Sample records for targeted therapeutic agents

  1. Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment

    PubMed Central

    Zhang, Yilong; Jain, Rajul K.; Zhu, Min

    2015-01-01

    The hepatocyte growth factor (HGF): MET axis is a ligand-mediated receptor tyrosine kinase pathway that is involved in multiple cellular functions, including proliferation, survival, motility, and morphogenesis. Aberrancy in the HGF/MET pathway has been reported in multiple tumor types and is associated with tumor stage and prognosis. Thus, targeting the HGF/MET pathway has become a potential therapeutic strategy in oncology development in the last two decades. A number of novel therapeutic agents—either as therapeutic proteins or small molecules that target the HGF/MET pathway—have been tested in patients with different tumor types in clinical studies. In this review, recent progress in HGF/MET pathway-targeted therapy for cancer treatment, the therapeutic potential of HGF/MET-targeted agents, and challenges in the development of such agents will be discussed. PMID:28536405

  2. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  3. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review.

    PubMed

    Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan

    2017-10-01

    Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.

    PubMed

    Zhou, Yinjian; Zhang, Chunling; Liang, Wei

    2014-11-10

    RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Targeted delivery of cancer-specific multimodal contrast agents for intraoperative detection of tumor boundaries and therapeutic margins

    NASA Astrophysics Data System (ADS)

    Xu, Ronald X.; Xu, Jeff S.; Huang, Jiwei; Tweedle, Michael F.; Schmidt, Carl; Povoski, Stephen P.; Martin, Edward W.

    2010-02-01

    Background: Accurate assessment of tumor boundaries and intraoperative detection of therapeutic margins are important oncologic principles for minimal recurrence rates and improved long-term outcomes. However, many existing cancer imaging tools are based on preoperative image acquisition and do not provide real-time intraoperative information that supports critical decision-making in the operating room. Method: Poly lactic-co-glycolic acid (PLGA) microbubbles (MBs) and nanobubbles (NBs) were synthesized by a modified double emulsion method. The MB and NB surfaces were conjugated with CC49 antibody to target TAG-72 antigen, a human glycoprotein complex expressed in many epithelial-derived cancers. Multiple imaging agents were encapsulated in MBs and NBs for multimodal imaging. Both one-step and multi-step cancer targeting strategies were explored. Active MBs/NBs were also fabricated for therapeutic margin assessment in cancer ablation therapies. Results: The multimodal contrast agents and the cancer-targeting strategies were tested on tissue simulating phantoms, LS174 colon cancer cell cultures, and cancer xenograft nude mice. Concurrent multimodal imaging was demonstrated using fluorescence and ultrasound imaging modalities. Technical feasibility of using active MBs and portable imaging tools such as ultrasound for intraoperative therapeutic margin assessment was demonstrated in a biological tissue model. Conclusion: The cancer-specific multimodal contrast agents described in this paper have the potential for intraoperative detection of tumor boundaries and therapeutic margins.

  6. Novel therapeutic agents for osteosarcoma.

    PubMed

    O'Day, Kathleen; Gorlick, Richard

    2009-04-01

    Osteosarcoma is the most common malignant primary bone tumor in childhood. Despite multiagent chemotherapy and aggressive surgical resection, 30% of patients with localized disease and 80% of patients with metastatic disease at diagnosis will relapse. Survival for these patients has remained unchanged over the past 20 years. A number of novel agents in various stages of development hold promise for improving therapy for patients with osteosarcoma. This article will focus on novel therapeutic approaches, including agents targeting signal-transduction pathways, inhibitors of the tumor microenvironment and immunomodulatory agents, as well as overcoming resistance mechanisms and the use of novel delivery mechanisms.

  7. Prioritizing therapeutic targets using patient-derived xenograft models

    PubMed Central

    Lodhia, K.A; Hadley, A; Haluska, P; Scott, C.L

    2015-01-01

    Effective systemic treatment of cancer relies on the delivery of agents with optimal therapeutic potential. The molecular age of medicine has provided genomic tools that can identify a large number of potential therapeutic targets in individual patients, heralding the promise of personalized treatment. However, determining which potential targets actually drive tumor growth and should be prioritized for therapy is challenging. Indeed, reliable molecular matches of target and therapeutic agent have been stringently validated in the clinic for only a small number of targets. Patient-derived xenografts (PDX) are tumor models developed in immunocompromised mice using tumor procured directly from the patient. As patient surrogates, PDX models represent a powerful tool for addressing individualized therapy. Challenges include humanizing the immune system of PDX models and ensuring high quality molecular annotation, in order to maximise insights for the clinic. Importantly, PDX can be sampled repeatedly and in parallel, to reveal clonal evolution, which may predict mechanisms of drug resistance and inform therapeutic strategy design. PMID:25783201

  8. Targeting Histone Deacetylases in Malignant Melanoma: A Future Therapeutic Agent or Just Great Expectations?

    PubMed

    Garmpis, Nikolaos; Damaskos, Christos; Garmpi, Anna; Dimitroulis, Dimitrios; Spartalis, Eleftherios; Margonis, Georgios-Antonios; Schizas, Dimitrios; Deskou, Irini; Doula, Chrysoula; Magkouti, Eleni; Andreatos, Nikolaos; Antoniou, Efstathios A; Nonni, Afroditi; Kontzoglou, Konstantinos; Mantas, Dimitrios

    2017-10-01

    Malignant melanoma is the most aggressive type of skin cancer, with increasing frequency and mortality. Melanoma is characterized by rapid proliferation and metastases. Malignant transformation of normal melanocytes is associated with imbalance between oncogenes' action and tumor suppressor genes. Mutations or inactivation of these genes plays an important role in the pathogenesis of malignant melanoma. Many target-specific agents improved progression-free survival but unfortunately metastatic melanoma remains incurable, so new therapeutic strategies are needed. The balance of histones' acetylation affects cell cycle progression, differentiation and apoptosis. Histone deacetylases (HDAC) are associated with different types of cancer. Histone deacetylase inhibitors (HDACI) are enzymes that inhibit the action of HDAC, resulting in block of tumor cell proliferation. A small number of these enzymes has been studied regarding their anticancer effects in melanoma. The purpose of this article was to review the therapeutic effect of HDACI against malignant melanoma, enlightening the molecular mechanisms of their action. The MEDLINE database was used. The keywords/ phrases were; HDACI, melanoma, targeted therapies for melanoma. Our final conclusions were based on studies that didn't refer solely to melanoma due to their wider experimental data. Thirty-two articles were selected from the total number of the search's results. Only English articles published until March 2017 were used. Molecules, such as valproid acid (VPA), LBH589, LAQ824 (dacinostat), vorinostat, tubacin, sirtinol and tx-527, suberoyl bis-hydroxamic acid (SBHA), depsipeptide and Trichostatin A (TSA) have shown promising antineoplastic effects against melanoma. HDACI represent a promising agent for targeted therapy. More trials are required. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Therapeutic interventions in sepsis: current and anticipated pharmacological agents

    PubMed Central

    Shukla, Prashant; Rao, G Madhava; Pandey, Gitu; Sharma, Shweta; Mittapelly, Naresh; Shegokar, Ranjita; Mishra, Prabhat Ranjan

    2014-01-01

    Sepsis is a clinical syndrome characterized by a multisystem response to a pathogenic assault due to underlying infection that involves a combination of interconnected biochemical, cellular and organ–organ interactive networks. After the withdrawal of recombinant human-activated protein C (rAPC), researchers and physicians have continued to search for new therapeutic approaches and targets against sepsis, effective in both hypo- and hyperinflammatory states. Currently, statins are being evaluated as a viable option in clinical trials. Many agents that have shown favourable results in experimental sepsis are not clinically effective or have not been clinically evaluated. Apart from developing new therapeutic molecules, there is great scope for for developing a variety of drug delivery strategies, such as nanoparticulate carriers and phospholipid-based systems. These nanoparticulate carriers neutralize intracorporeal LPS as well as deliver therapeutic agents to targeted tissues and subcellular locations. Here, we review and critically discuss the present status and new experimental and clinical approaches for therapeutic intervention in sepsis. PMID:24977655

  10. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain-barrier divide

    PubMed Central

    Chacko, Ann-Marie; Li, Chunsheng; Pryma, Daniel A.; Brem, Steven; Coukos, George; Muzykantov, Vladimir R.

    2014-01-01

    Introduction Brain tumors are inherently difficult to treat in large part due to the cellular blood-brain barriers (BBB) that limit the delivery of therapeutics to the tumor tissue from the systemic circulation. Virtually no large-molecules, including antibody-based proteins, can penetrate the BBB. With antibodies fast becoming attractive ligands for highly specific molecular targeting to tumor antigens, a variety of methods are being investigated to enhance the access of these agents to intracranial tumors for imaging or therapeutic applications. Areas covered This review describes the characteristics of the BBB and the vasculature in brain tumors, described as the blood-brain tumor barrier (BBTB). Antibodies targeted to molecular markers of CNS tumors will be highlighted, and current strategies for enhancing the delivery of antibodies across these cellular barriers into the brain parenchyma to the tumor will be discussed. Non-invasive imaging approaches to assess BBB/BBTB permeability and/or antibody targeting will be presented as a means of guiding the optimal delivery of targeted agents to brain tumors. Expert Opinion Pre-clinical and clinical studies highlight the potential of several approaches in increasing brain tumor delivery across the blood-brain barrier divide. However, each carries its own risks and challenges. There is tremendous potential in using neuroimaging strategies to assist in understanding and defining the challenges to translating and optimizing molecularly-targeted antibody delivery to CNS tumors to improve clinical outcomes. PMID:23751126

  11. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  12. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents

    PubMed Central

    Karimi, Mahdi; Eslami, Masoud; Sahandi-Zangabad, Parham; Mirab, Fereshteh; Farajisafiloo, Negar; Shafaei, Zahra; Ghosh, Deepanjan; Bozorgomid, Mahnaz; Dashkhaneh, Fariba; Hamblin, Michael R.

    2016-01-01

    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer’s. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. PMID:26762467

  13. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents

    PubMed Central

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-01-01

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included. PMID:27898016

  14. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents.

    PubMed

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-11-25

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included.

  15. RNA-Targeted Therapeutics.

    PubMed

    Crooke, Stanley T; Witztum, Joseph L; Bennett, C Frank; Baker, Brenda F

    2018-04-03

    RNA-targeted therapies represent a platform for drug discovery involving chemically modified oligonucleotides, a wide range of cellular RNAs, and a novel target-binding motif, Watson-Crick base pairing. Numerous hurdles considered by many to be impassable have been overcome. Today, four RNA-targeted therapies are approved for commercial use for indications as diverse as Spinal Muscular Atrophy (SMA) and reduction of low-density lipoprotein cholesterol (LDL-C) and by routes of administration including subcutaneous, intravitreal, and intrathecal delivery. The technology is efficient and supports approaching "undruggable" targets. Three additional agents are progressing through registration, and more are in clinical development, representing several chemical and structural classes. Moreover, progress in understanding the molecular mechanisms by which these drugs work has led to steadily better clinical performance and a wide range of mechanisms that may be exploited for therapeutic purposes. Here we summarize the progress, future challenges, and opportunities for this drug discovery platform. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Variables and Strategies in Development of Therapeutic Post-Transcriptional Gene Silencing Agents

    PubMed Central

    Sullivan, Jack M.; Yau, Edwin H.; Kolniak, Tiffany A.; Sheflin, Lowell G.; Taggart, R. Thomas; Abdelmaksoud, Heba E.

    2011-01-01

    Post-transcriptional gene silencing (PTGS) agents such as ribozymes, RNAi and antisense have substantial potential for gene therapy of human retinal degenerations. These technologies are used to knockdown a specific target RNA and its cognate protein. The disease target mRNA may be a mutant mRNA causing an autosomal dominant retinal degeneration or a normal mRNA that is overexpressed in certain diseases. All PTGS technologies depend upon the initial critical annealing event of the PTGS ligand to the target RNA. This event requires that the PTGS agent is in a conformational state able to support hybridization and that the target have a large and accessible single-stranded platform to allow rapid annealing, although such platforms are rare. We address the biocomplexity that currently limits PTGS therapeutic development with particular emphasis on biophysical variables that influence cellular performance. We address the different strategies that can be used for development of PTGS agents intended for therapeutic translation. These issues apply generally to the development of PTGS agents for retinal, ocular, or systemic diseases. This review should assist the interested reader to rapidly appreciate critical variables in PTGS development and facilitate initial design and testing of such agents against new targets of clinical interest. PMID:21785698

  17. FGFR-targeted therapeutics for the treatment of breast cancer.

    PubMed

    De Luca, Antonella; Frezzetti, Daniela; Gallo, Marianna; Normanno, Nicola

    2017-03-01

    Breast cancer is a complex disease and several molecular drivers regulate its progression. Fibroblast growth factor receptor (FGFR) signaling is frequently deregulated in many cancers, including breast cancer. Due the involvement of the FGFR/FGF axis in the pathogenesis and progression of tumors, FGFR-targeted agents might represent a potential therapeutic option for breast cancer patients. Areas covered: This review offers an overview of targeted agents against FGFRs and their clinical development in breast cancer. The most relevant literature and the latest studies in the Clinicaltrial.com database have been discussed. Expert opinion: FGFR inhibition has been recently considered as a promising therapeutic option for different tumor types. However, preliminary results of clinical trials of FGFR inhibitors in breast cancer have been quite disappointing. In order to increase the clinical benefit of FGFR therapies in breast cancer, future studies should focus on: understanding the role of the various FGFR aberrations in cancer progression; identifying potential biomarkers to select patients that could benefit of FGFR inhibitors and developing therapeutic strategies that improve the efficacy of these agents and minimize toxicities.

  18. Engineered bifunctional proteins and stem cells: next generation of targeted cancer therapeutics.

    PubMed

    Choi, Sung Hugh; Shah, Khalid

    2016-09-01

    Redundant survival signaling pathways and their crosstalk within tumor and/or between tumor and their microenvironment are key impediments to developing effective targeted therapies for cancer. Therefore developing therapeutics that target multiple receptor signaling pathways in tumors and utilizing efficient platforms to deliver such therapeutics are critical to the success of future targeted therapies. During the past two decades, a number of bifunctional multi-targeting antibodies, fusion proteins, and oncolytic viruses have been developed and various stem cell types have been engineered to efficiently deliver them to tumors. In this review, we discuss the design and efficacy of therapeutics targeting multiple pathways in tumors and the therapeutic potential of therapeutic stem cells engineered with bifunctional agents.

  19. Investigational CD33-targeted therapeutics for acute myeloid leukemia.

    PubMed

    Walter, Roland B

    2018-04-01

    There is long-standing interest in drugs targeting the myeloid differentiation antigen CD33 in acute myeloid leukemia (AML). Positive results from randomized trials with the antibody-drug conjugate (ADC) gemtuzumab ozogamicin (GO) validate this approach. Partly stimulated by the success of GO, several CD33-targeted therapeutics are currently in early phase testing. Areas covered: CD33-targeted therapeutics in clinical development include Fc-engineered unconjugated antibodies (BI 836858 [mAb 33.1]), ADCs (SGN-CD33A [vadastuximab talirine], IMGN779), radioimmunoconjugates ( 225 Ac-lintuzumab), bi- and trispecific antibodies (AMG 330, AMG 673, AMV564, 161533 TriKE fusion protein), and chimeric antigen receptor (CAR)-modified immune effector cells. Besides limited data on 225 Ac-lintuzumab showing modest single-agent activity, clinical data are so far primarily available for SGN-CD33A. SGN-CD33A has single-agent activity and has shown encouraging results when combined with an azanucleoside or standard chemotherapeutics. However, concerns about toxicity to the liver and normal hematopoietic cells - the latter leading to early termination of a phase 3 trial - have derailed the development of SGN-CD33A, and its future is uncertain. Expert opinion: Early results from a new generation of CD33-targeted therapeutics are anticipated in the next 2-3 years. Undoubtedly, re-approval of GO in 2017 has changed the landscape and rendered clinical development for these agents more challenging.

  20. Biologically Targeted Therapeutics in Pediatric Brain Tumors

    PubMed Central

    Nageswara Rao, Amulya A.; Scafidi, Joseph; Wells, Elizabeth M.; Packer, Roger J.

    2013-01-01

    Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. PMID:22490764

  1. Biologically targeted therapeutics in pediatric brain tumors.

    PubMed

    Nageswara Rao, Amulya A; Scafidi, Joseph; Wells, Elizabeth M; Packer, Roger J

    2012-04-01

    Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  3. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target

    PubMed Central

    Krzyzosiak, Wlodzimierz J.; Sobczak, Krzysztof; Wojciechowska, Marzena; Fiszer, Agnieszka; Mykowska, Agnieszka; Kozlowski, Piotr

    2012-01-01

    This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases. PMID:21908410

  4. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics.

    PubMed

    Chittasupho, Chuda; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory

    2011-07-01

    Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.

  5. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    NASA Astrophysics Data System (ADS)

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct

  6. Current progress on aptamer-targeted oligonucleotide therapeutics

    PubMed Central

    Dassie, Justin P; Giangrande, Paloma H

    2014-01-01

    Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted. PMID:24304250

  7. Multifunctional Poly(L-lactide)-Polyethylene Glycol-Grafted Graphene Quantum Dots for Intracellular MicroRNA Imaging and Combined Specific-Gene-Targeting Agents Delivery for Improved Therapeutics.

    PubMed

    Dong, Haifeng; Dai, Wenhao; Ju, Huangxian; Lu, Huiting; Wang, Shiyan; Xu, Liping; Zhou, Shu-Feng; Zhang, Yue; Zhang, Xueji

    2015-05-27

    Photoluminescent (PL) graphene quantum dots (GQDs) with large surface area and superior mechanical flexibility exhibit fascinating optical and electronic properties and possess great promising applications in biomedical engineering. Here, a multifunctional nanocomposite of poly(l-lactide) (PLA) and polyethylene glycol (PEG)-grafted GQDs (f-GQDs) was proposed for simultaneous intracellular microRNAs (miRNAs) imaging analysis and combined gene delivery for enhanced therapeutic efficiency. The functionalization of GQDs with PEG and PLA imparts the nanocomposite with super physiological stability and stable photoluminescence over a broad pH range, which is vital for cell imaging. Cell experiments demonstrate the f-GQDs excellent biocompatibility, lower cytotoxicity, and protective properties. Using the HeLa cell as a model, we found the f-GQDs effectively delivered a miRNA probe for intracellular miRNA imaging analysis and regulation. Notably, the large surface of GQDs was capable of simultaneous adsorption of agents targeting miRNA-21 and survivin, respectively. The combined conjugation of miRNA-21-targeting and survivin-targeting agents induced better inhibition of cancer cell growth and more apoptosis of cancer cells, compared with conjugation of agents targeting miRNA-21 or survivin alone. These findings highlight the promise of the highly versatile multifunctional nanocomposite in biomedical application of intracellular molecules analysis and clinical gene therapeutics.

  8. Curcumin: a promising agent targeting cancer stem cells.

    PubMed

    Zang, Shufei; Liu, Tao; Shi, Junping; Qiao, Liang

    2014-01-01

    Cancer stem cells are a subset of cells that are responsible for cancer initiation and relapse. They are generally resistant to the current anticancer agents. Successful anticancer therapy must consist of approaches that can target not only the differentiated cancer cells, but also cancer stem cells. Emerging evidence suggested that the dietary agent curcumin exerted its anti-cancer activities via targeting cancer stem cells of various origins such as those of colorectal cancer, pancreatic cancer, breast cancer, brain cancer, and head and neck cancer. In order to enhance the therapeutic potential of curcumin, this agent has been modified or used in combination with other agents in the experimental therapy for many cancers. In this mini-review, we discussed the effect of curcumin and its derivatives in eliminating cancer stem cells and the possible underlying mechanisms.

  9. EphB4 as a therapeutic target in mesothelioma

    PubMed Central

    2013-01-01

    Background Malignant pleural mesothelioma (MPM) often develops decades following exposure to asbestos. Current best therapy produces a response in only half of patients, and the median survival with this therapy remains under a year. A search for novel targets and therapeutics is underway, and recently identified targets include VEGF, Notch, and EphB4-Ephrin-B2. Each of these targets has dual activity, promoting tumor cell growth as well as tumor angiogenesis. Methods We investigated EphB4 expression in 39 human mesothelioma tissues by immunohistochemistry. Xenograft tumors established with human mesothelioma cells were treated with an EphB4 inhibitor (monomeric soluble EphB4 fused to human serum albumin, or sEphB4-HSA). The combinatorial effect of sEphB4-HSA and biologic agent was also studied. Results EphB4 was overexpressed in 72% of mesothelioma tissues evaluated, with 85% of epithelioid and 38% of sarcomatoid subtypes demonstrating overexpression. The EphB4 inhibitor sEphB4-HSA was highly active as a single agent to inhibit tumor growth, accompanied by tumor cell apoptosis and inhibition of PI3K and Src signaling. Combination of sEphB4-HSA and the anti-VEGF antibody (Bevacizumab) was superior to each agent alone and led to complete tumor regression. Conclusion EphB4 is a potential therapeutic target in mesothelioma. Clinical investigation of sEphB4-HSA as a single agent and in combination with VEGF inhibitors is warranted. PMID:23721559

  10. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization.

    PubMed

    Sawyer, Andrew J; Kyriakides, Themis R

    2016-02-01

    Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Therapeutic Innovations for Targeting Hepatoblastoma.

    PubMed

    Garnier, Agnès; Ilmer, Matthias; Kappler, Roland; Berger, Michael

    2016-11-01

    Hepatoblastoma is the most common pediatric liver tumor. Despite recent advances in treatment with surgery and chemotherapy, the prognosis in advanced stages remains poor. The neurokinin-1 receptor (NK1R) has recently been described to be pivotal in the development of cancer. Furthermore, overwhelming evidence now exists showing that pharmacological manipulation of NK1R can cause a robust anticancer effect. Consequently, NK1R antagonists, such as the clinical drug aprepitant, are under current investigation as future innovative anticancer agents. In that sense, new evidence suggests that NK1R is highly expressed in human hepatoblastoma and can be targeted to create a robust inhibiton of tumor growth in vivo and in vitro. The mechanisms behind this effect are only now being investigated but already reveal an arsenal of therapeutic possibilities. Our article describes the most recent developments in the field of therapeutic NK1R inhibition in cancer and focuses particularly on the newly discovered molecular mechanisms involved when targeting NK1R in hepatoblastoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Therapeutic strategies with oral fluoropyrimidine anticancer agent, S-1 against oral cancer.

    PubMed

    Harada, Koji; Ferdous, Tarannum; Ueyama, Yoshiya

    2017-08-01

    Oral cancer has been recognized as a tumor with low sensitivity to anticancer agents. However, introduction of S-1, an oral cancer agent is improving treatment outcome for patients with oral cancer. In addition, S-1, as a main drug for oral cancer treatment in Japan can be easily available for outpatients. In fact, S-1 exerts high therapeutic effects with acceptable side effects. Moreover, combined chemotherapy with S-1 shows higher efficacy than S-1 alone, and combined chemo-radiotherapy with S-1 exerts remarkable therapeutic effects. Furthermore, we should consider the combined therapy of S-1 and molecular targeting agents right now as these combinations were reportedly useful for oral cancer treatment. Here, we describe our findings related to S-1 that were obtained experimentally and clinically, and favorable therapeutic strategies with S-1 against oral cancer with bibliographic considerations.

  13. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma

    PubMed Central

    Varshosaz, Jaleh; Farzan, Maryam

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein

  14. Applications of inorganic nanoparticles as therapeutic agents

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hyeon, Taeghwan

    2014-01-01

    During the last decade, various functional nanostructured materials with interesting optical, magnetic, mechanical and chemical properties have been extensively applied to biomedical areas including imaging, diagnosis and therapy. In therapeutics, most research has focused on the application of nanoparticles as potential delivery vehicles for drugs and genes, because nanoparticles in the size range of 2-100 nm can interact with biological systems at the molecular level, and allow targeted delivery and passage through biological barriers. Recent investigations have even revealed that several kinds of nanomaterials are intrinsically therapeutic. Not only can they passively interact with cells, but they can also actively mediate molecular processes to regulate cell functions. This can be seen in the treatment of cancer via anti-angiogenic mechanisms as well as the treatment of neurodegenerative diseases by effectively controlling oxidative stress. This review will present recent applications of inorganic nanoparticles as therapeutic agents in the treatment of disease.

  15. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy.

    PubMed

    Kemp, Jessica A; Shim, Min Suk; Heo, Chan Yeong; Kwon, Young Jik

    2016-03-01

    The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis

    PubMed Central

    Pandya, Rachna S.; Zhu, Haining; Li, Wei; Bowser, Robert; Friedlander, Robert M.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient’s life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression. PMID:23864030

  17. Development of Multifunctional Nanoparticles for Targeted Drug Delivery and Non-invasive Imaging of Therapeutic Effect

    PubMed Central

    Sajja, Hari Krishna; East, Michael P.; Mao, Hui; Wang, Andrew Y.; Nie, Shuming; Yang, Lily

    2011-01-01

    Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by non-invasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine. PMID:19275541

  18. Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets.

    PubMed

    Quick, Quincy A

    2018-01-26

    Plakins are a family of seven cytoskeletal cross-linker proteins (microtubule-actin crosslinking factor 1 (MACF), bullous pemphigoid antigen (BPAG1) desmoplakin, envoplakin, periplakin, plectin, epiplakin) that network the three major filaments that comprise the cytoskeleton. Plakins have been found to be involved in disorders and diseases of the skin, heart, nervous system, and cancer that are attributed to autoimmune responses and genetic alterations of these macromolecules. Despite their role and involvement across a spectrum of several diseases, there are no current drugs or pharmacological agents that specifically target the members of this protein family. On the contrary, microtubules have traditionally been targeted by microtubule inhibiting agents, used for the treatment of diseases such as cancer, in spite of the deleterious toxicities associated with their clinical utility. The Research Collaboratory for Structural Bioinformatics (RCSB) was used here to identify therapeutic drugs targeting the plakin proteins, particularly the spectraplakins MACF1 and BPAG1, which contain microtubule-binding domains. RCSB analysis revealed that plakin proteins had 329 ligands, of which more than 50% were MACF1 and BPAG1 ligands and 10 were documented, clinically or experimentally, to have several therapeutic applications as anticancer, anti-inflammatory, and antibiotic agents.

  19. Trends in GPCR drug discovery: new agents, targets and indications.

    PubMed

    Hauser, Alexander S; Attwood, Misty M; Rask-Andersen, Mathias; Schiöth, Helgi B; Gloriam, David E

    2017-12-01

    G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.

  20. MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma.

    PubMed

    Gautam, Shailendra K; Kumar, Sushil; Cannon, Andrew; Hall, Bradley; Bhatia, Rakesh; Nasser, Mohd Wasim; Mahapatra, Sidharth; Batra, Surinder K; Jain, Maneesh

    2017-07-01

    Pancreatic cancer (PC) is characterized by mucin overexpression. MUC4 is the most differentially overexpressed membrane-bound mucin that plays a functional role in disease progression and therapy resistance. Area covered: We describe the clinicopathological significance of MUC4, summarize mechanisms contributing to its deregulated expression, review preclinical studies aimed at inhibiting MUC4, and discuss how MUC4 overexpression provides opportunities for developing targeted therapies. Finally, we discuss the challenges for developing MUC4-based therapeutics, and identify areas where efforts should be directed to effectively exploit MUC4 as a therapeutic target for PC. Expert opinion: Studies demonstrating that abrogation of MUC4 expression reduces proliferation and metastasis of PC cells and enhances sensitivity to therapeutic agents affirm its utility as a therapeutic target. Emerging evidence also supports the suitability of MUC4 as a potential immunotherapy target. However, these studies have been limited to in vitro, ex vivo or in vivo approaches using xenograft tumors in immunodeficient murine models. For translational relevance, MUC4-targeted therapies should be evaluated in murine models with intact immune system and accurate tumor microenvironment. Additionally, future studies evaluating MUC4 as a target for immunotherapy must entail characterization of immune response in PC patients and investigate its association with immunosuppression and survival.

  1. Recent Development of Anticancer Therapeutics Targeting Akt

    PubMed Central

    Morrow, John K.; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J.; Mash, Eugene A.; Powis, Garth; Zhang, Shuxing

    2013-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches. PMID:21110830

  2. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wen-wen; Yu, Jia-ying; Xu, Huai-long

    2011-10-22

    Highlights: {yields} ConA induces cancer cell death targeting apoptosis and autophagy. {yields} ConA inhibits cancer cell angiogenesis. {yields} ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca{sup 2+}/Mn{sup 2+}-dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-{kappa}B-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor.more » These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.« less

  3. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K [Idaho Falls, ID

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  4. Anti-diabetic potential of peptides: Future prospects as therapeutic agents.

    PubMed

    Marya; Khan, Haroon; Nabavi, Seyed Mohammad; Habtemariam, Solomon

    2018-01-15

    Diabetes mellitus is a metabolic disorder in which the glucose level in blood exceeds beyond the normal level. Persistent hyperglycemia leads to diabetes late complication and obviously account for a large number of morbidity and mortality worldwide. Numerous therapeutic options are available for the treatment of diabetes including insulin for type I and oral tablets for type II, but its effective management is still a dream. To date, several options are under investigation in various research laboratories for efficacious and safer agents. Of them, peptides are currently amongst the most widely investigated potential therapeutic agents whose design and optimal uses are under development. A number of natural and synthetic peptides have so far been found with outstanding antidiabetic effect mediated through diverse mechanisms. The applications of new emerging techniques and drug delivery systems further offer opportunities to achieve the desired target outcomes. Some outstanding peptides in preclinical and clinical studies with better efficacy and safety profile have already been identified. Further detail studies on these peptides may therefore lead to significant clinically useful antidiabetic agents. Copyright © 2017. Published by Elsevier Inc.

  5. Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets

    PubMed Central

    Quick, Quincy A.

    2018-01-01

    Plakins are a family of seven cytoskeletal cross-linker proteins (microtubule-actin crosslinking factor 1 (MACF), bullous pemphigoid antigen (BPAG1) desmoplakin, envoplakin, periplakin, plectin, epiplakin) that network the three major filaments that comprise the cytoskeleton. Plakins have been found to be involved in disorders and diseases of the skin, heart, nervous system, and cancer that are attributed to autoimmune responses and genetic alterations of these macromolecules. Despite their role and involvement across a spectrum of several diseases, there are no current drugs or pharmacological agents that specifically target the members of this protein family. On the contrary, microtubules have traditionally been targeted by microtubule inhibiting agents, used for the treatment of diseases such as cancer, in spite of the deleterious toxicities associated with their clinical utility. The Research Collaboratory for Structural Bioinformatics (RCSB) was used here to identify therapeutic drugs targeting the plakin proteins, particularly the spectraplakins MACF1 and BPAG1, which contain microtubule-binding domains. RCSB analysis revealed that plakin proteins had 329 ligands, of which more than 50% were MACF1 and BPAG1 ligands and 10 were documented, clinically or experimentally, to have several therapeutic applications as anticancer, anti-inflammatory, and antibiotic agents. PMID:29373494

  6. Rational Combinations of Targeted Agents in AML

    PubMed Central

    Bose, Prithviraj; Grant, Steven

    2015-01-01

    Despite modest improvements in survival over the last several decades, the treatment of AML continues to present a formidable challenge. Most patients are elderly, and these individuals, as well as those with secondary, therapy-related, or relapsed/refractory AML, are particularly difficult to treat, owing to both aggressive disease biology and the high toxicity of current chemotherapeutic regimens. It has become increasingly apparent in recent years that coordinated interruption of cooperative survival signaling pathways in malignant cells is necessary for optimal therapeutic results. The modest efficacy of monotherapy with both cytotoxic and targeted agents in AML testifies to this. As the complex biology of AML continues to be elucidated, many “synthetic lethal” strategies involving rational combinations of targeted agents have been developed. Unfortunately, relatively few of these have been tested clinically, although there is growing interest in this area. In this article, the preclinical and, where available, clinical data on some of the most promising rational combinations of targeted agents in AML are summarized. While new molecules should continue to be combined with conventional genotoxic drugs of proven efficacy, there is perhaps a need to rethink traditional philosophies of clinical trial development and regulatory approval with a focus on mechanism-based, synergistic strategies. PMID:26113989

  7. Therapeutic targets and new directions for antibodies developed for ovarian cancer

    PubMed Central

    Bax, Heather J.; Josephs, Debra H.; Pellizzari, Giulia; Spicer, James F.; Montes, Ana; Karagiannis, Sophia N.

    2016-01-01

    ABSTRACT Antibody therapeutics against different target antigens are widely used in the treatment of different malignancies including ovarian carcinomas, but this disease still requires more effective agents. Improved understanding of the biological features, signaling pathways, and immunological escape mechanisms involved in ovarian cancer has emerged in the past few years. These advances, including an appreciation of the cross-talk between cancer cells and the patient's immune system, have led to the identification of new targets. In turn, potential antibody treatments with various mechanisms of action, including immune activation or toxin-delivery, that are directed at these targets have been developed. Here, we identify established as well as novel targets for antibodies in ovarian cancer, and discuss how they may provide fresh opportunities to identify interventions with enhanced therapeutic potential. PMID:27494775

  8. Therapeutic potential of chalcones as cardiovascular agents.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar

    2016-03-01

    Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect

    PubMed Central

    Greineder, Colin F.; Brenza, Jacob B.; Carnemolla, Ronald; Zaitsev, Sergei; Hood, Elizabeth D.; Pan, Daniel C.; Ding, Bi-Sen; Esmon, Charles T.; Chacko, Ann Marie; Muzykantov, Vladimir R.

    2015-01-01

    Anchoring pharmacologic agents to the vascular lumen has the potential to modulate critical processes at the blood–tissue interface, avoiding many of the off-target effects of systemically circulating agents. We report a novel strategy for endothelial dual targeting of therapeutics, which both enhances drug delivery and enables targeted agents to partner enzymatically to generate enhanced biologic effect. Based on the recent discovery that paired antibodies directed to adjacent epitopes of platelet endothelial cell adhesion molecule (PECAM)-1 stimulate each other’s binding, we fused single-chain fragments (scFv) of paired anti-mouse PECAM-1 antibodies to recombinant murine thrombomodulin (TM) and endothelial protein C receptor (EPCR), endothelial membrane proteins that partner in activation of protein C (PC). scFv/TM and scFv/EPCR bound to mouse endothelial PECAM-1 with high affinity (EC50 1.5 and 3.8 nM, respectively), and codelivery induced a 5-fold increase in PC activation not seen when TM and EPCR are anchored to distinct cell adhesion molecules. In a mouse model of acute lung injury, dual targeting reduces both the expression of lung inflammatory markers and trans-endothelial protein leak by as much as 40%, as compared to either agent alone. These findings provide proof of principle for endothelial dual targeting, an approach with numerous potential biomedical applications.—Greineder, C. F., Brenza, J. B., Carnemolla, R., Zaitsev, S., Hood, E. D., Pan, D. C., Ding, B.-S., Esmon, C. T., Chacko, A. M., Muzykantov, V. R. Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect. PMID:25953848

  10. Efficacy of a Novel Class of RNA Interference Therapeutic Agents

    PubMed Central

    Matsumoto, Takahiro; D'Alessandro-Gabazza, Corina N.; Gil-Bernabe, Paloma; Boveda-Ruiz, Daniel; Naito, Masahiro; Kobayashi, Tetsu; Toda, Masaaki; Mizutani, Takayuki; Taguchi, Osamu; Morser, John; Eguchi, Yutaka; Kuroda, Masahiko; Ochiya, Takahiro; Hayashi, Hirotake; Gabazza, Esteban C.; Ohgi, Tadaaki

    2012-01-01

    RNA interference (RNAi) is being widely used in functional gene research and is an important tool for drug discovery. However, canonical double-stranded short interfering RNAs are unstable and induce undesirable adverse effects, and thus there is no currently RNAi-based therapy in the clinic. We have developed a novel class of RNAi agents, and evaluated their effectiveness in vitro and in mouse models of acute lung injury (ALI) and pulmonary fibrosis. The novel class of RNAi agents (nkRNA®, PnkRNA™) were synthesized on solid phase as single-stranded RNAs that, following synthesis, self-anneal into a unique helical structure containing a central stem and two loops. They are resistant to degradation and suppress their target genes. nkRNA and PnkRNA directed against TGF-β1mRNA ameliorate outcomes and induce no off-target effects in three animal models of lung disease. The results of this study support the pathological relevance of TGF-β1 in lung diseases, and suggest the potential usefulness of these novel RNAi agents for therapeutic application. PMID:22916145

  11. Emerging therapeutic targets in metastatic progression: a focus on breast cancer

    PubMed Central

    Li, Zhuo; Kang, Yibin

    2016-01-01

    Metastasis is the underlying cause of death for the majority of breast cancer patients. Despite significant advances in recent years in basic research and clinical development, therapies that specifically target metastatic breast cancer remain inadequate, and represents the single greatest obstacle to reducing mortality of late-stage breast cancer. Recent efforts have leveraged genomic analysis of breast cancer and molecular dissection of tumor-stromal cross-talk to uncover a number of promising candidates for targeted treatment of metastatic breast cancer. Rational combinations of therapeutic agents targeting tumor-intrinsic properties and microenvironmental components provide a promising strategy to develop precision treatments with higher specificity and less toxicity. In this review, we discuss the emerging therapeutic targets in breast cancer metastasis, from tumor-intrinsic pathways to those that involve the host tissue components, including the immune system. PMID:27000769

  12. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand?

    PubMed Central

    Baig, S; Seevasant, I; Mohamad, J; Mukheem, A; Huri, H Z; Kamarul, T

    2016-01-01

    Underneath the intricacy of every cancer lies mysterious events that impel the tumour cell and its posterity into abnormal growth and tissue invasion. Oncogenic mutations disturb the regulatory circuits responsible for the governance of versatile cellular functions, permitting tumour cells to endure deregulated proliferation, resist to proapoptotic insults, invade and erode normal tissues and above all escape apoptosis. This disruption of apoptosis has been highly implicated in various malignancies and has been exploited as an anticancer strategy. Owing to the fact that apoptosis causes minimal inflammation and damage to the tissue, apoptotic cell death-based therapy has been the centre of attraction for the development of anticancer drugs. Increased understanding of the molecular pathways underlying apoptosis has enabled scientists to establish unique approaches targeting apoptosis pathways in cancer therapeutics. In this review, we reconnoitre the two major pathways (intrinsic and extrinsic) targeted cancer therapeutics, steering toward chief modulators of these pathways, such as B-cell lymphoma 2 protein family members (pro- and antiapoptotic), inhibitor of apoptosis proteins, and the foremost thespian of extrinsic pathway regulator, tumour necrosis factor-related apoptosis-inducing agent. Together, we also will have a look from clinical perspective to address the agents (drugs) and therapeutic strategies adopted to target these specific proteins/pathways that have entered clinical trials. PMID:26775709

  13. Potential therapeutic agents derived from the cannabinoid nucleus.

    PubMed

    Pars, H G; Howes, J F

    1977-01-01

    Drugs derived from Cannabis sativa (Cannabinceae) were used until the 1940's for their stimulant and depressant effects for treating somatic and psychiatric illnesses. Renewed interest in marihuana research began in the 1970's and again pointed to the therapeutic potential of cannabinoids. Safer and more useful therapeutic agents may be generated from cannabinoids similarly to morphine, lysergic acid diethylamide, and cocaine which have structurally related analgesics, oxytoxics, and local anesthetics respectively. It has been shown that the C-ring in cannabinoids can be substituted with a variety of nitrogen and sulfur-containing rings without loss of CNS (central nervous system) activity. Cannabinoids have been shown to inhibit prostaglandin synthesis, intensify pressor effects of endogenous amines like norepinephrine, and enhance the stimulant effects of amphetamine. Cannabinoids' therapeutic potential lies in the areas of analgesics and anticonvulsants, and for use as a sedative-hypnotic, an antiglaucoma agent, an antiasthmatic agent, an antidiarrheal agent, and possibly as an anticancer and immunosuppressant agent.

  14. Alzheimer's Disease: A Systemic Review of Substantial Therapeutic Targets and the Leading Multi-functional Molecules.

    PubMed

    Umar, Tarana; Hoda, Nasimul

    2017-01-01

    Alzheimer's Disease (AD) is a fatal neurodegenerative disorder, having a complex aetiology with numerous possible drug targets. There are targets that have been known for years while more new targets and theories have also emerged. Beta amyloid and cholinesterases are the most significant biological targets for finding curative treatment of AD. The major class of drugs used for AD till now has been the Cholinesterase (ChE) inhibitors. Other prevailing models of molecular pathogenesis in AD include Neurofibrillary Tangles (NFTs) and amyloid deposition, tryptophan degradation pathway, kinase and phosphatase activity imbalance and neuroinflammation. The beta amyloid aggregation initiates flow of events resulting in neurotoxicity and finally clinical pathogenesis of AD. Furthermore, ApoE is another very significant entity involved in repairing and maintaining the neurons and has important role in neurodegeneration. Neuroinflammation being the primmest symptom for AD is essential to focus on. Multiple factors and complexity in interlinking disease progression pose huge challenge to find one complete curing drug. With so many promising molecules having multiform pharmacological profile from all over the world however facing failures in clinical trials indicates the need to consider all aspects of the old as well as new therapeutic targets of AD. Until the disease mechanism is better understood, it is likely that multiple targeting, symptomatic and diseasemodifying, is the way forward. Most recent approaches to find anti-Alzheimer's agents have focused on multi-target directed agents that include targeting all glorious targets hypothesized against AD. New identification of prototype candidates that could be starting point of a new way of thinking drug design has been done and many drug candidates are under preclinical evaluation. The main focus of this review is to discuss the recent understanding of key targets and the development of potential therapeutic agents for the

  15. Curtailing the high rate of late-stage attrition of investigational therapeutics against unprecedented targets in patients with lung and other malignancies.

    PubMed

    Rowinsky, Eric K

    2004-06-15

    A greater understanding of the pathogenesis and biology of cancer coupled with major advances in biotechnology has resulted in the identification of rationally designed, target-based (RDTB) anticancer therapeutics, ushering in new therapeutic opportunities and high expectations for the future as well as developmental challenges. Because these agents appear to principally target malignant cells, it is expected that they will produce less toxicity at clinically effective doses than nonspecific cytotoxic agents, but their target requirements are likely to be much more stringent. The innate complexity of the networks that contain elements targeted by these agents also decreases the probability that any single therapeutic manipulation will result in robust clinical activity and success when used alone, particularly in patients with solid malignancies that have multiple relevant signaling aberrations. In contrast, proof of principle and robust antitumor activity may be most efficiently demonstrated in nonrandomized evaluations involving tumors that are principally driven by aberrations of the specific target. The predominant therapeutic manifestation of RDTB agents in preclinical studies is due to decreased tumor growth rates and will likely be similar in the clinic; however, such manifestations are not readily detectable and quantifiable using nonrandomized clinical evaluations. To curtail the increasing rate of late-stage attrition of RDTB agents, which, if maintained, will stymie progress in cancer therapy, the design of initial nonrandomized evaluations, particularly the selection of tumors and patients, must be guided by the principal biological features of the agents. Next, evaluations, some of which must be randomized, can be performed in a wide range of tumor types, depending on the presence and relevance of the target. To validate the concept of RDTB therapeutics and to realize their full potential, radically different development, evaluation, and regulatory

  16. Therapeutic potential of target of rapamycin inhibitors.

    PubMed

    Easton, John B; Houghton, Peter J

    2004-12-01

    Target of rapamycin (TOR) functions within the cell as a transducer of information from various sources, including growth factors, energy sensors, and hypoxia sensors, as well as components of the cell regulating growth and division. Blocking TOR function mimics amino acid, and to some extent, growth factor deprivation and has a cytostatic effect on proliferating cells in vivo. Inhibition of TOR in vivo, utilising its namesake rapamycin, leads to immunosuppression. This property has been exploited successfully with the use of rapamycin and its derivatives as a therapeutic agent in the prevention of organ rejection after transplantation with relatively mild side effects when compared to other immunosuppressive agents. The cytostatic effect of TOR on vascular smooth muscle cell proliferation has also recently been exploited in the therapeutic application of rapamycin to drug eluting stents for angioplasty. These stents significantly reduce the amount of arterial reblockage that results from proliferating vascular smooth muscle cells. In cancer, the effect of blocking TOR function on tumour growth and disease progression is currently of major interest and is the basis for a number of ongoing clinical trials. However, different cell types and tumours respond differently to TOR inhibition, and TOR is clearly not cytostatic for all types of cancer cells in vitro or in vivo. As the molecular details of how TOR functions and the targets of TOR activity are further elucidated, tumour and tissue specific functions are being identified that implicate TOR in angiogenesis, apoptosis, and the reversal of some forms of cellular transformation. This review will describe our current understanding of TOR function, describe the current strategies for employing TOR inhibitors in clinical and preclinical development, and outline future strategies for appropriate targets of TOR inhibitors in the treatment of disease.

  17. Targeting tumor glycolysis by a mitotropic agent.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-01

    Metabolic reprogramming is one of the hallmarks of cancer. Altered metabolism in cancer cells is exemplified by enhanced glucose utilization, a biochemical signature that is clinically exploited for cancer diagnosis using positron-emission tomography and computed tomography imaging. Accordingly, disrupting the glucose metabolism of cancer cells has been contemplated as a potential therapeutic strategy against cancer. Experimental evidences indicate that targeting glucose metabolism by inhibition of glycolysis or oxidative phosphorylation promotes anticancer effects. Yet, successful clinical translation of antimetabolites or energy blockers to treat cancer remains a challenge, primarily due to lack of efficacy and/or systemic toxicity. Recently, using nanotechnology, Marrache and Dhar have documented the feasibility of delivering a glycolytic inhibitor through triphenylphosphonium (TPP), a mitotropic agent that selectively targets mitochondria based on membrane potential. Furthermore, by utilizing gold nanoparticles the investigators also demonstrated the potential for simultaneous induction of photothermal therapy, thus facilitating an additional line of attack on cancer cells. The report establishes that specific inhibition of tumor glycolysis is achievable through TPP-dependent selective targeting of cancer cells. This nanotechnological approach involving TPP-guided selective delivery of an antiglycolytic agent complemented with photothermal therapy provides a new window of opportunity for effective and specific targeting of tumor glycolysis.

  18. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.

    PubMed

    Ma, Brigette B Y; Bristow, Robert G; Kim, John; Siu, Lillian L

    2003-07-15

    Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.

  19. Functional polymers as therapeutic agents: concept to market place.

    PubMed

    Dhal, Pradeep K; Polomoscanik, Steven C; Avila, Louis Z; Holmes-Farley, S Randall; Miller, Robert J

    2009-11-12

    Biologically active synthetic polymers have received considerable scientific interest and attention in recent years for their potential as promising novel therapeutic agents to treat human diseases. Although a significant amount of research has been carried out involving polymer-linked drugs as targeted and sustained release drug delivery systems and prodrugs, examples on bioactive polymers that exhibit intrinsic therapeutic properties are relatively less. Several appealing characteristics of synthetic polymers including high molecular weight, molecular architecture, and controlled polydispersity can all be utilized to discover a new generation of therapies. For example, high molecular weight bioactive polymers can be restricted to gastrointestinal tract, where they can selectively recognize, bind, and remove target disease causing substances from the body. The appealing features of GI tract restriction and stability in biological environment render these polymeric drugs to be devoid of systemic toxicity that are generally associated with small molecule systemic drugs. The present article highlights recent developments in the rational design and synthesis of appropriate functional polymers that have resulted in a number of promising polymer based therapies and biomaterials, including some marketed products.

  20. Therapeutic efficacy of ferrofluid bound anticancer agent

    NASA Astrophysics Data System (ADS)

    Alexiou, Ch.; Arnold, W.; Hulin, P.; Klein, R.; Schmidt, A.; Bergemannand, Ch.; Parak, F. G.

    2001-09-01

    Ferrofluids coated with starch polymers can be used as biocompatible carriers in a new field of locoregional tumor therapy called "magnetic drug targeting". Bound to medical drugs, such magnetic nanoparticles can be enriched in a desired body compartment using an external magnetic field. In the present study, we confirm the concentration of ferrofluids in VX2 squamous cell carcinoma tissue of the rabbit using histological investigations and MR imaging. The therapeutic efficacy of "magnetic drug targeting" was studied using the rabbit VX2 squamous cell carcinoma model. Mitoxantrone coupled ferrofluids were injected intraarterially into the artery supplying the tumor (femoral artery). The magnetic field (1.7 Tesla) was focused to the tumor placed at the medial portion of the hind limb of New Zealand White rabbits. Complete tumor remissions could be seen without any negative side effects by using only 20% of the normal systemic dosage of the chemotherapeutic agent mitoxantrone. Figs 3, Refs 14.

  1. [Application of basic research to development of diagnostics and therapeutic agents against inflammatory diseases].

    PubMed

    Izuhara, Kenji; Ohta, Shoichiro; Arima, Kazuhiko; Suzuki, Shoichi; Inamitsu, Masako; Yamamoto, Ken-ichi

    2013-10-01

    Biomarkers are generally important for the treatment of patients from the points of diagnosis of disease, assessment of cure, assessment of prognosis such as metastasis or recurrence, prevention of disease, and prediction of drug efficacy. Currently it is well accepted that allergic diseases such as bronchial asthma and atopic dermatitis are not single diseases, but syndromes encompassing different diseases entities. Therefore, it is important to cluster allergic disease patients to assess prognosis or the choice of therapeutic drugs, and useful biomarkers are required for these purposes. Periostin, an extracellular matrix protein, has recently emerged as a biomarker useful for clustering asthma patients. We further found that periostin plays an important role in allergic inflammation and based on this finding we are now developing therapeutic agents targeting periostin against allergic diseases. Since periostin is involved in the pathogenesis of various inflammatory diseases in addition to allergic diseases, such diagnostics and therapeutic agents can be applied to many inflammatory diseases. In this article, we describe the history of periostin research and our application of basic research to the development of diagnostics and therapeutic agents against inflammatory diseases.

  2. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.

    2015-04-01

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by

  3. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma.

    PubMed

    Neri, Paola; Bahlis, Nizar J

    2012-09-01

    Multiple myeloma (MM) is a clonal disorder of plasma cells that remains, for the most part, incurable despite the advent of several novel therapeutic agents. Tumor cells in this disease are cradled within the bone marrow (BM) microenvironment by an array of adhesive interactions between the BM cellular residents, the surrounding extracellular matrix (ECM) components such as fibronectin (FN), laminin, vascular cell adhesion molecule-1 (VCAM-1), proteoglycans, collagens and hyaluronan, and a variety of adhesion molecules on the surface of MM cells including integrins, hyaluronan receptors (CD44 and RHAMM) and heparan sulfate proteoglycans. Several signaling responses are activated by these interactions, affecting the survival, proliferation and migration of MM cells. An important consequence of these direct adhesive interactions between the BM/ECM and MM cells is the development of drug resistance. This phenomenon is termed "cell adhesion-mediated drug resistance" (CAM-DR) and it is thought to be one of the major mechanisms by which MM cells escape the cytotoxic effects of therapeutic agents. This review will focus on the adhesion molecules involved in the cross-talk between MM cells and components of the BM microenvironment. The complex signaling networks downstream of these adhesive molecules mediated by direct ligand binding or inside-out soluble factors signaling will also be reviewed. Finally, novel therapeutic strategies targeting these molecules will be discussed. Identification of the mediators of MM-BM interaction is essential to understand MM biology and to elucidate novel therapeutic targets for this disease.

  4. ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents.

    PubMed

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A; Clarke, Ian D; Barszczyk, Mark S; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W; Taylor, Michael D; Rutka, James T; Jones, Chris; Dirks, Peter B; Zadeh, Gelareh; Hawkins, Cynthia

    2014-10-01

    Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity. Using an siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular, the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM), were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. Inhibition of ATM and MPG-mediated BER cooperate to sensitize tumor cells to alkylating agents, impairing tumor growth in vitro and in vivo with no toxicity to normal cells, providing an ideal therapeutic window. ©2014 American Association for Cancer Research.

  5. A virtual therapeutic environment with user projective agents.

    PubMed

    Ookita, S Y; Tokuda, H

    2001-02-01

    Today, we see the Internet as more than just an information infrastructure, but a socializing place and a safe outlet of inner feelings. Many personalities develop aside from real world life due to its anonymous environment. Virtual world interactions are bringing about new psychological illnesses ranging from netaddiction to technostress, as well as online personality disorders and conflicts in multiple identities that exist in the virtual world. Presently, there are no standard therapy models for the virtual environment. There are very few therapeutic environments, or tools especially made for virtual therapeutic environments. The goal of our research is to provide the therapy model and middleware tools for psychologists to use in virtual therapeutic environments. We propose the Cyber Therapy Model, and Projective Agents, a tool used in the therapeutic environment. To evaluate the effectiveness of the tool, we created a prototype system, called the Virtual Group Counseling System, which is a therapeutic environment that allows the user to participate in group counseling through the eyes of their Projective Agent. Projective Agents inherit the user's personality traits. During the virtual group counseling, the user's Projective Agent interacts and collaborates to recover and increase their psychological growth. The prototype system provides a simulation environment where psychologists can adjust the parameters and customize their own simulation environment. The model and tool is a first attempt toward simulating online personalities that may exist only online, and provide data for observation.

  6. Molecular genetics and targeted therapeutics in biliary tract carcinoma

    PubMed Central

    Marks, Eric I; Yee, Nelson S

    2016-01-01

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract. PMID:26819503

  7. Molecular genetics and targeted therapeutics in biliary tract carcinoma.

    PubMed

    Marks, Eric I; Yee, Nelson S

    2016-01-28

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract.

  8. Modulation of Regulatory T Cell Activity by TNF Receptor Type II-Targeting Pharmacological Agents

    PubMed Central

    Zou, Huimin; Li, Ruixin; Hu, Hao; Hu, Yuanjia; Chen, Xin

    2018-01-01

    There is now compelling evidence that tumor necrosis factor (TNF)–TNF receptor type II (TNFR2) interaction plays a decisive role in the activation, expansion, and phenotypical stability of suppressive CD4+Foxp3+ regulatory T cells (Tregs). In an effort to translate this basic research finding into a therapeutic benefit, a number of agonistic or antagonistic TNFR2-targeting biological agents with the capacity to activate or inhibit Treg activity have been developed and studied. Recent studies also show that thalidomide analogs, cyclophosphamide, and other small molecules are able to act on TNFR2, resulting in the elimination of TNFR2-expressing Tregs. In contrast, pharmacological agents, such as vitamin D3 and adalimumab, were reported to induce the expansion of Tregs by promoting the interaction of transmembrane TNF (tmTNF) with TNFR2. These studies clearly show that TNFR2-targeting pharmacological agents represent an effective approach to modulating the function of Tregs and thus may be useful in the treatment of major human diseases such as autoimmune disorders, graft-versus-host disease (GVHD), and cancer. In this review, we will summarize and discuss the latest progress in the study of TNFR2-targeting pharmacological agents and their therapeutic potential based on upregulation or downregulation of Treg activity. PMID:29632537

  9. Nucleotide excision repair is a potential therapeutic target in multiple myeloma

    PubMed Central

    Szalat, R; Samur, M K; Fulciniti, M; Lopez, M; Nanjappa, P; Cleynen, A; Wen, K; Kumar, S; Perini, T; Calkins, A S; Reznichenko, E; Chauhan, D; Tai, Y-T; Shammas, M A; Anderson, K C; Fermand, J-P; Arnulf, B; Avet-Loiseau, H; Lazaro, J-B; Munshi, N C

    2018-01-01

    Despite the development of novel drugs, alkylating agents remain an important component of therapy in multiple myeloma (MM). DNA repair processes contribute towards sensitivity to alkylating agents and therefore we here evaluate the role of nucleotide excision repair (NER), which is involved in the removal of bulky adducts and DNA crosslinks in MM. We first evaluated NER activity using a novel functional assay and observed a heterogeneous NER efficiency in MM cell lines and patient samples. Using next-generation sequencing data, we identified that expression of the canonical NER gene, excision repair cross-complementation group 3 (ERCC3), significantly impacted the outcome in newly diagnosed MM patients treated with alkylating agents. Next, using small RNA interference, stable knockdown and overexpression, and small-molecule inhibitors targeting xeroderma pigmentosum complementation group B (XPB), the DNA helicase encoded by ERCC3, we demonstrate that NER inhibition significantly increases sensitivity and overcomes resistance to alkylating agents in MM. Moreover, inhibiting XPB leads to the dual inhibition of NER and transcription and is particularly efficient in myeloma cells. Altogether, we show that NER impacts alkylating agents sensitivity in myeloma cells and identify ERCC3 as a potential therapeutic target in MM. PMID:28588253

  10. Experimental Study of Ultrasound Contrast Agent Mediated Heat Transfer for Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Razansky, D.; Adam, D. R.; Einziger, P. D.

    2006-05-01

    Ultrasound Contrast Agents (UCA) have been recently suggested as efficient enhancers of ultrasonic power deposition in tissue. The ultrasonic energy absorption by UCA, considered as disadvantageous in diagnostic imaging, might be valuable in therapeutic applications such as targeted hyperthermia or ablation treatments. The current study, based on theoretical predictions, was designed to experimentally measure the dissipation and heating effects of encapsulated UCA (Optison™) in a well-controlled and calibrated environment.

  11. Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents

    PubMed Central

    Khoshnam, Seyed Esmaeil; Winlow, William; Farbood, Yaghoob; Moghaddam, Hadi Fathi; Farzaneh, Maryam

    2017-01-01

    Stroke is one of the leading causes of death and physical disability worldwide. The consequences of stroke injuries are profound and persistent, causing in considerable burden to both the individual patient and society. Current treatments for ischemic stroke injuries have proved inadequate, partly owing to an incomplete understanding of the cellular and molecular changes that occur following ischemic stroke. MicroRNAs (miRNA) are endogenously expressed RNA molecules that function to inhibit mRNA translation and have key roles in the pathophysiological processes contributing to ischemic stroke injuries. Potential therapeutic areas to compensate these pathogenic processes include promoting angiogenesis, neurogenesis and neuroprotection. Several miRNAs, and their target genes, are recognized to be involved in these recoveries and repair mechanisms. The capacity of miRNAs to simultaneously regulate several target genes underlies their unique importance in ischemic stroke therapeutics. In this Review, we focus on the role of miRNAs as potential diagnostic and prognostic biomarkers, as well as promising therapeutic agents in cerebral ischemic stroke. PMID:28480877

  12. Breast Cancer: Current Molecular Therapeutic Targets and New Players.

    PubMed

    Nagini, Siddavaram

    2017-01-01

    Breast cancer is the most common cancer and the most frequent cause of cancer death among women worldwide. Breast cancer is a complex, heterogeneous disease classified into hormone-receptor-positive, human epidermal growth factor receptor-2 overexpressing (HER2+) and triple-negative breast cancer (TNBC) based on histological features. Endocrine therapy, the mainstay of treatment for hormone-responsive breast cancer involves use of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs) and aromatase inhibitors (AIs). Agents that target estrogen receptor (ER) and HER2 such as tamoxifen and trastuzumab have been the most extensively used therapeutics for breast cancer. Crosstalk between ER and other signalling networks as well as epigenetic mechanisms have been envisaged to contribute to endocrine therapy resistance. TNBC, a complex, heterogeneous, aggressive form of breast cancer in which the cells do not express ER, progesterone receptor or HER2 is refractory to therapy. Several molecular targets are being explored to target TNBC including androgen receptor, epidermal growth factor receptor (EGFR), poly(ADP-ribose) polymerase (PARP), and vascular endothelial growth factor (VEGF). Receptors, protein tyrosine kinases, phosphatases, proteases, PI3K/Akt signalling pathway, microRNAs (miRs) and long noncoding RNAs (lncRNAs) are potential therapeutic targets. miR-based therapeutic approaches include inhibition of oncomiRs by antisense oligonucleotides, restoration of tumour suppressors using miR mimics, and chemical modification of miRs. The lnRNAs HOTAIR, SPRY4-IT1, GAS5, and PANDAR, new players in tumour development and prognosis may have theranostic applications in breast cancer. Several novel classes of mechanism-based drugs have been designed and synthesised for treatment of breast cancer. Integration of nucleic acid sequencing studies with mass spectrometry-based peptide sequencing and posttranslational modifications as

  13. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    PubMed Central

    Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.

    2017-01-01

    Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698

  14. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors.

    PubMed

    Tosi, Umberto; Marnell, Christopher S; Chang, Raymond; Cho, William C; Ting, Richard; Maachani, Uday B; Souweidane, Mark M

    2017-02-08

    Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood-brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a "wait-and-see" approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.

  15. Hsp27 as a therapeutic target in cancers.

    PubMed

    Acunzo, Julie; Andrieu, Claudia; Baylot, Virginie; So, Alan; Rocchi, Palma

    2014-04-01

    Heat shock protein 27 (Hsp27), induced by heat shock, environmental and pathophysiological stressors, is a multidimensional protein that acts as a protein chaperone and an antioxidant. This protein plays a major role in the inhibition of apoptosis and actin cytoskeletal remodeling. This stress-activated protein is up-regulated in many cancers and is associated with poor prognosis as well as treatment resistance by protecting cells from therapeutic agent that normally induces apoptosis. This review highlights the most recent findings and role of Hsp27 in cancer and the different strategies to target and inhibit Hsp27 for clinical purposes.

  16. Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at The Eunice Kennedy Shriver National Institute on Child Health and Human Development (NICHD) have discovered monoclonal antibodies that bind to matrilin-3, a protein specifically expressed in cartilage tissue, that could be used for treating or inhibiting growth plate disorders, such as a skeletal dysplasia or short stature. The monoclonal antibodies can also be used to target therapeutic agents, such as anti-arthritis agents, to cartilage tissue. NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, or commercialize treatment of skeletal disorders using targeting antibodies.

  17. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

    PubMed

    Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

    2017-08-18

    The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Targeting therapeutics to the glomerulus with nanoparticles.

    PubMed

    Zuckerman, Jonathan E; Davis, Mark E

    2013-11-01

    Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis

    PubMed Central

    Ouellet, Hugues; Johnston, Jonathan B.; Ortiz de Montellano, Paul R.

    2011-01-01

    Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects 10 million worldwide and kills 2 million people every year. The uptake and utilization of nutrients by Mtb within the host cell is still poorly understood, although lipids play an important role in Mtb persistence. The recent identification of a large regulon of cholesterol catabolic genes suggests that Mtb can use host sterol for infection and persistence. In this review, we report on recent progress in elucidation of the Mtb cholesterol catabolic reactions and their potential utility as targets for tuberculosis therapeutic agents. PMID:21924910

  20. Small mitochondria-targeting molecules as anti-cancer agents

    PubMed Central

    Wang, Feng; Ogasawara, Marcia A.; Huang, Peng

    2009-01-01

    Alterations in mitochondrial structure and functions have long been observed in cancer cells. Targeting mitochondria as a cancer therapeutic strategy has gained momentum in the recent years. The signaling pathways that govern mitochondrial function, apoptosis and molecules that affect mitochondrial integrity and cell viability have been important topics of the recent review in the literature. In this article, we first briefly summarize the rationale and biological basis for developing mitochondrial-targeted compounds as potential anticancer agents, and then provide key examples of small molecules that either directly impact mitochondria or functionally affect the metabolic alterations in cancer cells with mitochondrial dysfunction. The main focus is on the small molecular weight compounds with potential applications in cancer treatment. We also summarize information on the drug developmental stages of the key mitochondria-targeted compounds and their clinical trial status. The advantages and potential shortcomings of targeting the mitochondria for cancer treatment are also discussed. PMID:19995573

  1. Predicting the size-dependent tissue accumulation of agents released from vascular targeted nanoconstructs

    NASA Astrophysics Data System (ADS)

    de Tullio, Marco D.; Singh, Jaykrishna; Pascazio, Giuseppe; Decuzzi, Paolo

    2014-03-01

    Vascular targeted nanoparticles have been developed for the delivery of therapeutic and imaging agents in cancer and cardiovascular diseases. However, at authors' knowledge, a comprehensive systematic analysis on their delivery efficiency is still missing. Here, a computational model is developed to predict the vessel wall accumulation of agents released from vascular targeted nanoconstructs. The transport problem for the released agent is solved using a finite volume scheme in terms of three governing parameters: the local wall shear rate , ranging from to ; the wall filtration velocity , varying from to ; and the agent diffusion coefficient , ranging from to . It is shown that the percentage of released agent adsorbing on the vessel walls in the vicinity of the vascular targeted nanoconstructs reduces with an increase in shear rate , and with a decrease in filtration velocity and agent diffusivity . In particular, in tumor microvessels, characterized by lower shear rates () and higher filtration velocities (), an agent with a diffusivity (i.e. a 50 nm particle) is predicted to deposit on the vessel wall up to of the total released dose. Differently, drug molecules, exhibiting a smaller size and much higher diffusion coefficient (), are predicted to accumulate up to . In healthy vessels, characterized by higher and lower , the largest majority of the released agent is redistributed directly in the circulation. These data suggest that drug molecules and small nanoparticles only can be efficiently released from vascular targeted nanoconstructs towards the diseased vessel walls and tissue.

  2. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment.

    PubMed

    Rosenholm, Jessica M; Sahlgren, Cecilia; Lindén, Mika

    2011-07-01

    The main objective in the development of nanomedicine is to obtain delivery platforms for targeted delivery of drugs or imaging agents for improved therapeutic efficacy, reduced side effects and increased diagnostic sensitivity. A (nano)material class that has been recognized for its controllable properties on many levels is ordered mesoporous inorganic materials, typically in the form of amorphous silica (SiO2). Characteristics for this class of materials include mesoscopic order, tunable pore dimensions in the (macro)molecular size range, a high pore volume and surface area, the possibility for selective surface functionality as well as morphology control. The robust but biodegradable ceramic matrix moreover provides shelter for incorporated agents (drugs, proteins, imaging agents, photosensitizers) leaving the outer particle surface free for further modification. The unique features make these materials particularly amenable to modular design, whereby functional moieties and features may be interchanged or combined to produce multifunctional nanodelivery systems combining targeting, diagnostic, and therapeutic actions. This review covers the latest developments related to the use of mesoporous silica nanoparticles (MSNs) as nanocarriers in biomedical applications, with special focus on cancer therapy and diagnostics.

  3. Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect.

    PubMed

    Greineder, Colin F; Brenza, Jacob B; Carnemolla, Ronald; Zaitsev, Sergei; Hood, Elizabeth D; Pan, Daniel C; Ding, Bi-Sen; Esmon, Charles T; Chacko, Ann Marie; Muzykantov, Vladimir R

    2015-08-01

    Anchoring pharmacologic agents to the vascular lumen has the potential to modulate critical processes at the blood-tissue interface, avoiding many of the off-target effects of systemically circulating agents. We report a novel strategy for endothelial dual targeting of therapeutics, which both enhances drug delivery and enables targeted agents to partner enzymatically to generate enhanced biologic effect. Based on the recent discovery that paired antibodies directed to adjacent epitopes of platelet endothelial cell adhesion molecule (PECAM)-1 stimulate each other's binding, we fused single-chain fragments (scFv) of paired anti-mouse PECAM-1 antibodies to recombinant murine thrombomodulin (TM) and endothelial protein C receptor (EPCR), endothelial membrane proteins that partner in activation of protein C (PC). scFv/TM and scFv/EPCR bound to mouse endothelial PECAM-1 with high affinity (EC50 1.5 and 3.8 nM, respectively), and codelivery induced a 5-fold increase in PC activation not seen when TM and EPCR are anchored to distinct cell adhesion molecules. In a mouse model of acute lung injury, dual targeting reduces both the expression of lung inflammatory markers and trans-endothelial protein leak by as much as 40%, as compared to either agent alone. These findings provide proof of principle for endothelial dual targeting, an approach with numerous potential biomedical applications. © FASEB.

  4. Past, Current, and Future Developments of Therapeutic Agents for Treatment of Chronic Hepatitis B Virus Infection.

    PubMed

    Pei, Yameng; Wang, Chunting; Yan, S Frank; Liu, Gang

    2017-08-10

    For decades, treatment of hepatitis B virus (HBV) infection has been relying on interferon (IFN)-based therapies and nucleoside/nucleotide analogues (NAs) that selectively target the viral polymerase reverse transcriptase (RT) domain and thereby disrupt HBV viral DNA synthesis. We have summarized here the key steps in the HBV viral life cycle, which could potentially be targeted by novel anti-HBV therapeutics. A wide range of next-generation direct antiviral agents (DAAs) with distinct mechanisms of actions are discussed, including entry inhibitors, transcription inhibitors, nucleoside/nucleotide analogues, inhibitors of viral ribonuclease H (RNase H), modulators of viral capsid assembly, inhibitors of HBV surface antigen (HBsAg) secretion, RNA interference (RNAi) gene silencers, antisense oligonucleotides (ASOs), and natural products. Compounds that exert their antiviral activities mainly through host factors and immunomodulation, such as host targeting agents (HTAs), programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors, and Toll-like receptor (TLR) agonists, are also discussed. In this Perspective, we hope to provide an overview, albeit by no means being comprehensive, for the recent development of novel therapeutic agents for the treatment of chronic HBV infection, which not only are able to sustainably suppress viral DNA but also aim to achieve functional cure warranted by HBsAg loss and ultimately lead to virus eradication and cure of hepatitis B.

  5. A concise review on advances in development of small molecule anti-inflammatory therapeutics emphasising AMPK: An emerging target.

    PubMed

    Gejjalagere Honnappa, Chethan; Mazhuvancherry Kesavan, Unnikrishnan

    2016-12-01

    Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology. © The Author(s) 2016.

  6. Target Acquired: Progress and Promise of Targeted Therapeutics in the Treatment of Prostate Cancer.

    PubMed

    Stuchbery, Ryan; Kurganovs, Natalie J; McCoy, Patrick J; Nelson, Colleen C; Hayes, Vanessa M; Corcoran, Niall M; Hovens, Christopher M

    2015-01-01

    Cancer is fundamentally a genomic disease caused by mutations or rearrangements in the DNA or epigenetic machinery of a patient. An emerging field in cancer treatment targets key aberrations arising from the mutational landscape of an individual patient's disease rather than employing a cancer-wide cytotoxic therapy approach. In prostate cancer in particular, where there is an observed variation in response to standard treatments between patients with disease of a similar pathological stage and grade, mutationdirected treatment may grow to be a viable tool for clinicians to tailor more effective treatments. This review will describe a number of mutations across multiple forms of cancer that have been successfully antagonised by targeted therapeutics including their identification, the development of targeted compounds to combat them and the development of resistance to these therapies. This review will continue to examine these same mutations in the treatment and management of prostate cancer; the prevalence of targetable mutations in prostate cancer, recent clinical trials of targeted-agents and the potential or limitations for their use.

  7. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  8. Therapeutic Targeting of IL-17 and IL-23 Cytokines in Immune-Mediated Diseases.

    PubMed

    Fragoulis, George E; Siebert, Stefan; McInnes, Iain B

    2016-01-01

    The discovery of the biological functions of the interleukin-23/-17 axis led to the identification of IL-23 and IL-17 as important participants in the pathogenesis of several immune-mediated diseases. Therapeutic agents targeting these cytokines and/or their receptors have now been developed as potential treatment strategies for common immune-mediated diseases. Anti-IL-17 and anti-IL-12/-23 regimens appear particularly effective in psoriasis, with promising results in spondyloarthropathies also emerging. Overall, these agents appear well tolerated, with adverse-event rates that are commensurate with those in other biologic treatment programs. The strategic utility of these new agents, however, remains uncertain, and further studies will be required to determine their place in the context of existing conventional and biologic immune-modifying agents.

  9. Protease inhibitors as potential therapeutic agents for AIDS.

    PubMed

    Jamjoom, G A

    1991-09-01

    A decade since the epidemic of the acquired immunodeficiency syndrome (AIDS) was first recognized, a wealth of information has accumulated on the molecular biology of the causative agents, the human immunodeficiency viruses (HIV). Of particular interest is knowledge of the viral enzymes involved in the formation of new virus particles. Such enzymes constitute attractive targets for efforts aimed at selecting agents that interfere with virus multiplication and subsequent spread and pathogenesis. Already, several agents that inhibit the viral reverse transcriptase (e.g., nucleoside analogs such as Zidovudine) have proved to have a beneficial effect on the course off the disease, but their prolonged use has been associated with significant toxicity and the emergence of resistant mutants. A second enzyme that has recently attracted attention is the virus-coded protease. This enzyme is involved in the cleavage of viral precursor polyproteins into the final products that constitute the mature virus particle. Protease inhibitors interfere with the process of virus maturation which is required for the formation of infective virus particles. Several custom-made inhibitors with a high selective action against HIV protease have been produced recently. They are nonhydrolyzable peptide analogs that mimic the cleavage sequences of the natural substrate of the enzyme during the transition state of the cleavage reaction. It is hoped that a similar selectivity in vivo may make protease inhibitors a promising new category of AIDS therapeutics.

  10. Pleiotropic effects of statins: new therapeutic targets in drug design.

    PubMed

    Bedi, Onkar; Dhawan, Veena; Sharma, P L; Kumar, Puneet

    2016-07-01

    The HMG Co-enzyme inhibitors and new lipid-modifying agents expand their new therapeutic target options in the field of medical profession. Statins have been described as the most effective class of drugs to reduce serum cholesterol levels. Since the discovery of the first statin nearly 30 years ago, these drugs have become the main therapeutic approach to lower cholesterol levels. The present scientific research demonstrates numerous non-lipid modifiable effects of statins termed as pleiotropic effects of statins, which could be beneficial for the treatment of various devastating disorders. The most important positive effects of statins are anti-inflammatory, anti-proliferative, antioxidant, immunomodulatory, neuroprotective, anti-diabetes, and antithrombotic, improving endothelial dysfunction and attenuating vascular remodeling besides many others which are discussed under the scope of this review. In particular, inhibition of Rho and its downstream target, Rho-associated coiled-coil-containing protein kinase (ROCK), and their agonistic action on peroxisome proliferator-activated receptors (PPARs) can be viewed as the principle mechanisms underlying the pleiotropic effects of statins. With gradually increasing knowledge of new therapeutic targets of statins, their use has also been advocated in chronic inflammatory disorders for example rheumatoid arthritis (RA) and in systemic lupus erythematosus (SLE). In the scope of review, we highlight statins and their pleiotropic effects with reference to their harmful and beneficial effects as a novel approach for their use in the treatment of devastating disorders. Graphical abstract Pleiotropic effect of statins.

  11. Functional kinomics identifies candidate therapeutic targets in head and neck cancer

    PubMed Central

    Moser, Russell; Xu, Chang; Kao, Michael; Annis, James; Lerma, Luisa Angelica; Schaupp, Christopher M.; Gurley, Kay E.; Jang, In Sock; Biktasova, Asel; Yarbrough, Wendell G.; Margolin, Adam A.; Grandori, Carla; Kemp, Christopher J.; Méndez, Eduardo

    2014-01-01

    Purpose To identify novel therapeutic drug targets for p53 mutant head and neck squamous cell carcinoma (HNSCC). Experimental Design RNAi kinome viability screens were performed on HNSCC cells including autologous pairs from primary tumor and recurrent/metastatic lesions, and in parallel on murine squamous cell carcinoma (MSCC) cells derived from tumors of inbred mice bearing germline mutations in Trp53, and p53 regulatory genes: Atm, Prkdc, and p19Arf. Cross-species analysis of cell lines stratified by p53 mutational status and metastatic phenotype was utilized to select 38 kinase targets. Both primary and secondary RNAi validation assays were performed on additional HNSCC cell lines to credential these kinase targets utilizing multiple phenotypic endpoints. Kinase targets were also examined via chemical inhibition utilizing a panel of kinase inhibitors. A preclinical study was conducted on the WEE1 kinase inhibitor, MK-1775. Results Our functional kinomics approach identified novel survival kinases in HNSCC involved in G2/M cell cycle checkpoint, SFK, PI3K and FAK pathways. RNAi mediated knockdown and chemical inhibition of the WEE1 kinase with a specific inhibitor, MK-1775, had a significant effect on both viability and apoptosis. Sensitivity to the MK-1775 kinase inhibitor is in part determined by p53 mutational status, and due to unscheduled mitotic entry. MK-1775 displays single-agent activity and potentiates the efficacy of cisplatin in a p53 mutant HNSCC xenograft model. Conclusions WEE1 kinase is a potential therapeutic drug target for HNSCC. This study supports the application of a functional kinomics strategy to identify novel therapeutic targets for cancer. PMID:25125259

  12. Functional kinomics identifies candidate therapeutic targets in head and neck cancer.

    PubMed

    Moser, Russell; Xu, Chang; Kao, Michael; Annis, James; Lerma, Luisa Angelica; Schaupp, Christopher M; Gurley, Kay E; Jang, In Sock; Biktasova, Asel; Yarbrough, Wendell G; Margolin, Adam A; Grandori, Carla; Kemp, Christopher J; Méndez, Eduardo

    2014-08-15

    To identify novel therapeutic drug targets for p53-mutant head and neck squamous cell carcinoma (HNSCC). RNAi kinome viability screens were performed on HNSCC cells, including autologous pairs from primary tumor and recurrent/metastatic lesions, and in parallel on murine squamous cell carcinoma (MSCC) cells derived from tumors of inbred mice bearing germline mutations in Trp53, and p53 regulatory genes: Atm, Prkdc, and p19(Arf). Cross-species analysis of cell lines stratified by p53 mutational status and metastatic phenotype was used to select 38 kinase targets. Both primary and secondary RNAi validation assays were performed on additional HNSCC cell lines to credential these kinase targets using multiple phenotypic endpoints. Kinase targets were also examined via chemical inhibition using a panel of kinase inhibitors. A preclinical study was conducted on the WEE1 kinase inhibitor, MK-1775. Our functional kinomics approach identified novel survival kinases in HNSCC involved in G2-M cell-cycle checkpoint, SFK, PI3K, and FAK pathways. RNAi-mediated knockdown and chemical inhibition of the WEE1 kinase with a specific inhibitor, MK-1775, had a significant effect on both viability and apoptosis. Sensitivity to the MK-1775 kinase inhibitor is in part determined by p53 mutational status, and due to unscheduled mitotic entry. MK-1775 displays single-agent activity and potentiates the efficacy of cisplatin in a p53-mutant HNSCC xenograft model. WEE1 kinase is a potential therapeutic drug target for HNSCC. This study supports the application of a functional kinomics strategy to identify novel therapeutic targets for cancer. ©2014 American Association for Cancer Research.

  13. A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes

    PubMed Central

    Yang, Xuewei; Yang, Shuang; Chai, Hongyu; Yang, Zhaogang; Lee, Robert J.; Liao, Weiwei; Teng, Lesheng

    2015-01-01

    We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation. PMID:26309138

  14. Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives.

    PubMed

    Mahapatra, Debarshi Kar; Asati, Vivek; Bharti, Sanjay Kumar

    2015-03-06

    Diabetes Mellitus (DM) is the fastest growing metabolic disorder affecting about 387 million people across the globe and is estimated to affect 592 million people by year 2030. The search for newer anti-diabetic agents is the foremost need to control the accelerating diabetic population. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates that act by modulating the therapeutic targets PPAR-γ, DPP-4, α-glucosidase, PTP1B, aldose reductase, and stimulate insulin secretion and tissue sensitivity. In this review, a comprehensive study (from January 1977 to October 2014) of anti-diabetic chalcones, their molecular targets, structure activity relationships (SARs), mechanism of actions (MOAs) and patents have been described. The compounds which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-diabetic agents. They should be evaluated critically at all clinical stages to ensure their therapeutic and toxicological profile to meet the demand of diabetics. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. The vascular endothelium in diabetes--a therapeutic target?

    PubMed

    Mather, Kieren J

    2013-03-01

    Insulin resistance affects the vascular endothelium, and contributes to systemic insulin resistance by directly impairing the actions of insulin to redistribute blood flow as part of its normal actions driving muscle glucose uptake. Impaired vascular function is a component of the insulin resistance syndrome, and is a feature of type 2 diabetes. On this basis, the vascular endothelium has emerged as a therapeutic target where the intent is to improve systemic metabolic state by improving vascular function. We review the available literature presenting studies in humans, evaluating the effects of metabolically targeted and vascular targeted therapies on insulin action and systemic metabolism. Therapies that improve systemic insulin resistance exert strong concurrent effects to improve vascular function and vascular insulin action. RAS-acting agents and statins have widely recognized beneficial effects on vascular function but have not uniformly produced the hoped-for metabolic benefits. These observations support the notion that systemic metabolic benefits can arise from therapies targeted at the endothelium, but improving vascular insulin action does not result from all treatments that improve endothelium-dependent vasodilation. A better understanding of the mechanisms of insulin's actions in the vascular wall will advance our understanding of the specificity of these responses, and allow us to better target the vasculature for metabolic benefits.

  16. Multi-Agent Cooperative Target Search

    PubMed Central

    Hu, Jinwen; Xie, Lihua; Xu, Jun; Xu, Zhao

    2014-01-01

    This paper addresses a vision-based cooperative search for multiple mobile ground targets by a group of unmanned aerial vehicles (UAVs) with limited sensing and communication capabilities. The airborne camera on each UAV has a limited field of view and its target discriminability varies as a function of altitude. First, by dividing the whole surveillance region into cells, a probability map can be formed for each UAV indicating the probability of target existence within each cell. Then, we propose a distributed probability map updating model which includes the fusion of measurement information, information sharing among neighboring agents, information decay and transmission due to environmental changes such as the target movement. Furthermore, we formulate the target search problem as a multi-agent cooperative coverage control problem by optimizing the collective coverage area and the detection performance. The proposed map updating model and the cooperative control scheme are distributed, i.e., assuming that each agent only communicates with its neighbors within its communication range. Finally, the effectiveness of the proposed algorithms is illustrated by simulation. PMID:24865884

  17. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents.

    PubMed

    Taherkhani, Samira; Mohammadi, Mahmood; Daoud, Jamal; Martel, Sylvain; Tabrizian, Maryam

    2014-05-27

    The targeted and effective delivery of therapeutic agents remains an unmet goal in the field of controlled release systems. Magnetococcus marinus MC-1 magnetotactic bacteria (MTB) are investigated as potential therapeutic carriers. By combining directional magnetotaxis-microaerophilic control of these self-propelled agents, a larger amount of therapeutics can be delivered surpassing the diffusion limits of large drug molecules toward hard-to-treat hypoxic regions in solid tumors. The potential benefits of these carriers emphasize the need to develop an adequate method to attach therapeutic cargos, such as drug-loaded nanoliposomes, without substantially affecting the cell's ability to act as delivery agents. In this study, we report on a strategy for the attachment of liposomes to MTB (MTB-LP) through carbodiimide chemistry. The attachment efficacy, motility, and magnetic response of the MTB-LP were investigated. Results confirm that a substantial number of nanoliposomes (∼70) are efficiently linked with MTB without compromising functionality and motility. Cytotoxicity assays using three different cell types (J774, NIH/3T3, and Colo205) reveal that liposomal attachments to MTB formulation improve the biocompatibility of MTB, whereas attachment does not interfere with liposomal uptake.

  18. Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer

    PubMed Central

    Yashiro, Masakazu; Matsuoka, Tasuku

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer. PMID:26937130

  19. Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer.

    PubMed

    Yashiro, Masakazu; Matsuoka, Tasuku

    2016-02-28

    Fibroblast growth factor receptors (FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer.

  20. Novel Therapeutic Targets for Chronic Migraine

    DTIC Science & Technology

    2014-11-01

    Award Number: W81XWH-11-1-0647 TITLE: Novel Therapeutic Targets for Chronic Migraine PRINCIPAL INVESTIGATORS: Peter Goadsby CONTRACTING...Therapeutic Targets for Chronic Migraine 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0647 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Peter Goadsby, M.D...ABSTRACT Chronic migraine is a disabling disorder that affects millions of individuals worldwide, and may result from traumatic brain injury. The purpose of

  1. Advances in refractory ulcerative colitis treatment: A new therapeutic target, Annexin A2

    PubMed Central

    Tanida, Satoshi; Mizoshita, Tsutomu; Ozeki, Keiji; Katano, Takahito; Kataoka, Hiromi; Kamiya, Takeshi; Joh, Takashi

    2015-01-01

    Medical treatment has progressed significantly over the past decade towards achieving and maintaining clinical remission in patients with refractory ulcerative colitis (UC). Proposed mediators of inflammation in UC include pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-2, and the cell-surface adhesive molecule integrin α4β7. Conventional therapeutics for active UC include 5-aminosalicylic acid, corticosteroids and purine analogues (azathioprine and 6-mercaptopurine). Patients who fail to respond to conventional therapy are treated with agents such as the calicineurin inhibitors cyclosporine and tacrolimus, the TNF-α inhibitors infliximab or adalimumab, or a neutralizing antibody (vedolizumab) directed against integrin α4β7. These therapeutic agents are of benefit for patients with refractory UC, but are not universally effective. Our recent research on TNF-α shedding demonstrated that inhibition of annexin (ANX) A2 may be a new therapeutic strategy for the prevention of TNF-α shedding during inflammatory bowel disease (IBD) inflammation. In this review, we provide an overview of therapeutic treatments that are effective and currently available for UC patients, as well as some that are likely to be available in the near future. We also propose the potential of ANX A2 as a new molecular target for IBD treatment. PMID:26269667

  2. Multi-Targeted Agents in Cancer Cell Chemosensitization: What We Learnt from Curcumin Thus Far.

    PubMed

    Bordoloi, Devivasha; Roy, Nand K; Monisha, Javadi; Padmavathi, Ganesan; Kunnumakkara, Ajaikumar B

    2016-01-01

    Research over the past several years has developed many mono-targeted therapies for the prevention and treatment of cancer, but it still remains one of the fatal diseases in the world killing 8.2 million people annually. It has been well-established that development of chemoresistance in cancer cells against mono-targeted chemotherapeutic agents by modulation of multiple survival pathways is the major cause of failure of cancer chemotherapy. Therefore, inhibition of these pathways by non-toxic multi-targeted agents may have profoundly high potential in preventing drug resistance and sensitizing cancer cells to chemotherapeutic agents. To study the potential of curcumin, a multi-targeted natural compound, obtained from the plant Turmeric (Curcuma longa) in combination with standard chemotherapeutic agents to inhibit drug resistance and sensitize cancer cells to these agents based on available literature and patents. An extensive literature survey was performed in PubMed and Google for the chemosensitizing potential of curcumin in different cancers published so far and the patents published during 2014-2015. Our search resulted in many in vitro, in vivo and clinical reports signifying the chemosensitizing potential of curcumin in diverse cancers. There were 160 in vitro studies, 62 in vivo studies and 5 clinical studies. Moreover, 11 studies reported on hybrid curcumin: the next generation of curcumin based therapeutics. Also, 34 patents on curcumin's biological activity have been retrieved. Altogether, the present study reveals the enormous potential of curcumin, a natural, non-toxic, multi-targeted agent in overcoming drug resistance in cancer cells and sensitizing them to chemotherapeutic drugs.

  3. Target and Agent Prioritization for the Children's Oncology Group-National Cancer Institute Pediatric MATCH Trial.

    PubMed

    Allen, Carl E; Laetsch, Theodore W; Mody, Rajen; Irwin, Meredith S; Lim, Megan S; Adamson, Peter C; Seibel, Nita L; Parsons, D Williams; Cho, Y Jae; Janeway, Katherine

    2017-05-01

    Over the past decades, outcomes for children with cancer have improved dramatically through serial clinical trials based in large measure on dose intensification of cytotoxic chemotherapy for children with high-risk malignancies. Progress made through such dose intensification, in general, is no longer yielding further improvements in outcome. With the revolution in sequencing technologies and rapid development of drugs that block specific proteins and pathways, there is now an opportunity to improve outcomes for pediatric cancer patients through mutation-based targeted therapeutic strategies. The Children's Oncology Group (COG), in partnership with the National Cancer Institute (NCI), is planning a trial entitled the COG-NCI Pediatric Molecular Analysis for Therapeutic Choice (Pediatric MATCH) protocol utilizing an umbrella design. This protocol will have centralized infrastructure and will consist of a biomarker profiling protocol and multiple single-arm phase II trials of targeted therapies. Pediatric patients with recurrent or refractory solid tumors, lymphomas, or histiocytoses with measurable disease will be eligible. The Pediatric MATCH Target and Agent Prioritization (TAP) committee includes membership representing COG disease committees, the Food and Drug Administration, and the NCI. The TAP Committee systematically reviewed target and agent pairs for inclusion in the Pediatric MATCH trial. Fifteen drug-target pairs were reviewed by the TAP Committee, with seven recommended for further development as initial arms of the Pediatric MATCH trial. The current evidence for availability, efficacy, and safety of targeted agents in children for each class of mutation considered for inclusion in the Pediatric MATCH trial is discussed in this review. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation†

    PubMed Central

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.; Radovic-Moreno, Aleksandar F.; Farokhzad, Omid C.

    2013-01-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development

  5. An overview of cytokines and cytokine antagonists as therapeutic agents.

    PubMed

    Donnelly, Raymond P; Young, Howard A; Rosenberg, Amy S

    2009-12-01

    Cytokine-based therapies have the potential to provide novel treatments for cancer, autoimmune diseases, and many types of infectious disease. However, to date, the full clinical potential of cytokines as drugs has been limited by a number of factors. To discuss these limitations and explore ways to overcome them, the FDA partnered with the New York Academy of Sciences in March 2009 to host a two-day forum to discuss more effective ways to harness the clinical potential of cytokines and cytokine antagonists as therapeutic agents. The first day was focused primarily on the use of recombinant cytokines as therapeutic agents for treatment of human diseases. The second day focused largely on the use of cytokine antagonists as therapeutic agents for treatment of human diseases. This issue of the Annals includes more than a dozen papers that summarize much of the information that was presented during this very informative two-day conference.

  6. Targeted Therapy: Attacking Cancer with Molecular and Immunological Targeted Agents.

    PubMed

    Wilkes, Gail M

    2018-01-01

    Today, personalized cancer therapy with targeted agents has taken center stage, and offers individualized treatment to many. As the mysteries of the genes in a cell's DNA and their specific proteins are defined, advances in the understanding of cancer gene mutations and how cancer evades the immune system have been made. This article provides a basic and simplified understanding of the available (Food and Drug Administration- approved) molecularly and immunologically targeted agents in the USA. Other agents may be available in Asia, and throughout the USA and the world, many more agents are being studied. Nursing implications for drug classes are reviewed.

  7. Future Perspectives: Therapeutic Targeting of Notch Signalling May Become a Strategy in Patients Receiving Stem Cell Transplantation for Hematologic Malignancies

    PubMed Central

    Ersvaer, Elisabeth; Hatfield, Kimberley J.; Reikvam, Håkon; Bruserud, Øystein

    2011-01-01

    The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects. PMID:22046566

  8. Therapeutic drug monitoring of intracellular anti-infective agents.

    PubMed

    D'Avolio, Antonio; Pensi, Debora; Baietto, Lorena; Di Perri, Giovanni

    2014-12-01

    Many microorganisms, including viruses, some bacteria and fungi, replicate within the cells. Therefore, the efficacy of therapy and the selection of resistances could be related to intracellular concentration of the drugs and to their ability to cross biological membranes and penetrate into various tissue compartments. The efficacy of treatment may be limited by pharmacological factors. Dose-response relationship exists for many agents, and failure to maintain adequate concentrations may allow the development of viral or bacterial resistance, thereby decreasing the probability of response of current and subsequent therapies. The major target of antivirals and many other anti-infective agents is within infected cells. Therefore, clinical outcome ultimately should be related to intracellular drug concentrations. Intracellular pharmacokinetics provides information regarding drug disposition in a compartment where microorganism replication occurs and combined with plasma data may be useful in understanding therapeutic failure in relation to cellular resistance. With a focus on possible methodological biases, this review reports the current state of the art in intracellular, particularly in peripheral blood mononuclear cells, therapeutic drug monitoring of the following anti-infective drugs: antivirals, antifungals and antibiotics. Although measurement of intracellular concentrations needs to be still standardized focusing on each single drug, this review showed some relationships between intracellular concentrations of few anti-infective drugs and their efficacy and/or toxicity. Such relationships should be interpreted with caution, as intracellular concentrations reflect the total amount of drug within the cell and not the effective unbound fraction. The number of clinical studies in that area is, however, rather limited, and not always adequately designed. Then, intracellular drug determination has to be considered a test for research only and not to be carried out

  9. Targeting active cancer cells with smart bullets.

    PubMed

    Martel, Sylvain

    2017-03-01

    Paul Ehrlich's 'magic bullet' concept has stimulated research for therapeutic agents with the capability to go straight to their intended targets. The 'magic bullet' concept is still considered the ultimate approach to maximize the therapeutic effects of a given therapeutic agent without affecting nontargeted tissues. But so far, there has never been a therapeutic agent or a delivery system that goes straight to the target in the body, and no approach has provided anything better than just a few percents of the total administered dose reaching the intended target sites. But engineering principles can transform systematically circulating vectors that so far were based primarily on physical characteristics and biochemical principles alone, as smart therapeutic agents with the required propulsion-navigation-homing capabilities to enable them to go straight to their intended targets.

  10. Pathogenic Inflammation and Its Therapeutic Targeting in Systemic Lupus Erythematosus

    PubMed Central

    Gottschalk, Timothy A.; Tsantikos, Evelyn; Hibbs, Margaret L.

    2015-01-01

    Systemic lupus erythematosus (SLE, lupus) is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues, including skin, kidneys, and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B- and T-lymphocyte activation, and, with the single exception of an agent known as belimumab which targets the B-cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immunosuppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B-cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here, we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and review the known

  11. A Cellular High-Throughput Screening Approach for Therapeutic trans-Cleaving Ribozymes and RNAi against Arbitrary mRNA Disease Targets

    PubMed Central

    Yau, Edwin H.; Butler, Mark C.; Sullivan, Jack M.

    2016-01-01

    Major bottlenecks in development of therapeutic post transcriptional gene silencing (PTGS) agents (e.g. ribozymes, RNA interference, antisense) include the challenge of mapping rare accessible regions of the mRNA target that are open for annealing and cleavage, testing and optimization of agents in human cells to identify lead agents, testing for cellular toxicity, and preclinical evaluation in appropriate animal models of disease. Methods for rapid and reliable cellular testing of PTGS agents are needed to identify potent lead candidates for optimization. Our goal was to develop a means of rapid assessment of many RNA agents to identify a lead candidate for a given mRNA associated with a disease state. We developed a rapid human cell-based screening platform to test efficacy of hammerhead ribozyme (hhRz) or RNA interference (RNAi) constructs, using a model retinal degeneration target, human rod opsin (RHO) mRNA. The focus is on RNA Drug Discovery for diverse retinal degeneration targets. To validate the approach, candidate hhRzs were tested against NUH↓ cleavage sites (N=G,C,A,U; H=C,A,U) within the target mRNA of secreted alkaline phosphatase (SEAP), a model gene expression reporter, based upon in silico predictions of mRNA accessibility. HhRzs were embedded in a larger stable adenoviral VAI RNA scaffold for high cellular expression, cytoplasmic trafficking, and stability. Most hhRz expression plasmids exerted statistically significant knockdown of extracellular SEAP enzyme activity when readily assayed by a fluorescence enzyme assay intended for high throughput screening (HTS). Kinetics of PTGS knockdown of cellular targets is measureable in live cells with the SEAP reporter. The validated SEAP HTS platform was transposed to identify lead PTGS agents against a model hereditary retinal degeneration target, RHO mRNA. Two approaches were used to physically fuse the model retinal gene target mRNA to the SEAP reporter mRNA. The most expedient way to evaluate a

  12. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals

    PubMed Central

    Ferguson, B. Scott; Hoggarth, David A.; Maliniak, Dan; Ploense, Kyle; White, Ryan J.; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J.; Eisenstein, Michael; Kippin, Tod; Plaxco, Kevin W.; Soh, H. Tom

    2014-01-01

    A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients’ health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lactose, and oxygen, and the few existing platforms for continuous measurement are not generalizable for the monitoring of other analytes, such as small-molecule therapeutics. In response, we have developed a real-time biosensor capable of continuously tracking a wide range of circulating drugs in living subjects. Our microfluidic electrochemical detector for in vivo continuous monitoring (MEDIC) requires no exogenous reagents, operates at room temperature, and can be reconfigured to measure different target molecules by exchanging probes in a modular manner. To demonstrate the system's versatility, we measured therapeutic in vivo concentrations of doxorubicin (a chemotherapeutic) and kanamycin (an antibiotic) in live rats and in human whole blood for several hours with high sensitivity and specificity at sub-minute temporal resolution. Importantly, we show that MEDIC can also obtain pharmacokineticparameters for individual animals in real-time. Accordingly, just as continuous glucose monitoring technology is currently revolutionizing diabetes care, we believe MEDIC could be a powerful enabler for personalized medicine by ensuring delivery of optimal drug doses for individual patients based on direct detection of physiological parameters. PMID:24285484

  13. Targeted Therapy: Attacking Cancer with Molecular and Immunological Targeted Agents

    PubMed Central

    Wilkes, Gail M.

    2018-01-01

    Today, personalized cancer therapy with targeted agents has taken center stage, and offers individualized treatment to many. As the mysteries of the genes in a cell's DNA and their specific proteins are defined, advances in the understanding of cancer gene mutations and how cancer evades the immune system have been made. This article provides a basic and simplified understanding of the available (Food and Drug Administration- approved) molecularly and immunologically targeted agents in the USA. Other agents may be available in Asia, and throughout the USA and the world, many more agents are being studied. Nursing implications for drug classes are reviewed. PMID:29607374

  14. The potential of AR-V7 as a therapeutic target.

    PubMed

    Uo, Takuma; Plymate, Stephen R; Sprenger, Cynthia C

    2018-03-01

    The androgen receptor variant AR-V7 is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-androgen receptor (AR) therapies in castration-resistant prostate cancer (CRPC). Accordingly, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. Areas covered: We review proposed mechanisms of drug resistance in relation to AR-V7 status, the mechanisms of generation of AR-V7, and its transcriptome, cistrome, and interactome. Pharmacological agents that interfere with these processes are being developed to counteract pan AR and AR-V7-specific signaling. Also, we address the current status of the preclinical and clinical studies targeting AR-V7 signaling. Expert opinion: AR-V7 is considered a true therapeutic target, however, it remains to be determined if AR-V7 is a principal driver or merely a bystander requiring heterodimerization with co-expressed full-length AR or other variants to drive CRPC progression. While untangling AR-V7 biology, multiple strategies are being developed to counteract drug resistance, including selective blockade of AR-V7 signaling as well as inhibition of pan-AR signaling. Ideally anti-AR therapies will be combined with agents preventing activation and enrichment of AR negative tumor cells that are otherwise depressed by AR activity axis.

  15. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    DOE PAGES

    McKinlay, Alistair C.; Allan, Phoebe K.; Renouf, Catherine L.; ...

    2014-12-01

    The highly porous nature of metal-organic frameworks (MOFs) offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  16. MicroRNA-targeted therapeutics for lung cancer treatment.

    PubMed

    Xue, Jing; Yang, Jiali; Luo, Meihui; Cho, William C; Liu, Xiaoming

    2017-02-01

    Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.

  17. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer.

    PubMed

    Moran-Jones, Kim; Gloss, Brian S; Murali, Rajmohan; Chang, David K; Colvin, Emily K; Jones, Marc D; Yuen, Samuel; Howell, Viive M; Brown, Laura M; Wong, Carol W; Spong, Suzanne M; Scarlett, Christopher J; Hacker, Neville F; Ghosh, Sue; Mok, Samuel C; Birrer, Michael J; Samimi, Goli

    2015-12-29

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer.

  18. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer

    PubMed Central

    Moran-Jones, Kim; Gloss, Brian S.; Murali, Rajmohan; Chang, David K.; Colvin, Emily K.; Jones, Marc D.; Yuen, Samuel; Howell, Viive M.; Brown, Laura M.; Wong, Carol W.; Spong, Suzanne M.; Scarlett, Christopher J.; Hacker, Neville F.; Ghosh, Sue; Mok, Samuel C.; Birrer, Michael J.; Samimi, Goli

    2015-01-01

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer. PMID:26575166

  19. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics.

    PubMed

    Knezevic, Nebojsa Nick; Yekkirala, Ajay; Yaksh, Tony L

    2017-11-01

    Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.

  20. Therapeutic targeting of replicative immortality

    PubMed Central

    Yaswen, Paul; MacKenzie, Karen L.; Keith, W. Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L.; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S.; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I.; Azmi, Asfar S.; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Aquilano, Katia; Ashraf, S. Salman; Nowsheen, Somaira; Yang, Xujuan

    2015-01-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy. PMID:25869441

  1. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    NASA Astrophysics Data System (ADS)

    Luk, Brian Tsengchi

    The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial

  2. A Novel Single-Strand RNAi Therapeutic Agent Targeting the (Pro)renin Receptor Suppresses Ocular Inflammation.

    PubMed

    Kanda, Atsuhiro; Ishizuka, Erdal Tan; Shibata, Atsushi; Matsumoto, Takahiro; Toyofuku, Hidekazu; Noda, Kousuke; Namba, Kenichi; Ishida, Susumu

    2017-06-16

    The receptor-associated prorenin system (RAPS) refers to the pathogenic mechanism whereby prorenin binding to the (pro)renin receptor [(P)RR] dually activates the tissue renin-angiotensin system (RAS) and RAS-independent intracellular signaling. Here we revealed significant upregulation of prorenin and soluble (P)RR levels in the vitreous fluid of patients with uveitis compared to non-inflammatory controls, together with a positive correlation between these RAPS components and monocyte chemotactic protein-1 among several upregulated cytokines. Moreover, we developed a novel single-strand RNAi agent, proline-modified short hairpin RNA directed against human and mouse (P)RR [(P)RR-PshRNA], and we determined its safety and efficacy in vitro and in vivo. Application of (P)RR-PshRNA in mice caused significant amelioration of acute (uveitic) and chronic (diabetic) models of ocular inflammation with no apparent adverse effects. Our findings demonstrate the significant implication of RAPS in the pathogenesis of human uveitis and the potential usefulness of (P)RR-PshRNA as a therapeutic agent to reduce ocular inflammation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Liver as a target for oligonucleotide therapeutics.

    PubMed

    Sehgal, Alfica; Vaishnaw, Akshay; Fitzgerald, Kevin

    2013-12-01

    Oligonucleotide-based therapeutics are an emerging class of drugs that hold the promise for silencing "un-druggable" targets,thus creating unique opportunities for innovative medicines. As opposed to gene therapy, oligonucleotides are considered to be more akin to small molecule therapeutics because they are small,completely synthetic in origin, do not integrate into the host genome,and have a defined duration of therapeutic activity after which effects recover to baseline. They offer a high degree of specificity at the genetic level, thereby reducing off-target effects.At the same time, they provide a strategy for targeting any gene in the genome, including transcripts that produce mutated proteins.Oligonucleotide-based therapeutics include short interfering RNA (siRNA), that degrade target mRNA through RISC mediated RNAi; anti-miRs, that target miRNAs; miRNA mimics, that regulate target mRNA; antisense oligonucleotides, that may be working through RNAseH mediated mRNA decay; mRNA upregulation,by targeting long non-coding RNAs; and oligonucleotides induced alternative splicing [1]. All these approaches require some minimal degree of homology at the nucleic acid sequence level for them to be functional. The different mechanisms of action and their relevant activity are outlined in Fig. 1. Besides homology,RNA secondary structure has also been exploited in the case of ribozymes and aptamers, which act by binding to nucleic acids or proteins, respectively. While there have been many reports of gene knockdown and gene modulation in cell lines and mice with all these methods, very few have advanced to clinical stages.The main obstacle to date has been the safe and effective intracellular delivery of these compounds in higher species, including humans. Indeed, their action requires direct interaction with DNA/RNA within the target cell so even when one solves the issues of tissue and cellular access, intracellular/intranuclear location represents yet another barrier to

  4. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents.

    PubMed

    Abed, Dhulfiqar Ali; Goldstein, Melanie; Albanyan, Haifa; Jin, Huijuan; Hu, Longqin

    2015-07-01

    The Keap1-Nrf2-ARE pathway is an important antioxidant defense mechanism that protects cells from oxidative stress and the Keap1-Nrf2 protein-protein interaction (PPI) has become an important drug target to upregulate the expression of ARE-controlled cytoprotective oxidative stress response enzymes in the development of therapeutic and preventive agents for a number of diseases and conditions. However, most known Nrf2 activators/ARE inducers are indirect inhibitors of Keap1-Nrf2 PPI and they are electrophilic species that act by modifying the sulfhydryl groups of Keap1׳s cysteine residues. The electrophilicity of these indirect inhibitors may cause "off-target" side effects by reacting with cysteine residues of other important cellular proteins. Efforts have recently been focused on the development of direct inhibitors of Keap1-Nrf2 PPI. This article reviews these recent research efforts including the development of high throughput screening assays, the discovery of peptide and small molecule direct inhibitors, and the biophysical characterization of the binding of these inhibitors to the target Keap1 Kelch domain protein. These non-covalent direct inhibitors of Keap1-Nrf2 PPI could potentially be developed into effective therapeutic or preventive agents for a variety of diseases and conditions.

  5. Quercetin as an Emerging Anti-Melanoma Agent: A Four-Focus Area Therapeutic Development Strategy.

    PubMed

    Harris, Zoey; Donovan, Micah G; Branco, Gisele Morais; Limesand, Kirsten H; Burd, Randy

    2016-01-01

    Replacing current refractory treatments for melanoma with new prevention and therapeutic approaches is crucial in order to successfully treat this aggressive cancer form. Melanoma develops from neural crest cells, which express tyrosinase - a key enzyme in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells and metabolizes polyphenolic compounds; tyrosinase expression thus makes feasible a target for polyphenol-based therapies. For example, quercetin (3,3',4',5,7-pentahydroxyflavone) is a highly ubiquitous and well-classified dietary polyphenol found in various fruits, vegetables, and other plant products including onions, broccoli, kale, oranges, blueberries, apples, and tea. Quercetin has demonstrated antiproliferative and proapoptotic activity in various cancer cell types. Quercetin is readily metabolized by tyrosinase into various compounds that promote anticancer activity; additionally, given that tyrosinase expression increases during tumorigenesis, and its activity is associated with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests that quercetin can be used to target melanoma. In this review, we explore the potential of quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from previous in vitro studies in various human malignant cell lines and propose a "four-focus area strategy" to develop quercetin as a targeted anti-melanoma compound for use as either a preventative or therapeutic agent. The four areas of focus include utilizing quercetin to (i) modulate cellular bioreduction potential and associated signaling cascades, (ii) affect transcription of relevant genes, (iii) regulate epigenetic processes, and (iv) develop effective combination therapies and delivery modalities/protocols. In general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, melanoma with minimal additional side effects.

  6. Heparin Oligosaccharides as Potential Therapeutic Agents in Senile Dementia

    PubMed Central

    Ma, Qing; Cornelli, Umberto; Hanin, Israel; Jeske, Walter P.; Linhardt, Robert J.; Walenga, Jeanine M.; Fareed, Jawed; Lee, John M.

    2014-01-01

    Heparin is a glycosaminoglycan mixture currently used in prophylaxis and treatment of thrombosis. Heparin possesses non-anticoagulant properties, including modulation of various proteases, interactions with fibroblast growth factors, and anti-inflammatory actions. Senile dementia of Alzheimer’s type is accompanied by inflammatory responses contributing to irreversible changes in neuronal viability and brain function. Vascular factors are also involved in the pathogenesis of senile dementia. Inflammation, endogenous proteoglycans, and assembly of senile plagues and neurofibrillary tangles contribute directly and indirectly to further neuronal damage. Neuron salvage can be achieved by anti-inflammation and the competitive inhibition of proteoglycans accumulation. The complexity of the pathology of senile dementia provides numerous potential targets for therapeutic interventions designed to modulate inflammation and proteoglycan assembly. Heparin and related oligosaccharides are known to exhibit anti-inflammatory effects as well as inhibitory effects on proteoglycan assembly and may prove useful as neuroprotective agents. PMID:17504153

  7. 78 FR 77471 - Prospective Grant of Exclusive License for: Convection Enhanced Delivery of a Therapeutic Agent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ...-toxic macromolecular MRI contrast agents such as chelated Gd(III). These macromolecular imaging agents... Exclusive License for: Convection Enhanced Delivery of a Therapeutic Agent With a Surrogate Tracer for... Enhanced Delivery of Therapeutic Agents'', U.S. Provisional Patent Application 60/413,673 (filed September...

  8. Challenges in validating candidate therapeutic targets in cancer

    PubMed Central

    Sawyers, Charles L; Hunter, Tony

    2018-01-01

    More than 30 published articles have suggested that a protein kinase called MELK is an attractive therapeutic target in human cancer, but three recent reports describe compelling evidence that it is not. These reports highlight the caveats associated with some of the research tools that are commonly used to validate candidate therapeutic targets in cancer research. PMID:29417929

  9. TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic.

    PubMed

    Cheng, Emily; Armstrong, Cheryl L; Galisteo, Rebeca; Winkles, Jeffrey A

    2013-12-23

    The TNF superfamily member TWEAK (TNFSF12) is a multifunctional cytokine implicated in physiological tissue regeneration and wound repair. TWEAK is initially synthesized as a membrane-anchored protein, but furin cleavage within the stalk region can generate a secreted TWEAK isoform. Both TWEAK isoforms bind to a small cell surface receptor named Fn14 (TNFRSF12A) and this interaction stimulates various cellular responses, including proliferation and migration. Fn14, like other members of the TNF receptor superfamily, is not a ligand-activated protein kinase. Instead, TWEAK:Fn14 engagement promotes Fn14 association with members of the TNFR associated factor family of adapter proteins, which triggers activation of various signaling pathways, including the classical and alternative NF-κB pathways. Numerous studies have revealed that Fn14 gene expression is significantly elevated in injured tissues and in most solid tumor types. Also, sustained Fn14 signaling has been implicated in the pathogenesis of cerebral ischemia, chronic inflammatory diseases, and cancer. Accordingly, several groups are developing TWEAK- or Fn14-targeted agents for possible therapeutic use in patients. These agents include monoclonal antibodies, fusion proteins, and immunotoxins. In this article, we provide an overview of some of the TWEAK/Fn14 axis-targeted agents currently in pre-clinical animal studies or in human clinical trials and discuss two other potential approaches to target this intriguing signaling node.

  10. Engineering novel targeted nanoparticle formulations to increase the therapeutic efficacy of conventional chemotherapeutics against multiple myeloma

    NASA Astrophysics Data System (ADS)

    Ashley, Jonathan D.

    Multiple myeloma (MM) is a hematological malignancy which results from the uncontrolled clonal expansion of plasma cells within the body. Despite recent medical advances, this disease remains largely incurable, with a median survival of ˜7 years, owing to the development of drug resistance. This dissertation will explore new advances in nanotechnology that will combine the cytotoxic effects of small molecule chemotherapeutics with the tumor targeting capabilities of nanoparticles to create novel nanoparticle formulations that exhibit enhanced therapeutic indices in the treatment of MM. First, doxorubicin was surfaced conjugated onto micellar nanoparticles via an acid labile hydrazone bond to increase the drug accumulation at the tumor. The cell surface receptor Very Late Antigen-4 (VLA-4; alpha4beta1) is expressed on cancers of hematopoietic origin and plays a vital role in the cell adhesion mediated drug resistance (CAM-DR) in MM. Therefore, VLA-4 antagonist peptides were conjugated onto the nanoparticles via a multifaceted procedure to actively target MM cells and simultaneously inhibit CAM-DR. The micellar doxorubicin nanoparticles were able to overcome CAM-DR and demonstrated improved therapeutic index relative to free doxorubicin. In addition to doxorubicin, other classes of therapeutic agents, such as proteasome inhibitors, can be incorporated in nanoparticles for improved therapeutic outcomes. Utilizing boronic acid chemistry, bortezomib prodrugs were synthesized using a reversible boronic ester bond and then incorporated into liposomes. The different boronic ester bonds that could be potentially used in the synthesis of bortezomib prodrugs were screened based on stability using isobutylboronic acid. The liposomal bortezomib nanoparticles demonstrated significant proteasome inhibition and cytotoxicity in MM cells in vitro, and dramatically reduced the non-specific toxicities associated with free bortezomib while maintaining significant tumor growth

  11. Studies in Multifunctional Drug Development: Preparation and Evaluation of 11beta-Substituted Estradiol-Drug Conjugates, Cell Membrane Targeting Imaging Agents, and Target Multifunctional Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dao, KinhLuan Lenny D.

    Cancer is the second leading cause of death after cardiovascular disease in the United State. Despite extensive research in development of antitumor drugs, most of these therapeutic entities often possess nonspecific toxicity, thus they can only be used to treat tumors in higher doses or more frequently. Because of the cytotoxicity and severe side effects, the drug therapeutic window normally is limited. Beside the toxicity issue, antitumor drug are also not selectively taken up by tumor cells, thus the necessitating concentrations that would eradicate the tumor can often not be used. In addition, tumor cells tend to develop resistance against the anticancer drugs after prolonged treatment. Therefore, alleviating the systemic cytotoxicity and side effects, improving in tumor selectivity, high potency, and therapeutic efficacy are still major obstacles in the area of anticancer drug development. A more promising approach for developing a selective agent for cancer is to conjugate a potent therapeutic drug, or an imaging agent with a targeting group, such as antibody or a high binding-specificity small molecule, that selectively recognize the overexpressed antigens or proteins on tumor cells. My research combines several approaches to describe this strategy via using different targeting molecules to different diseases, as well as different potent cytotoxic drugs for different therapies. Three studies related to the preparation and biological evaluation of new therapeutic agents, such as estradiol-drug hybrids, cell membrane targeted molecular imaging agents, and multifunctional NPs will be discussed. The preliminary results of these studies indicated that our new reagents achieved their initial objectives and can be further improved for optimized synthesis and in vivo experiments. The first study describes the method in which we employed a modular assembly approach to synthesize a novel 11beta-substituted steroidal anti-estrogen. The key intermediate was synthesized

  12. Autophagy‑mediated adaptation of hepatocellular carcinoma cells to hypoxia‑mimicking conditions constitutes an attractive therapeutic target.

    PubMed

    Owada, Satoshi; Endo, Hitoshi; Shida, Yukari; Okada, Chisa; Ito, Kanako; Nezu, Takahiro; Tatemichi, Masayuki

    2018-04-01

    Hepatocellular carcinoma has extremely poor prognosis. In cancerous liver tissues, aberrant proliferation of cancer cells leads to the creation of an area where an immature vascular network is formed. Since oxygen is supplied to cancer tissues through the bloodstream, a part of the tumor is exposed to hypoxic conditions. As hypoxia is known to severely reduce the effectiveness of existing anticancer agents, novel valid therapeutic targets must be identified for the treatment of hepatocellular carcinoma. Generally, autophagy has been reported to play an important role in the adaptation of cancer cells to hypoxia. However, the exact role and significance of this process vary depending on the cancer type, requiring detailed analysis in individual primary tumors and cell lines. In the present study, we examined autophagy induced by cobalt chloride, a hypoxia‑mimicking agent, in hepatocellular carcinoma cells with the aim to evaluate the validity of this process as a potential therapeutic target. We observed that treatment with cobalt chloride induced autophagy, including the intracellular quality control mechanism, in an AMPK‑dependent manner. Furthermore, treatment with autophagy inhibitors (bafilomycin and LY294002) resulted in significant, highly‑selective cytotoxicity and apoptosis activation under hypoxia‑mimicking conditions. The knockdown of AMPK also revealed significant cytotoxicity in hypoxia‑mimicking conditions. These results clearly demonstrated that autophagy, especially mitophagy, was induced by the AMPK pathway when hepatocellular carcinoma cells were subjected to hypoxic conditions and played an important role in the adaptation of these cells to such conditions. Thus, autophagy may constitute an attractive therapeutic target for the treatment of hepatocellular carcinoma.

  13. A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents.

    PubMed

    O'Neill, Hugh S; Herron, Caroline C; Hastings, Conn L; Deckers, Roel; Lopez Noriega, Adolfo; Kelly, Helena M; Hennink, Wim E; McDonnell, Ciarán O; O'Brien, Fergal J; Ruiz-Hernández, Eduardo; Duffy, Garry P

    2017-01-15

    Lysolipid-based thermosensitive liposomes (LTSL) embedded in a chitosan-based thermoresponsive hydrogel matrix (denoted Lipogel) represents a novel approach for the spatiotemporal release of therapeutic agents. The entrapment of drug-loaded liposomes in an injectable hydrogel permits local liposome retention, thus providing a prolonged release in target tissues. Moreover, release can be controlled through the use of a minimally invasive external hyperthermic stimulus. Temporal control of release is particularly important for complex multi-step physiological processes, such as angiogenesis, in which different signals are required at different times in order to produce a robust vasculature. In the present work, we demonstrate the ability of Lipogel to provide a flexible, easily modifiable release platform. It is possible to tune the release kinetics of different drugs providing a passive release of one therapeutic agent loaded within the gel and activating the release of a second LTSL encapsulated agent via a hyperthermic stimulus. In addition, it was possible to modify the drug dosage within Lipogel by varying the duration of hyperthermia. This can allow for adaption of drug dosing in real time. As an in vitro proof of concept with this system, we investigated Lipogels ability to recruit stem cells and then elevate their production of vascular endothelial growth factor (VEGF) by controlling the release of a pro-angiogenic drug, desferroxamine (DFO) with an external hyperthermic stimulus. Initial cell recruitment was accomplished by the passive release of hepatocyte growth factor (HGF) from the hydrogel, inducing a migratory response in cells, followed by the delayed release of DFO from thermosensitive liposomes, resulting in a significant increase in VEGF expression. This delayed release could be controlled up to 14days. Moreover, by changing the duration of the hyperthermic pulse, a fine control over the amount of DFO released was achieved. The ability to trigger

  14. Active targeted delivery of immune therapeutics to lymph nodes.

    PubMed

    Bahmani, Baharak; Vohra, Ishaan; Kamaly, Nazila; Abdi, Reza

    2018-02-01

    Organ transplantation is a life-saving procedure and the only option for patients with end-organ failure. Immune therapeutics have been key to the success of organ transplantation. However, immune therapeutics are still unable to eliminate graft rejection and their toxicity has been implicated in poorer long-term transplant outcomes. Targeted nanodelivery has the potential to enhance not only the therapeutic index but also the bioavailability of the immune therapeutics. One of the key sites of immune therapeutics delivery is lymph node where the priming of immune cells occur. The focus of this review is on nanomedicine research to develop the targeted delivery of immune therapeutics to lymph nodes for controlling immune activation. As nanomedicine creates its niche in clinical care, it provides novel immunotherapy platforms for transplant recipients. Draining lymph nodes are the primary loci of immune activation and represent a formidable site for delivery of wide variety of immune therapeutics. There have been relentless efforts to improve the properties of nanomedicines, to have in-depth knowledge of antigen and drug loading, and, finally, to explore various routes of passive and active targeted delivery to lymph nodes. The application of nanotechnology principles in the delivery of immune therapeutics to the lymph node has created enormous excitement as a paradigm shifting approach that enables targeted delivery of a gamut of molecules to achieve a desired immune response. Therefore, innovative strategies that improve their efficacy while reducing their toxicity are among the highest unmet needs in transplantation.

  15. MIDAS: A Practical Bayesian Design for Platform Trials with Molecularly Targeted Agents

    PubMed Central

    Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir

    2016-01-01

    Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time, and thus not efficient for this task. We propose a Bayesian phase II platform design, the Multi-candidate Iterative Design with Adaptive Selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and “graduate” the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. PMID:27112322

  16. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer

    PubMed Central

    Narayanan, Ramesh; Dalton, James T.

    2016-01-01

    Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer. PMID:27918430

  17. Emerging therapeutic targets for treatment of leishmaniasis.

    PubMed

    Sundar, Shyam; Singh, Bhawana

    2018-06-01

    Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.

  18. Therapeutic targeting of epithelial plasticity programs – Focus on the epithelial-mesenchymal transition

    PubMed Central

    Malek, Reem; Wang, Hailun; Taparra, Kekoa; Tran, Phuoc T.

    2017-01-01

    Mounting data points to epithelial plasticity programs such as the epithelial-mesenchymal transition (EMT) as clinically relevant therapeutic targets for the treatment of malignant tumors. In addition to the widely realized role of EMT in increasing cancer cell invasiveness during cancer metastasis, the EMT has also been implicated in allowing cancer cells to avoid tumor suppressor pathways during early tumorigenesis. In addition, data linking EMT to innate and acquired treatment resistance further points towards the desire to develop pharmacological therapies to target epithelial plasticity in cancer. In this review we organized our discussion on pathways and agents that can be used to target the EMT in cancer into three groups: (1) extracellular inducers of EMT; (2) the transcription factors that orchestrate the EMT transcriptome; and, (3) the downstream effectors of EMT. We highlight only briefly specific canonical pathways known to be involved in EMT such as the signal transduction pathways TGFβ, EFGR and Axl-Gas6. We emphasize in more detail pathways that are we believe are emerging novel pathways and therapeutic targets such as epigenetic therapies, glycosylation pathways and immunotherapy. The heterogeneity of tumors and the dynamic nature of epithelial plasticity in cancer cells make it likely that targeting only one EMT related process will be unsuccessful or only transiently successful. We suggest with greater understanding of epithelial plasticity regulation such as with the EMT, a more systematic targeting of multiple EMT regulatory networks will be the best path forward to improve cancer outcomes. PMID:28214899

  19. Genetic risk variants as therapeutic targets for Crohn's disease.

    PubMed

    Gabbani, Tommaso; Deiana, Simona; Marocchi, Margherita; Annese, Vito

    2017-04-01

    The pathogenesis of Inflammatory bowel diseases (IBD) is multifactorial, with interactions between genetic and environmental factors. Despite the existence of genetic factors being largely demonstrated by epidemiological data and several genetic studies, only a few findings have been useful in term of disease prediction, disease progression and targeting therapy. Areas covered: This review summarizes the results of genome-wide association studies in Crohn's disease, the role of epigenetics and the recent discovery by genetic studies of new pathogenetic pathways. Furthermore, it focuses on the importance of applying genetic data to clinical practice, and more specifically how to better target therapy and predict potential drug-related toxicity. Expert opinion: Some genetic markers identified in Crohn`s disease have allowed investigators to hypothesize about, and in some cases, prove the usefulness of new specific therapeutic agents. However, the heterogeneity and complexity of this disease has so far limited the daily clinical use of genetic information. Finally, the study of the implications of genetics on therapy, either to predict efficacy or avoid toxicity, is considered still to be in its infancy.

  20. Recent developments in emerging therapeutic targets of osteoarthritis.

    PubMed

    Sun, Margaret Man-Ger; Beier, Frank; Pest, Michael A

    2017-01-01

    Despite the tremendous individual suffering and socioeconomic burden caused by osteoarthritis, there are currently no effective disease-modifying treatment options. This is in part because of our incomplete understanding of osteoarthritis disease mechanism. This review summarizes recent developments in therapeutic targets identified from surgical animal models of osteoarthritis that provide novel insight into osteoarthritis pathology and possess potential for progression into preclinical studies. Several candidate pathways and processes that have been identified include chondrocyte autophagy, growth factor signaling, inflammation, and nociceptive signaling. Major strategies that possess therapeutic potential at the cellular level include inhibiting autophagy suppression and decreasing reactive oxygen species (ROS) production. Cartilage anabolism and prevention of cartilage degradation has been shown to result from growth factor signaling modulation, such as TGF-β, TGF-α, and FGF; however, the results are context-dependent and require further investigation. Pain assessment studies in rodent surgical models have demonstrated potential in employing anti-NGF strategies for minimizing osteoarthritis-associated pain. Studies of potential therapeutic targets in osteoarthritis using animal surgical models are helping to elucidate osteoarthritis pathology and propel therapeutics development. Further studies should continue to elucidate pathological mechanisms and therapeutic targets in various joint tissues to improve overall joint health.

  1. Selective targeting of bioengineered platelets to prostate cancer vasculature: new paradigm for therapeutic modalities

    PubMed Central

    Montecinos, Viviana P; Morales, Claudio H; Fischer, Thomas H; Burns, Sarah; San Francisco, Ignacio F; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen deprivation therapy (ADT) provides palliation for most patients with advanced prostate cancer (CaP); however, greater than 80% subsequently fail ADT. ADT has been indicated to induce an acute but transient destabilization of the prostate vasculature in animal models and humans. Human re-hydrated lyophilized platelets (hRL-P) were investigated as a prototype for therapeutic agents designed to target selectively the tumour-associated vasculature in CaP. The ability of hRL-P to bind the perturbed endothelial cells was tested using thrombin- and ADP-activated human umbilical vein endothelial cells (HUVEC), as well as primary xenografts of human prostate tissue undergoing acute vascular involution in response to ADT. hRL-P adhered to activated HUVEC in a dose-responsive manner. Systemically administered hRL-P, and hRL-P loaded with super-paramagnetic iron oxide (SPIO) nanoparticles, selectively targeted the ADT-damaged human microvasculature in primary xenografts of human prostate tissue. This study demonstrated that hRL-P pre-loaded with chemo-therapeutics or nanoparticles could provide a new paradigm for therapeutic modalities to prevent the rebound/increase in prostate vasculature after ADT, inhibiting the transition to castration-recurrent growth. PMID:25736582

  2. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma.

    PubMed

    Momtaz, Saeideh; Niaz, Kamal; Maqbool, Faheem; Abdollahi, Mohammad; Rastrelli, Luca; Nabavi, Seyed Mohammad

    2017-05-06

    Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  3. The Syk kinase as a therapeutic target in leukemia and lymphoma.

    PubMed

    Efremov, Dimitar G; Laurenti, Luca

    2011-05-01

    The B-cell receptor (BCR) delivers antigen-dependent and -independent signals that have been implicated in the pathogenesis of several common B-cell malignancies. Agents that can efficiently block BCR signaling have recently been developed and are currently being evaluated as novel targeted therapies. Among these, agents that inhibit the Syk kinase appear particularly promising in preclinical and early clinical studies. The manuscript provides an overview of recent findings that implicate Syk and the BCR signaling pathway in the pathogenesis of several common lymphoid malignancies. It outlines preclinical and early clinical experiences with the Syk inhibitor fostamatinib disodium (R788) and discusses various options for further clinical development of this compound. Inhibitors of Syk or other components of the BCR signaling pathway are emerging as an exciting novel class of agents for the treatment of common B-cell malignancies. Future efforts should focus on defining the disease entities that are most likely to benefit from these agents, although considerable evidence is already available to pursue such studies in patients with chronic lymphocytic leukemia. Combinations with chemo-immunotherapy, treatment of early-stage disease and consolidation therapy should all be explored and could lead to the development of novel therapeutic approaches with improved efficacy, tolerability and toxicity profiles.

  4. One target, different effects: a comparison of distinct therapeutic antibodies against the same targets.

    PubMed

    Shim, Hyunbo

    2011-10-31

    To date, more than 30 antibodies have been approved worldwide for therapeutic use. While the monoclonal antibody market is rapidly growing, the clinical use of therapeutic antibodies is mostly limited to treatment of cancers and immunological disorders. Moreover, antibodies against only five targets (TNF-α, HER2, CD20, EGFR, and VEGF) account for more than 80 percent of the worldwide market of therapeutic antibodies. The shortage of novel, clinically proven targets has resulted in the development of many distinct therapeutic antibodies against a small number of proven targets, based on the premise that different antibody molecules against the same target antigen have distinct biological and clinical effects from one another. For example, four antibodies against TNF-α have been approved by the FDA -- infliximab, adalimumab, golimumab, and certolizumab pegol -- with many more in clinical and preclinical development. The situation is similar for HER2, CD20, EGFR, and VEGF, each having one or more approved antibodies and many more under development. This review discusses the different binding characteristics, mechanisms of action, and biological and clinical activities of multiple monoclonal antibodies against TNF-α, HER-2, CD20, and EGFR and provides insights into the development of therapeutic antibodies.

  5. Molecular targeting agents in cancer therapy: science and society.

    PubMed

    Shaikh, Asim Jamal

    2012-01-01

    The inception of targeted agents has revolutionized the cancer therapy paradigm, both for physicians and patients. A large number of molecular targeted agents for cancer therapy are currently available for clinical use today. Many more are in making, but there are issues that remain to be resolved for the scientific as well as social community before the recommendation of their widespread use in may clinical scenarios can be done, one such issue being cost and cost effectiveness, others being resistance and lack of sustained efficacy. With the current knowledge about available targeted agents, the growing knowledge of intricate molecular pathways and unfolding of wider spectrum of molecular targets that can really matter in the disease control, calls for only the just use of the agents available now, drug companies need to make a serious attempt to reduce the cost of the agents. Research should focus on agents that show sustained responses in preclinical data. More needs to be done in laboratories and by the pharmaceutical industries, before we can truly claim to have entered a new era of targeted therapy in cancer care.

  6. Emerging Therapeutics for Advanced Thyroid Malignancies: Rationale and Targeted Approaches

    PubMed Central

    Harris, Pamela; Bible, Keith C.

    2011-01-01

    Introduction Thyroid cancer is an emerging public health concern. In the U.S., its incidence has doubled in the past decade, making it the 8th most commonly diagnosed neoplasm in 2010. Despite this alarming increase, most thyroid cancer patients benefit from conventional approaches (surgery, radioiodine, radiotherapy, TSH suppression with levothyroxine) and are often cured. Nevertheless, a minority have aggressive tumors resistant to cytotoxic and other historical therapies; these patients sorely need new treatment options. Areas covered Herein the biology and molecular characteristics of the common histological types of thyroid cancer are reviewed to provide context for subsequent discussion of recent developments and emerging therapeutics for advanced thyroid cancers. Expert opinion Several kinase inhibitors, especially those targeting VEGFR and/or RET, have already demonstrated promising activity in differentiated and medullary thyroid cancers (DTC, MTC). Although of minimal benefit in DTC and MTC, cytotoxic chemotherapy with anti-microtubule agents and/or anthracyclines in combination with intensity modulated radiation therapy appears to extend survival for patients with locoregionally-confined anaplastic thyroid cancer (ATC), but to have only modest benefit in metastatic ATC. Further discovery and development of novel agents and combinations of agents will be critical to further progress in treating advanced thyroid cancers of all histotypes. PMID:21910667

  7. Breast cancer stem cells, EMT and therapeutic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they aremore » also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.« less

  8. Novel Therapeutic Target for the Treatment of Lupus

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-12-1-0205 TITLE: Novel Therapeutic Target for the Treatment of Lupus PRINCIPAL INVESTIGATOR: Lisa Laury-Kleintop...SUBTITLE 5a. CONTRACT NUMBER Novel Therapeutic Target for the Treatment of Lupus 5b. GRANT NUMBER W81XWH-12-1-0205 5c. PROGRAM ELEMENT NUMBER 6...Systemic lupus erythematosus, autoantibodies. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 7 19a. NAME OF

  9. Targeting Vasculature in Urologic Tumors: Mechanistic and Therapeutic Significance

    PubMed Central

    Sakamoto, Shinichi; Ryan, A. Jacqueline; Kyprianou, Natasha

    2008-01-01

    Recent advances toward understanding the molecular mechanisms regulating cancer initiation and progression provide new insights into the therapeutic value of targeting tumor vascularity by interfering with angiogenic signaling pathways. The functional contribution of key angiogenic factors toward increased vascularity characterizing metastatic tumors and their therapeutic exploitation is considered in three major urologic malignancies, renal, bladder, and prostate cancer. With the realization that the success of the therapeutic efficacy of the various anti-angiogenic approaches for the treatment of urologic tumors has yet to be proven clinically, the challenge remains to select critical angiogenesis pathways that can be targeted for an individual tumor. Here we discuss the major mechanisms that support formation of vasculature in renal, bladder, and prostate tumors and the current results of targeting of specific molecules/regulators for therapeutic intervention against metastastic disease. PMID:17668426

  10. Hydrogen peroxide-activatable antioxidant prodrug as a targeted therapeutic agent for ischemia-reperfusion injury.

    PubMed

    Lee, Dongwon; Park, Seunggyu; Bae, Soochan; Jeong, Dahee; Park, Minhyung; Kang, Changsun; Yoo, Wooyoung; Samad, Mohammed A; Ke, Qingen; Khang, Gilson; Kang, Peter M

    2015-11-13

    Overproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries.

  11. Hydrogen peroxide-activatable antioxidant prodrug as a targeted therapeutic agent for ischemia-reperfusion injury

    PubMed Central

    Lee, Dongwon; Park, Seunggyu; Bae, Soochan; Jeong, Dahee; Park, Minhyung; Kang, Changsun; Yoo, Wooyoung; Samad, Mohammed A.; Ke, Qingen; Khang, Gilson; Kang, Peter M.

    2015-01-01

    Overproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries. PMID:26563741

  12. MIDAS: a practical Bayesian design for platform trials with molecularly targeted agents.

    PubMed

    Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir

    2016-09-30

    Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time and thus not efficient for this task. We propose a Bayesian phase II platform design, the multi-candidate iterative design with adaptive selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and 'graduate' the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Comparison of therapeutic lipid target achievements among high-risk patients in Oman.

    PubMed

    Al-Waili, Khalid; Al-Zakwani, Ibrahim; Al-Dughaishi, Tamima; Baneerje, Yajnavalka; Al-Sabti, Hilal; Al-Hashmi, Khamis; Farhan, Hatem; Habsi, Khadija Al; Al-Hinai, Ali T; Al-Rasadi, Khalid

    2014-05-01

    We compared therapeutic lipid target achievements among patients with diabetes or coronary heart disease (CHD) in Oman. A retrospective chart review of 94 patients was conducted at an outpatient clinic in Sultan Qaboos University Hospital, Muscat, Oman. The variables included low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and apolipoprotein B (apo B). The overall mean age of the cohort was 59 ± 12 years, 54% were male, 66% were diabetic, 48% hypertensive, 45% had CHD, 94% were on simvastatin, 4% were on fenofibrate, and 2% were on both simvastatin and fenofibrate. Lipid goal attainments of calculated LDL-C (<2.6 mmol/L), apo B (<0.9 g/L), and non-HDL-C (<3.36 mmol/L) were reached in 52%, 39%, and 53% of the patients, respectively. A significant proportion of high-risk patients treated with lipid-lowering agents reach LDL-C but not the apo B treatment targets, suggesting that the use of apo B target values should also be considered.

  14. Inhibition of protein N-myristoylation: a therapeutic protocol in developing anticancer agents.

    PubMed

    Das, U; Kumar, S; Dimmock, J R; Sharma, R K

    2012-07-01

    N-myristoyltransferase (NMT) is an essential eukaryotic enzyme which catalyzes the transfer of the myristoyl group to the terminal glycine residue of a number of proteins including those involved in signal transduction and apoptotic pathways. Myristoylation is crucial for the cellular proliferation process and is required for the growth and development in a number of organisms including many human pathogens and viruses. Targeting the myristoylation process thus has emerged as a novel therapeutic strategy for anticancer drug design. The expression/activity of NMT is considerably elevated in a number of cancers originating in the colon, stomach, gallbladder, brain and breast and attenuation of NMT levels has been shown to induce apoptosis in cancerous cell lines and reduce tumor volume in murine xenograft models for cancer. A focus of current therapeutic interventions in novel cancer treatments is therefore directed at developing specific NMT inhibitors. The inhibition of the myristoyl lipidation process with respect to cancer drug development lies in the fact that many proteins involved in oncogenesis such as src and various kinases require myristoylation to perform their cellular functions. Inhibiting NMT functions to control malignancy is a novel approach in the area of anticancer drug design and there are rapidly expanding discoveries of synthetic NMT inhibitors as potential chemotherapeutic agents to be employed in the warfare against cancer. The current review focuses on developments of various chemical NMT inhibitors with potential roles as anticancer agents.

  15. Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics

    PubMed Central

    Candolfi, Marianela; Xiong, Weidong; Yagiz, Kader; Liu, Chunyan; Muhammad, A. K. M. G.; Puntel, Mariana; Foulad, David; Zadmehr, Ali; Ahlzadeh, Gabrielle E.; Kroeger, Kurt M.; Tesarfreund, Matthew; Lee, Sharon; Debinski, Waldemar; Sareen, Dhruv; Svendsen, Clive N.; Rodriguez, Ron; Lowenstein, Pedro R.; Castro, Maria G.

    2010-01-01

    Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM. PMID:21030678

  16. RNA therapeutics targeting osteoclast-mediated excessive bone resorption

    PubMed Central

    Wang, Yuwei; Grainger, David W

    2011-01-01

    RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock-down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders. PMID:21945356

  17. TARGETING POLYMER THERAPEUTICS TO BONE

    PubMed Central

    Low, Stewart; Kopeček, Jindřich

    2012-01-01

    An aging population in the developing world has led to an increase in musculoskeletal diseases such as osteoporosis and bone metastases. Left untreated many bone diseases cause debilitating pain and in the case of cancer, death. Many potential drugs are effective in treating diseases but result in side effects preventing their efficacy in the clinic. Bone, however, provides an unique environment of inorganic solids, which can be exploited in order to effectively target drugs to diseased tissue. By integration of bone targeting moieties to drug-carrying water-soluble polymers, the payload to diseased area can be increased while side effects decreased. The realization of clinically relevant bone targeted polymer therapeutics depends on (1) understanding bone targeting moiety interactions, (2) development of controlled drug delivery systems, as well as (3) understanding drug interactions. The latter makes it possible to develop bone targeted synergistic drug delivery systems. PMID:22316530

  18. Past and current perspective on new therapeutic targets for Type-II diabetes.

    PubMed

    Patil, Pradip D; Mahajan, Umesh B; Patil, Kalpesh R; Chaudhari, Sandip; Patil, Chandragouda R; Agrawal, Yogeeta O; Ojha, Shreesh; Goyal, Sameer N

    2017-01-01

    Loss of pancreatic β-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.

  19. Proteolytic systems and AMP-activated protein kinase are critical targets of acute myeloid leukemia therapeutic approaches

    PubMed Central

    Pereira, Olga; Sampaio-Marques, Belém; Paiva, Artur; Correia-Neves, Margarida; Castro, Isabel; Ludovico, Paula

    2015-01-01

    The therapeutic strategies against acute myeloid leukemia (AML) have hardly been modified over four decades. Although resulting in a favorable outcome in young patients, older individuals, the most affected population, do not respond adequately to therapy. Intriguingly, the mechanisms responsible for AML cells chemoresistance/susceptibility are still elusive. Mounting evidence has shed light on the relevance of proteolytic systems (autophagy and ubiquitin-proteasome system, UPS), as well as the AMPK pathway, in AML biology and treatment, but their exact role is still controversial. Herein, two AML cell lines (HL-60 and KG-1) were exposed to conventional chemotherapeutic agents (cytarabine and/or doxorubicin) to assess the relevance of autophagy and UPS on AML cells’ response to antileukemia drugs. Our results clearly showed that the antileukemia agents target both proteolytic systems and the AMPK pathway. Doxorubicin enhanced UPS activity while drugs’ combination blocked autophagy specifically on HL-60 cells. In contrast, KG-1 cells responded in a more subtle manner to the drugs tested consistent with the higher UPS activity of these cells. In addition, the data demonstrates that autophagy may play a protective role depending on AML subtype. Specific modulators of autophagy and UPS are, therefore, promising targets for combining with standard therapeutic interventions in some AML subtypes. PMID:25537507

  20. Recent Trends in Nanotechnology-Based Drugs and Formulations for Targeted Therapeutic Delivery.

    PubMed

    Iqbal, Hafiz M N; Rodriguez, Angel M V; Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep

    2017-01-01

    In the recent past, a wider spectrum of nanotechnologybased drugs or drug-loaded devices and systems has been engineered and investigated with high interests. The key objective is to help for an enhanced/better quality of patient life in a secure way by avoiding/limiting drug abuse, or severe adverse effects of some in practice traditional therapies. Various methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, nanoparticles-based therapeutic agents are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable therapeutic drug delivery system (DDS) for multipurpose applications is essential and a core demand to tackle many human health related diseases. In this context, nanotechnology-based several advanced DDS have been engineered with novel characteristics for biomedical, pharmaceutical and cosmeceutical applications that include but not limited to the enhanced/improved bioactivity, bioavailability, drug efficacy, targeted delivery, and therapeutically safer with an extra advantage of overcoming demerits of traditional drug formulations/designs. This review work is focused on recent trends/advances in nanotechnology-based drugs and formulations designed for targeted therapeutic delivery. Moreover, information is also reviewed and given from recent patents and summarized or illustrated diagrammatically to depict a better understanding. Recent patents covering various nanotechnology-based approaches for several applications have also been reviewed. The drug-loaded nanoparticles are among versatile candidates with multifunctional characteristics for potential applications in biomedical, and tissue engineering sector. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells.

    PubMed

    Vittorio, Orazio; Voliani, Valerio; Faraci, Paolo; Karmakar, Biswajit; Iemma, Francesca; Hampel, Silke; Kavallaris, Maria; Cirillo, Giuseppe

    2014-06-01

    Catechin-dextran conjugates have recently attracted a lot of attention due to their anticancer activity against a range of cancer cells. Magnetic nanoparticles have the ability to concentrate therapeutically important drugs due to their magnetic-spatial control and provide opportunities for targeted drug delivery. Enhancement of the anticancer efficiency of catechin-dextran conjugate by functionalisation with magnetic iron oxide nanoparticles. Modification of the coating shell of commercial magnetic nanoparticles (Endorem) composed of dextran with the catechin-dextran conjugate. Catechin-dextran conjugated with Endorem (Endo-Cat) increased the intracellular concentration of the drug and it induced apoptosis in 98% of pancreatic tumour cells placed under magnetic field. The conjugation of catechin-dextran with Endorem enhances the anticancer activity of this drug and provides a new strategy for targeted drug delivery on tumour cells driven by magnetic field. The ability to spatially control the delivery of the catechin-dextran by magnetic field makes it a promising agent for further application in cancer therapy.

  2. Cancer stem cell as therapeutic target for melanoma treatment.

    PubMed

    Alamodi, Abdulhadi A; Eshaq, Abdulaziz M; Hassan, Sofie-Yasmin; Al Hmada, Youssef; El Jamal, Siraj M; Fothan, Ahmed M; Arain, Omair M; Hassan, Sarah-Lilly; Haikel, Youssef; Megahed, Mosaad; Hassan, Mohamed

    2016-12-01

    Human malignant melanoma is a highly aggressive skin tumor that is characterized by its extraordinary heterogeneity, propensity for dissemination to distant organs and resistance to cytotoxic agents. Although chemo- and immune-based therapies have been evaluated in clinical trials, most of these therapeutics do not show significant benefit for patients with advanced disease. Treatment failure in melanoma patients is attributed mainly to the development of tumor heterogeneity resulting from the formation of genetically divergent subpopulations. These subpopulations are composed of cancer stem-like cells (CSCs) as a small fraction and non-cancer stem cells that form the majority of the tumor mass. In recent years, CSCs gained more attention and suggested as valuable experimental model system for tumor study. In melanoma, intratumoral heterogeneity, progression and drug resistance result from the unique characteristics of melanoma stem cells (MSCs). These MSCs are characterized by their distinct protein signature and tumor growth-driving pathways, whose activation is mediated by driver mutation-dependent signal. The molecular features of MSCs are either in a causal or consequential relationship to melanoma progression, drug resistance and relapse. Here, we review the current scientific evidence that supports CSC hypothesis and the validity of MSCs-dependent pathways and their key molecules as potential therapeutic target for melanoma treatment.

  3. Iron addiction: a novel therapeutic target in ovarian cancer

    DOE PAGES

    Basuli, D.; Tesfay, L.; Deng, Z.; ...

    2017-03-20

    Ovarian cancer is a lethal malignancy that has not seen a major therapeutic advance in over 30 years. We demonstrate that ovarian cancer exhibits a targetable alteration in iron metabolism. Ferroportin (FPN), the iron efflux pump, is decreased, and transferrin receptor (TFR1), the iron importer, is increased in tumor tissue from patients with high grade but not low grade serous ovarian cancer. A similar profile of decreased FPN and increased TFR1 is observed in a genetic model of ovarian cancer tumor-initiating cells (TICs). The net result of these changes is an accumulation of excess intracellular iron and an augmented dependencemore » on iron for proliferation. A forced reduction in intracellular iron reduces the proliferation of ovarian cancer TICs in vitro, and inhibits both tumor growth and intraperitoneal dissemination of tumor cells in vivo. Some mechanistic studies demonstrate that iron increases metastatic spread by facilitating invasion through expression of matrix metalloproteases and synthesis of interleukin 6 (IL-6). Here, we show that the iron dependence of ovarian cancer TICs renders them exquisitely sensitive in vivo to agents that induce iron-dependent cell death (ferroptosis) as well as iron chelators, and thus creates a metabolic vulnerability that can be exploited therapeutically.« less

  4. Iron addiction: a novel therapeutic target in ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basuli, D.; Tesfay, L.; Deng, Z.

    Ovarian cancer is a lethal malignancy that has not seen a major therapeutic advance in over 30 years. We demonstrate that ovarian cancer exhibits a targetable alteration in iron metabolism. Ferroportin (FPN), the iron efflux pump, is decreased, and transferrin receptor (TFR1), the iron importer, is increased in tumor tissue from patients with high grade but not low grade serous ovarian cancer. A similar profile of decreased FPN and increased TFR1 is observed in a genetic model of ovarian cancer tumor-initiating cells (TICs). The net result of these changes is an accumulation of excess intracellular iron and an augmented dependencemore » on iron for proliferation. A forced reduction in intracellular iron reduces the proliferation of ovarian cancer TICs in vitro, and inhibits both tumor growth and intraperitoneal dissemination of tumor cells in vivo. Some mechanistic studies demonstrate that iron increases metastatic spread by facilitating invasion through expression of matrix metalloproteases and synthesis of interleukin 6 (IL-6). Here, we show that the iron dependence of ovarian cancer TICs renders them exquisitely sensitive in vivo to agents that induce iron-dependent cell death (ferroptosis) as well as iron chelators, and thus creates a metabolic vulnerability that can be exploited therapeutically.« less

  5. Pharmacokinetic parameters explain the therapeutic activity of antimicrobial agents in a silkworm infection model.

    PubMed

    Paudel, Atmika; Panthee, Suresh; Urai, Makoto; Hamamoto, Hiroshi; Ohwada, Tomohiko; Sekimizu, Kazuhisa

    2018-01-25

    Poor pharmacokinetic parameters are a major reason for the lack of therapeutic activity of some drug candidates. Determining the pharmacokinetic parameters of drug candidates at an early stage of development requires an inexpensive animal model with few associated ethical issues. In this study, we used the silkworm infection model to perform structure-activity relationship studies of an antimicrobial agent, GPI0039, a novel nitrofuran dichloro-benzyl ester, and successfully identified compound 5, a nitrothiophene dichloro-benzyl ester, as a potent antimicrobial agent with superior therapeutic activity in the silkworm infection model. Further, we compared the pharmacokinetic parameters of compound 5 with a nitrothiophene benzyl ester lacking chlorine, compound 7, that exerted similar antimicrobial activity but had less therapeutic activity in silkworms, and examined the metabolism of these antimicrobial agents in human liver fractions in vitro. Compound 5 had appropriate pharmacokinetic parameters, such as an adequate half-life, slow clearance, large area under the curve, low volume of distribution, and long mean residence time, compared with compound 7, and was slowly metabolized by human liver fractions. These findings suggest that the therapeutic effectiveness of an antimicrobial agent in the silkworms reflects appropriate pharmacokinetic properties.

  6. Prevalence of acid-reducing agents (ARA) in cancer populations and ARA drug-drug interaction potential for molecular targeted agents in clinical development.

    PubMed

    Smelick, Gillian S; Heffron, Timothy P; Chu, Laura; Dean, Brian; West, David A; Duvall, Scott L; Lum, Bert L; Budha, Nageshwar; Holden, Scott N; Benet, Leslie Z; Frymoyer, Adam; Dresser, Mark J; Ware, Joseph A

    2013-11-04

    Acid-reducing agents (ARAs) are the most commonly prescribed medications in North America and Western Europe. There are currently no data describing the prevalence of their use among cancer patients. However, this is a paramount question due to the potential for significant drug-drug interactions (DDIs) between ARAs, most commonly proton pump inhibitors (PPIs), and orally administered cancer therapeutics that display pH-dependent solubility, which may lead to decreased drug absorption and decreased therapeutic benefit. Of recently approved orally administered cancer therapeutics, >50% are characterized as having pH-dependent solubility, but there are currently no data describing the potential for this ARA-DDI liability among targeted agents currently in clinical development. The objectives of this study were to (1) determine the prevalence of ARA use among different cancer populations and (2) investigate the prevalence of orally administered cancer therapeutics currently in development that may be liable for an ARA-DDI. To address the question of ARA use among cancer patients, a retrospective cross-sectional analysis was performed using two large healthcare databases: Thomson Reuters MarketScan (N = 1,776,443) and the U.S. Department of Veterans Affairs (VA, N = 1,171,833). Among all cancer patients, the total prevalence proportion of ARA use (no. of cancer patients receiving an ARA/total no. of cancer patients) was 20% and 33% for the MarketScan and VA databases, respectively. PPIs were the most commonly prescribed agent, comprising 79% and 65% of all cancer patients receiving a prescription for an ARA (no. of cancer patients receiving a PPI /no. of cancer patients receiving an ARA) for the MarketScan and VA databases, respectively. To estimate the ARA-DDI liability of orally administered molecular targeted cancer therapeutics currently in development, two publicly available databases, (1) Kinase SARfari and (2) canSAR, were examined. For those orally administered

  7. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases

    PubMed Central

    Bencherif, Merouane; Lippiello, Patrick M.; Lucas, Rudolf; Marrero, Mario B.

    2013-01-01

    In recent years the etiopathology of a number of debilitating diseases such as type 2 diabetes, arthritis, atherosclerosis, psoriasis, asthma, cystic fibrosis, sepsis, and ulcerative colitis has increasingly been linked to runaway cytokine-mediated inflammation. Cytokine-based therapeutic agents play a major role in the treatment of these diseases. However, the temporospatial changes in various cytokines are still poorly understood and attempts to date have focused on the inhibition of specific cytokines such as TNF-α. As an alternative approach, a number of preclinical studies have confirmed the therapeutic potential of targeting alpha7 nicotinic acetylcholine receptor-mediated anti-inflammatory effects through modulation of proinflammatory cytokines. This “cholinergic anti-inflammatory pathway” modulates the immune system through cholinergic mechanisms that act on alpha7 receptors expressed on macrophages and immune cells. If the preclinical findings translate into human efficacy this approach could potentially provide new therapies for treating a broad array of intractable diseases and conditions with inflammatory components. PMID:20953658

  8. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma.

    PubMed

    Redini, Françoise; Heymann, Dominique

    2015-01-01

    Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the "vicious cycle" concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable "niche" for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  9. Emerging techniques for the discovery and validation of therapeutic targets for skeletal diseases.

    PubMed

    Cho, Christine H; Nuttall, Mark E

    2002-12-01

    Advances in genomics and proteomics have revolutionised the drug discovery process and target validation. Identification of novel therapeutic targets for chronic skeletal diseases is an extremely challenging process based on the difficulty of obtaining high-quality human diseased versus normal tissue samples. The quality of tissue and genomic information obtained from the sample is critical to identifying disease-related genes. Using a genomics-based approach, novel genes or genes with similar homology to existing genes can be identified from cDNA libraries generated from normal versus diseased tissue. High-quality cDNA libraries are prepared from uncontaminated homogeneous cell populations harvested from tissue sections of interest. Localised gene expression analysis and confirmation are obtained through in situ hybridisation or immunohistochemical studies. Cells overexpressing the recombinant protein are subsequently designed for primary cell-based high-throughput assays that are capable of screening large compound banks for potential hits. Afterwards, secondary functional assays are used to test promising compounds. The same overexpressing cells are used in the secondary assay to test protein activity and functionality as well as screen for small-molecule agonists or antagonists. Once a hit is generated, a structure-activity relationship of the compound is optimised for better oral bioavailability and pharmacokinetics allowing the compound to progress into development. Parallel efforts from proteomics, as well as genetics/transgenics, bioinformatics and combinatorial chemistry, and improvements in high-throughput automation technologies, allow the drug discovery process to meet the demands of the medicinal market. This review discusses and illustrates how different approaches are incorporated into the discovery and validation of novel targets and, consequently, the development of potentially therapeutic agents in the areas of osteoporosis and osteoarthritis

  10. Cyclodextrins as new formulation entities and therapeutic agents.

    PubMed

    Sikharam, Sreevalli; Egan, Talmage D; Kern, Steven E

    2005-08-01

    This review is focused on recent advances in the application of cyclodextrins to new drug formulations, with emphasis on the field of anesthesia. Cyclodextrins are well-known excipients in the pharmaceutical industry. Their recent application to the anesthetic induction agent propofol as a means of creating a non-lipid formulation may lead to their introduction into anesthesia pharmacology. The development of a novel cyclodextrin as specific reversal agent for the neuromuscular blocker rocuronium (that acts as an in-vivo scavenging system to bind free rocuronium in the circulation) will also increase the likelihood that cyclodextrins will have a greater clinical presence in anesthesiology in the future. Cyclodextrin-containing polymers are also finding a role in the delivery of nucleic acids and protein therapeutic agents. Recent developments in cyclodextrins as excipients for anesthetics may soon culminate in their introduction into anesthesiology, although more research is necessary to better define their potential.

  11. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  12. Nanoparticle-based targeted therapeutics in head-and-neck cancer.

    PubMed

    Wu, Ting-Ting; Zhou, Shui-Hong

    2015-01-01

    Head-and-neck cancer is a major form of the disease worldwide. Treatment consists of surgery, radiation therapy and chemotherapy, but these have not resulted in improved survival rates over the past few decades. Versatile nanoparticles, with selective tumor targeting, are considered to have the potential to improve these poor outcomes. Application of nanoparticle-based targeted therapeutics has extended into many areas, including gene silencing, chemotherapeutic drug delivery, radiosensitization, photothermal therapy, and has shown much promise. In this review, we discuss recent advances in the field of nanoparticle-mediated targeted therapeutics for head-and-neck cancer, with an emphasis on the description of targeting points, including future perspectives.

  13. Angiotensins as therapeutic targets beyond heart disease.

    PubMed

    Passos-Silva, Danielle Gomes; Brandan, Enrique; Santos, Robson Augusto Souza

    2015-05-01

    The renin-angiotensin system (RAS) plays a pivotal role in cardiovascular and hydro-electrolyte homeostasis. Blockade of the RAS as a therapeutic strategy for treating hypertension and related cardiovascular diseases is well established. However, actions of the RAS go far beyond the targets initially described. In this regard, the recent identification of novel components of the RAS, including angiotensin-(1-7) [Ang-(1-7)], Ang-(1-9), and alamandine, have opened new possibilities for interfering with the development and manifestations of cardiovascular and non-cardiovascular diseases. In this article, we briefly review novel targets for angiotensins and its therapeutic implications in diverse areas, including cancer, inflammation, and glaucoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Targeting histone deacetylases in endometrial cancer: a paradigm-shifting therapeutic strategy?

    PubMed

    Garmpis, N; Damaskos, C; Garmpi, A; Spartalis, E; Kalampokas, E; Kalampokas, T; Margonis, G-A; Schizas, D; Andreatos, N; Angelou, A; Lavaris, A; Athanasiou, A; Apostolou, K G; Spartalis, M; Damaskou, Z; Daskalopoulou, A; Diamantis, E; Tsivelekas, K; Alavanos, A; Valsami, S; Moschos, M M; Sampani, A; Nonni, A; Antoniou, E A; Mantas, D; Tsourouflis, G; Markatos, K; Kontzoglou, K; Perrea, D; Nikiteas, N; Kostakis, A; Dimitroulis, D

    2018-02-01

    Endometrial cancer is increasingly prevalent in western societies and affects mainly postmenopausal women; notably incidence rates have been rising by 1.9% per year on average since 2005. Although the early-stage endometrial cancer can be effectively managed with surgery, more advanced stages of the disease require multimodality treatment with varying results. In recent years, endometrial cancer has been extensively studied at the molecular level in an attempt to develop effective therapies. Recently, a family of compounds that alter epigenetic expression, namely histone deacetylase inhibitors, have shown promise as possible therapeutic agents in endometrial cancer. The present review aims to discuss the therapeutic potential of these agents. This literature review was performed using the MEDLINE database; the search terms histone, deacetylase, inhibitors, endometrial, targeted therapies for endometrial cancer were employed to identify relevant studies. We only reviewed English language publications and also considered studies that were not entirely focused on endometrial cancer. Ultimately, sixty-four articles published until January 2018 were incorporated into our review. Studies in cell cultures have demonstrated that histone deacetylase inhibitors exert their antineoplastic activity by promoting expression of p21WAF1 and p27KIP1, cyclin-dependent kinase inhibitors, that have important roles in cell cycle regulation; importantly, the transcription of specific genes (e.g., E-cadherin, PTEN) that are commonly silenced in endometrial cancer is also enhanced. In addition to these abstracts effects, novel compounds with histone deacetylase inhibitor activity (e.g., scriptaid, trichostatin, entinostat) have also demonstrated significant antineoplastic activity both in vitro and in vivo, by liming tumor growth, inducing apoptosis, inhibiting angiogenesis and potentiating the effects of chemotherapy. The applications of histone deacetylase inhibitors in endometrial

  15. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System

    PubMed Central

    May, Holly C.; Yu, Jieh-Juen; Guentzel, M. N.; Chambers, James P.; Cap, Andrew P.; Arulanandam, Bernard P.

    2018-01-01

    As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity. PMID:29556223

  16. ErbB polymorphisms: insights and implications for response to targeted cancer therapeutics.

    PubMed

    Alaoui-Jamali, Moulay A; Morand, Grégoire B; da Silva, Sabrina Daniela

    2015-01-01

    Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs), polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3, and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary) and to acquired (secondary) resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed.

  17. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives.

    PubMed

    Singh, Rajesh K; Kumar, Sahil; Prasad, D N; Bhardwaj, T R

    2018-05-10

    Cancer is considered as one of the most serious health problems today. The discovery of nitrogen mustard as an alkylating agent in 1942, opened a new era in the cancer chemotherapy. This valuable class of alkylating agent exerts its biological activity by binding to DNA, cross linking two strands, preventing DNA replication and ultimate cell death. At the molecular level, nitrogen lone pairs of nitrogen mustard generate a strained intermediate "aziridinium ion" which is very reactive towards DNA of tumor cell as well as normal cell resulting in various adverse side effects alogwith therapeutic implications. Over the last 75 years, due to its high reactivity and peripheral cytotoxicity, numerous modifications have been made in the area of nitrogen mustard to improve its efficacy as well as enhancing drug delivery specifically to tumor cells. This review mainly discusses the medicinal chemistry aspects in the development of various classes of nitrogen mustards (mechlorethamine, chlorambucil, melphalan, cyclophosphamide and steroidal based nitrogen mustards). The literature collection includes the historical and the latest developments in these areas. This comprehensive review also attempted to showcase the recent progress in the targeted delivery of nitrogen mustards that includes DNA directed nitrogen mustards, antibody directed enzyme prodrug therapy (ADEPT), gene directed enzyme prodrug therapy (GDEPT), nitrogen mustard activated by glutathione transferase, peptide based nitrogen mustards and CNS targeted nitrogen mustards. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets.

    PubMed

    Wang, Zhang; Arat, Seda; Magid-Slav, Michal; Brown, James R

    2018-01-10

    With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson's disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies.

  19. Molecular pathogenesis and targeted therapeutics in Ewing sarcoma/primitive neuroectodermal tumours

    PubMed Central

    2012-01-01

    Background Ewing sarcoma/PNET is managed with treatment paradigms involving combinations of chemotherapy, surgery, and sometimes radiation. Although the 5-year survival rate of non-metastatic disease approaches 70%, those cases that are metastatic and those that recur have 5-year survival rates of less than 20%. Molecularly targeted treatments offer the potential to further improve treatment outcomes. Methods A PUBMED search was performed from 1997 to 2011. Published literature that included the topic of the Ewing sarcoma/PNET was also referenced. Results Insulin-like growth factor-1 receptor (IGF-1R) antagonists have demonstrated modest single agent efficacy in phase I/II clinical trials in Ewing sarcoma/PNET, but have a strong preclinical rationale. Based on in vitro and animal data, treatment using antisense RNA and cDNA oligonucleotides directed at silencing the EWS-FLI chimera that occurs in most Ewing sarcoma/PNET may have potential therapeutic importance. However drug delivery and degradation problems may limit this therapeutic approach. Protein-protein interactions can be targeted by inhibition of RNA helicase A, which binds to EWS/FLI as part of the transcriptional complex. Tumour necrosis factor related apoptosis inducing ligand induction using interferon has been used in preclinical models. Interferons may be incorporated into future chemotherapeutic treatment paradigms. Histone deacetylase inhibitors can restore TGF-β receptor II allowing TFF-β signalling, which appears to inhibit growth of Ewing sarcoma/PNET cell lines in vitro. Immunotherapy using allogeneic natural killer cells has activity in Ewing sarcoma/PNET cell lines and xenograft models. Finally, cyclin dependent kinase inhibitors such as flavopiridol may be clinically efficacious in relapsed Ewing sarcoma/PNET. Conclusion Preclinical evidence exists that targeted therapeutics may be efficacious in the ESFT. IGF-1R antagonists have demonstrated efficacy in phase I/II clinical trials

  20. BCL-2 as therapeutic target for hematological malignancies.

    PubMed

    Perini, Guilherme Fleury; Ribeiro, Glaciano Nogueira; Pinto Neto, Jorge Vaz; Campos, Laura Tojeiro; Hamerschlak, Nelson

    2018-05-11

    Disruption of the physiologic balance between cell proliferation and cell death is an important step of cancer development. Increased resistance to apoptosis is a key oncogenic mechanism in several hematological malignancies and, in many cases, especially in lymphoid neoplasias, has been attributed to the upregulation of BCL-2. The BCL-2 protein is the founding member of the BCL-2 family of apoptosis regulators and was the first apoptosis modulator to be associated with cancer. The recognition of the important role played by BCL-2 for cancer development and resistance to treatment made it a relevant target for therapy for many diseases, including solid tumors and hematological neoplasias. Among the different strategies that have been developed to inhibit BCL-2, BH3-mimetics have emerged as a novel class of compounds with favorable results in different clinical settings, including chronic lymphocytic leukemia (CLL). In April 2016, the first inhibitor of BCL-2, venetoclax, was approved by the US Food and Drug Administration for the treatment of patients with CLL who have 17p deletion and had received at least one prior therapy. This review focuses on the relevance of BCL-2 for apoptosis modulation at the mitochondrial level, its potential as therapeutic target for hematological malignancies, and the results obtained with selective inhibitors belonging to the BH3-mimetics, especially venetoclax used in monotherapy or in combination with other agents.

  1. Timing and Characteristics of Cumulative Evidence Available on Novel Therapeutic Agents Receiving Food and Drug Administration Accelerated Approval.

    PubMed

    Naci, Huseyin; Wouters, Olivier J; Gupta, Radhika; Ioannidis, John P A

    2017-06-01

    Policy Points: Randomized trials-the gold standard of evaluating effectiveness-constitute a small minority of existing evidence on agents given accelerated approval. One-third of randomized trials are in therapeutic areas outside of FDA approval and less than half evaluate the therapeutic benefits of these agents but use them instead as common backbone treatments. Agents receiving accelerated approval are often tested concurrently in several therapeutic areas. For most agents, no substantial time lag is apparent between the average start dates of randomized trials evaluating their effectiveness and those using them as part of background therapies. There appears to be a tendency for therapeutic agents receiving accelerated approval to quickly become an integral component of standard treatment, despite potential shortcomings in their evidence base. Therapeutic agents treating serious conditions are eligible for Food and Drug Administration (FDA) accelerated approval. The clinical evidence accrued on agents receiving accelerated approval has not been systematically evaluated. Our objective was to assess the timing and characteristics of available studies. We first identified clinical studies of novel therapeutic agents receiving accelerated approval. We then (1) categorized those studies as randomized or nonrandomized, (2) explored whether they evaluated the FDA-approved indications, and (3) documented the available treatment comparisons. We also meta-analyzed the difference in start times between randomized studies that (1) did or did not evaluate approved indications and (2) were or were not designed to evaluate the agent's effectiveness. In total, 37 novel therapeutic agents received accelerated approval between 2000 and 2013. Our search of ClinicalTrials.gov identified 7,757 studies, which included 1,258,315 participants. Only one-third of identified studies were randomized controlled trials. Of 1,631 randomized trials with advanced recruitment status, 906 were

  2. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.

    PubMed

    Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S

    2017-11-01

    The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Mcl-1 Degradation Is Required for Targeted Therapeutics to Eradicate Colon Cancer Cells.

    PubMed

    Tong, Jingshan; Wang, Peng; Tan, Shuai; Chen, Dongshi; Nikolovska-Coleska, Zaneta; Zou, Fangdong; Yu, Jian; Zhang, Lin

    2017-05-01

    The Bcl-2 family protein Mcl-1 is often degraded in cancer cells subjected to effective therapeutic treatment, and defective Mcl-1 degradation has been associated with intrinsic and acquired drug resistance. However, a causal relationship between Mcl-1 degradation and anticancer drug responses has not been directly established, especially in solid tumor cells where Mcl-1 inhibition alone is insufficient to trigger cell death. In this study, we present evidence that Mcl-1 participates directly in determining effective therapeutic responses in colon cancer cells. In this setting, Mcl-1 degradation was induced by a variety of multikinase inhibitor drugs, where it relied upon GSK3β phosphorylation and FBW7-dependent ubiquitination. Specific blockade by genetic knock-in (KI) abolished apoptotic responses and conferred resistance to kinase inhibitors. Mcl-1 -KI also suppressed the antiangiogenic and anti-hypoxic effects of kinase inhibitors in the tumor microenvironment. Interestingly, these same inhibitors also induced the BH3-only Bcl-2 family protein PUMA, which is required for apoptosis. Degradation-resistant Mcl-1 bound and sequestered PUMA from other prosurvival proteins to maintain cell survival, which was abolished by small-molecule Mcl-1 inhibitors. Our findings establish a pivotal role for Mcl-1 degradation in the response of colon cancer cells to targeted therapeutics, and they provide a useful rational platform to develop Mcl-1-targeting agents that can overcome drug resistance. Cancer Res; 77(9); 2512-21. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma

    PubMed Central

    Redini, Françoise; Heymann, Dominique

    2015-01-01

    Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the “vicious cycle” concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable “niche” for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma. PMID:26779435

  5. Is the canonical RAF-MEK-ERK signaling pathway a therapeutic target in SCLC?

    PubMed Central

    Cristea, Sandra; Sage, Julien

    2017-01-01

    The activity of the RAF-MEK-ERK signaling pathway is critical for the proliferation of normal and cancerous cells. Oncogenic mutations driving the development of lung adenocarcinoma often activate this signaling pathway. In contrast, pathway activity levels and their biological roles are not well established in small cell lung cancer (SCLC), a fast-growing neuroendocrine lung cancer subtype. Here we discuss the function of the RAF-MEK-ERK kinase pathway and the mechanisms leading to its activation in SCLC cells. In particular, we argue that activation of this pathway may be beneficial to the survival, proliferation and spread of SCLC cells in response to multiple stimuli. We also consider evidence that high levels of RAF-MEK-ERK pathway activity may be detrimental to SCLC tumors, including in part by interfering with their neuroendocrine fate. Based on these observations, we examine when small molecules targeting kinases in the RAF-MEK-ERK pathway may be useful therapeutically in SCLC patients, including in combination with other therapeutic agents. PMID:27133774

  6. Therapeutic Targeting of Siglecs using Antibody- and Glycan-based Approaches

    PubMed Central

    Angata, Takashi; Nycholat, Corwin M.; Macauley, Matthew S.

    2015-01-01

    The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of immunomodulatory receptors whose functions are regulated by their glycan ligands. Siglecs are attractive therapeutic targets because of their cell-type specific expression pattern, endocytic properties, high expression on certain lymphomas/leukemias, and ability to modulate receptor signaling. Siglec-targeting approaches with therapeutic potential encompass antibody- and glycan-based strategies. Several antibody-based therapies are in clinical trials and continue to be developed for the treatment of lymphoma/leukemia and autoimmune disease, while the therapeutic potential of glycan-based strategies for cargo-delivery and immunomodulation is a promising new approach. Here, we review these strategies with special emphasis on emerging approaches and disease areas that may benefit from targeting the Siglec family. PMID:26435210

  7. Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia

    PubMed Central

    Yu, Bo; Mao, Yicheng; Bai, Li-Yuan; Herman, Sarah E. M.; Wang, Xinmei; Ramanunni, Asha; Jin, Yan; Mo, Xiaokui; Cheney, Carolyn; Chan, Kenneth K.; Jarjoura, David; Marcucci, Guido; Lee, Robert J.; Byrd, John C.

    2013-01-01

    Several RNA-targeted therapeutics, including antisense oligonucleotides (ONs), small interfering RNAs, and miRNAs, constitute immunostimulatory CpG motifs as an integral part of their design. The limited success with free antisense ONs in hematologic malignancies in recent clinical trials has been attributed to the CpG motif–mediated, TLR-induced prosurvival effects and inefficient target modulation in desired cells. In an attempt to diminish their off-target prosurvival and proinflammatory effects and specific delivery, as a proof of principle, in the present study, we developed an Ab-targeted liposomal delivery strategy using a clinically relevant CD20 Ab (rituximab)–conjugated lipopolyplex nanoparticle (RIT-INP)– and Bcl-2–targeted antisense G3139 as archetypical antisense therapeutics. The adverse immunostimulatory responses were abrogated by selective B cell–targeted delivery and early endosomal compartmentalization of G3139-encapsulated RIT-INPs, resulting in reduced NF-κB activation, robust Bcl-2 down-regulation, and enhanced sensitivity to fludarabine-induced cytotoxicity. Furthermore, significant in vivo therapeutic efficacy was noted after RIT-INP–G3139 administration in a disseminated xenograft leukemia model. The results of the present study demonstrate that CD20-targeted delivery overcomes the immunostimulatory properties of CpG-containing ON therapeutics and improves efficient gene silencing and in vivo therapeutic efficacy for B-cell malignancies. The broader implications of similar approaches in overcoming immunostimulatory properties of RNA-directed therapeutics in hematologic malignancies are also discussed. PMID:23165478

  8. Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC.

    PubMed

    Ciuffreda, Ludovica; Incani, Ursula Cesta; Steelman, Linda S; Abrams, Stephen L; Falcone, Italia; Curatolo, Anais Del; Chappell, William H; Franklin, Richard A; Vari, Sabrina; Cognetti, Francesco; McCubrey, James A; Milella, Michele

    2014-01-01

    The RAS/RAF/MEK/ ERK and the PI3K/AKT/mTOR pathways govern fundamental physiological processes, such as cell proliferation, differentiation, metabolism, cytoskeleton reorganization and cell death and survival. Constitutive activation of these signal transduction pathways is a required hallmark of cancer and dysregulation, on either genetic or epigenetic grounds, of these pathways has been implicated in the initiation, progression and metastastic spread of lung cances. Targeting components of the MAPK and PI3K cascades is thus an attractive strategy in the development of novel therapeutic approaches to treat lung cancer, although the use of single pathway inhibitors has met with limited clinical success so far. Indeed, the presence of intra- and inter-pathway compensatory loops that re-activate the very same cascade, either upstream or downstream the point of pharmacological blockade, or activate the alternate pathway following the blockade of one signaling cascade has been demonstrated, potentially driving preclinical (and possibly clinical) resistance. Therefore, the blockade of both pathways with combinations of signaling inhibitors might result in a more efficient anti-tumor effect, and thus potentially overcome and/or delay clinical resistance, as compared with single agent. The current review aims at summarizing the current status of preclinical and clinical research with regard to pathway crosstalks between the MAPK and PI3K cascades in NSCLC and the rationale for combined therapeutic pathway targeting.

  9. New Therapeutic Agent against Arterial Thrombosis: An Iridium(III)-Derived Organometallic Compound.

    PubMed

    Hsia, Chih-Wei; Velusamy, Marappan; Tsao, Jeng-Ting; Hsia, Chih-Hsuan; Chou, Duen-Suey; Jayakumar, Thanasekaran; Lee, Lin-Wen; Li, Jiun-Yi; Sheu, Joen-Rong

    2017-12-05

    Platelet activation plays a major role in cardio and cerebrovascular diseases, and cancer progression. Disruption of platelet activation represents an attractive therapeutic target for reducing the bidirectional cross talk between platelets and tumor cells. Platinum (Pt) compounds have been used for treating cancer. Hence, replacing Pt with iridium (Ir) is considered a potential alternative. We recently developed an Ir(III)-derived complex, [Ir(Cp*)1-(2-pyridyl)-3-(2-hydroxyphenyl)imidazo[1,5-a]pyridine Cl]BF₄ (Ir-11), which exhibited strong antiplatelet activity; hence, we assessed the therapeutic potential of Ir-11 against arterial thrombosis. In collagen-activated platelets, Ir-11 inhibited platelet aggregation, adenosine triphosphate (ATP) release, intracellular Ca 2+ mobilization, P-selectin expression, and OH · formation, as well as the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and Akt. Neither the adenylate cyclase inhibitor nor the guanylate cyclase inhibitor reversed the Ir-11-mediated antiplatelet effects. In experimental mice, Ir-11 prolonged the bleeding time and reduced mortality associated with acute pulmonary thromboembolism. Ir-11 plays a crucial role by inhibiting platelet activation through the inhibition of the PLCγ2-PKC cascade, and the subsequent suppression of Akt and MAPK activation, ultimately inhibiting platelet aggregation. Therefore, Ir-11 can be considered a new therapeutic agent against either arterial thrombosis or the bidirectional cross talk between platelets and tumor cells.

  10. Antioxidant Micronutrients: Therapeutic Counter Measures for Chemical Agents

    DTIC Science & Technology

    2011-03-01

    ANSI Std. Z39.18 W81XWH-08-2-0007 1 Mar 2010 - 28 Feb 2011Annual01-03-2011 Antioxidant Micronutrients : Therapeutic Counter Measures for Chemical...Agents Kedar Prasad, Ph.D. Premier Micronutrient Corporation Novato, CA 94949 The results of the first phase of HD study suggested that exposure to...Hypothesis of HD study: For the first phase of the study, our hypothesis is that oral supplementation with a mixture of dietary and endogenous

  11. Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent

    PubMed Central

    Stefflova, Klara; Li, Hui; Chen, Juan; Zheng, Gang

    2008-01-01

    We designed and synthesized a folate receptor-targeted, water soluble, and pharmacomodulated photodynamic therapy (PDT) agent that selectively detects and destroys the targeted cancer cells while sparing normal tissue. This was achieved by minimizing the normal organ uptake (e.g., liver and spleen) and by discriminating between tumors with different levels of folate receptor (FR) expression. This construct (Pyro-peptide-Folate, PPF) is comprised of three components: 1) Pyropheophorbide a (Pyro) as an imaging and therapeutic agent, 2) peptide sequence as a stable linker and modulator improving the delivery efficiency, and 3) Folate as a homing molecule targeting FR-expressing cancer cells. We observed an enhanced accumulation of PPF in KB cancer cells (FR+) compared to HT 1080 cancer cells (FR-), resulting in a more effective post-PDT killing of KB cells over HT 1080 or normal CHO cells. The accumulation of PPF in KB cells can be up to 70% inhibited by an excess of free folic acid. The effect of Folate on preferential accumulation of PPF in KB tumors (KB vs. HT 1080 tumors 2.5:1) was also confirmed in vivo. In contrast to that, no significant difference between the KB and HT 1080 tumor was observed in case of the untargeted probe (Pyro-peptide, PP), eliminating the potential influence of Pyro’s own nonspecific affinity to cancer cells. More importantly, we found that incorporating a short peptide sequence considerably improved the delivery efficiency of the probe – a process we attributed to a possible peptide-based pharmacomodulation – as was demonstrated by a 50-fold reduction in PPF accumulation in liver and spleen when compared to a peptide-lacking probe (Pyro-K-Folate, PKF). This approach could potentially be generalized to improve the delivery efficiency of other targeted molecular imaging and photodynamic therapy agents. PMID:17298029

  12. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors).

    PubMed

    Winthrop, K L; Mariette, X; Silva, J T; Benamu, E; Calabrese, L H; Dumusc, A; Smolen, J S; Aguado, J M; Fernández-Ruiz, M

    2018-06-01

    The present review is part of the ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies. To review, from an Infectious Diseases perspective, the safety profile of agents targeting interleukins, immunoglobulins and complement factors and to suggest preventive recommendations. Computer-based MEDLINE searches with MeSH terms pertaining to each agent or therapeutic family. Patients receiving interleukin-1 (IL-1) -targeted (anakinra, canakinumab or rilonacept) or IL-5-targeted (mepolizumab) agents have a moderate risk of infection and no specific prevention strategies are recommended. The use of IL-6/IL-6 receptor-targeted agents (tocilizumab and siltuximab) is associated with a risk increase similar to that observed with anti-tumour necrosis factor-α agents. IL-12/23-targeted agents (ustekinumab) do not seem to pose a meaningful risk of infection, although screening for latent tuberculosis infection may be considered and antiviral prophylaxis should be given to hepatitis B surface antigen-positive patients. Therapy with IL-17-targeted agents (secukinumab, brodalumab and ixekizumab) may result in the development of mild-to-moderate mucocutaneous candidiasis. Pre-treatment screening for Strongyloides stercoralis and other geohelminths should be considered in patients who come from areas where these are endemic who are receiving IgE-targeted agents (omalizumab). C5-targeted agents (eculizumab) are associated with a markedly increased risk of infection due to encapsulated bacteria, particularly Neisseria spp. Meningococcal vaccination and chemoprophylaxis must be administered 2-4 weeks before initiating eculizumab. Patients with high-risk behaviours and their partners should also be screened for gonococcal infection. Preventive strategies are particularly encouraged to minimize the occurrence of neisserial infection associated with eculizumab. Copyright © 2018 European Society of Clinical

  13. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    NASA Astrophysics Data System (ADS)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  14. Advances in sarcoma genomics and new therapeutic targets

    PubMed Central

    Taylor, Barry S.; Barretina, Jordi; Maki, Robert G.; Antonescu, Cristina R.; Singer, Samuel; Ladanyi, Marc

    2012-01-01

    Preface Increasingly, human mesenchymal malignancies are classified by the abnormalities that drive their pathogenesis. While many of these aberrations are highly prevalent within particular sarcoma subtypes, few are currently targeted therapeutically. Indeed, most subtypes of sarcoma are still treated with traditional therapeutic modalities and in many cases are resistant to adjuvant therapies. In this Review, we discuss the core molecular determinants of sarcomagenesis and emphasize the emerging genomic and functional genetic approaches that, coupled to novel therapeutic strategies, have the potential to transform the care of patients with sarcoma. PMID:21753790

  15. ROCK as a therapeutic target for ischemic stroke.

    PubMed

    Sladojevic, Nikola; Yu, Brian; Liao, James K

    2017-12-01

    Stroke is a major cause of disability and the fifth leading cause of death. Currently, the only approved acute medical treatment of ischemic stroke is tissue plasminogen activator (tPA), but its effectiveness is greatly predicated upon early administration of the drug. There is, therefore, an urgent need to find new therapeutic options for acute stroke. Areas covered: In this review, we summarize the role of Rho-associated coiled-coil containing kinase (ROCK) and its potential as a therapeutic target in stroke pathophysiology. ROCK is a major regulator of cell contractility, motility, and proliferation. Many of these ROCK-mediated processes in endothelial cells, vascular smooth muscle cells, pericytes, astrocytes, glia, neurons, leukocytes, and platelets are important in stroke pathophysiology, and the inhibition of such processes could improve stroke outcome. Expert commentary: ROCK is a potential therapeutic target for cardiovascular disease and ROCK inhibitors have already been approved for human use in Japan and China for the treatment of acute stroke. Further studies are needed to determine the role of ROCK isoforms in the pathophysiology of cerebral ischemia and whether there are further therapeutic benefits with selective ROCK inhibitors.

  16. Targeting IFN-λ: therapeutic implications.

    PubMed

    Eslam, Mohammed; George, Jacob

    2016-12-01

    Type-III interferons (IFN-λ), the most recently discovered family of IFNs, shares common features with other family members, but also has many distinctive activities. IFN-λ uniquely has a different receptor complex, and a more focused pattern of tissue expression and signaling effects, from other classes of IFNs. Multiple genome-wide association studies (GWAS) and subsequent validation reports suggest a pivotal role for polymorphisms near the IFNL3 gene in hepatitis C clearance and control, as also for several other epithelial cell tropic viruses. Apart from its antiviral activity, IFN-λ possesses anti-tumor, immune-inflammatory and homeostatic functions. The overlapping effects of IFN-λ with type I IFN, with a restricted tissue expression pattern renders IFN-λ an attractive therapeutic target for viral infection, cancer and autoimmune diseases, with limited side effects. Areas covered: This review will summarize the current and future therapeutic opportunities offered by this most recently discovered family of interferons. Expert opinion: Our knowledge on IFN-λ is rapidly expanding. Though there are many remaining questions and challenges that require elucidation, the unique characteristics of IFN-λ increases enthusiasm that multiple therapeutic options will emerge.

  17. An assessment of the genetic toxicology of novel boron-containing therapeutic agents.

    PubMed

    Ciaravino, Vic; Plattner, Jacob; Chanda, Sanjay

    2013-06-01

    Boron-containing compounds are being studied as potential therapeutic agents. As part of the safety assessment of these therapeutic agents, a battery of genetic toxicology studies was conducted. The battery included a bacterial reverse mutation (Ames) assay, an in vitro chromosome aberration assay in peripheral human lymphocytes, and an in vivo rat micronucleus study. The following compounds represent some of the boron-containing compounds that have been advanced to human clinical trials in various therapeutic areas. The borinic picolinate, AN0128, is an antibacterial compound with anti-inflammatory activity that has been studied in clinical trials for acne and the treatment of mild to moderate atopic dermatitis. AN2690 (tavaborole) is a benzoxaborole in Phase 3 clinical trials for the topical treatment of onychomycosis, a fungal infection of the toenails and fingernails. Another benzoxaborole derivative, AN2728, a phosphodiesterase-4 (PDE4) inhibitor, is in Phase 2 clinical trials for the treatment of atopic dermatitis. AN2898, also a PDE4 inhibitor, has been studied in clinical trials for atopic dermatitis and psoriasis. AN3365 is a leucyl-tRNA synthetase inhibitor that has been in clinical development for the treatment of various Gram-negative bacterial infections. These five representative compounds were negative in the three genotoxicity assays. Furthermore, AN2690 has been studied in mouse and rat 2-year bioassays and was not found to have any carcinogenic potential. These results demonstrate that it is possible to design boron-based therapeutic agents with no genetic toxicology liabilities. Copyright © 2013 Wiley Periodicals, Inc.

  18. Therapeutic potential of peptide toxins that target ion channels.

    PubMed

    Beraud, Evelyne; Chandy, K George

    2011-10-01

    Traditional healthcare systems in China, India, Greece and the Middle East have for centuries exploited venomous creatures as a resource for medicines. This review focuses on one class of pharmacologically active compounds from venom, namely peptide toxins that target ion channels. We highlight their therapeutic potential and the specific channels they target. The field of therapeutic application is vast, including pain, inflammation, cancer, neurological disorders, cardioprotection, and autoimmune diseases. One of these peptides is in clinical use, and many others are in various stages of pre-clinical and clinical development.

  19. Agent Collaborative Target Localization and Classification in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.

  20. Early investigational tubulin inhibitors as novel cancer therapeutics.

    PubMed

    Nepali, Kunal; Ojha, Ritu; Lee, Hsueh-Yun; Liou, Jing-Ping

    2016-08-01

    Microtubules represent one of the most logical and strategic molecular targets amongst the current targets for chemotherapy, alongside DNA. In the past decade, tubulin inhibitors as cancer therapeutics have been an area of focus due to the improved understanding and biological relevance of microtubules in cellular functions. Fueled by the objective of developing novel chemotherapeutics and with the aim of establishing the benefits of tubulin inhibition, several clinical trials have been conducted with others ongoing. At present, the antitubulin development pipeline contains an armful of agents under clinical investigation. This review focuses on novel tubulin inhibitors as cancer therapeutics. The article covers the agents which have completed the phase II studies along with the agents demonstrating promising results in phase I studies. Countless clinical trials evaluating the efficacy, safety and pharmacokinetics of novel tubulin inhibitors highlights the scientific efforts being paid to establish their candidature as cancer therapeutics. Colchicine binding site inhibitors as vascular disrupting agents (VDAs) and new taxanes appear to be the most likely agents for future clinical interest. Numerous agents have demonstrated clinical benefits in terms of efficacy and survival in phase I and II studies. However conclusive benefits can only be ascertained on the basis of phase III studies.

  1. p62 as a therapeutic target for inhibition of autophagy in prostate cancer.

    PubMed

    Wang, Lei; Kim, Donghern; Wise, James T F; Shi, Xianglin; Zhang, Zhuo; DiPaola, Robert S

    2018-04-01

    To test the hypothesis that p62 is an optimal target for autophagy inhibition and Verteporfin, a clinically available drug approved by FDA to treat macular degeneration that inhibits autophagy by targeting p62 protein, can be developed clinically to improve therapy for advanced prostate cancer. Forced expression of p62 in PC-3 cells and normal prostate epithelial cells, RWPE-1 and PZ-HPV7, were carried out by transfection of these cells with pcDNA3.1/p62 or p62 shRNA plasmid. Autophagosomes and autophagic flux were measured by transfection of tandem fluorescence protein mCherry-GFP-LC3 construct. Apoptosis was measured by Annexin V/PI staining. Tumorigenesis was measured by a xenograft tumor growth model. Verteporfin inhibited cell growth and colony formation in PC-3 cells. Verteporfin generated crosslinked p62 oligomers, resulting in inhibition of autophagy and constitutive activation of Nrf2 as well as its target genes, Bcl-2 and TNF-α. In normal prostate epithelial cells, forced expression of p62 caused constitutive Nrf2 activation, development of apoptosis resistance, and Verteporfin treatment exhibited inhibitory effects. Verteporfin treatment also inhibited starvation-induced autophagic flux of these cells. Verteporfin inhibited tumorigenesis of both normal prostate epithelial cells with p62 expression and prostate cancer cells and decreased p62, constitutive Nrf2, and Bcl-xL in xenograft tumor tissues, indicating that p62 can be developed as a drug target against prostate cancer. p62 has a high potential to be developed as a therapeutic target. Verteporfin represents a prototypical agent with therapeutic potential against prostate cancer through inhibition of autophagy by a novel mechanism of p62 inhibition. © 2018 Wiley Periodicals, Inc.

  2. Targeted therapies: a nursing perspective.

    PubMed

    Kay, Polly

    2006-02-01

    To review the development of targeted therapies and the biology of relevant therapeutic targets. To analyze the relevance of targeted agents as part of current clinical practice. Research articles. Several targeted agents are now available for clinical use. Their mechanisms of action are more specific against tumor cells than traditional cytotoxics. Monotherapy regimens based on targeted agents tend to be better tolerated than chemotherapy, and most combination regimens with targeted agents have proven feasible. Their availability has greatly expanded cancer treatment options, especially for chemorefractory patients. Nurses involved in the care of patients with cancer can benefit from an increased understanding of targeted therapies, including their mechanisms of action, their efficacy profile, as well as prophylaxis and management of adverse events and administration procedures.

  3. A modular platform for targeted RNAi therapeutics

    NASA Astrophysics Data System (ADS)

    Kedmi, Ranit; Veiga, Nuphar; Ramishetti, Srinivas; Goldsmith, Meir; Rosenblum, Daniel; Dammes, Niels; Hazan-Halevy, Inbal; Nahary, Limor; Leviatan-Ben-Arye, Shani; Harlev, Michael; Behlke, Mark; Benhar, Itai; Lieberman, Judy; Peer, Dan

    2018-01-01

    Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting4-8, their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.

  4. A modular platform for targeted RNAi therapeutics.

    PubMed

    Kedmi, Ranit; Veiga, Nuphar; Ramishetti, Srinivas; Goldsmith, Meir; Rosenblum, Daniel; Dammes, Niels; Hazan-Halevy, Inbal; Nahary, Limor; Leviatan-Ben-Arye, Shani; Harlev, Michael; Behlke, Mark; Benhar, Itai; Lieberman, Judy; Peer, Dan

    2018-03-01

    Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs 1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting 4-8 , their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.

  5. Nasal-nanotechnology: revolution for efficient therapeutics delivery.

    PubMed

    Kumar, Amrish; Pandey, Aditya Nath; Jain, Sunil Kumar

    2016-01-01

    In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.

  6. New era of biologic therapeutics in atopic dermatitis.

    PubMed

    Guttman-Yassky, Emma; Dhingra, Nikhil; Leung, Donald Y M

    2013-04-01

    Atopic dermatitis (AD) is a common inflammatory skin disease regulated by genetic and environmental factors. Both skin barrier defects and aberrant immune responses are believed to drive cutaneous inflammation in AD. Existing therapies rely largely on allergen avoidance, emollients and topical and systemic immune-suppressants, some with significant toxicity and transient efficacy; no specific targeted therapies are in clinical use today. As our specific understanding of the immune and molecular pathways that cause different subsets of AD increases, a variety of experimental agents, particularly biologic agents that target pathogenic molecules bring the promise of safe and effective therapeutics for long-term use. This paper discusses the molecular pathways characterizing AD, the contributions of barrier and immune abnormalities to its pathogenesis, and development of new treatments that target key molecules in these pathways. In this review, we will discuss a variety of biologic therapies that are in development or in clinical trials for AD, perhaps revolutionizing treatment of this disease. Biologic agents in moderate to severe AD offer promise for controlling a disease that currently lacks good and safe therapeutics posing a large unmet need. Unfortunately, existing treatments for AD aim to decrease cutaneous inflammation, but are not specific for the pathways driving this disease. An increasing understanding of the immune mechanisms underlying AD brings the promise of narrow targeted therapies as has occurred for psoriasis, another inflammatory skin disease, for which specific biologic agents have been demonstrated to both control the disease and prevent occurrence of new skin lesions. Although no biologic is yet approved for AD, these are exciting times for active therapeutic development in AD that might lead to revolutionary therapeutics for this disease.

  7. Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets.

    PubMed

    Szebeni, Gabor J; Vizler, Csaba; Nagy, Lajos I; Kitajka, Klara; Puskas, Laszlo G

    2016-11-23

    Since the observation of Virchow, it has long been known that the tumor microenvironment constitutes the soil for the infiltration of inflammatory cells and for the release of inflammatory mediators. Under certain circumstances, inflammation remains unresolved and promotes cancer development. Here, we review some of these indisputable experimental and clinical evidences of cancer related smouldering inflammation. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth by several mechanisms, including their inherent immunosuppressive activity, promotion of neoangiogenesis, mediation of epithelial-mesenchymal transition and alteration of cellular metabolism. The pro-tumoral functions of TAMs and MDSCs are further enhanced by their cross-talk offering a myriad of potential anti-cancer therapeutic targets. We highlight these main pro-tumoral mechanisms of myeloid cells and give a general overview of their phenotypical and functional diversity, offering examples of possible therapeutic targets. Pharmacological targeting of inflammatory cells and molecular mediators may result in therapies improving patient condition and prognosis. Here, we review experimental and clinical findings on cancer-related inflammation with a major focus on creating an inventory of current small molecule-based therapeutic interventions targeting cancer-related inflammatory cells: TAMs and MDSCs.

  8. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination

    PubMed Central

    Hussain, Rashad; Ghoumari, Abdel M.; Bielecki, Bartosz; Steibel, Jérôme; Boehm, Nelly; Liere, Philippe; Macklin, Wendy B.; Kumar, Narender; Habert, René; Mhaouty-Kodja, Sakina; Tronche, François; Sitruk-Ware, Regine

    2013-01-01

    Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens. Here, we demonstrate that testosterone treatment efficiently stimulates the formation of new myelin and reverses myelin damage in chronic demyelinated brain lesions, resulting from the long-term administration of cuprizone, which is toxic for oligodendrocytes. In addition to the strong effect of testosterone on myelin repair, the number of activated astrocytes and microglial cells returned to low control levels, indicating a reduction of neuroinflammatory responses. We also identify the neural androgen receptor as a novel therapeutic target for myelin recovery. After the acute demyelination of cerebellar slices in organotypic culture, the remyelinating actions of testosterone could be mimicked by 5α-dihydrotestosterone, a metabolite that is not converted to oestrogens, and blocked by the androgen receptor antagonist flutamide. Testosterone treatment also failed to promote remyelination after chronic cuprizone-induced demyelination in mice with a non-functional androgen receptor. Importantly, testosterone did not stimulate the formation of new myelin sheaths after specific knockout of the androgen receptor in neurons and macroglial cells. Thus, the neural brain androgen receptor is required for the remyelination effect of testosterone, whereas the presence of the receptor in microglia and in peripheral tissues is not sufficient to enhance remyelination. The potent synthetic

  9. Targeting STAT3 with silibinin to improve cancer therapeutics.

    PubMed

    Bosch-Barrera, Joaquim; Queralt, Bernardo; Menendez, Javier A

    2017-07-01

    Signal transducer and activator of transcription 3 (STAT3) has a prominent role in mediating resistance to conventional chemo-/radio-therapies and modern targeted drugs. While a number of STAT3 inhibitors have been shown to enhance the efficacy of therapeutic agents in vitro, the majority of them have yet to enter clinical evaluation mostly because of lack of efficacy issues. Silibinin is the main component of the silymarin complex, a standardized extract obtained from the seeds of the milk thistle herb Silybum marianum. This review summarizes current evidence supporting the ability of silibinin to function as a natural down-modulator of STAT3 activity. We examine the reported capacity of silibinin to reduce the toxicity of cancer treatments and to reverse tumor cell resistance via STAT3 inhibition. We also briefly review our clinical data in cancer patients treated with oral nutraceutical products containing silibinin. The beneficial effects of silibinin might accelerate the design of strategies aimed to overcome and prevent the emergence of STAT3-mediated cancer drug resistance in clinical settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Zebrafish Heart Failure Model for Assessing Therapeutic Agents.

    PubMed

    Zhu, Xiao-Yu; Wu, Si-Qi; Guo, Sheng-Ya; Yang, Hua; Xia, Bo; Li, Ping; Li, Chun-Qi

    2018-03-20

    Heart failure is a leading cause of death and the development of effective and safe therapeutic agents for heart failure has been proven challenging. In this study, taking advantage of larval zebrafish, we developed a zebrafish heart failure model for drug screening and efficacy assessment. Zebrafish at 2 dpf (days postfertilization) were treated with verapamil at a concentration of 200 μM for 30 min, which were determined as optimum conditions for model development. Tested drugs were administered into zebrafish either by direct soaking or circulation microinjection. After treatment, zebrafish were randomly selected and subjected to either visual observation and image acquisition or record videos under a Zebralab Blood Flow System. The therapeutic effects of drugs on zebrafish heart failure were quantified by calculating the efficiency of heart dilatation, venous congestion, cardiac output, and blood flow dynamics. All 8 human heart failure therapeutic drugs (LCZ696, digoxin, irbesartan, metoprolol, qiliqiangxin capsule, enalapril, shenmai injection, and hydrochlorothiazide) showed significant preventive and therapeutic effects on zebrafish heart failure (p < 0.05, p < 0.01, and p < 0.001) in the zebrafish model. The larval zebrafish heart failure model developed and validated in this study could be used for in vivo heart failure studies and for rapid screening and efficacy assessment of preventive and therapeutic drugs.

  11. Potential therapeutic agents for circulatory diseases from Bauhinia glauca Benth.subsp. pernervosa. (Da Ye Guan Men).

    PubMed

    Tang, Yingzhan; Ling, Junhong; Zhang, Peng; Zhang, Xiangrong; Zhang, Na; Wang, Wenli; Li, Jiayuan; Li, Ning

    2015-08-15

    Because of platelets as critical factor in the formation of pathogenic thrombi, anti-platelet activities have been selected as therapeutic target for various circulatory diseases. In order to find potential therapeutic agents, bioassay-directed separation of Bauhinia glauca Benth.subsp. pernervosa. (called Da Ye Guan Men as a traditional Chinese medicine) was performed to get 29 main components (compounds 1-29) from the bioactive part of this herbal. It was the first time to focus on the composition with anti-platelet aggregation activities for this traditional Chinese medicine. The constituents, characterized from the effective extract, were established on the basis of extensive spectral data analysis. Then their anti-platelet aggregation effects were evaluated systematically. On the basis of the chemical profile and biological assay, it was suggested that the flavonoid composition (5 and 18) should be responsible for the anti-platelet aggregation of the herbal because of their significant activities. The primary structure and activity relationship was also discussed briefly. Copyright © 2015. Published by Elsevier Ltd.

  12. S100-alarmins: potential therapeutic targets for arthritis.

    PubMed

    Austermann, Judith; Zenker, Stefanie; Roth, Johannes

    2017-07-01

    In arthritis, inflammatory processes are triggered by numerous factors that are released from joint tissues, promoting joint destruction and pathological progression. During inflammation, a novel family of pro-inflammatory molecules called alarmins is released, amplifying inflammation and joint damage. Areas covered: With regard to the role of the alarmins S100A8 and S100A9 in the pathogenesis of arthritis, recent advances and the future prospects in terms of therapeutic implications are considered. Expert opinion: There is still an urgent need for novel treatment strategies addressing the local mechanisms of joint inflammation and tissue destruction, offering promising therapeutic alternatives. S100A8 and S100A9, which are the most up-regulated alarmins during arthritis, are endogenous triggers of inflammation, defining these proteins as promising targets for local suppression of arthritis. In murine models, the blockade of S100A8/S100A9 ameliorates inflammatory processes, including arthritis, and there are several lines of evidence that S100-alarmins may already be targeted in therapeutic approaches in man.

  13. Memory as a new therapeutic target

    PubMed Central

    Nader, Karim; Hardt, Oliver; Lanius, Ruth

    2013-01-01

    This review aims to demonstrate how an understanding of the brain mechanisms involved in memory provides a basis for; (i) reconceptualizing some mental disorders; (ii) refining existing therapeutic tools; and (iii) designing new ones for targeting processes that maintain these disorders. First, some of the stages which a memory undergoes are defined, and the clinical relevance of an understanding of memory processing by the brain is discussed. This is followed by a brief review of some of the clinical studies that have targeted memory processes. Finally, some new insights provided by the field of neuroscience with implications for conceptualizing mental disorders are presented. PMID:24459414

  14. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways.

    PubMed

    Rengarajan, Thamaraiselvan; Yaacob, Nik Soriani

    2016-10-15

    Epidemiological studies show that consumption of diets rich in fruits and vegetables is associated with lower risks of cancer. This evidence has kindled interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds is fisetin (3,7,3,4-tetrahydroxyflavone), a flavonol that is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. Fisetin has been shown to inhibit or retard the growth of various cancer cells in culture and implanted tumors in vivo. Fisetin targets many components of intracellular signaling pathways including regulators of cell survival and apoptosis, tumor angiogenic and metastatic switches by modulating a distinct set of upstream kinases, transcription factors and their regulators. Current evidence supports the idea that fisetin is a promising agent for cancer treatment. This review summarizes reported anticancer effects of fisetin, and re-emphasizes its potential therapeutic role in the treatment of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Therapeutic drug monitoring of anti-infective agents in critically ill patients.

    PubMed

    Jager, Nynke G L; van Hest, Reinier M; Lipman, Jeffrey; Taccone, Fabio S; Roberts, Jason A

    2016-07-01

    Initial adequate anti-infective therapy is associated with significantly improved clinical outcomes for patients with severe infections. However, in critically ill patients, several pathophysiological and/or iatrogenic factors may affect the pharmacokinetics of anti-infective agents leading to suboptimal drug exposure, in particular during the early phase of therapy. Therapeutic drug monitoring (TDM) may assist to overcome this problem. We discuss the available evidence on the use of TDM in critically ill patient populations for a number of anti-infective agents, including aminoglycosides, β-lactams, glycopeptides, antifungals and antivirals. Also, we present the available evidence on the practices of anti-infective TDM and describe the potential utility of TDM to improve treatment outcome in critically ill patients with severe infections. For aminoglycosides, glycopeptides and voriconazole, beneficial effects of TDM have been established on both drug effectiveness and potential side effects. However, for other drugs, therapeutic ranges need to be further defined to optimize treatment prescription in this setting.

  16. Evolving therapeutic strategies for Duchenne muscular dystrophy: targeting downstream events.

    PubMed

    Tidball, James G; Wehling-Henricks, Michelle

    2004-12-01

    Duchenne muscular dystrophy (DMD) is a progressive, lethal, muscle wasting disease that affects 1 of 3500 boys born worldwide. The disease results from mutation of the dystrophin gene that encodes a cytoskeletal protein associated with the muscle cell membrane. Although gene therapy will likely provide the cure for DMD, it remains on the distant horizon, emphasizing the need for more rapid development of palliative treatments that build on improved understanding of the complex pathology of dystrophin deficiency. In this review, we have focused on therapeutic strategies that target downstream events in the pathologic progression of DMD. Much of this work has been developed initially using the dystrophin-deficient mdx mouse to explore basic features of the pathophysiology of dystrophin deficiency and to test potential therapeutic interventions to slow, reverse, or compensate for functional losses that occur in muscular dystrophy. In some cases, the initial findings in the mdx model have led to clinical treatments for DMD boys that have produced improvements in muscle function and quality of life. Many of these investigations have concerned interventions that can affect protein balance in muscle, by inhibiting specific proteases implicated in the DMD pathology, or by providing anabolic factors or depleting catabolic factors that can contribute to muscle wasting. Other investigations have exploited the use of anti-inflammatory agents that can reduce the contribution of leukocytes to promoting secondary damage to dystrophic muscle. A third general strategy is designed to increase the regenerative capacity of dystrophic muscle and thereby help retain functional muscle mass. Each of these general approaches to slowing the pathology of dystrophin deficiency has yielded encouragement and suggests that targeting downstream events in dystrophinopathy can yield worthwhile, functional improvements in DMD.

  17. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Álvaro

    2014-06-01

    Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further

  18. Hyperglycaemia Induced by Novel Anticancer Agents: An Undesirable Complication or a Potential Therapeutic Opportunity?

    PubMed

    Shah, Rashmi R

    2017-03-01

    Signalling pathways involving protein kinase, insulin-like growth factor 1, insulin receptors and the phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) system are critical in promoting oncogenesis. The use of anticancer agents that inhibit these pathways frequently results in hyperglycaemia, an on-target effect of these drugs. Hyperglycaemia induced by these agents denotes optimal inhibition of the desired pharmacological target. As hyperglycaemia can be treated successfully and effectively with metformin, managing this complication by reducing the dose of or discontinuing the anticancer drug may be counterproductive, especially if it is otherwise effective and clinically tolerated. The use of metformin to treat hyperglycaemia induced by anticancer drugs provides a valuable therapeutic opportunity of potentiating their clinical anticancer effects. Although evidence from randomised controlled trials is awaited, extensive preclinical evidence and clinical observational studies suggest that metformin has anticancer properties that improve overall survival in patients with diabetes and a variety of cancers. Metformin has also been reported to reverse resistance to epidermal growth factor receptor (EGFR)-inhibiting tyrosine kinase inhibitors. This review summarises briefly the role of the above signalling pathways in oncogenesis, the causal association between inhibition of these pathways and hyperglycaemia, and the effect of metformin on clinical outcomes resulting from its anticancer properties. The evidence reviewed herein, albeit almost exclusively from observational studies, provides support for a greater use of metformin not only in patients with cancer and diabetes or drug-induced hyperglycaemia but also potentially as an anticancer drug. However, prospective randomised controlled studies are needed in all these settings to better assess the effect on clinical outcomes of adding metformin to ongoing anticancer therapy.

  19. Stromal cells in breast cancer as a potential therapeutic target

    PubMed Central

    Dykes, Samantha S.; Hughes, Veronica S.; Wiggins, Jennifer M.; Fasanya, Henrietta O.; Tanaka, Mai; Siemann, Dietmar

    2018-01-01

    Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.

  20. Fibrinogen signal transduction as a mediator and therapeutic target in inflammation: lessons from multiple sclerosis.

    PubMed

    Adams, R A; Schachtrup, C; Davalos, D; Tsigelny, I; Akassoglou, K

    2007-01-01

    The blood protein fibrinogen as a ligand for integrin and non-integrin receptors functions as the molecular nexus of coagulation, inflammation and immunity. Studies in animal models and in human disease have demonstrated that extravascular fibrinogen that is deposited in tissues upon vascular rupture is not merely a marker, but a mediator of diseases with an inflammatory component, such as rheumatoid arthritis, multiple sclerosis, sepsis, myocardial infarction and bacterial infection. The present article focuses on the recent discoveries of specific cellular targets and receptors for fibrinogen within tissues that have extended the role of fibrinogen from a coagulation factor to a regulator of inflammation and immunity. Fibrinogen has the potential for selective drug targeting that would target its proinflammatory properties without affecting its beneficial effects in hemostasis, since it interacts with different receptors to mediate blood coagulation and inflammation. Strategies to target receptors for fibrinogen and fibrin within the tissue microenvironment could reveal selective and disease-specific agents for therapeutic intervention in a variety of human diseases associated with fibrin deposition.

  1. Interleukin 16- (IL-16-) Targeted Ultrasound Imaging Agent Improves Detection of Ovarian Tumors in Laying Hens, a Preclinical Model of Spontaneous Ovarian Cancer.

    PubMed

    Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Adur, Malavika K; Utterback, Chet W; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S

    2015-01-01

    Limited resolution of transvaginal ultrasound (TVUS) scanning is a significant barrier to early detection of ovarian cancer (OVCA). Contrast agents have been suggested to improve the resolution of TVUS scanning. Emerging evidence suggests that expression of interleukin 16 (IL-16) by the tumor epithelium and microvessels increases in association with OVCA development and offers a potential target for early OVCA detection. The goal of this study was to examine the feasibility of IL-16-targeted contrast agents in enhancing the intensity of ultrasound imaging from ovarian tumors in hens, a model of spontaneous OVCA. Contrast agents were developed by conjugating biotinylated anti-IL-16 antibodies with streptavidin coated microbubbles. Enhancement of ultrasound signal intensity was determined before and after injection of contrast agents. Following scanning, ovarian tissues were processed for the detection of IL-16 expressing cells and microvessels. Compared with precontrast, contrast imaging enhanced ultrasound signal intensity significantly in OVCA hens at early (P < 0.05) and late stages (P < 0.001). Higher intensities of ultrasound signals in OVCA hens were associated with increased frequencies of IL-16 expressing cells and microvessels. These results suggest that IL-16-targeted contrast agents improve the visualization of ovarian tumors. The laying hen may be a suitable model to test new imaging agents and develop targeted anti-OVCA therapeutics.

  2. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.

    PubMed

    Rajagopal, Sriram; Kumar, R Ajaya; Deevi, Dhanvanthri S; Satyanarayana, Chitkala; Rajagopalan, R

    2003-01-01

    Andrographis paniculata plant extract is known to possess a variety of pharmacological activities. Andrographolide, the major constituent of the extract is implicated towards its pharmacological activity. We studied the cellular processes and targets modulated by andrographolide treatment in human cancer and immune cells. Andrographolide treatment inhibited the in vitro proliferation of different tumor cell lines, representing various types of cancers. The compound exerts direct anticancer activity on cancer cells by cell-cycle arrest at G0/G1 phase through induction of cell-cycle inhibitory protein p27 and decreased expression of cyclin-dependent kinase 4 (CDK4). Immunostimulatory activity of andrographolide is evidenced by increased proliferation of lymphocytes and production of interleukin-2. Andrographolide also enhanced the tumor necrosis factor-alpha production and CD marker expression, resulting in increased cytotoxic activity of lymphocytes against cancer cells, which may contribute for its indirect anticancer activity. The in vivo anticancer activity of the compound is further substantiated against B16F0 melanoma syngenic and HT-29 xenograft models. These results suggest that andrographolide is an interesting pharmacophore with anticancer and immunomodulatory activities and hence has the potential for being developed as a cancer therapeutic agent.

  3. STATINS MORE THAN CHOLESTEROL LOWERING AGENTS IN ALZHEIMER DISEASE: THEIR PLEIOTROPIC FUNCTIONS AS POTENTIAL THERAPEUTIC TARGETS

    PubMed Central

    Barone, Eugenio; Domenico, Fabio Di; Butterfield, D. Allan

    2013-01-01

    Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by severe cognitive impairment, inability to perform activities of daily living and mood changes. Statins, long known to be beneficial in conditions where dyslipidemia occurs by lowering serum cholesterol levels, also have been proposed for use in neurodegenerative conditions, including AD. However, it is not clear that the purported effectiveness of statins in neurodegenerative disorders is directly related to cholesterol-lowering effects of these agents; rather, the pleiotropic functions of statins likely play critical roles. The aim of this review is to provide an overview on the new discoveries about the effects of statin therapy on the oxidative ad nitrosative stress levels as well as on the modulation of the heme oxygenase/biliverdin reductase (HO/BVR) system in the brain. We propose a novel mechanism of action for atorvastatin which, through the activation of HO/BVR-A system, may contribute to the neuroprotective effects thus suggesting a potential therapeutic role in AD and potentially accounting for the observation of decreased AD incidence with persons on statin. PMID:24231510

  4. Biogenic Aldehydes as Therapeutic Targets for Cardiovascular Disease

    PubMed Central

    Nelson, Margaret-Ann M; Baba, Shahid P; Andersonc, Ethan J

    2017-01-01

    Aldehydes are continuously formed in biological systems through enzyme-dependent and spontaneous oxidation of lipids, glucose, and primary amines. These highly reactive, biogenic electrophiles can become toxic via covalent modification of proteins, lipids and DNA. Thus, agents that scavenge aldehydes through conjugation have therapeutic value for a number of major cardiovascular diseases. Several commonly-prescribed drugs (e.g., hydralazine) have been shown to have potent aldehyde-conjugating properties which may contribute to their beneficial effects. Herein, we briefly describe the major sources and toxicities of biogenic aldehydes in cardiovascular system, and provide an overview of drugs that are known to have aldehyde-conjugating effects. Some compounds of phytochemical origin, and histidyl-dipeptides with emerging therapeutic value in this area are also discussed. PMID:28528297

  5. Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma

    PubMed Central

    Sareddy, Gangadhara R.; Li, Xiaonan; Liu, Jinyou; Viswanadhapalli, Suryavathi; Garcia, Lauren; Gruslova, Aleksandra; Cavazos, David; Garcia, Mike; Strom, Anders M.; Gustafsson, Jan-Ake; Tekmal, Rajeshwar Rao; Brenner, Andrew; Vadlamudi, Ratna K.

    2016-01-01

    Glioblastomas (GBM), deadly brain tumors, have greater incidence in males than females. Epidemiological evidence supports a tumor suppressive role of estrogen; however, estrogen as a potential therapy for GBM is limited due to safety concerns. Since GBM express ERβ, a second receptor for estrogen, targeting ERβ with a selective agonist may be a potential novel GBM therapy. In the present study, we examined the therapeutic effect of the selective synthetic ERβ agonist LY500307 using in vitro and in vivo GBM models. Treatment with LY500307 significantly reduced the proliferation of GBM cells with no activity on normal astrocytes in vitro. ERβ agonists promoted apoptosis of GBM cells, and mechanistic studies using RNA sequencing revealed that LY500307 modulated several pathways related to apoptosis, cell cycle, and DNA damage response. Further, LY500307 sensitized GBM cells to several FDA-approved chemotherapeutic drugs including cisplatin, lomustine and temozolomide. LY500307 treatment significantly reduced the in vivo tumor growth and promoted apoptosis of GBM tumors in an orthotopic model and improved the overall survival of tumor-bearing mice in the GL26 syngeneic glioma model. Our results demonstrate that LY500307 has potential as a therapeutic agent for GBM. PMID:27126081

  6. Neurotrophic factors as a therapeutic target for Parkinson's disease.

    PubMed

    Evans, Jonathan R; Barker, Roger A

    2008-04-01

    The search for therapeutic agents that might alter the disease course in Parkinson's disease (PD) is ongoing. One area of particular interest involves neurotrophic factors (NTFs), with those of the glial cell line-derived neurotrophic factor (GDNF) family showing greatest promise. The safety and efficacy of these therapies has recently come into question. Furthermore, many of the key questions pertaining to such therapies, such as the optimal method of delivery, timing of treatment and selection of patients most likely to benefit, remain unanswered. In this review we sought to evaluate the therapeutic potential of NTFs in the treatment of PD. We appraised the evidence provided by both in vitro and in vivo work before proceeding to a critical assessment of the relevant clinical trial data. Relevant literature was identified using a PubMed search of articles published up to October 2007. Search terms included: 'Parkinson's disease', 'Neurotrophic factors', 'BDNF' (Brain-derived neurotrophic factor), 'GDNF' and 'Neurturin'. Original articles were reviewed, and relevant citations from these articles were also appraised. NTF therapy has potential in the treatment of nigrostriatal dysfunction in PD but numerous methodological and safety issues will need to be addressed before this approach can be widely adopted. Furthermore PD is now recognized as being more than a pure motor disorder, and one in which neuronal loss is not just confined to the dopaminergic nigrostriatal system. Non-motor symptomatology in PD is unlikely to benefit from therapies that target only the nigrostriatal system, and this must inform our thinking as to the maximal achievable benefit that NTFs are ever likely to provide.

  7. Targeting targeted agents: open issues for clinical trial design.

    PubMed

    Bria, Emilio; Di Maio, Massimo; Carlini, Paolo; Cuppone, Federica; Giannarelli, Diana; Cognetti, Francesco; Milella, Michele

    2009-05-22

    Molecularly targeted agents for the treatment of solid tumors had entered the market in the last 5 years, with a great impact upon both the scientific community and the society. Many randomized phase III trials conducted in recent years with new targeted agents, despite previous data coming from preclinical research and from phase II trials were often promising, have produced disappointingly negative results. Some other trials have actually met their primary endpoint, demonstrating a statistically significant result favouring the experimental treatment. Unfortunately, with a few relevant exceptions, this advantage is often small, if not negligible, in absolute terms. The difference between statistical significance and clinical relevance should always be considered when translating clinical trials' results in the practice. The reason why this 'revolution' did not significantly impact on cancer treatment to displace chemotherapy from the patient' bedside is in part due to complicated, and in many cases, unknown, mechanisms of action of such drugs; indeed, the traditional way the clinical investigators were used to test the efficacy of 'older' chemotherapeutics, has become 'out of date' from the methodological perspective. As these drugs should be theoretically tailored upon featured bio-markers expressed by the patients, the clinical trial design should follow new rules based upon stronger hypotheses than those developed so far. Indeed, the early phases of basic and clinical drug development are crucial in the correct process which is able to correctly identify the target (when present). Targeted trial designs can result in easier studies, with less, better selected, and supported by stronger proofs of response evidences, patients, in order to not waste time and resources.

  8. Therapeutic Potential of Targeting PAK Signaling.

    PubMed

    Senapedis, William; Crochiere, Marsha; Baloglu, Erkan; Landesman, Yosef

    2016-01-01

    The therapeutic potential of targeting p21-Activated Kinases (PAK1 - 6) for the treatment of cancer has recently gained traction in the biotech industry. Many pharmaceutically-viable ATP competitive inhibitors have been through different stages of pre-clinical development with only a single compound evaluated in human trails (PF-3758309). The best studied functional roles of PAK proteins are control of cell adhesion and migration. PAK proteins are known downstream effectors of Ras signaling with PAK expression elevated in cancer (pancreatic, colon, breast, lung and other solid tumors). In addition altered PAK expression is a confirmed driver of this disease, especially in tumors harboring oncogenic Ras. However, there are very few examples of gain-of-function PAK mutations, as a majority of the cancer types have elevated PAK expression due to gene amplification or transcriptional modifications. There is a substantial number of known substrates affected by this aberrant PAK activity. One particular substrate, β-catenin, has garnered interest given its importance in both normal and cancer cell development. These data place PAK proteins between two major signaling pathways in cancer (Ras and β -catenin), making therapeutic targeting of PAKs an intriguing approach for the treatment of a broad array of oncological malignancies.

  9. Cancer stem cell-targeted therapeutics and delivery strategies.

    PubMed

    Ahmad, Gulzar; Amiji, Mansoor M

    2017-08-01

    Cancer initiating or stem cells (CSCs) are a small population of cells in the tumor mass, which have been reported to be present in different types of cancers. CSCs usually reside within the tumor and are responsible for reoccurrence of cancer. The imprecise, inaccessible nature and increased efflux of conventional therapeutic drugs make these cells resistant to drugs. We discuss the specific markers for identification of these cells, role of CSCs in chemotherapy resistance and use of different therapeutic means to target them, including elucidation of specific cell markers, exploitation of different signaling pathways and use of nanotechnology. Area covered: This review covers cancer stem cell signaling which are used by these cells to maintain their quiescence, stemness and resistant phenotype, distinct cell surface markers, contribution of these cells in drug resistance, inevitability to cure cancer and use of nanotechnology to overcome this hurdle. Expert opinion: Cancer stem cells are the main culprit of our failure to cure cancer. In order to cure cancer along with other cells types in cancer, cancer stem cells need to be targeted in the tumor bed. Nanotechnology solutions can facilitate clinical translation of the therapeutics along with other emerging technologies to cure cancer.

  10. Nitric oxide: cancer target or anticancer agent?

    PubMed

    Mocellin, Simone

    2009-03-01

    Despite the improved understanding of nitric oxide (NO) biology and the large amount of preclinical experiments testing its role in cancer development and progression, it is still debated whether NO should be considered a potential anticancer agent or instead a carcinogen. The complexity of NO effects within a cell and the variability of the final biological outcome depending upon NO levels makes it highly challenging to determine the therapeutic value of interfering with the activity of this intriguing gaseous messenger. This uncertainty has so far halted the clinical implementation of NO-based therapeutics in the field of oncology. Accordingly, only an in depth knowledge of the mechanisms leading to experimental tumor regression or progression in response to NO will allow us to exploit this molecule to fight cancer.

  11. Perspectives on Phytochemicals as Antibacterial Agents: An Outstanding Contribution to Modern Therapeutics.

    PubMed

    Khatri, Savita; Kumar, Manish; Phougat, Neetu; Chaudhary, Renu; Chhillar, Anil Kumar

    2016-01-01

    Despite the considerable advancements in the development of antimicrobial agents, incidents of epidemics due to multi drug resistance in microorganisms have created a massive hazard to mankind. Due to increased resistance against conventional antibiotics, researchers and pharmaceutical industries are more concerned about novel therapeutic agents for the prevention of bacterial infections. Enormous wealth of traditional system of medicine gains importance in health therapies over again. With ancient credentials of potent medicinal plants, various herbal remedies came forward for the management of bacterial infections. The Ayurvedic approach facilitates the development of new therapeutic agents due to structural and functional diversity among phytochemicals. The abundance and diversity is responsible for the characterization of new lead structures from medicinal plants. Industrial interest has increased due to recent research advancements viz. synergistic and high-throughput screening approach for the evaluation of vast variety of phytochemicals. The review certainly emphasizes on the traditional medicines as alternatives to conventional chemotherapeutic drugs. The review briefly describes mode of action of various antibiotics and resistance mechanisms. This review focuses on the chemical diversity and various mechanisms of action of phytochemicals against bacterial pathogens.

  12. Natural products as reservoirs of novel therapeutic agents.

    PubMed

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it.

  13. KRAS as a Therapeutic Target.

    PubMed

    McCormick, Frank

    2015-04-15

    KRAS proteins play a major role in human cancer, but have not yielded to therapeutic attack. New technologies in drug discovery and insights into signaling pathways that KRAS controls have promoted renewed efforts to develop therapies through direct targeting of KRAS itself, new ways of blocking KRAS processing, or by identifying targets that KRAS cancers depend on for survival. Although drugs that block the well-established downstream pathways, RAF-MAPK and PI3K, are being tested in the clinic, new efforts are under way to exploit previously unrecognized vulnerabilities, such as altered metabolic networks, or novel pathways identified through synthetic lethal screens. Furthermore, new ways of suppressing KRAS gene expression and of harnessing the immune system offer further hope that new ways of treating KRAS are finally coming into view. These issues are discussed in this edition of CCR Focus. ©2015 American Association for Cancer Research.

  14. Therapeutic targeting of the p53 pathway in cancer stem cells

    PubMed Central

    Prabhu, Varun V.; Allen, Joshua E.; Hong, Bo; Zhang, Shengliang; Cheng, Hairong; El-Deiry, Wafik S.

    2013-01-01

    Introduction Cancer stem cells are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance, and therapeutic resistance. Restoring wild-type p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target cancer stem cells. Areas covered Therapeutic approaches to restore the function of wild-type p53, cancer and normal stem cell biology in relation to p53, and the downstream effects of p53 on cancer stem cells. Expert opinion The restoration of wild-type p53 function by targeting p53 directly, its interacting proteins, or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and cancer stem cells based on the current evidence linking p53 signaling with these populations. PMID:22998602

  15. PIM kinases as therapeutic targets against advanced melanoma

    PubMed Central

    Shannan, Batool; Watters, Andrea; Chen, Quan; Mollin, Stefan; Dörr, Markus; Meggers, Eric; Xu, Xiaowei; Gimotty, Phyllis A.; Perego, Michela; Li, Ling; Benci, Joseph; Krepler, Clemens; Brafford, Patricia; Zhang, Jie; Wei, Zhi; Zhang, Gao; Liu, Qin; Yin, Xiangfan; Nathanson, Katherine L.; Herlyn, Meenhard; Vultur, Adina

    2016-01-01

    Therapeutic strategies for the treatment of metastatic melanoma show encouraging results in the clinic; however, not all patients respond equally and tumor resistance still poses a challenge. To identify novel therapeutic targets for melanoma, we screened a panel of structurally diverse organometallic inhibitors against human-derived normal and melanoma cells. We observed that a compound that targets PIM kinases (a family of Ser/Thr kinases) preferentially inhibited melanoma cell proliferation, invasion, and viability in adherent and three-dimensional (3D) melanoma models. Assessment of tumor tissue from melanoma patients showed that PIM kinases are expressed in pre- and post-treatment tumors, suggesting PIM kinases as promising targets in the clinic. Using knockdown studies, we showed that PIM1 contributes to melanoma cell proliferation and tumor growth in vivo; however, the presence of PIM2 and PIM3 could also influence the outcome. The inhibition of all PIM isoforms using SGI-1776 (a clinically-available PIM inhibitor) reduced melanoma proliferation and survival in preclinical models of melanoma. This was potentiated in the presence of the BRAF inhibitor PLX4720 and in the presence of PI3K inhibitors. Our findings suggest that PIM inhibitors provide promising additions to the targeted therapies available to melanoma patients. PMID:27448973

  16. IL-13 and the IL-13 receptor as therapeutic targets for asthma and allergic disease.

    PubMed

    Mitchell, Jesse; Dimov, Vesselin; Townley, Robert G

    2010-05-01

    It is widely accepted that T-helper 2 cell (Th2) cytokines play an important role in the maintenance of asthma and allergy. Emerging evidence has highlighted the role of IL-13 in the pathogenesis of these diseases. In particular, IL-13 is involved in the regulation of IgE synthesis, mucus hypersecretion, subepithelial fibrosis and eosinophil infiltration, and has been associated with the regulation of certain chemokine receptors, notably CCR5. Thus, targeting IL-13 and its associated receptors may be a therapeutic approach to the treatment of asthma and/or allergy. Pharmaceutical and biotechnology companies are researching various strategies, based on this approach, aimed at binding IL-13, increasing the level of the IL-13 decoy receptor, IL-13Ralpha2, or blocking the effect of the chemokine receptor CCR5. This review focuses on the therapeutic potential of anti-IL-13 agents and their role in the treatment of asthma and allergy.

  17. Efficacy of Several Therapeutic Agents in a Murine Model of Dry Eye Syndrome

    PubMed Central

    Kilic, Servet; Kulualp, Kadri

    2016-01-01

    In the current study, we used 56 female BALB/c mice with induced dry eye syndrome to evaluate the therapeutic effects of formal saline (FS), sodium hyaluronate (SH), diclofenac sodium (DS), olopatadine (OP), retinoic acid (RA), fluoromethanole (FML), cyclosporine A (CsA), and doxycycline hyclate (DH). All subjects were kept in an evaporative ‘dry eye cabinet’ for the assessment of blink rate, tear production, tear break-up time, and impression cytology prior to (baseline) and during weeks 2, 4, and 6 of the study. The right eyes of all subjects were treated topically with 5 µL of the test agent twice daily during weeks 2 through 6. Impression cytology and tear break-up time differed between time points in all groups and differed between groups at weeks 4 and 6. Blink rate differed by time point only in the FS, FML, and DH groups. Tear production according to the phenol red cotton thread test differed by time point for all groups except RA, CsA, and DH and differed between groups only at week 6. Among the compounds tested in the present study, DS and CsA were the most effective therapeutic agents in our mouse model of dry eye syndrome; these agents likely exert their therapeutic effect through their antiinflammatory activity. PMID:27053565

  18. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI†

    PubMed Central

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing

    2017-01-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 ± 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 ± 0.1 × 10−22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM−1 s−1 and r2 of 37.9 mM−1 s−1 per Gd (55.2 and 75.8 mM−1 s−1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM−1 s−1 per Gd (188.0 mM−1 s−1 per molecule) and r1 of 18.6 mM−1 s−1 per Gd (37.2 mM−1 s−1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI. PMID:26961235

  19. A comprehensive review of heregulins, HER3, and HER4 as potential therapeutic targets in cancer

    PubMed Central

    Mota, Jose Mauricio; Collier, Katharine Ann; Barros Costa, Ricardo Lima; Taxter, Timothy; Kalyan, Aparna; Leite, Caio A.; Chae, Young Kwang; Giles, Francis J.; Carneiro, Benedito A.

    2017-01-01

    Heregulins (HRGs) bind to the receptors HER3 or HER4, induce receptor dimerization, and trigger downstream signaling that leads to tumor progression and resistance to targeted therapies. Increased expression of HRGs has been associated with worse clinical prognosis; therefore, attempts to block HRG-dependent tumor growth have been pursued. This manuscript summarizes the function and signaling of HRGs and review the preclinical evidence of its involvement in carcinogenesis, prognosis, and treatment resistance in several malignancies such as colorectal cancer, non-small cell lung cancer, ovarian cancer, and breast cancer. Agents in preclinical development and clinical trials of novel therapeutics targeting HRG-dependent signaling are also discussed, including anti-HER3 and -HER4 antibodies, anti-metalloproteinase agents, and HRG fusion proteins. Although several trials have indicated an acceptable safety profile, translating preclinical findings into clinical practice remains a challenge in this field, possibly due to the complexity of downstream signaling and patterns of HRG, HER3 and HER4 expression in different cancer subtypes. Improving patient selection through biomarkers and understanding the resistance mechanisms may translate into significant clinical benefits in the near future. PMID:29179520

  20. Critical questions in development of targeted nanoparticle therapeutics.

    PubMed

    Korsmeyer, Richard

    2016-06-01

    One of the fourteen Grand Challenges for Engineering articulated by the US National Academy of Engineering is 'Engineer Better Medicines'. Although there are many ways that better medicines could be engineered, one of the most promising ideas is to improve our ability to deliver the therapeutic molecule more precisely to the desired target. Most conventional drug delivery methods (oral absorption, intravenous infusion etc.) result in systemic exposure to the therapeutic molecule, which places severe constraints on the types of molecules that can be used. A molecule administered by systemic delivery must be effective at low concentrations in the target tissue, yet safe everywhere else in the body. If drug carriers could be developed to deliver therapeutic molecules selectively to the desired target, it should be possible to greatly improve safety and efficacy of therapy. Nanoparticles (and related nanostructures, such as liposomes, nanoemulsions, micelles and dendrimers) are an attractive drug carrier concept because they can be made from a variety of materials engineered to have properties that allow loading and precise delivery of bound therapeutic molecules. The field of targeted nanoparticles has been extraordinarily active in the academic realm, with thousands of articles published over the last few years. Many of these publications seem to demonstrate very promising results in in vitro studies and even in animal models. In addition, a handful of human clinical trials are in progress. Yet, the biopharmaceutical industry has been relatively slow to make major investments in targeted nanoparticle development programs, despite a clear desire to introduce innovative new therapies to the market. What is the reason for such caution? Some degree of caution is no doubt due to the use of novel materials and the unproven nature of targeted nanoparticle technology, but many other unproven technologies have generated intense interest at various times. We believe that the

  1. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  2. Therapeutic target discovery using Boolean network attractors: improvements of kali

    PubMed Central

    Guziolowski, Carito

    2018-01-01

    In a previous article, an algorithm for identifying therapeutic targets in Boolean networks modelling pathological mechanisms was introduced. In the present article, the improvements made on this algorithm, named kali, are described. These improvements are (i) the possibility to work on asynchronous Boolean networks, (ii) a finer assessment of therapeutic targets and (iii) the possibility to use multivalued logic. kali assumes that the attractors of a dynamical system, such as a Boolean network, are associated with the phenotypes of the modelled biological system. Given a logic-based model of pathological mechanisms, kali searches for therapeutic targets able to reduce the reachability of the attractors associated with pathological phenotypes, thus reducing their likeliness. kali is illustrated on an example network and used on a biological case study. The case study is a published logic-based model of bladder tumorigenesis from which kali returns consistent results. However, like any computational tool, kali can predict but cannot replace human expertise: it is a supporting tool for coping with the complexity of biological systems in the field of drug discovery. PMID:29515890

  3. Biogenic Aldehydes as Therapeutic Targets for Cardiovascular Disease.

    PubMed

    Nelson, Margaret-Ann M; Baba, Shahid P; Anderson, Ethan J

    2017-04-01

    Aldehydes are continuously formed in biological systems through enzyme-dependent and spontaneous oxidation of lipids, glucose, and primary amines. These highly reactive, biogenic electrophiles can become toxic via covalent modification of proteins, lipids and DNA. Thus, agents that scavenge aldehydes through conjugation have therapeutic value for a number of major cardiovascular diseases. Several commonly-prescribed drugs (e.g., hydralazine) have been shown to have potent aldehyde-conjugating properties which may contribute to their beneficial effects. Herein, we briefly describe the major sources and toxicities of biogenic aldehydes in cardiovascular system, and provide an overview of drugs that are known to have aldehyde-conjugating effects. Some compounds of phytochemical origin, and histidyl-dipeptides with emerging therapeutic value in this area are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.

    PubMed

    Bar-Zeev, Maya; Livney, Yoav D; Assaraf, Yehuda G

    2017-03-01

    Intrinsic anticancer drug resistance appearing prior to chemotherapy as well as acquired resistance due to drug treatment, remain the dominant impediments towards curative cancer therapy. Hence, novel targeted strategies to overcome cancer drug resistance constitute a key aim of cancer research. In this respect, targeted nanomedicine offers innovative therapeutic strategies to overcome the various limitations of conventional chemotherapy, enabling enhanced selectivity, early and more precise cancer diagnosis, individualized treatment as well as overcoming of drug resistance, including multidrug resistance (MDR). Delivery systems based on nanoparticles (NPs) include diverse platforms enabling a plethora of rationally designed therapeutic nanomedicines. Here we review NPs designed to enhance antitumor drug uptake and selective intracellular accumulation using strategies including passive and active targeting, stimuli-responsive drug activation or target-activated release, triggered solely in the cancer cell or in specific organelles, cutting edge theranostic multifunctional NPs delivering drug combinations for synergistic therapy, while facilitating diagnostics, and personalization of therapeutic regimens. In the current paper we review the recent findings of the past four years and discuss the advantages and limitations of the various novel NPs-based drug delivery systems. Special emphasis is put on in vivo study-based evidences supporting significant therapeutic impact in chemoresistant cancers. A future perspective is proposed for further research and development of complex targeted, multi-stage responsive nanomedical drug delivery systems for personalized cancer diagnosis and efficacious therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Renal toxicity of anticancer agents targeting HER2 and EGFR.

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Porta, Camillo

    2015-12-01

    EGFR and HER2 are found overexpressed and/or activated in many different human malignancies (e.g. breast and colon cancer), and a number of drugs specifically targeting these two tyrosine kinases have been developed over the years as anticancer agents. In the present review, the renal safety profile of presently available agents targeting either HER2 or EGFR will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, even though renal toxicity is not so common with these agents, it may nevertheless happen, especially when these agents are combined with traditional chemotherapeutic agents. As a whole, kidney impairment or dialysis should not be regarded per se as reasons not to administer or to stop an active anti-HER or anti-EGFR anticancer treatment, especially given the possibility of significantly improving the life expectancy of many cancer patients with the use of these agents.

  6. A novel strategy for development of recombinant antitoxin therapeutics tested in a mouse botulism model.

    PubMed

    Mukherjee, Jean; Tremblay, Jacqueline M; Leysath, Clinton E; Ofori, Kwasi; Baldwin, Karen; Feng, Xiaochuan; Bedenice, Daniela; Webb, Robert P; Wright, Patrick M; Smith, Leonard A; Tzipori, Saul; Shoemaker, Charles B

    2012-01-01

    Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant 'targeting agent' that binds a toxin at two unique sites and a 'clearing Ab' that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab V(H) (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit.

  7. Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors.

    PubMed

    Sun, Wen; Fan, Jiangli; Wang, Suzhen; Kang, Yao; Du, Jianjun; Peng, Xiaojun

    2018-03-07

    Tumor-targeted drug delivery systems have been increasingly used to improve the therapeutic efficiency of anticancer drugs and reduce their toxic side effects in vivo. Focused on this point, doxorubicin (DOX)-loaded hydroxyapatite (HAP) nanorods consisting of folic acid (FA) modification (DOX@HAP-FA) were developed for efficient antitumor treatment. The DOX-loaded nanorods were synthesized through in situ coprecipitation and hydrothermal method with a DOX template, demonstrating a new procedure for drug loading in HAP materials. DOX could be efficiently released from DOX@HAP-FA within 24 h in weakly acidic buffer solution (pH = 6.0) because of the degradation of HAP nanorods. With endocytosis under the mediation of folate receptors, the nanorods exhibited enhanced cellular uptake and further degraded, and consequently, the proliferation of targeted cells was inhibited. More importantly, in a tumor-bearing mouse model, DOX@HAP-FA treatment demonstrated excellent tumor growth inhibition. In addition, no apparent side effects were observed during the treatment. These results suggested that DOX@HAP-FA may be a promising nanotherapeutic agent for effective cancer treatment in vivo.

  8. Therapeutics Targeting FGF Signaling Network in Human Diseases.

    PubMed

    Katoh, Masaru

    2016-12-01

    Fibroblast growth factor (FGF) signaling through its receptors, FGFR1, FGFR2, FGFR3, or FGFR4, regulates cell fate, angiogenesis, immunity, and metabolism. Dysregulated FGF signaling causes human diseases, such as breast cancer, chondrodysplasia, gastric cancer, lung cancer, and X-linked hypophosphatemic rickets. Recombinant FGFs are pro-FGF signaling therapeutics for tissue and/or wound repair, whereas FGF analogs and gene therapy are under development for the treatment of cardiovascular disease, diabetes, and osteoarthritis. FGF traps, anti-FGF/FGFR monoclonal antibodies (mAbs), and small-molecule FGFR inhibitors are anti-FGF signaling therapeutics under development for the treatment of cancer, chondrodysplasia, and rickets. Here, I discuss the benefit-risk and cost-effectiveness issues of precision medicine targeting FGFRs, ALK, EGFR, and FLT3. FGFR-targeted therapy should be optimized for cancer treatment, focusing on genomic tests and recurrence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Novel Therapeutic Targets for Chronic Migraine

    DTIC Science & Technology

    2014-11-01

    A D Award Number: W81XWH-11-1-0646 TITLE: Novel Therapeutic Targets for Chronic Migraine PRINCIPAL INVESTIGATORS: Andrew Charles CONTRACTING...for Chronic Migraine 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0646 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew Charles, M.D. and Peter...Chronic migraine is a disabling disorder that affects millions of individuals worldwide, and may result from traumatic brain injury. The purpose of this

  10. Targeting microbial biofilms: current and prospective therapeutic strategies

    PubMed Central

    Koo, Hyun; Allan, Raymond N; Howlin, Robert P; Hall-Stoodley, Luanne; Stoodley, Paul

    2017-01-01

    Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections. The multifactorial nature of biofilm development and drug tolerance imposes great challenges for the use of conventional antimicrobials, and indicates the need for multi-targeted or combinatorial therapies. In this review, we focus on current therapeutic strategies and those that are under development that target vital structural and functional traits of microbial biofilms and drug tolerance mechanisms, including the extracellular matrix and dormant cells. We emphasize strategies that are supported by in vivo or ex vivo studies, highlight emerging biofilm-targeting technologies, and provide a rationale for multi-targeted therapies that are aimed at disrupting the complex biofilm microenvironment. PMID:28944770

  11. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges.

    PubMed

    Kwekkeboom, Rick F J; Lei, Zhiyong; Doevendans, Pieter A; Musters, René J P; Sluijter, Joost P G

    2014-09-01

    Dysregulation of miRNA expression has been associated with many cardiovascular diseases in animal models, as well as in patients. In the present review, we summarize recent findings on the role of miRNAs in cardiovascular diseases and discuss the opportunities, possibilities and challenges of using miRNAs as future therapeutic targets. Furthermore, we focus on the different approaches that can be used to deliver these newly developed miRNA therapeutics to their sites of action. Since siRNAs are structurally homologous with the miRNA therapeutics, important lessons learned from siRNA delivery strategies are discussed that might be applicable to targeted delivery of miRNA therapeutics, thereby reducing costs and potential side effects, and improving efficacy.

  12. Next-Generation Therapeutics for Inflammatory Bowel Disease.

    PubMed

    Dulai, Parambir S; Sandborn, William J

    2016-09-01

    Tumor necrosis factor (TNF) antagonists are the cornerstone of therapy for moderately to severely active inflammatory bowel disease (IBD). Although our understanding of pharmacokinetics, pharmacodynamics, and treatment optimization for these agents has evolved considerably over the past decade, a substantial majority of individuals fail to respond or lose response to TNF-antagonists over time. A need therefore remains for efficacious treatment options in these patients. Alternative immunological targets have now been identified, and several novel therapeutic agents are in development for IBD. In this review article, we discuss these novel therapeutic agents, with a particular focus on those demonstrated to be efficacious in phase 2 and 3 clinical trials. We further discuss considerations to be made when integrating these agents into routine practice over the next decade.

  13. Next generation therapeutics for inflammatory bowel disease

    PubMed Central

    Dulai, Parambir S.; Sandborn, William J.

    2018-01-01

    Tumor necrosis factor (TNF)-antagonists are the cornerstone of therapy for moderately-severely active inflammatory bowel disease (IBD). Although our understanding of pharmacokinetics, pharmacodynamics, and treatment optimization for these agents has evolved considerably over the past decade, a substantial majority of individuals fail to respond or lose response to TNF-antagonists over time. A need therefore remains for efficacious treatment options in these patients. Alternative immunological targets have now been identified, and several novel therapeutic agents are in development for IBD. In this review article we discuss these novel therapeutic agents, with a particular focus on those demonstrated to be efficacious in phase 2 and 3 clinical trials. We further discuss considerations to be made when integrating these agents into routine practice over the next decade. PMID:27461274

  14. Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion

    PubMed Central

    Lin, Peter P.; Gires, Olivier

    2017-01-01

    Enumeration of circulating tumor cells (CTCs) in peripheral blood with the gold standard CellSearchTM has proven prognostic value for tumor recurrence and progression of metastatic disease. Therefore, the further molecular characterization of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic decision-making and to monitor disease progression. The direct analysis of systemic cancer appears particularly important in view of the known disparity in expression of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based heterogeneity between primary and systemic tumor cells, which all substantially complicate monitoring and therapeutic targeting at present. Since CTCs are the potential precursor cells of metastasis, their in-depth molecular profiling should also provide a useful resource for target discovery. The present review will discuss the use of systemically spread cancer cells as liquid biopsy and focus on potential target antigens. PMID:27683128

  15. Natural products as reservoirs of novel therapeutic agents

    PubMed Central

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it. PMID:29805348

  16. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention.

    PubMed

    Tewari, Devesh; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Sureda, Antoni; Farooqi, Ammad Ahmad; Atanasov, Atanas G; Vacca, Rosa Anna; Sethi, Gautam; Bishayee, Anupam

    2018-02-01

    Activator protein 1 (AP-1) is a key transcription factor in the control of several cellular processes responsible for cell survival proliferation and differentiation. Dysfunctional AP-1 expression and activity are involved in several severe diseases, especially inflammatory disorders and cancer. Therefore, targeting AP-1 has recently emerged as an attractive therapeutic strategy for cancer prevention and therapy. This review summarizes our current understanding of AP-1 biology and function as well as explores and discusses several natural bioactive compounds modulating AP-1-associated signaling pathways for cancer prevention and intervention. Current limitations, challenges, and future directions of research are also critically discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Chemical warfare agents. Classes and targets.

    PubMed

    Schwenk, Michael

    2018-09-01

    Synthetic toxic chemicals (toxicants) and biological poisons (toxins) have been developed as chemical warfare agents in the last century. At the time of their initial consideration as chemical weapon, only restricted knowledge existed about their mechanisms of action. There exist two different types of acute toxic action: nonspecific cytotoxic mechanisms with multiple chemo-biological interactions versus specific mechanisms that tend to have just a single or a few target biomolecules. TRPV1- and TRPA-receptors are often involved as chemosensors that induce neurogenic inflammation. The present work briefly surveys classes and toxicologically relevant features of chemical warfare agents and describes mechanisms of toxic action. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. New agents for prostate cancer.

    PubMed

    Agarwal, N; Di Lorenzo, G; Sonpavde, G; Bellmunt, J

    2014-09-01

    The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) has been revolutionized by the arrival of multiple novel agents in the past 2 years. Immunotherapy in the form of sipuleucel-T, androgen axis inhibitors, including abiraterone acetate and enzalutamide, a chemotherapeutic agent, cabazitaxel, and a radiopharmaceutical, radium-223, have all yielded incremental extensions of survival and have been recently approved. A number of other agents appear promising in early studies, suggesting that the armamentarium against castrate-resistant prostate cancer is likely to continue to expand. Emerging androgen pathway inhibitors include androgen synthesis inhibitors (TAK700), androgen receptor inhibitors (ARN-509, ODM-201), AR DNA binding domain inhibitors (EPI-001), selective AR downregulators or SARDs (AZD-3514), and agents that inhibit both androgen synthesis and receptor binding (TOK-001/galeterone). Promising immunotherapeutic agents include poxvirus vaccines and CTLA-4 inhibitor (ipilimumab). Biologic agents targeting the molecular drivers of disease are also being investigated as single agents, including cabozantinib (Met and VEGFR2 inhibitor) and tasquinimod (angiogenesis and immune modulatory agent). Despite the disappointing results seen from studies evaluating docetaxel in combination with other agents, including GVAX, anti-angiogentic agents (bevacizumab, aflibercept, lenalinomide), a SRC kinase inhibitor (dasatinib), endothelin receptor antagonists (atrasentan, zibotentan), and high-dose calcitriol (DN-101), the results from the trial evaluating docetaxel in combination with the clusterin antagonist, custirsen, are eagerly awaited. New therapeutic hurdles consist of discovering new targets, understanding resistance mechanisms, the optimal sequencing and combinations of available agents, as well as biomarkers predictive for benefit. Novel agents targeting bone metastases are being developed following the success of zoledronic acid

  19. [Gap junctions: A new therapeutic target in major depressive disorder?].

    PubMed

    Sarrouilhe, D; Dejean, C

    2015-11-01

    Major depressive disorder is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and is associated with excess mortality, especially from cardiovascular diseases and through suicide. The treatments of this disease with tricyclic antidepressants and monoamine oxidase inhibitors are poorly tolerated and those that selectively target serotonin and norepinephrine re-uptake are not effective in all patients, showing the need to find new therapeutic targets. Post-mortem studies of brains from patients with major depressive disorders described a reduced expression of the gap junction-forming membrane proteins connexin 30 and connexin 43 in the prefrontal cortex and the locus coeruleus. The use of chronic unpredictable stress, a rodent model of depression, suggests that astrocytic gap junction dysfunction contributes to the pathophysiology of major depressive disorder. Chronic treatments of rats with fluoxetine and of rat cultured cortical astrocytes with amitriptyline support the hypothesis that the upregulation of gap junctional intercellular communication between brain astrocytes could be a novel mechanism for the therapeutic effect of antidepressants. In conclusion, astrocytic gap junctions are emerging as a new potential therapeutic target for the treatment of patients with major depressive disorder. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging

    PubMed Central

    2008-01-01

    Targeted metallic nanoparticles have shown potential as a platform for development of molecular-specific contrast agents. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In this study, we investigated the development of aptamer-based gold nanoparticles as contrast agents, using aptamers as targeting agents and gold nanoparticles as imaging agents. We devised a novel conjugation approach using an extended aptamer design where the extension is complementary to an oligonucleotide sequence attached to the surface of the gold nanoparticles. The chemical and optical properties of the aptamer−gold conjugates were characterized using size measurements and oligonucleotide quantitation assays. We demonstrate this conjugation approach to create a contrast agent designed for detection of prostate-specific membrane antigen (PSMA), obtaining reflectance images of PSMA(+) and PSMA(−) cell lines treated with the anti-PSMA aptamer−gold conjugates. This design strategy can easily be modified to incorporate multifunctional agents as part of a multimodal platform for reflectance imaging applications. PMID:18512972

  1. Cordycepin: a bioactive metabolite with therapeutic potential.

    PubMed

    Tuli, Hardeep S; Sharma, Anil K; Sandhu, Sardul S; Kashyap, Dharambir

    2013-11-26

    Cytotoxic nucleoside analogues were the first chemotherapeutic agents for cancer treatment. Cordycepin, an active ingredient of the insect fungus Cordyceps militaris, is a category of compounds that exhibit significant therapeutic potential. Cordycepin has many intracellular targets, including nucleic acid (DNA/RNA), apoptosis and cell cycle, etc. Investigations of the mechanism of anti-cancer drugs have yielded important information for the design of novel drug targets in order to enhance anti-tumor activity with less toxicity to patients. This extensive review covers various molecular aspects of cordycepin interactions with its recognized cellular targets and proposes the development of novel therapeutic strategies for cancer treatment. © 2013 Elsevier Inc. All rights reserved.

  2. The therapeutic potential of cell cycle targeting in multiple myeloma.

    PubMed

    Maes, Anke; Menu, Eline; Veirman, Kim De; Maes, Ken; Vand Erkerken, Karin; De Bruyne, Elke

    2017-10-27

    Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.

  3. Non-coding RNAs: Therapeutic Strategies and Delivery Systems.

    PubMed

    Ling, Hui

    The vast majority of the human genome is transcribed into RNA molecules that do not code for proteins, which could be small ones approximately 20 nucleotide in length, known as microRNAs, or transcripts longer than 200 bp, defined as long noncoding RNAs. The prevalent deregulation of microRNAs in human cancers prompted immediate interest on the therapeutic value of microRNAs as drugs and drug targets. Many features of microRNAs such as well-defined mechanisms, and straightforward oligonucleotide design further make them attractive candidates for therapeutic development. The intensive efforts of exploring microRNA therapeutics are reflected by the large body of preclinical studies using oligonucleotide-based mimicking and blocking, culminated by the recent entry of microRNA therapeutics in clinical trial for several human diseases including cancer. Meanwhile, microRNA therapeutics faces the challenge of effective and safe delivery of nucleic acid therapeutics into the target site. Various chemical modifications of nucleic acids and delivery systems have been developed to increase targeting specificity and efficacy, and reduce the associated side effects including activation of immune response. Recently, long noncoding RNAs become attractive targets for therapeutic intervention because of their association with complex and delicate phenotypes, and their unconventional pharmaceutical activities such as capacity of increasing output of proteins. Here I discuss the general therapeutic strategies targeting noncoding RNAs, review delivery systems developed to maximize noncoding RNA therapeutic efficacy, and offer perspectives on the future development of noncoding RNA targeting agents for colorectal cancer.

  4. In silico prediction of novel therapeutic targets using gene-disease association data.

    PubMed

    Ferrero, Enrico; Dunham, Ian; Sanseau, Philippe

    2017-08-29

    Target identification and validation is a pressing challenge in the pharmaceutical industry, with many of the programmes that fail for efficacy reasons showing poor association between the drug target and the disease. Computational prediction of successful targets could have a considerable impact on attrition rates in the drug discovery pipeline by significantly reducing the initial search space. Here, we explore whether gene-disease association data from the Open Targets platform is sufficient to predict therapeutic targets that are actively being pursued by pharmaceutical companies or are already on the market. To test our hypothesis, we train four different classifiers (a random forest, a support vector machine, a neural network and a gradient boosting machine) on partially labelled data and evaluate their performance using nested cross-validation and testing on an independent set. We then select the best performing model and use it to make predictions on more than 15,000 genes. Finally, we validate our predictions by mining the scientific literature for proposed therapeutic targets. We observe that the data types with the best predictive power are animal models showing a disease-relevant phenotype, differential expression in diseased tissue and genetic association with the disease under investigation. On a test set, the neural network classifier achieves over 71% accuracy with an AUC of 0.76 when predicting therapeutic targets in a semi-supervised learning setting. We use this model to gain insights into current and failed programmes and to predict 1431 novel targets, of which a highly significant proportion has been independently proposed in the literature. Our in silico approach shows that data linking genes and diseases is sufficient to predict novel therapeutic targets effectively and confirms that this type of evidence is essential for formulating or strengthening hypotheses in the target discovery process. Ultimately, more rapid and automated target

  5. [Cyclooxygenase-2: a new therapeutic target in atherosclerosis?].

    PubMed

    Páramo, José A; Beloqui, Oscar; Orbe, Josune

    2006-05-27

    It is now widely accepted that atherosclerosis is a complex chronic inflammatory disorder of the arterial tree associated with several risk factors. From the initial phases to eventual rupture of vulnerable atherosclerotic plaques, a low-grade inflammation, also termed microinflammation, appears to play a key pathogenetic role. Systemic inflammatory markers (C reactive protein, cytokines adhesion molecules) also play a role in this process. Experimental and clinical evidence suggests that cyclooxygenase-2 (COX-2), an enzyme which catalyzes the generation of prostaglandins from arachidonic acid, also contributes to lesion formation. Recent reports by our group have demonstrated increased monocyte COX-2 activity and the production of prostaglandin E2 in relation to cardiovascular risk factors and subclinical atherosclerosis in asymptomatic subjects. Our findings support the notion that the COX-2/prostaglandin E2 axis may have a role, raising the question as to whether its selective inhibition might be an attractive therapeutic target in atherosclerosis. COX-2 inhibitors, collectively called "coxibs" (celecoxib, rofecoxib, valdecoxib, lumiracoxib, etc), held a promise as anti-inflammatory drugs without the some of the side effects of aspirin or non steroidal antiinflammatory agents. However, clinical studies raise several clinically relevant questions as to their beneficial role in atherosclerosis prevention, because of increased thrombogenicity and cardiovascular risk, and therefore coxibs should be restricted in atherosclerosis-prone patients.

  6. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    NASA Astrophysics Data System (ADS)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  7. Therapeutic microRNAs targeting the NF-kappa B Signaling Circuits of Cancers

    PubMed Central

    Tong, Lingying; Yuan, Ye; Wu, Shiyong

    2014-01-01

    MicroRNAs (miRNAs) not only directly regulate NF-κB expression, but also up- or down-regulate NF-κB activity via upstream and downstream signaling pathways of NF-κB. In many cancer cells, miRNA expressions are altered accompanied with an elevation of NF-κB, which often plays a role in promoting cancer development and progression as well as hindering the effectiveness of chemo and radiation therapies. Thus NF-κB-targeting miRNAs have been identified and characterized as potential therapeutics for cancer treatment and sensitizers of chemo and radiotherapies. However, due to cross-targeting and instability of miRNAs, some limitations of using miRNA as cancer therapeutics still exist. In this review, the mechanisms for miRNA-mediated alteration of NF-κB expression and activation in different types of cancers will be discussed. The results of therapeutic use of NF-κB-targeting miRNA for cancer treatment will be examined. Some limitations, challenges and potential strategies in future development of miRNA as cancer therapeutics are also assessed. PMID:25220353

  8. Disrupting the Scaffold to Improve Focal Adhesion Kinase–Targeted Cancer Therapeutics

    PubMed Central

    Cance, William G.; Kurenova, Elena; Marlowe, Timothy; Golubovskaya, Vita

    2013-01-01

    Focal adhesion kinase (FAK) is emerging as a promising cancer target because it is highly expressed at both the transcriptional and translational level in cancer and is involved in many aspects of tumor growth, invasion, and metastasis. Existing FAK-based therapeutics focus on inhibiting the kinase's catalytic function and not the large scaffold it creates that includes many oncogenic receptor tyrosine kinases and tumor suppressor proteins. Targeting the FAK scaffold is a feasible and promising approach for developing highly specific therapeutics that disrupt FAK signaling pathways in cancer. PMID:23532331

  9. Disrupting the scaffold to improve focal adhesion kinase-targeted cancer therapeutics.

    PubMed

    Cance, William G; Kurenova, Elena; Marlowe, Timothy; Golubovskaya, Vita

    2013-03-26

    Focal adhesion kinase (FAK) is emerging as a promising cancer target because it is highly expressed at both the transcriptional and translational level in cancer and is involved in many aspects of tumor growth, invasion, and metastasis. Existing FAK-based therapeutics focus on inhibiting the kinase's catalytic function and not the large scaffold it creates that includes many oncogenic receptor tyrosine kinases and tumor suppressor proteins. Targeting the FAK scaffold is a feasible and promising approach for developing highly specific therapeutics that disrupt FAK signaling pathways in cancer.

  10. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    PubMed

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  11. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    PubMed

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  12. Safety and feasibility of targeted agent combinations in solid tumours.

    PubMed

    Park, Sook Ryun; Davis, Myrtle; Doroshow, James H; Kummar, Shivaani

    2013-03-01

    The plethora of novel molecular-targeted agents (MTAs) has provided an opportunity to selectively target pathways involved in carcinogenesis and tumour progression. Combination strategies of MTAs are being used to inhibit multiple aberrant pathways in the hope of optimizing antitumour efficacy and to prevent development of resistance. While the selection of specific agents in a given combination has been based on biological considerations (including the role of the putative targets in cancer) and the interactions of the agents used in combination, there has been little exploration of the possible enhanced toxicity of combinations resulting from alterations in multiple signalling pathways in normal cell biology. Owing to the complex networks and crosstalk that govern normal and tumour cell proliferation, inhibiting multiple pathways with MTA combinations can result in unpredictable disturbances in normal physiology. This Review focuses on the main toxicities and the lack of tolerability of some common MTA combinations, particularly where evidence of enhanced toxicity compared to either agent alone is documented or there is development of unexpected toxicity. Toxicities caused by MTA combinations highlight the need to introduce new preclinical testing paradigms early in the drug development process for the assessment of chronic toxicities resulting from such combinations.

  13. Histone Deacetylases as New Therapeutic Targets in Triple-negative Breast Cancer: Progress and Promises.

    PubMed

    Garmpis, Nikolaos; Damaskos, Christos; Garmpi, Anna; Kalampokas, Emmanouil; Kalampokas, Theodoros; Spartalis, Eleftherios; Daskalopoulou, Afrodite; Valsami, Serena; Kontos, Michael; Nonni, Afroditi; Kontzoglou, Konstantinos; Perrea, Despina; Nikiteas, Nikolaos; Dimitroulis, Dimitrios

    2017-01-01

    Triple-negative breast cancer (TNBC) lacks expression of estrogen receptor (ER), progesterone receptor (PR) and HER2 gene. It comprises approximately 15-20% of breast cancers (BCs). Unfortunately, TNBC's treatment continues to be a clinical problem because of its relatively poor prognosis, its aggressiveness and the lack of targeted therapies, leaving chemotherapy as the mainstay of treatment. It is essential to find new therapies against TNBC, in order to surpass the resistance and the invasiveness of already existing therapies. Given the fact that epigenetic processes control both the initiation and progression of TNBC, there is an increasing interest in the mechanisms, molecules and signaling pathways that participate at the epigenetic modulation of genes expressed in carcinogenesis. The acetylation of histone proteins provokes the transcription of genes involved in cell growth, and the expression of histone deacetylases (HDACs) is frequently up-regulated in many malignancies. Unfortunately, in the field of BC, HDAC inhibitors have shown limited effect as single agents. Nevertheless, their use in combination with kinase inhibitors, autophagy inhibitors, ionizing radiation, or two HDAC inhibitors together is currently being evaluated. HDAC inhibitors such as suberoylanilidehydroxamic acid (SAHA), sodium butyrate, mocetinostat, panobinostat, entinostat, YCW1 and N-(2-hydroxyphenyl)-2-propylpentanamide have shown promising therapeutic outcomes against TNBC, especially when they are used in combination with other anticancer agents. More studies concerning HDAC inhibitors in breast carcinomas along with a more accurate understanding of the TNBC's pathobiology are required for the possible identification of new therapeutic strategies. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer

    PubMed Central

    Ren, Zhipeng; Zhang, Guoliang

    2017-01-01

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer. PMID:28388588

  15. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer.

    PubMed

    Hou, Xiaobin; Wen, Jiaxin; Ren, Zhipeng; Zhang, Guoliang

    2017-06-27

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer.

  16. Caspase-3 short hairpin RNAs: a potential therapeutic agent in neurodegeneration of aluminum-exposed animal model.

    PubMed

    Zhang, Qinli; Li, Na; Jiao, Xia; Qin, Xiujun; Kaur, Ramanjit; Lu, Xiaoting; Song, Jing; Wang, Linping; Wang, Junming; Niu, Qiao

    2014-01-01

    There is abundant evidence supporting the role of caspases in the development of neurodegenerative disease, including Alzheimer's disease (AD). Therefore, regulating the activity of caspases has been considered as a therapeutic target. However, all the efforts on AD therapy using pan-caspase inhibitors have failed because of uncontrolled adverse effects. Alternatively, the specific knockdown of caspase-3 gene through RNA interference (RNAi) could serve as a future potential therapeutic strategy. The aim of the present study is to down-regulate the expression of caspase-3 gene using lentiviral vector-mediated caspase-3 short hairpin RNA (LV-Caspase-3 shRNA). The effect of LV-Caspase-3 shRNA on apoptosis induced by aluminum (Al) was investigated in primary cultured cortical neurons and validated in C57BL/6J mice. The results indicated an increase in apoptosis and caspase-3 expression in primary cultured neurons and the cortex ofmice exposed to Al, which could be down-regulated by LV-Caspase-3 shRNA. Furthermore, LV-Caspase-3 shRNA reduced neural cell death and improved learning and memory in C57BL/6J mice treated with Al. Our results suggest that LV-caspase-3 shRNA is a potential therapeutic agent to prevent neurodegeneration and cognitive dysfunction in aluminum- exposed animal models. The findings provide a rational gene therapy strategy for AD.

  17. Multi-target screening mines hesperidin as a multi-potent inhibitor: Implication in Alzheimer's disease therapeutics.

    PubMed

    Chakraborty, Sandipan; Bandyopadhyay, Jaya; Chakraborty, Sourav; Basu, Soumalee

    2016-10-04

    Alzheimer's disease (AD) is the most frequent form of neurodegenerative disorder in elderly people. Involvement of several pathogenic events and their interconnections make this disease a complex disorder. Therefore, designing compounds that can inhibit multiple toxic pathways is the most attractive therapeutic strategy in complex disorders like AD. Here, we have designed a multi-tier screening protocol combining ensemble docking to mine BACE1 inhibitor, as well as 2-D QSAR models for anti-amyloidogenic and antioxidant activities. An in house developed phytochemical library of 200 phytochemicals has been screened through this multi-target procedure which mine hesperidin, a flavanone glycoside commonly found in citrus food items, as a multi-potent phytochemical in AD therapeutics. Steady-state and time-resolved fluorescence spectroscopy reveal that binding of hesperidin to the active site of BACE1 induces a conformational transition of the protein from open to closed form. Hesperidin docks close to the catalytic aspartate residues and orients itself in a way that blocks the cavity opening thereby precluding substrate binding. Hesperidin is a high affinity BACE1 inhibitor and only 500 nM of the compound shows complete inhibition of the enzyme activity. Furthermore, ANS and Thioflavin-T binding assay show that hesperidin completely inhibits the amyloid fibril formation which is further supported by atomic force microscopy. Hesperidin exhibits moderate ABTS(+) radical scavenging assay but strong hydroxyl radical scavenging ability, as evident from DNA nicking assay. Present study demonstrates the applicability of a novel multi-target screening procedure to mine multi-potent agents from natural origin for AD therapeutics. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Mitochondrial Agents for Bipolar Disorder.

    PubMed

    Pereira, Círia; Chavarria, Victor; Vian, João; Ashton, Melanie Maree; Berk, Michael; Marx, Wolfgang; Dean, Olivia May

    2018-03-27

    Bipolar disorder is a chronic and often debilitating illness. Current treatment options (both pharmaco- and psychotherapy) have shown efficacy, but for many leave a shortfall in recovery. Advances in the understanding of the pathophysiology of bipolar disorder suggest that interventions that target mitochondrial dysfunction may provide a therapeutic benefit. This review explores the current and growing theoretical rationale as well as existing preclinical and clinical data for those therapies aiming to target the mitochondrion in bipolar disorder. A Clinicaltrials.gov and ANZCTR search was conducted for complete and ongoing trials on mitochondrial agents used in psychiatric disorders. A PubMed search was also conducted for literature published between January 1981 and July 2017. Systematic reviews, randomized controlled trials, observational studies, case series, and animal studies with an emphasis on agents affecting mitochondrial function and its role in bipolar disorder were included. The search was augmented by manually searching the references of key papers and related literature. The results were presented as a narrative review. Mitochondrial agents offer new horizons in mood disorder treatment. While some negative effects have been reported, most compounds are overall well tolerated and have generally benign side-effect profiles. The study of neuroinflammation, neurodegeneration, and mitochondrial function has contributed the understanding of bipolar disorder's pathophysiology. Agents targeting these pathways could be a potential therapeutic strategy. Future directions include identification of novel candidate mitochondrial modulators as well as rigorous and well-powered clinical trials.

  19. VEGFR2-Targeted Ultrasound Imaging Agent Enhances the Detection of Ovarian Tumors at Early Stage in Laying Hens, a Preclinical Model of Spontaneous Ovarian Cancer.

    PubMed

    Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Machado, Sergio A; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S

    2015-07-01

    Tumor-associated neoangiogenesis (TAN) is an early event in ovarian cancer (OVCA) development. Increased expression of vascular endothelial growth factor receptor 2 (VEGFR2) by TAN vessels presents a potential target for early detection by ultrasound imaging. The goal of this study was to examine the suitability of VEGFR2-targeted ultrasound contrast agents in detecting spontaneous OVCA in laying hens. Effects of VEGFR2-targeted contrast agents in enhancing the intensity of ultrasound imaging from spontaneous ovarian tumors in hens were examined in a cross-sectional study. Enhancement in the intensity of ultrasound imaging was determined before and after injection of VEGFR2-targeted contrast agents. All ultrasound images were digitally stored and analyzed off-line. Following scanning, ovarian tissues were collected and processed for histology and detection of VEGFR2-expressing microvessels. Enhancement in visualization of ovarian morphology was detected by gray-scale imaging following injection of VEGFR2-targeted contrast agents. Compared with pre-contrast, contrast imaging enhanced the intensities of ultrasound imaging significantly (p < 0.0001) irrespective of the pathological status of ovaries. In contrast to normal hens, the intensity of ultrasound imaging was significantly (p < 0.0001) higher in hens with early stage OVCA and increased further in hens with late stage OVCA. Higher intensities of ultrasound imaging in hens with OVCA were positively correlated with increased (p < 0.0001) frequencies of VEGFR2-expressing microvessels. The results of this study suggest that VEGFR2-targeted contrast agents enhance the visualization of spontaneous ovarian tumors in hens at early and late stages of OVCA. The laying hen may be a suitable model to test new imaging agents and develop targeted therapeutics. © The Author(s) 2014.

  20. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    PubMed Central

    Oishi, Naoki; Wang, Xin Wei

    2011-01-01

    The cancer stem cell (CSC) hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment. Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). It is believed that hepatic progenitor cells (HPCs) could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC. Here we provide a brief review of

  1. Combination Platinum-based and DNA Damage Response-targeting Cancer Therapy: Evolution and Future Directions

    PubMed Central

    Basourakos, Spyridon P.; Li, Likun; Aparicio, Ana M.; Corn, Paul G.; Kim, Jeri; Thompson, Timothy C.

    2017-01-01

    Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a “molecular landscape,” i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with ”BRCAness”, i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that

  2. Targeting LGR5 in Colorectal Cancer: therapeutic gold or too plastic?

    PubMed

    Morgan, R G; Mortensson, E; Williams, A C

    2018-05-01

    Leucine-rich repeat-containing G-protein coupled receptor (LGR5 or GPR49) potentiates canonical Wnt/β-catenin signalling and is a marker of normal stem cells in several tissues, including the intestine. Consistent with stem cell potential, single isolated LGR5 + cells from the gut generate self-organising crypt/villus structures in vitro termed organoids or 'mini-guts', which accurately model the parent tissue. The well characterised deregulation of Wnt/β-catenin signalling that occurs during the adenoma-carcinoma sequence in colorectal cancer (CRC) renders LGR5 an interesting therapeutic target. Furthermore, recent studies demonstrating that CRC tumours contain LGR5 + subsets and retain a degree of normal tissue architecture has heightened translational interest. Such reports fuel hope that specific subpopulations or molecules within a tumour may be therapeutically targeted to prevent relapse and induce long-term remissions. Despite these observations, many studies within this field have produced conflicting and confusing results with no clear consensus on the therapeutic value of LGR5. This review will recap the various oncogenic and tumour suppressive roles that have been described for the LGR5 molecule in CRC. It will further highlight recent studies indicating the plasticity or redundancy of LGR5 + cells in intestinal cancer progression and assess the overall merit of therapeutically targeting LGR5 in CRC.

  3. Potential Therapeutics for Vascular Cognitive Impairment and Dementia.

    PubMed

    Sun, Miao-Kun

    2017-10-16

    As the human lifespan increases, the number of people affected by age-related dementia is growing at an epidemic pace. Vascular pathology dramatically affects cognitive profiles, resulting in dementia and cognitive impairment. While vascular dementia itself constitutes a medical challenge, hypoperfusion/vascular risk factors enhance amyloid toxicity and other memory-damaging factors and hasten Alzheimer's disease (AD) and other memory disorders' progression, as well as negatively affect treatment outcome. Few therapeutic options are, however, currently available to improve the prognosis of patients with vascular dementia and cognitive impairment, mixed AD dementia with vascular pathology, or other memory disorders. Emerging evidence, however, indicates that, like AD and other memory disorders, synaptic impairment underlies much of the memory impairment in the cognitive decline of vascular cognitive impairment and vascular dementia. Effective rescues of the memory functions might be achieved through synaptic and memory therapeutics, targeting distinct molecular signaling pathways that support the formation of new synapses and maintaining their connections. Potential therapeutic agents include: 1) memory therapeutic agents that rescue synaptic and memory functions after the brain insults; 2) anti-pathologic therapeutics and an effective management of vascular risk factors; and 3) preventative therapeutic agents that achieve memory therapy through functional enhancement. Their development and potential as clinically effective memory therapeutics for vascular cognitive impairment and dementia are discussed in this review. These therapeutic agents are also likely to benefit patients with AD and/or other types of memory disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. A Novel Strategy for Development of Recombinant Antitoxin Therapeutics Tested in a Mouse Botulism Model

    PubMed Central

    Leysath, Clinton E.; Ofori, Kwasi; Baldwin, Karen; Feng, Xiaochuan; Bedenice, Daniela; Webb, Robert P.; Wright, Patrick M.; Smith, Leonard A.; Tzipori, Saul; Shoemaker, Charles B.

    2012-01-01

    Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant ‘targeting agent’ that binds a toxin at two unique sites and a ‘clearing Ab’ that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab VH (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit. PMID:22238680

  5. Endocannabinoid System: A Multi-Facet Therapeutic Target.

    PubMed

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit

    2016-01-01

    the therapeutic targets for both cannabinoid receptor agonists and antagonists. One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that act selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted. Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids. In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as "protective" and "disease inducing substance", time-dependent changes in the expression of cannabinoid receptors.

  6. Molecular predictors of therapeutic response to specific anti-cancer agents

    DOEpatents

    Spellman, Paul T.; Gray, Joe W.; Sadanandam, Anguraj; Heiser, Laura M.; Gibb, William J.; Kuo, Wen-lin; Wang, Nicholas J.

    2016-11-29

    Herein is described the use of a collection of 50 breast cancer cell lines to match responses to 77 conventional and experimental therapeutic agents with transcriptional, proteomic and genomic subtypes found in primary tumors. Almost all compounds produced strong differential responses across the cell lines produced responses that were associated with transcriptional and proteomic subtypes and produced responses that were associated with recurrent genome copy number abnormalities. These associations can now be incorporated into clinical trials that test subtype markers and clinical responses simultaneously.

  7. Structure-Guided Development of Efficacious Antifungal Agents Targeting Candida Glabrata Dihydrofolate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Bolstad, D; Smith, A

    2008-01-01

    Candida glabrata is a lethal fungal pathogen resistant to many antifungal agents and has emerged as a critical target for drug discovery. Over the past several years, we have been developing a class of propargyl-linked antifolates as antimicrobials and hypothesized that these compounds could be effective inhibitors of dihydrofolate reductase (DHFR) from C. glabrata. We initially screened a small collection of these inhibitors and found modest levels of potency. Subsequently, we determined the crystal structure of C. glabrata DHFR bound to a representative inhibitor with data to 1.6 A resolution. Using this structure, we designed and synthesized second-generation inhibitors. Thesemore » inhibitors bind the C. glabrata DHFR enzyme with subnanomolar potency, display greater than 2000-fold levels of selectivity over the human enzyme, and inhibit the growth of C. glabrata at levels observed with clinically employed therapeutics.« less

  8. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewari-Singh, Neera, E-mail: Neera.Tewari-Singh@ucdenver.edu; Jain, Anil K., E-mail: Anil.Jain@ucdenver.edu; Inturi, Swetha, E-mail: Swetha.Inturi@ucdenver.edu

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and everymore » 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. -- Highlights: ► Established injury biomarkers in rabbit corneal culture with nitrogen mustard (NM) ► This NM model is a cost

  9. The therapeutic value of targeting inflammation in gastrointestinal cancers

    PubMed Central

    Sun, Beicheng; Karin, Michael

    2014-01-01

    Inflammation has been implicated in the initiation and progression of gastrointestinal (GI) cancers. Inflammation also plays important roles in subverting immune tolerance, escape from immune surveillance, and conferring resistance to chemotherapeutic agents. Targeting key regulators and mediators of inflammation represents an attractive strategy for GI cancer prevention and treatment. However, the targeting of inflammation in GI cancer is not straight-forward and sometimes inflammation may contribute to tumor regression. We discuss the origins and effects of inflammation in GI cancer and how to target it successfully. PMID:24881011

  10. Therapeutic Oligonucleotides Targeting Liver Disease: TTR Amyloidosis.

    PubMed

    Niemietz, Christoph; Chandhok, Gursimran; Schmidt, Hartmut

    2015-09-30

    The liver has become an increasingly interesting target for oligonucleotide therapy. Mutations of the gene encoding transthyretin (TTR), expressed in vast amounts by the liver, result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP). Misfolded variants of TTR are linked to the establishment of extracellular protein deposition in various tissues, including the heart and the peripheral nervous system. Recent progress in the chemistry and formulation of antisense (ASO) and small interfering RNA (siRNA) designed for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to RNA in a sequence specific manner but exploit different mechanisms. Here we describe major developments that have led to the advent of therapeutic oligonucleotides for treatment of TTR-related disease.

  11. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid or myeloid cells surface antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4).

    PubMed

    Drgona, L; Gudiol, C; Lanini, S; Salzberger, B; Ippolito, G; Mikulska, M

    2018-03-20

    The present review is part of the ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies. To review, from an Infectious Diseases perspective, the safety profile of agents targeting CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4 and to suggest preventive recommendations. Computer-based MEDLINE searches with MeSH terms pertaining to each agent or therapeutic family. The risk and spectrum of infections in patients receiving CD22-targeted agents (i.e. inotuzumab ozogamicin) are similar to those observed with anti-CD20 antibodies. Anti-Pneumocystis prophylaxis and monitoring for cytomegalovirus (CMV) infection is recommended for patients receiving CD30-targeted agents (brentuximab vedotin). Due to the scarcity of data, the risk posed by CD33-targeted agents (gemtuzumab ozogamicin) cannot be assessed. Patients receiving CD38-targeted agents (i.e. daratumumab) face an increased risk of varicella-zoster virus (VZV) infection. Therapy with CD40-targeted agents (lucatumumab or dacetuzumab) is associated with opportunistic infections similar to those observed in hyper-IgM syndrome, and prevention strategies (including anti-Pneumocystis prophylaxis and pre-emptive therapy for CMV infection) are warranted. SLAMF-7 (CD319)-targeted agents (elotuzumab) induce lymphopenia and increase the risk of infection (particularly due to VZV). The impact of CCR4-targeted agents (mogamulizumab) on infection susceptibility is difficult to distinguish from the effect of underlying diseases and concomitant therapies. However, anti-Pneumocystis and anti-herpesvirus prophylaxis and screening for chronic hepatitis B virus (HBV) infection are recommended. Specific management strategies should be put in place to reduce the risk and/or the severity of infectious complications associated to the reviewed agents. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

  12. Pancreas adenocarcinoma: novel therapeutics.

    PubMed

    Krantz, Benjamin A; Yu, Kenneth H; O'Reilly, Eileen M

    2017-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is the third highest cause of cancer-related deaths in the US, and is projected to be second only to non-small cell lung cancer (NSCLC) by the 2020s. Current therapies have a modest impact on survival and median overall survival (mOS) across all stages of disease remains under a year. Over the last decade, however, great strides have been made in the understanding of PDAC pathobiology including the role of the tumor microenvironment (TME), DNA damage repair and mechanism of immunosuppression. Exciting novel therapeutics are in clinical development targeting the TME to increase cytotoxic drug delivery, decrease immunosuppressive cell presence and attack cancer stem cells (CSCs). Immune checkpoint inhibitors, cancer vaccines and other immunotherapies are actively being studied and novel combinations of targeted agents are being pursued. There is a sense of optimism in the oncology community that these scientific advances will translate into improved outcomes for patients with PDAC in the proximate future. In this review, we examine various novel therapeutics under clinical development with a focus on stromal disrupting agents, immunotherapeutics and DNA damage repair strategies.

  13. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging

    PubMed Central

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-01-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane–modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. PMID:26874280

  14. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging.

    PubMed

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-04-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Therapeutic target for protozoal diseases

    DOEpatents

    Rathore, Dharmendar [Blacksburg, VA; Jani, Dewal [Blacksburg, VA; Nagarkatti, Rana [Blacksburg, VA

    2008-10-21

    A novel Fasciclin Related Adhesive Protein (FRAP) from Plasmodium and related parasites is provided as a target for therapeutic intervention in diseases caused by the parasites. FRAP has been shown to play a critical role in adhesion to, or invasion into, host cells by the parasite. Furthermore, FRAP catalyzes the neutralization of heme by the parasite, by promoting its polymerization into hemozoin. This invention provides methods and compositions for therapies based on the administration of protein, DNA or cell-based vaccines and/or antibodies based on FRAP, or antigenic epitopes of FRAP, either alone or in combination with other parasite antigens. Methods for the development of compounds that inhibit the catalytic activity of FRAP, and diagnostic and laboratory methods utilizing FRAP are also provided.

  16. Non-muscarinic therapeutic targets for acute organophosphorus poisoning.

    PubMed

    Rosenbaum, Christopher; Bird, Steven B

    2010-12-01

    Organophosphorus (OP) pesticides are a broad class of acetylcholinesterase inhibitors that are responsible for tremendous morbidity and mortality worldwide, contributing to an estimated 300,000 deaths annually. Current pharmacotherapy for acute OP poisoning includes the use of atropine, an oxime, and benzodiazepines. However, even with such therapy, the mortality from these agents is as high as 40%. It is increasingly recognized that not all OPs are the same. Significant differences exist in their toxicity, lipophilicity, and response to oxime therapy. Other non-muscarinic effects of OP pesticides exist, such as acute and chronic neuromuscular junction failure and central respiratory failure. In part because most of the mortality from these chemicals takes place in the developing world, little National Institutes of Health (NIH) research has been directed towards these agents. However, the similar mechanism of action of OP pesticides and the military nerve agents, along with increasing concerns about chemical terrorism has lead to the formation of the NIH Countermeasures Against Chemical Threats (CounterACT) Program. As part of the CounterACT Program, the NIH has recently designated six OP pesticides as "threat agents". This concept paper describes some of the knowledge gaps related to non-muscarinic effects of OP pesticides and highlights needed areas of further research. Leveraging the current NIH interest in these chemicals to medical necessities in the developing world offers the possibility of delivering new therapeutics where they are needed on a daily basis.

  17. Necroptosis inhibitors as therapeutic targets in inflammation mediated disorders - a review of the current literature and patents.

    PubMed

    Kopalli, Spandana Rajendra; Kang, Tae-Bong; Koppula, Sushruta

    2016-11-01

    Recent studies have shown substantial interplay between the apoptosis and necroptosis pathways. Necroptosis, a form of programmed cell death, has been found to stimulate the immune system contributing to the pathophysiology of several inflammation-mediated disorders. Determining the contribution of necroptotic signaling pathways to inflammation may lead to the development of selective and specific molecular target implicated necroptosis inhibitors. Areas covered: This review summarizes the recently published and patented necroptosis inhibitors as therapeutic targets in inflammation-mediated disorders. The role of several necroptosis inhibitors, focusing on specific signaling molecules, was discussed with particular attention to inflammation-mediated disorders. Data was obtained from Espacenet®, WIPO®, USPTO® patent websites, and other relevant sources (2006-2016). Expert opinion: Necroptosis inhibitors hold promise for treatment of inflammation-mediated clinical conditions in which necroptotic cell death plays a major role. Although necroptosis inhibitors reviewed in this survey showed inhibitory effects against several inflammation-mediated disorders, only a few have passed to the stage of clinical testing and need extensive research for therapeutic practice. Revisiting the existing drugs and developing novel necroptosis inhibiting agents as well as understanding their mechanism are essential. A detailed study of necroptosis function in animal models of inflammation may provide us an alternative strategy for the development of drug-like necroptosis inhibitors.

  18. MRP4/ABCC4 as a new therapeutic target: meta-analysis to determine cAMP binding sites as a tool for drug design.

    PubMed

    Yaneff, Agustín; Sahores, Ana; Gomez, Natalia; Carozzo, Alejandro; Shayo, Carina; Davio, Carlos

    2017-12-29

    MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This metaanalysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. MicroRNA as therapeutic targets for treatment of depression

    PubMed Central

    Hansen, Katelin F; Obrietan, Karl

    2013-01-01

    Depression is a potentially life-threatening mental disorder affecting approximately 300 million people worldwide. Despite much effort, the molecular underpinnings of clinical depression remain poorly defined, and current treatments carry limited therapeutic efficacy and potentially burdensome side effects. Recently, small noncoding RNA molecules known as microRNA (miRNA) have gained prominence as a target for therapeutic intervention, given their capacity to regulate neuronal physiology. Further, mounting evidence suggests a prominent role for miRNA in depressive molecular signaling. Recent studies have demonstrated that dysregulation of miRNA expression occurs in animal models of depression, and in the post-mortem tissue of clinically depressed patients. Investigations into depression-associated miRNA disruption reveals dramatic effects on downstream targets, many of which are thought to contribute to depressive symptoms. Furthermore, selective serotonin reuptake inhibitors, as well as other antidepressant drugs, have the capacity to reverse aberrant depressive miRNA expression and their downstream targets. Given the powerful effects that miRNA have on the central nervous system transcriptome, and the aforementioned studies, there is a compelling rationale to begin to assess the potential contribution of miRNA to depressive etiology. Here, we review the molecular biology of miRNA, our current understanding of miRNA in relation to clinical depression, and the utility of targeting miRNA for antidepressant treatment. PMID:23935365

  20. Molecular basis of human CD22 function and therapeutic targeting.

    PubMed

    Ereño-Orbea, June; Sicard, Taylor; Cui, Hong; Mazhab-Jafari, Mohammad T; Benlekbir, Samir; Guarné, Alba; Rubinstein, John L; Julien, Jean-Philippe

    2017-10-02

    CD22 maintains a baseline level of B-cell inhibition to keep humoral immunity in check. As a B-cell-restricted antigen, CD22 is targeted in therapies against dysregulated B cells that cause autoimmune diseases and blood cancers. Here we report the crystal structure of human CD22 at 2.1 Å resolution, which reveals that specificity for α2-6 sialic acid ligands is dictated by a pre-formed β-hairpin as a unique mode of recognition across sialic acid-binding immunoglobulin-type lectins. The CD22 ectodomain adopts an extended conformation that facilitates concomitant CD22 nanocluster formation on B cells and binding to trans ligands to avert autoimmunity in mammals. We structurally delineate the CD22 site targeted by the therapeutic antibody epratuzumab at 3.1 Å resolution and determine a critical role for CD22 N-linked glycosylation in antibody engagement. Our studies provide molecular insights into mechanisms governing B-cell inhibition and valuable clues for the design of immune modulators in B-cell dysfunction.The B-cell-specific co-receptor CD22 is a therapeutic target for depleting dysregulated B cells. Here the authors structurally characterize the ectodomain of CD22 and present its crystal structure with the bound therapeutic antibody epratuzumab, which gives insights into the mechanism of inhibition of B-cell activation.

  1. Use of Targeted Therapeutics in Epithelial Ovarian Cancer: A Review of Current Literature and Future Directions.

    PubMed

    Vetter, Monica Hagan; Hays, John L

    2018-03-01

    Epithelial ovarian cancer (EOC) is the leading cause of gynecologic cancer death in the United States. Most patients will ultimately fail platinum-based chemotherapy and have the disease recur. Interest is increasing in the use of targeted therapies in the treatment of EOC. This review focuses on the current use of targeted therapeutics in EOC as well as future directions. A literature search of Medline and PubMed was conducted (January 2000-October 2017) to identify recent reports of targeted drugs in EOC. A wide range of targeted therapeutics is currently being used as both monotherapy and in combination in the treatment of EOC. Clinically, the most commonly used classes of drugs currently are antiangiogenics and poly (ADP-ribose) polymerase inhibitors. However, a number of drugs in varying stages in development target a wide range of biochemical pathways. Activity and response rates of these drugs vary greatly. Questions continue about combination drug therapy and appropriate patient selection. The use of targeted therapeutics in the treatment of EOC, both as monotherapy and in combination, will continue to expand as more mechanisms of tumorigenesis are identified. Multiple clinical trials of a wide range of targeted therapeutics are currently ongoing. Evidence-based selection of drug targets and appropriate patient populations will allow strategic application of targeted therapeutics. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.

  2. Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo.

    PubMed

    Bardhan, Rizia; Chen, Wenxue; Bartels, Marc; Perez-Torres, Carlos; Botero, Maria F; McAninch, Robin Ward; Contreras, Alejandro; Schiff, Rachel; Pautler, Robia G; Halas, Naomi J; Joshi, Amit

    2010-12-08

    Nanoparticle-based therapeutics with local delivery and external electromagnetic field modulation holds extraordinary promise for soft-tissue cancers such as breast cancer; however, knowledge of the distribution and fate of nanoparticles in vivo is crucial for clinical translation. Here we demonstrate that multiple diagnostic capabilities can be introduced in photothermal therapeutic nanocomplexes by simultaneously enhancing both near-infrared fluorescence and magnetic resonance imaging (MRI). We track nanocomplexes in vivo, examining the influence of HER2 antibody targeting on nanocomplex distribution over 72 h. This approach provides valuable, detailed information regarding the distribution and fate of complex nanoparticles designed for specific diagnostic and therapeutic functions.

  3. Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo

    PubMed Central

    Bardhan, Rizia; Chen, Wenxue; Bartels, Marc; Perez-Torres, Carlos; Botero, Maria F.; McAninch, Robin Ward; Contreras, Alejandro; Schiff, Rachel; Pautler, Robia G.; Halas, Naomi J.; Joshi, Amit

    2014-01-01

    Nanoparticle-based therapeutics with local delivery and external electromagnetic field modulation holds extraordinary promise for soft-tissue cancers such as breast cancer; however, knowledge of the distribution and fate of nanoparticles in vivo is crucial for clinical translation. Here we demonstrate that multiple diagnostic capabilities can be introduced in photothermal therapeutic nanocomplexes by simultaneously enhancing both near-infrared fluorescence and magnetic resonance imaging (MRI). We track nanocomplexes in vivo, examining the influence of HER2 antibody targeting on nanocomplex distribution over 72 h. This approach provides valuable, detailed information regarding the distribution and fate of complex nanoparticles designed for specific diagnostic and therapeutic functions. PMID:21090693

  4. Impact of Absorption and Transport on Intelligent Therapeutics and Nano-scale Delivery of Protein Therapeutic Agents

    PubMed Central

    Peppas, Nicholas A.; Carr, Daniel A

    2009-01-01

    The combination of materials design and advances in nanotechnology has led to the development of new therapeutic protein delivery systems. The pulmonary, nasal, buccal and other routes have been investigated as delivery options for protein therapy, but none result in improved patient compliances and patient quality of life as the oral route. For the oral administration of these new systems, an understanding of protein transport is essential because of the dynamic nature of the gastrointestinal tract and the barriers to transport that exist. Models have been developed to describe the transport between the gastrointestinal lumen and the bloodstream, and laboratory techniques like cell culture provide a means to investigate the absorption and transport of many therapeutic agents. Biomaterials, including stimuli-sensitive complexation hydrogels, have been investigated as promising carriers for oral delivery. However, the need to develop models that accurately predict protein blood concentration as a function of the material structure and properties still exists. PMID:20161384

  5. Antisense technology: an emerging platform for cardiovascular disease therapeutics.

    PubMed

    Lee, Richard G; Crosby, Jeff; Baker, Brenda F; Graham, Mark J; Crooke, Rosanne M

    2013-12-01

    Antisense oligonucleotides and small interfering RNAs, which suppress the translation of specific mRNA target proteins, are emerging as important therapeutic modalities for the treatment of cardiovascular disease. Over the last 25 years, the advances in all aspects of antisense technology, as well as a detailed understanding of the mechanism of action of antisense drugs, have enabled their use as therapeutic agents. These advancements culminated in the FDA approval of the first chronically administered cardiovascular antisense therapeutic, mipomersen, which targets hepatic apolipoprotein B mRNA. This review provides a brief history of antisense technology, highlights the progression of mipomersen from preclinical studies to multiple Phase III registration trials, and gives an update on the status of other cardiovascular antisense therapeutics currently in the clinic.

  6. Microvascular Targets for Anti-Fibrotic Therapeutics

    PubMed Central

    Pu, Kai-Ming T.; Sava, Parid; Gonzalez, Anjelica L.

    2013-01-01

    Fibrosis is characterized by excessive extracellular matrix deposition and is the pathological outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts the structure and function of the native tissue and can affect multiple organs including the lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most common fibrosis are ineffective. The pathogenesis of fibrosis is the result of aberrant wound healing, therefore, the microvasculature plays an important role, contributing through regulation of leukocyte recruitment, inflammation, and angiogenesis. Further exacerbating the condition, microvascular endothelial cells and pericytes can transdifferentiate into matrix depositing myofibroblasts. The contribution of the microvasculature to fibrotic progression makes its cellular components and acellular products attractive therapeutic targets. In this review, we examine many of the cytokine, matrix, and cellular microvascular components involved in fibrosis and discuss their potential as targets for fibrotic therapies with a particular focus on developing nanotechnologies. PMID:24348218

  7. Toward Personalized Targeted Therapeutics: An Overview.

    PubMed

    Weathers, Shiao-Pei S; Gilbert, Mark R

    2017-04-01

    In neuro-oncology, there has been a movement towards personalized medicine, or tailoring treatment to the individual patient. Ideally, tumor and patient evaluations would lead to the selection of the best treatment (based on tumor characterization) and the right dosing schedule (based on patient characterization). The recent advances in the molecular analysis of glioblastoma have created optimism that personalized targeted therapy is within reach. Although our understanding of the molecular complexity of glioblastoma has increased over the years, the path to developing effective targeted therapeutic strategies is wrought with many challenges, as described in this review. These challenges include disease heterogeneity, clinical and genomic patient variability, limited number of effective treatments, clinical trial inefficiency, drug delivery, and clinical trial support and accrual. To confront these challenges, it will be imperative to devise innovative and adaptive clinical trials in order to accelerate our efforts in improving the outcomes for our patients who have been in desperate need.

  8. Cosmetic Preservatives as Therapeutic Corneal and Scleral Tissue Cross-Linking Agents

    PubMed Central

    Babar, Natasha; Kim, MiJung; Cao, Kerry; Shimizu, Yukari; Kim, Su-Young; Takaoka, Anna; Trokel, Stephen L.; Paik, David C.

    2015-01-01

    Purpose. Previously, aliphatic β-nitroalcohols (BNAs) have been studied as a means to chemically induce tissue cross-linking (TXL) of cornea and sclera. There are a number of related and possibly more potent agents, known as formaldehyde releasers (FARs), that are in commercial use as preservatives in cosmetics and other personal care products. The present study was undertaken in order to screen such compounds for potential clinical utility as therapeutic TXL agents. Methods. A chemical registry of 62 FARs was created from a literature review and included characteristics relevant to TXL such as molecular weight, carcinogenicity/mutagenicity, toxicity, hydrophobicity, and commercial availability. From this registry, five compounds [diazolidinyl urea (DAU), imidazolidinyl urea (IMU), sodium hydroxymethylglycinate (SMG), DMDM hydantoin (DMDM), 5-Ethyl-3,7-dioxa-1-azabicyclo [3.3.0] octane (OCT)] were selected for efficacy screening using two independent systems, an ex vivo rabbit corneal cross-linking simulation setup and incubation of cut scleral tissue pieces. Treatments were conducted at pH 7.4 or 8.5 for 30 minutes. Efficacy was evaluated using thermal denaturation temperature (Tm), and cell toxicity was studied using the trypan blue exclusion method. Results. Cross-linking effects in the five selected FARs were pH and concentration dependent. Overall, the Tm shifts were in agreement with both cornea and sclera. By comparison with BNAs previously reported upon, the FARs identified in this study were significantly more potent but with similar or better cytotoxicity. Conclusions. The FARs, a class of compounds well known to the cosmetic industry, may have utility as therapeutic TXL agents. The compounds studied thus far show promise and will be further tested. PMID:25634979

  9. BET inhibitors in metastatic prostate cancer: therapeutic implications and rational drug combinations.

    PubMed

    Markowski, Mark C; De Marzo, Angelo M; Antonarakis, Emmanuel S

    2017-12-01

    The bromodomain and extra-terminal (BET) family of proteins are epigenetic readers of acetylated histones regulating a vast network of protein expression across many different cancers. Therapeutic targeting of BET is an attractive area of clinical development for metastatic castration-resistant prostate cancer (mCRPC), particularly due to its putative effect on c-MYC expression and its interaction with the androgen receptor (AR). Areas covered: We speculate that a combination approach using inhibitors of BET proteins (BETi) with other targeted therapies may be required to improve the therapeutic index of BET inhibition in the management of prostate cancer. Preclinical data has identified several molecular targets that may enhance the effect of BET inhibition in the clinic. This review will summarize the known preclinical data implicating BET as an important therapeutic target in advanced prostate cancer, highlight the ongoing clinical trials targeting this protein family, and speculate on rationale combination strategies using BETi together with other agents in prostate cancer. A literature search using Pubmed was performed for this review. Expert opinion: Use of BETi in the treatment of mCRPC patients may require the addition of a second novel agent.

  10. Massively parallel de novo protein design for targeted therapeutics.

    PubMed

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J; Hicks, Derrick R; Vergara, Renan; Murapa, Patience; Bernard, Steffen M; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T; Koday, Merika T; Jenkins, Cody M; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M; Fernández-Velasco, D Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A; Fuller, Deborah H; Baker, David

    2017-10-05

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  11. Massively parallel de novo protein design for targeted therapeutics

    NASA Astrophysics Data System (ADS)

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2017-10-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  12. Massively parallel de novo protein design for targeted therapeutics

    PubMed Central

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2018-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37–43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing. PMID:28953867

  13. Recombinant mumps virus as a cancer therapeutic agent

    PubMed Central

    Ammayappan, Arun; Russell, Stephen J; Federspiel, Mark J

    2016-01-01

    Mumps virus belongs to the family of Paramyxoviridae and has the potential to be an oncolytic agent. Mumps virus Urabe strain had been tested in the clinical setting as a treatment for human cancer four decades ago in Japan. These clinical studies demonstrated that mumps virus could be a promising cancer therapeutic agent that showed significant antitumor activity against various types of cancers. Since oncolytic virotherapy was not in the limelight until the beginning of the 21st century, the interest to pursue mumps virus for cancer treatment slowly faded away. Recent success stories of oncolytic clinical trials prompted us to resurrect the mumps virus and to explore its potential for cancer treatment. We have obtained the Urabe strain of mumps virus from Osaka University, Japan, which was used in the earlier human clinical trials. In this report we describe the development of a reverse genetics system from a major isolate of this Urabe strain mumps virus stock, and the construction and characterization of several recombinant mumps viruses with additional transgenes. We present initial data demonstrating these recombinant mumps viruses have oncolytic activity against tumor cell lines in vitro and some efficacy in preliminary pilot animal tumor models. PMID:27556105

  14. Molecular Targeted Intervention for Pancreatic Cancer

    PubMed Central

    Mohammed, Altaf; Janakiram, Naveena B.; Pant, Shubham; Rao, Chinthalapally V.

    2015-01-01

    Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies. PMID:26266422

  15. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  16. Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics.

    PubMed

    Stayton, P S; Hoffman, A S; Murthy, N; Lackey, C; Cheung, C; Tan, P; Klumb, L A; Chilkoti, A; Wilbur, F S; Press, O W

    2000-03-01

    There are many protein and DNA based therapeutics under development in the biotechnology and pharmaceutical industries. Key delivery challenges remain before many of these biomolecular therapeutics reach the clinic. Two important barriers are the effective targeting of drugs to specific tissues and cells and the subsequent intracellular delivery to appropriate cellular compartments. In this review, we summarize protein engineering work aimed at improving the stability and refolding efficiency of antibody fragments used in targeting, and at constructing new streptavidin variants which may offer improved performance in pre-targeting delivery strategies. In addition, we review recent work with pH-responsive polymers that mimic the membrane disruptive properties of viruses and toxins. These polymers could serve as alternatives to fusogenic peptides in gene therapy formulations and to enhance the intracellular delivery of protein therapeutics that function in the cytoplasm.

  17. Genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease

    PubMed Central

    Scott, Robert A.; Freitag, Daniel F.; Li, Li; Chu, Audrey Y.; Surendran, Praveen; Young, Robin; Grarup, Niels; Stancáková, Alena; Chen, Yuning; V.Varga, Tibor; Yaghootkar, Hanieh; Luan, Jian'an; Zhao, Jing Hua; Willems, Sara M.; Wessel, Jennifer; Wang, Shuai; Maruthur, Nisa; Michailidou, Kyriaki; Pirie, Ailith; van der Lee, Sven J.; Gillson, Christopher; Olama, Ali Amin Al; Amouyel, Philippe; Arriola, Larraitz; Arveiler, Dominique; Aviles-Olmos, Iciar; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Garcia, Sara Benlloch; Bis, Joshua C.; Blankenberg, Stefan; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Borecki, Ingrid B.; Bork-Jensen, Jette; Bowden, Sarah; Caldas, Carlos; Caslake, Muriel; Cupples, L. Adrienne; Cruchaga, Carlos; Czajkowski, Jacek; den Hoed, Marcel; Dunn, Janet A.; Earl, Helena M.; Ehret, Georg B.; Ferrannini, Ele; Ferrieres, Jean; Foltynie, Thomas; Ford, Ian; Forouhi, Nita G.; Gianfagna, Francesco; Gonzalez, Carlos; Grioni, Sara; Hiller, Louise; Jansson, Jan-Håkan; Jørgensen, Marit E.; Jukema, J. Wouter; Kaaks, Rudolf; Kee, Frank; Kerrison, Nicola D.; Key, Timothy J.; Kontto, Jukka; Kote-Jarai, Zsofia; Kraja, Aldi T.; Kuulasmaa, Kari; Kuusisto, Johanna; Linneberg, Allan; Liu, Chunyu; Marenne, Gaëlle; Mohlke, Karen L.; Morris, Andrew P.; Muir, Kenneth; Müller-Nurasyid, Martina; Munroe, Patricia B.; Navarro, Carmen; Nielsen, Sune F.; Nilsson, Peter M.; Nordestgaard, Børge G.; Packard, Chris J.; Palli, Domenico; Panico, Salvatore; Peloso, Gina M.; Perola, Markus; Peters, Annette; Poole, Christopher J.; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Salomaa, Veikko; Sánchez, María-José; Sattar, Naveed; Sharp, Stephen J.; Sims, Rebecca; Slimani, Nadia; Smith, Jennifer A.; Thompson, Deborah J.; Trompet, Stella; Tumino, Rosario; van der A, Daphne L.; van der Schouw, Yvonne T.; Virtamo, Jarmo; Walker, Mark; Walter, Klaudia; Abraham, Jean E.; Amundadottir, Laufey T.; Aponte, Jennifer L.; Butterworth, Adam S.; Dupuis, Josée; Easton, Douglas F.; Eeles, Rosalind A.; Erdmann, Jeanette; Franks, Paul W.; Frayling, Timothy M.; Hansen, Torben; Howson, Joanna M. M.; Jørgensen, Torben; Kooner, Jaspal; Laakso, Markku; Langenberg, Claudia; McCarthy, Mark I.; Pankow, James S.; Pedersen, Oluf; Riboli, Elio; Rotter, Jerome I.; Saleheen, Danish; Samani, Nilesh J.; Schunkert, Heribert; Vollenweider, Peter; O'Rahilly, Stephen; Deloukas, Panos; Danesh, John; Goodarzi, Mark O.; Kathiresan, Sekar; Meigs, James B.; Ehm, Margaret G.; Wareham, Nicholas J.; Waterworth, Dawn M.

    2016-01-01

    Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to inform development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in 6 genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing, and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr;rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and lower T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomised controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process. PMID:27252175

  18. PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.

    PubMed

    Wu, Huizi; Huang, Jiaguo

    2016-01-01

    Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on

  19. Impact of systemic targeted agents on the clinical outcomes of patients with brain metastases

    PubMed Central

    Johnson, Adam G.; Ruiz, Jimmy; Hughes, Ryan; Page, Brandi R.; Isom, Scott; Lucas, John T.; McTyre, Emory R.; Houseknecht, Kristin W.; Ayala-Peacock, Diandra N.; Bourland, Daniel J.; Hinson, William H.; Laxton, Adrian W.; Tatter, Stephen B.; Debinski, Waldemar; Watabe, Kounosuke; Chan, Michael D.

    2015-01-01

    Background To determine the clinical benefits of systemic targeted agents across multiple histologies after stereotactic radiosurgery (SRS) for brain metastases. Methods Between 2000 and 2013, 737 patients underwent upfront SRS for brain metastases. Patients were stratified by whether or not they received targeted agents with SRS. 167 (23%) received targeted agents compared to 570 (77%) that received other available treatment options. Time to event data were summarized using Kaplan-Meier plots, and the log rank test was used to determine statistical differences between groups. Results Patients who received SRS with targeted agents vs those that did not had improved overall survival (65% vs. 30% at 12 months, p < 0.0001), improved freedom from local failure (94% vs 90% at 12 months, p = 0.06), improved distant failure-free survival (32% vs. 18% at 12 months, p = 0.0001) and improved freedom from whole brain radiation (88% vs. 77% at 12 months, p = 0.03). Improvement in freedom from local failure was driven by improvements seen in breast cancer (100% vs 92% at 12 months, p < 0.01), and renal cell cancer (100% vs 88%, p = 0.04). Multivariate analysis revealed that use of targeted agents improved all cause mortality (HR = 0.6, p < 0.0001). Conclusions Targeted agent use with SRS appears to improve survival and intracranial outcomes. PMID:26087184

  20. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents

    PubMed Central

    Brai, Annalaura; Fazi, Roberta; Tintori, Cristina; Zamperini, Claudio; Bugli, Francesca; Sanguinetti, Maurizio; Stigliano, Egidio; Esté, José; Badia, Roger; Franco, Sandra; Martinez, Javier P.; Meyerhans, Andreas; Saladini, Francesco; Zazzi, Maurizio; Garbelli, Anna; Botta, Maurizio

    2016-01-01

    Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target. PMID:27118832

  1. Liver cell-targeted delivery of therapeutic molecules.

    PubMed

    Kang, Jeong-Hun; Toita, Riki; Murata, Masaharu

    2016-01-01

    The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies.

  2. Combination Platinum-based and DNA Damage Response-targeting Cancer Therapy: Evolution and Future Directions.

    PubMed

    Basourakos, Spyridon P; Li, Likun; Aparicio, Ana M; Corn, Paul G; Kim, Jeri; Thompson, Timothy C

    2017-01-01

    Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a "molecular landscape," i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with "BRCAness", i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that establish a

  3. An integrated molecular analysis of lung adenocarcinomas identifies potential therapeutic targets among TTF1-negative tumors including DNA repair proteins and Nrf2

    PubMed Central

    Cardnell, Robert J.G.; Behrens, Carmen; Diao, Lixia; Fan, YouHong; Tang, Ximing; Tong, Pan; John D., Minna; Mills, Gordon B.; Heymach, John V.; Wistuba, Ignacio I.; Wang, Jing; Byers., Lauren A.

    2015-01-01

    Purpose Thyroid transcription factor-1 (TTF1) immunohistochemistry (IHC) is used clinically to differentiate primary lung adenocarcinomas (LUAD) from squamous lung cancers and metastatic adenocarcinomas from other primary sites. However, a subset of LUAD (15-20%) does not express TTF1 and TTF1-negative patients have worse clinical outcomes. As there are no established targeted agents with activity in TTF1-negative LUAD, we performed an integrated molecular analysis to identify potential therapeutic targets. Experimental Design Using two clinical LUAD cohorts (274 tumors), one from our institution (PROSPECT) and the TCGA, we interrogated proteomic profiles (by reverse-phase protein array (RPPA)), gene expression, and mutational data. Drug response data from 74 cell lines were used to validate potential therapeutic agents. Results Strong correlations were observed between TTF1 IHC and TTF1 measurements by RPPA (Rho=0.57, p<0.001) and gene expression (NKX2-1, Rho=0.61, p<0.001). Established driver mutations (e.g. BRAF and EGFR) were associated with high TTF1 expression. In contrast, TTF1-negative LUAD had a higher frequency of inactivating KEAP1 mutations (p=0.001). Proteomic profiling identified increased expression of DNA repair proteins (e.g., Chk1 and the DNA repair score) and suppressed PI3K/MAPK signaling among TTF1-negative tumors, with differences in total proteins confirmed at the mRNA level. Cell line analysis showed drugs targeting DNA repair to be more active in TTF1-low cell lines. Conclusions Combined genomic and proteomic analyses demonstrated infrequent alteration of validated lung cancer targets (including the absence of BRAF mutations in TTF1-negative LUAD), but identified novel potential targets for TTF1-negative LUAD includingKEAP1/Nrf2 and DNA repair pathways. PMID:25878335

  4. Glioblastoma Stem Cells as a New Therapeutic Target for Glioblastoma.

    PubMed

    Kalkan, Rasime

    2015-01-01

    Primary and secondary glioblastomas (GBMs) are two distinct diseases. The genetic and epigenetic background of these tumors is highly variable. The treatment procedure for these tumors is often unsuccessful because of the cellular heterogeneity and intrinsic ability of the tumor cells to invade healthy tissues. The fatal outcome of these tumors promotes researchers to find out new markers associated with the prognosis and treatment planning. In this communication, the role of glioblastoma stem cells in tumor progression and the malignant behavior of GBMs are summarized with attention to the signaling pathways and molecular regulators that are involved in maintaining the glioblastoma stem cell phenotype. A better understanding of these stem cell-like cells is necessary for designing new effective treatments and developing novel molecular strategies to target glioblastoma stem cells. We discuss hypoxia as a new therapeutic target for GBM. We focus on the inhibition of signaling pathways, which are associated with the hypoxia-mediated maintenance of glioblastoma stem cells, and the knockdown of hypoxia-inducible factors, which could be identified as attractive molecular target approaches for GBM therapeutics.

  5. Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma.

    PubMed

    Lescarbeau, Rebecca S; Lei, Liang; Bakken, Katrina K; Sims, Peter A; Sarkaria, Jann N; Canoll, Peter; White, Forest M

    2016-06-01

    Glioblastoma (GBM) is the most common malignant primary brain cancer. With a median survival of about a year, new approaches to treating this disease are necessary. To identify signaling molecules regulating GBM progression in a genetically engineered murine model of proneural GBM, we quantified phosphotyrosine-mediated signaling using mass spectrometry. Oncogenic signals, including phosphorylated ERK MAPK, PI3K, and PDGFR, were found to be increased in the murine tumors relative to brain. Phosphorylation of CDK1 pY15, associated with the G2 arrest checkpoint, was identified as the most differentially phosphorylated site, with a 14-fold increase in phosphorylation in the tumors. To assess the role of this checkpoint as a potential therapeutic target, syngeneic primary cell lines derived from these tumors were treated with MK-1775, an inhibitor of Wee1, the kinase responsible for CDK1 Y15 phosphorylation. MK-1775 treatment led to mitotic catastrophe, as defined by increased DNA damage and cell death by apoptosis. To assess the extensibility of targeting Wee1/CDK1 in GBM, patient-derived xenograft (PDX) cell lines were also treated with MK-1775. Although the response was more heterogeneous, on-target Wee1 inhibition led to decreased CDK1 Y15 phosphorylation and increased DNA damage and apoptosis in each line. These results were also validated in vivo, where single-agent MK-1775 demonstrated an antitumor effect on a flank PDX tumor model, increasing mouse survival by 1.74-fold. This study highlights the ability of unbiased quantitative phosphoproteomics to reveal therapeutic targets in tumor models, and the potential for Wee1 inhibition as a treatment approach in preclinical models of GBM. Mol Cancer Ther; 15(6); 1332-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma.

    PubMed

    Lee, Jangwook; Min, Hyun-Su; You, Dong Gil; Kim, Kwangmeyung; Kwon, Ick Chan; Rhim, Taiyoun; Lee, Kuen Yong

    2016-02-10

    The development of safe and efficient diagnostic/therapeutic agents for treating cancer in clinics remains challenging due to the potential toxicity of conventional agents. Although the annual incidence of neuroblastoma is not that high, the disease mainly occurs in children, a population vulnerable to toxic contrast agents and therapeutics. We demonstrate here that cancer-targeting, gas-generating polymeric nanoparticles are useful as a theranostic tool for ultrasound (US) imaging and treating neuroblastoma. We encapsulated calcium carbonate using poly(d,l-lactide-co-glycolide) and created gas-generating polymer nanoparticles (GNPs). These nanoparticles release carbon dioxide bubbles under acidic conditions and enhance US signals. When GNPs are modified using rabies virus glycoprotein (RVG) peptide, a targeting moiety to neuroblastoma, RVG-GNPs effectively accumulate at the tumor site and substantially enhance US signals in a tumor-bearing mouse model. Intravenous administration of RVG-GNPs also reduces tumor growth in the mouse model without the use of conventional therapeutic agents. This approach to developing theranostic agents with disease-targeting ability may provide useful strategy for the detection and treatment of cancers, allowing safe and efficient clinical applications with fewer side effects than may occur with conventional agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    PubMed

    Straube, Andreas; Aicher, Bernhard; Fiebich, Bernd L; Haag, Gunther

    2011-03-31

    Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect.As an example the fixed-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Multitarget therapeutics like combined analgesics broaden the array of therapeutic options, enable the completeness

  8. Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    PubMed Central

    2011-01-01

    Background Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. Discussion In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect. As an example the fixesd-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Summary Multitarget therapeutics like combined analgesics broaden the array of therapeutic

  9. Epigenetics and Therapeutic Targets Mediating Neuroprotection

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020

  10. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics.

    PubMed

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian

    2015-08-01

    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  11. Newly Engineered Magnetic Erythrocytes for Sustained and Targeted Delivery of Anti-Cancer Therapeutic Compounds

    PubMed Central

    Taranta, Monia; Naldi, Ilaria

    2011-01-01

    Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy. PMID:21373641

  12. RGS17: an emerging therapeutic target for lung and prostate cancers

    PubMed Central

    Bodle, Christopher R; Mackie, Duncan I; Roman, David L

    2013-01-01

    Ligands for G-protein-coupled receptors (GPCRs) represent approximately 50% of currently marketed drugs. RGS proteins modulate heterotrimeric G proteins and, thus, GPCR signaling, by accelerating the intrinsic GTPase activity of the Gα subunit. Given the prevalence of GPCR targeted therapeutics and the role RGS proteins play in G protein signaling, some RGS proteins are emerging as targets in their own right. One such RGS protein is RGS17. Increased RGS17 expression in some prostate and lung cancers has been demonstrated to support cancer progression, while reduced expression of RGS17 can lead to development of chemotherapeutic resistance in ovarian cancer. High-throughput screening is a powerful tool for lead compound identification, and utilization of high-throughput technologies has led to the discovery of several RGS inhibitors, thus far. As screening technologies advance, the identification of novel lead compounds the subsequent development of targeted therapeutics appears promising. PMID:23734683

  13. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas.

    PubMed

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-06-01

    In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.

  14. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer.

    PubMed

    Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E

    2017-01-03

    Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.

  15. LHRH-Targeted Drug Delivery Systems for Cancer Therapy.

    PubMed

    Li, Xiaoning; Taratula, Oleh; Taratula, Olena; Schumann, Canan; Minko, Tamara

    2017-01-01

    Targeted delivery of therapeutic and diagnostic agents to cancer sites has significant potential to improve the therapeutic outcome of treatment while minimizing severe side effects. It is widely accepted that decoration of the drug delivery systems with targeting ligands that bind specifically to the receptors on the cancer cells is a promising strategy that may substantially enhance accumulation of anticancer agents in the tumors. Due to the transformed cellular nature, cancer cells exhibit a variety of overexpressed cell surface receptors for peptides, hormones, and essential nutrients, providing a significant number of target candidates for selective drug delivery. Among others, luteinizing hormonereleasing hormone (LHRH) receptors are overexpressed in the majority of cancers, while their expression in healthy tissues, apart from pituitary cells, is limited. The recent studies indicate that LHRH peptides can be employed to efficiently guide anticancer and imaging agents directly to cancerous cells, thereby increasing the amount of these substances in tumor tissue and preventing normal cells from unnecessary exposure. This manuscript provides an overview of the targeted drug delivery platforms that take advantage of the LHRH receptors overexpression by cancer cells.

  16. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Swati; Yadav, Anuradha; Academy of Scientific and Innovative Research

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found thatmore » the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models. - Highlights: • Peroxisome -activated receptors (PPARs) serve to be a promising therapeutic target for several neurodegenerative disorders. • PPAR agonist as well as provides neuroprotection in vitro as well as in vivo animal models of neurodegenerative disorders. • PPAR activating anti-inflammatory drugs use is effective in decreasing progression of neurodegenerative diseases.« less

  17. MicroRNAs as Therapeutic Targets and Colorectal Cancer Therapeutics.

    PubMed

    Yamamoto, Hirofumi; Mori, Masaki

    The diagnosis and treatment of colorectal cancer (CRC) have improved greatly over recent years; however, CRC is still one of the most common cancers and a major cause of cancer death worldwide. Several recently developed drugs and treatment strategies are currently in clinical trials; however, there is still a compelling need for novel, highly efficacious therapies. MicroRNAs (miRNAs) are short non-coding RNAs consisting of 20-25 nucleotides that regulate post-transcriptional gene expression by binding to the 3'-untranslated region of mRNAs. miRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Since their initial discovery, a large number of miRNAs have been identified as oncogenes, whereas others function as tumor suppressors. Furthermore, signaling pathways that are important in CRC (e.g. the WNT, MAPK, TGF-β, TP53 and PI3K pathways) are regulated by miRNAs. A single miRNA can simultaneously regulate several target genes and pathways, indicating the therapeutic potential of miRNAs in CRC. However, significant obstacles remain to be overcome, such as an efficient miRNA delivery system, and the assessment of safety and side effects. Thus, miRNA therapy is still developing and possesses great potential for the treatment of CRC. In this chapter, we focus on miRNAs related to CRC and summarize previous studies that emphasize the therapeutic aspects of miRNAs in CRC.

  18. Phospho-TCTP as a therapeutic target of dihydroartemisinin for aggressive breast cancer cells

    PubMed Central

    Lucibello, Maria; Adanti, Sara; Antelmi, Ester; Dezi, Dario; Ciafrè, Stefania; Carcangiu, Maria Luisa; Zonfrillo, Manuela; Nicotera, Giuseppe; Sica, Lorenzo; De Braud, Filippo; Pierimarchi, Pasquale

    2015-01-01

    Upregulation of Translationally Controlled Tumor Protein (TCTP) is associated with poorly differentiated aggressive tumors, including breast cancer, but the underlying mechanism(s) are still debated. Here, we show that in breast cancer cell lines TCTP is primarily localized in the nucleus, mostly in the phosphorylated form. The effects of Dihydroartemisinin (DHA), an anti-malaria agent that binds TCTP, were tested on breast cancer cells. DHA decreases cell proliferation and induces apoptotic cell death by targeting the phosphorylated form of TCTP. Remarkably, DHA enhances the anti-tumor effects of Doxorubicin in triple negative breast cancer cells resulting in an increased level of apoptosis. DHA also synergizes with Trastuzumab, used to treat HER2/neu positive breast cancers, to induce apoptosis of tumor cells. Finally, we present new clinical data that nuclear phospho-TCTP overexpression in primary breast cancer tissue is associated with high histological grade, increase expression of Ki-67 and with ER-negative breast cancer subtypes. Notably, phospho-TCTP expression levels increase in trastuzumab-resistant breast tumors, suggesting a possible role of phospho-TCTP as a new prognostic marker. In conclusion, the anti-tumor effect of DHA in vitro with conventional chemotherapeutics suggests a novel therapeutic strategy and identifies phospho-TCTP as a new promising target for advanced breast cancer. PMID:25779659

  19. Radioimmunotherapy of non-Hodgkin's lymphoma: molecular targeting and novel agents.

    PubMed

    Pauwels, Ernest K J; Erba, Paola

    2007-03-01

    In recent years monoclonal antibodies have played an important role in cancer therapy. This successful track is grosso modo based upon developments in the production of desired antibody molecules, the identification of suitable tumor antigens and the construction of chimeric and fully humanized antibodies. Especially in hematologic disorders, notably in non-Hodgkin's disease, the monoclonal antibody rituximab has proven to be of value in relapsed or refractory disease. Yet, to overcome the nonoptimal properties of this drug, especially in relation to the time to next therapy, radiolabeled immunoconjugates have been synthesized. For this purpose, the radionuclide yttrium-90 has been linked to the monoclonal antibody ibritumomab via the chelator tiuxetan. The most recent clinical results of this radiolabeled agent versus the nonradioactive drug treatment are reviewed in this paper. Furthermore, attention is paid to the monoclonal antibody tositumomab labeled with iodine-131, of which the first clinical results have become available most recently. This overview also mentions possibilities to increase the therapeutic efficacy of radionuclide immunoconjugates. This can be achieved by enhancing the targeting characteristics of the antibody and the use of alpha radiation-emitting radionuclides.

  20. Complement therapeutics in inflammatory diseases: promising drug candidates for C3-targeted intervention.

    PubMed

    Mastellos, D C; Ricklin, D; Hajishengallis, E; Hajishengallis, G; Lambris, J D

    2016-02-01

    There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents

    PubMed Central

    Zhou, Zhiguo

    2013-01-01

    Fullerene medicine is a new but rapidly growing research subject. Fullerene has a number of desired structural, physical and chemical properties to be adapted for biological use including antioxidants, anti-aging, anti-inflammation, photodynamic therapy, drug delivery, and magnetic resonance imaging contrast agents. Chemical functionalization of fullerenes has led to several interesting compounds with very promising preclinical efficacy, pharmacokinetic and safety data. However, there is no clinical evaluation or human use except in fullerene-based cosmetic products for human skincare. This article summarizes recent advances in liposome formulation of fullerenes for the use in therapeutics and molecular imaging. PMID:24300561

  2. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015)

    PubMed Central

    Le Borgne, Marc; Haidar, Samer; Duval, Olivier; Wünsch, Bernhard; Jose, Joachim

    2015-01-01

    The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report. PMID:26712767

  3. Identification of glycogen synthase kinase 3α as a therapeutic target in melanoma

    PubMed Central

    Madhunapantula, SubbaRao V.; Sharma, Arati; Gowda, Raghavendra; Robertson, Gavin P.

    2014-01-01

    Summary Deregulated expression or activity of kinases can lead to melanomas, but often the particular kinase isoform causing the effect is not well established, making identification and validation of different isoforms regulating disease development especially important. To accomplish this objective, an siRNA screen was undertaken that which identified glycogen synthase kinase 3α (GSK3α) as an important melanoma growth regulator. Melanocytes and melanoma cell lines representing various stages of melanoma tumor progression expressed both GSK3α and GSK3β, but analysis of tumors in patients with melanoma showed elevated expression of GSK3α in 72% of samples, which was not observed for GSK3β. Furthermore, 80% of tumors in patients with melanoma expressed elevated levels of catalytically active phosphorylated GSK3α (pGSK3αY279), but not phosphorylated GSK3β (pGSK3βY216). siRNA-mediated reduction in GSK3α protein levels reduced melanoma cell survival and proliferation, sensitized cells to apoptosis-inducing agents and decreased xenografted tumor development by up to 56%. Mechanistically, inhibiting GSK3α expression using siRNA or the pharmacological agent AR-A014418 arrested melanoma cells in the G0/G1 phase of the cell cycle and induced apoptotic death to retard tumorigenesis. Therefore, GSK3α is a key therapeutic target in melanoma. PMID:24034838

  4. Progranulin as a biomarker and potential therapeutic agent.

    PubMed

    Abella, Vanessa; Pino, Jesús; Scotece, Morena; Conde, Javier; Lago, Francisca; Gonzalez-Gay, Miguel Angel; Mera, Antonio; Gómez, Rodolfo; Mobasheri, Ali; Gualillo, Oreste

    2017-10-01

    Progranulin is a cysteine-rich secreted protein with diverse pleiotropic actions and participates in several processes, such as inflammation or tumorigenesis. Progranulin was first identified as a growth factor and, recently, it was characterised as an adipokine implicated in obesity, insulin resistance and rheumatic disease. At a central level, progranulin acts as a neurotropic and neuroprotective factor and protects from neural degeneration. In this review, we summarise the most recent research advances concerning the potential role of progranulin as a therapeutic target and biomarker in cancer, neurodegenerative and inflammatory diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis, characterization, and application of monosized mesoporous silica nanoparticle-supported lipid bilayers for targeted therapeutic delivery to individual cells

    NASA Astrophysics Data System (ADS)

    Durfee, Paul Nicholas

    Mesoporous silica nanoparticle (MSNP) supported-lipid bilayers, termed 'protocells,' represent a potentially transformative class of therapeutic and theranostic delivery vehicles. The field of targeted drug delivery poses considerable challenges that cannot be addressed with a single 'magic bullet'. Consequently, the protocell has been designed as a modular platform composed of interchangeable biocompatible components. The mesoporous silica core can have variable size and shape to direct biodistribution and controlled pore size and surface chemistry to accommodate diverse cargos. The encapsulating supported lipid bilayer can be modified with targeting and trafficking ligands as well as polyethylene glycol (PEG) to effect selective binding, endosomal escape of cargo, drug efflux prevention, and potent therapeutic delivery, while maintaining in vivo colloidal stability. Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here, we investigate protocells, an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayer composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSNP and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index < 0.1) on MSNP cores with

  6. Brain: The Potential Diagnostic and Therapeutic Target for Glaucoma.

    PubMed

    Faiq, Muneeb A; Dada, Rima; Kumar, Ashutosh; Saluja, Daman; Dada, Tanuj

    2016-01-01

    Glaucoma is a form of multifactorial ocular neurodegeneration with immensely complex etiology, pathogenesis and pathology. Though the mainstream therapeutic management of glaucoma is lowering of intraocular pressure, there is, as of now, no cure for the disease. New evidences ardently suggest brain involvement in all aspects of this malady. This consequently advocates the opinion that brain should be the spotlight of glaucoma research and may form the impending and promising target for glaucoma diagnosis and treatment. The present analysis endeavors at understanding glaucoma vis-à-vis brain structural and/or functional derangement and central nervous system (CNS) degeneration. Commencing with the premise of developing some understanding about the brain-nature of ocular structures; we discuss the nature of the cellular and molecular moieties involved in glaucoma and Alzheimer's disease. Substantial deal of literature implies that glaucoma may well be a disease of the brain, nevertheless, manifesting as progressive loss of vision. If that is the case, then targeting brain will be far more imperative in glaucoma therapeutics than any other remedial regimen currently being endorsed.

  7. Evaluation of 188Re-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model.

    PubMed

    Huang, Feng-Yun J; Lee, Te-Wei; Chang, Chih-Hsien; Chen, Liang-Cheng; Hsu, Wei-Hsin; Chang, Chien-Wen; Lo, Jem-Mau

    2015-01-01

    In this study, the (188)Re-labeled PEGylated nanoliposome ((188)Re-liposome) was prepared and evaluated as a therapeutic agent for glioma. The reporter cell line, F98(luc) was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The maximum tolerated dose applicable in Fischer344 rats was explored via body weight monitoring of the rats after single intravenous injection of (188)Re-liposome with varying dosages before the treatment study. The OLINDA/EXM 1.1 software was utilized for estimating the radiation dosimetry. To assess the therapeutic efficacy, tumor-bearing rats were intravenously administered (188)Re-liposome or normal saline followed by monitoring of the tumor growth and animal survival time. In addition, the histopathological examinations of tumors were conducted on the (188)Re-liposome-treated rats. By using bioluminescent imaging, the well-established reporter cell line (F98(luc)) showed a high relationship between cell number and its bioluminescent intensity (R(2)=0.99) in vitro; furthermore, it could also provide clear tumor imaging for monitoring tumor growth in vivo. The maximum tolerated dose of (188)Re-liposome in Fischer344 rats was estimated to be 333 MBq. According to the dosimetry results, higher equivalent doses were observed in spleen and kidneys while very less were in normal brain, red marrow, and thyroid. For therapeutic efficacy study, the progression of tumor growth in terms of tumor volume and/or tumor weight was significantly slower for the (188)Re-liposome-treated group than the control group (P<0.05). As a result, the lifespan of glioma-bearing rats treated with (188)Re-liposome was prolonged 10.67% compared to the control group. The radiotherapeutic evaluation by dosimetry and survival studies have demonstrated that passive targeting (188)Re-liposome via systemic administration can significantly prolong the lifespan of orthotopic glioma

  8. Astrocytes Pathology in ALS: A Potential Therapeutic Target?

    PubMed

    Johann, Sonja

    2017-01-01

    The mechanisms underlying neurodegeneration in amyotrophic lateral sclerosis (ALS) are multifactorial and include genetic and environmental factors. Nowadays, it is well accepted that neuronal loss is driven by non-cell autonomous toxicity. Non-neuronal cells, such as astrocytes, have been described to significantly contribute to motoneuron cell death and disease progression in cell culture experiments and animal models of ALS. Astrocytes are essential for neuronal survival and function by regulating neurotransmitter and ion homeostasis, immune response, blood flow and glucose uptake, antioxidant defence and growth factor release. Based on their significant functions in "housekeeping" the central nervous system (CNS), they are no longer thought to be passive bystanders but rather contributors to ALS pathogenesis. Findings from animal models have broadened our knowledge about different pathomechanisms in ALS, but therapeutic approaches to impede disease progression failed. So far, there is no cure for ALS and effective medication to slow down disease progression is limited. Targeting only a single aspect of this multifactorial disease may exhibit therapeutic limitations. Hence, novel cellular targets must be defined and new pharmaceutical strategies, such as combinatorial drug therapies are urgently needed. The present review discusses the physiological role of astrocytes and current hypotheses of astrocyte pathology in ALS. Furthermore, recent investigation of potential drug candidates in astrocyte cell culture systems and animal models, as well as data obtained from clinical trials, will be addressed. The central role of astrocytes in ALS pathogenesis makes them a promising target for pharmaceutical interventions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. A new molecular targeted therapeutic approach for renal cell carcinoma with a p16 functional peptide using a novel transporter system.

    PubMed

    Zennami, Kenji; Yoshikawa, Kazuhiro; Kondo, Eisaku; Nakamura, Kogenta; Upsilonamada, Yoshiaki; De Velasco, Marco A; Tanaka, Motoyoshi; Uemura, Hirotsugu; Shimazui, Toru; Akaza, Hideyuki; Saga, Shinsuke; Ueda, Ryuzo; Honda, Nobuaki

    2011-08-01

    Molecular targeting agents have become formidable anticancer weapons showing much promise against refractory tumors and functional peptides and are among the more desirable of these nanobio-tools. Intracellular delivery of multiple functional peptides forms the basis for a potent, non-invasive mode of delivery, providing distinctive therapeutic advantages. We examine the growth suppression efficiency of human renal cell carcinoma (RCC) by single-peptide targeting. We simultaneously introduced p16INK4a tumor suppressor peptides by Wr-T-mediated peptide delivery. Wr-T-mediated transport of p16INK4a functional peptide into 10 RCC lines, lacking expression of the p16INK4a molecule, reversed the specific loss of p16 function, thereby drastically inhibiting tumor growth in all but 3 lines by >95% within the first 96 h. In vivo analysis using SK-RC-7 RCC xenografts in nude mice demonstrated tumor growth inhibition by the p16INK4a peptide alone, however, inoculation of Wr-T and the p16INK4a functional peptide mixture, via the heart resulted in complete tumor regression. Thus, restoration of tumor suppressor function with Wr-T peptide delivery represents a powerful approach, with mechanistic implications for the development of efficacious molecular targeting therapeutics against intractable RCC.

  10. Photoactivatable Lipid-based Nanoparticles as a Vehicle for Dual Agent Delivery | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) RNA Biology Laboratory have developed nanoparticles that can deliver an agent (i.e., therapeutic or imaging) and release the agent upon targeted photoactivation allowing for controlled temporal and localized release of the agent.

  11. Newer cytotoxic agents: attacking cancer broadly.

    PubMed

    Teicher, Beverly A

    2008-03-15

    The plasticity and instability of the cancer genome is impressive and is characterized by gene amplifications and deletions, rearrangements, and many silent and active mutations. Although targeted therapeutics have had effect in some diseases, there remains a large role for new cytotoxic agents that have the potential to be broadly active across multiple cancers. Platinum-based regimens are the basis for treatment of several common tumors. Satraplatin and picoplatin are newer platinum complexes that form bulkier lesions in DNA than their forerunners. Microtubules are a key target for anticancer agents. Vinca alkaloid and similar compounds fragment these critical structures, whereas taxanes stabilize them. Vinflunine is a new fluorinated Vinca alkaloid derivative with vascular disrupting effects, as well as antitumor effects. Epothilones are a new class of microtubule stabilizers. Mitosis has been targeted directly and indirectly by many anticancer agents. The aurora kinases are new targets in this class. Inhibitors of aurora kinases are likely to be cytotoxic. Finally, protein regulation is essential for cellular integrity. With the approval of bortezomib (Velcade, PS-341), the proteosome, a master protein regulator, has been validated as an anticancer target. The five articles in this issue of CCR Focus present the current status of these next generation cytotoxic agents.

  12. Inhibition of cell adhesion by anti–P-selectin aptamer: a new potential therapeutic agent for sickle cell disease

    PubMed Central

    Gutsaeva, Diana R.; Parkerson, James B.; Yerigenahally, Shobha D.; Kurz, Jeffrey C.; Schaub, Robert G.; Ikuta, Tohru

    2011-01-01

    Adhesive interactions between circulating sickle red blood cells (RBCs), leukocytes, and endothelial cells are major pathophysiologic events in sickle cell disease (SCD). To develop new therapeutics that efficiently inhibit adhesive interactions, we generated an anti–P-selectin aptamer and examined its effects on cell adhesion using knockout-transgenic SCD model mice. Aptamers, single-stranded oligonucleotides that bind molecular targets with high affinity and specificity, are emerging as new therapeutics for cardiovascular and hematologic disorders. In vitro studies found that the anti–P-selectin aptamer exhibits high specificity to mouse P-selectin but not other selectins. SCD mice were injected with the anti–P-selectin aptamer, and cell adhesion was observed under hypoxia. The anti–P-selectin aptamer inhibited the adhesion of sickle RBCs and leukocytes to endothelial cells by 90% and 80%, respectively. The anti–P-selectin aptamer also increased microvascular flow velocities and reduced the leukocyte rolling flux. SCD mice treated with the anti–P-selectin aptamer demonstrated a reduced mortality rate associated with the experimental procedures compared with control mice. These results demonstrate that anti–P-selectin aptamer efficiently inhibits the adhesion of both sickle RBCs and leukocytes to endothelial cells in SCD model mice, suggesting a critical role for P-selectin in cell adhesion. Anti–P-selectin aptamer may be useful as a novel therapeutic agent for SCD. PMID:20926770

  13. Preparation of near-infrared-labeled targeted contrast agents for clinical translation

    NASA Astrophysics Data System (ADS)

    Olive, D. Michael

    2011-03-01

    Targeted fluorophore-labeled contrast agents are moving toward translation to human surgical use. To prepare for future clinical use, we examined the performance of potential ligands targeting the epidermal growth factor receptor, α5β3 integrins, and GLUT transporters for their suitability as directed contrast agents. Each agent was labeled with IRDye 800CW, and near-infrared dye with excitation/emission wavelengths of 789/805 nm, which we determined had favorable toxicity characteristics. The probe molecules examined consisted of Affibodies, nanobodies, peptides, and the sugar 2-deoxy-D-glucose. Each probe was tested for specific and non-specific binding in cell based assays. All probe types showed good performance in mouse models for detecting either spontaneous tumors or tumor xenografts in vivo. Each of the probes tested show promise for future human clinical studies.

  14. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy.

    PubMed

    Yarla, Nagendra Sastry; Bishayee, Anupam; Sethi, Gautam; Reddanna, Pallu; Kalle, Arunasree M; Dhananjaya, Bhadrapura Lakkappa; Dowluru, Kaladhar S V G K; Chintala, Ramakrishna; Duddukuri, Govinda Rao

    2016-10-01

    Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A 2 s (PLA 2 s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA 2 s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos.

    PubMed

    Karimi, Mahdi; Mirshekari, Hamed; Moosavi Basri, Seyed Masoud; Bahrami, Sajad; Moghoofei, Mohsen; Hamblin, Michael R

    2016-11-15

    The main goal of drug delivery systems is to target therapeutic cargoes to desired cells and to ensure their efficient uptake. Recently a number of studies have focused on designing bio-inspired nanocarriers, such as bacteriophages, and synthetic carriers based on the bacteriophage structure. Bacteriophages are viruses that specifically recognize their bacterial hosts. They can replicate only inside their host cell and can act as natural gene carriers. Each type of phage has a particular shape, a different capacity for loading cargo, a specific production time, and their own mechanisms of supramolecular assembly, that have enabled them to act as tunable carriers. New phage-based technologies have led to the construction of different peptide libraries, and recognition abilities provided by novel targeting ligands. Phage hybridization with non-organic compounds introduces new properties to phages and could be a suitable strategy for construction of bio-inorganic carriers. In this review we try to cover the major phage species that have been used in drug and gene delivery systems, and the biological application of phages as novel targeting ligands and targeted therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Solubilization of Therapeutic Agents in Micellar Nanomedicines

    PubMed Central

    Vuković, Lela; Madriaga, Antonett; Kuzmis, Antonina; Banerjee, Amrita; Tang, Alan; Tao, Kevin; Shah, Neil; Král, Petr; Onyuksel, Hayat

    2014-01-01

    We use atomistic molecular dynamics simulations to reveal the binding mechanisms of therapeutic agents in PEG-ylated micellar nanocarriers (SSM). In our experiments, SSM in buffer solutions can solubilize either ≈ 11 small bexarotene molecules or ≈ 6 (2 in low ionic strength buffer) human vasoactive intestinal peptide (VIP) molecules. Free energy calculations reveal that molecules of the poorly water soluble drug bexarotene can reside at the micellar ionic interface of the PEG corona, with their polar ends pointing out. Alternatively, they can reside in the alkane core center, where several bexarotene molecules can self-stabilize by forming a cluster held together by a network of hydrogen bonds. We also show that highly charged molecules, such as VIP, can be stabilized at the SSM ionic interface by Coulombic coupling between their positively charged residues and the negatively charged phosphate head-groups of the lipids. The obtained results illustrate that atomistic simulations can reveal drug solubilization character in nanocarriers and be used in efficient optimization of novel nanomedicines. PMID:24283508

  17. Therapeutic Approaches Targeting MYC-Driven Prostate Cancer

    PubMed Central

    Rebello, Richard J.; Pearson, Richard B.; Hannan, Ross D.; Furic, Luc

    2017-01-01

    The transcript encoding the proto-oncogene MYC is commonly overexpressed in prostate cancer (PC). MYC protein abundance is also increased in the majority of cases of advanced and metastatic castrate-resistant PC (mCRPC). Accordingly, the MYC-directed transcriptional program directly contributes to PC by upregulating the expression of a number of pro-tumorigenic factors involved in cell growth and proliferation. A key cellular process downstream of MYC activity is the regulation of ribosome biogenesis which sustains tumor growth. MYC activity also cooperates with the dysregulation of the phosphoinositol-3-kinase (PI3K)/AKT/mTOR pathway to promote PC cell survival. Recent advances in the understanding of these interactions through the use of animal models have provided significant insight into the therapeutic efficacy of targeting MYC activity by interfering with its transcriptional program, and indirectly by targeting downstream cellular events linked to MYC transformation potential. PMID:28212321

  18. Treatment outcomes regarding the addition of targeted agents in the therapeutic portfolio for stage II-III rectal cancer undergoing neoadjuvant chemoradiation.

    PubMed

    Liang, Jin-Tung; Chen, Tzu-Chun; Huang, John; Jeng, Yung-Ming; Cheng, Jason Chia-Hsien

    2017-11-24

    To evaluate the impact of targeted agents in stage II-III rectal cancer undergoing neoadjuvant concurrent chemoradiation therapy (CCRT). A retrospective study was performed in 124 consecutive patients with clinically T 3 N 0-2 M 0 -staged rectal cancer incorporating targeted agents in CCRT. Pathologic complete response was detected in 34.2% (n=26) of bevacizumab+FOLFOX-treated patients (n=76), which was significantly higher (p=0.019, post-hoc statistical power =35.87%) than that (n=10, 20.8%) of the cetuximab+FOLFOX-treated patients (n=48). Patients receiving cetuximab+FOLFOX therapy tended to develop severe liver toxicity (91.7%, n=44 versus 17.1%, n=13, p<0.0001), as evaluated by morphologic grading of hepatic steatosis and sinusoidal dilatation in laparoscopy. In the 57 patients with morphologically severe liver toxicity, 36 (63.2%) retained a normal liver function; for the remaining 21 patients with an abnormal liver function, the abnormality was self-limited in 19 patients, whereas 2 cetuximab-treated patients progressed to hepatic failure and mortality. A subset analysis within bevacizumab+FOLFOX-treated patients with either wild-type (n=36) or mutant (n=40) K-ras status indicated K-ras status did not significantly influence the treatment outcomes. The addition of bevacizumab instead of cetuximab to FOLFOX in the neoadjuvant settings for T 3 N 0-2 M 0 -staged rectal cancer could induce a promising rate of pathologic complete response and lesser hepatotoxicity.

  19. Protein kinase Cβ as a therapeutic target stabilizing blood–brain barrier disruption in experimental autoimmune encephalomyelitis

    PubMed Central

    Lanz, Tobias V.; Becker, Simon; Osswald, Matthias; Bittner, Stefan; Schuhmann, Michael K.; Opitz, Christiane A.; Gaikwad, Sadanand; Wiestler, Benedikt; Litzenburger, Ulrike M.; Sahm, Felix; Ott, Martina; Iwantscheff, Simeon; Grabitz, Carl; Mittelbronn, Michel; von Deimling, Andreas; Winkler, Frank; Meuth, Sven G.; Wick, Wolfgang; Platten, Michael

    2013-01-01

    Disruption of the blood–brain barrier (BBB) is a hallmark of acute inflammatory lesions in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. This disruption may precede and facilitate the infiltration of encephalitogenic T cells. The signaling events that lead to this BBB disruption are incompletely understood but appear to involve dysregulation of tight-junction proteins such as claudins. Pharmacological interventions aiming at stabilizing the BBB in MS might have therapeutic potential. Here, we show that the orally available small molecule LY-317615, a synthetic bisindolylmaleimide and inhibitor of protein kinase Cβ, which is clinically under investigation for the treatment of cancer, suppresses the transmigration of activated T cells through an inflamed endothelial cell barrier, where it leads to the induction of the tight-junction molecules zona occludens-1, claudin 3, and claudin 5 and other pathways critically involved in transendothelial leukocyte migration. Treatment of mice with ongoing experimental autoimmune encephalomyelitis with LY-317615 ameliorates inflammation, demyelination, axonal damage, and clinical symptoms. Although LY-317615 dose-dependently suppresses T-cell proliferation and cytokine production independent of antigen specificity, its therapeutic effect is abrogated in a mouse model requiring pertussis toxin. This abrogation indicates that the anti-inflammatory and clinical efficacy is mainly mediated by stabilization of the BBB, thus suppressing the transmigration of encephalitogenic T cells. Collectively, our data suggest the involvement of endothelial protein kinase Cβ in stabilizing the BBB in autoimmune neuroinflammation and imply a therapeutic potential of BBB-targeting agents such as LY-317615 as therapeutic approaches for MS. PMID:23959874

  20. New targets for neuropathic pain therapeutics.

    PubMed

    Kinloch, Ross A; Cox, Peter J

    2005-08-01

    Neuropathic pain (NeP) is initiated by a lesion or dysfunction in the nervous system. Unlike physiological pain it serves no useful purpose and is usually sustained and chronic. NeP encompasses a wide range of pain syndromes of diverse aetiologies which together account for > 12 million sufferers in the US. Currently, there are a number of therapies available for NeP, including gabapentin, pregabalin, anticonvulsants (tiagabine HCl), tricyclic antidepressants (amitriptyline, nortriptyline) and acetaminophen/opioid combination products (Vicodin, Tylenol #3). However, these products do not provide sufficient pain relief and a significant proportion of sufferers are refractory (60%). Therefore, there is a need for new therapies that provide more predictable efficacy in all patients with improved tolerability. Over the last decade, understanding of the basic mechanisms contributing to the generation of NeP in preclinical animal models has greatly improved. Together with the completion of the various genome sequencing projects and significant advances in microarray and target validation strategies, new therapeutic approaches are being rigourously pursued. This article reviews the rationale behind a number of these mechanism-based approaches, briefly discusses specific challenges that they face, and finally, speculates on the potential of emerging technologies as alternative therapeutic strategies to the traditional 'small-molecule' approach.

  1. Clear cell carcinoma of the ovary: molecular insights and future therapeutic perspectives

    PubMed Central

    2016-01-01

    Clear cell carcinoma (CCC) of the ovary is known to show poorer sensitivity to chemotherapeutic agents and to be associated with a worse prognosis than the more common serous adenocarcinoma or endometrioid adenocarcinoma. To improve the survival of patients with ovarian CCC, the deeper understanding of the mechanism of CCC carcinogenesis as well as the efforts to develop novel treatment strategies in the setting of both front-line treatment and salvage treatment for recurrent disease are needed. In this presentation, we first summarize the mechanism responsible for carcinogenesis. Then, we highlight the promising therapeutic targets in ovarian CCC and provide information on the novel agents which inhibit these molecular targets. Moreover, we discuss on the cytotoxic anti-cancer agents that can be best combined with targeted agents in the treatment of ovarian CCC. PMID:27029752

  2. The Clinical Development of Molecularly Targeted Agents in Combination With Radiation Therapy: A Pharmaceutical Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ataman, Ozlem U., E-mail: ouataman@hotmail.com; Sambrook, Sally J.; Wilks, Chris

    2012-11-15

    Summary: This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the (clinicaltrials.gov) Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, andmore » PubMed databases and then cross-correlated with (clinicaltrials.gov) protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests

  3. Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces.

    PubMed

    Garbin, Valeria; Overvelde, Marlies; Dollet, Benjamin; de Jong, Nico; Lohse, Detlef; Versluis, Michel

    2011-10-07

    Targeted molecular imaging with ultrasound contrast agent microbubbles is achieved by incorporating targeting ligands on the bubble coating and allows for specific imaging of tissues affected by diseases. Improved understanding of the interplay between the acoustic forces acting on the bubbles during insonation with ultrasound and other forces (e.g. shear due to blood flow, binding of targeting ligands to receptors on cell membranes) can help improve the efficacy of this technique. This work focuses on the effects of the secondary acoustic radiation force, which causes bubbles to attract each other and may affect the adhesion of targeted bubbles. First, we examine the translational dynamics of ultrasound contrast agent microbubbles in contact with (but not adherent to) a semi-rigid membrane due to the secondary acoustic radiation force. An equation of motion that effectively accounts for the proximity of the membrane is developed, and the predictions of the model are compared with experimental data extracted from optical recordings at 15 million frames per second. A time-averaged model is also proposed and validated. In the second part of the paper, initial results on the translation due to the secondary acoustic radiation force of targeted, adherent bubbles are presented. Adherent bubbles are also found to move due to secondary acoustic radiation force, and a restoring force is observed that brings them back to their initial positions. For increasing magnitude of the secondary acoustic radiation force, a threshold is reached above which the adhesion of targeted microbubbles is disrupted. This points to the fact that secondary acoustic radiation forces can cause adherent bubbles to detach and alter the spatial distribution of targeted contrast agents bound to tissues during activation with ultrasound. While the details of the rupture of intermolecular bonds remain elusive, this work motivates the use of the secondary acoustic radiation force to measure the strength

  4. Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?

    PubMed

    Deming, Yuetiva; Li, Zeran; Benitez, Bruno A; Cruchaga, Carlos

    2018-06-20

    There are currently no effective therapeutics for Alzheimer disease (AD). Clinical trials targeting amyloid beta thus far have shown very little benefit and only in the earliest stages of disease. These limitations have driven research to identify alternative therapeutic targets, one of the most promising is the triggering receptor expressed on myeloid cells 2 (TREM2). Areas covered: Here, we review the literature to-date and discuss the potentials and pitfalls for targeting TREM2 as a potential therapeutic for AD. We focus on research in animal and cell models for AD and central nervous system injury models which may help in understanding the role of TREM2 in disease. Expert opinion: Studies suggest TREM2 plays a key role in AD pathology; however, results have been conflicting about whether TREM2 is beneficial or harmful. More research is necessary before designing TREM2-targeting therapies. Successful therapeutics will most likely be administered early in disease.

  5. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    PubMed Central

    Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine

    2011-01-01

    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709

  6. Human Carboxylesterase 1 Stereoselectively Binds the Nerve Agent Cyclosarin and Spontaneously Hydrolyzes the Nerve Agent Sarin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemmert, Andrew C.; Otto, Tamara C.; Wierdl, Monika

    Organophosphorus (OP) nerve agents are potent toxins that inhibit cholinesterases and produce a rapid and lethal cholinergic crisis. Development of protein-based therapeutics is being pursued with the goal of preventing nerve agent toxicity and protecting against the long-term side effects of these agents. The drug-metabolizing enzyme human carboxylesterase 1 (hCE1) is a candidate protein-based therapeutic because of its similarity in structure and function to the cholinesterase targets of nerve agent poisoning. However, the ability of wild-type hCE1 to process the G-type nerve agents sarin and cyclosarin has not been determined. We report the crystal structure of hCE1 in complex withmore » the nerve agent cyclosarin. We further use stereoselective nerve agent analogs to establish that hCE1 exhibits a 1700- and 2900-fold preference for the P{sub R} enantiomers of analogs of soman and cyclosarin, respectively, and a 5-fold preference for the P{sub S} isomer of a sarin analog. Finally, we show that for enzyme inhibited by racemic mixtures of bona fide nerve agents, hCE1 spontaneously reactivates in the presence of sarin but not soman or cyclosarin. The addition of the neutral oxime 2,3-butanedione monoxime increases the rate of reactivation of hCE1 from sarin inhibition by more than 60-fold but has no effect on reactivation with the other agents examined. Taken together, these data demonstrate that hCE1 is only reactivated after inhibition with the more toxic P{sub S} isomer of sarin. These results provide important insights toward the long-term goal of designing novel forms of hCE1 to act as protein-based therapeutics for nerve agent detoxification.« less

  7. Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer.

    PubMed

    Garattini, Enrico; Bolis, Marco; Gianni', Maurizio; Paroni, Gabriela; Fratelli, Maddalena; Terao, Mineko

    2016-07-05

    Breast-cancer is heterogeneous and consists of various groups with different biological characteristics. Innovative pharmacological approaches accounting for this heterogeneity are needed. The forty eight human Nuclear-Hormone-Receptors are ligand-dependent transcription-factors and are classified into Endocrine-Receptors, Adopted-Orphan-Receptors (Lipid-sensors and Enigmatic-Orphans) and Orphan-receptors. Nuclear-Receptors represent ideal targets for the design/synthesis of pharmacological ligands. We provide an overview of the literature available on the expression and potential role played by Lipid-sensors, Enigmatic-Orphans and Orphan-Receptors in breast-cancer. The data are complemented by an analysis of the expression levels of each selected Nuclear-Receptor in the PAM50 breast-cancer groups, following re-elaboration of the data publicly available. The major aim is to support the idea that some of the Nuclear-Receptors represent largely unexploited therapeutic-targets in breast-cancer treatment/chemo-prevention. On the basis of our analysis, we conclude that the Lipid-Sensors, NR1C3, NR1H2 and NR1H3 are likely to be onco-suppressors in breast-cancer. The Enigmatic-Orphans, NR1F1 NR2A1 and NR3B3 as well as the Orphan-Receptors, NR0B1, NR0B2, NR1D1, NR2F1, NR2F2 and NR4A3 exert a similar action. These Nuclear-Receptors represent candidates for the development of therapeutic strategies aimed at increasing their expression or activating them in tumor cells. The group of Nuclear-Receptors endowed with potential oncogenic properties consists of the Lipid-Sensors, NR1C2 and NR1I2, the Enigmatic-Orphans, NR1F3, NR3B1 and NR5A2, as well as the Orphan-Receptors, NR2E1, NR2E3 and NR6A1. These oncogenic Nuclear-Receptors should be targeted with selective antagonists, reverse-agonists or agents/strategies capable of reducing their expression in breast-cancer cells.

  8. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment.

    PubMed

    Yoshida, Go J

    2017-03-09

    attention because the safety profiles of these medicines are well known. Antimalarial agents such as artemisinin and disease-modifying antirheumatic drug (DMARD) are the typical examples of drug re-positioning which affect the autophagy regulation for the therapeutic use. This review article focuses on recent advances in some of the novel therapeutic strategies that target autophagy with a view to treating/preventing malignant neoplasms.

  9. The prince and the pauper. A tale of anticancer targeted agents.

    PubMed

    Dueñas-González, Alfonso; García-López, Patricia; Herrera, Luis Alonso; Medina-Franco, Jose Luis; González-Fierro, Aurora; Candelaria, Myrna

    2008-10-23

    Cancer rates are set to increase at an alarming rate, from 10 million new cases globally in 2000 to 15 million in 2020. Regarding the pharmacological treatment of cancer, we currently are in the interphase of two treatment eras. The so-called pregenomic therapy which names the traditional cancer drugs, mainly cytotoxic drug types, and post-genomic era-type drugs referring to rationally-based designed. Although there are successful examples of this newer drug discovery approach, most target-specific agents only provide small gains in symptom control and/or survival, whereas others have consistently failed in the clinical testing. There is however, a characteristic shared by these agents: -their high cost-. This is expected as drug discovery and development is generally carried out within the commercial rather than the academic realm. Given the extraordinarily high therapeutic drug discovery-associated costs and risks, it is highly unlikely that any single public-sector research group will see a novel chemical "probe" become a "drug". An alternative drug development strategy is the exploitation of established drugs that have already been approved for treatment of non-cancerous diseases and whose cancer target has already been discovered. This strategy is also denominated drug repositioning, drug repurposing, or indication switch. Although traditionally development of these drugs was unlikely to be pursued by Big Pharma due to their limited commercial value, biopharmaceutical companies attempting to increase productivity at present are pursuing drug repositioning. More and more companies are scanning the existing pharmacopoeia for repositioning candidates, and the number of repositioning success stories is increasing. Here we provide noteworthy examples of known drugs whose potential anticancer activities have been highlighted, to encourage further research on these known drugs as a means to foster their translation into clinical trials utilizing the more limited

  10. Heterobivalent Imaging Agents Targeting Prostate Cancer Training

    DTIC Science & Technology

    2011-06-01

    has been implicated as a salient player in the pathobiology of cancers of epithelial origin, e.g. prostate, cervix , ovarian, colon and...ANSI Std. Z39.18 W81XWH-10-1-0481 Heterobivalent Imaging Agents Targeting Prostate Cancer Training Aaron LeBeau University of California, San...Francisco San Francisco, CA 94103 Annual Summary 31 MAY 2010 - 1JUN 201101-06-2011 To determine the utility of imaging MT-SP1 in cancer , xenografts of

  11. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets.

    PubMed

    Hadler-Olsen, Elin; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2013-08-01

    Biomarkers are used as tools in cancer diagnostics and in treatment stratification. In most cancers, there are increased levels of one or several members of the matrix metalloproteinases (MMPs). This is a family of proteolytic enzymes that are involved in many phases of cancer progression, including angiogenesis, invasiveness, and metastasis. It has therefore been expected that MMPs could serve as both diagnostic and prognostic markers in cancer patients, but despite a huge number of studies, it has been difficult to establish MMPs as cancer biomarkers. In the present paper, we assess some of the challenges associated with MMP research as well as putative reasons for the conflicting data on the value of these enzymes as diagnostic and prognostic markers in cancer patients. We also review the prognostic value of a number of MMPs in patients with lung, colorectal, breast, and prostate cancers. The review also discusses MMPs as potential target molecules for therapeutic agents and new strategies for development of such drugs.

  12. Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke

    PubMed Central

    Chen, Yajing; Shen, Fanxia; Liu, Jianrong; Yang, Guo-Yuan

    2017-01-01

    Stroke is the second leading cause of mortality and morbidity worldwide. Early intervention is of great importance in reducing disease burden. Since the conventional risk factors cannot fully account for the pathogenesis of stroke, it is extremely important to detect useful biomarkers of the vascular disorder for appropriate intervention. Arterial stiffness, a newly recognised reliable feature of arterial structure and function, is demonstrated to be associated with stroke onset and serve as an independent predictor of stroke incidence and poststroke functional outcomes. In this review article, different measurements of arterial stiffness, especially pressure wave velocity, were discussed. We explained the association between arterial stiffness and stroke occurrence by discussing the secondary haemodynamic changes. We reviewed clinical data that support the prediction role of arterial stiffness on stroke. Despite the lack of long-term randomised double-blind controlled therapeutic trials, it is high potential to reduce stroke prevalence through a significant reduction of arterial stiffness (which is called de-stiffening therapy). Pharmacological interventions or lifestyle modification that can influence blood pressure, arterial function or structure in either the short or long term are promising de-stiffening therapies. Here, we summarised different de-stiffening strategies including antihypertension drugs, antihyperlipidaemic agents, chemicals that target arterial remodelling and exercise training. Large and well-designed clinical trials on de-stiffening strategy are needed to testify the prevention effect for stroke. Novel techniques such as modern microscopic imaging and reliable animal models would facilitate the mechanistic analyses in pathophysiology, pharmacology and therapeutics. PMID:28959494

  13. Drug resistance to targeted therapies: déjà vu all over again.

    PubMed

    Groenendijk, Floris H; Bernards, René

    2014-09-12

    A major limitation of targeted anticancer therapies is intrinsic or acquired resistance. This review emphasizes similarities in the mechanisms of resistance to endocrine therapies in breast cancer and those seen with the new generation of targeted cancer therapeutics. Resistance to single-agent cancer therapeutics is frequently the result of reactivation of the signaling pathway, indicating that a major limitation of targeted agents lies in their inability to fully block the cancer-relevant signaling pathway. The development of mechanism-based combinations of targeted therapies together with non-invasive molecular disease monitoring is a logical way forward to delay and ultimately overcome drug resistance development. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Multispectral photoacoustic decomposition with localized regularization for detecting targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Tavakoli, Behnoosh; Chen, Ying; Guo, Xiaoyu; Kang, Hyun Jae; Pomper, Martin; Boctor, Emad M.

    2015-03-01

    Targeted contrast agents can improve the sensitivity of imaging systems for cancer detection and monitoring the treatment. In order to accurately detect contrast agent concentration from photoacoustic images, we developed a decomposition algorithm to separate photoacoustic absorption spectrum into components from individual absorbers. In this study, we evaluated novel prostate-specific membrane antigen (PSMA) targeted agents for imaging prostate cancer. Three agents were synthesized through conjugating PSMA-targeting urea with optical dyes ICG, IRDye800CW and ATTO740 respectively. In our preliminary PA study, dyes were injected in a thin wall plastic tube embedded in water tank. The tube was illuminated with pulsed laser light using a tunable Q-switch ND-YAG laser. PA signal along with the B-mode ultrasound images were detected with a diagnostic ultrasound probe in orthogonal mode. PA spectrums of each dye at 0.5 to 20 μM concentrations were estimated using the maximum PA signal extracted from images which are obtained at illumination wavelengths of 700nm-850nm. Subsequently, we developed nonnegative linear least square optimization method along with localized regularization to solve the spectral unmixing. The algorithm was tested by imaging mixture of those dyes. The concentration of each dye was estimated with about 20% error on average from almost all mixtures albeit the small separation between dyes spectrums.

  15. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    PubMed

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.

  16. Epigenetics and therapeutic targets mediating neuroprotection.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2015-12-02

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    PubMed

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Fibronectin Attachment Protein (FAP) From Bacillus Calmette-Guerin As Targeting Agent For Bladder Tumor Cells

    PubMed Central

    Coon, Brian G.; Crist, Scott; González-Bonet, Andrés M.; Kim, Hee-Kwon; Sowa, Jennifer; Thompson, David H.; Ratliff, Timothy L.; Aguilar, R. Claudio

    2011-01-01

    The adjuvant therapy of choice for superficial bladder cancer is the intravesical instillation of live Mycobacterium bovis Bacillus Calmette-Guerin (BCG). In spite of the fact that this therapy is the most effective treatment for superficial bladder cancer, intravesical administration of BCG is associated with high local morbidity and the potential for systemic infection. Therefore, there is a need for the development of safer, less toxic approaches to fight this disease. Since fibronectin attachment protein (FAP) is a key element in BCG retention and targeting to cells, we hypothesize that this protein can be used as targeting agent to deliver cytotoxic cargo for the treatment of bladder tumors. Here we evaluated the ability of bladder tumor cells to bind and endocytose FAP via fibronectin-integrin complexes. We found that microaggregation induced by an anti-FAP polyclonal antibody accelerated FAP uptake by T24 bladder tumor cells. FAP was determined to be internalized via a clathrin-independent, caveolae-dependent mechanism. Further, once within the endosomal compartment, FAP was targeted to the lysosomal compartment with negligible recycling to the plasma membrane. Importantly, we demonstrated that FAP microaggregation and internalization could also be triggered by multivalent Ni2+NTA-bearing liposomes. Overall, our studies validate the use of FAP as a targeting vector and provide the foundation for the design of more effective, less toxic bladder cancer therapeutics. PMID:21901746

  19. Ultrasound-mediated ocular delivery of therapeutic agents: a review.

    PubMed

    Lafond, Maxime; Aptel, Florent; Mestas, Jean-Louis; Lafon, Cyril

    2017-04-01

    Due to numerous anatomical and physiological barriers, ocular drug delivery remains a major limitation in the treatment of diseases such as glaucoma, macular degeneration or inflammatory diseases. To date, only invasive approaches provide clinically effective results. Ultrasound can be defined as the propagation of a high-frequency sound wave exposing the propagation media to mechanical and thermal effects. Ultrasound has been proposed as a non-invasive physical agent for increasing therapeutic agent delivery in various fields of medicine. Areas covered: An update on recent advances in transscleral and transcorneal ultrasound-mediated drug delivery is presented. Efficient drug delivery is achieved in vitro, ex vivo and in vivo for various types of materials. Numerous studies indicate that efficacy is related to cavitation. Although slight reversible effects can be observed on the corneal epithelium, efficient drug delivery can be performed without causing damage to the cornea. Expert opinion: Recent developments prove the potential of ultrasound-mediated ocular drug delivery. Cavitation appears to be a preponderant mechanism, opening a way to treatment monitoring by cavitation measurement. Even if no clinical studies have yet been performed, the promising results summarized here are promoting developments toward clinical applications, particularly in assessing the safety of the technique.

  20. [Mathematical modeling: an essential tool for the study of therapeutic targeting in solid tumors].

    PubMed

    Saidak, Zuzana; Giacobbi, Anne-Sophie; Morisse, Mony Chenda; Mammeri, Youcef; Galmiche, Antoine

    2017-12-01

    Recent progress in biology has made the study of the medical treatment of cancer more effective, but it has also revealed the large complexity of carcinogenesis and cell signaling. For many types of cancer, several therapeutic targets are known and in some cases drugs against these targets exist. Unfortunately, the target proteins often work in networks, resulting in functional adaptation and the development of resilience/resistance to medical treatment. The use of mathematical modeling makes it possible to carry out system-level analyses for improved study of therapeutic targeting in solid tumours. We present the main types of mathematical models used in cancer research and we provide examples illustrating the relevance of these approaches in molecular oncobiology. © 2017 médecine/sciences – Inserm.

  1. Whole-genome sequencing of an aggressive BRAF wild-type papillary thyroid cancer identified EML4-ALK translocation as a therapeutic target.

    PubMed

    Demeure, Michael J; Aziz, Meraj; Rosenberg, Richard; Gurley, Steven D; Bussey, Kimberly J; Carpten, John D

    2014-06-01

    Recent advances in the treatment of cancer have focused on targeting genomic aberrations with selective therapeutic agents. In radioiodine resistant aggressive papillary thyroid cancers, there remain few effective therapeutic options. A 62-year-old man who underwent multiple operations for papillary thyroid cancer and whose metastases progressed despite standard treatments provided tumor tissue. We analyzed tumor and whole blood DNA by whole genome sequencing, achieving 80× or greater coverage over 94 % of the exome and 90 % of the genome. We determined somatic mutations and structural alterations. We found a total of 57 somatic mutations in 55 genes of the cancer genome. There was notably a lack of mutations in NRAS and BRAF, and no RET/PTC rearrangement. There was a mutation in the TRAPP oncogene and a loss of heterozygosity of the p16, p18, and RB1 tumor suppressor genes. The oncogenic driver for this tumor is a translocation involving the genes for anaplastic lymphoma receptor tyrosine kinase (ALK) and echinoderm microtubule associated protein like 4 (EML4). The EML4-ALK translocation has been reported in approximately 5 % of lung cancers, as well as in pediatric neuroblastoma, and is a therapeutic target for crizotinib. This is the first report of the whole genomic sequencing of a papillary thyroid cancer in which we identified an EML4-ALK translocation of a TRAPP oncogene mutation. These findings suggest that this tumor has a more distinct oncogenesis than BRAF mutant papillary thyroid cancer. Whole genome sequencing can elucidate an oncogenic context and expose potential therapeutic vulnerabilities in rare cancers.

  2. Computation of the target state and feedback controls for time optimal consensus in multi-agent systems

    NASA Astrophysics Data System (ADS)

    Mulla, Ameer K.; Patil, Deepak U.; Chakraborty, Debraj

    2018-02-01

    N identical agents with bounded inputs aim to reach a common target state (consensus) in the minimum possible time. Algorithms for computing this time-optimal consensus point, the control law to be used by each agent and the time taken for the consensus to occur, are proposed. Two types of multi-agent systems are considered, namely (1) coupled single-integrator agents on a plane and, (2) double-integrator agents on a line. At the initial time instant, each agent is assumed to have access to the state information of all the other agents. An algorithm, using convexity of attainable sets and Helly's theorem, is proposed, to compute the final consensus target state and the minimum time to achieve this consensus. Further, parts of the computation are parallelised amongst the agents such that each agent has to perform computations of O(N2) run time complexity. Finally, local feedback time-optimal control laws are synthesised to drive each agent to the target point in minimum time. During this part of the operation, the controller for each agent uses measurements of only its own states and does not need to communicate with any neighbouring agents.

  3. Blood-Brain Barrier Integrity and Glial Support: Mechanisms that can be targeted for Novel Therapeutic Approaches in Stroke

    PubMed Central

    Ronaldson, Patrick T.; Davis, Thomas P.

    2014-01-01

    The blood-brain barrier (BBB) is a critical regulator of CNS homeostasis. Additionally, the BBB is the most significant obstacle to effective CNS drug delivery. It possesses specific charcteristics (i.e., tight junction protein complexes, influx and efflux transporters) that control permeation of circulating solutes including therapeutic agents. In order to form this “barrier,” brain microvascular endothelial cells require support of adjacent astrocytes and microglia. This intricate relationship also occurs between endothelial cells and other cell types and structures of the CNS (i.e., pericytes, neurons, extracellular matrix), which implies existence of a “neurovascular unit.” Ischemic stroke can disrupt the neurovascular unit at both the structural and functional level, which leads to an increase in leak across the BBB. Recent studies have identified several pathophysiological mechanisms (i.e., oxidative stress, activation of cytokine-mediated intracellular signaling systems) that mediate changes in the neurovascular unit during ischemic stroke. This review summarizes current knowledge in this area and emphasizes pathways (i.e., oxidative stress, cytokine-mediated intracellular signaling, glial-expressed receptors/targets) that can be manipulated pharmacologically for i) preservation of BBB and glial integrity during ischemic stroke and ii) control of drug permeation and/or transport across the BBB in an effort to identify novel targets for optimization of CNS delivery of therapeutics in the setting of ischemic stroke. PMID:22574987

  4. Synthesis, characterization and preclinical studies of two-photon-activated targeted PDT therapeutic triads

    NASA Astrophysics Data System (ADS)

    Spangler, C. W.; Starkey, J. R.; Rebane, A.; Meng, F.; Gong, A.; Drobizhev, M.

    2006-02-01

    Photodynamic therapy (PDT) continues to evolve into a mature clinical treatment of a variety of cancer types as well as age-related macular degeneration of the eye. However, there are still aspects of PDT that need to be improved in order for greater clinical acceptance. While a number of new PDT photo-sensitizers, sometimes referred to as second- or third- generation therapeutic agents, are currently under clinical investigation, the direct treatment through the skin of subcutaneous tumors deeper than 5 mm remains problematic. Currently approved PDT porphyrin photo-sensitizers, as well as several modified porphyrins (e.g. chlorins, bacteriochlorins, etc.) that are under clinical investigation can be activated at 630-730 nm, but none above 800 nm. It would be highly desirable if new PDT paradigms could be developed that would allow photo-activation deep in the tissue transparency window in the Near-infrared (NIR) above 800 nm to reduce scattering and absorption phenomena that reduce deep tissue PDT efficacy. Rasiris and MPA Technologies have developed new porphyrins that have greatly enhanced two-photon absorption ( P A ) cross-sections and can be activated deep in the NIR (ca. 780-850 nm). These porphyrins can be incorporated into a therapeutic triad that also employs an small molecule targeting agent that directs the triad to over-expressed tumor receptor sites, and a NIR onephoton imaging agent that allows tracking the delivery of the triad to the tumor site, as well as clearance of excess triad from healthy tissue prior to the start of PDT treatment. We are currently using these new triads in efficacy studies with a breast cancer cell line that has been transfected with luciferase genes that allow implanted tumor growth and post- PDT treatment efficacy studies in SCID mouse models by following the rise and decay of the bioluminescence signal. We have also designed highly absorbing and scattering collagen breast cancer phantoms in which we have demonstrated

  5. Molecular biology of castration-resistant prostate cancer: basis for the novel therapeutic targets.

    PubMed

    Mellado, Begoña; Marin Aguilera, Mercedes; Pereira, Maria Veronica

    2013-06-01

    Prostate cancer cells express the androgen receptor (AR) and need the presence of androgens to survive. Androgen suppression is the gold standard first-line therapy for metastatic disease. Almost all prostate cancer patients initially respond to hormonal therapy, but most of them gradually develop castration-resistant progression. Recent evidence has shown that progression at the castration resistant prostate cancer (CRPC) stage is often mediated by AR signalling. Importantly, subsequent AR androgen inhibition, by abiraterone acetate or enzalutamide, has shown to improve patients' survival. Several mechanisms that enhance AR signalling in an androgen-depleted environment have been elucidated:(1) AR mutations that allow activation by low androgen levels or by other endogenous steroids, (2) AR amplification and/or overexpression,(3)increased local intracrine synthesis of androgens, (4) changes in AR cofactors and (5) cross-talk with cytokines and growth factors. Today, there are under development a number of novel agents targeting the AR signaling pathway. This article reviews the postulated mechanisms of AR-driven resistance to androgen suppression that have contributed to the development of new hormonal therapeutic strategies in prostate cancer.

  6. Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies

    PubMed Central

    Thaker, Nikhil G; Pollack, Ian F

    2010-01-01

    Median survival of patients with malignant glioma (MG) from time of diagnosis is approximately 1 year, despite surgery, irradiation and conventional chemotherapy. Improving patient outcome relies on our ability to develop more effective therapies that are directed against the unique molecular aberrations within a patient’s tumor. Such molecularly targeted therapies may provide novel treatments that are more effective than conventional chemotherapeutics. Recently developed therapeutic strategies have focused on targeting several core glioma signaling pathways, including pathways mediated by growth-factors, PI3K/Akt/PTEN/mTOR, Ras/Raf/MEK/MAPK and other vital pathways. However, given the molecular diversity, heterogeneity and diverging and converging signaling pathways associated with MG, it is unlikely that any single agent will have efficacy in more than a subset of tumors. Overcoming these therapeutic barriers will require multiple agents that can simultaneously inhibit these processes, providing a rationale for combination therapies. This review summarizes the currently implemented single-agent and combination molecularly targeted therapies for MG. PMID:19951140

  7. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    PubMed

    McCarthy, Cathal; Kenny, Louise C

    2016-09-08

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.

  8. CDK1 promotes nascent DNA synthesis and induces resistance of cancer cells to DNA-damaging therapeutic agents

    PubMed Central

    Liao, Hongwei; Ji, Fang; Geng, Xinwei; Xing, Meichun; Li, Wen; Chen, Zhihua; Shen, Huahao; Ying, Songmin

    2017-01-01

    Cyclin dependent kinase 1 (CDK1) is essential for cell viability and plays a vital role in many biological events including cell cycle control, DNA damage repair, and checkpoint activation. Here, we identify an unanticipated role for CDK1 in promoting nascent DNA synthesis during S-phase. We report that a short duration of CDK1 inhibition, which does not perturb cell cycle progression, triggers a replication-associated DNA damage response (DDR). This DDR is associated with a disruption of replication fork progression and leads to genome instability. Moreover, we show that compromised CDK1 activity dramatically increases the efficacy of chemotherapeutic agents that kill cancer cells through perturbing DNA replication, including Olaparib, an FDA approved PARP inhibitor. Our study has revealed an important role for CDK1 in the DNA replication program, and suggests that the therapeutic targeting CDK1 may be a novel approach for combination chemotherapy. PMID:29207595

  9. Knowledge-based identification of the ERK2/STAT3 signal pathway as a therapeutic target for type 2 diabetes and drug discovery.

    PubMed

    Kinoshita, Takayoshi; Doi, Kentaro; Sugiyama, Hajime; Kinoshita, Shuhei; Wada, Mutsuyo; Naruto, Shuji; Tomonaga, Atsushi

    2011-09-01

    Many existing agents for diabetes therapy are unable to restore or maintain normal glucose homeostasis or prevent the eventual emergence of hyperglycemia-related complication. Therefore, agents based on novel mechanisms are sought to complement and extend the current therapeutic approaches. Based on the initial paper research, we focused on active STAT3 as an attractive pharmacological target for type 2 diabetes. The subsequent text mining with a unique query to identify suppressors but not activators of STAT3 revealed the ERK2/STAT3 pathway as a novel diabetes target. The description of ERK2 inhibitors as diabetes target had not been found in our text mining research at present. The mechanism-based peptide inhibitor for ERK2 was identified using the knowledge of the KIM sequence, which has an important role in the recognition of cognate kinases, phosphatases, scaffold proteins, and substrates. The peptide inhibitor was confirmed to exert effects in vitro and in vivo. The peptide inhibitor conferred a significant decrease in HOMA-IR levels on Day 28 compared with that in the vehicle group. Besides lowering the fasting blood glucose level, the peptide inhibitor also attenuated the blood glucose increment in the fed state, as compared with the vehicle group. © 2011 John Wiley & Sons A/S.

  10. MicroRNAs in Leukemias: Emerging Diagnostic Tools and Therapeutic Targets

    PubMed Central

    Mian, Yousaf A.; Zeleznik-Le, Nancy J.

    2010-01-01

    MicroRNAs (miRNA) are small non-coding RNAs of ~22 nucleotides that regulate the translation and stability of mRNA to control different functions of the cell. Misexpression of miRNA has been linked to disruption of normal cellular functions, which results in various disorders including cancers such as leukemias. MicroRNA involvement in disease has been the subject of much attention and is increasing our current understanding of disease biology. Such linkages have been determined by high-throughput studies, which provide a framework for characterizing differential miRNA expression levels correlating to different cytogenetic abnormalities and their corresponding malignancies. In addition, functional studies of particular miRNAs have begun to define the effects of miRNA on predicted mRNA targets. It is clear that miRNAs can serve as molecular markers of leukemias and the hope is that they can also serve as new therapeutic targets. Studies are beginning to elucidate how to deliver therapeutic antagonists to attenuate overexpressed miRNAs and to replace underexpressed miRNAs. In this review, we: i) discuss the current understanding of miRNA function and expression in normal hematopoiesis, ii) provide examples of miRNAs that are misregulated in leukemias, and iii) evaluate the current status and potential future directions for the burgeoning field of antisense oligonucleotides and other therapeutic attempts to intervene in miRNA disregulation in leukemias. PMID:20370647

  11. Avidin-dendrimer-(1B4M-Gd)(254): a tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI.

    PubMed

    Kobayashi, H; Kawamoto, S; Saga, T; Sato, N; Ishimori, T; Konishi, J; Ono, K; Togashi, K; Brechbiel, M W

    2001-01-01

    Peritoneal carcinomatosis is a late stage in cancer progress, for which no effective therapeutic modality exists. Targeting therapeutic agents to disseminated lesions may be a promising modality for treating peritoneal carcinomatosis. Gadolinium ((157,155)Gd) is known to generate Auger and internal conversion electrons efficiently by irradiation with a neutron beam. Auger electrons from neutron-activated Gd(III) are strongly cytotoxic, but only when Gd(III) atoms have been internalized into the cells. In the present investigation, we have developed a quickly internalizing tumor-targeting system to deliver large quantities of Gd(III) atoms into tumor cells to generate the Auger emission with an external neutron beam. Simultaneously, one would be able to image its biodistribution by MRI with a shortened T1 relaxation time. Avidin-G6-(1B4M-Gd)(254) (Av-G6Gd) was synthesized from generation-6 polyamidoamine dendrimer, biotin, avidin, and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M). The Av-G6Gd was radiolabeled with Gd(III) doped with (153)Gd. All of the 1B4M's on the conjugate were fully saturated with Gd(III) atoms. An in vitro internalization study showed that Av-G6Gd accumulated and was internalized into SHIN3 cells (a human ovarian cancer) 50- and 3.5-fold greater than Gd-DTPA (Magnevist) and G6-(1B4M-Gd)(256) (G6Gd). In addition, accumulation of Gd(III) in the cells was detected by the increased signal on T1-weighted MRI. A biodistribution study was performed in nude mice bearing intraperitoneally disseminated SHIN3 tumors. Av-G6Gd showed specific accumulation in the SHIN3 tumor (103% ID/g) 366- and 3.4-fold greater than Gd-DTPA (0.28% ID/g, p < 0.001) and G6Gd (30% ID/g, p < 0.001) 1 day after i.p. injection. Seventy-eight percent of the tumor-related radioactivity of Av-G6Gd in the SHIN3 tumor was located inside the cells. The SHIN3 tumor-to-normal tissue ratio was greater than 17:1 in all organs and increased up to 638:1 at 1

  12. Petri net-based prediction of therapeutic targets that recover abnormally phosphorylated proteins in muscle atrophy.

    PubMed

    Jung, Jinmyung; Kwon, Mijin; Bae, Sunghwa; Yim, Soorin; Lee, Doheon

    2018-03-05

    Muscle atrophy, an involuntary loss of muscle mass, is involved in various diseases and sometimes leads to mortality. However, therapeutics for muscle atrophy thus far have had limited effects. Here, we present a new approach for therapeutic target prediction using Petri net simulation of the status of phosphorylation, with a reasonable assumption that the recovery of abnormally phosphorylated proteins can be a treatment for muscle atrophy. The Petri net model was employed to simulate phosphorylation status in three states, i.e. reference, atrophic and each gene-inhibited state based on the myocyte-specific phosphorylation network. Here, we newly devised a phosphorylation specific Petri net that involves two types of transitions (phosphorylation or de-phosphorylation) and two types of places (activation with or without phosphorylation). Before predicting therapeutic targets, the simulation results in reference and atrophic states were validated by Western blotting experiments detecting five marker proteins, i.e. RELA, SMAD2, SMAD3, FOXO1 and FOXO3. Finally, we determined 37 potential therapeutic targets whose inhibition recovers the phosphorylation status from an atrophic state as indicated by the five validated marker proteins. In the evaluation, we confirmed that the 37 potential targets were enriched for muscle atrophy-related terms such as actin and muscle contraction processes, and they were also significantly overlapping with the genes associated with muscle atrophy reported in the Comparative Toxicogenomics Database (p-value < 0.05). Furthermore, we noticed that they included several proteins that could not be characterized by the shortest path analysis. The three potential targets, i.e. BMPR1B, ROCK, and LEPR, were manually validated with the literature. In this study, we suggest a new approach to predict potential therapeutic targets of muscle atrophy with an analysis of phosphorylation status simulated by Petri net. We generated a list of the potential

  13. Iron depletion is a novel therapeutic strategy to target cancer stem cells

    PubMed Central

    Ninomiya, Takayuki; Ohara, Toshiaki; Noma, Kazuhiro; Katsura, Yuki; Katsube, Ryoichi; Kashima, Hajime; Kato, Takuya; Tomono, Yasuko; Tazawa, Hiroshi; Kagawa, Shunsuke; Shirakawa, Yasuhiro; Kimura, Fumiaki; Chen, Ling; Kasai, Tomonari; Seno, Masaharu; Matsukawa, Akihiro; Fujiwara, Toshiyoshi

    2017-01-01

    Adequate iron levels are essential for human health. However, iron overload can act as catalyst for the formation of free radicals, which may cause cancer. Cancer stem cells (CSCs), which maintain the hallmark stem cell characteristics of self-renewal and differentiation capacity, have been proposed as a driving force of tumorigenesis and metastases. In the present study, we investigated the role of iron in the proliferation and stemness of CSCs, using the miPS-LLCcm cell model. Although the anti-cancer agents fluorouracil and cisplatin suppressed the proliferation of miPS-LLCcm cells, these drugs did not alter the expression of stemness markers, including Nanog, SOX2, c-Myc, Oct3/4 and Klf4. In contrast, iron depletion by the iron chelators deferasirox and deferoxamine suppressed the proliferation of miPS-LLCcm cells and the expression of stemness markers. In an allograft model, deferasirox inhibited the growth of miPS-LLCcm implants, which was associated with decreased expression of Nanog and Sox2. Altogether, iron appears to be crucial for the proliferation and maintenance of stemness of CSCs, and iron depletion may be a novel therapeutic strategy to target CSCs. PMID:29228699

  14. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target

    PubMed Central

    Cassano, Tommaso; Calcagnini, Silvio; Pace, Lorenzo; De Marco, Federico; Romano, Adele; Gaetani, Silvana

    2017-01-01

    As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically. Moreover, recent studies have shown that endogenous cannabinoid signaling plays a number of modulatory roles throughout the central nervous system (CNS), including the neuroinflammation and neurogenesis. In particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neuronal degeneration. For these reasons this review will focus on the CB2 receptor as a promising pharmacological target in a number of neurodegenerative diseases. PMID:28210207

  15. Glycogen Synthase Kinase-3 Inhibitors as Potent Therapeutic Agents for the Treatment of Parkinson Disease.

    PubMed Central

    2012-01-01

    Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by degeneration of the nigrostriatal dopaminergic pathway. Because the current therapies only lead to temporary, limited improvement and have severe side effects, new approaches to treat PD need to be developed. To discover new targets for potential therapeutic intervention, a chemical genetic approach involving the use of small molecules as pharmacological tools has been implemented. First, a screening of an in-house chemical library on a well-established cellular model of PD was done followed by a detailed pharmacological analysis of the hits. Here, we report the results found for the small heterocyclic derivative called SC001, which after different enzymatic assays was revealed to be a new glycogen synthase kinase-3 (GSK-3) inhibitor with IC50 = 3.38 ± 0.08 μM. To confirm that GSK-3 could be a good target for PD, the evaluation of a set of structurally diverse GSK-3 inhibitors as neuroprotective agents for PD was performed. Results show that inhibitors of GSK-3 have neuroprotective effects in vitro representing a new pharmacological option for the disease-modifying treatment of PD. Furthermore, we show that SC001 is able to cross the blood–brain barrier, protects dopaminergic neurons, and reduces microglia activation in in vivo models of Parkinson disease, being a good candidate for further drug development. PMID:23421686

  16. Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation

    PubMed Central

    Vats, Mukti; Mishra, Sumit Kumar; Baghini, Mahdieh Shojaei; Chauhan, Deepak S.; Srivastava, Rohit; De, Abhijit

    2017-01-01

    The unresolved and paramount challenge in bio-imaging and targeted therapy is to clearly define and demarcate the physical margins of tumor tissue. The ability to outline the healthy vital tissues to be carefully navigated with transection while an intraoperative surgery procedure is performed sets up a necessary and under-researched goal. To achieve the aforementioned objectives, there is a need to optimize design considerations in order to not only obtain an effective imaging agent but to also achieve attributes like favorable water solubility, biocompatibility, high molecular brightness, and a tissue specific targeting approach. The emergence of near infra-red fluorescence (NIRF) light for tissue scale imaging owes to the provision of highly specific images of the target organ. The special characteristics of near infra-red window such as minimal auto-fluorescence, low light scattering, and absorption of biomolecules in tissue converge to form an attractive modality for cancer imaging. Imparting molecular fluorescence as an exogenous contrast agent is the most beneficial attribute of NIRF light as a clinical imaging technology. Additionally, many such agents also display therapeutic potentials as photo-thermal agents, thus meeting the dual purpose of imaging and therapy. Here, we primarily discuss molecular imaging and therapeutic potentials of two such classes of materials, i.e., inorganic NIR dyes and metallic gold nanoparticle based materials. PMID:28452928

  17. Integrated Stress Response as a Therapeutic Target for CNS Injuries.

    PubMed

    Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Barreda-Manso, M Asunción

    2017-01-01

    Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.

  18. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  19. Non-target effects of an introduced biological control agent on deer mouse ecology

    Treesearch

    Dean E. Pearson; Kevin S. McKelvey; Leonard F. Ruggiero

    2000-01-01

    Release of exotic insects as biological control agents is a common approach to controlling exotic plants. Though controversy has ensued regarding the deleterious direct effects of biological control agents to non-target species, few have examined the indirect effects of a "well-behaved" biological control agent on native fauna. We studied a grassland in west-...

  20. Cooperative tumour cell membrane targeted phototherapy

    NASA Astrophysics Data System (ADS)

    Kim, Heegon; Lee, Junsung; Oh, Chanhee; Park, Ji-Ho

    2017-06-01

    The targeted delivery of therapeutics using antibodies or nanomaterials has improved the precision and safety of cancer therapy. However, the paucity and heterogeneity of identified molecular targets within tumours have resulted in poor and uneven distribution of targeted agents, thus compromising treatment outcomes. Here, we construct a cooperative targeting system in which synthetic and biological nanocomponents participate together in the tumour cell membrane-selective localization of synthetic receptor-lipid conjugates (SR-lipids) to amplify the subsequent targeting of therapeutics. The SR-lipids are first delivered selectively to tumour cell membranes in the perivascular region using fusogenic liposomes. By hitchhiking with extracellular vesicles secreted by the cells, the SR-lipids are transferred to neighbouring cells and further spread throughout the tumour tissues where the molecular targets are limited. We show that this tumour cell membrane-targeted delivery of SR-lipids leads to uniform distribution and enhanced phototherapeutic efficacy of the targeted photosensitizer.

  1. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2.

    PubMed

    Lavik, Andrew R; Zhong, Fei; Chang, Ming-Jin; Greenberg, Edward; Choudhary, Yuvraj; Smith, Mitchell R; McColl, Karen S; Pink, John; Reu, Frederic J; Matsuyama, Shigemi; Distelhorst, Clark W

    2015-09-29

    Bcl-2 inhibits apoptosis by two distinct mechanisms but only one is targeted to treat Bcl-2-positive malignancies. In this mechanism, the BH1-3 domains of Bcl-2 form a hydrophobic pocket, binding and inhibiting pro-apoptotic proteins, including Bim. In the other mechanism, the BH4 domain mediates interaction of Bcl-2 with inositol 1,4, 5-trisphosphate receptors (IP3Rs), inhibiting pro-apoptotic Ca2+ signals. The current anti-Bcl-2 agents, ABT-263 (Navitoclax) and ABT-199 (Venetoclax), induce apoptosis by displacing pro-apoptotic proteins from the hydrophobic pocket, but do not inhibit Bcl-2-IP3R interaction. Therefore, to target this interaction we developed BIRD-2 (Bcl-2 IP3 Receptor Disruptor-2), a decoy peptide that binds to the BH4 domain, blocking Bcl-2-IP3R interaction and thus inducing Ca2+-mediated apoptosis in chronic lymphocytic leukemia, multiple myeloma, and follicular lymphoma cells, including cells resistant to ABT-263, ABT-199, or the Bruton's tyrosine kinase inhibitor Ibrutinib. Moreover, combining BIRD-2 with ABT-263 or ABT-199 enhances apoptosis induction compared to single agent treatment. Overall, these findings provide strong rationale for developing novel therapeutic agents that mimic the action of BIRD-2 in targeting the BH4 domain of Bcl-2 and disrupting Bcl-2-IP3R interaction.

  2. Controversies in cancer stem cells: targeting embryonic signaling pathways.

    PubMed

    Takebe, Naoko; Ivy, S Percy

    2010-06-15

    Selectively targeting cancer stem cells (CSC) or tumor-initiating cells (TIC; from this point onward referred to as CSCs) with novel agents is a rapidly emerging field of oncology. Our knowledge of CSCs and their niche microenvironments remains a nascent field. CSC's critical dependence upon self-renewal makes these regulatory signaling pathways ripe for the development of experimental therapeutic agents. Investigational agents targeting the Notch, Hedgehog, and Wnt pathways are currently in late preclinical development stages, with some early phase 1-2 testing in human subjects. This series of articles will provide an overview and summary of the current state of knowledge of CSCs, their interactive microenvironment, and how they may serve as important targets for antitumor therapies. We also examine the scope and stage of development of early experimental agents that specifically target these highly conserved embryonic signaling pathways. (c) 2010 AACR.

  3. Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma

    PubMed Central

    ADACHI, Mami; HOSHINO, Yuki; IZUMI, Yusuke; TAKAGI, Satoshi

    2015-01-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm of dogs for which there is currently no effective treatment. A recent study suggested that receptor tyrosine kinases (RTKs), the PI3K/Akt/m-TOR and MAPK pathways are all activated in canine and human HSA. The aim of the present study was to investigate the overexpression of these proteins by immunohistochemistry in canine splenic HSA to identify potential molecular therapeutic targets. A total of 10 splenic HSAs and two normal splenic samples surgically resected from dogs were sectioned and stained with hematoxylin and eosin for histological diagnosis or analyzed using immunohistochemistry. The expression of RTKs, c-kit, VEGFR-2 and PDGFR-2, as well as PI3K/Akt/m-TOR and MEK was higher in canine splenic HSAs compared to normal spleens. These proteins may therefore be potential therapeutic targets in canine splenic HSA. PMID:26685984

  4. Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Takagi, Satoshi

    2016-05-03

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm of dogs for which there is currently no effective treatment. A recent study suggested that receptor tyrosine kinases (RTKs), the PI3K/Akt/m-TOR and MAPK pathways are all activated in canine and human HSA. The aim of the present study was to investigate the overexpression of these proteins by immunohistochemistry in canine splenic HSA to identify potential molecular therapeutic targets. A total of 10 splenic HSAs and two normal splenic samples surgically resected from dogs were sectioned and stained with hematoxylin and eosin for histological diagnosis or analyzed using immunohistochemistry. The expression of RTKs, c-kit, VEGFR-2 and PDGFR-2, as well as PI3K/Akt/m-TOR and MEK was higher in canine splenic HSAs compared to normal spleens. These proteins may therefore be potential therapeutic targets in canine splenic HSA.

  5. Therapeutic nucleic acids: current clinical status

    PubMed Central

    Sridharan, Kannan

    2016-01-01

    Abstract Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are simple linear polymers that have been the subject of considerable research in the last two decades and have now moved into the realm of being stand‐alone therapeutic agents. Much of this has stemmed from the appreciation that they carry out myriad functions that go beyond mere storage of genetic information and protein synthesis. Therapy with nucleic acids either uses unmodified DNA or RNA or closely related compounds. From both a development and regulatory perspective, they fall somewhere between small molecules and biologics. Several of these compounds are in clinical development and many have received regulatory approval for human use. This review addresses therapeutic uses of DNA based on antisense oligonucleotides, DNA aptamers and gene therapy; and therapeutic uses of RNA including micro RNAs, short interfering RNAs, ribozymes, RNA decoys and circular RNAs. With their specificity, functional diversity and limited toxicity, therapeutic nucleic acids hold enormous promise. However, challenges that need to be addressed include targeted delivery, mass production at low cost, sustaining efficacy and minimizing off‐target toxicity. Technological developments will hold the key to this and help accelerate drug approvals in the years to come. PMID:27111518

  6. Selective Targeting of Antiviral and Immunomodulating Agents in the Treatment of Arenavirus Infections

    DTIC Science & Technology

    1987-10-01

    observed with free MTP-PE. In addition to our observations on peritoneal and alveolar macrophages, we also examined the effect of MTP-PE treatment on liver...Ir OIC FILE COPY C2 ILn 00 NM AD _____ N SELECTIVE TARGETING OF ANTIVIRAL AND IMMUNOMODULATING AGENTS IN THE TREATMENT OF ARENAVIRUS INFECTIONS "Kc...Selective Targeting of Antiviral and Immunomodulating Agents in the Treatment of Arenavirus Injections 12. PERSONAL AUTHOR(S) J. David Gangemi 13a. TYPE OF

  7. Evaluation of 188Re-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model

    PubMed Central

    Huang, Feng-Yun J; Lee, Te-Wei; Chang, Chih-Hsien; Chen, Liang-Cheng; Hsu, Wei-Hsin; Chang, Chien-Wen; Lo, Jem-Mau

    2015-01-01

    Purpose In this study, the 188Re-labeled PEGylated nanoliposome (188Re-liposome) was prepared and evaluated as a therapeutic agent for glioma. Materials and methods The reporter cell line, F98luc was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The maximum tolerated dose applicable in Fischer344 rats was explored via body weight monitoring of the rats after single intravenous injection of 188Re-liposome with varying dosages before the treatment study. The OLINDA/EXM 1.1 software was utilized for estimating the radiation dosimetry. To assess the therapeutic efficacy, tumor-bearing rats were intravenously administered 188Re-liposome or normal saline followed by monitoring of the tumor growth and animal survival time. In addition, the histopathological examinations of tumors were conducted on the 188Re-liposome-treated rats. Results By using bioluminescent imaging, the well-established reporter cell line (F98luc) showed a high relationship between cell number and its bioluminescent intensity (R2=0.99) in vitro; furthermore, it could also provide clear tumor imaging for monitoring tumor growth in vivo. The maximum tolerated dose of 188Re-liposome in Fischer344 rats was estimated to be 333 MBq. According to the dosimetry results, higher equivalent doses were observed in spleen and kidneys while very less were in normal brain, red marrow, and thyroid. For therapeutic efficacy study, the progression of tumor growth in terms of tumor volume and/or tumor weight was significantly slower for the 188Re-liposome-treated group than the control group (P<0.05). As a result, the lifespan of glioma-bearing rats treated with 188Re-liposome was prolonged 10.67% compared to the control group. Conclusion The radiotherapeutic evaluation by dosimetry and survival studies have demonstrated that passive targeting 188Re-liposome via systemic administration can significantly prolong the

  8. Development of a liposomal delivery system for temperature-triggered release of a tumor targeting agent, Ln(III)-DOTA-phenylboronate.

    PubMed

    Djanashvili, Kristina; ten Hagen, Timo L M; Blangé, Roy; Schipper, Debby; Peters, Joop A; Koning, Gerben A

    2011-02-01

    Liposomes, capable of temperature-triggered content release at the site of interest, can be of great importance for imaging and therapy of tumors. The delivery of imaging agents or therapeutics can be improved by application of liposomes with a gel-to-liquid phase-transition temperature suitable for mild hyperthermia (41-43°C), and by prolonging their circulation time by incorporation of lipids containing polyethyleneglycol moieties. Still, the rapid wash out of the delivered material from the tumor tissue is a major obstacle for both imaging and therapy. In this study, we developed an optimized temperature sensitive liposomal system to be used with mild hyperthermia: highly stable at physiological temperature and with a sharp transition of the bilayer at 41.5°C, with subsequent rapid release of entrapped compounds such as calcein or tumor cell-targeting contrast agents. Intravital microscopy on calcein/rhodamine containing liposomes was applied to demonstrate the applicability of this system in vivo. The calcein loaded liposomes were injected iv into nude mice with a human BLM melanoma tumor implanted in a dorsal skin-fold window chamber. Arrival of the liposomes at the tumor site and content release after temperature increase were monitored. The results demonstrated not only accumulation of the liposomes at the tumor site, but also a massive release of calcein after increase of the temperature to 41°C. The versatility of the thermosensitive liposomes was further demonstrated by encapsulation of a tumor cell-targeting DOTA-phenylboronate conjugate and its release at elevated temperatures. The DOTA ligand in this system is able to chelate a variety of metals suitable for both diagnostic and therapeutic applications, whereas the phenylboronate function is able to target specifically to tumor cells through a covalent binding with sialic acid moieties over-expressed on their surface upon heat-triggered release from the liposomal carrier. Copyright © 2010 Elsevier

  9. Ligand-targeted theranostic nanomedicines against cancer

    DOE PAGES

    Yao, Virginia J.; D'Angelo, Sara; Butler, Kimberly S.; ...

    2016-01-06

    Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20 years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentiallymore » overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant

  10. Ligand-targeted theranostic nanomedicines against cancer.

    PubMed

    Yao, Virginia J; D'Angelo, Sara; Butler, Kimberly S; Theron, Christophe; Smith, Tracey L; Marchiò, Serena; Gelovani, Juri G; Sidman, Richard L; Dobroff, Andrey S; Brinker, C Jeffrey; Bradbury, Andrew R M; Arap, Wadih; Pasqualini, Renata

    2016-10-28

    Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human sc

  11. Ligand-targeted theranostic nanomedicines against cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Virginia J.; D'Angelo, Sara; Butler, Kimberly S.

    Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20 years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentiallymore » overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant

  12. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress GBM Tumor Growth.

    PubMed

    Lee, Jaehyun; Shin, Yong Jae; Lee, Kyoungmin; Cho, Hee Jin; Sa, Jason K; Lee, Sang-Yun; Kim, Seok-Hyung; Lee, Jeongwu; Yoon, Yeup; Nam, Do-Hyun

    2017-11-10

    Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3A mRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell-line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.

  13. The renaissance of complement therapeutics

    PubMed Central

    Ricklin, Daniel; Mastellos, Dimitrios C.; Reis, Edimara S.; Lambris, John D.

    2018-01-01

    The increasing number of clinical conditions that involve a pathological contribution from the complement system — many of which affect the kidneys — has spurred a regained interest in therapeutic options to modulate this host defence pathway. Molecular insight, technological advances, and the first decade of clinical experience with the complement-specific drug eculizumab, have contributed to a growing confidence in therapeutic complement inhibition. More than 20 candidate drugs that target various stages of the complement cascade are currently being evaluated in clinical trials, and additional agents are in preclinical development. Such diversity is clearly needed in view of the complex and distinct involvement of complement in a wide range of clinical conditions, including rare kidney disorders, transplant rejection and haemodialysis-induced inflammation. The existing drugs cannot be applied to all complement-driven diseases, and each indication has to be assessed individually. Alongside considerations concerning optimal points of intervention and economic factors, patient stratification will become essential to identify the best complement-specific therapy for each individual patient. This Review provides an overview of the therapeutic concepts, targets and candidate drugs, summarizes insights from clinical trials, and reflects on existing challenges for the development of complement therapeutics for kidney diseases and beyond. PMID:29199277

  14. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes.

    PubMed

    Xue, Shuai; Yin, Jianli; Shao, Jiawei; Yu, Yuanhuan; Yang, Linfeng; Wang, Yidan; Xie, Mingqi; Fussenegger, Martin; Ye, Haifeng

    2017-02-01

    Hepatogenous diabetes is a complex disease that is typified by the simultaneous presence of type 2 diabetes and many forms of liver disease. The chief pathogenic determinant in this pathophysiological network is insulin resistance (IR), an asymptomatic disease state in which impaired insulin signaling in target tissues initiates a variety of organ dysfunctions. However, pharmacotherapies targeting IR remain limited and are generally inapplicable for liver disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment in many liver disorders. Here, we utilized the congruent pharmacological activities of OA and glucagon-like-peptide 1 (GLP-1) in relieving IR and improving liver and pancreas functions and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs. In particular, OA-triggered short human GLP-1 (shGLP-1) expression in hepatogenous diabetic mice rapidly and simultaneously attenuated many disease-specific metabolic failures, whereas OA or shGLP-1 monotherapy failed to achieve corresponding therapeutic effects. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficacies of single therapeutics. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  15. DEPDC5 as a potential therapeutic target for epilepsy.

    PubMed

    Myers, Kenneth A; Scheffer, Ingrid E

    2017-06-01

    Dishevelled, Egl-10 and Pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a protein subunit of the GTPase-activating proteins towards Rags 1 (GATOR1) complex. GATOR1 is a recently identified modulator of mechanistic target of rapamycin (mTOR) activity. mTOR is a key regulator of cell proliferation and metabolism; disruption of the mTOR pathway is implicated in focal epilepsy, both acquired and genetic. Tuberous sclerosis is the prototypic mTOR genetic syndrome with epilepsy, however GATOR1 gene mutations have recently been shown to cause lesional and non-lesional focal epilepsy. Areas covered: This review summarizes the mTOR pathway, including regulators and downstream effectors, emphasizing recent developments in the understanding of the complex role of the GATOR1 complex. We review the epilepsy types associated with mTOR overactivity, including tuberous sclerosis, polyhydramnios megalencephaly symptomatic epilepsy, cortical dysplasia, non-lesional focal epilepsy and post-traumatic epilepsy. Currently available mTOR inhibitors are discussed, primarily rapamycin analogs and ATP competitive mTOR inhibitors. Expert opinion: DEPDC5 is an attractive therapeutic target in focal epilepsy, as effects of DEPDC5 agonists would likely be anti-epileptogenic and more selective than currently available mTOR inhibitors. Therapeutic effects might be synergistic with certain existing dietary therapies, including the ketogenic diet.

  16. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets

    PubMed Central

    Li, Ying C.

    2017-01-01

    Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle—such as exocytosis and endocytosis—require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders. PMID:28265000

  17. Development of contrast agents targeted to macrophage scavenger receptors for MRI of vascular inflammation

    PubMed Central

    Gustafsson, Björn; Youens, Susan; Louie, Angelique Y.

    2008-01-01

    Atherosclerosis is a leading cause of death in the U.S. Because there is a potential to prevent coronary and arterial diseases through early diagnosis, there is a need for methods to image arteries in the sub-clinical stage as well as clinical stage using various non-invasive techniques, including Magnetic Resonance Imaging (MRI). We describe a development of a novel MRI contrast agent targeted to plaques that will allow imaging of lesion formation. The contrast agent is directed to macrophages, one of the earliest components of developing plaques. Macrophages are labeled through the macrophage scavenger receptor A, a macrophage specific cell surface protein, using an MRI contrast agent derived from scavenger receptor ligands. We have synthesized and characterized these contrast agents with a range of relaxivities. In vitro studies show that the targeted contrast agent accumulates in macrophages and solution studies indicate that micromolar concentrations are sufficient to produce contrast in an MR image. Cell toxicity and initial biodistribution studies indicate low toxicity, no detectable retention in normal blood vessels, and rapid clearance from blood. The promising performance of this contrast agent targeted towards vascular inflammation opens doors to tracking of other inflammatory diseases such as tumor immunotherapy and transplant acceptance using MRI. PMID:16536488

  18. Nanocarriers in advanced drug targeting: setting novel paradigm in cancer therapeutics.

    PubMed

    Akhter, Md Habban; Rizwanullah, Md; Ahmad, Javed; Ahsan, Mohamed Jawed; Mujtaba, Md Ali; Amin, Saima

    2018-08-01

    Cancer has been growing nowadays consequently high number of death ascertained worldwide. The medical intervention involves chemotherapy, radiation therapy and surgical removal. This conventional technique lacking targeting potential and harm the normal cells. In drug treatment regimen, the combination therapy is preferred than single drug treatment module due to higher internalization of chemotherapeutics in the cancer cells both by enhance permeation retention effect and by direct cell apoptosis. The cancer therapeutics involves different methodologies of delivering active moiety to the target site. The active and passive transport mode of chemotherapeutic targeting utilizes advance nanocarriers. The nanotechnological strategic treatment applying advance nanocarrier greatly helps in mitigating the cancer prevalence. The nanocarrier-incorporating nanodrug directed for specific area appealed scientist across the globe and issues to be addressed in this regard. Therefore, various techniques and approaches invented to meet the objectives. With the advances in nanomedicine and drug delivery, this review briefly focused on various modes of nanodrug delivery including nanoparticles, liposomes, dendrimer, quantum dots, carbon nanotubes, metallic nanoparticles, nanolipid carrier (NLC), gold nanoshell, nanosize cantilevers and nanowire that looks promising and generates a novel horizon in cancer therapeutics.

  19. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival

    PubMed Central

    2012-01-01

    Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting p

  20. Aptamer delivery of siRNA, radiopharmaceutics and chemotherapy agents in cancer.

    PubMed

    de Almeida, Carlos E B; Alves, Lais Nascimento; Rocha, Henrique F; Cabral-Neto, Januário Bispo; Missailidis, Sotiris

    2017-06-20

    Aptamers are oligonucleotide reagents with high affinity and specificity, which among other therapeutic and diagnostic applications have the capability of acting as delivery agents. Thus, aptamers are capable of carrying small molecules, nanoparticles, radiopharmaceuticals or fluorescent agents as well as nucleic acid therapeutics specifically to their target cells. In most cases, the molecules may possess interesting therapeutic properties, but their lack of specificity for a particular cell type, or ability to internalise in such a cell, hinders their clinical development, or cause unwanted side effects. Thus, chemotherapy or radiotherapy agents, famous for their side effects, can be coupled to aptamers for specific delivery. Equally, siRNA have great therapeutic potential and specificity, but one of their shortcomings remain the delivery and internalisation into cells. Various methodologies have been proposed to date, including aptamers, to resolve this problem. Therapeutic or imaging reagents benefit from the adaptability and ease of chemical manipulation of aptamers, their high affinity for the specific marker of a cell type, and their internalisation ability via cell mediated endocytosis. In this review paper, we explore the potential of the aptamers as delivery agents and offer an update on current status and latest advancements. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Therapeutic Inhibition of miR-4260 Suppresses Colorectal Cancer via Targeting MCC and SMAD4.

    PubMed

    Xiao, Junjie; Lv, Dongchao; Zhou, Jinzhe; Bei, Yihua; Chen, Ting; Hu, Muren; Zhou, Qiulian; Fu, Siyi; Huang, Qi

    2017-01-01

    Dysregulation of microRNAs (miRNAs, miRs) and their putative target genes have been increasingly reported to contribute to colorectal cancer. However, miRNAs that directly target the mutated in colorectal cancer (MCC) gene, a tumor suppressor which is downregulated or inactivated in colorectal cancer, remain largely unknown. By using an array-based miRNA analysis, we identified a group of miRNAs that were dysregulated in human metastatic versus non-metastatic colorectal cancer tissues. One of these miRNAs, miR-4260, was predicted to target MCC in the miRDB database. Results using human HCT116 and HT29 colorectal cancer cell lines showed that miR-4260 mimic enhanced cell proliferation and migration and reduced apoptosis induced by the chemotherapeutic agent 5-fluorouracil while miR-4260 inhibitor had inverse effects. Furthermore, miR-4260 negatively regulated MCC as well as SMAD4 by directly binding to the 3'untranslational region (3'UTR). Using siRNAs targeting MCC or SMAD4, we showed that upregulation of MCC and SMAD4 was essential to mediate the functional roles of miR-4260 inhibitor in colorectal cancer cells. Our in vivo experiments indicated that inhibition of miR-4260 reduced colorectal tumor growth in nude mice subcutaneously implanted with HCT116 cells. Significantly, miR-4260 was increased in human colorectal cancer tissues with simultaneous downregulation of MCC and SMAD4, strongly suggesting the clinical relevance of targeting miR-4260 in the treatment of colorectal cancer. In summary, we identified miR-4260 as a novel oncomiR for colorectal cancer that targets MCC and SMAD4. Inhibition of miR-4260 can, therefore, be a potential therapeutic strategy for colorectal cancer.

  2. Developing a novel therapeutic strategy targeting Kallikrein-4 to inhibit prostate cancer growth and metastasis

    DTIC Science & Technology

    Kallikrein-related peptidase 4 (KLK4) is a rational therapeutic target for prostate cancer (PCa) as it is up-regulated in both localised and bone ...in PCa homing to bone . We therefore hypothesize that blockade of KLK4 activity will inhibit PCa growth and prevent metastasis to secondary sites like... bone . This project aims to develop a novel therapeutic strategy targeting KLK4 specifically in PCa. KLK4 siRNA is incorporated into a novel polymeric

  3. Novel medical therapeutics in glioblastomas, including targeted molecular therapies, current and future clinical trials.

    PubMed

    Quant, Eudocia C; Wen, Patrick Y

    2010-08-01

    The prognosis for glioblastoma is poor despite optimal therapy with surgery, radiation, and chemotherapy. New therapies that improve survival and quality of life are needed. Research has increased our understanding of the molecular pathways important for gliomagenesis and disease progression. Novel agents have been developed against these targets, including receptor tyrosine kinases, intracellular signaling molecules, epigenetic abnormalities, and tumor vasculature and microenvironment. This article reviews novel therapies for glioblastoma, with an emphasis on targeted agents. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Cancer Clonal Theory, Immune Escape, and Their Evolving Roles in Cancer Multi-Agent Therapeutics.

    PubMed

    Messerschmidt, Jonathan L; Bhattacharya, Prianka; Messerschmidt, Gerald L

    2017-08-12

    The knowledge base of malignant cell growth and resulting targets is rapidly increasing every day. Clonal theory is essential to understand the changes required for a cell to become malignant. These changes are then clues to therapeutic intervention strategies. Immune system optimization is a critical piece to find, recognize, and eliminate all cancer cells from the host. Only by administering (1) multiple therapies that counteract the cancer cell's mutational and externally induced survival traits and (2) by augmenting the immune system to combat immune suppression processes and by enhancing specific tumor trait recognition can cancer begin to be treated with a truly targeted focus. Since the sequencing of the human genome during the 1990s, steady progress in understanding genetic alterations and gene product functions are being unraveled. In cancer, this is proceeding very fast and demonstrates that genetic mutations occur very rapidly to allow for selection of survival traits within various cancer clones. Hundreds of mutations have been identified in single individual cancers, but spread across many clones in the patient's body. Precision oncology will require accurate measurement of these cancer survival-benefiting mutations to develop strategies for effective therapy. Inhibiting these cellular mechanisms is a first step, but these malignant cells need to be eliminated by the host's mechanisms, which we are learning to direct more specifically. Cancer is one of the most complicated cellular aberrations humans have encountered. Rapidly developing significant survival traits require prompt, repeated, and total body measurements of these attributes to effectively develop multi-agent treatment of the individual's malignancy. Focused drug development to inhibit these beneficial mutations is critical to slowing cancer cell growth and, perhaps, triggering apoptosis. In many cases, activation and targeting of the immune system to kill the remaining malignant cells is

  5. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    NASA Astrophysics Data System (ADS)

    Chen, Zhijin; Yu, Dexin; Wang, Shaojie; Zhang, Na; Ma, Chunhong; Lu, Zaijun

    2009-07-01

    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid-polyethylene glycol/gadolinium-diethylenetriamine-pentaacetic acid (PLA-PEG/Gd-DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA-PEG/Gd-DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA-PEG nanoparticles and the commercial contrast agent, Gd-DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA-PEG/Gd-DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was -12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA-PEG/Gd-DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed ( r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd-DTPA. PLA-PEG/Gd-DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA-PEG/Gd-DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent.

  6. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders.

    PubMed

    Eira, Jessica; Silva, Catarina Santos; Sousa, Mónica Mendes; Liz, Márcia Almeida

    2016-06-01

    Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for glioblastoma.

    PubMed

    Estrada-Bernal, Adriana; Palanichamy, Kamalakannan; Ray Chaudhury, Abhik; Van Brocklyn, James R

    2012-04-01

    FTY720 is a sphingosine analogue that down regulates expression of sphingosine-1-phosphate receptors and causes apoptosis of multiple tumor cell types, including glioma cells. This study examined the effect of FTY720 on brain tumor stem cells (BTSCs) derived from human glioblastoma (GBM) tissue. FTY720 treatment of BTSCs led to rapid inactivation of ERK MAP kinase, leading to upregulation of the BH3-only protein Bim and apoptosis. In combination with temozolomide (TMZ), the current standard chemotherapeutic agent for GBM, FTY720 synergistically induced BTSC apoptosis. FTY720 also slowed growth of intracranial xenograft tumors in nude mice and augmented the therapeutic effect of TMZ, leading to enhanced survival. Furthermore, the combination of FTY720 and TMZ decreased the invasiveness of BTSCs in mouse brains. FTY720 is known to cross the blood-brain barrier and recently received Food and Drug Administration approval for treatment of relapsing multiple sclerosis. Thus, FTY720 is an excellent potential therapeutic agent for treatment of GBM.

  8. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?

    PubMed

    Harrison, Ian F; Dexter, David T

    2013-10-01

    Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD? Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Novel agents that downregulate EGFR, HER2, and HER3 in parallel

    PubMed Central

    Ferreira, Renan Barroso; Law, Mary Elizabeth; Jahn, Stephan Christopher; Davis, Bradley John; Heldermon, Coy Don; Reinhard, Mary; Castellano, Ronald Keith; Law, Brian Keith

    2015-01-01

    EGFR, HER2, and HER3 contribute to the initiation and progression of human cancers, and are therapeutic targets for monoclonal antibodies and tyrosine kinase inhibitors. An important source of resistance to these agents arises from functional redundancy among EGFR, HER2, and HER3. EGFR family members contain conserved extracellular structures that are stabilized by disulfide bonds. Compounds that disrupt extracellular disulfide bonds could inactivate EGFR, HER2, and HER3 in unison. Here we describe the identification of compounds that kill breast cancer cells that overexpress EGFR or HER2. Cell death parallels downregulation of EGFR, HER2, and HER3. These compounds disrupt disulfide bonds and are termed Disulfide Bond Disrupting Agents (DDAs). DDA RBF3 exhibits anticancer efficacy in vivo at 40 mg/kg without evidence of toxicity. DDAs may complement existing EGFR-, HER2-, and HER3-targeted agents that function through alternate mechanisms of action, and combination regimens with these existing drugs may overcome therapeutic resistance. PMID:25865227

  10. Imaging efficacy of a targeted imaging agent for fluorescence endoscopy

    NASA Astrophysics Data System (ADS)

    Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.

  11. Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis

    PubMed Central

    Borin, Thaiz F.; Angara, Kartik; Rashid, Mohammad H.; Achyut, Bhagelu R.; Arbab, Ali S.

    2017-01-01

    Metastatic breast cancer (BC) (also referred to as stage IV) spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4) family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE), an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis. PMID:29292756

  12. Near infrared spectral polarization imaging of prostate cancer tissues using Cybesin: a receptor-targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Wang, W. B.; Tang, G. C.; Liang, Kexian; Achilefu, S.; Alfano, R. R.

    2013-03-01

    Cybesin, a smart contrast agent to target cancer cells, was investigated using a near infrared (NIR) spectral polarization imaging technique for prostate cancer detection. The approach relies on applying a contrast agent that can target cancer cells. Cybesin, as a small ICG-derivative dye-peptide, emit fluorescence between 750 nm and 900 nm, which is in the "tissue optical window". Cybesin was reported targeting the over-expressed bombesin receptors in cancer cells in animal model and the human prostate cancers over-expressing bombesin receptors. The NIR spectral polarization imaging study reported here demonstrated that Cybesin can be used as a smart optical biomarker and as a prostate cancer receptor targeted contrast agent.

  13. Targeting cancer’s weaknesses (not its strengths): Therapeutic strategies suggested by the atavistic model

    PubMed Central

    Lineweaver, Charles H.; Davies, Paul C.W.; Vincent, Mark D.

    2014-01-01

    In the atavistic model of cancer progression, tumor cell dedifferentiation is interpreted as a reversion to phylogenetically earlier capabilities. The more recently evolved capabilities are compromised first during cancer progression. This suggests a therapeutic strategy for targeting cancer: design challenges to cancer that can only be met by the recently evolved capabilities no longer functional in cancer cells. We describe several examples of this target-the-weakness strategy. Our most detailed example involves the immune system. The absence of adaptive immunity in immunosuppressed tumor environments is an irreversible weakness of cancer that can be exploited by creating a challenge that only the presence of adaptive immunity can meet. This leaves tumor cells more vulnerable than healthy tissue to pathogenic attack. Such a target-the-weakness therapeutic strategy has broad applications, and contrasts with current therapies that target the main strength of cancer: cell proliferation. PMID:25043755

  14. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Humphries, Edward S. A.

    2015-01-01

    Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators. PMID:26303307

  15. Neuroendocrine tumors: insights into innovative therapeutic options and rational development of targeted therapies.

    PubMed

    Barbieri, Federica; Albertelli, Manuela; Grillo, Federica; Mohamed, Amira; Saveanu, Alexandru; Barlier, Anne; Ferone, Diego; Florio, Tullio

    2014-04-01

    Neuroendocrine tumors (NETs) are heterogeneous neoplasms with respect to molecular characteristics and clinical outcome. Although slow-growing, NETs are often late diagnosed, already showing invasion of adjacent tissues and metastases. Precise knowledge of NET biological and molecular features has opened the door to the identification of novel pharmacological targets. Therapeutic options include somatostatin analogs, alone or in combination with interferon-α, multi-targeted tyrosine kinase inhibitors (e.g. sunitinib) or mammalian target of rapamycin (mTOR) inhibitors (e.g. everolimus). Antiangiogenic approaches and anti insulin-like growth factor receptor (IGFR) compounds have been also proposed as combination therapies with the aforementioned compounds. This review will focus on recent studies that have improved therapeutic strategies in NETs, discussing management challenges such as drug resistance development as well as focusing on the need for predictive biomarkers to design distinct drug combinations and optimize pharmacological control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Therapeutic targeting of RNA splicing in myelodysplasia.

    PubMed

    Kim, Young Joon; Abdel-Wahab, Omar

    2017-07-01

    Genomic analysis of patients with myelodysplastic syndromes (MDS) has identified that mutations within genes encoding RNA splicing factors represent the most common class of genetic alterations in MDS. These mutations primarily affect SF3B1, SRSF2, U2AF1, and ZRSR2. Current data suggest that these mutations perturb RNA splicing catalysis in a manner distinct from loss of function but how exactly the global changes in RNA splicing imparted by these mutations result in MDS is not well delineated. At the same time, cells bearing mutations in RNA splicing factors are exquisitely dependent on the presence of the remaining wild-type (WT) allele to maintain residual normal splicing for cell survival. The high frequency of these mutations in MDS, combined with their mutual exclusivity and noteworthy dependence on the WT allele, make targeting RNA splicing attractive in MDS. To this end, two promising therapeutic approaches targeting RNA splicing are being tested clinically currently. These include molecules targeting core RNA splicing catalysis by interfering with the ability of the SF3b complex to interact with RNA, as well as molecules degrading the auxiliary RNA splicing factor RBM39. The preclinical and clinical evaluation of these compounds are discussed here in addition to their potential as therapies for spliceosomal mutant MDS. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    PubMed

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  18. Targeting HIF-2 α in clear cell renal cell carcinoma: A promising therapeutic strategy.

    PubMed

    Martínez-Sáez, Olga; Gajate Borau, Pablo; Alonso-Gordoa, Teresa; Molina-Cerrillo, Javier; Grande, Enrique

    2017-03-01

    The loss of the Von Hippel-Lindau tumor suppressor (VHL) is a key oncogenic event in the vast majority of patients with clear cell renal cell carcinoma (ccRCC). With the loss of the VHL protein (pVHL) function, the hypoxia inducible factor α (HIF-α) accumulates inside the tumor cell and dimerizes with HIF-β. The HIF-α/HIF-β complex transcriptionally activates hundreds of genes promoting the adaptation to hypoxia that is implicated in tumor development. There is growing evidence showing that HIF-2α subunit has a central role in ccRCC over HIF-1α. Thus, efforts have been made to specifically target this pathway. PT2385 and PT2399 are first-in-class, orally available, small molecule inhibitors of HIF-2 that selectively disrupt the heterodimerization of HIF-2α with HIF-1β. Preclinical and clinical data indicate that these new molecules are effective in blocking cancer cell growth, proliferation, and tumor angiogenesis characteristic in ccRCC. Treatment with HIF-2α specific antagonists, either alone or in combination with immunotherapy or other antiangiogenic agents have the potential to transform the therapeutic landscape in this tumor in the future. Herein, we summarize the molecular background behind the use of HIF-2α inhibitors in ccRCC and give an overview of the development of new agents in this setting. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents.

    PubMed

    Holub, Justin M

    2017-09-01

    Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Peptides as Therapeutic Agents for Dengue Virus

    PubMed Central

    Chew, Miaw-Fang; Poh, Keat-Seong; Poh, Chit-Laa

    2017-01-01

    Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients. PMID:29200948

  1. Recent insights into the molecular pathogenesis of Crohn’s disease: a review of emerging therapeutic targets

    PubMed Central

    Manuc, Teodora-Ecaterina M; Manuc, Mircea M; Diculescu, Mircea M

    2016-01-01

    Chronic inflammatory bowel diseases (IBDs) are a subject of great interest in gastroenterology, due to a pathological mechanism that is difficult to explain and an optimal therapeutic approach still undiscovered. Crohn’s disease (CD) is one of the main entities in IBD, characterized by clinical polymorphism and great variability in the treatment response. Modern theories on the pathogenesis of CD have proven that gut microbiome and environmental factors lead to an abnormal immune response in a genetically predisposed patient. Genome-wide association studies in patients with CD worldwide revealed several genetic mutations that increase the risk of IBD and that predispose to a more severe course of disease. Gut microbiota is considered a compulsory and an essential part in the pathogenesis of CD. Intestinal dysmicrobism with excessive amounts of different bacterial strains can be found in all patients with IBD. The discovery of Escherichia coli entero-invasive on resection pieces in patients with CD now increases the likelihood of antimicrobial or vaccine-type treatments. Recent studies targeting intestinal immunology and its molecular activation pathways provide new possibilities for therapeutics. In addition to antitumor necrosis factor molecules, which were a breakthrough in IBD, improving mucosal healing and resection-free survival rate, other classes of therapeutic agents come to focus. Leukocyte adhesion inhibitors block the leukocyte homing mechanism and prevent cellular immune response. In addition to anti-integrin antibodies, chemokine receptor antagonists and SMAD7 antisense oligonucleotides have shown encouraging results in clinical trials. Micro-RNAs have demonstrated their role as disease biomarkers but it could also become useful for the treatment of IBD. Moreover, cellular therapy is another therapeutic approach under development, aimed for severe refractory CD. Other experimental treatments include intravenous immunoglobulins, exclusive enteral

  2. Targeted therapies in non-small cell lung carcinoma: what have we achieved so far?

    PubMed Central

    Houhou, Wissam

    2013-01-01

    The search for innovative therapeutic agents in non-small cell lung cancer (NSCLC) has witnessed a swift evolution. The number of targeted drugs that can improve patient outcomes with an acceptable safety profile is steadily increasing. In this review, we highlight current drugs that have already been approved or are under evaluation for the treatment of patients with NSCLC, either in monotherapy or combined therapy for both the first- and second-line settings. Experience with drugs targeting the vascular endothelial growth factor and its receptor, as well as the epidermal growth factor receptor is summarized. Moreover, we provide an overview of more novel targets in NSCLC and initial experience with the respective therapeutic agents. PMID:23858333

  3. Structure of the Trypanosoma cruzi protein tyrosine phosphatase TcPTP1, a potential therapeutic target for Chagas' disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S.

    2013-06-05

    Chagas’ disease, a neglected tropical affliction transmitted by the flagellated protozoan Trypanosoma cruzi, is prevalent in Latin America and affects nearly 18 million people worldwide, yet few approved drugs are available to treat the disease. Moreover, the currently available drugs exhibit severe toxicity or are poorly effective in the chronic phase of the disease. This limitation, along with the large population at risk, underscores the urgent need to discover new molecular targets and novel therapeutic agents. Recently, the T. cruzi protein tyrosine phosphatase TcPTP1 has been implicated in the cellular differentiation and infectivity of the parasite and is therefore amore » promising target for the design of novel anti-parasitic drugs. Here, we report the X-ray crystal structure of TcPTP1 refined to a resolution of 2.18 Å, which provides structural insights into the active site environment that can be used to initiate structure-based drug design efforts to develop specific TcPTP1 inhibitors. Potential strategies to develop such inhibitors are also discussed.« less

  4. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases

    PubMed Central

    Jain, Chetan Kumar; Majumder, Hemanta Kumar; Roychoudhury, Susanta

    2017-01-01

    DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs. PMID:28503091

  5. Tackling obesity: new therapeutic agents for assisted weight loss

    PubMed Central

    Karam, JG; McFarlane, SI

    2010-01-01

    The pandemic of overweight and obesity continues to rise in an alarming rate in western countries and around the globe representing a major public health challenge in desperate need for new strategies tackling obesity. In the United States nearly two thirds of the population is overweight or obese. Worldwide the number of persons who are overweight or obese exceeded 1.6 billion. These rising figures have been clearly associated with increased morbidity and mortality. For example, in the Framingham study, the risk of death increases with each additional pound of weight gain even in the relatively younger population between 30 and 42 years of age. Overweight and obesity are also associated with increased co-morbid conditions such as diabetes, hypertension and cardiovascular disease as well as certain types of cancer. In this review we discuss the epidemic of obesity, highlighting the pathophysiologic mechanisms of weight gain. We also provide an overview of the assessment of overweight and obese individuals discussing possible secondary causes of obesity. In a detailed section we discuss the currently approved therapeutic interventions for obesity highlighting their mechanisms of action and evidence of their efficacy and safety as provided in clinical trials. Finally, we discuss novel therapeutic interventions that are in various stages of development with a special section on the weight loss effects of anti-diabetic medications. These agents are particularly attractive options for our growing population of obese diabetic individuals. PMID:21437080

  6. A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent.

    PubMed

    Xiong, Fei; Hu, Ke; Yu, Haoli; Zhou, Lijun; Song, Lina; Zhang, Yu; Shan, Xiuhong; Liu, Jianping; Gu, Ning

    2017-08-01

    Tumor targeting could greatly promote the performance of magnetic nanomaterials as MRI (Magnetic Resonance Imaging) agent for tumor diagnosis. Herein, we reported a novel magnetic nanoparticle modified with PLA (poly lactic acid)-PEG (polyethylene glycol)-DG (D-glucosamine) as Tumor-targeted MRI Contrast Agent. In this work, we took use of the D-glucose passive targeting on tumor cells, combining it on PLA-PEG through amide reaction, and then wrapped the PLA-PEG-DG up to the Fe 3 O 4 @OA NPs. The stability and anti phagocytosis of Fe 3 O 4 @OA@PLA-PEG-DG was tested in vitro; the MRI efficiency and toxicity was also detected in vivo. These functional magnetic nanoparticles demonstrated good biocompatibility and stability both in vitro and in vivo. Cell experiments showed that Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles exist good anti phagocytosis and high targetability. In vivo MRI images showed that the contrast effect of Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles prevailed over the commercial non tumor-targeting magnetic nanomaterials MRI agent at a relatively low dose. The DG can validly enhance the tumor-targetting effect of Fe 3 O 4 @OA@PLA-PEG nanoparticle. Maybe MRI agents with DG can hold promise as tumor-targetting development in the future.

  7. Emerging therapeutic targets currently under investigation for the treatment of systemic amyloidosis.

    PubMed

    Nuvolone, Mario; Merlini, Giampaolo

    2017-12-01

    Systemic amyloidosis occurs when one of a growing list of circulating proteins acquires an abnormal fold, aggregates and gives rise to extracellular amyloid deposits in different body sites, leading to organ dysfunction and eventually death. Current approaches are mainly aimed at lowering the supply of the amyloidogenic precursor or at stabilizing it in a non-amyloidogenic state, thus interfering with the initial phases of amyloid formation and toxicity. Areas covered: Improved understanding of the pathophysiology is indicating novel steps and molecules that could be therapeutically targeted. Here, we will review emerging molecular targets and therapeutic approaches against the main forms of systemic amyloidosis at the early preclinical level. Expert opinion: Conspicuous efforts in drug design and drug discovery have provided an unprecedented list of potential new drugs or therapeutic strategies, from gene-based therapies to small molecules and peptides, from novel monoclonal antibodies to engineered cell-based therapies. The challenge will now be to validate and optimize the most promising candidates, cross the bridge from the preclinical phase to the clinics and identify, through innovative trials design, the safest and most effective combination therapies, striving for a better care, possibly a definitive cure for these diseases.

  8. Immunologic responses to therapeutic biologic agents.

    PubMed

    Purcell, R T; Lockey, R F

    2008-01-01

    Recombinant protein technology and the subsequent development of biologic agents for pharmacotherapy have greatly improved the treatment of a wide variety of diseases in humans. These products are subject to reactions not previously seen in other drug classes. Additionally, subtle alteration in the manufacture or administration of a biologic agent may cause reactions in subjects who previously tolerated it. This review highlights the unique immunologic reactions that are associated with the more commonly used biologic agents.

  9. Trojan horses and guided missiles: targeted therapies in the war on arthritis.

    PubMed

    Ferrari, Mathieu; Onuoha, Shimobi C; Pitzalis, Costantino

    2015-06-01

    Despite major advances in the treatment of rheumatoid arthritis (RA) led by the success of biologic therapies, the lack of response to therapy in a proportion of patients, as well as therapy discontinuation owing to systemic toxicity, are still unsolved issues. Unchecked RA might develop into progressive structural joint damage, loss of function and long-term disability, disorders which are associated with a considerable health-economic burden. Therefore, new strategies are required to actively target and deliver therapeutic agents to disease sites in order to promote in situ activity and decrease systemic toxicity. Polymer-drug conjugates can improve the pharmacokinetics of therapeutic agents, conferring desirable properties such as increased solubility and tissue penetration at sites of active disease. Additionally, nanotechnology is an exciting modality in which drugs are encapsulated to protect them from degradation or early activation in the circulation, as well as to reduce systemic toxicity. Together with the targeting capacity of antibodies and site-specific peptides, these approaches will facilitate selective accumulation of therapeutic agents in the inflamed synovium, potentially improving drug efficacy at disease sites without affecting healthy tissues. This Review aims to summarize key developments in the past 5 years in polymer conjugation, nanoparticulate drug delivery and antibody or peptide-based targeting--strategies that might constitute the platform for the next generation of RA therapeutics.

  10. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    PubMed

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  11. Emerging targets in lipid-based therapy☆

    PubMed Central

    Tucker, Stephanie C.; Honn, Kenneth V.

    2013-01-01

    The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to “biomarkers” does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery. PMID:23261527

  12. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma.

    PubMed

    Reznik, Robert; Hendifar, Andrew E; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided.

  13. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  14. Annexin A9 (ANXA9) biomarker and therapeutic target in epithelial cancer

    DOEpatents

    Hu, Zhi [El Cerrito, CA; Kuo, Wen-Lin [San Ramon, CA; Neve, Richard M [San Mateo, CA; Gray, Joe W [San Francisco, CA

    2012-06-12

    Amplification of the ANXA9 gene in human chromosomal region 1q21 in epithelial cancers indicates a likelihood of both in vivo drug resistance and metastasis, and serves as a biomarker indicating these aspects of the disease. ANXA9 can also serve as a therapeutic target. Interfering RNAs (iRNAs) (such as siRNA and miRNA) and shRNA adapted to inhibit ANXA9 expression, when formulated in a therapeutic composition, and delivered to cells of the tumor, function to treat the epithelial cancer.

  15. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool

    PubMed Central

    Uchiyama, Mayara Klimuk; Toma, Sergio Hiroshi; Rodrigues, Stephen Fernandes; Shimada, Ana Lucia Borges; Loiola, Rodrigo Azevedo; Cervantes Rodríguez, Hernán Joel; Oliveira, Pedro Vitoriano; Luz, Maciel Santos; Rabbani, Said Rahnamaye; Toma, Henrique Eisi; Poliselli Farsky, Sandra Helena; Araki, Koiti

    2015-01-01

    Fully dispersible, cationic ultrasmall (7 nm diameter) superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM−1s−1 in 0.47 T) and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight), they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy), but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat thigh by a magnet showing its potential as magnetically targeted carriers of therapeutic and diagnostic agents. Summarizing, cationic ultrasmall superparamagnetic iron oxide nanoparticles are nontoxic and efficient magnetic resonance imaging contrast agents useful as platform for the development of new materials for application in theranostics. PMID:26251595

  16. Molecular Targets in Advanced Therapeutics of Cancers: The Role of Pharmacogenetics.

    PubMed

    Abubakar, Murtala B; Gan, Siew Hua

    2016-01-01

    The advent of advanced molecular targeted therapy has resulted in improved prognoses for patients with advanced malignancies. However, despite the significant success and specificity of this advocated targeted therapy, significant on- and off-target adverse effects and inter-individual variability in treatment responses have been reported. The interpatient variability in drug response has been suggested to be partly due to variations in patient genomes. Therefore, the identification of genetic biomarkers by conducting pharmacogenetics studies can help predict patient responses to targeted therapy and may serve as a basis for individualized treatment. In this review, both clinically established and potential molecular targets are highlighted. Overall, current literature suggests that individualization of targeted therapy is promising; however, integrating the clinical benefits of identified biomarkers into clinical practice for personalized medicine remains a major challenge, and further studies to validate these markers and identify novel therapeutic approaches are needed. © 2016 S. Karger AG, Basel.

  17. Paired Exome Analysis Reveals Clonal Evolution and Potential Therapeutic Targets in Urothelial Carcinoma.

    PubMed

    Lamy, Philippe; Nordentoft, Iver; Birkenkamp-Demtröder, Karin; Thomsen, Mathilde Borg Houlberg; Villesen, Palle; Vang, Søren; Hedegaard, Jakob; Borre, Michael; Jensen, Jørgen Bjerggaard; Høyer, Søren; Pedersen, Jakob Skou; Ørntoft, Torben F; Dyrskjøt, Lars

    2016-10-01

    Greater knowledge concerning tumor heterogeneity and clonality is needed to determine the impact of targeted treatment in the setting of bladder cancer. In this study, we performed whole-exome, transcriptome, and deep-focused sequencing of metachronous tumors from 29 patients initially diagnosed with early-stage bladder tumors (14 with nonprogressive disease and 15 with progressive disease). Tumors from patients with progressive disease showed a higher variance of the intrapatient mutational spectrum and a higher frequency of APOBEC-related mutations. Allele-specific expression was also higher in these patients, particularly in tumor suppressor genes. Phylogenetic analysis revealed a common origin of the metachronous tumors, with a higher proportion of clonal mutations in the ancestral branch; however, 19 potential therapeutic targets were identified as both ancestral and tumor-specific alterations. Few subclones were present based on PyClone analysis. Our results illuminate tumor evolution and identify candidate therapeutic targets in bladder cancer. Cancer Res; 76(19); 5894-906. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma

    DTIC Science & Technology

    2012-07-01

    are those of the author (s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by...Therapeutic Targets of Mesothelioma 5b. GRANT NUMBER W81XWH-10-1-0399 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT NUMBER Harvey Pass... AUTHOR (S) W91ZSQ9305N632 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER New York University School of Medicine,550

  19. Metformin targets multiple signaling pathways in cancer.

    PubMed

    Lei, Yong; Yi, Yanhua; Liu, Yang; Liu, Xia; Keller, Evan T; Qian, Chao-Nan; Zhang, Jian; Lu, Yi

    2017-01-26

    Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 diabetes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addition, cutting-edge targeting of cancer stem cells by metformin is summarized.

  20. Targeting c-Met in Cancer by MicroRNAs: Potential Therapeutic Applications in Hepatocellular Carcinoma.

    PubMed

    Karagonlar, Zeynep F; Korhan, Peyda; Atabey, Neşe

    2015-11-01

    Preclinical Research Cancer is one of the world's deadliest diseases, with very low survival rates and increased occurrence in the future. Successfully developed target-based therapies have significantly changed cancer treatment. However, primary and/or acquired resistance in the tumor is a major challenge in current therapies and novel combinational therapies are required. RNA interference-mediated gene inactivation, alone or in combination with other current therapies, provides novel promising therapeutics that can improve cure rate and overcome resistance mechanisms to conventional therapeutics. Hepatocyte Growth Factor/c-Met signaling is one of the most frequently dysregulated pathways in human cancers and abnormal c-Met activation is correlated with poor clinical outcomes and drug resistance in hepatocellular carcinoma (HCC). In recent years, a growing number of studies have identified several inhibitors and microRNAs (miRNAs), specifically targeting c-Met in various cancers, including HCC. In this review, we discuss current knowledge regarding miRNAs, focusing on their involvement in cancer and their potential as research tools and therapeutics. Then, we focus on the potential use of c-Met targeting miRNAs for suppressing aberrant c-Met signaling in HCC treatment. © 2015 Wiley Periodicals, Inc.

  1. Preclinical evaluation of potential therapeutic targets in dedifferentiated liposarcoma.

    PubMed

    Hanes, Robert; Grad, Iwona; Lorenz, Susanne; Stratford, Eva W; Munthe, Else; Reddy, Chilamakuri Chandra Sekhar; Meza-Zepeda, Leonardo A; Myklebost, Ola

    2016-08-23

    Sarcomas are rare cancers with limited treatment options. Patients are generally treated by chemotherapy and/or radiotherapy in combination with surgery, and would benefit from new personalized approaches. In this study we demonstrate the potential of combining personal genomic characterization of patient tumors to identify targetable mutations with in vitro testing of specific drugs in patient-derived cell lines. We have analyzed three metastases from a patient with high-grade metastatic dedifferentiated liposarcoma (DDLPS) by exome and transcriptome sequencing as well as DNA copy number analysis. Genomic aberrations of several potentially targetable genes, including amplification of KITLG and FRS2, in addition to amplification of CDK4 and MDM2, characteristic of this disease, were identified. We evaluated the efficacy of drugs targeting these aberrations or the corresponding signaling pathways in a cell line derived from the patient. Interestingly, the pan-FGFR inhibitor NVP-BGJ398, which targets FGFR upstream of FRS2, strongly inhibited cell proliferation in vitro and induced an accumulation of cells into the G0 phase of the cell cycle. This study indicates that FGFR inhibitors have therapeutic potential in the treatment of DDLPS with amplified FRS2.

  2. Emerging molecular therapeutic targets for cholangiocarcinoma.

    PubMed

    Rizvi, Sumera; Gores, Gregory J

    2017-09-01

    Cholangiocarcinomas (CCAs) are diverse epithelial tumors arising from the liver or large bile ducts with features of cholangiocyte differentiation. CCAs are classified anatomically into intrahepatic (iCCA), perihilar (pCCA), and distal CCA (dCCA). Each subtype has distinct risk factors, molecular pathogenesis, therapeutic options, and prognosis. CCA is an aggressive malignancy with a poor overall prognosis and median survival of less than 2years in patients with advanced disease. Potentially curative surgical treatment options are limited to the subset of patients with early-stage disease. Presently, the available systemic medical therapies for advanced or metastatic CCA have limited therapeutic efficacy. Molecular alterations define the differences in biological behavior of each CCA subtype. Recent comprehensive genetic analysis has better characterized the genomic and transcriptomic landscape of each CCA subtype. Promising candidates for targeted, personalized therapy have emerged, including potential driver fibroblast growth factor receptor (FGFR) gene fusions and somatic mutations in isocitrate dehydrogenase (IDH)1/2 in iCCA, protein kinase cAMP-activated catalytic subunit alpha (PRKACA) or beta (PRKACB) gene fusions in pCCA, and ELF3 mutations in dCCA/ampullary carcinoma. A precision genomic medicine approach is dependent on an enhanced understanding of driver mutations in each subtype and stratification of patients according to their genetic drivers. We review the current genomic landscape of CCA, the potentially actionable molecular aberrations in each CCA subtype, and the role of immunotherapy in CCA. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy

    PubMed Central

    Beloueche-Babari, M; Chung, Y-L; Al-Saffar, N M S; Falck-Miniotis, M; Leach, M O

    2009-01-01

    Developing rational targeted cancer drugs requires the implementation of pharmacodynamic (PD), preferably non-invasive, biomarkers to aid response assessment and patient follow-up. Magnetic resonance spectroscopy (MRS) allows the non-invasive study of tumour metabolism. We describe the MRS-detectable PD biomarkers resulting from the action of targeted therapeutics, and discuss their biological significance and future translation into clinical use. PMID:19935796

  4. Ultrasonic Analysis of Peptide- and Antibody-Targeted Microbubble Contrast Agents for Molecular Imaging of αvβ3-Expressing Cells

    PubMed Central

    Dayton, Paul A.; Pearson, David; Clark, Jarrod; Simon, Scott; Schumann, Patricia A.; Zutshi, Reena; Matsunaga, Terry O.; Ferrara, Katherine W.

    2008-01-01

    The goal of targeted ultrasound contrast agents is to significantly and selectively enhance the detection of a targeted vascular site. In this manuscript, three distinct contrast agents targeted to the αvβ3 integrin are examined. The αvβ3 integrin has been shown to be highly expressed on metastatic tumors and endothelial cells during neovascularization, and its expression has been shown to correlate with tumor grade. Specific adhesion of these contrast agents to αvβ3-expressing cell monolayers is demonstrated in vitro, and compared with that of nontargeted agents. Acoustic studies illustrate a backscatter amplitude increase from monolayers exposed to the targeted contrast agents of up to 13-fold (22 dB) relative to enhancement due to control bubbles. A linear dependence between the echo amplitude and bubble concentration was observed for bound agents. The decorrelation of the echo from adherent targeted agents is observed over successive pulses as a function of acoustic pressure and bubble density. Frequency–domain analysis demonstrates that adherent targeted bubbles exhibit high-amplitude narrowband echo components, in contrast to the primarily wideband response from free microbubbles. Results suggest that adherent targeted contrast agents are differentiable from free-floating microbubbles, that targeted contrast agents provide higher sensitivity in the detection of angiogenesis, and that conventional ultrasound imaging techniques such as signal subtraction or decorrelation detection can be used to detect integrin-expressing vasculature with sufficient signal-to-noise. PMID:15296677

  5. Progranulin as a therapeutic target for dementia.

    PubMed

    Galimberti, Daniela; Fenoglio, Chiara; Scarpini, Elio

    2018-06-22

    Progranulin (PGRN) is an acrosomal glycoprotein that is synthesized during spermatogenesis. It is overexpressed in tumors and has anti-inflammatory properties. The protein may be cleaved into granulins which display pro-inflammatory properties. In 2006, mutations in progranulin gene (GRN) that cause haploinsufficiency were found in familial cases of frontotemporal dementia (FTD). Patients with null mutations in GRN display very low-plasma PGRN levels; this analysis is useful for identifying mutation carriers, independent of the clinical presentation, and in those before the appearance of symptoms. Areas covered: Here, we review the current knowledge of PGRN physiological functions and GRN mutations associated with FTD; we also summarize state of the art clinical trials and those compounds able to replace PGRN loss in preclinical models. Expert opinion: PGRN represents a promising therapeutic target for FTD. Cohorts suitable for treatment, ideally at the preclinical stage, where pathogenic mechanisms ongoing in the brain are targeted, are available. However, PGRN may have side effects, such as the risk of tumorigenesis, and the risk/benefit ratio of any intervention cannot be predicted. Furthermore, at present, the situation is complicated by the absence of adequate outcome measures.

  6. Alternative Splicing in the Hippo Pathway—Implications for Disease and Potential Therapeutic Targets

    PubMed Central

    Porazinski, Sean; Ladomery, Michael

    2018-01-01

    Alternative splicing is a well-studied gene regulatory mechanism that produces biological diversity by allowing the production of multiple protein isoforms from a single gene. An involvement of alternative splicing in the key biological signalling Hippo pathway is emerging and offers new therapeutic avenues. This review discusses examples of alternative splicing in the Hippo pathway, how deregulation of these processes may contribute to disease and whether these processes offer new potential therapeutic targets. PMID:29534050

  7. Target-specific contrast agents for magnetic resonance microscopy

    PubMed Central

    Blackwell, Megan L.; Farrar, Christian T.; Fischl, Bruce; Rosen, Bruce R.

    2009-01-01

    High-resolution ex vivo magnetic resonance (MR) imaging can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. To aid MR sensitivity to cell density and myelination, we have begun the development of target-specific paramagnetic contrast agents. This work details the first application of luxol fast blue (LFB), an optical stain for myelin, as a white matter-selective MR contrast agent for human ex vivo brain tissue. Formalin-fixed human visual cortex was imaged with an isotropic resolution between 80 and 150 μm at 4.7 and 14 T before and after en bloc staining with LFB. Longitudinal (R1) and transverse (R2) relaxation rates in LFB-stained tissue increased proportionally with myelination at both field strengths. Changes in R1 resulted in larger contrast-to-noise ratios (CNR), per unit time, on T1-weighted images between more myelinated cortical layers (IV–VI) and adjacent, superficial layers (I–III) at both field strengths. Specifically, CNR for LFB-treated samples increased by 229±13% at 4.7 T and 269±25% at 14 T when compared to controls. Also, additional cortical layers (IVca, IVd, and Va) were resolvable in 14T-MR images of LFB-treated samples but not in control samples. After imaging, samples were sliced in 40-micron sections, mounted, and photographed. Both the macroscopic and microscopic distributions of LFB were found to mimic those of traditional histological preparations. Our results suggest target-specific contrast agents will enable more detailed MR images with applications in imaging pathological ex vivo samples and constructing better MR atlases from ex vivo brains. PMID:19385012

  8. Nucleic Acid Aptamer-Guided Cancer Therapeutics and Diagnostics: the Next Generation of Cancer Medicine

    PubMed Central

    Xiang, Dongxi; Shigdar, Sarah; Qiao, Greg; Wang, Tao; Kouzani, Abbas Z.; Zhou, Shu-Feng; Kong, Lingxue; Li, Yong; Pu, Chunwen; Duan, Wei

    2015-01-01

    Conventional anticancer therapies, such as chemo- and/or radio-therapy are often unable to completely eradicate cancers due to abnormal tumor microenvironment, as well as increased drug/radiation resistance. More effective therapeutic strategies for overcoming these obstacles are urgently in demand. Aptamers, as chemical antibodies that bind to targets with high affinity and specificity, are a promising new and novel agent for both cancer diagnostic and therapeutic applications. Aptamer-based cancer cell targeting facilitates the development of active targeting in which aptamer-mediated drug delivery could provide promising anticancer outcomes. This review is to update the current progress of aptamer-based cancer diagnosis and aptamer-mediated active targeting for cancer therapy in vivo, exploring the potential of this novel form of targeted cancer therapy. PMID:25553096

  9. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine.

    PubMed

    Xiang, Dongxi; Shigdar, Sarah; Qiao, Greg; Wang, Tao; Kouzani, Abbas Z; Zhou, Shu-Feng; Kong, Lingxue; Li, Yong; Pu, Chunwen; Duan, Wei

    2015-01-01

    Conventional anticancer therapies, such as chemo- and/or radio-therapy are often unable to completely eradicate cancers due to abnormal tumor microenvironment, as well as increased drug/radiation resistance. More effective therapeutic strategies for overcoming these obstacles are urgently in demand. Aptamers, as chemical antibodies that bind to targets with high affinity and specificity, are a promising new and novel agent for both cancer diagnostic and therapeutic applications. Aptamer-based cancer cell targeting facilitates the development of active targeting in which aptamer-mediated drug delivery could provide promising anticancer outcomes. This review is to update the current progress of aptamer-based cancer diagnosis and aptamer-mediated active targeting for cancer therapy in vivo, exploring the potential of this novel form of targeted cancer therapy.

  10. Prostate Cancer Relevant Antigens and Enzymes for Targeted Drug Delivery

    PubMed Central

    Barve, Ashutosh; Jin, Wei; Cheng, Kun

    2014-01-01

    Chemotherapy is one of the most widely used approaches in combating advanced prostate cancer, but its therapeutic efficacy is usually insufficient due to lack of specificity and associated toxicity. Lack of targeted delivery to prostate cancer cells is also the primary obstacles in achieving feasible therapeutic effect of other promising agents including peptide, protein, and nucleic acid. Consequently, there remains a critical need for strategies to increase the selectivity of anti-prostate cancer agents. This review will focus on various prostate cancer-specific antigens and enzymes that could be exploited for prostate cancer targeted drug delivery. Among various targeting strategies, active targeting is the most advanced approach to specifically deliver drugs to their designated cancer cells. In this approach, drug carriers are modified with targeting ligands that can specifically bind to prostate cancer-specific antigens. Moreover, there are several specific enzymes in the tumor microenvironment of prostate cancer that can be exploited for stimulus-responsive drug delivery systems. These systems can specifically release the active drug in the tumor microenvironment of prostate cancer, leading to enhanced tumor penetration efficiency. PMID:24878184

  11. Accelerated Neuronal Cell Recovery from Botulinum Neurotoxin Intoxication by Targeted Ubiquitination

    PubMed Central

    Kuo, Chueh-Ling; Oyler, George A.; Shoemaker, Charles B.

    2011-01-01

    Botulinum neurotoxin (BoNT), a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE) proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop ‘targeted F-box’ (TFB) agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS), thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only VH (VHH) domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5) was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10) led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable. PMID:21629663

  12. Accelerated neuronal cell recovery from Botulinum neurotoxin intoxication by targeted ubiquitination.

    PubMed

    Kuo, Chueh-Ling; Oyler, George A; Shoemaker, Charles B

    2011-01-01

    Botulinum neurotoxin (BoNT), a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE) proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop 'targeted F-box' (TFB) agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS), thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only V(H) (VHH) domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5) was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10) led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable.

  13. Molecular aspects of melatonin (MLT)-mediated therapeutic effects.

    PubMed

    Tuli, Hardeep Singh; Kashyap, Dharambir; Sharma, Anil K; Sandhu, Sardul Singh

    2015-08-15

    Hormones are a class of molecules, which mediate their effects by regulating a variety of signalling pathways. Melatonin (N-acetyl-5-methoxytryptamine), a pineal gland hormone, is one among the categories of compounds having various therapeutic and pharmacological effects. Melatonin has many intracellular as well as extracellular targets including apoptosis, metastasis, angiogenesis and inflammatory pathways. Gene-profile studies have further established its antagonist effect on the various genes involved in the tumour progression, neurodegeneration and ageing. It has also been known to reduce the toxicity induced by chemotherapeutic agents in advanced stages of tumour. The present review extensively describes the molecular interactions of melatonin with various recognized cellular targets, which may lead the scientific community to propose novel therapeutic strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment.

    PubMed

    Kumar, Anil; Huo, Shuaidong; Zhang, Xu; Liu, Juan; Tan, Aaron; Li, Shengliang; Jin, Shubin; Xue, Xiangdong; Zhao, YuanYuan; Ji, Tianjiao; Han, Lu; Liu, Hong; Zhang, XiaoNing; Zhang, Jinchao; Zou, Guozhang; Wang, Tianyou; Tang, Suoqin; Liang, Xing-Jie

    2014-05-27

    Platinum-based anticancer drugs such as cisplatin, oxaliplatin, and carboplatin are some of the most potent chemotherapeutic agents but have limited applications due to severe dose-limiting side effects and a tendency for cancer cells to rapidly develop resistance. The therapeutic index can be improved through use of nanocarrier systems to target cancer cells efficiently. We developed a unique strategy to deliver a platinum(IV) drug to prostate cancer cells by constructing glutathione-stabilized (Au@GSH) gold nanoparticles. Glutathione (GSH) has well-known antioxidant properties, which lead to cancer regression. Here, we exploit the advantages of both the antioxidant properties and high surface-area-to-volume ratio of Au@GSH NPs to demonstrate their potential for delivery of a platinum(IV) drug by targeting the neuropilin-1 receptor (Nrp-1). A lethal dose of a platinum(IV) drug functionalized with the Nrp-1-targeting peptide (CRGDK) was delivered specifically to prostate cancer cells in vitro. Targeted peptide ensures specific binding to the Nrp-1 receptor, leading to enhanced cellular uptake level and cell toxicity. The nanocarriers were themselves nontoxic, but exhibited high cytotoxicity and increased efficacy when functionalized with the targeting peptide and drug. The uptake of drug-loaded nanocarriers is dependent on the interaction with Nrp-1 in cell lines expressing high (PC-3) and low (DU-145) levels of Nrp-1, as confirmed through inductively coupled plasma mass spectrometry and confocal microscopy. The nanocarriers have effective anticancer activity, through upregulation of nuclear factor kappa-B (NF-κB) protein (p50 and p65) expression and activation of NF-κB-DNA-binding activity. Our preliminary investigations with platinum(IV)-functionalized gold nanoparticles along with a targeting peptide hold significant promise for future cancer treatment.

  15. Role and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma

    PubMed Central

    Cruickshanks, Nichola; Zhang, Ying; Yuan, Fang; Pahuski, Mary; Gibert, Myron; Abounader, Roger

    2017-01-01

    Glioblastoma (GBM) is a lethal brain tumor with dismal prognosis. Current therapeutic options, consisting of surgery, chemotherapy and radiation, have only served to marginally increase patient survival. Receptor tyrosine kinases (RTKs) are dysregulated in approximately 90% of GBM; attributed to this, research has focused on inhibiting RTKs as a novel and effective therapy for GBM. Overexpression of RTK mesenchymal epithelial transition (MET), and its ligand, hepatocyte growth factor (HGF), in GBM highlights a promising new therapeutic target. This review will discuss the role of MET in cell cycle regulation, cell proliferation, evasion of apoptosis, cell migration and invasion, angiogenesis and therapeutic resistance in GBM. It will also discuss the modes of deregulation of HGF/MET and their regulation by microRNAs. As the HGF/MET pathway is a vital regulator of multiple pro-survival pathways, efforts and strategies for its exploitation for GBM therapy are also described. PMID:28696366

  16. Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics.

    PubMed

    Islam, Md Soriful; Ciavattini, Andrea; Petraglia, Felice; Castellucci, Mario; Ciarmela, Pasquapina

    2018-01-01

    supports the fibrotic character of these tumors. Interestingly, ECM may serve as a reservoir of profibrotic growth factors and enhance their activity by increasing their stability and extending their duration of signaling. At present, several classes of compounds, including gonadotropin-releasing hormone (GnRH) agonist (leuprolide acetate), GnRH antagonist (cetrorelix acetate), selective progesterone receptor modulators (ulipristate acetate and asoprisnil), antiprogestin (mifepristone) and natural compounds like vitamin D and resveratrol have been studied as medical treatments that target ECM in uterine leiomyoma. Although several types of drugs (mostly antiproliferative agents) are available for leiomyoma treatment, none of them were introduced specifically as antifibrotic agents. In light of its critical role in the process of fibrosis in leiomyoma, we propose that ECM should be considered as a crucial target for future therapeutics. Thus, the introduction of drugs that are specifically antifibrotic could be a good solution to control abnormal leiomyoma growth and associated clinical symptoms. The antifibrotic compounds can be introduced based on their ability to regulate ECM components and their receptors, as well as growth factors, cytokines, steroid hormones and their corresponding receptors and intracellular signaling pathways, as well as microRNAs, involved in ECM production in leiomyoma. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Therapeutic gene targeting approaches for the treatment of dyslipidemias and atherosclerosis.

    PubMed

    Mäkinen, Petri I; Ylä-Herttuala, Seppo

    2013-04-01

    Despite improved therapies, cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Therefore, new therapeutic approaches are still needed. In the gene therapy field, RNA interference (RNAi) and regulation of microRNAs (miRNAs) have gained a lot of attention in addition to traditional overexpression based strategies. Here, recent findings in therapeutic gene silencing and modulation of small RNA expression related to atherogenesis and dyslipidemia are summarized. Novel gene therapy approaches for the treatment of hyperlipidemia have been addressed. Antisense oligonucleotide and RNAi-based therapies against apolipoprotein B100 and proprotein convertase subtilisin/kexin type 9 have shown already efficacy in preclinical and clinical trials. In addition, several miRNAs dysregulated in atherosclerotic lesions and regulating cholesterol homeostasis have been found, which may represent novel targets for future therapies. New therapies for lowering lipid levels are now being tested in clinical trials, and both antisense oligonucleotide and RNAi-based therapies have shown promising results in lowering cholesterol levels. However, the modulation of inflammatory component in atherosclerosis by gene therapy and targeting of the effects to plaques are still difficult challenges.

  18. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.

    PubMed

    Chen, Zhijin; Yu, Dexin; Liu, Chunxi; Yang, Xiaoyan; Zhang, Na; Ma, Chunhong; Song, Jibin; Lu, Zaijun

    2011-09-01

    A nanoparticle magnetic resonance imaging (MRI) contrast agent targeted to liver was developed by conjugation of gadolinium (Gd) chelate groups onto the biocompatible poly(l-lactide)-block-poly (ethylene glycol) (PLA-PEG) nanoparticles. PLA-PEG conjugated with diethylenetriaminopentaacetic acid (DTPA) was used to formulate PLA-PEG-DTPA nanoparticles by solvent diffusion method, and then Gd was loaded onto the nanoparticles by chelated with the unfolding DTPA on the surface of the PLA-PEG-DTPA nanoparticles. The mean size of the nanoparticles was 265.9 ± 6.7 nm. The relaxivity of the Gd-labeled nanoparticles was measured, and the distribution in vivo was evaluated in rats. Compared with conventional contrast agent (Magnevist), the Gd-labeled PLA-PEG nanoparticles showed significant enhancement both on liver targeting ability and imaging signal intensity. The T(1) and T(2) relaxivities per [Gd] of the Gd-labeled nanoparticles was 18.865 mM(-1) s(-1) and 24.863 mM(-1) s(-1) at 3 T, respectively. In addition, the signal intensity in vivo was stronger comparing with the Gd-DTPA and the T(1) weight time was lasting for 4.5 h. The liver targeting efficiency of the Gd-labeled PLA-PEG nanoparticles in rats was 14.57 comparing with Magnevist injection. Therefore, the Gd-labeled nanoparticles showed the potential as targeting molecular MRI contrast agent for further clinical utilization.

  19. Therapeutic Targeting of TRPV1 for the Treatment of Chronic Pain Associated with Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2013-07-30

    1 AD_________________ Award Number: W81XWH-11-1-0333 TITLE: Therapeutic Targeting of TRPV1 for the...TITLE AND SUBTITLE Therapeutic Targeting of TRPV1 for the Treatment of Chronic Pain 5a. CONTRACT NUMBER Associated with Prostate Cancer Bone...specific inflammatory factors, IL-6 and TNF-α, PTHrP and ET-1 on upregulation of TRPV1 channel function/expression, and nociceptor sensitization

  20. Achievement of therapeutic targets in Mexican patients with diabetes mellitus.

    PubMed

    Lavalle-González, Fernando J; Chiquete, Erwin; de la Luz, Julieta; Ochoa-Guzmán, Ana; Sánchez-Orozco, Laura V; Godínez-Gutiérrez, Sergio A

    2012-12-01

    Complications of diabetes comprise the leading cause of death in Mexico. We aimed to describe the characteristics of management and achievement of therapeutic targets in Mexican patients with diabetes mellitus. We analyzed data from 2642 Mexican patients with type 1 (T1D, n=203, 7.7%) and type 2 diabetes (T2D, n=2439, 92.3%) included in the third wave of the International Diabetes Management Practices Study. Of T2D patients, 63% were on oral glucose-lowering drugs (OGLD) exclusively (mostly metformin), 11% on insulin, 22% on OGLD plus insulin, and 4% on diet and exercise exclusively. T2D patients on insulin were more likely to be trained on diabetes, but they were older, had worse control, longer disease duration and more chronic complications than patients on OGLD only. Glycated hemoglobin (HbA1c) <7% was achieved by 21% and 37% of T1D and T2D patients, respectively. Only 5% of T1D and 3% of T2D attained the composite target of HbA1c <7%, blood pressure <130/80 mmHg and low-density lipoprotein cholesterol <100 mg/dl. T1D patients had less macrovascular but more microvascular complications, compared with T2D patients. Late complications increased with disease duration, so that about 80% of patients after 20 years of diagnosis have at least one late complication. Reaching the target HbA1c <7% was associated with a reduced number of microvascular but not with less macrovascular complications. A great proportion of these Mexican patients with diabetes did not reach therapeutic targets. Insulin was used mostly in complicated cases with advanced disease. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.

  1. Anticancer activity of celastrol in combination with ErbB2-targeted therapeutics for treatment of ErbB2-overexpressing breast cancers

    PubMed Central

    Clubb, Robert J; Ortega-Cava, Cesar; Williams, Stetson H; Bailey, Tameka A; Duan, Lei; Zhao, Xiangshan; Reddi, Alagarasamy L; Nyong, Abijah M; Natarajan, Amarnath; Band, Vimla

    2011-01-01

    The receptor tyrosine kinase ErbB2 is overexpressed in up to a third of breast cancers, allowing targeted therapy with ErbB2-directed humanized antibodies such as Trastuzumab. Concurrent targeting of ErbB2 stability with HSP90 inhibitors is synergistic with Trastuzumab, suggesting that pharmacological agents that can inhibit HSP90 as well as signaling pathways activated by ErbB2 could be useful against ErbB2-overexpressing breast cancers. The triterpene natural product Celastrol inhibits HSP90 and several pathways relevant to ErbB2-dependent oncogenesis including the NFκB pathway and the proteasome, and has shown promising activity in other cancer models. Here, we demonstrate that Celastrol exhibits in vitro antitumor activity against a panel of human breast cancer cell lines with selectivity towards those overexpressing ErbB2. Celastrol strongly synergized with ErbB2-targeted therapeutics Trastuzumab and Lapatinib, producing higher cytotoxicity with substantially lower doses of Celastrol. Celastrol significantly retarded the rate of growth of ErbB2-overexpressing human breast cancer cells in a mouse xenograft model with only minor systemic toxicity. Mechanistically, Celastrol not only induced the expected ubiquitinylation and degradation of ErbB2 and other HSP90 client proteins, but it also increased the levels of reactive oxygen species (ROS). Our studies show that the Michael Acceptor functionality in Celastrol is important for its ability to destabilize ErbB2 and exert its bioactivity against ErbB2-overexpressing breast cancer cells. These studies suggest the potential use of Michael acceptor-containing molecules as novel therapeutic modalities against ErbB2-driven breast cancer by targeting multiple biological attributes of the driver oncogene. PMID:21088503

  2. Autobiographical Memory Disturbances in Depression: A Novel Therapeutic Target?

    PubMed Central

    Köhler, Cristiano A.; Carvalho, André F.; Alves, Gilberto S.; McIntyre, Roger S.; Hyphantis, Thomas N.; Cammarota, Martín

    2015-01-01

    Major depressive disorder (MDD) is characterized by a dysfunctional processing of autobiographical memories. We review the following core domains of deficit: systematic biases favoring materials of negative emotional valence; diminished access and response to positive memories; a recollection of overgeneral memories in detriment of specific autobiographical memories; and the role of ruminative processes and avoidance when dealing with autobiographical memories. Furthermore, we review evidence from functional neuroimaging studies of neural circuits activated by the recollection of autobiographical memories in both healthy and depressive individuals. Disruptions in autobiographical memories predispose and portend onset and maintenance of depression. Thus, we discuss emerging therapeutics that target memory difficulties in those with depression. We review strategies for this clinical domain, including memory specificity training, method-of-loci, memory rescripting, and real-time fMRI neurofeedback training of amygdala activity in depression. We propose that the manipulation of the reconsolidation of autobiographical memories in depression might represent a novel yet largely unexplored, domain-specific, therapeutic opportunity for depression treatment. PMID:26380121

  3. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family

    PubMed Central

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans

    2008-01-01

    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  4. Creation of Lung-Targeted Dexamethasone Immunoliposome and Its Therapeutic Effect on Bleomycin-Induced Lung Injury in Rats

    PubMed Central

    Li, Nan; Hu, Yang; Zhang, Yuan; Xu, Jin-Fu; Li, Xia; Ren, Jie; Su, Bo; Yuan, Wei-Zhong; Teng, Xin-Rong; Zhang, Rong-Xuan; Jiang, Dian-hua; Mulet, Xavier; Li, Hui-Ping

    2013-01-01

    Objective Acute lung injury (ALI), is a major cause of morbidity and mortality, which is routinely treated with the administration of systemic glucocorticoids. The current study investigated the distribution and therapeutic effect of a dexamethasone(DXM)-loaded immunoliposome (NLP) functionalized with pulmonary surfactant protein A (SP-A) antibody (SPA-DXM-NLP) in an animal model. Methods DXM-NLP was prepared using film dispersion combined with extrusion techniques. SP-A antibody was used as the lung targeting agent. Tissue distribution of SPA-DXM-NLP was investigated in liver, spleen, kidney and lung tissue. The efficacy of SPA-DXM-NLP against lung injury was assessed in a rat model of bleomycin-induced acute lung injury. Results The SPA-DXM-NLP complex was successfully synthesized and the particles were stable at 4°C. Pulmonary dexamethasone levels were 40 times higher with SPA-DXM-NLP than conventional dexamethasone injection. Administration of SPA-DXM-NLP significantly attenuated lung injury and inflammation, decreased incidence of infection, and increased survival in animal models. Conclusions The administration of SPA-DXM-NLP to animal models resulted in increased levels of DXM in the lungs, indicating active targeting. The efficacy against ALI of the immunoliposomes was shown to be superior to conventional dexamethasone administration. These results demonstrate the potential of actively targeted glucocorticoid therapy in the treatment of lung disease in clinical practice. PMID:23516459

  5. Bimetallic redox nanoprobe enhances the therapeutic efficacy of hyperthermia in drug-resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Sandeep Kumar; Lakkireddy, Chandrakala; Marjan, Tuba; Fatima, Anjum; Bardia, Avinash; Paspala, Syed Ameer Basha; Habeeb, Md. Aejaz; Khan, Aleem Ahmed

    2018-05-01

    Cancer nanotheranostics has emerged as one of the most promising fields of medicine wherein nano-sized molecules/agents are used for combined diagnosis and treatment of cancer. Despite promises of novel cancer therapeutic approaches, several crucial challenges have remained to be overcome for successful clinical translation of such agents. Hence, the present study has been aimed to investigate the therapeutic efficacy of bimetallic gadolinium super-paramagnetic iron oxide nanoformulation of ascorbic acid in synergism with hyperthermia on ascorbic acid-resistant breast cancer cells. This particular strategy provides real-time MRI-based non-invasive imaging of drug loading in resistant cancer cells along with highly enhanced therapeutic efficacy. This unique redox nanoprobe is capable of reversing drug-resistance mechanism in cancer cells and offers better therapeutic possibilities in targeted and effective destruction of drug-resistant cancer cells.

  6. siRNA Versus miRNA as Therapeutics for Gene Silencing

    PubMed Central

    Lam, Jenny K W; Chow, Michael Y T; Zhang, Yu; Leung, Susan W S

    2015-01-01

    Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed. PMID:26372022

  7. Adaptive Cellular Stress Pathways as Therapeutic Targets of Dietary Phytochemicals: Focus on the Nervous System

    PubMed Central

    Jo, Dong-Gyu; Park, Daeui; Chung, Hae Young

    2014-01-01

    During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied. PMID:24958636

  8. Ultrasound imaging beyond the vasculature with new generation contrast agents.

    PubMed

    Perera, Reshani H; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan; Exner, Agata A

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 µm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. © 2015 Wiley Periodicals, Inc.

  9. Ultrasound Imaging Beyond the Vasculature with New Generation Contrast Agents

    PubMed Central

    Perera, Reshani H.; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 μm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. PMID:25580914

  10. Delivery of therapeutics using nanocarriers for targeting cancer cells and cancer stem cells.

    PubMed

    Krishnamurthy, Sangeetha; Ke, Xiyu; Yang, Yi Yan

    2015-01-01

    Development of cancer resistance, cancer relapse and metastasis are attributed to the presence of cancer stem cells (CSCs). Eradication of this subpopulation has been shown to increase life expectancy of patients. Since the discovery of CSCs a decade ago, several strategies have been devised to specifically target them but with limited success. Nanocarriers have recently been employed to deliver anti-CSC therapeutics for reducing the population of CSCs at the tumor site with great success. This review discusses the different therapeutic strategies that have been employed using nanocarriers, their advantages, success in targeting CSCs and the challenges that are to be overcome. Exploiting this new modality of cancer treatment in the coming decade may improve outcomes profoundly with promise of effective treatment response and reducing relapse and metastasis.

  11. Delivery of gene silencing agents for breast cancer therapy

    PubMed Central

    2013-01-01

    The discovery of RNA interference has opened the door for the development of a new class of cancer therapeutics. Small inhibitory RNA oligos are being designed to specifically suppress expression of proteins that are traditionally considered nondruggable, and microRNAs are being evaluated to exert broad control of gene expression for inhibition of tumor growth. Since most naked molecules are not optimized for in vivo applications, the gene silencing agents need to be packaged into delivery vehicles in order to reach the target tissues as their destinations. Thus, the selection of the right delivery vehicles serves as a crucial step in the development of cancer therapeutics. The current review summarizes the status of gene silencing agents in breast cancer and recent development of candidate cancer drugs in clinical trials. Nanotechnology-based delivery vectors for the formulation and packaging of gene silencing agents are also described. PMID:23659575

  12. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential

    PubMed Central

    Wang, Qi; Rosa, Bruce A.; Jasmer, Douglas P.; Mitreva, Makedonka

    2015-01-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes. PMID:26501106

  13. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds.

    PubMed

    Würth, Roberto; Thellung, Stefano; Bajetto, Adriana; Mazzanti, Michele; Florio, Tullio; Barbieri, Federica

    2016-01-01

    Drug repositioning is gaining increasing attention in drug discovery because it represents a smart way to exploit new molecular targets of a known drug or target promiscuity among diverse diseases, for medical uses different from the one originally considered. In this review, we focus on known non-oncological drugs with new therapeutic applications in oncology, explaining the rationale behind this approach and providing practical evidence. Moving from incompleteness of the knowledge of drug-target interactions, particularly for older molecules, we highlight opportunities for repurposing compounds as cancer therapeutics, underling the biologically and clinically relevant affinities for new targets. Ideal candidates for repositioning can contribute to the therapeutically unmet need for more-efficient anticancer agents, including drugs that selectively target cancer stem cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions

    PubMed Central

    Thakur, Shweta; Sarkar, Bibekananda; Cholia, Ravi P; Gautam, Nandini; Dhiman, Monisha; Mantha, Anil K

    2014-01-01

    Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed. PMID:25033834

  15. [Anti-epidermal growth factor receptor treatment: a new paradigm for conducting therapeutic trials].

    PubMed

    Marty, Michel; Bedairia, Naima; Armand, Jean-Pierre

    2003-11-01

    Agents which modify biological properties of tumour tissue can target many tenths of functions over- or underexpressed in human tumours. In general these agents are cytostatic rather than cytotoxic and will affect only that fraction of human tumours where the target plays and important and unique role for the viability of the tumour tissue. Alternatively it is expected that acute toxicity will not be observed at active dose-time exposure; rather subacute or chronic toxicity can be observed with these agents. Clinical studies will have to follow the following rules: characterisation of the pharmacological target and of its functional role on tumour tissue; definition of an optimal biological dose rather than a maximum tolerated dose; importance of validated pharmacodynamic endpoints; importance and thus need for early studies of combination regimens. It is still too early to define general guidelines for the study of these different therapeutic families. Nevertheless, studies already conducted with agents interfering with EGF mediated signalization have already permitted preliminary indications on pharmacodynamics, target assessment, level of activity and conduct of clinical trials with combination regimens.

  16. Activation of the stress proteome as a mechanism for small molecule therapeutics.

    PubMed

    Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C; Schneidereith, Tonya; Purvis, Shirley; Dong, Gao X; Keefer, Jeffrey; Spencer, Forrest; Smith, Kirby D

    2012-10-01

    Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities.

  17. Activation of the stress proteome as a mechanism for small molecule therapeutics

    PubMed Central

    Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C.; Schneidereith, Tonya; Purvis, Shirley; Dong, Gao X.; Keefer, Jeffrey; Spencer, Forrest; Smith, Kirby D.

    2012-01-01

    Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities. PMID:22752410

  18. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics.

    PubMed

    Winkler, Gian C; Barle, Ester Lovsin; Galati, Giuseppe; Kluwe, William M

    2014-10-01

    There is no nationally or internationally binding definition of the term "cytotoxic drug" although this term is used in a variety of regulations for pharmaceutical development and manufacturing of drugs as well as in regulations for protecting medical personnel from occupational exposure in pharmacy, hospital, and other healthcare settings. The term "cytotoxic drug" is frequently used as a synonym for any and all oncology or antineoplastic drugs. Pharmaceutical companies generate and receive requests for assessments of the potential hazards of drugs regularly - including cytotoxicity. This publication is intended to provide functional definitions that help to differentiate between generically-cytotoxic cancer drugs of significant risk to normal human tissues, and targeted cancer therapeutics that pose much lesser risks. Together with specific assessments, it provides comprehensible guidance on how to assess the relevant properties of cancer drugs, and how targeted therapeutics discriminate between cancer and normal cells. The position of several regulatory agencies in the long-term is clearly to regulate all drugs regardless of classification, according to scientific risk based data. Despite ongoing discussions on how to replace the term "cytotoxic drugs" in current regulations, it is expected that its use will continue for the near future. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Development of Novel Therapeutics Targeting Isocitrate Dehydrogenase Mutations in Cancer.

    PubMed

    Sharma, Horrick

    2018-05-17

    Isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (αKG). IDH 1 and IDH2 regulate several cellular processes, including oxidative respiration, glutamine metabolism, lipogenesis, and cellular defense against oxidative damage. Mutations in IDH1 and IDH2 have recently been observed in multiple tumor types, including gliomas, acute myeloid leukemia, myelodysplastic syndromes, and chondrosarcoma. IDH1 and IDH2 mutations involve a gain in neomorphic activity that catalyze αKG conversion to (R)-2-hydroxyglutarate ((R)-2HG). IDH mutation-mediated accumulation of (R)-2HG result in epigenetic dysregulation, altered gene expression, and a block in cellular differentiation. Targeting mutant IDH by development of small molecule inhibitors is a rapidly emerging therapeutic approach as evidenced by the recent approval of the first selective mutant IDH2 inhibitor AG-221 (Enasidenib) for the treatment of IDH2-mutated AML. This review will focus on mutant isocitrate dehydrogenase as a therapeutic drug target and provides an update on selective and pan-mutant IDH 1/2 inhibitors in clinical trials and other mutant IDH inhibitors that are under development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Dynamin-Related Protein 1 as a therapeutic target in cardiac arrest

    PubMed Central

    Sharp, Willard W.

    2015-01-01

    Despite improvements in cardiopulmonary resuscitation (CPR) quality, defibrillation technologies, and implementation of therapeutic hypothermia, less than 10% of out-of-hospital cardiac arrest (OHCA) victims survive to hospital discharge. New resuscitation therapies have been slow to develop, in part, because the pathophysiologic mechanisms critical for resuscitation are not understood. During cardiac arrest, systemic cessation of blood flow results in whole body ischemia. CPR, and the restoration of spontaneous circulation (ROSC), both result in immediate reperfusion injury of the heart that is characterized by severe contractile dysfunction. Unlike diseases of localized ischemia/reperfusion (IR) injury (myocardial infarction and stroke), global IR injury of organs results in profound organ dysfunction with far shorter ischemic times. The two most commonly injured organs following cardiac arrest resuscitation, the heart and brain, are critically dependent on mitochondrial function. New insights into mitochondrial dynamics and the role of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) in apoptosis have made targeting these mechanisms attractive for IR therapy. In animal models, inhibiting Drp1 following IR injury or cardiac arrest confers protection to both the heart and brain. In this review, the relationship of the major mitochondrial fission protein Drp1 to ischemic changes in the heart and its targeting as a new therapeutic target following cardiac arrest are discussed. PMID:25659608