (CONs) have emerged as a new class of functional two-dimensional (2D) porous organic polymeric materials with a high accessible surface, diverse functionality, and chemical stability. They could become versatile candidates for targeted drug delivery. Despite their many advantages, there are limitations to their use for target specific drug delivery. We anticipated that these drawbacks could be overturned by judicious postsynthetic modification steps to use CONs for targeted drug delivery. The postsynthetic modification would not only produce the desired functionality, it would also help to exfoliate to CONs as well. In order to meet this requirement, we have developed a facile, salt-mediated synthesis of covalent organic frameworks (COFs) in the presence of p-toluenesulfonic acid (PTSA). The COFs were subjected to sequential postsynthetic modifications to yield functionalized targeted CONs for targeted delivery of 5-fluorouracil to breast cancer cells. This postsynthetic modification resulted in simultaneous chemical delamination and functionalization to targeted CONs. Targeted CONs showed sustained release of the drug to the cancer cells through receptor-mediated endocytosis, which led to cancer cell death via apoptosis. Considering the easy and facile COF synthesis, functionality based postsynthetic modifications, and chemical delamination to CONs for potential advantageous targeted drug delivery, this process can have a significant impact in biomedical applications.

  10. Protocells and their use for targeted delivery of multicomponent cargos to cancer cells

    DOEpatents

    Brinker, C Jeffrey; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L

    2015-03-31

    Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.

  11. Protocells and their use for targeted delivery of multicomponent cargos to cancer cells

    DOEpatents

    Brinker, Jeffrey C.; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S.; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L.

    2016-11-01

    Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.

  12. Targeted delivery of a poorly water-soluble compound to hair follicles using polymeric nanoparticle suspensions.

    PubMed

    Morgen, Michael; Lu, Guang Wei; Du, Daniel; Stehle, Randall; Lembke, Franz; Cervantes, Jessica; Ciotti, Susan; Haskell, Roy; Smithey, Dan; Haley, Kevin; Fan, Conglin

    2011-09-15

    This study explored the utility of topically applied polymeric nanoparticle suspensions to target delivery of poorly water-soluble drugs to hair follicles. Several formulations of amorphous drug/polymer nanoparticles were prepared from ethyl cellulose and UK-157,147 (systematic name (3S,4R)-[6-(3-hydroxyphenyl)sulfonyl]-2,2,3-trimethyl-4-(2-methyl-3-oxo-2,3-dihydropyridazin-6-yloxy)-3-chromanol), a potassium channel opener, using sodium glycocholate (NaGC) as a surface stabilizer. Nanoparticle suspensions were evaluated to determine if targeted drug delivery to sebaceous glands and hair follicles could be achieved. In in vitro testing with rabbit ear tissue, delivery of UK-157,147 to the follicles was demonstrated with limited distribution to the surrounding dermis. Delivery to hair follicles was also demonstrated in vivo, based on stimulation of hair growth in tests of 100-nm nanoparticles with a C3H mouse model. The nanoparticles were well-tolerated, with no visible skin irritation. In vivo tests of smaller nanoparticles with a hamster ear model also indicated targeted delivery to sebaceous glands. The nanoparticles released drug rapidly in in vitro nonsink dissolution tests and were stable in suspension for 3 months. The present results show selective drug delivery to the follicle by follicular transport of nanoparticles and rapid release of a poorly water-soluble drug. Thus, nanoparticles represent a promising approach for targeted topical delivery of low-solubility compounds to hair follicles.

  13. Preparation, characterization and in vitro release of Zein-pectin capsules for target delivery.

    PubMed

    Tang, Wai-Wa; Dong, Fangyuan; Wong, Ka-Hing; Wang, Yi

    2015-01-01

    Targeted drug delivery has been the interest of many researchers to improve drug efficiency and reduce side effects. Because of the potential toxicity and contamination problems of the current gelatin capsules, plant derived materials are selected for the developments of capsules for drug delivery systems. The objective of this work is to develop a target drug delivery system using zein and pectin. Different ratios of zein and pectin were used to achieve target delivery in stomach and small intestine. Zein-pectin capsule for colon-specific delivery was also developed. In vitro performance of zeinpectin capsules was examined and their structural morphology was characterized using scanning electron microscopy (SEM). Chemical interactions between zein and pectin were analyzed using Fourier transform infrared spectroscopy equipped with attenuated total reflectance (FTIR-ATR). Zein and pectin formed complex by hydrogen bonding. The swelling behavior of pectin was suppressed by zein in the zein-pectin interacted complex. By adjusting the ratio of zein to pectin, the drug release from the capsule in simulated gastric solution for 2 hours can be controlled in the range of 0% to 38%. Zein-pectin capsule for colon-specific delivery had no release in gastric and intestinal solutions while gradual release from zein-pectin capsule was observed in colonic solution, finally reaching about 80% release. Zein-pectin capsule has a potential in developing targeted drug delivery system.

  14. Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition

    PubMed Central

    Mohapatra, Bhopal; Luan, Haitao; Soni, Kruti; Zhang, Jinjin; Storck, Matthew A.; Feng, Dan; Bielecki, Timothy A.; Band, Vimla; Cohen, Samuel M.; Bronich, Tatiana K.; Band, Hamid

    2016-01-01

    Targeted delivery of anticancer drugs to tumor cells using monoclonal antibodies against oncogenic cell surface receptors is an emerging therapeutic strategy. These strategies include drugs directly conjugated to monoclonal antibodies through chemical linkers (Antibody-Drug Conjugates, ADCs) or those encapsulated within nanoparticles that in turn are conjugated to targeting antibodies (Antibody-Nanoparticle Conjugates, ANPs). The recent FDA approval of the ADC Trastuzumab-TDM1 (Kadcyla®; Genentech; San Francisco) for the treatment of ErbB2-overexpressing metastatic breast cancer patients has validated the strong potential of these strategies. Even though the activity of ANPs and ADCs is dependent on lysosomal traffic, the roles of the endocytic route traversed by the targeted receptor and of cancer cell-specific alterations in receptor dynamics on the efficiency of drug delivery have not been considered in these new targeted therapies. For example, constitutive association with the molecular chaperone HSP90 is thought to either retard ErbB2 endocytosis or to promote its recycling, traits undesirable for targeted therapy with ANPs and ADCs. HSP90 inhibitors are known to promote ErbB2 ubiquitination, targeting to lysosome and degradation. We therefore hypothesized that ErbB2-targeted drug delivery using Trastuzumab-conjugated nanoparticles could be significantly improved by HSP90 inhibitor-promoted lysosomal traffic of ErbB2. Studies reported here validate this hypothesis and demonstrate, both in vitro and in vivo, that HSP90 inhibition facilitates the intracellular delivery of Trastuzumab-conjugated ANPs carrying a model chemotherapeutic agent, Doxorubicin, specifically into ErbB2-overexpressing breast cancer cells, resulting in improved antitumor activity. These novel findings highlight the need to consider oncogene-specific alterations in receptor traffic in the design of targeted drug delivery strategies. We suggest that combination of agents that enhance

  15. Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition.

    PubMed

    Raja, Srikumar M; Desale, Swapnil S; Mohapatra, Bhopal; Luan, Haitao; Soni, Kruti; Zhang, Jinjin; Storck, Matthew A; Feng, Dan; Bielecki, Timothy A; Band, Vimla; Cohen, Samuel M; Bronich, Tatiana K; Band, Hamid

    2016-03-01

    Targeted delivery of anticancer drugs to tumor cells using monoclonal antibodies against oncogenic cell surface receptors is an emerging therapeutic strategy. These strategies include drugs directly conjugated to monoclonal antibodies through chemical linkers (Antibody-Drug Conjugates, ADCs) or those encapsulated within nanoparticles that in turn are conjugated to targeting antibodies (Antibody-Nanoparticle Conjugates, ANPs). The recent FDA approval of the ADC Trastuzumab-TDM1 (Kadcyla; Genentech; San Francisco) for the treatment of ErbB2-overexpressing metastatic breast cancer patients has validated the strong potential of these strategies. Even though the activity of ANPs and ADCs is dependent on lysosomal traffic, the roles of the endocytic route traversed by the targeted receptor and of cancer cell-specific alterations in receptor dynamics on the efficiency of drug delivery have not been considered in these new targeted therapies. For example, constitutive association with the molecular chaperone HSP90 is thought to either retard ErbB2 endocytosis or to promote its recycling, traits undesirable for targeted therapy with ANPs and ADCs. HSP90 inhibitors are known to promote ErbB2 ubiquitination, targeting to lysosome and degradation. We therefore hypothesized that ErbB2-targeted drug delivery using Trastuzumab-conjugated nanoparticles could be significantly improved by HSP90 inhibitor-promoted lysosomal traffic of ErbB2. Studies reported here validate this hypothesis and demonstrate, both in vitro and in vivo, that HSP90 inhibition facilitates the intracellular delivery of Trastuzumab-conjugated ANPs carrying a model chemotherapeutic agent, Doxorubicin, specifically into ErbB2-overexpressing breast cancer cells, resulting in improved antitumor activity. These novel findings highlight the need to consider oncogene-specific alterations in receptor traffic in the design of targeted drug delivery strategies. We suggest that combination of agents that enhance receptor

  16. Atomized paclitaxel liposome inhalation treatment of bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Zhou, Y; Zhu, W P; Cai, X J; Chen, M

    2016-04-07

    We sought to determine the efficacy of atomized paclitaxel liposome inhalation treatment of pulmonary fibrosis in a bleomycin-induced rat model. Forty male Sprague-Dawley rats were randomly divided into four groups: healthy control, pulmonary fibrosis without treatment, paclitaxel liposome inhalation-treated, and intravenous paclitaxel liposome-treated. Fibrosis was induced by bleomycin injection. A total of 20 mg/kg paclitaxel liposome was administered by inhalation every other day for a total of 10 doses. The intravenous group received 5 mg/kg paclitaxel liposome on days 1, 7, 14, and 21. We observed the general condition, weight change, survival index, and pathological changes in the lung tissue of the rats. Quantitative analysis of collagen types I and III and transforming growth factor (TGF)-β1 expression in the lungs was also performed. The paclitaxel liposome inhalation and intravenous delivery methods improved survival index and pulmonary fibrosis Ashcroft score, and decreased the thickness of the alveolar interval. No obvious difference was found between the two groups. Compared with the untreated group, paclitaxel liposome inhalation and intravenous injection significantly reduced the levels of collagen types I and III and TGF-β1 expression equally. In conclusion, atomized paclitaxel liposome inhalation protects against severe pulmonary fibrosis in a bleomycin-induced rat model. This delivery method has less systemic side effects and increased safety over intravenous injection.

  17. Exosomes for targeted siRNA delivery across biological barriers.

    PubMed

    El Andaloussi, Samir; Lakhal, Samira; Mäger, Imre; Wood, Matthew J A

    2013-03-01

    Using oligonucleotide-based drugs to modulate gene expression has opened a new avenue for drug discovery. In particular small interfering RNAs (siRNAs) are being rapidly recognized as promising therapeutic tools, but their poor bioavailability limits the full realization of their clinical potential. In recent years, cumulating evidence has emerged for the role of membrane vesicles, secreted by most cells and found in all body fluids, as key mediators of information transmission between cells. Importantly, a sub-group of these termed exosomes, have recently been shown to contain various RNA species and to mediate their horizontal transfer to neighbouring- or distant recipient cells. Here, we provide a brief overview on membrane vesicles and their role in exchange of genetic information. We also describe how these natural carriers of genetic material can be harnessed to overcome the obstacle of poor delivery and allow efficient systemic delivery of exogenous siRNA across biological barriers such as the blood-brain barrier.

  18. Nanomicellar carriers for targeted delivery of anticancer agents

    PubMed Central

    Zhang, Xiaolan; Huang, Yixian; Li, Song

    2014-01-01

    Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10–100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors’ recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers. PMID:24341817

  19. Time-controlled oral delivery systems for colon targeting.

    PubMed

    Gazzaniga, Andrea; Maroni, Alessandra; Sangalli, Maria Edvige; Zema, Lucia

    2006-09-01

    In recent years, many research efforts have been spent in the achievement of selective delivery of drugs into the colon following oral administration. Indeed, colonic release is regarded as a beneficial approach to the pharmacological treatment or prevention of widespread large bowel pathologies, such as inflammatory bowel disease and adenocarcinoma. In addition, it is extensively explored as a potential means of enhancing the oral bioavailability of peptides, proteins and other biotechnological molecules, which are known to be less prone to enzymatic degradation in the large, rather than in the small, intestine. Based on these premises, several formulation strategies have been attempted in pursuit of colonic release, chiefly including microflora-, pH-, pressure- and time-dependent delivery technologies. In particular, this review is focused on the main design features and release performances of time-controlled devices, which rely on the relative constancy that is observed in the small intestinal transit time of dosage forms.

  20. Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab With or Without Lapatinib

    PubMed Central

    Berry, Donald A.; Cirrincione, Constance T.; Barry, William T.; Pitcher, Brandelyn N.; Harris, Lyndsay N.; Ollila, David W.; Krop, Ian E.; Henry, Norah Lynn; Weckstein, Douglas J.; Anders, Carey K.; Singh, Baljit; Hoadley, Katherine A.; Iglesia, Michael; Cheang, Maggie Chon U.; Perou, Charles M.; Winer, Eric P.; Hudis, Clifford A.

    2016-01-01

    Purpose Dual human epidermal growth factor receptor 2 (HER2) targeting can increase pathologic complete response rates (pCRs) to neoadjuvant therapy and improve progression-free survival in metastatic disease. CALGB 40601 examined the impact of dual HER2 blockade consisting of trastuzumab and lapatinib added to paclitaxel, considering tumor and microenvironment molecular features. Patients and Methods Patients with stage II to III HER2-positive breast cancer underwent tumor biopsy followed by random assignment to paclitaxel plus trastuzumab alone (TH) or with the addition of lapatinib (THL) for 16 weeks before surgery. An investigational arm of paclitaxel plus lapatinib (TL) was closed early. The primary end point was pCR in the breast; correlative end points focused on molecular features identified by gene expression–based assays. Results Among 305 randomly assigned patients (THL, n = 118; TH, n = 120; TL, n = 67), the pCR rate was 56% (95% CI, 47% to 65%) with THL and 46% (95% CI, 37% to 55%) with TH (P = .13), with no effect of dual therapy in the hormone receptor–positive subset but a significant increase in pCR with dual therapy in those with hormone receptor–negative disease (P = .01). The tumors were molecularly heterogeneous by gene expression analysis using mRNA sequencing (mRNAseq). pCR rates significantly differed by intrinsic subtype (HER2 enriched, 70%; luminal A, 34%; luminal B, 36%; P < .001). In multivariable analysis treatment arm, intrinsic subtype, HER2 amplicon gene expression, p53 mutation signature, and immune cell signatures were independently associated with pCR. Post-treatment residual disease was largely luminal A (69%). Conclusion pCR to dual HER2-targeted therapy was not significantly higher than single HER2 targeting. Tissue analysis demonstrated a high degree of intertumoral heterogeneity with respect to both tumor genomics and tumor microenvironment that significantly affected pCR rates. These factors should be considered when

  1. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles.

    PubMed

    Gao, Yajie; Zhou, Yanxia; Zhao, Lei; Zhang, Chao; Li, Yushu; Li, Jinwen; Li, Xinru; Liu, Yan

    2015-09-01

    Cyclic RGDyK (cRGDyK)-conjugated pH-sensitive polymeric micelles were fabricated for targeted delivery of paclitaxel to prostate cancer cells based on pH-sensitive copolymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) (PEOz-PLA) and cRGDyK-PEOz-PLA to enhance antitumor efficacy. The prepared micelles with an average diameter of about 28nm exhibited rapid release behavior at endo/lysosome pH, effectively enhanced the cytotoxicity of paclitaxel to PC-3 cells by increasing the cellular uptake, which was correlated with integrin αvβ3 expression in tumor cells. The active targeting activity of the micelles was further confirmed by in vivo real time near-infrared fluorescence imaging in PC-3 tumor-bearing nude mice. Moreover, the active targeting and pH-sensitivity endowed cRGDyK-conjugated micelles with a higher antitumor effect in PC-3 xenograft-bearing nude mice compared with unmodified micelles and Taxol with negligible systemic toxicity. Therefore, these results suggested that cRGDyK-conjugated pH-sensitive polymeric micelles may be a promising delivery system for efficient delivery of anticancer drugs to treat integrin αvβ3-rich prostate cancers.

  2. Ultrasound-targeted HSVtk and Timp3 gene delivery for synergistically enhanced antitumor effects in hepatoma.

    PubMed

    Yu, B-F; Wu, J; Zhang, Y; Sung, H-W; Xie, J; Li, R-K

    2013-05-01

    Cancer gene therapy has great potential for decreasing tumor-induced mortality but has been clinically limited by non-targeted and insufficient gene transfer. We evaluated gene therapy targeting hepatocellular carcinoma (HCC) using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system and the tissue inhibitor of metalloproteinase 3 (Timp3) gene. Ultrasound-targeted microbubble destruction (UTMD) targeted gene delivery to the tumor tissue, and the α-fetoprotein promoter targeted HSVtk expression to the HCC cells. Human HepG2 cells transfected with the HSVtk or Timp3 gene demonstrated a reduction in cell viability by >40% compared with the vector control. Cell viability was further inhibited by over 50% with co-transfection of the genes. HepG2 cells were inoculated subcutaneously into athymic mice to induce tumors. UTMD-mediated delivery of HSVtk or Timp3 suppressed tumor growth by >45% and increased survival of tumor-bearing animals (P<0.01 vs vector control). Co-delivery of the genes resulted in a further 30% improvement in tumor suppression and significant extension of animal survival (P<0.01 vs vector control). Targeted gene delivery increased the number of apoptotic cells and decreased the vascular density of the tumors. Targeted co-delivery of the genes synergistically improved the antitumor effects and may provide an effective therapy for HCC.

  3. Novel targeted bladder drug-delivery systems: a review

    PubMed Central

    Zacchè, Martino Maria; Srikrishna, Sushma; Cardozo, Linda

    2015-01-01

    The objective of pharmaceutics is the development of drugs with increased efficacy and reduced side effects. Prolonged exposure of the diseased tissue to the drug is of crucial importance. Drug-delivery systems (DDSs) have been introduced to control rate, time, and place of release. Drugs can easily reach the bladder through a catheter, while systemically administered agents may undergo extensive metabolism. Continuous urine filling and subsequent washout hinder intravesical drug delivery (IDD). Moreover, the low permeability of the urothelium, also described as the bladder permeability barrier, poses a major challenge in the development of the IDD. DDSs increase bioavailability of drugs, therefore improving therapeutic effect and patient compliance. This review focuses on novel DDSs to treat bladder conditions such as overactive bladder, interstitial cystitis, bladder cancer, and recurrent urinary tract infections. The rationale and strategies for both systemic and local delivery methods are discussed, with emphasis on new formulations of well-known drugs (oxybutynin), nanocarriers, polymeric hydrogels, intravesical devices, encapsulated DDSs, and gene therapy. We give an overview of current and future prospects of DDSs for bladder disorders, including nanotechnology and gene therapy. PMID:26649286

  4. Novel targeted bladder drug-delivery systems: a review.

    PubMed

    Zacchè, Martino Maria; Srikrishna, Sushma; Cardozo, Linda

    2015-01-01

    The objective of pharmaceutics is the development of drugs with increased efficacy and reduced side effects. Prolonged exposure of the diseased tissue to the drug is of crucial importance. Drug-delivery systems (DDSs) have been introduced to control rate, time, and place of release. Drugs can easily reach the bladder through a catheter, while systemically administered agents may undergo extensive metabolism. Continuous urine filling and subsequent washout hinder intravesical drug delivery (IDD). Moreover, the low permeability of the urothelium, also described as the bladder permeability barrier, poses a major challenge in the development of the IDD. DDSs increase bioavailability of drugs, therefore improving therapeutic effect and patient compliance. This review focuses on novel DDSs to treat bladder conditions such as overactive bladder, interstitial cystitis, bladder cancer, and recurrent urinary tract infections. The rationale and strategies for both systemic and local delivery methods are discussed, with emphasis on new formulations of well-known drugs (oxybutynin), nanocarriers, polymeric hydrogels, intravesical devices, encapsulated DDSs, and gene therapy. We give an overview of current and future prospects of DDSs for bladder disorders, including nanotechnology and gene therapy.

  5. Molecularly imprinted polymeric micro- and nano-particles for the targeted delivery of active molecules.

    PubMed

    Gagliardi, Mariacristina; Mazzolai, Barbara

    2015-01-01

    Molecular imprinting (MI) represents a strategy to introduce a 'molecular memory' in a polymeric system obtaining materials with specific recognition properties. MI particles can be used as drug delivery systems providing a targeted release and thus reducing the side effects. The introduction of molecular recognition properties on a polymeric drug carrier represents a challenge in the development of targeted delivery systems to increase their efficiency. This review will summarize the limited number of drug delivery MI particles described in the literature along with an overview of potential solutions for a larger exploitation of MI particles as targeted drug delivery carriers. Molecularly imprinted drug carriers can be considered interesting candidates to significantly improve the efficiency of a controlled drug treatment.

  6. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    PubMed Central

    Jiang, Feng; Liu, Biao; Lu, Jun; Li, Fangfei; Li, Defang; Liang, Chao; Dang, Lei; Liu, Jin; He, Bing; Atik Badshah, Shaikh; Lu, Cheng; He, Xiaojuan; Guo, Baosheng; Zhang, Xiao-Bing; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2015-01-01

    Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems. PMID:26473828

  7. Computational design of nanoparticle drug delivery systems for selective targeting

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting

  8. Local delivery of nitric oxide: targeted delivery of therapeutics to bone and connective tissues

    PubMed Central

    Nichols, Scott P.; Storm, Wesley L.; Koh, Ahyeon; Schoenfisch, Mark H.

    2012-01-01

    Non-invasive treatment of injuries and disorders affecting bones and connective tissue is a significant challenge facing the medical community. A treatment route that has recently been proposed is nitric oxide (NO) therapy. Nitric oxide plays several roles in physiology with many conditions lacking adequate levels of NO. As NO is a radical, localized delivery via NO donors is essential to promoting biological activity. Herein, we review current literature related to therapeutic NO delivery in the treatment of bone, skin and tendon repair. PMID:22433782

  9. Sunitinib Plus Paclitaxel Versus Bevacizumab Plus Paclitaxel for First-Line Treatment of Patients With Advanced Breast Cancer: A Phase III, Randomized, Open-Label Trial

    PubMed Central

    Robert, Nicholas J.; Saleh, Mansoor N.; Paul, Devchand; Generali, Daniele; Gressot, Laurent; Copur, Mehmet S.; Brufsky, Adam M.; Minton, Susan E.; Giguere, Jeffrey K.; Smith, John W.; Richards, Paul D.; Gernhardt, Diana; Huang, Xin; Liau, Katherine F.; Kern, Kenneth A.; Davis, John

    2015-01-01

    Introduction A multicenter, open-label phase III study was conducted to test whether sunitinib plus paclitaxel prolongs progression-free survival (PFS) compared with bevacizumab plus paclitaxel as first-line treatment for patients with HER2− advanced breast cancer. Patients and Methods Patients with HER2− advanced breast cancer who were disease free for ≥ 12 months after adjuvant taxane treatment were randomized (1:1; planned enrollment 740 patients) to receive intravenous (I.V.) paclitaxel 90 mg/m2 every week for 3 weeks in 4-week cycles plus either sunitinib 25 to 37.5 mg every day or bevacizumab 10 mg/kg I.V. every 2 weeks. Results The trial was terminated early because of futility in reaching the primary endpoint as determined by the independent data monitoring committee during an interim futility analysis. At data cutoff, 242 patients had been randomized to sunitinib-paclitaxel and 243 patients to bevacizumab-paclitaxel. Median PFS was shorter with sunitinib-paclitaxel (7.4 vs. 9.2 months; hazard ratio [HR] 1.63 [95% confidence interval (CI), 1.18–2.25]; 1-sided P = .999). At a median follow-up of 8.1 months, with 79% of sunitinib-paclitaxel and 87% of bevacizumab-paclitaxel patients alive, overall survival analysis favored bevacizumab-paclitaxel (HR 1.82 [95% CI, 1.16–2.86]; 1-sided P = .996). The objective response rate was 32% in both arms, but median duration of response was shorter with sunitinib-paclitaxel (6.3 vs. 14.8 months). Bevacizumab-paclitaxel was better tolerated than sunitinib-paclitaxel. This was primarily due to a high frequency of grade 3/4, treatment-related neutropenia with sunitinib-paclitaxel (52%) precluding delivery of the prescribed doses of both drugs. Conclusion The sunitinib-paclitaxel regimen evaluated in this study was clinically inferior to the bevacizumab-paclitaxel regimen and is not a recommended treatment option for patients with advanced breast cancer. PMID:21569994

  10. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery

    PubMed Central

    Rajapaksa, Thejani E.; Stover-Hamer, Mary; Fernandez, Xiomara; Eckelhoefer, Holly A.; Lo, David D.

    2009-01-01

    Polymer-based microparticles are in clinical use mainly for their ability to provide controlled release of peptides and compounds, but they are also being explored for their potential to deliver vaccines and drugs as suspensions directly into mucosal sites. It is generally assumed that uptake is mediated by epithelial M cells, but this is often not directly measured. To study the potential for optimizing M cell uptake of polymer microparticles in vivo, we produced sub-micron size PLGA particles incorporating a recombinant protein. This recombinant protein was produced with or without a c-terminal peptide previously shown to have high affinity binding to Claudin 4, a protein associated with M cell endocytosis. While the PLGA nanoparticles incorporate the protein throughout the matrix, much of the protein was also displayed on the surface, allowing us to take advantage of the binding activity of the targeting peptide. Accordingly, we found that instillation of these nanoparticles into the nasal passages or stomach of mice was found to significantly enhance their uptake by upper airway and intestinal M cells. Our results suggest that a reasonably simple nanoparticle manufacture method can provide insight into developing an effective needle-free delivery system. PMID:19896996

  11. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodzinski, Alexandra; Guduru, Rakesh; Liang, Ping; Hadjikhani, Ali; Stewart, Tiffanie; Stimphil, Emmanuel; Runowicz, Carolyn; Cote, Richard; Altman, Norman; Datar, Ram; Khizroev, Sakhrat

    2016-02-01

    It is a challenge to eradicate tumor cells while sparing normal cells. We used magnetoelectric nanoparticles (MENs) to control drug delivery and release. The physics is due to electric-field interactions (i) between MENs and a drug and (ii) between drug-loaded MENs and cells. MENs distinguish cancer cells from normal cells through the membrane’s electric properties; cancer cells have a significantly smaller threshold field to induce electroporation. In vitro and in vivo studies (nude mice with SKOV-3 xenografts) showed that (i) drug (paclitaxel (PTX)) could be attached to MENs (30-nm CoFe2O4@BaTiO3 nanostructures) through surface functionalization to avoid its premature release, (ii) drug-loaded MENs could be delivered into cancer cells via application of a d.c. field (~100 Oe), and (iii) the drug could be released off MENs on demand via application of an a.c. field (~50 Oe, 100 Hz). The cell lysate content was measured with scanning probe microscopy and spectrophotometry. MENs and control ferromagnetic and polymer nanoparticles conjugated with HER2-neu antibodies, all loaded with PTX were weekly administrated intravenously. Only the mice treated with PTX-loaded MENs (15/200 μg) in a field for three months were completely cured, as confirmed through infrared imaging and post-euthanasia histology studies via energy-dispersive spectroscopy and immunohistochemistry.

  12. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles

    PubMed Central

    Rodzinski, Alexandra; Guduru, Rakesh; Liang, Ping; Hadjikhani, Ali; Stewart, Tiffanie; Stimphil, Emmanuel; Runowicz, Carolyn; Cote, Richard; Altman, Norman; Datar, Ram; Khizroev, Sakhrat

    2016-01-01

    It is a challenge to eradicate tumor cells while sparing normal cells. We used magnetoelectric nanoparticles (MENs) to control drug delivery and release. The physics is due to electric-field interactions (i) between MENs and a drug and (ii) between drug-loaded MENs and cells. MENs distinguish cancer cells from normal cells through the membrane’s electric properties; cancer cells have a significantly smaller threshold field to induce electroporation. In vitro and in vivo studies (nude mice with SKOV-3 xenografts) showed that (i) drug (paclitaxel (PTX)) could be attached to MENs (30-nm CoFe2O4@BaTiO3 nanostructures) through surface functionalization to avoid its premature release, (ii) drug-loaded MENs could be delivered into cancer cells via application of a d.c. field (~100 Oe), and (iii) the drug could be released off MENs on demand via application of an a.c. field (~50 Oe, 100 Hz). The cell lysate content was measured with scanning probe microscopy and spectrophotometry. MENs and control ferromagnetic and polymer nanoparticles conjugated with HER2-neu antibodies, all loaded with PTX were weekly administrated intravenously. Only the mice treated with PTX-loaded MENs (15/200 μg) in a field for three months were completely cured, as confirmed through infrared imaging and post-euthanasia histology studies via energy-dispersive spectroscopy and immunohistochemistry. PMID:26875783

  13. Targeting metastatic cancer from the inside: a new generation of targeted gene delivery vectors enables personalized cancer vaccination in situ.

    PubMed

    Gordon, Erlinda M; Levy, John P; Reed, Rebecca A; Petchpud, W Nina; Liu, Liqiong; Wendler, Carlan B; Hall, Frederick L

    2008-10-01

    The advent of pathotropic (disease-seeking) targeting technologies, combined with advanced gene delivery vectors, provides a unique opportunity for the systemic delivery of immunomodulatory cytokine genes to remote sites of cancer metastasis. When injected intravenously, such pathotropic nanoparticles seek out and accumulate selectively at sites of tumor invasion and neo-angiogenesis, resulting in enhanced gene delivery, and thus cytokine production, within the tumor nodules. Used in conjunction with a primary tumoricidal agent (e.g., Rexin-G) that exposes tumor neoantigens, the tumor-targeted immunotherapy vector is intended to promote the recruitment and activation of host immune cells into the metastastic site(s), thereby initiating cancer immunization in situ. In this study, we examine the feasibility of cytokine gene delivery to cancerous lesions in vivo using intravenously administered pathotropically targeted nanoparticles bearing the gene encoding granulocyte/macrophage colony-stimulating factor (GM-CSF; i.e., Reximmune-C). In vitro, transduction of target cancer cells with Reximmune-C resulted in the quantitative production of bioactive and immunoreactive GM-CSF protein. In tumor-bearing nude mice, intravenous infusions of Reximmune-C-induced GM-CSF production by transduced cancer cells and paracrine secretion of the cytokine within the tumor nodules, which promoted the recruitment of host mononuclear cells, including CD40+ B cells and CD86+ dendritic cells, into the tumors. With the first proofs of principle established in preclinical studies, we generated an optimized vector configuration for use in advanced clinical trial designs, and extended the feasibility studies to the clinic. Targeted delivery and localized expression of the GM-CSF transgene was confirmed in a patient with metastatic cancer, as was the recruitment of significant tumor-infiltrating lymphocytes (TILs). Taken together, these studies provide the first demonstrations of cytokine gene

  14. Nanovectors for Targeting and Delivery of Therapeutics to HER-2 NEU Positive Breast Cancer Cells

    DTIC Science & Technology

    2008-10-01

    targeted nanoparticles. The bivalent cyclic antibody mimic against Her-2 neu, (i.e. a peptide derived from the antigen-binding site of anti-Her-2...Guccione, S., Reisfeld, R. A., et al., Tumor regression by targeted gene delivery to the neovasculature. Science 296 (2002) 2404-2407. [14] Arap, W

  15. Advances toward More Efficient Targeted Delivery of Nanoparticles in Vivo: Understanding Interactions between Nanoparticles and Cells.

    PubMed

    Polo, Ester; Collado, Manuel; Pelaz, Beatriz; Del Pino, Pablo

    2017-03-07

    In this Perspective, we describe current challenges and recent advances in efficient delivery and targeting of nanoparticles in vivo. We discuss cancer therapy, nanoparticle-biomolecule interactions, nanoparticle trafficking in cells, and triggers and responses to nanoparticle-cell interactions. No matter which functionalization strategy to target cancer is chosen, passive or active targeting, more than 99% of the nanoparticles administered in vivo end up in the mononuclear phagocytic system, mainly sequestered by macrophages. Comprehensive studies, such as the one reported by MacParland et al. in this issue of ACS Nano, will help to close the gap between nanotechnology-based drug-delivery solutions and advanced medicinal products.

  16. Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery.

    PubMed

    Benoit, Danielle S W; Srinivasan, Selvi; Shubin, Andrew D; Stayton, Patrick S

    2011-07-11

    Receptor-mediated, cell-specific delivery of siRNA enables silencing of target genes in specific tissues, opening the door to powerful therapeutic options for a multitude of diseases. However, the development of delivery systems capable of targeted and effective siRNA delivery typically requires multiple steps and the use of sophisticated, orthogonal chemistries. Previously, we developed diblock copolymers consisting of dimethaminoethyl methacrylate-b-dimethylaminoethyl methacrylate-co-butyl methacrylate-co-propylacrylic acid as potent siRNA delivery systems that protect siRNA from enzymatic degradation and enable its cytosolic delivery through pH-responsive, endosomolytic behavior. (1, 2) These architectures were polymerized using a living radical polymerization method, specifically reversible addition-fragmentation chain transfer (RAFT) polymerization, which employs a chain transfer agent (CTA) to modulate the rate of reaction, resulting in polymers with low polydispersity and telechelic chain ends reflecting the chemistry of the CTA. Here we describe the straightforward, facile synthesis of a folate receptor-targeted diblock copolymer siRNA delivery system because the folate receptor is an attractive target for tumor-selective therapies as a result of its overexpression in a number of cancers. Specifically, we detail the de novo synthesis of a folate-functionalized CTA, use the folate-CTA for controlled polymerizations of diblock copolymers, and demonstrate efficient, specific cellular folate receptor interaction and in vitro gene knockdown using the folate-functionalized polymer.

  17. Dendritic polymer-based nanodevices for targeted drug delivery applications

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Gurdag, Sezen; Khandare, Jayant; Lieh-Lai, Mary

    2004-03-01

    Dendrimers and hyperbranched polymers are unimolecular micellar nanostructures, characterized by globular shape ( ˜ 20 nm) and large density of functional groups at periphery. The tailorable end groups make them ideal for conjugation with drugs, ligands, and imagining agents, making them an attractive molecular nanodevices for drug delivery. Compared to linear polymers and nanoparticles, these nanodevices enter cells rapidly, carrying drugs and delivering them inside cells. Performance of nanodevices prepared for asthma and cancer drug delivery will be discussed. Our conjugation procedure produced very high drug payloads. Dendritic polymer-drug conjugates were very effective in transporting methotrexate (a chemotherapy drug) into both sensitive (CCRF-CEM cell line) and resistant cell line (CEM-MTX). The conjugate nanodevice was 3 times more effective than free drug in the sensitive line, and 9 times more effective in the resistant cell line (based on IC50). The physics of cell entry and drug release from these nanodevices are being investigated. The conjugates appear to enter cells through endocytosis, with the rate of entry dependent on end-group, molecular weight, the pH of the medium, and the cancerous nature of the cells.

  18. Direct Cytoplasmic Delivery and Nuclear Targeting Delivery of HPMA-MT Conjugates in a Microtubules Dependent Fashion.

    PubMed

    Zhong, Jiaju; Zhu, Xi; Luo, Kui; Li, Lian; Tang, Manlin; Liu, Yanxi; Zhou, Zhou; Huang, Yuan

    2016-09-06

    As the hearts of tumor cells, the nucleus is the ultimate target of many chemotherapeutic agents and genes. However, nuclear drug delivery is always hampered by multiple intracellular obstacles, such as low efficiency of lysosome escape and insufficient nuclear trafficking. Herein, an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-based drug delivery system was designed, which could achieve direct cytoplasmic delivery by a nonendocytic pathway and transport into the nucleus in a microtubules dependent fashion. A special targeting peptide (MT), derived from an endogenic parathyroid hormone-related protein, was conjugated to the polymer backbone, which could accumulate into the nucleus a by microtubule-mediated pathway. The in vitro studies found that low temperature and NaN3 could not influence the cell internalization of the conjugates. Besides, no obvious overlay of the conjugates with lysosome demonstrated that the polymer conjugates could enter the tumor cell cytoplasm by a nonendocytic pathway, thus avoiding the drug degradation in the lysosome. Furthermore, after suppression of the microtubule dynamics with microtubule stabilizing docetaxel (DTX) and destabilizing nocodazole (Noc), the nuclear accumulation of polymeric conjugates was significantly inhibited. Living cells fluorescence recovery after photobleaching study found that the nuclear import rate of conjugates was 2-fold faster compared with the DTX and Noc treated groups. These results demonstrated that the conjugates transported into the nucleus in a microtubules dependent way. Therefore, in addition to direct cytoplasmic delivery, our peptide conjugated polymeric platform could simultaneously mediate nuclear drug accumulation, which may open a new path for further intracellular genes/peptides delivery.

  19. Targeted blood-to-brain drug delivery --10 key development criteria.

    PubMed

    Gaillard, Pieter J; Visser, Corine C; Appeldoorn, Chantal C M; Rip, Jaap

    2012-09-01

    Drug delivery to the brain remains challenging due to the presence of the blood-brain barrier. In this review, 10 key development criteria are presented that are important for successful drug development to treat CNS diseases by targeted drug delivery systems. Although several routes of delivery are being investigated, such as intranasal delivery, direct injections into the brain or CSF, and transient opening of the blood-brain barrier, the focus of this review is on physiological strategies aiming to target endogenous transport mechanisms. Examples from literature, focusing on targeted drug delivery systems that are being commercially developed, will be discussed to illustrate the 10 key development criteria. The first four criteria apply to the targeting of the blood-brain barrier: (1) a proven inherently safe receptor biology, (2) a safe and human applicable ligand, (3) receptor specific binding, and (4) applicable for acute and chronic indications. Next to an efficient and safe targeting strategy, as captured in key criteria 1 to 4, a favorable pharmacokinetic profile is also important (key criterion 5). With regard to the drug carriers, two criteria are important: (6) no modification of active ingredient and (7) able to carry various classes of molecules. The final three criteria apply to the development of a drug from lab to clinic: (8) low costs and straightforward manufacturing, (9) activity in all animal models, and (10) strong intellectual property (IP) protection. Adhering to these 10 key development criteria will allow for a successful brain drug development.

  20. Conceptual design report for the University of Rochester cryogenic target delivery system

    SciTech Connect

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. ); Bittner, D.N.; Hendricks, C.D. )

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  1. Conceptual design report for the University of Rochester cryogenic target delivery system

    SciTech Connect

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  2. ICS-283: a system for targeted intravenous delivery of siRNA.

    PubMed

    Schiffelers, Raymond M; Storm, Gert

    2006-05-01

    ICS-283 was developed within Intradigm Corporation as a system that is designed for the systemic delivery of therapeutic small interfering (siRNA) to sites of pathological angiogenesis. The non-viral siRNA delivery system is based on synthetic nanoparticles, known as Targe (Intradigm Corporation), which functions as a broad-platform technology to deliver siRNA to specific target cells in diseased tissues. The system is constructed to incorporate different functionalities that address critical needs for successful nucleic acid delivery. The TargeTran synthetic vector is a self-assembling, layered nanoparticle that protects and targets siRNA to specific cell types in pathological tissues. At present, ICS-283 is the only antiangiogenic siRNA delivery system that is designed for intravenous administration to treat angiogenesis-driven diseases.

  3. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems

    PubMed Central

    Wen, Ru; Umeano, Afoma C.; Francis, Lily; Sharma, Nivita; Tundup, Smanla; Dhar, Shanta

    2016-01-01

    Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease. PMID:27258316

  4. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.

    PubMed

    Habibi, Neda; Kamaly, Nazila; Memic, Adnan; Shafiee, Hadi

    2016-02-01

    Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ability to target molecular recognition sites. Furthermore, these self-assembled nanostructures could be designed with novel peptide motifs, making them stimuli-responsive and achieving triggered drug delivery at disease sites. The goal of this work is to present a comprehensive review of the most recent studies on self-assembled peptides with a focus on their "smart" activity for formation of targeted and responsive drug-delivery carriers.

  5. Colon Targeted Drug Delivery Systems: A Review on Primary and Novel Approaches

    PubMed Central

    Philip, Anil K.; Philip, Betty

    2010-01-01

    The colon is a site where both local and systemic delivery of drugs can take place. Local delivery allows topical treatment of inflammatory bowel disease. However, treatment can be made effective if the drugs can be targeted directly into the colon, thereby reducing the systemic side effects. This review, mainly compares the primary approaches for CDDS (Colon Specific Drug Delivery) namely prodrugs, pH and time dependent systems, and microbially triggered systems, which achieved limited success and had limitations as compared with newer CDDS namely pressure controlled colonic delivery capsules, CODESTM, and osmotic controlled drug delivery which are unique in terms of achieving in vivo site specificity, and feasibility of manufacturing process. PMID:22125706

  6. Cell-Mediated Delivery of Nanoparticles: Taking Advantage of Circulatory Cells to Target Nanoparticles

    PubMed Central

    Anselmo, Aaron C.; Mitragotri, Samir

    2014-01-01

    Cellular hitchhiking leverages the use of circulatory cells to enhance the biological outcome of nanoparticle drug delivery systems, which often suffer from poor circulation time and limited targeting. Cellular hitchhiking utilizes the natural abilities of circulatory cells to: (i) navigate the vasculature while avoiding immune system clearance, (ii) remain relatively inert until needed and (iii) perform specific functions, including nutrient delivery to tissues, clearance of pathogens, and immune system surveillance. A variety of synthetic nanoparticles attempt to mimic these functional attributes of circulatory cells for drug delivery purposes. By combining the advantages of circulatory cells and synthetic nanoparticles, many advanced drug delivery systems have been developed that adopt the concept of cellular hitchhiking. Here, we review the development and specific applications of cellular hitchhiking-based drug delivery systems. PMID:24747161

  7. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles.

    PubMed

    Zhen, Zipeng; Tang, Wei; Chuang, Yen-Jun; Todd, Trever; Zhang, Weizhong; Lin, Xin; Niu, Gang; Liu, Gang; Wang, Lianchun; Pan, Zhengwei; Chen, Xiaoyuan; Xie, Jin

    2014-06-24

    Delivery of nanoparticle drugs to tumors relies heavily on the enhanced permeability and retention (EPR) effect. While many consider the effect to be equally effective on all tumors, it varies drastically among the tumors' origins, stages, and organs, owing much to differences in vessel leakiness. Suboptimal EPR effect represents a major problem in the translation of nanomedicine to the clinic. In the present study, we introduce a photodynamic therapy (PDT)-based EPR enhancement technology. The method uses RGD-modified ferritin (RFRT) as "smart" carriers that site-specifically deliver (1)O2 to the tumor endothelium. The photodynamic stimulus can cause permeabilized tumor vessels that facilitate extravasation of nanoparticles at the sites. The method has proven to be safe, selective, and effective. Increased tumor uptake was observed with a wide range of nanoparticles by as much as 20.08-fold. It is expected that the methodology can find wide applications in the area of nanomedicine.

  8. A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy

    DTIC Science & Technology

    2012-10-01

    Yuan H, He R, Gao X, Jing L, Zhao F, et al. The strong MRI relaxivity of paramagnetic nanoparticles . J Phys Chem B 2008;112: 6288-91. 10. Shu CY...Delivery Using Nanoparticles In Breast Cancer Diagnosis and Therapy Paul C. Wang, Ph.D. Howard University Washington, DC 20059 15 September...undergraduate students from 6 departments at the Howard University have been trained in the use of nanoparticles as targeted drug delivery vehicles for

  9. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    PubMed Central

    Leach, John C.; Wang, Andrew; Ye, Kaiming; Jin, Sha

    2016-01-01

    The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA), was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox) was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells. PMID:26985893

  10. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review.

    PubMed

    Kanamala, Manju; Wilson, William R; Yang, Mimi; Palmer, Brian D; Wu, Zimei

    2016-04-01

    As the mainstay in the treatment of various cancers, chemotherapy plays a vital role, but still faces many challenges, such as poor tumour selectivity and multidrug resistance (MDR). Targeted drug delivery using nanotechnology has provided a new strategy for addressing the limitations of the conventional chemotherapy. In the last decade, the volume of research published in this area has increased tremendously, especially with functional nano drug delivery systems (nanocarriers). Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for improving therapeutic outcomes. Among the various stimuli, pH triggered delivery is regarded as the most general strategy, targeting the acidic extracellular microenvironment and intracellular organelles of solid tumours. In this review, we discuss recent advances in the development of pH-sensitive nanocarriers for tumour-targeted drug delivery. The review focuses on the chemical design of pH-sensitive biomaterials, which are used to fabricate nanocarriers for extracellular and/or intracellular tumour site-specific drug release. The pH-responsive biomaterials bring forth conformational changes in these nanocarriers through various mechanisms such as protonation, charge reversal or cleavage of a chemical bond, facilitating tumour specific cell uptake or drug release. A greater understanding of these mechanisms will help to design more efficient drug delivery systems to address the challenges encountered in conventional chemotherapy.

  11. Use of Single-Chain Antibody Derivatives for Targeted Drug Delivery

    PubMed Central

    Safdari, Yaghoub; Ahmadzadeh, Vahideh; Khalili, Masoumeh; Jaliani, Hossein Zarei; Zarei, Vahid; Erfani-Moghadam, Vahid

    2016-01-01

    Single-chain antibodies (scFvs), which contain only the variable domains of full-length antibodies, are relatively small molecules that can be used for selective drug delivery. In this review, we discuss how scFvs help improve the specificity and efficiency of drugs. Small interfering RNA (siRNA) delivery using scFv-drug fusion peptides, siRNA delivery using scFv-conjugated nanoparticles, targeted delivery using scFv-viral peptide-fusion proteins, use of scFv in fusion with cell-penetrating peptides for effective targeted drug delivery, scFv-mediated targeted delivery of inorganic nanoparticles, scFv-mediated increase of tumor killing activity of granulocytes, use of scFv for tumor imaging, site-directed conjugation of scFv molecules to drug carrier systems, use of scFv to relieve pain and use of scFv for increasing drug loading efficiency are among the topics that are discussed here. PMID:27249008

  12. Paclitaxel conjugated Fe3O4@LaF3:Ce3+,Tb3+ nanoparticles as bifunctional targeting carriers for Cancer theranostics application

    NASA Astrophysics Data System (ADS)

    Mangaiyarkarasi, Rajendiran; Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Aruna, Prakasarao; Ganesan, Singaravelu

    2016-02-01

    The bi-functional Chitosan functionalized magnetite doped luminescent rare earth nanoparticles (Fe3O4@LaF3: Ce3+,Tb3+/chi NPs) as a carrier of paclitaxel (PTX) drug was designed using a co-precipitation and facile direct precipitation method. The synthesized nanoparticles are spherical in shape with a typical diameter of 19-37 nm respectively. They are water soluble, super paramagnetic and biocompatible, in which the amino groups on the nanoparticles surface are used for the conjugation with an anticancer drug, paclitaxel. The nature of PTX binding with Fe3O4@LaF3: Ce3+,Tb3+/chi nanoparticles were studied using X-ray diffraction, vibrating sample magnetometer and scanning electron micrograph. The nature of interactions between PTX and Fe3O4@LaF3: Ce3+,Tb3+/chi NPs due to complex formation were conceded out by various spectroscopic methods viz., UV-visible, steady state and excited state fluorescence spectroscopy. The photo-physical characterization reveals that the adsorption and release of PTX from Fe3O4@LaF3:Tb3+/chi nanoparticles is quicker when compared with other nanoparticles and also confirms that this may be due to the hydrogen bond formation between the hydroxyl group of drug and amino group of nanoparticles respectively. The maximum loading capacity and entrapment efficiency of 83.69% and 80.51% were attained at a ratio of 5:8 of PTX and Fe3O4@LaF3: Ce3+,Tb3+/chi NPs respectively. In addition with that, antitumoral activity study of PTX conjugated Fe3O4@LaF3:Tb3+/chi nanoparticles exhibits increased cytotoxic effects on A549 lung cancer cell lines than that of unconjugated PTX.

  13. Targeted Delivery System of Nanobiomaterials in Anticancer Therapy: From Cells to Clinics

    PubMed Central

    Jin, Su-Eon; Jin, Hyo-Eon; Hong, Soon-Sun

    2014-01-01

    Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1–100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy. PMID:24672796

  14. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy

    PubMed Central

    Zhao, Yuekui; Tang, Shanshan; Guo, Jiamin; Alahdal, Murad; Cao, Shunxiu; Yang, Zhaocong; Zhang, Fangfang; Shen, Yumeng; Sun, Minjie; Mo, Ran; Zong, Li; Jin, Liang

    2017-01-01

    Poor antigenic presentation of tumor tissues and a lack of specific targets currently limit the success of nanoparticle delivery system. Cellular carrier technique has been recently explored extensively as a substitutive or supplement for traditional targeting delivery system. Here, we demonstrate the usage of mesenchymal stem cells (MSCs) loaded with doxorubicin containing polymer nanoparticles in pulmonary melanoma metastases therapy, as a modified technique of targeted delivery system. The characterizations of prepared nanoparticles and MSCs sensitivity to DOX and PLGA-DOX were measured. In vitro tumor tropism, and in vivo distributions of nanoparticles loaded MSCs were also investigated. The findings have demonstrated that, the modified system not only integrates the controlled-release property of nanoparticles but also exhibits tumor tropism and penetrative characteristics of MSCs. Furthermore, the in vitro and in vivo anti-tumor study has demonstrated that drug loaded MSCs had potent efficacy in lung melanoma metastases treatment. PMID:28303966

  15. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy.

    PubMed

    Zhao, Yuekui; Tang, Shanshan; Guo, Jiamin; Alahdal, Murad; Cao, Shunxiu; Yang, Zhaocong; Zhang, Fangfang; Shen, Yumeng; Sun, Minjie; Mo, Ran; Zong, Li; Jin, Liang

    2017-03-17

    Poor antigenic presentation of tumor tissues and a lack of specific targets currently limit the success of nanoparticle delivery system. Cellular carrier technique has been recently explored extensively as a substitutive or supplement for traditional targeting delivery system. Here, we demonstrate the usage of mesenchymal stem cells (MSCs) loaded with doxorubicin containing polymer nanoparticles in pulmonary melanoma metastases therapy, as a modified technique of targeted delivery system. The characterizations of prepared nanoparticles and MSCs sensitivity to DOX and PLGA-DOX were measured. In vitro tumor tropism, and in vivo distributions of nanoparticles loaded MSCs were also investigated. The findings have demonstrated that, the modified system not only integrates the controlled-release property of nanoparticles but also exhibits tumor tropism and penetrative characteristics of MSCs. Furthermore, the in vitro and in vivo anti-tumor study has demonstrated that drug loaded MSCs had potent efficacy in lung melanoma metastases treatment.

  16. Evaluation of biosafety and intracellular uptake of Cremophor EL free paclitaxel elastic liposomal formulation.

    PubMed

    Utreja, Puneet; Jain, Subheet; Tiwary, A K

    2012-01-01

    The present study examines the acute, sub-acute toxicity, and cytotoxicity of paclitaxel elastic liposomal formulation in comparison to a marketed Cremophor EL (polyoxyethylated castor oil):ethanol (1:1, v/v) based formulation. In the previous study, Cremophor EL free paclitaxel elastic liposomal formulation was developed and characterized. Cytotoxicity of formulation was evaluated by MTT assay using A549 cell lines. Percentage intracellular uptake of paclitaxel elastic liposomal and marketed formulation was determined using a fluorescence activating cell sorting assay (FACS) and fluorescence microscopy techniques. Single and repeated dose toxicity measurement showed no mortality, hematological, biochemical, or histopathological changes up to a dose of 120 mg/kg for paclitaxel elastic liposomal formulation, in comparison the marketed formulation showed toxicity at a dose of 40 mg/kg. Maximum tolerated dose (MTD) for paclitaxel elastic liposomal and marketed formulation was found to be 160 mg/kg and 40 mg/kg, respectively. Results of FACS analysis showed a 94.6 ± 2.5% intracellular uptake of fluorescence marker acridine orange (AO) loaded in elastic liposomes; in comparison the AO solution showed only a 19.8 ± 1.1% uptake. Paclitaxel elastic liposomal formulation seems to be a better alternative for safe and effective delivery of paclitaxel. This study proves the safety and higher intracellular uptake of paclitaxel elastic liposomal formulation.

  17. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery.

    PubMed

    Xu, Minghui; Qian, Junmin; Liu, Xuefeng; Liu, Ting; Wang, Hongjie

    2015-05-01

    In recent years, stimuli-sensitive prodrugs have been extensively studied for the rapid "burst" release of antitumor drugs to enhance chemotherapeutic efficiency. In this study, a novel stimuli-sensitive prodrug containing galactosamine as a targeting moiety, poly(ethylene glycol)-doxorubicin (PEG-DOX) conjugate, was developed for targeting HepG2 human liver cancer cells. To obtain the PEG-DOX conjugate, both galactosamine-decorated poly(ethylene glycol) aldehyde (Gal-PEG-CHO) and methoxy poly(ethylene glycol) aldehyde (mPEG-CHO) were firstly synthesized and functionalized with dithiodipropionate dihydrazide (TPH) through direct reductive amination via Schiff's base formation, and then DOX molecules were chemically conjugated to the hydrazide end groups of TPH-functionalized Gal-/m-PEG chains via pH-sensitive hydrazone linkages. The chemical structures of TPH-functionalized PEG and PEG-DOX prodrug were confirmed by (1)H NMR analysis. The PEG-DOX conjugate could self-assemble into spherical nanomicelles with a mean diameter of 140 nm, as indicated by transmission electron microscopy and dynamic light scattering. The drug loading content and loading efficiency in the prodrug nanomicelles were as high as 20 wt.% and 75 wt.%, respectively. In vitro drug release studies showed that DOX was released rapidly from the prodrug nanomicelles at the intracellular levels of pH and reducing agent. Cellular uptake and MTT experiments demonstrated that the galactosamine-decorated prodrug nanomicelles were more efficiently internalized into HepG2 cells via a receptor-mediated endocytosis process and exhibited a higher toxicity, compared with pristine prodrug nanomicelles. These results suggest that the novel Gal-PEG-DOX prodrug nanomicelles have tremendous potential for targeted liver cancer therapy.

  18. Hypoxia-sensitive, Multifunctional Nanoparticles for Targeted Drug Delivery to Breast Cancer

    DTIC Science & Technology

    2012-09-01

    of paclitaxel and lactone was dramatically increased over 36 hr as shown in Figure 3. The inclusion of sodium salicylate at a concentration of 0.8 M...maintained sink conditions during the release study. It has been known that sodium salicylate is able to increase paclitaxel solubility in aqueous...microenvironments would better evaluate the TMBQ-based polymer nanoparticles. The inclusion of sodium salicylate at a concentration of 80 mM maintained sink

  19. The application of carbon nanotubes in target drug delivery systems for cancer therapies

    PubMed Central

    2011-01-01

    Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies. PMID:21995320

  20. Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers

    PubMed Central

    Ashley, Carlee E.; Carnes, Eric C.; Epler, Katharine E.; Padilla, David P.; Phillips, Genevieve K.; Castillo, Robert E.; Wilkinson, Dan C.; Wilkinson, Brian S.; Burgard, Cameron A.; Sewell, Robin M.; Townson, Jason L.; Chackerian, Bryce; Willman, Cheryl L.; Peabody, David S.; Wharton, Walker; Brinker, C. Jeffrey

    2012-01-01

    The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid bilayers (or ‘protocells’), exhibit multiple properties that overcome many of the limitations of existing delivery platforms. Protocells have a 10- to 100-fold greater capacity for siRNA than corresponding lipid nanoparticles and are markedly more stable when incubated under physiological conditions. Protocells loaded with a cocktail of siRNAs bind to cells in a manner dependent on the presence of an appropriate targeting peptide and, through an endocytic pathway followed by endosomal disruption, promote delivery of the silencing nucleotides to the cytoplasm. The expression of each of the genes targeted by the siRNAs was shown to be repressed at the protein level, resulting in a potent induction of growth arrest and apoptosis. Incubation of control cells that lack expression of the antigen recognized by the targeting peptide with siRNA-loaded protocells induced neither repression of protein expression nor apoptosis, indicating the precise specificity of cytotoxic activity. In terms of loading capacity, targeting capabilities, and potency of action, protocells provide unique attributes as a delivery platform for therapeutic oligonucleotides. PMID:22309035

  1. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers.

    PubMed

    Ashley, Carlee E; Carnes, Eric C; Epler, Katharine E; Padilla, David P; Phillips, Genevieve K; Castillo, Robert E; Wilkinson, Dan C; Wilkinson, Brian S; Burgard, Cameron A; Kalinich, Robin M; Townson, Jason L; Chackerian, Bryce; Willman, Cheryl L; Peabody, David S; Wharton, Walker; Brinker, C Jeffrey

    2012-03-27

    The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid bilayers (or "protocells") exhibit multiple properties that overcome many of the limitations of existing delivery platforms. Protocells have a 10- to 100-fold greater capacity for siRNA than corresponding lipid nanoparticles and are markedly more stable when incubated under physiological conditions. Protocells loaded with a cocktail of siRNAs bind to cells in a manner dependent on the presence of an appropriate targeting peptide and, through an endocytic pathway followed by endosomal disruption, promote delivery of the silencing nucleotides to the cytoplasm. The expression of each of the genes targeted by the siRNAs was shown to be repressed at the protein level, resulting in a potent induction of growth arrest and apoptosis. Incubation of control cells that lack expression of the antigen recognized by the targeting peptide with siRNA-loaded protocells induced neither repression of protein expression nor apoptosis, indicating the precise specificity of cytotoxic activity. In terms of loading capacity, targeting capabilities, and potency of action, protocells provide unique attributes as a delivery platform for therapeutic oligonucleotides.

  2. Characterization of Magnetic Viral Complexes for Targeted Delivery in Oncology

    PubMed Central

    Almstätter, Isabella; Mykhaylyk, Olga; Settles, Marcus; Altomonte, Jennifer; Aichler, Michaela; Walch, Axel; Rummeny, Ernst J.; Ebert, Oliver; Plank, Christian; Braren, Rickmer

    2015-01-01

    Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2* relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2* compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy. PMID:25897333

  3. Laser-induced disruption of systemically administered liposomes for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Larabi, Malika; Shinde, Rajesh; Simanovskii, Dmitrii M.; Guccione, Samira; Contag, Christopher H.

    2009-07-01

    Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 °C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.

  4. Barriers to Liposomal Gene Delivery: from Application Site to the Target

    PubMed Central

    Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R

    2016-01-01

    Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review. PMID:28228799

  5. Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting.

    PubMed

    Mehra, Neelesh Kumar; Jain, Narendra Kumar

    2016-01-01

    Carbon nanotubes (CNTs) have emerged as an intriguing nanotechnological tool for numerous biomedical applications including biocompatible modules for the bioactives delivery ascribed to their unique properties, such as greater loading efficiency, biocompatibility, non-immunogenicity, high surface area and photoluminescence, that make them ideal candidate in pharmaceutical and biomedical science. The design of multifunctional hybrid-CNTs for drug delivery and targeting may differ from the conventional drug delivery system. The conventional nanocarriers have few limitations, such as inappropriate availability of surface-chemical functional groups for conjugation, low entrapment/loading efficiency as well as stability as per ICH guidelines with generally regarded as safe (GRAS) prominences. The multifunctional hybrid-CNTs will sparked and open a new door for researchers, scientist of the pharmaceutical and biomedical arena. This review summarizes the vivid aspects of CNTs like characterization, supramolecular chemistry of CNTs-dendrimer, CNTs-nanoparticles, CNTs-quantum dots conjugate for delivery of bioactives, not discussed so far.

  6. Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers

    NASA Astrophysics Data System (ADS)

    Qu, Qiuyu; Ma, Xing; Zhao, Yanli

    2015-10-01

    A lot of investigations have been conducted using mesoporous silica nanoparticles (MSNPs) functionalized with different targeting ligands in order to deliver various hydrophobic and hydrophilic drugs to targeted cancer cells. However, the utilization of MSNPs to deliver drug molecules to targeted subcellular organelles has been rarely reported. In this work, we applied targeting ligand-conjugated MSNPs with an average diameter of 80 nm to deliver the anticancer drug doxorubicin (DOX) to mitochondria. Triphenoylphosphonium (TPP) was functionalized on MSNPs as a mitochondria targeting ligand. Mitochondria targeting efficiency was demonstrated in HeLa cells by a co-localization study of mitochondria and functionalized MSNPs as well as by fluorescence analysis in isolated mitochondria. In addition, enhanced cancer cell killing efficacy was achieved when using DOX-loaded and TPP-functionalized MSNPs for mitochondria-targeted delivery. Lowered adenosine triphosphate (ATP) production and decreased mitochondrial membrane potential were observed, demonstrating the mitochondria dysfunction caused by delivered DOX. The positive results indicate promising application potential of MSNPs in targeted subcellular drug delivery.A lot of investigations have been conducted using mesoporous silica nanoparticles (MSNPs) functionalized with different targeting ligands in order to deliver various hydrophobic and hydrophilic drugs to targeted cancer cells. However, the utilization of MSNPs to deliver drug molecules to targeted subcellular organelles has been rarely reported. In this work, we applied targeting ligand-conjugated MSNPs with an average diameter of 80 nm to deliver the anticancer drug doxorubicin (DOX) to mitochondria. Triphenoylphosphonium (TPP) was functionalized on MSNPs as a mitochondria targeting ligand. Mitochondria targeting efficiency was demonstrated in HeLa cells by a co-localization study of mitochondria and functionalized MSNPs as well as by fluorescence analysis

  7. Overcoming the stromal barrier for targeted delivery of HPMA copolymers to pancreatic tumors.

    PubMed

    Buckway, Brandon; Wang, Yongjian; Ray, Abhijit; Ghandehari, Hamidreza

    2013-11-01

    Delivery of macromolecules to pancreatic cancer is inhibited by a dense extracellular matrix composed of hyaluronic acid, smooth muscle actin and collagen fibers. Hyaluronic acid causes a high intratumoral fluidic pressure which prevents diffusion and penetration into the pancreatic tumor. This study involves the breaking down of hyaluronic acid by treating CAPAN-1 xenograft tumors in athymic nu/nu mice with targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers radiolabeled with (111)In for single photon emission computerized tomography (SPECT) imaging. Two targeting strategies were investigated including αvβ3 integrin and HER2 receptors. HPMA copolymers were targeted to these receptors by conjugating short peptide ligands cRGDfK and KCCYSL to the side chains of the copolymer. Results demonstrate that tumor targeting can be achieved in vivo after treatment with hyaluronidase. This approach shows promise for enhanced delivery of polymer-peptide conjugates to solid tumors.

  8. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  9. Targeted Drug Delivery Systems Mediated by a Novel Peptide in Breast Cancer Therapy and Imaging

    PubMed Central

    Chiu, Chien-Yu; Lin, Wei-Chuan; Yan, Shin-Long; Wang, Yi-Ping; Kuo, Yuan-Sung; Yeh, Chen-Yun; Lo, Albert; Wu, Han-Chung

    2013-01-01

    Targeted delivery of drugs to tumors represents a significant advance in cancer diagnosis and therapy. Therefore, development of novel tumor-specific ligands or pharmaceutical nanocarriers is highly desirable. In this study, we utilized phage display to identify a new targeting peptide, SP90, which specifically binds to breast cancer cells, and recognizes tumor tissues from breast cancer patients. We used confocal and electron microscopy to reveal that conjugation of SP90 with liposomes enables efficient delivery of drugs into cancer cells through endocytosis. Furthermore, in vivo fluorescent imaging demonstrated that SP90-conjugated quantum dots possess tumor-targeting properties. In tumor xenograft and orthotopic models, SP90-conjugated liposomal doxorubicin was found to improve the therapeutic index of the chemotherapeutic drug by selectively increasing its accumulation in tumors. We conclude that the targeting peptide SP90 has significant potential in improving the clinical benefits of chemotherapy in the treatment and the diagnosis of breast cancer. PMID:23776619

  10. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    NASA Astrophysics Data System (ADS)

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.; Broome, Ann-Marie

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to untargeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging.

  11. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng

    2014-08-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.

  12. Targeting blood–brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery

    PubMed Central

    Ronaldson, Patrick T; Davis, Thomas P

    2012-01-01

    The blood–brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery. PMID:22468221

  13. A targeted drug delivery system based on dopamine functionalized nano graphene oxide

    NASA Astrophysics Data System (ADS)

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim

    2017-01-01

    The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.

  14. Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery.

    PubMed

    Islam, Md Mirazul; Mohamed, Zahurin

    2015-01-01

    The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery.

  15. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  16. Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery

    PubMed Central

    Islam, Md. Mirazul; Mohamed, Zahurin

    2015-01-01

    The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery. PMID:26579539

  17. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Xu, Mengjiao; Guo, Yi; Tu, Keyao; Wu, Weimin; Wang, Jianjun; Tong, Xiaowen; Wu, Wenjuan; Qi, Lifeng; Shi, Donglu

    2017-01-01

    Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.

  18. Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.

    PubMed

    Weng, Huei Chu

    2013-03-01

    Since the flow of a magnetic fluid could easily be influenced by an external magnetic field, its hydrodynamic modeling promises to be useful for magnetically controllable delivery systems. It is desirable to understand the flow fields and characteristics before targeted magnetic particles arrive at their destination. In this study, we perform an analysis for the effects of particles and a magnetic field on biomedical magnetic fluid flow to study the targeted magnetic-particle delivery in a blood vessel. The fully developed solutions of velocity, flow rate, and flow drag are derived analytically and presented for blood with magnetite nanoparticles at body temperature. Results reveal that in the presence of magnetic nanoparticles, a minimum magnetic field gradient (yield gradient) is required to initiate the delivery. A magnetic driving force leads to the increase in velocity and has enhancing effects on flow rate and flow drag. Such a magnetic driving effect can be magnified by increasing the particle volume fraction.

  19. Target-tracking deliveries on an Elekta linac: a feasibility study

    NASA Astrophysics Data System (ADS)

    McQuaid, D.; Partridge, M.; Symonds-Tayler, J. R.; Evans, P. M.; Webb, S.

    2009-06-01

    A target-tracking, intensity-modulated delivery on an Elekta MLCi system was assessed by film measurement with a simulated target-motion trajectory. A toroidally shaped idealized target surrounding an organ at risk necessitating multiple field segments to irradiate the target and spare the organ at risk was defined in a solid-water phantom. The phantom was programmed to move following a reproducible 2D elliptical trajectory in the beam's-eye view with a period of 10 s. Static and target-tracking treatments were planned for delivery on a standard Elekta Precise series linac with integrated MLCi system. Dose was delivered in three ways: (i) a static treatment to a static phantom, (ii) a static treatment to a moving phantom and (iii) a target-tracking treatment to a moving phantom. The dose delivered was assessed by film measurement on the central plane through the target and organ at risk. The target dose blurring was quantified by the standard deviation of the dose to the target which was evaluated as 2.8% for the static treatment to the static phantom, 7.2% for the static treatment to the moving phantom and 2.6% for the tracking treatment to the moving phantom. The mean organ-at-risk dose was 38.2%, 54.0% and 38.2% of the prescription dose for each delivery case. We have therefore shown that the linac is capable of delivering target-tracking fields with MLCs for the target trajectories tested.

  20. Target-tracking deliveries on an Elekta linac: a feasibility study.

    PubMed

    McQuaid, D; Partridge, M; Symonds-Tayler, J R; Evans, P M; Webb, S

    2009-06-07

    A target-tracking, intensity-modulated delivery on an Elekta MLCi system was assessed by film measurement with a simulated target-motion trajectory. A toroidally shaped idealized target surrounding an organ at risk necessitating multiple field segments to irradiate the target and spare the organ at risk was defined in a solid-water phantom. The phantom was programmed to move following a reproducible 2D elliptical trajectory in the beam's-eye view with a period of 10 s. Static and target-tracking treatments were planned for delivery on a standard Elekta Precise series linac with integrated MLCi system. Dose was delivered in three ways: (i) a static treatment to a static phantom, (ii) a static treatment to a moving phantom and (iii) a target-tracking treatment to a moving phantom. The dose delivered was assessed by film measurement on the central plane through the target and organ at risk. The target dose blurring was quantified by the standard deviation of the dose to the target which was evaluated as 2.8% for the static treatment to the static phantom, 7.2% for the static treatment to the moving phantom and 2.6% for the tracking treatment to the moving phantom. The mean organ-at-risk dose was 38.2%, 54.0% and 38.2% of the prescription dose for each delivery case. We have therefore shown that the linac is capable of delivering target-tracking fields with MLCs for the target trajectories tested.

  1. Systemic Delivery of Blood-Brain Barrier Targeted Polymeric Nanoparticles Enhances Delivery to Brain Tissue

    PubMed Central

    Saucier-Sawyer, Jennifer K.; Deng, Yang; Seo, Young-Eun; Cheng, Christopher J.; Zhang, Junwei; Quijano, Elias; Saltzman, W. Mark

    2016-01-01

    Delivery of therapeutic agents to the central nervous system is a significant challenge, hindering progress in the treatment of diseases such as glioblastoma. Due to the presence of the blood-brain barrier (BBB), therapeutic agents do not readily transverse the brain endothelium to enter the parenchyma. Previous reports suggest that surface modification of polymer nanoparticles can improve their ability to cross the BBB, but it is unclear whether the observed enhancements in transport are large enough to enhance therapy. In this study, we synthesized two degradable polymer nanoparticle systems surface-modified with ligands previously suggested to improve BBB transport, and tested their ability to cross the BBB after intravenous injection in mice. All nanoparticle preparations were able to cross the BBB, although generally in low amounts (<0.5% of the injected dose), which was consistent with prior reports. One nanoparticle produced significantly higher brain uptake (~0.8% of the injected dose): a block copolymer of polylactic acid and hyperbranched polyglycerol, surface modified with adenosine (PLA-HPG-Ad). PLA-HPG-Ad nanoparticles provided controlled release of camptothecin, killing U87 glioma cells in culture. When administered intravenously in mice with intracranial U87 tumors, they failed to increase survival. These results suggest that enhancing nanoparticle transport across the BBB does not necessarily yield proportional pharmacological effects. PMID:26453169

  2. Alveolar targeting of aerosol pentamidine. Toward a rational delivery system

    SciTech Connect

    Simonds, A.K.; Newman, S.P.; Johnson, M.A.; Talaee, N.; Lee, C.A.; Clarke, S.W. )

    1990-04-01

    Nebulizer systems that deposit a high proportion of aerosolized pentamidine on large airways are likely to be associated with marked adverse side effects, which may lead to premature cessation of treatment. We have measured alveolar deposition and large airway-related side effects (e.g., cough, breathlessness, and effect on pulmonary function) after aerosolization of 150 mg pentamidine isethionate labeled with {sup 99m}Tc-Sn-colloid. Nine patients with AIDS were studied using three nebulizer systems producing different droplet size profiles: the Acorn System 22, Respirgard II, and Respirgard II with the inspiratory baffle removed. Alveolar deposition was greatest and side effects least with the nebulizer producing the smallest droplet size profile (Respirgard II), whereas large airway-related side effects were prominent and alveolar deposition lowest with the nebulizer producing the largest droplet size (Acorn System 22). Values for alveolar deposition and adverse airway effects were intermediate using the Respirgard with inspiratory baffle removed, thus indicating the importance of the baffle valve in determining droplet size. Addition of a similar baffle valve to the Acorn System 22 produced a marked improvement in droplet size profile. Selection of a nebulizer that produces an optimal droplet size range offers the advantage of enhancing alveolar targeting of aerosolized pentamidine while reducing large airway-related side effects.

  3. Novel Bone-Targeting Agent for Enhanced Delivery of Vancomycin to Bone

    PubMed Central

    Albayati, Zaineb A. F.; Sunkara, Manjula; Schmidt-Malan, Suzannah M.; Karau, Melissa J.; Morris, Andrew J.; Steckelberg, James M.; Patel, Robin; Breen, Philip J.; Smeltzer, Mark S.; Taylor, K. Grant; Merten, Kevyn E.

    2015-01-01

    We examined the pharmacokinetic properties of vancomycin conjugated to a bone-targeting agent (BT) with high affinity for hydroxyapatite after systemic intravenous administration. The results confirm enhanced persistence of BT-vancomycin in plasma and enhanced accumulation in bone relative to vancomycin. This suggests that BT-vancomycin may be a potential carrier for the systemic targeted delivery of vancomycin in the treatment of bone infections, potentially reducing the reliance on surgical debridement to achieve the desired therapeutic outcome. PMID:26666918

  4. Stathmin Potentiates Vinflunine and Inhibits Paclitaxel Activity

    PubMed Central

    Malesinski, Soazig; Tsvetkov, Philipp O.; Kruczynski, Anna; Peyrot, Vincent; Devred, François

    2015-01-01

    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency. PMID:26030092

  5. Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery.

    PubMed

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K

    2012-06-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems.

  6. Ligands located within a cholesterol domain enhance gene delivery to the target tissue

    PubMed Central

    Xu, Long; Betker, Jamie; Yin, Hao; Anchordoquy, Thomas J.

    2012-01-01

    Targeted gene delivery provides enormous potential for clinical treatment of many incurable diseases. Liposomes formulated with targeting ligands have been tested extensively both in vitro and in vivo, and many studies have strived to identify more efficacious ligands. However, the environment of the ligand within the delivery vehicle is generally not considered, and this study assesses the effect of ligand micoenvironment by utilizing a lipoplex possessing a cholesterol domain. Our recent work has shown that the presence of the targeting ligand within the cholesterol domain promotes more productive transfection in cultured cells. In the present study, lipoplexes having the identical lipid composition were formulated with different conjugates of the folate ligand such that the ligand was included in, or excluded from, the cholesterol domain. The effect of locating the ligand within the cholesterol domain was then tested in a xenograft tumor model in mice. Lipoplexes that included the ligand within the cholesterol domain showed significantly higher luciferase expression and plasmid accumulation in tumors as compared to lipoplexes in which the ligand was excluded from the domain. These results demonstrate that the microenvironment of the ligand can affect gene delivery to tumors, and show that ligand-mediated delivery can be enhanced by locating targeting ligands within a cholesterol domain. PMID:22440429

  7. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  8. A lupus anti-DNA autoantibody mediates autocatalytic, targeted delivery of nanoparticles to tumors.

    PubMed

    Chen, Zeming; Patel, Jaymin M; Noble, Philip W; Garcia, Cesar; Hong, Zhangyong; Hansen, James E; Zhou, Jiangbing

    2016-09-13

    Strategies to target nanoparticles to tumors that rely on surface modification with ligands that bind molecules overexpressed on cancer cells or the tumor neovasculature suffer from a major limitation: with delivery of toxic agents the amount of molecules available for targeting decreases with time; consequently, the efficiency of nanoparticle delivery is reduced. To overcome this limitation, here we propose an autocatalytic tumor-targeting mechanism based on targeting extracellular DNA (exDNA). exDNA is enriched in the tumor microenviroment and increases with treatment with cytotoxic agents, such as doxorubicin (DOX), due to release of DNA by dying tumor cells. We tested this approach using poly(lactic-co-glycolic acid) (PLGA) nanoparticles surface-conjugated with fragments of 3E10 (3E10EN), a lupus anti-DNA autoantibody. We demonstrated that 3E10EN-conjugated nanoparticles bound to DNA and preferentially localized to tumors in vivo. The efficiency of tumor localization of 3E10EN-conjugated, DOX-loaded nanoparticles increased with time and subsequent treatments, demonstrating an autocatalytic effect. 3E10EN-conjugated DOX-loaded nanoparticles exhibited a significant anti-tumor effect that was superior to all controls. This work demonstrates the promise of autocatalytic drug delivery mechanisms and establishes proof of concept for a new anti-DNA autoantibody-based approach for enhancing delivery of nanoparticles to tumors.

  9. A lupus anti-DNA autoantibody mediates autocatalytic, targeted delivery of nanoparticles to tumors

    PubMed Central

    Chen, Zeming; Patel, Jaymin M.; Noble, Philip W.; Garcia, Cesar; Hong, Zhangyong; Hansen, James E.; Zhou, Jiangbing

    2016-01-01

    Strategies to target nanoparticles to tumors that rely on surface modification with ligands that bind molecules overexpressed on cancer cells or the tumor neovasculature suffer from a major limitation: with delivery of toxic agents the amount of molecules available for targeting decreases with time; consequently, the efficiency of nanoparticle delivery is reduced. To overcome this limitation, here we propose an autocatalytic tumor-targeting mechanism based on targeting extracellular DNA (exDNA). exDNA is enriched in the tumor microenviroment and increases with treatment with cytotoxic agents, such as doxorubicin (DOX), due to release of DNA by dying tumor cells. We tested this approach using poly(lactic-co-glycolic acid) (PLGA) nanoparticles surface-conjugated with fragments of 3E10 (3E10EN), a lupus anti-DNA autoantibody. We demonstrated that 3E10EN-conjugated nanoparticles bound to DNA and preferentially localized to tumors in vivo. The efficiency of tumor localization of 3E10EN-conjugated, DOX-loaded nanoparticles increased with time and subsequent treatments, demonstrating an autocatalytic effect. 3E10EN-conjugated DOX-loaded nanoparticles exhibited a significant anti-tumor effect that was superior to all controls. This work demonstrates the promise of autocatalytic drug delivery mechanisms and establishes proof of concept for a new anti-DNA autoantibody-based approach for enhancing delivery of nanoparticles to tumors. PMID:27494868

  10. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges

    NASA Astrophysics Data System (ADS)

    Rosenholm, Jessica M.; Sahlgren, Cecilia; Lindén, Mika

    2010-10-01

    One of the big challenges of medicine today is to deliver drugs specifically to defected cells. Nanoparticulate drug carriers have the potential to answer to this call, as nanoparticles can cross physiological barriers and access different tissues, and also be provided in a targetable form aimed at enhancing cell specificity of the carrier. Recent developments within material science and strong collaborative efforts crossing disciplinary borders have highlighted the potential of mesoporous silica nanoparticles (MSNs) for such targeted drug delivery. Here we outline recent advances which in this sense push MSNs to the forefront of drug delivery development. Relatively straightforward inside-out tuning of the vehicles, high flexibility, and potential for sophisticated release mechanisms make these nanostructures promising candidates for targeted drug delivery such as `smart' cancer therapies. Moreover, due to the large surface area and the controllable surface functionality of MSNs, they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting, simultaneously carrying traceable (fluorescent or magnetically active) modalities, also making them highly interesting as theragnostic agents. However, the increased relative surface area and small size, and flexible surface functionalization which is beneficially exploited in nanomedicine, consequently also includes potential risks in their interactions with biological systems. Therefore, we also discuss some safety issues regarding MSNs and highlight how different features of the drug delivery platform influence their behaviour in a biological setting. Addressing these burning questions will facilitate the application of MSNs in nanomedicine.

  11. TARGETED DELIVERY OF INHALED PHARMACEUTICALS USING AN IN SILICO DOSIMETRY MODEL

    EPA Science Inventory

    We present an in silico dosimetry model which can be used for inhalation toxicology (risk assessment of inhaled air pollutants) and aerosol therapy ( targeted delivery of inhaled drugs). This work presents scientific and clinical advances beyond the development of the original in...

  12. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery.

    PubMed

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers.

  13. Depth-targeted transvascular drug delivery by using annular-shaped photomechanical waves

    NASA Astrophysics Data System (ADS)

    Akiyama, Takuya; Sato, Shunichi; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2011-02-01

    Laser-based drug delivery is attractive for the targeting capability due to high spatial controllability of laser energy. Recently, we found that photomechanical waves (PMWs) can transiently increase the permeability of blood vessels in skin, muscle and brain of rats. In this study, we examined the use of annular-shaped PMWs to increase pressure at target depths due to superposition effect of pressure waves. This can increase the permeability of blood vessels located in the specific depth regions, enabling depth-targeted transvascular drug delivery. Annular PMWs were produced by irradiating a laser-absorbing material with annular-shaped pulsed laser beams that were produced by using an axicon lens. We first examined propagation and pressure characteristics of annular PMWs in tissue phantoms and confirmed an increased pressure at a target depth, which can be controlled by changing laser parameters. We injected Evans blue (EB) into a rat tail vein, and annular PMWs (inner diameter, 3 mm; outer diameter, 5 mm) were applied from the myofascial surface of the anterior tibialis muscle. After perfusion fixation, we observed fluorescence originating from EB in the tissue. We observed intense fluorescence at a target depth region of around 5 mm. These results demonstrate the capability of annular PMWs for depth-targeted transvascular drug delivery.

  14. Application of chitosan-based nanocarriers in tumor-targeted drug delivery.

    PubMed

    Ghaz-Jahanian, Mohammad Ali; Abbaspour-Aghdam, Farzin; Anarjan, Navideh; Berenjian, Aydin; Jafarizadeh-Malmiri, Hoda

    2015-03-01

    Cancer is one of the major malignant diseases in the world. Current anti tumor agents are restricted during the chemotherapy due to their poor solubility in aqueous media, multidrug resistance problems, cytotoxicity, and serious side effects to healthy tissues. Development of targeted drug nanocarriers would enhance the undesirable effects of anticancer drugs and also selectively deliver them to cancerous tissues. Variety of nanocarriers such as micelles, polymeric nanoparticles, liposomes nanogels, dendrimers, and carbon nanotubes have been used for targeted delivery of anticancer agents. These nanocarriers transfer loaded drugs to desired sites through passive or active efficacy mechanisms. Chitosan and its derivatives, due to their unique properties such as hydrophilicity, biocompatibility, and biodegradability, have attracted attention to be used in nanocarriers. Grafting cancer-specific ligands onto the Chitosan nanoparticles, which leads to ligand-receptor interactions, has been successfully developed as active targeting. Chitosan-conjugated components also respond to external or internal physical and chemical stimulus in targeted tumors that is called environment triggers. In this study, mechanisms of targeted tumor deliveries via nanocarriers were explained; specifically, chitosan-based nanocarriers in tumor-targeting drug delivery were also discussed.

  15. Phototriggerable 2′,7-Caged Paclitaxel

    PubMed Central

    Gropeanu, Radu A.; Baumann, Hella; Ritz, Sandra; Mailänder, Volker; Surrey, Thomas; del Campo, Aránzazu

    2012-01-01

    Three different variants of photoactivatable caged paclitaxel (PTX) have been synthesized and their bioactivity was characterized in in vitro assays and in living cells. The caged PTXs contain the photoremovable chromophore 4,5-dimethoxy-2-nitrobenzyloxycarbonyl (Nvoc) attached to position C7, C2' and to both of these positions via a carbonate bond. Single caged PTXs remained biologically active even at low dosages. Double caging was necessary in order to fully inhibit its activity and to obtain a phototriggerable PTX that can be applied successfully at commonly used concentrations. Irradiation of solutions containing the double caged PTX allowed dose-dependent delivery of functional PTX. Light-triggered stabilization of microtubule assemblies in vitro and in vivo by controlled light exposure of tubulin solutions or cell cultures containing caged PTX was demonstrated. Short light exposure under a fluorescence microscope allowed controlled delivery of free PTX during imaging. PMID:22970137

  16. ERK activation by thymosin-beta-4 (TB4) overexpression induces paclitaxel-resistance.

    PubMed

    Oh, Su-Young; Song, Ji-Hee; Gil, Jung-Eun; Kim, Jeong-Hee; Yeom, Young-Il; Moon, Eun-Yi

    2006-05-15

    The development of paclitaxel-resistance in tumors is one of the most significant obstacles to successful therapy. Thymosin-beta-4 (TB4) has been known as actin-sequestering protein and functions in tumor metastasis. Here, we overexpressed TB4 in HeLa cells (TB4-HeLa) and examined the effect of TB4 in paclitaxel-induced cell death. TB4-HeLa cells showed a higher growth rate and a lower percentage of basal apoptosis than HeLa cells. TB4-HeLa cells were more resistant to paclitaxel-induced cell death than HeLa cells. TB4 transcript expression with paclitaxel treatment was dose-dependently increased in HeLa cells but that was not in TB4-HeLa cells. Small interfering RNA (siRNA) of TB4 inhibited HeLa cell growth and enhanced paclitaxel-induced cell death. Basal ERK phosphorylation was elevated and basal p38 kinase phosphorylation was reduced in paclitaxel non-treated TB4-HeLa cells. When treated with paclitaxel, cell death and resistance-induction were independent of ERK and p38 kinase activation. Paclitaxel-resistance of TB4-HeLa cells was overcome by the inhibition of basal ERK activity with PD98059 pre-treatment. The inhibition of basal p38 kinase activity with SB203580 pre-treatment attenuated the paclitaxel-induced HeLa cell death. In conclusion, TB4 induced paclitaxel-resistance through the elevation of basal level of ERK phosphorylation. Therefore, TB4 could be a novel target to regulate paclitaxel-resistance.

  17. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route.

    PubMed

    Chaudhary, Shilpa; Garg, Tarun; Murthy, R S R; Rath, Goutam; Goyal, Amit K

    2014-12-01

    Lymphatic system is a key target in research field due to its distinctive makeup and huge contributing functions within the body. Intestinal lymphatic drug transport (chylomicron pathway) is intensely described in research field till date because it is considered to be the best for improving oral drug delivery by avoiding first pass metabolism. The lymphatic imaging techniques and potential therapeutic candidates are engaged for evaluating disease states and overcoming these conditions. The novel drug delivery systems such as self-microemulsifying drug delivery system, nanoparticles, liposomes, nano-lipid carriers, solid lipid carriers are employed for delivering drugs through lymphatic system via various routes such as subcutaneous route, intraperitoneal route, pulmonary route, gastric sub-mucosal injection, intrapleural and intradermal. Among these colloidal particles, lipid-based delivery system is considered to be the best for lymphatic delivery. From the last few decades, mesenteric lymph duct cannulation and thoracic lymph duct cannulation are followed to assess lymphatic uptake of drugs. Due to their limitations, chylomicrons inhibitors and in-vitro models are employed, i.e. lipolysis model and permeability model. Currently, research on this topic still continues and drainage system used to deliver the drugs against lymphatic disease as well as targeting other organs by modulating the chylomicron pathway.

  18. Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers.

    PubMed

    Qu, Qiuyu; Ma, Xing; Zhao, Yanli

    2015-10-28

    A lot of investigations have been conducted using mesoporous silica nanoparticles (MSNPs) functionalized with different targeting ligands in order to deliver various hydrophobic and hydrophilic drugs to targeted cancer cells. However, the utilization of MSNPs to deliver drug molecules to targeted subcellular organelles has been rarely reported. In this work, we applied targeting ligand-conjugated MSNPs with an average diameter of 80 nm to deliver the anticancer drug doxorubicin (DOX) to mitochondria. Triphenoylphosphonium (TPP) was functionalized on MSNPs as a mitochondria targeting ligand. Mitochondria targeting efficiency was demonstrated in HeLa cells by a co-localization study of mitochondria and functionalized MSNPs as well as by fluorescence analysis in isolated mitochondria. In addition, enhanced cancer cell killing efficacy was achieved when using DOX-loaded and TPP-functionalized MSNPs for mitochondria-targeted delivery. Lowered adenosine triphosphate (ATP) production and decreased mitochondrial membrane potential were observed, demonstrating the mitochondria dysfunction caused by delivered DOX. The positive results indicate promising application potential of MSNPs in targeted subcellular drug delivery.

  19. The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications.

    PubMed

    Upadhyaya, Laxmi; Singh, Jay; Agarwal, Vishnu; Tewari, Ravi Prakash

    2014-07-28

    Over the last decade carboxymethyl chitosan (CMCS) has emerged as a promising biopolymer for the development of new drug delivery systems and improved scaffolds along with other tissue engineering devices for regenerative medicine that is currently one of the most rapidly growing fields in the life sciences. CMCS is amphiprotic ether, derived from chitosan, exhibiting enhanced aqueous solubility, excellent biocompatibility, controllable biodegradability, osteogenesis ability and numerous other outstanding physicochemical and biological properties. More strikingly, it can load hydrophobic drugs and displays strong bioactivity which highlight its suitability and extensive usage for preparing different drug delivery and tissue engineering formulations respectively. This review provides a comprehensive introduction to various types of CMCS based formulations for delivery of therapeutic agents and tissue regeneration and further describes their preparation procedures and applications in different tissues/organs. Detailed information of CMCS based nano/micro systems for targeted delivery of drugs with emphasis on cancer specific and organ specific drug delivery have been described. Further, we have discussed various CMCS based tissue engineering biomaterials along with their preparation procedures and applications in different tissues/organs. The article then, gives a brief account of therapy combining drug delivery and tissue engineering. Finally, identification of major challenges and opportunities for current and ongoing application of CMCS based systems in the field are summarised.

  20. Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.

    PubMed

    Tan, Jifu; Thomas, Antony; Liu, Yaling

    2011-12-22

    Multifunctional nanomedicine holds considerable promise as the next generation of medicine that allows for targeted therapy with minimal toxicity. Most current studies on Nanoparticle (NP) drug delivery consider a Newtonian fluid with suspending NPs. However, blood is a complex biological fluid composed of deformable cells, proteins, platelets, and plasma. For blood flow in capillaries, arterioles and venules, the particulate nature of the blood needs to be considered in the delivery process. The existence of the cell-free-layer and NP-cell interaction will largely influence both the dispersion and binding rates, thus impact targeted delivery efficacy. In this paper, a particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension. The motion and deformation of red blood cells is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of red blood cells, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications.

  1. Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation

    PubMed Central

    Tan, Jifu; Thomas, Antony; Liu, Yaling

    2012-01-01

    Multifunctional nanomedicine holds considerable promise as the next generation of medicine that allows for targeted therapy with minimal toxicity. Most current studies on Nanoparticle (NP) drug delivery consider a Newtonian fluid with suspending NPs. However, blood is a complex biological fluid composed of deformable cells, proteins, platelets, and plasma. For blood flow in capillaries, arterioles and venules, the particulate nature of the blood needs to be considered in the delivery process. The existence of the cell-free-layer and NP-cell interaction will largely influence both the dispersion and binding rates, thus impact targeted delivery efficacy. In this paper, a particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension. The motion and deformation of red blood cells is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of red blood cells, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications. PMID:22375153

  2. HER2 Targeting Peptides Screening and Applications in Tumor Imaging and Drug Delivery

    PubMed Central

    Geng, Lingling; Wang, Zihua; Jia, Xiangqian; Han, Qiuju; Xiang, Zhichu; Li, Dan; Yang, Xiaoliang; Zhang, Di; Bu, Xiangli; Wang, Weizhi; Hu, Zhiyuan; Fang, Qiaojun

    2016-01-01

    Herein, computational-aided one-bead-one-compound (OBOC) peptide library design combined with in situ single-bead sequencing microarray methods were successfully applied in screening peptides targeting at human epidermal growth factor receptor-2 (HER2), a biomarker of human breast cancer. As a result, 72 novel peptides clustered into three sequence motifs which are PYL***NP, YYL***NP and PPL***NP were acquired. Particularly one of the peptides, P51, has nanomolar affinity and high specificity for HER2 in ex vivo and in vivo tests. Moreover, doxorubicin (DOX)-loaded liposome nanoparticles were modified with peptide P51 or P25 and demonstrated to improve the targeted delivery against HER2 positive cells. Our study provides an efficient peptide screening method with a combination of techniques and the novel screened peptides with a clear binding site on HER2 can be used as probes for tumor imaging and targeted drug delivery. PMID:27279916

  3. Targeted delivery of nano-therapeutics for major disorders of the central nervous system.

    PubMed

    Gao, Huile; Pang, Zhiqing; Jiang, Xinguo

    2013-10-01

    Major central nervous system (CNS) disorders, including brain tumors, Alzheimer’s disease, Parkinson’s disease, and stroke, are significant threats to human health. Although impressive advances in the treatment of CNS disorders have been made during the past few decades, the success rates are still moderate if not poor. The blood–brain barrier (BBB) hampers the access of systemically administered drugs to the brain. The development of nanotechnology provides powerful tools to deliver therapeutics to target sites. Anchoring them with specific ligands can endow the nano-therapeutics with the appropriate properties to circumvent the BBB. In this review, the potential nanotechnology-based targeted drug delivery strategies for different CNS disorders are described. The limitations and future directions of brain-targeted delivery systems are also discussed.

  4. Targeted delivery by smart capsules for controlling two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Abbaspourrad, Alireza; Weitz, David; Harvard Weitzgroup Team

    2015-11-01

    Two-phase flow in porous media is significantly influenced by the physical properties of the fluids and the geometry of the medium. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for targeted surfactant delivery to the vicinity of oil-water interface and targeted microgel delivery for improving the homogeneity of the porous medium, respectively. We further prove the concept by monitoring the capsule location and the fluid structure in the porous media by micro-CT and confocal microscopy. This technique not only is of particular importance to the relevant industry applications especially in the oil industry but also opens a new window to study the mechanism of two-phase flow in porous media. Advanced Energy Consortium BEG08-027.

  5. Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell

    PubMed Central

    Xu, Cheng-Zhi; Shi, Run-Jie; Chen, Dong; Sun, Yi-Yuan; Wu, Qing-Wei; Wang, Tao; Wang, Pei-Hua

    2013-01-01

    Paclitaxel has been proved to be active in treatment and larynx preservation of HNSCC, however, the fact that about 20-40% patients do not respond to paclitaxel makes it urgent to figure out the biomarkers for paclitaxel-based treatment in Hypopharynx cancer (HPC) patients to improve the therapy effect. In this work, Fadu cells, treated or untreated with low dose of paclitaxel for 24 h, were applied to DNA microarray chips. The differential expression in mRNAs and miRs was analyzed and the network between expression-altered mRNAs and miRs was constructed. Differentially expressed genes were mainly enriched in superpathway of cholesterol biosynthesis (ACAT2, MSMO1, LSS, FDFT1 and FDPS etc.), complement system (C3, C1R, C1S, CFR and CFB etc.), interferon signaling (IFIT1, IFIT3, IFITM1 and MX1 etc.), mTOR signaling (MRAS, PRKAA2, PLD1, RND3 and EIF4A1 etc.) and IGF1 signaling (MRAS, IGFBP7, JUN and FOS etc.), most of these pathways are implicated in tumorigenesis or chemotherapy resistance. The first three pathways were predicted to be suppressed, while the last two pathways were predicted to be induced by paclitaxel, suggesting the combination therapy with mTOR inhibition and paclitaxel might be better than single one. The dramatically expression-altered miRs were miR-112, miR-7, miR-1304, miR-222*, miR-29b-1* (these five miRs were upregulated) and miR-210 (downregulated). The 26 putative target genes mediated by the 6 miRs were figured out and the miR-gene network was constructed. Furthermore, immunoblotting assay showed that ERK signaling in Fadu cells was active by low dose of paclitaxel but repressed by high dose of paclitaxel. Collectively, our data would provide potential biomarkers and therapeutic targets for paclitaxel-based therapy in HPC patients. PMID:24294361

  6. Fluorine-Containing Taxoid Anticancer Agents and Their Tumor-Targeted Drug Delivery

    PubMed Central

    Seitz, Joshua; Vineberg, Jacob G.; Zuniga, Edison S.; Ojima, Iwao

    2013-01-01

    A long-standing problem of conventional chemotherapy is the lack of tumor-specific treatments. Traditional chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be killed by a cytotoxic agent. In reality, however, cytotoxic agents have very little or no specificity, which leads to systemic toxicity, causing undesirable severe side effects. Consequently, various “molecularly targeted cancer therapies” have been developed for use in specific cancers, including tumor-targeting drug delivery systems. In general, such a drug delivery system consists of a tumor recognition moiety and a cytotoxic “warhead” connected through a “smart” linker to form a conjugate. When a multi-functionalized nanomaterial is used as the vehicle, a “Trojan Horse” approach can be used for mass delivery of cytotoxic “warheads” to maximize the efficacy. Exploitation of the special properties of fluorine has proven successful in the development of new and effective biochemical tools as well as therapeutic agents. Fluorinated congeners can also serve as excellent probes for the investigation of biochemical mechanisms. 19F-NMR can provide unique and powerful tools for mechanistic investigations in chemical biology. This account presents our recent progress, in perspective, on the molecular approaches to the design and development of novel tumor-targeted drug delivery systems for new generation chemotherapy by exploiting the unique nature of fluorine. PMID:23935213

  7. Phage display: development of nanocarriers for targeted drug delivery to the brain

    PubMed Central

    Bakhshinejad, Babak; Karimi, Marzieh; Khalaj-Kondori, Mohammad

    2015-01-01

    The blood brain barrier represents a formidable obstacle for the transport of most systematically administered neurodiagnostics and neurotherapeutics to the brain. Phage display is a high throughput screening strategy that can be used for the construction of nanomaterial peptide libraries. These libraries can be screened for finding brain targeting peptide ligands. Surface functionalization of a variety of nanocarriers with these brain homing peptides is a sophisticated way to develop nanobiotechnology-based drug delivery platforms that are able to cross the blood brain barrier. These efficient drug delivery systems raise our hopes for the diagnosis and treatment of various brain disorders in the future. PMID:26199590

  8. Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury.

    PubMed

    Chen, Gangbin; Yang, Li; Zhong, Lintao; Kutty, Shelby; Wang, Yuegang; Cui, Kai; Xiu, Jiancheng; Cao, Shiping; Huang, Qiaobing; Liao, Wangjun; Liao, Yulin; Wu, Juefei; Zhang, Wenzhu; Bin, Jianping

    2016-07-29

    Hydrogen sulfide (H2S) is an attractive agent for myocardial ischemia-reperfusion injury, however, systemic delivery of H2S may cause unwanted side effects. Ultrasound targeted microbubble destruction has become a promising tool for organ specific delivery of bioactive substance. We hypothesized that delivery of H2S by ultrasound targeted microbubble destruction attenuates myocardial ischemia-reperfusion injury and could avoid unwanted side effects. We prepared microbubbles carrying hydrogen sulfide (hs-MB) with different H2S/C3F8 ratios (4/0, 3/1, 2/2, 1/3, 0/4) and determined the optimal ratio. Release of H2S triggered by ultrasound was investigated. The cardioprotective effect of ultrasound targeted hs-MB destruction was investigated in a rodent model of myocardial ischemia-reperfusion injury. The H2S/C3F8 ratio of 2/2 was found to be an optimal ratio to prepare stable hs-MB with higher H2S loading capability. Ultrasound targeted hs-MB destruction triggered H2S release and increased the concentration of H2S in the myocardium and lung. Ultrasound targeted hs-MB destruction limited myocardial infarct size, preserved left ventricular function and had no influence on haemodynamics and respiratory. This cardioprotective effect was associated with alleviation of apoptosis and oxidative stress. Delivery of H2S to the myocardium by ultrasound targeted hs-MB destruction attenuates myocardial ischemia-reperfusion injury and may avoid unwanted side effects.

  9. Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury

    PubMed Central

    Chen, Gangbin; Yang, Li; Zhong, Lintao; Kutty, Shelby; Wang, Yuegang; Cui, Kai; Xiu, Jiancheng; Cao, Shiping; Huang, Qiaobing; Liao, Wangjun; Liao, Yulin; Wu, Juefei; Zhang, Wenzhu; Bin, Jianping

    2016-01-01

    Hydrogen sulfide (H2S) is an attractive agent for myocardial ischemia-reperfusion injury, however, systemic delivery of H2S may cause unwanted side effects. Ultrasound targeted microbubble destruction has become a promising tool for organ specific delivery of bioactive substance. We hypothesized that delivery of H2S by ultrasound targeted microbubble destruction attenuates myocardial ischemia-reperfusion injury and could avoid unwanted side effects. We prepared microbubbles carrying hydrogen sulfide (hs-MB) with different H2S/C3F8 ratios (4/0, 3/1, 2/2, 1/3, 0/4) and determined the optimal ratio. Release of H2S triggered by ultrasound was investigated. The cardioprotective effect of ultrasound targeted hs-MB destruction was investigated in a rodent model of myocardial ischemia-reperfusion injury. The H2S/C3F8 ratio of 2/2 was found to be an optimal ratio to prepare stable hs-MB with higher H2S loading capability. Ultrasound targeted hs-MB destruction triggered H2S release and increased the concentration of H2S in the myocardium and lung. Ultrasound targeted hs-MB destruction limited myocardial infarct size, preserved left ventricular function and had no influence on haemodynamics and respiratory. This cardioprotective effect was associated with alleviation of apoptosis and oxidative stress. Delivery of H2S to the myocardium by ultrasound targeted hs-MB destruction attenuates myocardial ischemia-reperfusion injury and may avoid unwanted side effects. PMID:27469291

  10. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.

    PubMed

    Varshosaz, Jaleh; Farzan, Maryam

    2015-11-14

    Hepatocellular carcinoma (HCC) is the 5(th) most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein

  11. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma

    PubMed Central

    Varshosaz, Jaleh; Farzan, Maryam

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein

  12. Impact of α-targeted radiation therapy on gene expression in a pre-clinical model for disseminated peritoneal disease when combined with paclitaxel.

    PubMed

    Yong, Kwon Joong; Milenic, Diane E; Baidoo, Kwamena E; Brechbiel, Martin W

    2014-01-01

    To better understand the molecular basis of the enhanced cell killing effected by the combined modality of paclitaxel and ²¹²Pb-trastuzumab (Pac/²¹²Pb-trastuzumab), gene expression in LS-174T i.p. xenografts was investigated 24 h after treatment. Employing a real time quantitative PCR array (qRT-PCR array), 84 DNA damage response genes were quantified. Differentially expressed genes following therapy with Pac/²¹²Pb-trastuzumab included those involved in apoptosis (BRCA1, CIDEA, GADD45α, GADD45γ, GML, IP6K3, PCBP4, PPP1R15A, RAD21, and p73), cell cycle (BRCA1, CHK1, CHK2, GADD45α, GML, GTSE1, NBN, PCBP4, PPP1R15A, RAD9A, and SESN1), and damaged DNA repair (ATRX, BTG2, EXO1, FEN1, IGHMBP2, OGG1, MSH2, MUTYH, NBN, PRKDC, RAD21, and p73). This report demonstrates that the increased stressful growth arrest conditions induced by the Pac/²¹²Pb-trastuzumab treatment suppresses cell proliferation through the regulation of genes which are involved in apoptosis and damaged DNA repair including single and double strand DNA breaks. Furthermore, the study demonstrates that ²¹²Pb-trastuzumab potentiation of cell killing efficacy results from the perturbation of genes related to the mitotic spindle checkpoint and BASC (BRCA1-associated genome surveillance complex), suggesting cross-talk between DNA damage repair and the spindle damage response.

  13. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer.

    PubMed

    Zhang, Song-Fa; Wang, Xin-Yu; Fu, Zhi-Qin; Peng, Qiao-Hua; Zhang, Jian-Yang; Ye, Feng; Fu, Yun-Feng; Zhou, Cai-Yun; Lu, Wei-Guo; Cheng, Xiao-Dong; Xie, Xing

    2015-01-01

    Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(+)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics.

  14. Autophagy regulates resistance of non-small cell lung cancer cells to paclitaxel.

    PubMed

    Chen, Kan; Shi, Wenjun

    2016-08-01

    Paclitaxel is a chemotherapeutic drug that is effective for treating non-small cell lung cancer (NSCLC). However, some NSCLCs are not sensitive to paclitaxel treatment with undetermined underlying molecular mechanisms. In this study, we found that paclitaxel dose-dependently activated Beclin-1 in 2 NSCLC cell lines, A549 and Calu-3. Inhibition of autophagy significantly increased the paclitaxel-induced NSCLC cell death in a cell counting kit-8 (CCK-8) assay. Moreover, microRNA (miR)-216b levels were significantly downregulated in paclitaxel-treated NSCLC cells. Bioinformatics study showed that miR-216b targeted the 3'-UTR of Beclin-1 mRNA to inhibit its translation, which was confirmed by luciferase reporter assay. Together, these data suggest that paclitaxel may decrease miR-216b levels in NSCLC cells, which subsequently upregulates Beclin-1 to increase NSCLC cell autophagy to antagonize paclitaxel-induced cell death. Strategies that increase miR-216b levels or inhibit cell autophagy may improve the outcome of paclitaxel treatment in NSCLC therapy.

  15. Blocking the GABA transporter GAT-1 ameliorates spinal GABAergic disinhibition and neuropathic pain induced by paclitaxel

    PubMed Central

    Yadav, Ruchi; Yan, Xisheng; Maixner, Dylan W.; Gao, Mei; Weng, Han-Rong

    2015-01-01

    Paclitaxel is a chemotherapeutic agent widely used for treating carcinomas. Patients receiving paclitaxel often develop neuropathic pain and have a reduced quality of life which hinders the use of this life-saving drug. In this study, we determined the role of GABA transporters in the genesis of paclitaxel-induced neuropathic pain using behavioral tests, electrophysiology, and biochemical techniques. We found that tonic GABA receptor activities in the spinal dorsal horn were reduced in rats with neuropathic pain induced by paclitaxel. In normal controls, tonic GABA receptor activities were mainly controlled by the GABA transporter GAT-1 but not GAT-3. In the spinal dorsal horn, GAT-1 was expressed at presynaptic terminals and astrocytes while GAT-3 was only expressed in astrocytes. In rats with paclitaxel-induced neuropathic pain, the protein expression of GAT-1 was increased while GAT-3 was decreased. This was concurrently associated with an increase of global GABA uptake. The paclitaxel-induced attenuation of GABAergic tonic inhibition was ameliorated by blocking GAT-1 but not GAT-3 transporters. Paclitaxel-induced neuropathic pain was significantly attenuated by the intrathecal injection of a GAT-1 inhibitor. These findings suggest that targeting GAT-1 transporters for reversing disinhibition in the spinal dorsal horn may be a useful approach for treating paclitaxel-induced neuropathic pain. PMID:25827582

  16. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    NASA Astrophysics Data System (ADS)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  17. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting.

    PubMed

    Gupta, Umesh; Jain, Narendra K

    2010-03-18

    Development of an effective drug delivery approach for the treatment of HIV/AIDS is a global challenge. The conventional drug delivery approaches including Highly Active Anti Retroviral Therapy (HAART) have increased the life span of the HIV/AIDS patient. However, the eradication of HIV is still not possible with these approaches due to some limitations. Emergence of polymeric and non-polymeric nanotechnological approaches can be opportunistic in this direction. Polymeric carriers like, dendrimers and nanoparticles have been reported for the targeting of anti HIV drugs. The synthetic pathways as well polymeric framework create some hurdles in their successful formulation development as well as in the possible drug delivery approaches. In the present article, we have discussed the general physiological aspects of the infection along with the relevance of non-polymeric nanocarriers like liposomes, solid lipid nanoparticles (SLN), ethosomes, etc. in the treatment of this disastrous disease.

  18. Sequence-defined shuttles for targeted nucleic acid and protein delivery.

    PubMed

    Röder, Ruth; Wagner, Ernst

    2014-01-01

    Molecular medicine opens into a space of novel specific therapeutic agents: intracellularly active drugs such as peptides, proteins or nucleic acids, which are not able to cross cell membranes and enter the intracellular space on their own. Through the development of cell-targeted shuttles for specific delivery, this restriction in delivery has the potential to be converted into an advantage. On the one hand, due to the multiple extra- and intracellular barriers, such carrier systems need to be multifunctional. On the other hand, they must be precise and reproducibly manufactured due to pharmaceutical reasons. Here we review the design of precise sequence-defined delivery carriers, including solid-phase synthesized peptides and nonpeptidic oligomers, or nucleotide-based carriers such as aptamers and origami nanoboxes.

  19. Targeted drug delivery for cancer therapy: the other side of antibodies

    PubMed Central

    2012-01-01

    Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients. PMID:23140144

  20. Construction of targeting-clickable and tumor-cleavable polyurethane nanomicelles for multifunctional intracellular drug delivery.

    PubMed

    Song, Nijia; Ding, Mingming; Pan, Zhicheng; Li, Jiehua; Zhou, Lijuan; Tan, Hong; Fu, Qiang

    2013-12-09

    New strategies for the construction of versatile nanovehicles to overcome the multiple challenges of targeted delivery are urgently needed for cancer therapy. To address these needs, we developed a novel targeting-clickable and tumor-cleavable polyurethane nanomicelle for multifunctional delivery of antitumor drugs. The polyurethane was synthesized from biodegradable poly(ε-caprolactone) (PCL) and L-lysine ethyl ester diisocyanate (LDI), further extended by a new designed L-cystine-derivatized chain extender bearing a redox-responsive disulfide bond and clickable alkynyl groups (Cys-PA), and finally terminated by a detachable methoxyl-poly(ethylene glycol) with a highly pH-sensitive benzoic-imine linkage (BPEG). The obtained polymers show attractive self-assembly characteristics and stimuli-responsiveness, good cytocompatibility, and high loading capacity for doxorubicin (DOX). Furthermore, folic acid (FA) as a model targeting ligand was conjugated to the polyurethane micelles via an efficient click reaction. The decoration of FA results in an enhanced cellular uptake and improved drug efficacy toward FA-receptor positive HeLa cancer cells in vitro. As a proof-of-concept, this work provides a facile approach to the design of extracellularly activatable nanocarriers for tumor-targeted and programmed intracellular drug delivery.

  1. Effect of a thiolated polymer on oral paclitaxel absorption and tumor growth in rats.

    PubMed

    Föger, Florian; Malaivijitnond, Suchinda; Wannaprasert, Thanakul; Huck, Christian; Bernkop-Schnürch, Andreas; Werle, Martin

    2008-02-01

    The anticancer agent paclitaxel is currently commercially available only as an infusion due to its low oral bioavailability. An oral formulation would be highly beneficial for patients. Besides the low solubility, the main reason for the limited oral bioavailability of paclitaxel is that it is a substrate of the efflux pump P-glycoprotein (P-gp). Recently, it has been demonstrated that P-gp can be inhibited by thiolated polymers. In this study, an oral paclitaxel formulation based on thiolated polycarbophil was evaluated in vivo in wild-type rats and in mammary cancer-induced rats. The paclitaxel plasma level after a single administration of paclitaxel was observed for 12 h in healthy rats. Moreover, cancer-induced rats were treated weekly for 5 weeks with the novel formulation. It was demonstrated that (1) co-administration of thiolated polycarbophil significantly improved paclitaxel plasma levels, (2) a more constant pharmacokinetic profile could be achieved and (3) the tumor growth was reduced. These effects can most likely be attributed to P-gp inhibition. According to the achieved results, thiolated polymers are believed to be interesting tools for the delivery of P-gp substrates such as paclitaxel.

  2. Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Juan; Wu, Shuxian; Wu, Cuichen; Qiu, Liping; Zhu, Guizhi; Cui, Cheng; Liu, Yuan; Hou, Weijia; Wang, Yanyue; Zhang, Liqin; Teng, I.-Ting; Yang, Huang-Hao; Tan, Weihong

    2016-04-01

    The development of biocompatible drug delivery systems with targeted recognition and controlled release has experienced a number of design challenges, including, for example, complicated preparation steps and premature drug release. Herein, we address these problems through an in situ self-polymerization method that synthesizes biodegradable polyphenol-coated porous nanomaterials for targeted and controlled drug delivery. As a proof of concept, we synthesized polyphenol-coated mesoporous silica nanoparticles, termed MSN@polyphenol. The polyphenol coatings not only improved colloidal stability and prevented premature drug leakage, but also provided a scaffold for immobilization of targeting moieties, such as aptamers. Both immobilization of targeting aptamers and synthesis of polyphenol coating are easily accomplished without the aid of any other organic reagents. Importantly, the polyphenol coating (EGCg) used in this study could be biodegraded by acidic pH and intracellular glutathione, resulting in the release of trapped anticancer drugs. Based on confocal fluorescence microscopy and cytotoxicity experiments, drug-loaded and polyphenol-coated MSNs were shown to possess highly efficient internalization and an apparent cytotoxic effect on target cancer, but not control, cells. Our results suggest that these highly biocompatible and biodegradable polyphenol-coated MSNs are promising vectors for controlled-release biomedical applications and cancer therapy.The development of biocompatible drug delivery systems with targeted recognition and controlled release has experienced a number of design challenges, including, for example, complicated preparation steps and premature drug release. Herein, we address these problems through an in situ self-polymerization method that synthesizes biodegradable polyphenol-coated porous nanomaterials for targeted and controlled drug delivery. As a proof of concept, we synthesized polyphenol-coated mesoporous silica nanoparticles

  3. Light-Controlled Delivery of Monoclonal Antibodies for Targeted Photoinactivation of Ki-67.

    PubMed

    Wang, Sijia; Hüttmann, Gereon; Zhang, Zhenxi; Vogel, Alfred; Birngruber, Reginald; Tangutoori, Shifalika; Hasan, Tayyaba; Rahmanzadeh, Ramtin

    2015-09-08

    The selective inhibition of intracellular and nuclear molecules such as Ki-67 holds great promise for the treatment of cancer and other diseases. However, the choice of the target protein and the intracellular delivery of the functional agent remain crucial challenges. Main hurdles are (a) an effective delivery into cells, (b) endosomal escape of the delivered agents, and (c) an effective, externally triggered destruction of cells. Here we show a light-controlled two-step approach for selective cellular delivery and cell elimination of proliferating cells. Three different cell-penetrating nano constructs, including liposomes, conjugates with the nuclear localization sequence (NLS), and conjugates with the cell penetrating peptide Pep-1, delivered the light activatable antibody conjugate TuBB-9-FITC, which targets the proliferation associated protein Ki-67. HeLa cells were treated with the photosensitizer benzoporphyrin monoacid derivative (BPD) and the antibody constructs. In the first optically controlled step, activation of BPD at 690 nm triggered a controlled endosomal escape of the TuBB-9-FITC constructs. In more than 75% of Ki-67 positive, irradiated cells TuBB-9-FITC antibodies relocated within 24 h from cytoplasmic organelles to the cell nucleus and bound to Ki-67. After a second light irradiation at 490 nm, which activated FITC, cell viability decreased to approximately 13%. Our study shows an effective targeting strategy, which uses light-controlled endosomal escape and the light inactivation of Ki-67 for cell elimination. The fact that liposomal or peptide-assisted delivery give similar results leads to the additional conclusion that an effective mechanism for endosomal escape leaves greater variability for the choice of the delivery agent.

  4. Effect of a paclitaxel-eluting metallic stent on rabbit esophagus

    PubMed Central

    Zhang, Yin; Gao, Ying; Chen, Jianping; Ma, Limei; Liu, Li; Wang, Xiang; Fan, Zhining

    2016-01-01

    The use of self-expanding metallic stents (SEMS) is the current treatment of choice for malignant gastrointestinal obstructions. A paclitaxel-eluting metallic SEMS (PEMS) may have an antitumor effect on esophageal tissue. PEMS with 10% paclitaxel or conventional SEMS were inserted into the lower esophagus of rabbits. Following the insertion of the stents for 1, 2, 4 and 6 weeks, the rabbits were sacrificed and the status of the stent insertion was examined, as well as any macroscopic or microscopic mucosal changes in the esophageal tissue. All the rabbits survived until death without any complications. No migration following stent insertion occurred. The number of cases with proximal obstruction increased in a time-dependent manner, and no significant difference was observed between the two groups. Gross histological examination showed similar tissue reaction to the stents at 1, 2 and 4 weeks, and inflammatory cell infiltrating was higher in the SEMS group at 1 and 2 weeks. However, inflammatory cell infiltration was markedly higher in the PEMS group at 4 and 6 weeks. Food-intake and weight were similar in the two groups. The results of the present study demonstrated that PEMS may serve as a safe alternative treatment strategy for esophageal obstruction. Furthermore, PEMS may inhibit the tumor growth of the esophageal wall through inflammatory infiltration and targeted drug delivery. A tumor model will be required in the future for evaluating the prognosis of patients with advanced esophageal carcinoma. PMID:27882097

  5. Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system.

    PubMed

    Riegler, Johannes; Wells, Jack A; Kyrtatos, Panagiotis G; Price, Anthony N; Pankhurst, Quentin A; Lythgoe, Mark F

    2010-07-01

    The success of cell therapies depends on the ability to deliver the cells to the site of injury. Targeted magnetic cell delivery is an emergent technique for localised cell transplantation therapy. The use of permanent magnets limits such a treatment to organs close to the body surface or an implanted magnetic source. A possible alternative method for magnetic cell delivery is magnetic resonance targeting (MRT), which uses magnetic field gradients inherent to all magnetic resonance imaging system, to steer ferromagnetic particles to their target region. In this study we have assessed the feasibility of such an approach for cell targeting, using a range of flow rates and different super paramagnetic iron oxide particles in a vascular bifurcation phantom. Using MRT we have demonstrated that 75% of labelled cells could be guided within the vascular bifurcation. Furthermore we have demonstrated the ability to image the labelled cells before and after magnetic targeting, which may enable interactive manipulation and assessment of the distribution of cellular therapy. This is the first demonstration of cellular MRT and these initial findings support the potential value of MRT for improved targeting of intravascular cell therapies.

  6. Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: Role of docosahexaenoic acid.

    PubMed

    Shinde, Rajshree L; Bharkad, Gopal P; Devarajan, Padma V

    2015-10-01

    Intranasal Microemulsions (MEs) for nose to brain delivery of a novel combination of Albendazole sulfoxide (ABZ-SO) and Curcumin (CUR) for Neurocysticercosis (NCC), a brain infection are reported. MEs prepared by simple solution exhibited a globule size <20nm, negative zeta potential and good stability. The docosahexaenoic acid (DHA) ME revealed high and rapid ex vivo permeation of drugs through sheep nasal mucosa. Intranasal DHA ME resulted in high brain concentrations and 10.76 (ABZ-SO) and 3.24 (CUR) fold enhancement in brain area-under-the-curve (AUC) compared to intravenous DHA MEs at the same dose. Direct nose to brain transport (DTP) of >95% was seen for both drugs. High drug targeting efficiency (DTE) to the brain compared to Capmul ME and drug solution (P<0.05) suggested the role of DHA in aiding nose to brain delivery. Histopathology study confirmed no significant changes. High efficacy of ABZ-SO: CUR (100:10ng/mL) DHA ME in vitro on Taenia solium cysts was confirmed by complete ALP inhibition and disintegration of cysts at 96h. Considering that the brain concentration at 24h was 1400±160.1ng/g (ABZ-SO) and 120±35.2ng/g (CUR), the in vitro efficacy seen at a 10 fold lower concentration of the drugs strongly supports the assumption of clinical efficacy. The intranasal DHA ME is a promising delivery system for targeted nose to brain delivery.

  7. Quantification of Mesenchymal Stem Cell (MSC) Delivery to a Target Site Using In Vivo Confocal Microscopy

    PubMed Central

    Mortensen, Luke J.; Levy, Oren; Phillips, Joseph P.; Stratton, Tara; Triana, Brian; Ruiz, Juan P.; Gu, Fangqi; Karp, Jeffrey M.; Lin, Charles P.

    2013-01-01

    The ability to deliver cells to appropriate target tissues is a prerequisite for successful cell-based therapy. To optimize cell therapy it is therefore necessary to develop a robust method of in vivo cell delivery quantification. Here we examine Mesenchymal Stem Cells (MSCs) labeled with a series of 4 membrane dyes from which we select the optimal dye combination for pair-wise comparisons of delivery to inflamed tissue in the mouse ear using confocal fluorescence imaging. The use of an optimized dye pair for simultaneous tracking of two cell populations in the same animal enables quantification of a test population that is referenced to an internal control population, thereby eliminating intra-subject variations and variations in injected cell numbers. Consistent results were obtained even when the administered cell number varied by more than an order of magnitude, demonstrating an ability to neutralize one of the largest sources of in vivo experimental error and to greatly reduce the number of cells required to evaluate cell delivery. With this method, we are able to show a small but significant increase in the delivery of cytokine pre-treated MSCs (TNF-α & IFN-γ) compared to control MSCs. Our results suggest future directions for screening cell strategies using our in vivo cell delivery assay, which may be useful to develop methods to maximize cell therapeutic potential. PMID:24205131

  8. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  9. Preclinical Evaluation to Specifically Target Ovarian Cancer with Folic Acid-Conjugated Nanoceria

    DTIC Science & Technology

    2014-08-01

    inhibiting ovarian tumor growth than NCe alone and enhanced the cytotoxicity of cisplatin in vivo. 15. SUBJECT TERMS Specific targeting of ovarian...Chemotherapy regimens for patients with ovarian cancer include cisplatin and paclitaxel for which most of the patients develop resistance and as side...modification of folic acid conjugated nanoceria to cisplatin will result in specific targeting and delivery of cisplatin resulting in exclusive

  10. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges.

    PubMed

    Kwekkeboom, Rick F J; Lei, Zhiyong; Doevendans, Pieter A; Musters, René J P; Sluijter, Joost P G

    2014-09-01

    Dysregulation of miRNA expression has been associated with many cardiovascular diseases in animal models, as well as in patients. In the present review, we summarize recent findings on the role of miRNAs in cardiovascular diseases and discuss the opportunities, possibilities and challenges of using miRNAs as future therapeutic targets. Furthermore, we focus on the different approaches that can be used to deliver these newly developed miRNA therapeutics to their sites of action. Since siRNAs are structurally homologous with the miRNA therapeutics, important lessons learned from siRNA delivery strategies are discussed that might be applicable to targeted delivery of miRNA therapeutics, thereby reducing costs and potential side effects, and improving efficacy.

  11. Exploitation of pleiotropic actions of statins by using tumour-targeted delivery systems.

    PubMed

    Licarete, Emilia; Sesarman, Alina; Banciu, Manuela

    2015-01-01

    Statins are drugs traditionally used to lower cholesterol levels in blood. At concentrations 100- to 500-fold higher than those needed for reaching cholesterol lowering activity, they have anti-tumour activity. This anti-tumour activity is based on statins pleiotropic effects derived from their ability to inhibit the mevalonate synthesis and include anti-proliferative, pro-apoptotic, anti-angiogenic, anti-inflammatory, anti-metastatic actions and modulatory effects on intra-tumour oxidative stress. Thus, in this review, we summarise the possible pleiotropic actions of statins involved in tumour growth inhibition. Since the administration of these high doses of statins is accompanied by severe side effects, targeted delivery of statins seems to be the appropriate strategy for efficient application of statins in oncology. Therefore, we also present an overview of the current status of targeted delivery systems for statins with possible utilisation in oncology.

  12. Escort Aptamers: New Tools for the Targeted Delivery of Therapeutics into Cells

    PubMed Central

    Davydova, A.S.; Vorobjeva, M.A.; Venyaminova, A.G.

    2011-01-01

    Escort aptamers are DNA or RNA sequences with high affinity to certain cell-surface proteins, which can be used for targeted delivery of various agents into cells of a definite type. The peculiarities of the selection of escort aptamers are discussed in this review. The methods used in selection of escort aptamers via the SELEX technique are considered, including selection against isolated cell-surface proteins, cell fragments, living eukaryotic cells, and bacteria. Particular attention is given to the design and chemical modification of escort aptamers. The different fields of application of escort aptamers are described, including the targeted delivery of siRNAs, nanoparticles, toxins, and photoagents, as well as the identification of specific cell markers and the detection or isolation of cells of a definite type. The potential for the application of escort aptamers in the development of new therapeutic agents and diagnostic systems is also discussed. PMID:22649701

  13. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration.

    PubMed

    Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

    2013-01-01

    Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically.

  14. Collagen Coated Nanoliposome as a Targeted and Controlled Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, G.; Stephen, P.; Prabhu, M.; Sehgal, P. K.; Sadulla, S.

    2010-10-01

    The collagen coated nanoliposome (CCNL) have been prepared and characterized in order to develop a targeted and controlled drug delivery system. The zeta potential (ZP) measurement, Fourier transform infrared (FT-IR) spectral and Scanning Electron Microscopy (SEM) and Cell viability assay data showed that the collagen coated nanoliposome particle size and charges, structural interaction and surface morphology and high bio-cyto-compatibility of collagen coated nanoliposome. The particle sizes of nanoliposome (NL) and collagen coated nanoliposome are 20-300 nm and 0.1-10 μm respectively. The introduction of triple helical, coiled coil and fibrous protein of collagen into nanoliposome can improves the stability of nanoliposome, resistant to phospholipase activities and decreasing the phagocytosis of liposomes by reticuloendothelial system. The collagen coated nanoliposome is expected to be used as for targeted and controlled drug delivery system, and tissue engineering application.

  15. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells.

    PubMed

    Whitney, John C; Quentin, Dennis; Sawai, Shin; LeRoux, Michele; Harding, Brittany N; Ledvina, Hannah E; Tran, Bao Q; Robinson, Howard; Goo, Young Ah; Goodlett, David R; Raunser, Stefan; Mougous, Joseph D

    2015-10-22

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD(+) and NADP(+). Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.

  16. Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages

    PubMed Central

    Soto, Ernesto R.; O'Connell, Olivia; Dikengil, Fusun; Peters, Paul J.; Clapham, Paul R.

    2016-01-01

    Glucan particles (GPs) are hollow, porous 3–5 μm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles) encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles. PMID:27965897

  17. Near-infrared light-responsive core-shell nanogels for targeted drug delivery.

    PubMed

    Kang, Huaizhi; Trondoli, Anna Carolina; Zhu, Guizhi; Chen, Yan; Chang, Ya-Jen; Liu, Haipeng; Huang, Yu-Fen; Zhang, Xiaoling; Tan, Weihong

    2011-06-28

    A near-infrared light-responsive drug delivery platform based on Au-Ag nanorods (Au-Ag NRs) coated with DNA cross-linked polymeric shells was constructed. DNA complementarity has been applied to develop a polyacrylamide-based sol-gel transition system to encapsulate anticancer drugs into the gel scaffold. The Au-Ag NR-based nanogels can also be readily functionalized with targeting moieties, such as aptamers, for specific recognition of tumor cells. When exposed to NIR irradiation, the photothermal effect of the Au-Ag NRs leads to a rapid rise in the temperature of the surrounding gel, resulting in the fast release of the encapsulated payload with high controllability. In vitro study confirmed that aptamer-functionalized nanogels can be used as drug carriers for targeted drug delivery with remote control capability by NIR light with high spatial/temporal resolution.

  18. Loss of FBXW7 and accumulation of MCL1 and PLK1 promote paclitaxel resistance in breast cancer.

    PubMed

    Gasca, Jessica; Flores, Maria Luz; Giráldez, Servando; Ruiz-Borrego, Manuel; Tortolero, María; Romero, Francisco; Japón, Miguel A; Sáez, Carmen

    2016-08-16

    FBXW7 is a component of SCF (complex of SKP1, CUL1 and F-box-protein)-type ubiquitin ligases that targets several oncoproteins for ubiquitination and degradation by the proteasome. FBXW7 regulates cellular apoptosis by targeting MCL1 for ubiquitination. Recently, we identified PLK1 as a new substrate of FBXW7 modulating the intra-S-phase DNA-damage checkpoint. Taxanes are frequently used in breast cancer treatments, but the acquisition of resistance makes these treatments ineffective. We investigated the role of FBXW7 and their substrates MCL1 and PLK1 in regulating the apoptotic response to paclitaxel treatment in breast cancer cells and their expression in breast cancer tissues. Paclitaxel-sensitive MDA-MB-468 and a paclitaxel-resistant MDA-MB-468R subclone were used to study the role of FBXW7 and substrates in paclitaxel-induced apoptosis. Forced expression of FBXW7 or downregulation of MCL1 or PLK1 restored sensitivity to paclitaxel in MDA-MB-468R cells. By contrary, FBXW7-silenced MDA-MB-468 cells became resistant to paclitaxel. The expression of FBXW7 and substrates were studied in 296 invasive carcinomas by immunohistochemistry and disease-free survival was analyzed in a subset of patients treated with paclitaxel. In breast cancer tissues, loss of FBXW7 correlated with adverse prognosis markers and loss of FBXW7 and MCL1 or PLK1 accumulation were associated with diminished disease-free survival in paclitaxel-treated patients. We conclude that FBXW7 regulates the response to paclitaxel by targeting MCL1 and PLK1 in breast cancer cells and thus targeting these substrates may be a valuable adjunct for paclitaxel treatment. Also, FBXW7, MCL1 and PLK1 may be relevant predictive markers of tumor progression and response to paclitaxel treatment.

  19. Loss of FBXW7 and accumulation of MCL1 and PLK1 promote paclitaxel resistance in breast cancer

    PubMed Central

    Gasca, Jessica; Flores, Maria Luz; Giráldez, Servando; Ruiz-Borrego, Manuel; Tortolero, María; Romero, Francisco; Japón, Miguel A.; Sáez, Carmen

    2016-01-01

    FBXW7 is a component of SCF (complex of SKP1, CUL1 and F-box-protein)-type ubiquitin ligases that targets several oncoproteins for ubiquitination and degradation by the proteasome. FBXW7 regulates cellular apoptosis by targeting MCL1 for ubiquitination. Recently, we identified PLK1 as a new substrate of FBXW7 modulating the intra-S-phase DNA-damage checkpoint. Taxanes are frequently used in breast cancer treatments, but the acquisition of resistance makes these treatments ineffective. We investigated the role of FBXW7 and their substrates MCL1 and PLK1 in regulating the apoptotic response to paclitaxel treatment in breast cancer cells and their expression in breast cancer tissues. Paclitaxel-sensitive MDA-MB-468 and a paclitaxel-resistant MDA-MB-468R subclone were used to study the role of FBXW7 and substrates in paclitaxel-induced apoptosis. Forced expression of FBXW7 or downregulation of MCL1 or PLK1 restored sensitivity to paclitaxel in MDA-MB-468R cells. By contrary, FBXW7-silenced MDA-MB-468 cells became resistant to paclitaxel. The expression of FBXW7 and substrates were studied in 296 invasive carcinomas by immunohistochemistry and disease-free survival was analyzed in a subset of patients treated with paclitaxel. In breast cancer tissues, loss of FBXW7 correlated with adverse prognosis markers and loss of FBXW7 and MCL1 or PLK1 accumulation were associated with diminished disease-free survival in paclitaxel-treated patients. We conclude that FBXW7 regulates the response to paclitaxel by targeting MCL1 and PLK1 in breast cancer cells and thus targeting these substrates may be a valuable adjunct for paclitaxel treatment. Also, FBXW7, MCL1 and PLK1 may be relevant predictive markers of tumor progression and response to paclitaxel treatment. PMID:27409838

  20. Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes.

    PubMed

    Yang, Yoosoo; Hong, Yeonsun; Nam, Gi-Hoon; Chung, Jin Hwa; Koh, Eunee; Kim, In-San

    2017-02-06

    An efficient system for direct delivery of integral membrane proteins is successfully developed using a new biocompatible exosome-based platform. Fusogenic exosomes harboring viral fusogen, vascular stomatitis virus (VSV)-G protein, can fuse with and modify plasma membranes in a process called "membrane editing." This can facilitate the transfer of biologically active membrane proteins into the target cell membranes both in vitro and in vivo.

  1. Dual surface-functionalized Janus nanocomposites for targeted stimulus responsive drug delivery.

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Wang, Yilong; Pauletti, Giovanni; Shi, Donglu

    2014-03-01

    A novel superparamagnetic Janus nanocomposite (SJNC) of polystyrene/Fe3O4@SiO2 was designed and developed for the first time using a miniemulsion method. Both surfaces were readily functionalized for bio-medical application. Folic acid (FA) and doxorubicin (DOX) were conjugated stepwise to the surfaces. It was found that SJNCs achieved cell-targeted drug delivery in a pH-responsive manner.

  2. Optical steering of thermally generated microbubbles in a liquid for targeted metallic nanoparticle delivery

    NASA Astrophysics Data System (ADS)

    Krishnappa, Arjun; Abeywickrema, Ujitha; Banerjee, Partha

    2016-09-01

    A novel mathematical model is developed to investigate the behavior of thermally generated microbubbles in the presence of optical radiation to understand the mechanism of their steering. Forces acting on a bubble are studied in detail using a general force model. It has been proposed that these microbubbles with agglomerated metallic nanoparticles can be used for targeted drug delivery. The model can be extended to include the steering of bubbles with agglomerated silver or gold nanoparticles on their surface.

  3. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  4. Formulation design for target delivery of iron nanoparticles to TCE zones

    NASA Astrophysics Data System (ADS)

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy.

  5. Pathology-targeted cell delivery via injectable micro-scaffold capsule mediated by endogenous TGase.

    PubMed

    Qi, Chunxiao; Li, Yaqian; Badger, Patrick; Yu, Hongsheng; You, Zhifeng; Yan, Xiaojun; Liu, Wei; Shi, Yan; Xia, Tie; Dong, Jiahong; Huang, Chenyu; Du, Yanan

    2017-05-01

    Targeted cell delivery to lesion sites via minimally invasive approach remains an unmet need in regenerative medicine to endow satisfactory therapeutic efficacy and minimized side-effects. Here, we rationally designed a pathology-targeted cell delivery strategy leveraging injectable micro-scaffolds as cell-loading capsule and endogenous tissue transglutaminase (TGase) at lesion site as adhesive. Up-regulated TGase post-liver injury catalyzed chemical bonding between the glutamine and lysine residues on liver surface and micro-scaffolds both ex vivo and in vivo, facilitating sufficient adhesion on the pathological liver. Upon intraperitoneal injection, Mesenchymal Stem Cell-loaded capsules, exhibiting cell protection from shear-induced damage and post-transplantation anoikis, adhered to the CCl4-treated liver with a hundred-fold improvement in targeting efficiency (70.72%) compared to free-cell injection, which dramatically improved mice survival (33.3% vs. 0% for free-cell therapy) even with low-dosage treatment. This unique and widely-applicable cell delivery mechanism and strategy hold great promise for transforming cell therapy for refractory diseases.

  6. Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery

    PubMed Central

    Zhou, Jihan; Li, Dong; Wen, Hao; Zheng, Shuquan; Su, Cuicui; Yi, Fan; Wang, Jue; Liang, Zicai; Tang, Tao; Zhou, Demin; Zhang, Li-He; Liang, Dehai; Du, Quan

    2016-01-01

    Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications. PMID:26955887

  7. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer

    PubMed Central

    Bruckman, Michael A.; Czapar, Anna E.; VanMeter, Allen; Randolph, Lauren N.; Steinmetz, Nicole F.

    2016-01-01

    Drug delivery systems are required for drug targeting to avoid adverse effects associated with chemotherapy treatment regimes. Our approach is focused on the study and development of plant virus-based materials as drug delivery systems; specifically, this work focuses on the tobacco mosaic virus (TMV). Native TMV forms a hollow, high aspect-ratio nanotube measuring 300 × 18 nm with a 4 nm-wide central channel. Heat-transformation can be applied to TMV yielding spherical nanoparticles (SNPs) measuring ~50 nm in size. While bioconjugate chemistries have been established to modify the TMV rod, such methods have not yet been described for the SNP platform. In this work, we probed the reactivity of SNPs toward bioconjugate reactions targeting lysine, glutamine/aspartic acid, and cysteine residues. We demonstrate functionalization of SNPs using these chemistries yielding efficient payload conjugation. In addition to covalent labeling techniques, we developed encapsulation techniques, where the cargo is loaded into the SNP during heat-transition from rod-to-sphere. Finally, we developed TMV and SNP formulations loaded with the chemotherapeutic doxorubicin, and we demonstrate the application of TMV rods and spheres for chemotherapy delivery targeting breast cancer. PMID:26941034

  8. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer.

    PubMed

    Bruckman, Michael A; Czapar, Anna E; VanMeter, Allen; Randolph, Lauren N; Steinmetz, Nicole F

    2016-06-10

    Drug delivery systems are required for drug targeting to avoid adverse effects associated with chemotherapy treatment regimes. Our approach is focused on the study and development of plant virus-based materials as drug delivery systems; specifically, this work focuses on the tobacco mosaic virus (TMV). Native TMV forms a hollow, high aspect-ratio nanotube measuring 300×18nm with a 4nm-wide central channel. Heat-transformation can be applied to TMV yielding spherical nanoparticles (SNPs) measuring ~50nm in size. While bioconjugate chemistries have been established to modify the TMV rod, such methods have not yet been described for the SNP platform. In this work, we probed the reactivity of SNPs toward bioconjugate reactions targeting lysine, glutamine/aspartic acid, and cysteine residues. We demonstrate functionalization of SNPs using these chemistries yielding efficient payload conjugation. In addition to covalent labeling techniques, we developed encapsulation techniques, where the cargo is loaded into the SNP during heat-transition from rod-to-sphere. Finally, we developed TMV and SNP formulations loaded with the chemotherapeutic doxorubicin, and we demonstrate the application of TMV rods and spheres for chemotherapy delivery targeting breast cancer.

  9. Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery

    NASA Astrophysics Data System (ADS)

    Zhou, Jihan; Li, Dong; Wen, Hao; Zheng, Shuquan; Su, Cuicui; Yi, Fan; Wang, Jue; Liang, Zicai; Tang, Tao; Zhou, Demin; Zhang, Li-He; Liang, Dehai; Du, Quan

    2016-03-01

    Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications.

  10. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury.

    PubMed

    Lopes, Cátia D F; Gonçalves, Nádia P; Gomes, Carla P; Saraiva, Maria J; Pêgo, Ana P

    2017-03-01

    Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the brain-derived neurotrophic factor (BDNF) in a peripheral nerve injury model. The TMCSH-HC/BDNF nanoparticle treatment promoted the release and significant expression of BDNF in neural tissues, which resulted in an enhanced functional recovery after injury as compared to control treatments (vehicle and non-targeted nanoparticles), associated with an improvement in key pro-regenerative events, namely, the increased expression of neurofilament and growth-associated protein GAP-43 in the injured nerves. Moreover, the targeted nanoparticle treatment was correlated with a significantly higher density of myelinated axons in the distal stump of injured nerves, as well as with preservation of unmyelinated axon density as compared with controls and a protective role in injury-denervated muscles, preventing them from denervation. These results highlight the potential of TMCSH-HC nanoparticles as non-viral gene carriers to deliver therapeutic genes into the peripheral neurons and thus, pave the way for their use as an effective therapeutic intervention for peripheral neuropathies.

  11. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Sun, Yun; Chen, Zhi-long; Yang, Xiao-xia; Huang, Peng; Zhou, Xin-ping; Du, Xiao-xia

    2009-04-01

    Photodynamic therapy (PDT) has become an increasingly recognized alternative to cancer treatment in clinic. However, PDT therapy agents, namely photosensitizer (PS), are limited in application as a result of prolonged cutaneous photosensitivity, poor water solubility and inadequate selectivity, which are encountered by numerous chemical therapies. Magnetic chitosan nanoparticles provide excellent biocompatibility, biodegradability, non-toxicity and water solubility without compromising their magnetic targeting. Nevertheless, no previous attempt has been reported to develop an in vivo magnetic drug delivery system with chitosan nanoparticles for magnetic resonance imaging (MRI) monitored targeting photodynamic therapy. In this study, magnetic targeting chitosan nanoparticles (MTCNPs) were prepared and tailored as a drug delivery system and imaging agents for PS, designated as PHPP. Results showed that PHPP-MTCNPs could be used in MRI monitored targeting PDT with excellent targeting and imaging ability. Non-toxicity and high photodynamic efficacy on SW480 carcinoma cells both in vitro and in vivo were achieved with this method at the level of 0-100 µM. Notably, localization of nanoparticles in skin and hepatic tissue was significantly less than in tumor tissue, therefore photosensitivity and hepatotoxicity can be attenuated.

  12. 'One-pot' synthesis of multifunctional GSH-CdTe quantum dots for targeted drug delivery.

    PubMed

    Chen, Xiaoqin; Tang, Yajun; Cai, Bing; Fan, Hongsong

    2014-06-13

    A novel quantum dots-based multifunctional nanovehicle (DOX-QD-PEG-FA) was designed for targeted drug delivery, fluorescent imaging, tracking, and cancer therapy, in which the GSH-CdTe quantum dots play a key role in imaging and drug delivery. To exert curative effects, the antineoplastic drug doxorubicin hydrochloride (DOX) was loaded on the GSH-CdTe quantum dots through a condensation reaction. Meanwhile, a polyethylene glycol (PEG) shell was introduced to wrap the DOX-QD, thus stabilizing the structure and preventing clearance and drug release during systemic circulation. To actively target cancer cells and prevent the nanovehicles from being absorbed by normal cells, the nanoparticles were further decorated with folic acid (FA), allowing them to target HeLa cells that express the FA receptor. The multifunctional DOX-QD-PEG-FA conjugates were simply prepared using the 'one pot' method. In vitro study demonstrated that this simple, multifunctional nanovehicle can deliver DOX to the targeted cancer cells and localize the nanoparticles. After reaching the tumor cells, the FA on the DOX-QD-PEG surface allowed folate receptor recognition and increased the drug concentration to realize a higher curative effect. This novel, multifunctional DOX-QD-PEG-FA system shows great potential for tumor imaging, targeting, and therapy.

  13. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment.

    PubMed

    Shamay, Yosi; Elkabets, Moshe; Li, Hongyan; Shah, Janki; Brook, Samuel; Wang, Feng; Adler, Keren; Baut, Emily; Scaltriti, Maurizio; Jena, Prakrit V; Gardner, Eric E; Poirier, John T; Rudin, Charles M; Baselga, José; Haimovitz-Friedman, Adriana; Heller, Daniel A

    2016-06-29

    Disseminated tumors are poorly accessible to nanoscale drug delivery systems because of the vascular barrier, which attenuates extravasation at the tumor site. We investigated P-selectin, a molecule expressed on activated vasculature that facilitates metastasis by arresting tumor cells at the endothelium, for its potential to target metastases by arresting nanomedicines at the tumor endothelium. We found that P-selectin is expressed on cancer cells in many human tumors. To develop a targeted drug delivery platform, we used a fucosylated polysaccharide with nanomolar affinity to P-selectin. The nanoparticles targeted the tumor microenvironment to localize chemotherapeutics and a targeted MEK (mitogen-activated protein kinase kinase) inhibitor at tumor sites in both primary and metastatic models, resulting in superior antitumor efficacy. In tumors devoid of P-selectin, we found that ionizing radiation guided the nanoparticles to the disease site by inducing P-selectin expression. Radiation concomitantly produced an abscopal-like phenomenon wherein P-selectin appeared in unirradiated tumor vasculature, suggesting a potential strategy to target disparate drug classes to almost any tumor.

  14. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects.

    PubMed

    Maruyama, Kazuo

    2011-03-18

    The success of an effective drug delivery system using liposomes for solid tumor targeting based on EPR effects is highly dependent on both size ranging from 100-200 nm in diameter and prolonged circulation half-life in the blood. A major development was the synthesis of PEG-liposomes with a prolonged circulation time in the blood. Active targeting of immunoliposomes to the solid tumor tissue can be achieved by the Fab' fragment which is better than whole IgG in terms of designing PEG-immunoliposomes with prolonged circulation. For intracellular targeting delivery to solid tumors based on EPR effects, transferrin-PEG-liposomes can stay in blood circulation for a long time and extravasate into the extravascular of tumor tissue by the EPR effect as PEG-liposomes. The extravasated transferrin-PEG-liposomes can maintain anti cancer drugs in interstitial space for a longer period, and deliver them into the cytoplasm of tumor cells via transferrin receptor-mediated endocytosis. Transferrin-PEG-liposomes improve the safety and efficacy of anti cancer drug by both passive targeting by prolonged circulation and active targeting by transferrin.

  15. Self-assembled nanoplatform for targeted delivery of chemotherapy agents via affinity-regulated molecular interactions.

    PubMed

    Park, Spencer; Kang, Sungkwon; Veach, Alexander J; Vedvyas, Yogindra; Zarnegar, Rasa; Kim, Ju-Young; Jin, Moonsoo M

    2010-10-01

    Site-specific delivery of drugs while minimizing unwanted distribution has been one of the pursued goals in cancer therapy. In this endeavor, we have developed targeted polymeric nanoparticles called amphiphilic urethane acrylate nonionomer (UAN) for encapsulation of diverse water-insoluble drugs and diagnostic agents, as well as for simple and reproducible surface conjugation of targeting ligands. Using monoclonal antibodies or lymphocyte function-associated antigen-1 (LFA-1) I domain engineered for varying affinities to intercellular adhesion molecule (ICAM)-1, we were able to deliver UAN nanoparticles to human cancer cells with the efficiency dependent on the strength of the molecular interactions and the degree of ICAM-1 expression on cell surface. Compared to non-specific uptake of free drugs, targeted delivery of UAN nanoparticles carrying equal amount of drugs produced more potent cytotoxicity. Notably, without the targeting ligands attached, UAN nanoparticles were largely precluded from non-specific uptake by the cells, resulting in much lower toxicity. The versatility of our UAN nanoparticles in both payload encapsulation and presentation of targeting ligands may facilitate developing a robust platform for evaluating various combinations of cancer drugs and molecular interactions toward developing effective cancer therapy formulations.

  16. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment

    PubMed Central

    Shamay, Yosi; Elkabets, Moshe; Li, Hongyan; Shah, Janki; Brook, Samuel; Wang, Feng; Adler, Keren; Baut, Emily; Scaltriti, Maurizio; Jena, Prakrit V.; Gardner, Eric E.; Poirier, John T.; Rudin, Charles M.; Baselga, José; Haimovitz-Friedman, Adriana; Heller, Daniel A.

    2016-01-01

    Disseminated tumors are poorly accessible to nanoscale drug delivery systems because of the vascular barrier, which attenuates extravasation at the tumor site. We investigated P-selectin, a molecule expressed on activated vasculature that facilitates metastasis by arresting tumor cells at the endothelium, for its potential to target metastases by arresting nanomedicines at the tumor endothelium. We found that P-selectin is expressed on cancer cells in many human tumors. To develop a targeted drug delivery platform, we used a fucosylated polysaccharide with nanomolar affinity to P-selectin. The nanoparticles targeted the tumor microenvironment to localize chemotherapeutics and a targeted MEK (mitogen-activated protein kinase kinase) inhibitor at tumor sites in both primary and metastatic models, resulting in superior antitumor efficacy. In tumors devoid of P-selectin, we found that ionizing radiation guided the nanoparticles to the disease site by inducing P-selectin expression. Radiation concomitantly produced an abscopal-like phenomenon wherein P-selectin appeared in unirradiated tumor vasculature, suggesting a potential strategy to target disparate drug classes to almost any tumor. PMID:27358497

  17. Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides

    PubMed Central

    Liu, Shuang

    2008-01-01

    Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals. PMID:18538888

  18. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery

    PubMed Central

    Corbo, Claudia; Molinaro, Roberto; Parodi, Alessandro; Toledano Furman, Naama E; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    In a perfect sequence of events, nanoparticles (NPs) are injected into the bloodstream where they circulate until they reach the target tissue. The ligand on the NP surface recognizes its specific receptor expressed on the target tissue and the drug is released in a controlled manner. However, once injected in a physiological environment, NPs interact with biological components and are surrounded by a protein corona (PC). This can trigger an immune response and affect NP toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the NP–PC interactions and discuss how the PC can be used to modulate both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers. PMID:26653875

  19. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery.

    PubMed

    Corbo, Claudia; Molinaro, Roberto; Parodi, Alessandro; Toledano Furman, Naama E; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    In a perfect sequence of events, nanoparticles (NPs) are injected into the bloodstream where they circulate until they reach the target tissue. The ligand on the NP surface recognizes its specific receptor expressed on the target tissue and the drug is released in a controlled manner. However, once injected in a physiological environment, NPs interact with biological components and are surrounded by a protein corona (PC). This can trigger an immune response and affect NP toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the NP-PC interactions and discuss how the PC can be used to modulate both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers.

  20. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening.

    PubMed

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel; Konofagou, Elisa E

    2017-04-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood-brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood-brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo.

  1. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Shu; Lu, Yu-Jen; Chen, Jyh-Ping

    2017-04-01

    A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of chemotherapy drugs to cancer cells. Magnetic graphene oxide (mGO) was prepared by chemical co-precipitation of Fe3O4 magnetic nanoparticles on GO nano-platelets. The mGO was successively modified by chitosan and mPEG-NHS through covalent bindings to synthesize mGOC-PEG. The polyethylene glycol (PEG) moiety is expected to prolong the circulation time of mGO by reducing the reticuloendothelial system clearance. Irinotecan (CPT-11) or doxorubicin (DOX) was loaded to mGOC-PEG through π-π stacking interactions for magnetic targeted delivery of the cancer chemotherapy drug. The best values of loading efficiency and loading content of CPT-11 were 54% and 2.7% respectively; whereas for DOX, they were 65% and 393% The pH-dependent drug release profile was further experimented at different pHs, in which 60% of DOX was released at pH 5.4 and 10% was released at pH 7.4. In contrast, 90% CPT-11 was released at pH 5.4 and 70% at pH 7.4. Based on the drug loading and release characteristics, mGOC-PEG/DOX was further chosen for in vitro cytotoxicity tests against U87 human glioblastoma cell line. The IC50 value of mGOC-PEG/DOX was found to be similar to that of free DOX but was reduced dramatically when subject to magnetic targeting. It is concluded that with the high drug loading and pH-dependent drug release properties, mGOC-PEG will be a promising drug carrier for targeted delivery of chemotherapy drugs in cancer therapy.

  2. Folic acid-conjugated amphiphilic alternating copolymer as a new active tumor targeting drug delivery platform

    PubMed Central

    Li, Xia; Szewczuk, Myron R; Malardier-Jugroot, Cecile

    2016-01-01

    Targeted drug delivery using polymeric nanostructures is an emerging cancer research area, engineered for safer, more efficient, and effective use of chemotherapeutic drugs. A pH-responsive, active targeting delivery system was designed using folic acid functionalized amphiphilic alternating copolymer poly(styrene-alt-maleic anhydride) (FA-DABA-SMA) via a biodegradable linker 2,4-diaminobutyric acid (DABA). The polymeric template is pH responsive, forming amphiphilic nanostructures at pH 7, allowing the encapsulation of hydrophobic drugs on its interior. Moreover, the structure is stable only at neutral pH and collapses in the acidic tumor microenvironment, releasing drugs on-site from its core. The delivery vehicle is investigated using human pancreatic PANC-1 cancer cells and RAW-Blue™ mouse macrophage reporter cell line, both of which have overly expression of folic acid receptors. To trace the cellular uptake by both cell lines, curcumin was selected as a dye and drug mimic owing to its fluorescence nature and hydrophobic properties. Fluorescent microscopy of FA-DABA-SMA loaded with curcumin revealed a significant internalization of the dye by human pancreatic PANC-1 cancer cells compared to those with unfunctionalized polymers (SMA). Moreover, the FA-DABA-SMA polymers exhibit rodlike association specific to the cells. Both empty SMA and FA-DABA-SMA show little toxicity to PANC-1 cells as characterized by WST-1 cell proliferation assay. These results clearly indicate that FA-DABA-SMA polymers show potential as an active tumor targeting drug delivery system with the ability to internalize hydrophobic chemotherapeutics after they specifically attach to cancer cells. PMID:28008233

  3. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    NASA Astrophysics Data System (ADS)

    Thovhogi, Ntevheleni; Sibuyi, Nicole; Meyer, Mervin; Onani, Martin; Madiehe, Abram

    2015-02-01

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats.

  4. Extracellularly activated nanocarriers: A new paradigm of tumor targeted drug delivery

    PubMed Central

    Gullotti, Emily; Yeo, Yoon

    2009-01-01

    One of the main goals of nanomedicine is to develop a nanocarrier that can selectively deliver anti-cancer drugs to the targeted tumors. Extensive efforts have resulted in several tumor-targeted nanocarriers, some of which are approved for clinical use. Most nanocarriers achieve tumor-selective accumulation through the enhanced permeability and retention effect. Targeting molecules such as antibodies, peptides, ligands, or nucleic acids attached to the nanocarriers further enhance their recognition and internalization by the target tissues. While both the stealth and targeting features are important for effective and selective drug delivery to the tumors, achieving both features simultaneously is often found to be difficult. Some of the recent targeting strategies have the potential to overcome this challenge. These strategies utilize the unique extracellular environment of tumors to change the long-circulating nanocarriers to release the drug or interact with cells in a tumor-specific manner. This review discusses the new targeting strategies with recent examples, which utilize the environmental stimuli to activate the nanocarriers. Traditional strategies for tumor-targeted nanocarriers are briefly discussed with an emphasis on their achievements and challenges. PMID:19366234

  5. Integrin Targeting and Toxicological Assessment of Peptide-Conjugated Liposome Delivery Systems to Activated Endothelial Cells.

    PubMed

    Kermanizadeh, Ali; Villadsen, Klaus; Østrem, Ragnhild G; Jensen, Knud J; Møller, Peter; Loft, Steffen

    2017-04-01

    Utilization of functionalized liposomes as the means of targeted delivery of therapeutics may enhance specific transport of biologically active drugs to target tissues, while avoiding or reducing undesired side effects. In the present investigation, peptide-conjugated cationic liposomes were constructed with the aim of targeting integrins (i.e. vitronectin and/or fibronectin receptors) on activated endothelial cells. The peptide-conjugated liposomes induced only cytotoxicity at the highest concentration in non-activated or activated endothelial cells, as well as in co-culture of endothelial cells and macrophages. There was unaltered secretion of cytokines after exposure of peptide-conjugated liposomes to endothelial cells, indicating that the materials were not inflammogenic. Liposomes with a peptide targeting the fibronectin receptor (integrin α5β1) were more effective in targeting of activated endothelial cells, as compared to a liposome with a peptide that targeted both the fibronectin and vitronectin receptors, as well as liposomes with a control peptide. The liposome targeted to the fibronectin receptor also displayed uptake in endothelial cells in co-culture with activated macrophages. Therefore, this study demonstrates the feasibility of constructing a peptide-conjugated cationic liposome, which displays targeting to activated endothelial cells at concentrations that are not cytotoxic or inflammogenic to the cells.

  6. Bisphosphorylated PEA-15 sensitizes ovarian cancer cells to paclitaxel by impairing the microtubule-destabilizing effect of SCLIP.

    PubMed

    Xie, Xuemei; Bartholomeusz, Chandra; Ahmed, Ahmed A; Kazansky, Anna; Diao, Lixia; Baggerly, Keith A; Hortobagyi, Gabriel N; Ueno, Naoto T

    2013-06-01

    Paclitaxel is a standard chemotherapeutic agent for ovarian cancer. PEA-15 (phosphoprotein enriched in astrocytes-15 kDa) regulates cell proliferation, autophagy, apoptosis, and glucose metabolism and also mediates AKT-dependent chemoresistance in breast cancer. The functions of PEA-15 are tightly regulated by its phosphorylation status at Ser104 and Ser116. However, the effect of PEA-15 phosphorylation status on chemosensitivity of cancer cells remains unknown. Here, we tested the hypothesis that PEA-15 phosphorylated at both Ser104 and Ser116 (pPEA-15) sensitizes ovarian cancer cells to paclitaxel. We first found that knockdown of PEA-15 in PEA-15-high expressing HEY and OVTOKO ovarian cancer cells resulted in paclitaxel resistance, whereas re-expression of PEA-15 in these cells led to paclitaxel sensitization. We next found that SKOV3.ip1-DD cells (expressing phosphomimetic PEA-15) were more sensitive to paclitaxel than SKOV3.ip1-AA cells (expressing nonphosphorylatable PEA-15). Compared with SKOV3.ip1-vector and SKOV3.ip1-AA cells, SKOV3.ip1-DD cells displayed reduced cell viability, inhibited anchorage-independent growth, and augmented apoptosis when treated with paclitaxel. Furthermore, HEY and OVTOKO cells displayed enhanced paclitaxel sensitivity when transiently overexpressing phosphomimetic PEA-15 and reduced paclitaxel sensitivity when transiently overexpressing nonphosphorylatable PEA-15. These results indicate that pPEA-15 sensitizes ovarian cancer cells to paclitaxel. cDNA microarray analysis suggested that SCLIP (SCG10-like protein), a microtubule-destabilizing protein, is involved in pPEA-15-mediated chemosensitization. We found that reduced expression and possibly posttranslational modification of SCLIP following paclitaxel treatment impaired the microtubule-destabilizing effect of SCLIP, thereby promoting induction of mitotic arrest and apoptosis by paclitaxel. Our findings highlight the importance of pPEA-15 as a promising target for improving

  7. Targeted delivery of 5-fluorouracil to cholangiocarcinoma cells using folic acid as a targeting agent.

    PubMed

    Ngernyuang, Nipaporn; Seubwai, Wunchana; Daduang, Sakda; Boonsiri, Patcharee; Limpaiboon, Temduang; Daduang, Jureerut

    2016-03-01

    There are limits to the standard treatment for cholangiocarcinoma (CCA) including drug resistance and side effects. The objective of this study was to develop a new technique for carrying drugs by conjugation with gold nanoparticles and using folic acid as a targeting agent in order to increase drug sensitivity. Gold nanoparticles (AuNPs) were functionalized with 5-fluorouracil (5FU) and folic acid (FA) using polyethylene glycol (PEG) shell as a linker (AuNPs-PEG-5FU-FA). Its cytotoxicity was tested in CCA cell lines (M139 and M213) which express folic acid receptor (FA receptor). The results showed that AuNPs-PEG-5FU-FA increased the cytotoxic effects in the M139 and M213 cells by 4.76% and 7.95%, respectively compared to those treated with free 5FU+FA. It is found that the cytotoxicity of the AuNPs-PEG-5FU-FA correlates with FA receptor expression suggested the use of FA as a targeted therapy. The mechanism of cytotoxicity was mediated via mitochondrial apoptotic pathway as determined by apoptosis array. In conclusion, our findings shed some light on the use of gold nanoparticles for conjugation with potential compounds and FA as targeted therapy which contribute to the improvement of anti-cancer drug efficacy. In vivo study should be warranted for its effectiveness of stability, biosafety and side effect reduction.

  8. Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model.

    PubMed

    Hitchcock, Kathryn E; Caudell, Danielle N; Sutton, Jonathan T; Klegerman, Melvin E; Vela, Deborah; Pyne-Geithman, Gail J; Abruzzo, Todd; Cyr, Peppar E P; Geng, Yong-Jian; McPherson, David D; Holland, Christy K

    2010-06-15

    The goal of this study was to determine whether targeted, Rhodamine-labeled echogenic liposomes (Rh-ELIP) containing nanobubbles could be delivered to the arterial wall, and whether 1-MHz continuous wave ultrasound would enhance this delivery profile. Aortae excised from apolipoprotein-E-deficient (n=8) and wild-type (n=8) mice were mounted in a pulsatile flow system through which Rh-ELIP were delivered in a stream of bovine serum albumin. Half the aortae from each group were treated with 1-MHz continuous wave ultrasound at 0.49 MPa peak-to-peak pressure, and half underwent sham exposure. Ultrasound parameters were chosen to promote stable cavitation and avoid inertial cavitation. A broadband hydrophone was used to monitor cavitation activity. After treatment, aortic sections were prepared for histology and analyzed by an individual blinded to treatment conditions. Delivery of Rh-ELIP to the vascular endothelium was observed, and sub-endothelial penetration of Rh-ELIP was present in five of five ultrasound-treated aortae and was absent in those not exposed to ultrasound. However, the degree of penetration in the ultrasound-exposed aortae was variable. There was no evidence of ultrasound-mediated tissue damage in any specimen. Ultrasound-enhanced delivery within the arterial wall was demonstrated in this novel model, which allows quantitative evaluation of therapeutic delivery.

  9. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy.

    PubMed

    Johnsen, Kasper Bendix; Gudbergsson, Johann Mar; Skov, Martin Najbjerg; Pilgaard, Linda; Moos, Torben; Duroux, Meg

    2014-08-01

    Exosomes denote a class of secreted nanoparticles defined by size, surface protein and lipid composition, and the ability to carry RNA and proteins. They are important mediators of intercellular communication and regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest them to be important both for diagnostic and therapeutic purposes, prompting the idea of using exosomes as drug delivery vehicles, especially for gene therapy. This review covers the current status of evidence presented in the field of exosome-based drug delivery systems. Components for successful exosome-based drug delivery, such as choice of donor cell, therapeutic cargo, use of targeting peptide, loading method and administration route are highlighted and discussed with a general focus pertaining to the results obtained in models of different cancer types. In addition, completed and on-going clinical trials are described, evaluating exosome-based therapies for the treatment of different cancer types. Due to their endogenous origin, exosome-based drug delivery systems may have advantages in the treatment of cancer, but their design needs further refinement to justify their usage on the clinical scale.

  10. Cell-specific targeting strategies for electroporation-mediated gene delivery in cells and animals.

    PubMed

    Dean, David A

    2013-10-01

    The use of electroporation to facilitate gene transfer is an extremely powerful and useful method for both in vitro and in vivo applications. One of its great strengths is that it induces functional destabilization and permeabilization of cell membranes throughout a tissue leading to widespread gene transfer to multiple cells and cell types within the electric field. While this is a strength, it can also be a limitation in terms of cell-specific gene delivery. The ability to restrict gene delivery and expression to particular cell types is of paramount importance for many types of gene therapy, since ectopic expression of a transgene could lead to deleterious host inflammatory responses or dysregulation of normal cellular functions. At present, there are relatively few ways to obtain cell-specific targeting of nonviral vectors, molecular probes, small molecules, and imaging agents. We have developed a novel means of restricting gene delivery to desired cell types based on the ability to control the transport of plasmids into the nuclei of desired cell types. In this article, we discuss the mechanisms of this approach and several applications in living animals to demonstrate the benefits of the combination of electroporation and selective nuclear import of plasmids for cell-specific gene delivery.

  11. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    PubMed Central

    Madaan, Kanika; Kumar, Sandeep; Poonia, Neelam; Lather, Viney; Pandita, Deepti

    2014-01-01

    Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity. PMID:25035633

  12. Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model

    PubMed Central

    Hitchcock, Kathryn E.; Caudell, Danielle N.; Sutton, Jonathan T.; Klegerman, Melvin E.; Vela, Deborah; Pyne-Geithman, Gail J.; Abruzzo, Todd; Cyr, Peppar E. P.; Geng, Yong-Jian; McPherson, David D.; Holland, Christy K.

    2010-01-01

    The goal of this study was to determine whether targeted, Rhodamine-labeled echogenic liposomes (Rh-ELIP) containing nanobubbles could be delivered to the arterial wall, and whether 1 MHz continuous wave ultrasound would enhance this delivery profile. Aortae excised from apolipoprotein-E-deficient (n = 8) and wild-type (n = 8) mice were mounted in a pulsatile flow system through which Rh-ELIP were delivered in a stream of bovine serum albumin. Half the aortae from each group were treated with 1-MHz continuous wave ultrasound at 0.49 MPa peak-to-peak pressure, and half underwent sham exposure. Ultrasound parameters were chosen to promote stable cavitation and avoid inertial cavitation. A broadband hydrophone was used to monitor cavitation activity. After treatment, aortic sections were prepared for histology and analyzed by an individual blinded to treatment conditions. Delivery of Rh-ELIP to the vascular endothelium was observed, and subendothelial penetration of Rh-ELIP was present in five of five ultrasound-treated aortae and was absent in those not exposed to ultrasound. However, the degree of penetration in the ultrasound-exposed aortae was variable. There was no evidence of ultrasound-mediated tissue damage in any specimen. Ultrasound-enhanced delivery within the arterial wall was demonstrated in this novel model, which allows quantitative evaluation of therapeutic delivery. PMID:20202474

  13. Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB.

    PubMed

    Chen, Cuitian; Duan, Ziqing; Yuan, Yan; Li, Ruixiang; Pang, Liang; Liang, Jianming; Xu, Xinchun; Wang, Jianxin

    2017-02-22

    Chemotherapy outcomes for the treatment of glioma remain unsatisfied due to the inefficient drug transport across BBB/BBTB and poor drug accumulation in the tumor site. Nanocarriers functionalized with different targeting ligands are considered as one of the most promising alternatives. However, few studies were reported to compare the targeting efficiency of the ligands and develop nanoparticles to realize BBB/BBTB crossing and brain tumor targeting simultaneously. In this study, six peptide-based ligands (Angiopep-2, T7, Peptide-22, c(RGDfK), D-SP5 and Pep-1), widely used for brain delivery, were selected to decorate liposomes, respectively, so as to compare their targeting ability to BBB or BBTB. Based on the in vitro cellular uptake results on BCECs and HUVECs, Peptide-22 and c(RGDfK) were picked to construct a BBB/BBTB dual-crossing, glioma-targeting liposomal drug delivery system c(RGDfK)/Pep-22-DOX-LP. In vitro cellular uptake demonstrated that the synergetic effect of c(RGDfK) and Peptide-22 could significantly increase the internalization of liposomes on U87 cells. In vivo imaging further verified that c(RGDfK)/Pep-22-LP exhibited higher brain tumor distribution than single ligand modified liposomes. The median survival time of glioma-bearing mice treated with c(RGDfK)/Pep-22-DOX-LP (39.5 days) was significantly prolonged than those treated with free doxorubicin or other controls. In conclusion, the c(RGDfK) and Peptide-22 dual-modified liposome was constructed based on the targeting ability screening of various ligands. The system could effectively overcome BBB/BBTB barriers, target to tumor cells and inhibit the growth of glioma, which proved its potential for improving the efficacy of chemotherapeutics for glioma therapy.

  14. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos.

    PubMed

    Karimi, Mahdi; Mirshekari, Hamed; Moosavi Basri, Seyed Masoud; Bahrami, Sajad; Moghoofei, Mohsen; Hamblin, Michael R

    2016-11-15

    The main goal of drug delivery systems is to target therapeutic cargoes to desired cells and to ensure their efficient uptake. Recently a number of studies have focused on designing bio-inspired nanocarriers, such as bacteriophages, and synthetic carriers based on the bacteriophage structure. Bacteriophages are viruses that specifically recognize their bacterial hosts. They can replicate only inside their host cell and can act as natural gene carriers. Each type of phage has a particular shape, a different capacity for loading cargo, a specific production time, and their own mechanisms of supramolecular assembly, that have enabled them to act as tunable carriers. New phage-based technologies have led to the construction of different peptide libraries, and recognition abilities provided by novel targeting ligands. Phage hybridization with non-organic compounds introduces new properties to phages and could be a suitable strategy for construction of bio-inorganic carriers. In this review we try to cover the major phage species that have been used in drug and gene delivery systems, and the biological application of phages as novel targeting ligands and targeted therapeutics.

  15. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model.

    PubMed

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M

    2015-06-20

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues.

  16. Cardiological biopharmaceuticals in the conception of drug targeting delivery: practical results and research perspectives.

    PubMed

    Maksimenko, A V

    2012-07-01

    The results of the clinical use of thrombolytic and antithrombotic preparations developed on the basis of protein conjugates obtained within the framework of the conception of drug targeting delivery in the organism are considered. A decrease has been noted in the number of biomedical projects focused on these derivatives as a result of various factors: the significant depletion of financial and organizational funds, the saturation of the pharmaceutical market with preparations of this kind, and the appearance of original means for interventional procedures. Factors that actively facilitate the conspicuous potentiation of the efficacy of bioconjugates were revealed: the biomedical testing of protein domains and their selected combinations, the optimization of molecular sizes for the bioconjugates obtained, the density of target localization, the application of cell adhesion molecules as targets, and the application of connected enzyme activities. Enzyme antioxidants and the opportunity for further elaboration of the drug delivery conception via the elucidation and formation of therapeutic targets for effective drug reactions by means of pharmacological pre- and postconditioning of myocardium arouse significant interest.

  17. Cancer Nanotheranostics: Improving Imaging and Therapy by Targeted Delivery across Biological Barriers

    PubMed Central

    Kievit, Forrest M.; Zhang, Miqin

    2012-01-01

    Cancer nanotheranostics aims to combine imaging and therapy of cancer through use of nanotechnology. The ability to engineer nanomaterials to interact with cancer cells at the molecular level can significantly improve the effectiveness and specificity of therapy to cancers that are currently difficult to treat. In particular, metastatic cancers, drug-resistant cancers, and cancer stem cells impose the greatest therapeutic challenge that requires targeted therapy to treat effectively. Targeted therapy can be achieved with appropriate designed drug delivery vehicles such as nanoparticles, adult stem cells, or T cells in immunotherapy. In this article, we first review the different types of materials commonly used to synthesize nanotheranostic particles and their use in imaging. We then discuss biological barriers that these nanoparticles encounter and must bypass to reach the target cancer cells, including the blood, liver, kidneys, spleen, and particularly the blood-brain barrier. We then review how nanotheranostics can be used to improve targeted delivery and treatment of cancer cells using nanoparticles, adult stem cells, and T cells in immunotherapy. Finally, we discuss development of nanoparticles to overcome current limitations in cancer therapy. PMID:21842473

  18. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery.

    PubMed

    Vlieghe, Patrick; Khrestchatisky, Michel

    2013-05-01

    The central nervous system (CNS) is protected by various barriers, which regulate nervous tissue homeostasis and control the selective and specific uptake, efflux, and metabolism of endogenous and exogenous molecules. Among these barriers is the blood-brain barrier (BBB), a physical and physiological barrier that filters very efficiently and selectively the entry of compounds from the blood to the brain and protects nervous tissue from harmful substances and infectious agents present in the bloodstream. The BBB also prevents the entry of potential drugs. As a result, various drug targeting and delivery strategies are currently being developed to enhance the transport of drugs from the blood to the brain. Following a general introduction, we briefly overview in this review article the fundamental physiological properties of the BBB. Then, we describe current strategies to bypass the BBB (i.e., invasive methods, alternative approaches, and temporary opening) and to cross it (i.e., noninvasive approaches). This section is followed by a chapter addressing the chemical and technological solutions developed to cross the BBB. A special emphasis is given to prodrug-targeting approaches and targeted nanotechnology-based systems, two promising strategies for BBB targeting and delivery of drugs to the brain.

  19. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics.

    PubMed

    Lorenzer, Cornelia; Dirin, Mehrdad; Winkler, Anna-Maria; Baumann, Volker; Winkler, Johannes

    2015-04-10

    Therapeutic gene silencing promises significant progress in pharmacotherapy, including considerable expansion of the druggable target space and the possibility for treating orphan diseases. Technological hurdles have complicated the efficient use of therapeutic oligonucleotides, and siRNA agents suffer particularly from insufficient pharmacokinetic properties and poor cellular uptake. Intense development and evolution of delivery systems have resulted in efficient uptake predominantly in liver tissue, in which practically all nanoparticulate and liposomal delivery systems show the highest accumulation. The most efficacious strategies include liposomes and bioconjugations with N-acetylgalactosamine. Both are in early clinical evaluation stages for treatment of liver-associated diseases. Approaches for achieving knockdown in other tissues and tumors have been proven to be more complicated. Selective targeting to tumors may be enabled through careful modulation of physical properties, such as particle size, or by taking advantage of specific targeting ligands. Significant barriers stand between sufficient accumulation in other organs, including endothelial barriers, cellular membranes, and the endosome. The brain, which is shielded by the blood-brain barrier, is of particular interest to facilitate efficient oligonucleotide therapy of neurological diseases. Transcytosis of the blood-brain barrier through receptor-specific docking is investigated to increase accumulation in the central nervous system. In this review, the current clinical status of siRNA therapeutics is summarized, as well as innovative and promising preclinical concepts employing tissue- and tumor-targeted ligands. The requirements and the respective advantages and drawbacks of bioconjugates and ligand-decorated lipid or polymeric particles are discussed.

  20. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model

    PubMed Central

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A.; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M.

    2015-01-01

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues. PMID:25885522

  1. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery

    NASA Astrophysics Data System (ADS)

    Lee, Hyukjin; Lytton-Jean, Abigail K. R.; Chen, Yi; Love, Kevin T.; Park, Angela I.; Karagiannis, Emmanouil D.; Sehgal, Alfica; Querbes, William; Zurenko, Christopher S.; Jayaraman, Muthusamy; Peng, Chang G.; Charisse, Klaus; Borodovsky, Anna; Manoharan, Muthiah; Donahoe, Jessica S.; Truelove, Jessica; Nahrendorf, Matthias; Langer, Robert; Anderson, Daniel G.

    2012-06-01

    Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)--a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ~ 24.2 min) than the parent siRNA (t1/2 ~ 6 min).

  2. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.

    PubMed

    Lee, Hyukjin; Lytton-Jean, Abigail K R; Chen, Yi; Love, Kevin T; Park, Angela I; Karagiannis, Emmanouil D; Sehgal, Alfica; Querbes, William; Zurenko, Christopher S; Jayaraman, Muthusamy; Peng, Chang G; Charisse, Klaus; Borodovsky, Anna; Manoharan, Muthiah; Donahoe, Jessica S; Truelove, Jessica; Nahrendorf, Matthias; Langer, Robert; Anderson, Daniel G

    2012-06-03

    Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)--a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t(1/2) ≈ 24.2 min) than the parent siRNA (t(1/2) ≈ 6 min).

  3. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    NASA Astrophysics Data System (ADS)

    Lin, Wen Jen; Chien, Wei Hsuan

    2015-09-01

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly( d,l-lactide- co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  4. Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Yang, Yinlong; An, Feifei; Liu, Zhuang; Zhang, Xiujuan; Zhang, Xiaohong

    2013-01-01

    A one-dimensional drug delivery system (1D DDS) is highly attractive since it has distinct advantages such as enhanced drug efficiency and better pharmacokinetics. However, drugs in 1D DDSs are all encapsulated in inert carriers, and problems such as low drug loading content and possible undesirable side effects caused by the carriers remain a serious challenge. In this paper, a novel, carrier-free, pure drug nanorod-based, tumor-targeted 1D DDS has been developed. Drugs are first prepared as nanorods and then surface functionalized to achieve excellent water dispersity and stability. The resulting drug nanorods show enhanced internalization rates mainly through energy-dependent endocytosis, with the shape-mediated nanorod (NR) diffusion process as a secondary pathway. The multiple endocytotic mechanisms lead to significantly improved drug efficiency of functionalized NRs with nearly ten times higher cytotoxicity than those of free molecules and unfunctionalized NRs. A targeted drug delivery system can be readily achieved through surface functionalization with targeting group linked amphipathic surfactant, which exhibits significantly enhanced drug efficacy and discriminates between cell lines with high selectivity. These results clearly show that this tumor-targeting DDS demonstrates high potential toward specific cancer cell lines.

  5. Emulsomes Meet S-layer Proteins: An Emerging Targeted Drug Delivery System

    PubMed Central

    Ucisik, Mehmet H.; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    Here, the use of emulsomes as a drug delivery system is reviewed and compared with other similar lipidic nanoformulations. In particular, we look at surface modification of emulsomes using S-layer proteins, which are self-assembling proteins that cover the surface of many prokaryotic organisms. It has been shown that covering emulsom