Sample records for targeted therapy era

  1. Practical issues of biomarker-assisted targeted therapy in precision medicine and immuno-oncology era.

    PubMed

    Lee, Dae Ho

    2018-01-01

    The concept of precision medicine is not new, as multiplex and very sensitive methods, or next-generation sequencing and matched targeted cancer therapies, have come to clinical practice. Substantial progress has been made from the discovery to the development and clinical application of biomarkers and matched targeted therapies. However, there still remain many challenges and issues to be overcome in each step, from acquisition of tumour tissues through validation of biomarkers to the final decision on targeted therapy. This review will briefly touch on these issues, hoping to provide a better understanding and application of targeted therapy in cancer treatment in the era of precision medicine and immuno-oncology. It also helps to understand that the meaning or value of biomarker(s) and matched targeted therapy changes along with expansion of knowledge and advance of methodology, and constant efforts have to be made in evaluating the meaning and clinical value during the development and after the establishment of biomarkers or the approval of matched targeted therapies, which might be more complicated by the advent of new therapeutic agents and new diagnostic methods.

  2. The continuing role of chemotherapy for advanced non-small cell lung cancer in the targeted therapy era.

    PubMed

    Lwin, Zarnie; Riess, Jonathan W; Gandara, David

    2013-10-01

    There have been remarkable advances in the targeted treatment of advanced non-small cell lung cancer (NSCLC) over the past several years. Survival outcomes are steadily improving as management paradigms shift in the diagnosis and treatment of advanced NSCLC. Customizing treatment based on histology and molecular typing has become a standard of care in this era of targeted therapy. While new chemotherapeutic agents have proven effective, the pivotal role of platinum-based chemotherapy doublets has been confirmed. Maintenance chemotherapy has become an option, but who to employ it in remains unclear in the real-world setting. Efforts to overcome resistance to targeted agents are ongoing utilizing combination regimens of chemotherapy plus targeted agents, but optimizing combination strategies needs further exploration. This review highlights recent developments in novel chemotherapeutics and in chemotherapy strategies over the past two years. Despite advances in molecular medicine, there remains an essential role for chemotherapy in advanced NSCLC, even in the recent targeted therapy era.

  3. Chimeric antigen receptor (CAR)-directed adoptive immunotherapy: a new era in targeted cancer therapy.

    PubMed

    Chen, Yamei; Liu, Delong

    2014-01-01

    As a result of the recent advances in molecular immunology, virology, genetics, and cell processing, chimeric antigen receptor (CAR)-directed cancer therapy has finally arrived for clinical application. CAR-directed adoptive immunotherapy represents a novel form of gene therapy, cellular therapy, and immunotherapy, a combination of three in one. Early phase clinical trial was reported in patients with refractory chronic lymphoid leukemia with 17p deletion. Accompanying the cytokine storm and tumor lysis syndrome was the shocking disappearance of the leukemia cells refractory to chemotherapy and monoclonal antibodies. CAR therapy was reproduced in both children and adults with refractory acute lymphoid leukemia. The CAR technology is being explored for solid tumor therapy, such as glioma. Close to 30 clinical trials are underway in the related fields (www.clinicaltrials.gov). Further improvement in gene targeting, cell expansion, delivery constructs (such as using Sleeping Beauty or Piggyback transposons) will undoubtedly enhance clinical utility. It is foreseeable that CAR-engineered T cell therapy will bring targeted cancer therapy into a new era.

  4. Entering the Era of Targeted Therapy for Chronic Lymphocytic Leukemia: Impact on the Practicing Clinician

    PubMed Central

    Byrd, John C.; Jones, Jeffrey J.; Woyach, Jennifer A.; Johnson, Amy J.; Flynn, Joseph M.

    2014-01-01

    Purpose Chemoimmunotherapy has been the standard of care for chronic lymphocytic leukemia (CLL). However, the introduction of B-cell receptor (BCR) kinase inhibitors such as ibrutinib has the potential to eliminate the role of chemotherapy in the treatment of CLL. How to best incorporate old and new therapies for CLL in this landscape is increasingly complex. Methods This article reviews current data available to clinicians and integrates these data to provide a strategy that can be used to approach the treatment of CLL in the era of BCR signaling inhibitors. Results Current strategies separate patients based on age or functional status as well as genetics [presence or absence of del(17)(p13.1)]. In the era of targeted therapy, this will likely continue based on current available data. Phase III studies support chemoimmunotherapy as the initial standard therapy for patients without del(17)(p13.1). Choice of chemotherapy (fludarabine plus cyclophosphamide, bendamustine, or chlorambucil) and anti-CD20 antibody (rituximab, ofatumumab, or obinutuzumab) varies based on regimen and patient status. For patients with del(17)(p13.1), no standard initial therapy exists, although several options supported by phase II clinical trials (methylprednisolone plus alemtuzumab or ibrutinib) seem better than chemoimmunotherapy. Treatment of relapsed CLL seems to be best supported by ibrutinib-based therapy. Completion of trials with ibrutinib and other new agents in the near future will offer opportunity for chemotherapy-free treatment across all groups of CLL. Conclusion Therapy for CLL has evolved significantly over the past decade with introduction of targeted therapy for CLL. This has the potential to completely transform how CLL is treated in the future. PMID:25049322

  5. The Role of High Dose Interleukin-2 in the Era of Targeted Therapy.

    PubMed

    Gills, Jessie; Parker, William P; Pate, Scott; Niu, Sida; Van Veldhuizen, Peter; Mirza, Moben; Holzbeierlein, Jeffery M; Lee, Eugene K

    2017-09-01

    We assessed survival outcomes following high dose interleukin-2 in a contemporary cohort of patients during the era of targeted agents. We retrospectively reviewed the records of patients with metastatic renal cell carcinoma treated with high dose interleukin-2 between July 2007 and September 2014. Clinicopathological data were abstracted and patient response to therapy was based on RECIST (Response Evaluation Criteria In Solid Tumors), version 1.1 criteria. The Kaplan-Meier method was used to estimate progression-free and overall survival in the entire cohort, the response to high dose interleukin-2 in regard to previous targeted agent therapy and the response to the targeted agent in relation to the response to high dose interleukin-2. We identified 92 patients, of whom 87 had documentation of a response to high dose interleukin-2. Median overall survival was 34.4 months from the initiation of high dose interleukin-2 therapy in the entire cohort. Patients who received targeted therapy before high dose interleukin-2 had overall survival (median 34.4 and 30.0 months, p = 0.88) and progression-free survival (median 1.5 and 1.7 months, p = 0.8) similar to those in patients who received no prior therapy, respectively. Additionally, patients with a complete or partial response to high dose interleukin-2 had similar outcomes for subsequent targeted agents compared to patients whose best response was stable or progressive disease (median overall survival 30.1 vs 25.4 months, p = 0.4). Our data demonstrate that patient responses to high dose interleukin-2 and to targeted agents before and after receiving high dose interleukin-2 are independent. As such, carefully selected patients should be offered high dose interleukin-2 for the possibility of a complete and durable response without the fear of limiting the treatment benefit of targeted agents. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. EGFR-targeted therapies in the post-genomic era.

    PubMed

    Xu, Mary Jue; Johnson, Daniel E; Grandis, Jennifer R

    2017-09-01

    Over 90% of head and neck cancers overexpress the epidermal growth factor receptor (EGFR). In diverse tumor types, EGFR overexpression has been associated with poorer prognosis and outcomes. Therapies targeting EGFR include monoclonal antibodies, tyrosine kinase inhibitors, phosphatidylinositol 3-kinase (PI3K) inhibitors, and antisense gene therapy. Few EGFR-targeted therapeutics are approved for clinical use. The monoclonal antibody cetuximab is a Food and Drug Administration (FDA)-approved EGFR-targeted therapy, yet has exhibited modest benefit in clinical trials. The humanized monoclonal antibody nimotuzumab is also approved for head and neck cancers in Cuba, Argentina, Colombia, Peru, India, Ukraine, Ivory Coast, and Gabon in addition to nasopharyngeal cancers in China. Few other EGFR-targeted therapeutics for head and neck cancers have led to as significant responses as seen in lung carcinomas, for instance. Recent genome sequencing of head and neck tumors has helped identify patient subgroups with improved response to EGFR inhibitors, for example, cetuximab in patients with the KRAS-variant and the tyrosine kinase inhibitor erlotinib for tumors harboring MAPK1 E322K mutations. Genome sequencing has furthermore broadened our understanding of dysregulated pathways, holding the potential to enhance the benefit derived from therapies targeting EGFR.

  7. Economic Burden of Chronic Lymphocytic Leukemia in the Era of Oral Targeted Therapies in the United States

    PubMed Central

    Chen, Qiushi; Jain, Nitin; Ayer, Turgay; Wierda, William G.; Flowers, Christopher R.; O’Brien, Susan M.; Keating, Michael J.; Kantarjian, Hagop M.

    2017-01-01

    Purpose Oral targeted therapies represent a significant advance for the treatment of patients with chronic lymphocytic leukemia (CLL); however, their high cost has raised concerns about affordability and the economic impact on society. Our objective was to project the future prevalence and cost burden of CLL in the era of oral targeted therapies in the United States. Methods We developed a simulation model that evaluated the evolving management of CLL from 2011 to 2025: chemoimmunotherapy (CIT) as the standard of care before 2014, oral targeted therapies for patients with del(17p) and relapsed CLL from 2014, and for first-line treatment from 2016 onward. A comparator scenario also was simulated where CIT remained the standard of care throughout. Disease progression and survival parameters for each therapy were based on published clinical trials. Results The number of people living with CLL in the United States is projected to increase from 128,000 in 2011 to 199,000 by 2025 (55% increase) due to improved survival; meanwhile, the annual cost of CLL management will increase from $0.74 billion to $5.13 billion (590% increase). The per-patient lifetime cost of CLL treatment will increase from $147,000 to $604,000 (310% increase) as oral targeted therapies become the first-line treatment. For patients enrolled in Medicare, the corresponding total out-of-pocket cost will increase from $9,200 to $57,000 (520% increase). Compared with the CIT scenario, oral targeted therapies resulted in an incremental cost-effectiveness ratio of $189,000 per quality-adjusted life-year. Conclusion The increased benefit and cost of oral targeted therapies is projected to enhance CLL survivorship but can impose a substantial financial burden on both patients and payers. More sustainable pricing strategies for targeted therapies are needed to avoid financial toxicity to patients. PMID:27870563

  8. A New Era for Cancer Target Therapies: Applying Systems Biology and Computer-Aided Drug Design to Cancer Therapies.

    PubMed

    Wong, Yung-Hao; Chiu, Chia-Chiun; Lin, Chih-Lung; Chen, Ting-Shou; Jheng, Bo-Ren; Lee, Yu-Ching; Chen, Jeremy; Chen, Bor-Sen

    In recent years, many systems biology approaches have been used with various cancers. The materials described here can be used to build bases to discover novel cancer therapy targets in connection with computer-aided drug design (CADD). A deeper understanding of the mechanisms of cancer will provide more choices and correct strategies in the development of multiple target drug therapies, which is quite different from the traditional cancer single target therapy. Targeted therapy is one of the most powerful strategies against cancer and can also be applied to other diseases. Due to the large amount of progress in computer hardware and the theories of computational chemistry and physics, CADD has been the main strategy for developing novel drugs for cancer therapy. In contrast to traditional single target therapies, in this review we will emphasize the future direction of the field, i.e., multiple target therapies. Structure-based and ligand-based drug designs are the two main topics of CADD. The former needs both 3D protein structures and ligand structures, while the latter only needs ligand structures. Ordinarily it is estimated to take more than 14 years and 800 million dollars to develop a new drug. Many new CADD software programs and techniques have been developed in recent decades. We conclude with an example where we combined and applied systems biology and CADD to the core networks of four cancers and successfully developed a novel cocktail for drug therapy that treats multiple targets.

  9. Targeted therapies in the treatment of urothelial cancers.

    PubMed

    Aragon-Ching, Jeanny B; Trump, Donald L

    2017-07-01

    Progress has been slow in systemic management of locally advanced and metastatic bladder cancer over the past 20 years. However, the recent approval of immunotherapy with atezolizumab and nivolumab for second-line salvage therapy may usher in an era of more rapid improvement. Systemic treatment is suboptimal and is an area of substantial unmet medical need. The recent findings from The Cancer Genome Atlas project revealed promising pathways that may be amenable to targeted therapies. Promising results with treatment using vascular endothelial growth factor inhibitors such as ramucirumab, sunitinib or bevacizumab, and human epidermal growth factor receptor 2 targeted therapies, epidermal growth factor receptor inhibitors, and fibroblast growth factor receptor inhibitors, are undergoing clinical trials and are discussed later. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Changing strategies for target therapy in gastric cancer.

    PubMed

    Lee, Suk-Young; Oh, Sang Cheul

    2016-01-21

    In spite of a worldwide decrease in the incidence of gastric cancer, this malignancy still remains one of the leading causes of cancer mortality. Great efforts have been made to improve treatment outcomes in patients with metastatic gastric cancer, and the introduction of trastuzumab has greatly improved the overall survival. The trastuzumab treatment took its first step in opening the era of molecular targeted therapy, however several issues still need to be resolved to increase the efficacy of targeted therapy. Firstly, many patients with metastatic gastric cancer who receive trastuzumab in combination with chemotherapeutic agents develop resistance to the targeted therapy. Secondly, many clinical trials testing novel molecular targeted agents with demonstrated efficacy in other malignancies have failed to show benefit in patients with metastatic gastric cancer, suggesting the importance of the selection of appropriate indications according to molecular characteristics in application of targeted agents. Herein, we review the molecular targeted agents currently approved and in use, and clinical trials in patients with metastatic gastric cancer, and demonstrate the limitations and future direction in treatment of advanced gastric cancer.

  11. Family Therapy in the Postmodern Era.

    ERIC Educational Resources Information Center

    Mills, Steven D.; Sprenkle, Douglas H.

    1995-01-01

    Discusses theoretical and clinical developments that have accompanied family therapy's entry into the postmodern era. Clinical trends, including use of reflecting teams, self-of-the-therapist issues, increased therapist self-disclosure, and postmodern supervision are examined. Feminist critiques, health-care reform, and increasing collaboration…

  12. Personalized targeted therapy for esophageal squamous cell carcinoma

    PubMed Central

    Kang, Xiaozheng; Chen, Keneng; Li, Yicheng; Li, Jianying; D'Amico, Thomas A; Chen, Xiaoxin

    2015-01-01

    Esophageal squamous cell carcinoma continues to heavily burden clinicians worldwide. Researchers have discovered the genomic landscape of esophageal squamous cell carcinoma, which holds promise for an era of personalized oncology care. One of the most pressing problems facing this issue is to improve the understanding of the newly available genomic data, and identify the driver-gene mutations, pathways, and networks. The emergence of a legion of novel targeted agents has generated much hope and hype regarding more potent treatment regimens, but the accuracy of drug selection is still arguable. Other problems, such as cancer heterogeneity, drug resistance, exceptional responders, and side effects, have to be surmounted. Evolving topics in personalized oncology, such as interpretation of genomics data, issues in targeted therapy, research approaches for targeted therapy, and future perspectives, will be discussed in this editorial. PMID:26167067

  13. Molecular targeting agents in cancer therapy: science and society.

    PubMed

    Shaikh, Asim Jamal

    2012-01-01

    The inception of targeted agents has revolutionized the cancer therapy paradigm, both for physicians and patients. A large number of molecular targeted agents for cancer therapy are currently available for clinical use today. Many more are in making, but there are issues that remain to be resolved for the scientific as well as social community before the recommendation of their widespread use in may clinical scenarios can be done, one such issue being cost and cost effectiveness, others being resistance and lack of sustained efficacy. With the current knowledge about available targeted agents, the growing knowledge of intricate molecular pathways and unfolding of wider spectrum of molecular targets that can really matter in the disease control, calls for only the just use of the agents available now, drug companies need to make a serious attempt to reduce the cost of the agents. Research should focus on agents that show sustained responses in preclinical data. More needs to be done in laboratories and by the pharmaceutical industries, before we can truly claim to have entered a new era of targeted therapy in cancer care.

  14. Management of metastatic renal cell carcinoma in the era of targeted therapies.

    PubMed

    Webber, K; Cooper, A; Kleiven, H; Yip, D; Goldstein, D

    2011-08-01

    Metastatic renal cell cancer is associated with poor prognosis and survival and is resistant to conventional chemotherapy. Therapeutic targeting of molecular pathways for tumour angiogenesis and other specific activation mechanisms offers improved tumour response and prolonged survival. To conduct a retrospective audit of metastatic renal cell carcinoma patients treated with targeted therapies. Data were extracted from clinical records of patients undergoing targeted treatment between 2005 and 2009 at two hospital sites. Data collected included pathology, systemic therapy class, toxicity and survival. Univariate and multivariate survival analyses were performed. Sixty-one patients were treated with 102 lines of therapy with a median overall survival (OS) of 23 months, median time to failure of first-line treatment (TTF1) of 10 months and median time to failure of second-line treatment (TTF2) of 5.2 months. Time from first diagnosis to treatment >12 months was significantly associated with improved OS, longer TTF1, TTF2 and response to first-line anti-vascular endothelial growth factor receptor tyrosine kinase inhibitors (anti-VEGF TKI) therapy. Variables associated with tumour biology, natural history and the systemic inflammatory response were associated with improved OS and TTF1. Development of hypertension was predictive of anti-VEGF TKI outcome. Toxicities were as expected for each drug class.   Survival and toxicity outcomes from two Australian sites are comparable to published data. The adverse event profile differs to conventional chemotherapy. Clinicians caring for patients with metastatic renal cancer will need to become familiar with these toxicities and their management as these agents enter widespread use. © 2011 The Authors. Internal Medicine Journal © 2011 Royal Australasian College of Physicians.

  15. Survival and clinical outcomes of patients with melanoma brain metastasis in the era of checkpoint inhibitors and targeted therapies.

    PubMed

    Vosoughi, Elham; Lee, Jee Min; Miller, James R; Nosrati, Mehdi; Minor, David R; Abendroth, Roy; Lee, John W; Andrews, Brian T; Leng, Lewis Z; Wu, Max; Leong, Stanley P; Kashani-Sabet, Mohammed; Kim, Kevin B

    2018-04-27

    Melanoma brain metastasis is associated with an extremely poor prognosis, with a median overall survival of 4-5 months. Since 2011, the overall survival of patients with stage IV melanoma has been significantly improved with the advent of new targeted therapies and checkpoint inhibitors. We analyze the survival outcomes of patients diagnosed with brain metastasis after the introduction of these novel drugs. We performed a retrospective analysis of our melanoma center database and identified 79 patients with brain metastasis between 2011 and 2015. The median time from primary melanoma diagnosis to brain metastasis was 3.2 years. The median overall survival duration from the time of initial brain metastasis was 12.8 months. Following a diagnosis of brain metastasis, 39 (49.4%), 28 (35.4%), and 24 (30.4%) patients were treated with anti-CTLA-4 antibody, anti-PD-1 antibody, or BRAF inhibitors (with or without a MEK inhibitor), with a median overall survival of 19.2 months, 37.9 months and 12.7 months, respectively. Factors associated with significantly reduced overall survival included male sex, cerebellar metastasis, higher number of brain lesions, and treatment with whole-brain radiation therapy. Factors associated with significantly longer overall survival included treatment with craniotomy, stereotactic radiosurgery, or with anti-PD-1 antibody after initial diagnosis of brain metastasis. These results show a significant improvement in the overall survival of patients with melanoma brain metastasis in the era of novel therapies. In addition, they suggest the activity of anti-PD-1 therapy specifically in the setting of brain metastasis.

  16. Familial breast cancer - targeted therapy in secondary and tertiary prevention.

    PubMed

    Kast, Karin; Rhiem, Kerstin

    2015-02-01

    The introduction of an increasing number of individualized molecular targeted therapies into clinical routine mirrors their importance in modern cancer prevention and treatment. Well-known examples for targeted agents are the monoclonal antibody trastuzumab and the selective estrogen receptor modulator tamoxifen. The identification of an unaltered gene in tumor tissue in colon cancer (KRAS) is a predictor for the patient's response to targeted therapy with a monoclonal antibody (cetuximab). Targeted therapy for hereditary breast and ovarian cancer has become a reality with the approval of olaparib for platin-sensitive late relapsed BRCA-associated ovarian cancer in December 2014. This manuscript reviews the status quo of poly-ADP-ribose polymerase inhibitors (PARPi) in the therapy of breast and ovarian cancer as well as the struggle for carboplatin as a potential standard of care for triple-negative and, in particular, BRCA-associated breast cancer. Details of the mechanism of action with information on tumor development are provided, and an outlook for further relevant research is given. The efficacy of agents against molecular targets together with the identification of an increasing number of cancer-associated genes will open the floodgates to a new era of treatment decision-making based on molecular tumor profiles. Current clinical trials involving patients with BRCA-associated cancer explore the efficacy of the molecular targeted therapeutics platinum and PARPi.

  17. Genetics and molecular pathology of gastric malignancy: Development of targeted therapies in the era of personalized medicine

    PubMed Central

    Van Ness, Michael; Gregg, Jeffrey; Wang, Jun

    2012-01-01

    Gastric malignancy constitutes a major cause of cancer deaths worldwide. Despite recent advances in surgical techniques combined with neoadjuvant chemotherapy and radiotherapy approaches, patients with advanced disease still have poor outcomes. An emerging understanding of the molecular pathways that characterize cell growth, cell cycle, apoptosis, angiogenesis, invasion and metastasis has provided novel targets in gastric cancer therapy. In this review, recent advances in the understanding of molecular tumorigenesis for common gastric malignancies are discussed. We also briefly review the current targeted therapies in the treatment of gastric malignancies. Practical insights are highlighted including HER2 testing and target therapy in gastric adenocarcinoma, morphologic features and molecular signatures of imatinib-resistance GISTs, and recent investigations aimed at tumor-specific therapy for neuroendocrine tumors. PMID:22943015

  18. Reduction in liver transplant wait-listing in the era of direct-acting antiviral therapy.

    PubMed

    Flemming, Jennifer A; Kim, W Ray; Brosgart, Carol L; Terrault, Norah A

    2017-03-01

    Direct-acting antiviral (DAA) therapy, recently approved for patients with decompensated cirrhosis (DC) secondary to hepatitis C virus (HCV), is associated with improved hepatic function. We analyzed trends in liver transplant (LT) wait-listing (WL) to explore potential impact of effective medical therapy on WL registration. This is a cohort study using the Scientific Registry of Transplant Recipients database from 2003 to 2015. A total of 47,591 adults wait-listed for LT from HCV, hepatitis B virus (HBV), and nonalcoholic steatohepatitis (NASH) were identified. LT indication was defined as DC if the Model for End-Stage Liver Disease (MELD) at WL was ≥15 or hepatocellular carcinoma (HCC). Era of listing was divided into interferon (IFN; 2003-2010), protease inhibitor (PI; 2011-2013), and direct-acting antiviral (DAA; 2014-2015). Annual standardized incidence rates of WL were analyzed using Poisson regression. Adjusted incidences of LT WL for DC in HCV patients decreased by 5% in the PI era (P = 0.004) and 32% in the DAA era (P < 0.001) compared to the IFN era. Listing for DC in HBV also decreased in the PI (-17%; P = 0.002) and DAA eras (-24%; P < 0.001). Conversely, WL for DC in NASH increased by 41% in the PI era (P < 0.001) and 81% in the DAA era (P < 0.001). WL for HCC in both the HCV and NASH populations increased in both the PI and DAA eras (P < 0.001 for all) whereas HCC WL in HBV remained stable (P > 0.05 for all). The rate of LT WL for HCV complicated by DC has decreased by over 30% in the era of DAA therapy. Further reductions in WL are anticipated with increased testing, linkage to care, and access to DAA therapy. (Hepatology 2017;65:804-812). © 2016 by the American Association for the Study of Liver Diseases.

  19. Hepatitis C virus in the new era: perspectives in epidemiology, prevention, diagnostics and predictors of response to therapy.

    PubMed

    Ansaldi, Filippo; Orsi, Andrea; Sticchi, Laura; Bruzzone, Bianca; Icardi, Giancarlo

    2014-08-07

    Despite the great successes achieved in the fields of virology and diagnostics, several difficulties affect improvements in hepatitis C virus (HCV) infection control and eradication in the new era. New HCV infections still occur, especially in some of the poorest regions of the world, where HCV is endemic and long-term sequelae have a growing economic and health burden. An HCV vaccine is still no available, despite years of researches and discoveries about the natural history of infection and host-virus interactions: several HCV vaccine candidates have been developed in the last years, targeting different HCV antigens or using alternative delivery systems, but viral variability and adaption ability constitute major challenges for vaccine development. Many new antiviral drugs for HCV therapy are in preclinical or early clinical development, but different limitations affect treatment validity. Treatment predictors are important tools, as they provide some guidance for the management of therapy in patients with chronic HCV infection: in particular, the role of host genomics in HCV infection outcomes in the new era of direct-acting antivirals may evolve for new therapeutic targets, representing a chance for modulated and personalized treatment management, when also very potent therapies will be available. In the present review we discuss the most recent data about HCV epidemiology, the new perspectives for the prevention of HCV infection and the most recent evidence regarding HCV diagnosis, therapy and predictors of response to it.

  20. The roles of pathology in targeted therapy of women with gynecologic cancers.

    PubMed

    Murali, Rajmohan; Grisham, Rachel N; Soslow, Robert A

    2018-01-01

    The role of the pathologist in the multidisciplinary management of women with gynecologic cancer has evolved substantially over the past decade. Pathologists' evaluation of parameters such as pathologic stage, histologic subtype, grade and microsatellite instability, and their identification of patients at risk for Lynch syndrome have become essential components of diagnosis, prognostic assessment and determination of optimal treatment of affected women. Despite the use of multimodality treatment and combination cytotoxic chemotherapy, the prognosis of women with advanced-stage gynecologic cancer is often poor. Therefore, expanding the arsenal of available systemic therapies with targeted therapeutic agents is appealing. Anti-angiogenic therapies, immunotherapy and poly ADP ribose polymerase (PARP) inhibitors are now routinely used for the treatment of advanced gynecologic cancer, and many more are under investigation. Pathologists remain important in the clinical management of patients with targeted therapy, by identifying potentially targetable tumors on the basis of their pathologic phenotype, by assessing biomarkers that are predictive of response to targeted therapy (e.g. microsatellite instability, PD1/PDL1 expression), and by monitoring treatment response and resistance. Pathologists are also vital to research efforts exploring novel targeted therapies by identifying homogenous subsets of tumors for more reliable and meaningful analyses, and by confirming expression in tumor tissues of novel targets identified in genomic, epigenetic or other screening studies. In the era of precision gynecologic oncology, the roles of pathologists in the discovery, development and implementation of targeted therapeutic strategies remain as central as they are for traditional (surgery-chemotherapy-radiotherapy) management of women with gynecologic cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Targeting STATs for cancer therapy: "Undruggable" no more.

    PubMed

    Frank, David A

    2012-10-01

    We are in the midst of an exciting transition in the treatment of cancers, from the empirically developed non-specifically cytotoxic drugs to the era of rationally derived molecularly targeted therapies. Over the past 15 years, our understanding of the mutations that drive cancer pathogenesis has grown enormously, which has rapidly led to the development of drugs to target the associated gene products. Almost all of this focus has been on kinases, largely tyrosine kinases that are activated by translocations, point mutations, insertions and deletions. Although this approach will continue to bear fruit for some time, there is increasing evidence that the returns will be diminishing. First, dominant activating mutations in kinases are less frequent then initially expected particularly in common human cancers, and thus the number of patient whose tumors have suitable targets may be limited. The second cause for concern is the rapid development of resistance that often occurs, arising either from mutations in the target kinase or activation of a parallel pathway. Thus, the desire to target a common convergence point of multiple pathways that directly contributes to the oncogenic phenotype is highly desirable. This goal has led to consideration of transcription factors as therapeutic targets.

  2. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma.

    PubMed

    Gump, Jacob M; Donson, Andrew M; Birks, Diane K; Amani, Vladimir M; Rao, Karun K; Griesinger, Andrea M; Kleinschmidt-DeMasters, B K; Johnston, James M; Anderson, Richard C E; Rosenfeld, Amy; Handler, Michael; Gore, Lia; Foreman, Nicholas; Hankinson, Todd C

    2015-05-21

    Pediatric adamantinomatous craniopharyngioma (ACP) is a histologically benign but clinically aggressive brain tumor that arises from the sellar/suprasellar region. Despite a high survival rate with current surgical and radiation therapy (75-95 % at 10 years), ACP is associated with debilitating visual, endocrine, neurocognitive and psychological morbidity, resulting in excheptionally poor quality of life for survivors. Identification of an effective pharmacological therapy could drastically decrease morbidity and improve long term outcomes for children with ACP. Using mRNA microarray gene expression analysis of 15 ACP patient samples, we have found several pharmaceutical targets that are significantly and consistently overexpressed in our panel of ACP relative to other pediatric brain tumors, pituitary tumors, normal pituitary and normal brain tissue. Among the most highly expressed are several targets of the kinase inhibitor dasatinib - LCK, EPHA2 and SRC; EGFR pathway targets - AREG, EGFR and ERBB3; and other potentially actionable cancer targets - SHH, MMP9 and MMP12. We confirm by western blot that a subset of these targets is highly expressed in ACP primary tumor samples. We report here the first published transcriptome for ACP and the identification of targets for rational therapy. Experimental drugs targeting each of these gene products are currently being tested clinically and pre-clinically for the treatment of other tumor types. This study provides a rationale for further pre-clinical and clinical studies of novel pharmacological treatments for ACP. Development of mouse and cell culture models for ACP will further enable the translation of these targets from the lab to the clinic, potentially ushering in a new era in the treatment of ACP.

  3. [State of the art molecular diagnostics and therapy of chronic lymphocytic leukaemia in the era of new targeted therapies].

    PubMed

    Gurbity Pálfi, Tímea; Fésüs, Viktória; Bödör, Csaba; Borbényi, Zita

    2017-10-01

    Chronic lymphoid leukaemia (CLL) has a heterogeneous clinical course depending on many clinical and molecular prognostic markers, which play an important role in the selection of the best treatment option. So far, TP53 disruption is the key prognostic and predictive factor assisting treatment decisions, especially in the era of novel therapies. Asymptomatic patients in early stages of the disease will still benefit from watchful waiting. In the frontline setting, chemoimmunotherapy is still the standard care in the majority of standard risk CLL patients. New classes of drugs like kinase inhibitors and BCL-2 inhibitors (ibrutinib, idelalisib and venetoclax) are the treatment of choice in CLL patients with relapsed/refractory disease, with the exception of high risk disease, where the optimal treatment is frontline ibrutinib monotherapy. In the near future, integrating next generation sequencing into the routine diagnostics would help the development of individual CLL patient management and to choose an optimal treatment strategy. Orv Hetil. 2017; 158(41): 1620-1629.

  4. Chronic lymphocytic leukemia and infection risk in the era of targeted therapies: Linking mechanisms with infections.

    PubMed

    Hilal, Talal; Gea Banacloche, Juan C; Leis, Jose F

    2018-03-16

    Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the world. Patient with CLL are at particular risk for infections due to inherent disease-related immune dysfunction in addition to the effect of certain systemic therapies on the immune system. The advent of B-cell receptor (BCR) inhibitors such as ibrutinib and idelalisib has led to a practice change that utilizes these targeted agents in the treatment of CLL, either in place of chemoimmunotherapy (CIT) or in later line settings. In this paper, we review the pathophysiology of immune dysfunction in CLL, the spectrum of immunodeficiency with the various therapeutic agents along with prevention strategies with a focus on targeted therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Targeted Therapy for Cancer

    Cancer.gov

    Targeted therapy is a type of cancer treatment that targets the changes in cancer cells that help them grow, divide, and spread. Learn how targeted therapy works against cancer and about side effects that may occur.

  6. Practical and molecular evaluation of colorectal cancer: new roles for the pathologist in the era of targeted therapy.

    PubMed

    De Hertogh, Gert; Geboes, Karen Paula

    2010-06-01

    Colorectal cancer is the third most common cancer and the fourth most common cause of cancer death worldwide. Patient cases are discussed in multidisciplinary meetings to decide on the best management on an individual basis. Until recently, the main task of the pathologist in such teams was to provide clinically useful reports comprising staging of colorectal cancer in surgical specimens. The advent of total mesorectal excision and the application of anti-epidermal growth factor receptor (EGFR)-targeted therapies for selected patients with metastasized colorectal cancer have changed the role of the pathologist. To present the traditional role of the pathologist in the multidisciplinary team treating patients with colorectal cancer, to address the technique of total mesorectal excision and its implications for the evaluation of surgical specimens, to offer background information on the various EGFR-targeted therapies, and to review the currently investigated tissue biomarkers assumed to be predictive for efficacy of such therapies, with a focus on the role of the pathologist in determining the status of such biomarkers in individual tumors. This article is based on selected articles pertaining to biopsy evaluation of colorectal carcinoma and reviews of EGFR-targeted therapies for this cancer. All references are accessible via the PubMed database (US National Library of Medicine and the National Institutes of Health). Pathologists play an increasingly important role in the diagnosis and management of colorectal cancer because of the advent of new surgical techniques and of targeted therapies. It is expected that this role will increase further in the near future.

  7. Prevalence of oral candidiasis in HIV/AIDS children in highly active antiretroviral therapy era. A literature analysis.

    PubMed

    Gaitán-Cepeda, Luis Alberto; Sánchez-Vargas, Octavio; Castillo, Nydia

    2015-08-01

    SummaryHighly active antiretroviral therapy has decreased the morbidity and mortality related to HIV infection, including oral opportunistic infections. This paper offers an analysis of the scientific literature on the epidemiological aspects of oral candidiasis in HIV-positive children in the combination antiretroviral therapy era. An electronic databases search was made covering the highly active antiretroviral therapy era (1998 onwards). The terms used were oral lesions, oral candidiasis and their combination with highly active antiretroviral therapy and HIV/AIDS children. The following data were collected from each paper: year and country in which the investigation was conducted, antiretroviral treatment, oral candidiasis prevalence and diagnostic parameters (clinical or microbiological). Prevalence of oral candidiasis varied from 2.9% in American HIV-positive children undergoing highly active antiretroviral therapy to 88% in Chilean HIV-positive children without antiretroviral therapy. With respect to geographical location and antiretroviral treatment, higher oral candidiasis prevalence in HIV-positive children on combination antiretroviral therapy/antiretroviral therapy was reported in African children (79.1%) followed by 45.9% reported in Hindu children. In HIV-positive Chilean children on no antiretroviral therapy, high oral candidiasis prevalence was reported (88%) followed by Nigerian children (80%). Oral candidiasis is still frequent in HIV-positive children in the highly active antiretroviral therapy era irrespective of geographical location, race and use of antiretroviral therapy. © The Author(s) 2014.

  8. Management of melanoma brain metastases in the era of targeted therapy.

    PubMed

    Shapiro, Daniela Gonsalves; Samlowski, Wolfram E

    2011-01-01

    Disseminated metastatic disease, including brain metastases, is commonly encountered in malignant melanoma. The classical treatment approach for melanoma brain metastases has been neurosurgical resection followed by whole brain radiotherapy. Traditionally, if lesions were either too numerous or surgical intervention would cause substantial neurologic deficits, patients were either treated with whole brain radiotherapy or referred to hospice and supportive care. Chemotherapy has not proven effective in treating brain metastases. Improvements in surgery, radiosurgery, and new drug discoveries have provided a wider range of treatment options. Additionally, recently discovered mutations in the melanoma genome have led to the development of "targeted therapy." These vastly improved options are resulting in novel treatment paradigms for approaching melanoma brain metastases in patients with and without systemic metastatic disease. It is therefore likely that improved survival can currently be achieved in at least a subset of melanoma patients with brain metastases.

  9. Denosumab for bone diseases: translating bone biology into targeted therapy.

    PubMed

    Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C

    2011-12-01

    Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.

  10. Nutritional status in the era of target therapy: poor nutrition is a prognostic factor in non-small cell lung cancer with activating epidermal growth factor receptor mutations.

    PubMed

    Park, Sehhoon; Park, Seongyeol; Lee, Se-Hoon; Suh, Beomseok; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Kim, Young Whan; Heo, Dae Seog

    2016-11-01

    Pretreatment nutritional status is an important prognostic factor in patients treated with conventional cytotoxic chemotherapy. In the era of target therapies, its value is overlooked and has not been investigated. The aim of our study is to evaluate the value of nutritional status in targeted therapy. A total of 2012 patients with non-small cell lung cancer (NSCLC) were reviewed and 630 patients with activating epidermal growth factor receptor (EGFR) mutation treated with EGFR tyrosine kinase inhibitor (TKI) were enrolled for the final analysis. Anemia, body mass index (BMI), and prognostic nutritional index (PNI) were considered as nutritional factors. Hazard ratio (HR), progression-free survival (PFS) and overall survival (OS) for each group were calculated by Cox proportional analysis. In addition, scores were applied for each category and the sum of scores was used for survival analysis. In univariable analysis, anemia (HR, 1.29; p = 0.015), BMI lower than 18.5 (HR, 1.98; p = 0.002), and PNI lower than 45 (HR, 1.57; p < 0.001) were poor prognostic factors for PFS. Among them, BMI and PNI were independent in multi-variable analysis. All of these were also significant prognostic values for OS. The higher the sum of scores, the poorer PFS and OS were observed. Pretreatment nutritional status is a prognostic marker in NSCLC patients treated with EGFR TKI. Hence, baseline nutritional status should be more carefully evaluated and adequate nutrition should be supplied to these patients.

  11. Tes, a potential Mena-related cancer therapy target.

    PubMed

    Li, X

    2008-02-01

    Cancer remains one of the world's most prominent causes of human morbidity and mortality, particularly in developing countries. According to 2005 statistics from the WHO, approximately 7.6 million people died of cancer out of 58 million deaths worldwide, with 9 million people estimated to die from cancer in 2015 and 11.4 million to die in 2030 (http://www.who.int/mediacentre/factsheets/fs297/en/index.html). The principal and internationally recognized methods of cancer treatment are surgery, radiotherapy, chemotherapy, or multimodality therapy. With the recent development of cancer biology, more and more tumor-related targets have been identified, ushering in a new era for target therapy. Every possible step that causes cellular cancer, such as signal transduction pathways, oncogenes and anti-oncogenes, cytokines and receptors, antiangiogenesis, suicide genes, and telomerase (Shay JW, Keith WN. Br J Cancer 2008), that is biologically relevant, reproducibly measurable, and definably correlated with clinical benefit represents a target for target therapies like targeting gene-virotherapy and monoclonal antibody-directed therapy. These therapies can specifically inhibit the growth of tumor cells at the molecular level and even kill them. Generally speaking, cancer-related targets should be crucial to the tumor's malignant phenotype, easily measurable in readily obtained clinical samples, and yield a significant clinical response. Since tumorigenesis is a very complex process involving the interaction of multiple factors and pathways, target treatment offers hopes to maximize efficacy while minimizing toxicity and specificity. More importantly, treatment should have little or no toxicity on normal cells, thus representing the most promising aspect of cancer research (Friday BB, Adjei AA. Clin Cancer Res 2008; 14:342-346). A recent cancer study has provided exciting information. According to Xinhua News from London, Michael Way and fellow researchers from Cancer

  12. Targeted enzyme prodrug therapies.

    PubMed

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  13. Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration.

    PubMed

    Lin, Tai-Chi; Hung, Kuo-Hsuan; Peng, Chi-Hsien; Liu, Jorn-Hon; Woung, Lin-Chung; Tsai, Ching-Yao; Chen, Shih-Jen; Chen, Yan-Ting; Hsu, Chih-Chien

    2015-11-01

    Nanoparticles combined with cells, drugs, and specially designed genes provide improved therapeutic efficacy in studies and clinical setting, demonstrating a new era of treatment strategy, especially in retinal diseases. Nanotechnology-based drugs can provide an essential platform for sustaining, releasing and a specific targeting design to treat retinal diseases. Poly-lactic-co-glycolic acid is the most widely used biocompatible and biodegradable polymer approved by the Food and Drug Administration. Many studies have attempted to develop special devices for delivering small-molecule drugs, proteins, and other macromolecules consistently and slowly. In this article, we first review current progress in the treatment of age-related macular degeneration. Then, we discuss the function of vascular endothelial growth factor (VEGF) and the pharmacological effects of anti-VEGF-A antibodies and soluble or modified VEGF receptors. Lastly, we summarize the combination of antiangiogenic therapy and nanomedicines, and review current potential targeting therapy in age-related macular degeneration. Copyright © 2015. Published by Elsevier Taiwan.

  14. The science of direct-acting antiviral and host-targeted agent therapy.

    PubMed

    Pawlotsky, Jean-Michel

    2012-01-01

    Direct-acting antiviral drugs targeting two major steps of the HCV life cycle, polyprotein processing and replication, and cyclophilin inhibitors, that target a host cell protein required to interact with the replication complex, have reached clinical development. In order to achieve a sustained virological response, that is, a cure of the HCV infection, it is necessary to shut down virus production, to maintain viral inhibition throughout treatment and to induce a significant, slower second-phase decline in HCV RNA levels that leads to definitive clearance of infected cells. Recent findings suggest that the interferon era is coming to an end in hepatitis C therapy and HCV infection can be cured by all-oral interferon-free treatment regimens within 12 to 24 weeks. Further results are awaited that will allow the establishment of an ideal first-line all-oral, interferon-free treatment regimen for patients with chronic HCV infection.

  15. New and emerging targeted therapies for cystic fibrosis

    PubMed Central

    Rowe, Steven M

    2016-01-01

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder that affects about 70 000 people worldwide. The clinical manifestations of the disease are caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The discovery of the CFTR gene in 1989 has led to a sophisticated understanding of how thousands of mutations in the CFTR gene affect the structure and function of the CFTR protein. Much progress has been made over the past decade with the development of orally bioavailable small molecule drugs that target defective CFTR proteins caused by specific mutations. Furthermore, there is considerable optimism about the prospect of gene replacement or editing therapies to correct all mutations in cystic fibrosis. The recent approvals of ivacaftor and lumacaftor represent the genesis of a new era of precision medicine in the treatment of this condition. These drugs are having a positive impact on the lives of people with cystic fibrosis and are potentially disease modifying. This review provides an update on advances in our understanding of the structure and function of the CFTR, with a focus on state of the art targeted drugs that are in development. PMID:27030675

  16. Bioengineering Strategies for Designing Targeted Cancer Therapies

    PubMed Central

    Wen, Xuejun

    2014-01-01

    The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes. PMID:23768509

  17. Clinical Laboratory Testing in the Era of Directly Acting Antiviral Therapies for Hepatitis C

    PubMed Central

    Wilson, Eleanor M.; Rosenthal, Elana S.; Kattakuzhy, Sarah; Tang, Lydia

    2016-01-01

    SUMMARY Directly acting antiviral (DAA) combination therapies for chronic hepatitis C virus (HCV) infection are highly effective, but treatment decisions remain complex. Laboratory testing is important to evaluate a range of viral, host, and pharmacological factors when considering HCV treatment, and patients must be monitored during and after therapy for safety and to assess the viral response. In this review, we discuss the laboratory tests relevant for the treatment of HCV infection in the era of DAA therapy, grouped according to viral and host factors. PMID:27795306

  18. Cytotoxic chemotherapy in the treatment of advanced renal cell carcinoma in the era of targeted therapy.

    PubMed

    Diamond, E; Molina, A M; Carbonaro, M; Akhtar, N H; Giannakakou, P; Tagawa, S T; Nanus, D M

    2015-12-01

    Renal cell carcinoma (RCC) is a heterogeneous disease with regards to histology, progression, and response to treatment. Cytotoxic chemotherapy has been extensively studied in metastatic RCC (mRCC). Responses in most studies are modest and the mechanisms of resistance remain poorly understood. Targeted therapies have significantly improved outcomes in mRCC; however, most patients eventually relapse and die of their disease. Early clinical data suggest that combinations of chemotherapy and targeted agents are clinically active and are well tolerated. We reviewed the available literature for published clinical trials incorporating traditional chemotherapeutic agents in the treatment of mRCC. These papers were identified through a Medline search and were included if they employed at least one chemotherapeutic agent in the treatment of mRCC. The literature was also reviewed for information regarding mechanisms of chemotherapy resistance. The data regarding the use of cytotoxic chemotherapy in mRCC consist of small, non-randomized phase I and II studies. The major response proportions with single agent chemotherapies are low but combination regimens either with other cytotoxic agents, cytokines, or targeted agents have demonstrated moderate activity. Disparate trial designs and lack of head to head clinical trials make it difficult to compare the efficacy of chemotherapy with that of immunotherapy or targeted agents. Chemotherapy is particularly useful in patients with collecting duct histology and predominantly sarcomatoid differentiation. Chemotherapy resistance may be mediated by overexpression of p-glycoprotein efflux pumps and the dysregulation of the microtubule-hypoxia inducible factor signaling axis. The role of cytotoxic chemotherapy in the treatment for clear cell RCC remains poorly defined. Cytotoxic chemotherapy is considered a standard of care in patients with mRCC with predominantly sarcomatoid differentiation and collecting duct RCC variants (Motzer et al

  19. Emerging science and therapies in non-small-cell lung cancer: targeting the MET pathway.

    PubMed

    Kris, Mark G; Arenberg, Douglas A; Herbst, Roy S; Riely, Gregory J

    2014-11-01

    During this enduring, learner-driven, interactive CME webseries, lung cancer specialists will address the science and targeted therapies for the MET pathway in non-small cell lung cancer. Over the past decade, research has evolved in the science of identifying targeted biological changes in DNA and individual cancer cells. Along with the advanced understanding of lung cancer mutations, has come the development of specific targeted therapies that improve patient outcomes. The first step in treating a patient with lung cancer is proper diagnosis and staging, applying to the principles of personalize medicine. Our current understanding of lung cancer is that of a collection of diseases individualized through specific mutations. This CME activity reviews the role of the pulmonologist and pathologist in proper tissue acquisition and analysis. This new era of personalized medicine and clinical research advances has changed the way clinicians evaluate and treat patients with lung cancer. The data on lung cancer cell mutations and newer targeted therapies have improved the progression free survival and quality of life of lung cancer patients. This CME activity is designed to present a practical overview of recent evidenced based data of MET targeted therapies for patients with lung cancer. As research continues to evolve, we continue to advance our understanding in the science of lung cancers involving the MET pathway. Evidenced based data supporting newer targeted therapeutics provides insight on applying treatment for optimal outcomes. This CME activity will focus on the individualized treatment strategies using practical decision making for patients with MET expression. This activity has been designed to meet the educational needs of medical oncologists, pathologists, radiation oncologists, surgeons, pulmonologists, internists, and other healthcare clinicians responsible for the care of patients with lung cancer. Online access:http://www.elseviercme.com/516/.

  20. Drug resistance mechanisms and novel drug targets for tuberculosis therapy.

    PubMed

    Islam, Md Mahmudul; Hameed, H M Adnan; Mugweru, Julius; Chhotaray, Chiranjibi; Wang, Changwei; Tan, Yaoju; Liu, Jianxiong; Li, Xinjie; Tan, Shouyong; Ojima, Iwao; Yew, Wing Wai; Nuermberger, Eric; Lamichhane, Gyanu; Zhang, Tianyu

    2017-01-20

    Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  1. Cardio-Oncology: Cancer Therapy-related Cardiovascular Complications in a Molecular Targeted Era: New Concepts and Perspectives.

    PubMed

    Hurtado-de-Mendoza, David; Loaiza-Bonilla, Arturo; Bonilla-Reyes, Paula A; Tinoco, Gabriel; Alcorta, Rodrigo

    2017-05-18

    Cardio-oncology is a medical discipline that identifies, prevents, and treats the cardiovascular complications related to cancer therapy. Due to the remarkable proliferation of new cancer therapies causing cardiovascular complications, such as hypertension, heart failure, vascular complications, and cardiac arrhythmia, we provide an extensive, comprehensive revision of the most up-to-date scientific information available on the cardiovascular complications associated with the use of newer, novel chemotherapeutic agents, including their reported incidence, suggested pathophysiology, clinical manifestations, potential treatment, and prevention. The authors consider this topic to be relevant for the clinicians since cardiovascular complications associated with the administration of recently approved drugs are relatively underappreciated. The purpose of this article is to provide a state-of-the-art review of cardiovascular complications associated with the use of newer, novel chemotherapeutic agents and targeted therapies, including their reported incidence, suggested pathophysiology, clinical manifestations, potential treatment, and prevention.  Ongoing efforts are needed to provide a better understanding of the frequency, mechanisms of disease, prevention, and treatment of cardiovascular complications induced by the newer, novel chemotherapeutic agents. Development of a cardio-oncology discipline is warranted in order to promote task forces aimed at the creation of oncology patient-centered guidelines for the detection, prevention, and treatment of potential cardiovascular side effects associated with newer cancer therapies.

  2. Targeted therapy in esophageal cancer.

    PubMed

    Zhang, Lei; Ma, Jiaojiao; Han, Yu; Liu, Jinqiang; Zhou, Wei; Hong, Liu; Fan, Daiming

    2016-01-01

    An increasing number of patients are diagnosed with esophageal cancer at an advanced stages, and only a small group of them can benefit from the traditional chemotherapy and radiotherapy. So far, multiple monoclonal antibodies and tyrosine kinase inhibitors have been developed, alone or in combination with traditional therapy, to improve the prognosis of patients with advanced esophageal cancer. This review summarizes the recent advances of targeted therapies against EGFR, HER2, VEGFR and c-MET in esophageal cancer. More clinical trials should be performed to evaluate the efficacy and safety of various targeted therapy regimens. Future basic research should focus on investigating the molecular mechanisms of therapeutic targets in esophageal cancer.

  3. Targeted therapies: a nursing perspective.

    PubMed

    Kay, Polly

    2006-02-01

    To review the development of targeted therapies and the biology of relevant therapeutic targets. To analyze the relevance of targeted agents as part of current clinical practice. Research articles. Several targeted agents are now available for clinical use. Their mechanisms of action are more specific against tumor cells than traditional cytotoxics. Monotherapy regimens based on targeted agents tend to be better tolerated than chemotherapy, and most combination regimens with targeted agents have proven feasible. Their availability has greatly expanded cancer treatment options, especially for chemorefractory patients. Nurses involved in the care of patients with cancer can benefit from an increased understanding of targeted therapies, including their mechanisms of action, their efficacy profile, as well as prophylaxis and management of adverse events and administration procedures.

  4. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine

    PubMed Central

    Lee, Cody S.; Bishop, Elliot S.; Zhang, Ruyi; Yu, Xinyi; Farina, Evan M.; Yan, Shujuan; Zhao, Chen; Zheng, Zongyue; Shu, Yi; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; Ho, Sherwin; Athiviraham, Aravind; Lee, Michael J.; Wolf, Jennifer Moriatis; Reid, Russell R.; He, Tong-Chuan

    2017-01-01

    With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine. PMID:28944281

  5. Imported acquired immunodeficiency syndrome-related histoplasmosis in metropolitan France: a comparison of pre-highly active anti-retroviral therapy and highly active anti-retroviral therapy eras.

    PubMed

    Peigne, Vincent; Dromer, Françoise; Elie, Caroline; Lidove, Olivier; Lortholary, Olivier

    2011-11-01

    Histoplasma capsulatum var. capsulatum infection is rare outside disease-endemic areas. Clinical presentation and outcome of acquired immunodeficiency syndrome-related histoplasmosis are unknown in non-endemic areas with wide access to highly active anti-retroviral therapy (HAART). Retrospective analysis of cases recorded at the French National Reference Center for Mycoses and Antifungals during two decades: pre-HAART (1985-1994) and HAART (1997-2006). Clinical features and outcome of all adults with proven acquired immunodeficiency syndrome-related histoplasmosis were compared between the two periods. One hundred four patients were included (40 during the pre-HAART era and 64 during the HAART era). Diagnosis was established a mean of 62 days after onset of symptoms. One-year overall mortality rates decreased from 53% (pre-HAART era) to 22% (HAART era). Diagnosis during the pre-HAART era and an older age were the only independent factors associated with death. Histoplasmosis is a rare invasive fungal infection outside disease-endemic areas. Its prognosis improved significantly during the HAART era.

  6. Targeted therapies for cancer

    MedlinePlus

    Targeted therapies are promising new treatments, but they have limitations. Cancer cells can become resistant to these drugs. The target sometimes changes, so the treatment no longer works. The cancer may find a different way to grow and survive that ...

  7. Prognostic Value of Molecular Markers and Implication for Molecular Targeted Therapies in Nasopharyngeal Carcinoma: An Update in an Era of New Targeted Molecules Development.

    PubMed

    Liu, Mu-Tai; Chen, Mu-Kuan; Huang, Chia-Chun; Huang, Chao-Yuan

    2015-02-01

    The aim of the study was to evaluate the prognostic significance of molecular biomarkers which could provide information for more accurate prognostication and development of novel therapeutic strategies for nasopharyngeal carcinoma (NPC). NPC is a unique malignant epithelial carcinoma of head and neck region, with an intimate association with the Epstein-Barr virus (EBV). Currently, the prediction of NPC prognosis is mainly based on the clinical TNM staging; however, NPC patients with the same clinical stage often present different clinical outcomes, suggesting that the TNM stage is insufficient to precisely predict the prognosis of this disease. In this review, we give an overview of the prognostic value of molecular markers in NPC and discuss potential strategies of targeted therapies for treatment of NPC. Molecular biomarkers, which play roles in abnormal proliferation signaling pathways (such as Wnt/β-catenin pathway), intracellular mitogenic signal aberration (such as hypoxia-inducible factor (HIF)-1α), receptor-mediated aberrations (such as vascular endothelial growth factor (VEGF)), tumor suppressors (such as p16 and p27 activity), cell cycle aberrations (such as cyclin D1 and cyclin E), cell adhesion aberrations (such as E-cadherin), apoptosis dysregualtion (such as survivin) and centromere aberration (centromere protein H), are prognostic markers for NPC. Plasma EBV DNA concentrations and EBV-encoded latent membrane proteins are also prognostic markers for NPC. Implication of molecular targeted therapies in NPC was discussed. Such therapies could have potential in combination with different cytotoxic agents to combat and eradicate tumor cells. In order to further improve overall survival for patients with loco-regionally advanced NPC, the development of innovative strategies, including prognostic molecular markers and molecular targeted agents is needed.

  8. Imported Acquired Immunodeficiency Syndrome–Related Histoplasmosis in Metropolitan France: A Comparison of Pre–Highly Active Anti-Retroviral Therapy and Highly Active Anti-Retroviral Therapy Eras

    PubMed Central

    Peigne, Vincent; Dromer, Françoise; Elie, Caroline; Lidove, Olivier; Lortholary, Olivier

    2011-01-01

    Histoplasma capsulatum var. capsulatum infection is rare outside disease-endemic areas. Clinical presentation and outcome of acquired immunodeficiency syndrome–related histoplasmosis are unknown in non-endemic areas with wide access to highly active anti-retroviral therapy (HAART). Retrospective analysis of cases recorded at the French National Reference Center for Mycoses and Antifungals during two decades: pre-HAART (1985–1994) and HAART (1997–2006). Clinical features and outcome of all adults with proven acquired immunodeficiency syndrome–related histoplasmosis were compared between the two periods. One hundred four patients were included (40 during the pre-HAART era and 64 during the HAART era). Diagnosis was established a mean of 62 days after onset of symptoms. One-year overall mortality rates decreased from 53% (pre-HAART era) to 22% (HAART era). Diagnosis during the pre-HAART era and an older age were the only independent factors associated with death. Histoplasmosis is a rare invasive fungal infection outside disease-endemic areas. Its prognosis improved significantly during the HAART era. PMID:22049053

  9. Modern Radiation Therapy for Nodal Non-Hodgkin Lymphoma—Target Definition and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illidge, Tim, E-mail: Tim.Illidge@ics.manchester.ac.uk; Specht, Lena; Yahalom, Joachim

    2014-05-01

    Radiation therapy (RT) is the most effective single modality for local control of non-Hodgkin lymphoma (NHL) and is an important component of therapy for many patients. Many of the historic concepts of dose and volume have recently been challenged by the advent of modern imaging and RT planning tools. The International Lymphoma Radiation Oncology Group (ILROG) has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the ILROG steering committee on the use of RT in NHL in the modern era. The roles of reduced volume and reduced doses aremore » addressed, integrating modern imaging with 3-dimensional planning and advanced techniques of RT delivery. In the modern era, in which combined-modality treatment with systemic therapy is appropriate, the previously applied extended-field and involved-field RT techniques that targeted nodal regions have now been replaced by limiting the RT to smaller volumes based solely on detectable nodal involvement at presentation. A new concept, involved-site RT, defines the clinical target volume. For indolent NHL, often treated with RT alone, larger fields should be considered. Newer treatment techniques, including intensity modulated RT, breath holding, image guided RT, and 4-dimensional imaging, should be implemented, and their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control.« less

  10. [Molecular-Genetic Diagnosis and Molecular-Targeted Therapy in Cancer: Challenges in the Era of Precision Medicine].

    PubMed

    Miyachi, Hayato

    2015-10-01

    Elucidation of the molecular pathogenesis of neoplasms and application of emerging technologies for testing and therapy have resulted in a series of paradigm shifts in patient care, from conventional to personalized medicine. This has been promoted by companion diagnostics and molecular targeted therapy, tailoring the treatment to the individual characteristics of each patient. Precision oncology has been accelerated by integrating the enhanced resolution of molecular analysis, mechanism clarity, and therapeutic relevance through genomic knowledge. In its clinical implementation, there are laboratory challenges concerning accurate measurement using stored samples, differentiation between driver and passenger mutations as well as between germline and somatic mutations, bioinformatics availability, practical decision-making algorithms, and ethical issues regarding incidental findings. The medical laboratory has a new role in providing not only testing services but also an instructive approach to users to ensure the sample quality and privacy protection of personal genome information, supporting the quality of patient practice based on laboratory diagnosis.

  11. New targeted therapies in pancreatic cancer.

    PubMed

    Seicean, Andrada; Petrusel, Livia; Seicean, Radu

    2015-05-28

    Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.

  12. Selection of patients for heart transplantation in the current era of heart failure therapy.

    PubMed

    Butler, Javed; Khadim, Ghazanfar; Paul, Kimberly M; Davis, Stacy F; Kronenberg, Marvin W; Chomsky, Don B; Pierson, Richard N; Wilson, John R

    2004-03-03

    We sought to assess the relationship between survival, peak exercise oxygen consumption (VO(2)), and heart failure survival score (HFSS) in the current era of heart failure (HF) therapy. Based on predicted survival, HF patients with peak VO(2) <14 ml/min/kg or medium- to high-risk HFSS are currently considered eligible for heart transplantation. However, these criteria were developed before the widespread use of beta-blockers, spironolactone, and defibrillators-interventions known to improve the survival of HF patients. Peak VO(2) and HFSS were assessed in 320 patients followed from 1994 to 1997 (past era) and in 187 patients followed from 1999 to 2001 (current era). Outcomes were compared between these two groups of patients and those who underwent heart transplantation from 1993 to 2000. Survival in the past era was 78% at one year and 67% at two years, as compared with 88% and 79%, respectively, in the current era (both p < 0.01). One-year event-free survival (without urgent transplantation or left ventricular assist device) was improved in the current era, regardless of initial peak VO(2): 64% vs. 48% for peak VO(2) <10 ml/min/kg (p = 0.09), 81% vs. 70% for 10 to 14 ml/min/kg (p = 0.05), and 93% vs. 82% for >14 ml/min/kg (p = 0.04). Of the patients with peak VO(2) of 10 to 14 ml/min/kg, 55% had low-risk HFSS and exhibited 88% one-year event-free survival. One-year survival after transplantation was 88%, which is similar to the 85% rate reported by the United Network for Organ Sharing for 1999 to 2000. Survival for HF patients in the current era has improved significantly, necessitating re-evaluation of the listing criteria for heart transplantation.

  13. Lung adenocarcinoma in the era of targeted therapies: histological classification, sample prioritization, and predictive biomarkers.

    PubMed

    Conde, E; Angulo, B; Izquierdo, E; Paz-Ares, L; Belda-Iniesta, C; Hidalgo, M; López-Ríos, F

    2013-07-01

    The arrival of targeted therapies has presented both a conceptual and a practical challenge in the treatment of patients with advanced non-small cell lung carcinomas (NSCLCs). The relationship of these treatments with specific histologies and predictive biomarkers has made the handling of biopsies the key factor for success. In this study, we highlight the balance between precise histological diagnosis and the practice of conducting multiple predictive assays simultaneously. This can only be achieved where there is a commitment to multidisciplinary working by the tumor board to ensure that a sensible protocol is applied. This proposal for prioritizing samples includes both recent technological advances and the some of the latest discoveries in the molecular classification of NSCLCs.

  14. New and emerging targeted therapies for cystic fibrosis.

    PubMed

    Quon, Bradley S; Rowe, Steven M

    2016-03-30

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder that affects about 70,000 people worldwide. The clinical manifestations of the disease are caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The discovery of the CFTR gene in 1989 has led to a sophisticated understanding of how thousands of mutations in the CFTR gene affect the structure and function of the CFTR protein. Much progress has been made over the past decade with the development of orally bioavailable small molecule drugs that target defective CFTR proteins caused by specific mutations. Furthermore, there is considerable optimism about the prospect of gene replacement or editing therapies to correct all mutations in cystic fibrosis. The recent approvals of ivacaftor and lumacaftor represent the genesis of a new era of precision medicine in the treatment of this condition. These drugs are having a positive impact on the lives of people with cystic fibrosis and are potentially disease modifying. This review provides an update on advances in our understanding of the structure and function of the CFTR, with a focus on state of the art targeted drugs that are in development. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Drug Development and Biologics in Asthma. A New Era.

    PubMed

    Doyle, Ramona

    2016-03-01

    Considerable progress has been made toward developing targeted biological therapeutics for asthma, due in large part to a deeper understanding of asthma pathophysiology. This explosion of knowledge has revealed asthma to be a much more complex and heterogeneous entity than previously understood. The identification of particular asthma phenotypes with distinct pathophysiologic mechanisms has opened up a new era for patient populations not well served by current therapies, especially patients with severe asthma.

  16. Understanding and mitigating HIV-related resource-based stigma in the era of antiretroviral therapy.

    PubMed

    Holmes, Kathleen; Winskell, Kate

    2013-01-01

    The perception in low-resource settings that investment of resources in people living with HIV (PLHIV) is wasted because AIDS is both an incurable and deadly disease is known as resource-based stigma. In this paper, we draw on in-depth interviews (IDI), focus group discussions (FGD), and key informant interviews (KII) with 77 HIV-positive microfinance participants and nongovernmental organization leaders to examine resource-based stigma in the context of increased access to antiretroviral therapy (ART) at an individual, household, and community level in Côte d'Ivoire. The purpose of this exploratory paper is to examine: (1) resource-based stigmatization in the era of ART and (2) the relationship among microfinance, a poverty-reduction intervention, and HIV stigmatization. The frequency with which resource-based stigma was discussed by respondents suggests that it is an important component of HIV-related stigma in this setting. It affected PLHIV's access to material as well as social resources, leading to economic discrimination and social devaluation. Participation in village savings and loans groups, however, mitigated resource-based HIV stigma, suggesting that in the era of increased access to antiretroviral therapy, economic programs should be considered as one possible HIV stigma-reduction intervention.

  17. Targeted therapy in lung cancer: IPASS and beyond, keeping abreast of the explosion of targeted therapies for lung cancer

    PubMed Central

    Savas, Peter; Hughes, Brett

    2013-01-01

    Advances in the treatment of non-small cell lung cancer (NSCLC) over the last decade have predominantly involved the development of therapies directed at molecular targets such as mutations in the epidermal growth factor receptor (EGFR) or rearrangements in the anaplastic lymphoma kinase (ALK) gene. Other targets have been discovered at low frequency, with multiple agents approved or in development for treatment of these rare molecular subtypes. The tumour microenvironment has also provided opportunities for therapies targeting angiogenesis and the host immune response. This review will provide an overview of current targeted therapies in NSCLC and promising treatment approaches on the horizon. PMID:24163750

  18. Targeted Nanoparticles for Kidney Cancer Therapy

    DTIC Science & Technology

    2013-10-01

    AD_________________ Award Number: W81XWH-10-1-0434 TITLE: Targeted Nanoparticles for Kidney Cancer Therapy PRINCIPAL...Targeted Nanoparticles for Kidney Cancer Therapy 5b. GRANT NUMBER W81XWH-10-1-0434 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...lines following treatment with D5 nanotubes. Tthermoablation will be studied initially. Human kidney cancer cells will be injected into the kidney

  19. Targeted nanosystems: Advances in targeted dendrimers for cancer therapy.

    PubMed

    Yang, Hu

    2016-02-01

    Dendrimers possess discrete highly compact nanostructures constituted of successive branched layers. Soon after the inception of dendrimers, recognition of their tunable structures and biologically favorable properties provoked a great enthusiasm in delving deeply into the utility of dendrimers for biomedical and pharmaceutical applications. One of the most important nanotechnology applications is the development of nanomedicines for targeted cancer therapies. Tremendous success in targeted therapies has been achieved with the use of dendrimer-based nanomedicines. This article provides a concise review on latest advances in the utility of dendrimers in immunotherapies and hormone therapies. Much basic and clinical research has been done since the invention of dendrimers, which are highly branched nano-sized molecules with the ability to act as carriers in nanomedicine. In this concise review article, the authors highlighted the current use of dendrimers in immunotherapies and hormone therapies in the fight against cancers. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Novel targets for HIV therapy.

    PubMed

    Greene, Warner C; Debyser, Zeger; Ikeda, Yasuhiro; Freed, Eric O; Stephens, Edward; Yonemoto, Wes; Buckheit, Robert W; Esté, José A; Cihlar, Tomas

    2008-12-01

    There are currently 25 drugs belonging to 6 different inhibitor classes approved for the treatment of human immunodeficiency virus (HIV) infection. However, new anti-HIV agents are still needed to confront the emergence of drug resistance and various adverse effects associated with long-term use of antiretroviral therapy. The 21st International Conference on Antiviral Research, held in April 2008 in Montreal, Canada, therefore featured a special session focused on novel targets for HIV therapy. The session included presentations by world-renowned experts in HIV virology and covered a diverse array of potential targets for the development of new classes of HIV therapies. This review contains concise summaries of discussed topics that included Vif-APOBEC3G, LEDGF/p75, TRIM 5alpha, virus assembly and maturation, and Vpu. The described viral and host factors represent some of the most noted examples of recent scientific breakthroughs that are opening unexplored avenues to novel anti-HIV target discovery and validation, and should feed the antiretroviral drug development pipeline in the near future.

  1. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  2. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  3. Heart failure—potential new targets for therapy

    PubMed Central

    Nabeebaccus, Adam; Zheng, Sean; Shah, Ajay M.

    2016-01-01

    Abstract Introduction/background Heart failure is a major cause of cardiovascular morbidity and mortality. This review covers current heart failure treatment guidelines, emerging therapies that are undergoing clinical trial, and potential new therapeutic targets arising from basic science advances. Sources of data A non-systematic search of MEDLINE was carried out. International guidelines and relevant reviews were searched for additional articles. Areas of agreement Angiotensin-converting enzyme inhibitors and beta-blockers are first line treatments for chronic heart failure with reduced left ventricular function. Areas of controversy Treatment strategies to improve mortality in heart failure with preserved left ventricular function are unclear. Growing points Many novel therapies are being tested for clinical efficacy in heart failure, including those that target natriuretic peptides and myosin activators. A large number of completely novel targets are also emerging from laboratory-based research. Better understanding of pathophysiological mechanisms driving heart failure in different settings (e.g. hypertension, post-myocardial infarction, metabolic dysfunction) may allow for targeted therapies. Areas timely for developing research Therapeutic targets directed towards modifying the extracellular environment, angiogenesis, cell viability, contractile function and microRNA-based therapies. PMID:27365454

  4. Targeted Therapy for Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Thomas; Moore, Herbert

    The research project, entitled ”Targeted Therapy for Melanoma,” was focused on investigating the use of kidney protection measures to lower the non-specific kidney uptake of the radiolabeled Pb-DOTA-ReCCMSH peptide. Previous published work demonstrated that the kidney exhibited the highest non-target tissue uptake of the 212Pb/203Pb radiolabeled melanoma targeting peptide DOTA-ReCCMSH. The radiolabeled alpha-melanocyte stimulating hormone (α-MSH) peptide analog DOTA-Re(Arg 11)CCMSH, which binds the melanocortin-1 receptor over-expressed on melanoma tumor cells, has shown promise as a PRRT agent in pre-clinical studies. High tumor uptake of 212Pb labeled DOTA-Re(Arg 11)CCMSH resulted in tumor reduction or eradication in melanoma therapy studies. Of particularmore » note was the 20-50% cure rate observed when melanoma mice were treated with alpha particle emitter 212Pb. However, as with most PRRT agents, high radiation doses to the kidneys where observed. To optimize tumor treatment efficacy and reduce nephrotoxicity, the tumor to kidney uptake ratio must be improved. Strategies to reduce kidney retention of the radiolabeled peptide, while not effecting tumor uptake and retention, can be broken into several categories including modification of the targeting peptide sequence and reducing proximal tubule reabsorption.« less

  5. Survival of Asian Females With Advanced Lung Cancer in the Era of Tyrosine Kinase Inhibitor Therapy.

    PubMed

    Becker, Daniel J; Wisnivesky, Juan P; Grossbard, Michael L; Chachoua, Abraham; Camidge, D Ross; Levy, Benjamin P

    2017-01-01

    We examined the effect of access to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy on survival for Asian female (AF) EGFR mutation-enriched patients with advanced lung adenocarcinoma. We used the Surveillance Epidemiology and End Results database to study patients with stage IV lung adenocarcinoma diagnosed from 1998 to 2012. We compared survival (lung cancer-specific survival [LCSS] and overall survival) between AFs and non-Asian males (NAMs), an EGFR mutation-enriched and EGFR mutation-unenriched population, respectively, with a diagnosis in the pre-EGFR TKI (1998-2004) and EGFR TKI (2005-2012) eras. We used Cox proportional hazards models to examine the interaction of access to TKI treatment and EGFR enrichment status. Among 3029 AF and 35,352 NAM patients, we found that LCSS was best for AFs with a diagnosis in the TKI era (median, 14 months), followed by AFs with a diagnosis in the pre-TKI era (median, 8 months), NAMs with a diagnosis in the TKI era (median, 5 months), and NAMs with a diagnosis in the pre-TKI era (median, 4 months; log-rank P < .0001). In a multivariable model, the effect of a diagnosis in the TKI era on survival was greater for AFs than for NAMs (LCSS, P = .0020; overall survival, P = .0007). A lung cancer diagnosis in the TKI era was associated with an overall mortality decrease of 26% for AFs (hazard ratio, 0.740; 95% confidence interval, 0.682-0.80) and 15.9% for NAMs (hazard ratio, 0.841; 95% confidence interval, 0.822-0.860). We found increased survival for lung adenocarcinoma diagnoses made after widespread access to EGFR TKIs, with the greatest increase among AF patients enriched for EGFR mutations. The present analysis eliminated the effect of crossover, which has complicated assessments of the survival advantage in EGFR TKI randomized trials. Published by Elsevier Inc.

  6. Targeted therapies in gastric cancer and future perspectives.

    PubMed

    Yazici, Ozan; Sendur, M Ali Nahit; Ozdemir, Nuriye; Aksoy, Sercan

    2016-01-14

    Advanced gastric cancer (AGC) is associated with a high mortality rate and, despite multiple new chemotherapy options, the survival rates of patients with AGC remains poor. After the discovery of targeted therapies, research has focused on the new treatment options for AGC. In the last two decades, many targeted molecules were developed against AGC. Currently, two targeted therapy molecules have been approved for patients with AGC. In 2010, trastuzumab was the first molecule shown to improve survival in patients with HER2-positive AGC as part of a first-line combination regimen. In 2014, ramucirumab was the second targeted molecule to improve survival rates and was suggested as treatment for patients with AGC who had progressed after first-line platinum plus fluoropyrimidine with or without anthracycline chemotherapy. Ramucirumab was the first targeted therapy acting as a single agent in patients with advanced gastroesophageal cancers. Although these two molecules were introduced into clinical use, many other promising molecules have been tested in phase I-II trials. It is obvious that in the near future many different targeted therapies will be in use for treatment of AGC. In this review, the current status of targeted therapies in the treatment of AGC and gastroesophageal junction tumors, including HER (2-3) inhibitors, epidermal growth factor receptor inhibitors, tyrosine kinase inhibitors, antiangiogenic agents, c-MET inhibitors, mammalian target of rapamycin inhibitors, agents against other molecular pathways fibroblast growth factor, Claudins, insulin-like growth factor, heat shock proteins, and immunotherapy, will be discussed.

  7. Prostate Cancer Clinical Consortium Clinical Research Site:Targeted Therapies

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0159 TITLE: Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies PRINCIPAL INVESTIGATOR...Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies 5b. GRANT NUMBER... therapy resistance/sensitivity, identification of new therapeutic targets through high quality genomic analyses, providing access to the highest quality

  8. Will nanotechnology influence targeted cancer therapy?

    PubMed Central

    Grimm, Jan; Scheinberg, David A.

    2011-01-01

    The rapid development of techniques that enable synthesis (and manipulation) of matter on the nanometer scale, as well as the development of new nano-materials, will play a large role in disease diagnosis and treatment, specifically in targeted cancer therapy. Targeted nanocarriers are an intriguing means to selectively deliver high concentrations of cytotoxic agents or imaging labels directly to the cancer site. Often solubility issues and an unfavorable biodistribution can result in a suboptimal response of novel agents even though they are very potent. New nanoparticulate formulations allow simultaneous imaging and therapy (“theranostics”), which can provide a realistic means for the clinical implementation of such otherwise suboptimal formulations. In this review we will not attempt to provide a complete overview of the rapidly enlarging field of nanotechnology in cancer; rather, we will present properties specific to nanoparticles, and examples of their uses, which demonstrate their importance for targeted cancer therapy. PMID:21356476

  9. Ethical considerations of neuro-oncology trial design in the era of precision medicine.

    PubMed

    Gupta, Saksham; Smith, Timothy R; Broekman, Marike L

    2017-08-01

    The field of oncology is currently undergoing a paradigm shift. Advances in the understanding of tumor biology and in tumor sequencing technology have contributed to the shift towards precision medicine, the therapeutic framework of targeting the individual oncogenic changes each tumor harbors. The success of precision medicine therapies, such as targeted kinase inhibitors and immunotherapies, in other cancers have motivated studies in brain cancers. The high specificity and cost of these therapies also encourage a shift in clinical trial design away from randomized control trials towards smaller, more exclusive early phase clinical trials. While these new trials advance the clinical application of increasingly precise and individualized therapies, their design brings ethical challenges . We review the pertinent ethical considerations for clinical trials of precision medicine in neuro-oncology and discuss methods to protect patients in this new era of trial design.

  10. Anti-cancer vaccine therapy for hematologic malignancies: An evolving era.

    PubMed

    Nahas, Myrna R; Rosenblatt, Jacalyn; Lazarus, Hillard M; Avigan, David

    2018-02-15

    The potential promise of therapeutic vaccination as effective therapy for hematologic malignancies is supported by the observation that allogeneic hematopoietic cell transplantation is curative for a subset of patients due to the graft-versus-tumor effect mediated by alloreactive lymphocytes. Tumor vaccines are being explored as a therapeutic strategy to re-educate host immunity to recognize and target malignant cells through the activation and expansion of effector cell populations. Via several mechanisms, tumor cells induce T cell dysfunction and senescence, amplifying and maintaining tumor cell immunosuppressive effects, resulting in failure of clinical trials of tumor vaccines and adoptive T cell therapies. The fundamental premise of successful vaccine design involves the introduction of tumor-associated antigens in the context of effective antigen presentation so that tolerance can be reversed and a productive response can be generated. With the increasing understanding of the role of both the tumor and tumor microenvironment in fostering immune tolerance, vaccine therapy is being explored in the context of immunomodulatory therapies. The most effective strategy may be to use combination therapies such as anti-cancer vaccines with checkpoint blockade to target critical aspects of this environment in an effort to prevent the re-establishment of tumor tolerance while limiting toxicity associated with autoimmunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  12. Progressive outer retinal necrosis in the era of highly active antiretroviral therapy: successful management with intravitreal injections and monitoring with quantitative PCR.

    PubMed

    Yin, Philip D; Kurup, Shree K; Fischer, Steven H; Rhee, Henry H; Byrnes, Gordon A; Levy-Clarke, Grace A; Buggage, Ronald R; Nussenblatt, Robert B; Mican, JoAnn M; Wright, Mary E

    2007-03-01

    Progressive outer retinal necrosis (PORN) is an ocular disease in individuals with AIDS and is associated with substantial morbidity. The optimal management of PORN and its clinical course in the HAART era is unclear. We report a case of successfully managed PORN that provides insight into the monitoring and treatment of this disease. Intravitreal injections and intravenous therapy targeted towards varicella zoster virus (VZV) were used to treat PORN. HAART was initiated for HIV-1 therapy. Serial PCR for VZV was performed on aqueous humor to monitor the clinical course. The presence of VZV DNA from aqueous humor correlated with clinical exacerbations of disease. Initiation of twice weekly intravitreal injections with dual antiviral drugs appeared to be an important therapeutic intervention that resulted in remission of PORN. Secondary prophylaxis against VZV was successfully withdrawn after HAART induced partial immune recovery. In addition to aggressive therapy with intravitreal injections, HAART and quantitative measurements of VZV DNA from aqueous humor have important roles in the management of PORN. A multidisciplinary approach involving specialists in infectious diseases, ophthalmology, and clinical microbiology will improve the chances for successful long-term outcomes.

  13. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy

    PubMed Central

    Sun, Hongguang; Zhu, Xun; Lu, Patrick Y; Rosato, Roberto R; Tan, Wen; Zu, Youli

    2014-01-01

    Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy. PMID:25093706

  14. Apatinib as targeted therapy for sarcoma

    PubMed Central

    Li, Feng; Liao, Zhichao; Zhang, Chao; Zhao, Jun; Xing, Ruwei; Teng, Sheng; Zhang, Jin; Yang, Yun; Yang, Jilong

    2018-01-01

    Sarcomas are a group of malignant tumors originating from mesenchymal tissue with a variety of cell subtypes. Despite several major treatment breakthroughs, standard treatment using surgery, radiation, and chemotherapy has failed to improve overall survival. Therefore, there is an urgent need to explore new strategies and innovative therapies to further improve the survival rates of patients with sarcomas. Pathological angiogenesis has an important role in the growth and metastasis of tumors. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) play a central role in tumor angiogenesis and represent potential targets for anticancer therapy. As a novel targeted therapy, especially with regard to angiogenesis, apatinib is a new type of small molecule tyrosine kinase inhibitor that selectively targets VEGFR-2 and has shown encouraging anticancer activity in a wide range of malignancies, including gastric cancer, non-small cell lung cancer, breast cancer, hepatocellular carcinoma, and sarcomas. In this review, we summarize the preclinical and clinical data for apatinib, focusing primarily on its use in the treatment of sarcomas. PMID:29849960

  15. Chemoresistance and targeted therapies in ovarian and endometrial cancers

    PubMed Central

    Brasseur, Kevin; Gévry, Nicolas; Asselin, Eric

    2017-01-01

    Gynecological cancers are known for being very aggressive at their advanced stages. Indeed, the survival rate of both ovarian and endometrial cancers is very low when diagnosed lately and the success rate of current chemotherapy regimens is not very efficient. One of the main reasons for this low success rate is the acquired chemoresistance of these cancers during their progression. The mechanisms responsible for this acquired chemoresistance are numerous, including efflux pumps, repair mechanisms, survival pathways (PI3K/AKT, MAPK, EGFR, mTOR, estrogen signaling) and tumor suppressors (P53 and Par-4). To overcome these resistances, a new type of therapy has emerged named targeted therapy. The principle of targeted therapy is simple, taking advantage of changes acquired in malignant cancer cells (receptors, proteins, mechanisms) by using compounds specifically targeting these, thus limiting their action on healthy cells. Targeted therapies are emerging and many clinical trials targeting these pathways, frequently involved in chemoresistance, have been tested on gynecological cancers. Despite some targets being less efficient than expected as mono-therapies, the combination of compounds seems to be the promising avenue. For instance, we demonstrate using ChIP-seq analysis that estrogen downregulate tumor suppressor Par-4 in hormone-dependent cells by directly binding to its DNA regulatory elements and inhibiting estrogen signaling could reinstate Par-4 apoptosis-inducing abilities. This review will focus on the chemoresistance mechanisms and the clinical trials of targeted therapies associated with these, specifically for endometrial and ovarian cancers. PMID:28008141

  16. Novel Targeted Therapies for Inflammatory Breast Cancer

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0461 TITLE: Novel Targeted Therapies for Inflammatory Breast Cancer PRINCIPAL INVESTIGATOR: Jose Silva CONTRACTING...CONTRACT NUMBER Novel Targeted Therapies for Inflammatory Breast Cancer 5b. GRANT NUMBER W81XWH-16-1-0461 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) l 5d...NOTES 14. ABSTRACT Inflammatory breast cancer (IBC, ~5% of all breast cancers ) is the most lethal form of breast cancer , presenting a 5- year

  17. Incidence of Cytomegalovirus Retinitis in the Era of Highly Active Antiretroviral Therapy

    PubMed Central

    Sugar, Elizabeth A.; Jabs, Douglas A.; Ahuja, Alka; Thorne, Jennifer E.; Danis, Ronald P.; Meinert, Curtis L.

    2011-01-01

    Purpose To estimate the incidence of cytomegalovirus (CMV) retinitis in the era of highly active antiretroviral therapy (HAART) and to characterize the factors associated with increased risk of CMV retinitis. Design Prospective cohort study Methods 1600 participants with acquired immune deficiency syndrome (AIDS) but without CMV retinitis at enrollment who completed at least one follow-up visit in the Longitudinal Study of the Ocular Complications of AIDS (LSOCA) were seen every 6 months to obtain disease and treatment history, ophthalmic examination, and laboratory testing. Incidence of CMV retinitis and risk factors for incident CMV retinitis were assessed. Results The incidence rate of CMV retinitis in individuals with AIDS was 0.36/100 person years (PY) based upon 29 incident cases during 8,134 person-years of follow-up. The rate was higher for those with a CD4+ T cell count at the immediately prior visit below 50 cells/μL (3.89/100 PY, p < 0.01), whereas only one individual with a CD4+ T cell count of 50–99 cells/μL and two individuals with a CD4+ T cell count > 100 cells/μL developed CMV retinitis. Having a CD4+ T cell count below 50 cells/μL at the clinical visit prior to CMV retinitis evaluation was the single most important risk factor (HR: 136, 95% CI: 30 to 605, p < 0.0001) for developing retinitis. Conclusions Patients with AIDS, especially those with severely compromised immune systems, remain at risk for developing CMV retinitis in the HAART era, although the incidence rate is reduced from that observed in the pre-HAART era. PMID:22310076

  18. Incidence of cytomegalovirus retinitis in the era of highly active antiretroviral therapy.

    PubMed

    Sugar, Elizabeth A; Jabs, Douglas A; Ahuja, Alka; Thorne, Jennifer E; Danis, Ronald P; Meinert, Curtis L

    2012-06-01

    To estimate the incidence of cytomegalovirus (CMV) retinitis in the era of highly active antiretroviral therapy (HAART) and to characterize the factors associated with increased risk of CMV retinitis. Prospective cohort study. A total of 1600 participants with acquired immunodeficiency syndrome (AIDS) but without CMV retinitis at enrollment who completed at least 1 follow-up visit in the Longitudinal Study of the Ocular Complications of AIDS (LSOCA) were seen every 6 months to obtain disease and treatment history, ophthalmic examination, and laboratory testing. Incidence of CMV retinitis and risk factors for incident CMV retinitis were assessed. The incidence rate of CMV retinitis in individuals with AIDS was 0.36/100 person-years (PY) based upon 29 incident cases during 8134 PY of follow-up. The rate was higher for those with a CD4+ T cell count at the immediately prior visit below 50 cells/μL (3.89/100 PY, P < .01), whereas only 1 individual with a CD4+ T cell count of 50 to 99 cells/μL and 2 individuals with a CD4+ T cell count >100 cells/μL developed CMV retinitis. Having a CD4+ T cell count below 50 cells/μL at the clinical visit prior to CMV retinitis evaluation was the single most important risk factor (HR: 136, 95% CI: 30 to 605, P < .0001) for developing retinitis. Patients with AIDS, especially those with severely compromised immune systems, remain at risk for developing CMV retinitis in the HAART era, although the incidence rate is reduced from that observed in the pre-HAART era. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Targeted therapies for the treatment of leukemia.

    PubMed

    Stull, Dawn Marie

    2003-05-01

    To review novel targeted therapies for the treatment of leukemia. Professional journals, books, and government publications. Nonspecific cytotoxic chemotherapeutic agents provide marginal therapeutic benefit and significant toxicity when used in the treatment of leukemia. There is a tremendous need for new therapies with increased efficacy and decreased adverse effects. Advances in molecular science, genetics, and immunology, along with improved laboratory technology, have led to the discovery of unique targets integral to the growth and proliferation of malignant cells which are providing the foundation for the development of a new generation of antitumor agents. Nurses must be prepared to educate patients, administer novel therapies, and manage side effects.

  20. Targeted cancer therapy--are the days of systemic chemotherapy numbered?

    PubMed

    Joo, Won Duk; Visintin, Irene; Mor, Gil

    2013-12-01

    Targeted therapy or molecular targeted therapy has been defined as a type of treatment that blocks the growth of cancer cells by interfering with specific cell molecules required for carcinogenesis and tumor growth, rather than by simply interfering with all rapidly dividing cells as with traditional chemotherapy. There is a growing number of FDA approved monoclonal antibodies and small molecules targeting specific types of cancer suggestive of the growing relevance of this therapeutic approach. Targeted cancer therapies, also referred to as "Personalized Medicine", are being studied for use alone, in combination with other targeted therapies, and in combination with chemotherapy. The objective of personalized medicine is the identification of patients that would benefit from a specific treatment based on the expression of molecular markers. Examples of this approach include bevacizumab and olaparib, which have been designated as promising targeted therapies for ovarian cancer. Combinations of trastuzumab with pertuzumab, or T-DM1 and mTOR inhibitors added to an aromatase inhibitor are new therapeutic strategies for breast cancer. Although this approach has been seen as a major step in the expansion of personalized medicine, it has substantial limitations including its high cost and the presence of serious adverse effects. The Cancer Genome Atlas is a useful resource to identify novel and more effective targets, which may help to overcome the present limitations. In this review we will discuss the clinical outcome of some of these new therapies with a focus on ovarian and breast cancer. We will also discuss novel concepts in targeted therapy, the target of cancer stem cells. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Management of ganciclovir-resistant cytomegalovirus retinitis in HIV infection in the era of antiretroviral therapy.

    PubMed

    Adler, Hugh; De Gascun, Cillian F; McSweeney, Fionnuala; Acheson, Robert W; Brannigan, Eimear T; Duffy, Margaret; Keegan, David J; Lambert, John S

    2014-10-01

    The incidence of cytomegalovirus retinitis has decreased significantly since the advent of antiretroviral therapy. However, it remains an important problem in both the developed and developing worlds. Furthermore, long-term antiviral suppression is associated with a significant increase in viral resistance. We present the case of a 46-year-old man who developed cytomegalovirus retinitis one year after being diagnosed with HIV. While he initially demonstrated an excellent clinical response to ganciclovir, his cytomegalovirus viral load remained persistently elevated. Over the subsequent years, his virus developed ganciclovir resistance with a concomitant deterioration in his visual acuity. He responded poorly to salvage therapy with foscarnet and cidofovir. This case highlights the ongoing difficulty of managing cytomegalovirus disease nearly two decades into the era of antiretroviral therapy and underlines the need to develop new treatment strategies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Controversies in targeted therapy of adult T cell leukemia/lymphoma: ON target or OFF target effects?

    PubMed

    Nasr, Rihab; El Hajj, Hiba; Kfoury, Youmna; de Thé, Hugues; Hermine, Olivier; Bazarbachi, Ali

    2011-06-01

    Adult T cell leukemia/lymphoma (ATL) represents an ideal model for targeted therapy because of intrinsic chemo-resistance of ATL cells and the presence of two well identified targets: the HTLV-I retrovirus and the viral oncoprotein Tax. The combination of zidovudine (AZT) and interferon-alpha (IFN) has a dramatic impact on survival of ATL patients. Although the mechanism of action remains unclear, arguments in favor or against a direct antiviral effect will be discussed. Yet, most patients relapse and alternative therapies are mandatory. IFN and arsenic trioxide induce Tax proteolysis, synergize to induce apoptosis in ATL cells and cure Tax-driven ATL in mice through specific targeting of leukemia initiating cell activity. These results provide a biological basis for the clinical success of arsenic/IFN/AZT therapy in ATL patients and suggest that both extinction of viral replication (AZT) and Tax degradation (arsenic/IFN) are needed to cure ATL.

  3. Recent Advances in Targeted Therapy for Glioma.

    PubMed

    Lin, Lin; Cai, Jinquan; Jiang, Chuanlu

    2017-01-01

    Gliomas are the most common primary malignant brain tumors, which have a universally fatal outcome. Current standard treatment for glioma patients is surgical removal followed by radiotherapy and adjuvant chemotherapy. Due to therapeutic resistance and tumor recurrence, efforts are ongoing to identify the molecules that are fundamental to regulate the tumor progression and provide additional methods for individual treatment of glioma patients. By studying the initiation and maintenance of glioma, studies focused on the targets of tyrosine kinase receptors including EGFR, PDGFR and other crucial signal pathways such as PI3K/AKT and RAS/RAF/MAPK pathway. Furthermore, recent advances in targeting immunotherapy and stem cell therapy also brought numerous strategies to glioma treatment. This article reviewed the researches focused on the advanced strategies of various target therapies for improving the glioma treatment efficacy, and discussed the challenges and future directions for glioma therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Advances of Molecular Targeted Therapy in Gastric Cancer.

    PubMed

    Cetin, Bulent; Gumusay, Ozge; Cengiz, Mustafa; Ozet, Ahmet

    2016-06-01

    Gastric cancer is the second most common cause of cancer-related death in the world, and its prognosis remains poor with a median overall survival of 12 months for advanced disease. Advances in the understanding of molecular genetics have led to the development of directed molecular targeted therapy in gastric cancer, leading to improve patient outcomes and quality of life. In the treatment of human epidermal growth factor receptor 2 (HER2)-positive gastric cancer, the addition of trastuzumab significantly improves survival in the first-line setting of therapy. Ramucirumab, an antibody directed against vascular endothelial growth factor receptor 2, significantly improved progression-free and overall survival and has been approved for second-line treatment of gastric cancer. Anti-mesenchymal-epithelial transition (c-MET), mammalian target of rapamycin inhibitors, and polo-like kinase 1 inhibitors are under investigation as a novel therapeutic option for the treatment of gastric cancer. The novel therapies target the key immune checkpoint interaction between a T cell co-inhibitory receptor called programmed death 1 (PD-1) and one of its immunosuppressive ligands, PD-L1. This article reviews molecular targeted therapies in gastric cancer, in light of recent advances.

  5. Role of Imaging in the Era of Precision Medicine.

    PubMed

    Giardino, Angela; Gupta, Supriya; Olson, Emmi; Sepulveda, Karla; Lenchik, Leon; Ivanidze, Jana; Rakow-Penner, Rebecca; Patel, Midhir J; Subramaniam, Rathan M; Ganeshan, Dhakshinamoorthy

    2017-05-01

    Precision medicine is an emerging approach for treating medical disorders, which takes into account individual variability in genetic and environmental factors. Preventive or therapeutic interventions can then be directed to those who will benefit most from targeted interventions, thereby maximizing benefits and minimizing costs and complications. Precision medicine is gaining increasing recognition by clinicians, healthcare systems, pharmaceutical companies, patients, and the government. Imaging plays a critical role in precision medicine including screening, early diagnosis, guiding treatment, evaluating response to therapy, and assessing likelihood of disease recurrence. The Association of University Radiologists Radiology Research Alliance Precision Imaging Task Force convened to explore the current and future role of imaging in the era of precision medicine and summarized its finding in this article. We review the increasingly important role of imaging in various oncological and non-oncological disorders. We also highlight the challenges for radiology in the era of precision medicine. Published by Elsevier Inc.

  6. Cytoreductive Nephrectomy in Elderly Patients with Metastatic Renal Cell Carcinoma in the Targeted Therapy Era.

    PubMed

    Uprety, Dipesh; Bista, Amir; Smith, Angela L; Vallatharasu, Yazhini; Marinier, David E

    2018-05-01

    The role of cytoreductive nephrectomy (CN) for metastatic renal cell cancer (mRCC) is not clearly understood after the approval of targeted therapies, particularly in the elderly population. The aim of this study was to compare survivals between patients who did and did not receive CN. The SEER-18 database was utilized in order to identify elderly patients with mRCC to compare overall survival (OS) and cancer-specific survival (CSS) between patients who did or did not receive CN between February 2006 and 2012. Kaplan-Meier curve and log rank test were used to compare OS and CSS between these two arms. Cox proportional hazard model was used for multivariate analysis and statistical significance was defined as p≤0.05. There was a significant survival benefit for those who received CN compared to those who did not receive CN (median OS: 18 months vs. 4 months, p<0.001; median CSS: 21 months vs. 5 months, p<0.001). CN offered significant survival benefit, even in elderly patients with metastatic renal cell cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    PubMed Central

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration. PMID:25606974

  8. Bacteriophage-derived vectors for targeted cancer gene therapy.

    PubMed

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-19

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration.

  9. Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart

    PubMed Central

    Perrino, Cinzia; Barabási, Albert-Laszló; Condorelli, Gianluigi; Davidson, Sean Michael; De Windt, Leon; Dimmeler, Stefanie; Engel, Felix Benedikt; Hausenloy, Derek John; Hill, Joseph Addison; Van Laake, Linda Wilhelmina; Lecour, Sandrine; Leor, Jonathan; Madonna, Rosalinda; Mayr, Manuel; Prunier, Fabrice; Sluijter, Joost Petrus Geradus; Schulz, Rainer; Thum, Thomas; Ytrehus, Kirsti

    2017-01-01

    Despite advances in myocardial reperfusion therapies, acute myocardial ischaemia/reperfusion injury and consequent ischaemic heart failure represent the number one cause of morbidity and mortality in industrialized societies. Although different therapeutic interventions have been shown beneficial in preclinical settings, an effective cardioprotective or regenerative therapy has yet to be successfully introduced in the clinical arena. Given the complex pathophysiology of the ischaemic heart, large scale, unbiased, global approaches capable of identifying multiple branches of the signalling networks activated in the ischaemic/reperfused heart might be more successful in the search for novel diagnostic or therapeutic targets. High-throughput techniques allow high-resolution, genome-wide investigation of genetic variants, epigenetic modifications, and associated gene expression profiles. Platforms such as proteomics and metabolomics (not described here in detail) also offer simultaneous readouts of hundreds of proteins and metabolites. Isolated omics analyses usually provide Big Data requiring large data storage, advanced computational resources and complex bioinformatics tools. The possibility of integrating different omics approaches gives new hope to better understand the molecular circuitry activated by myocardial ischaemia, putting it in the context of the human ‘diseasome’. Since modifications of cardiac gene expression have been consistently linked to pathophysiology of the ischaemic heart, the integration of epigenomic and transcriptomic data seems a promising approach to identify crucial disease networks. Thus, the scope of this Position Paper will be to highlight potentials and limitations of these approaches, and to provide recommendations to optimize the search for novel diagnostic or therapeutic targets for acute ischaemia/reperfusion injury and ischaemic heart failure in the post-genomic era. PMID:28460026

  10. Controversies in Targeted Therapy of Adult T Cell Leukemia/Lymphoma: ON Target or OFF Target Effects?

    PubMed Central

    Nasr, Rihab; Hajj, Hiba El; Kfoury, Youmna; de Thé, Hugues; Hermine, Olivier; Bazarbachi, Ali

    2011-01-01

    Adult T cell leukemia/lymphoma (ATL) represents an ideal model for targeted therapy because of intrinsic chemo-resistance of ATL cells and the presence of two well identified targets: the HTLV-I retrovirus and the viral oncoprotein Tax. The combination of zidovudine (AZT) and interferon-alpha (IFN) has a dramatic impact on survival of ATL patients. Although the mechanism of action remains unclear, arguments in favor or against a direct antiviral effect will be discussed. Yet, most patients relapse and alternative therapies are mandatory. IFN and arsenic trioxide induce Tax proteolysis, synergize to induce apoptosis in ATL cells and cure Tax-driven ATL in mice through specific targeting of leukemia initiating cell activity. These results provide a biological basis for the clinical success of arsenic/IFN/AZT therapy in ATL patients and suggest that both extinction of viral replication (AZT) and Tax degradation (arsenic/IFN) are needed to cure ATL. PMID:21994752

  11. Mucin-based targeted pancreatic cancer therapy.

    PubMed

    Torres, Maria P; Chakraborty, Subhankar; Souchek, Joshua; Batra, Surinder K

    2012-01-01

    The prognosis of pancreatic cancer (PC) patients is very poor with a five-year survival of less than 5%. One of the major challenges in developing new therapies for PC is the lack of expression of specific markers by pancreatic tumor cells. Mucins are heavily Oglycosylated proteins characterized by the presence of short stretches of amino acid sequences repeated several times in tandem. The expression of several mucins including MUC1, MUC4, MUC5AC, and MUC16 is strongly upregulated in PC. Recent studies have also demonstrated a link between the aberrant expression and differential overexpression of mucin glycoproteins to the initiation, progression, and poor prognosis of the disease. These studies have led to increasing recognition of mucins as potential diagnostic markers and therapeutic targets in PC. In this focused review we present an overview of the therapies targeting mucins in PC, including immunotherapy (i.e. vaccines, antibodies, and radioimmunoconjugates), gene therapy, and other novel therapeutic strategies.

  12. Imatinib: A Breakthrough of Targeted Therapy in Cancer

    PubMed Central

    Iqbal, Naveed

    2014-01-01

    Deregulated protein tyrosine kinase activity is central to the pathogenesis of human cancers. Targeted therapy in the form of selective tyrosine kinase inhibitors (TKIs) has transformed the approach to management of various cancers and represents a therapeutic breakthrough. Imatinib was one of the first cancer therapies to show the potential for such targeted action. Imatinib, an oral targeted therapy, inhibits tyrosine kinases specifically BCR-ABL, c-KIT, and PDGFRA. Apart from its remarkable success in CML and GIST, Imatinib benefits various other tumors caused by Imatinib-specific abnormalities of PDGFR and c-KIT. Imatinib has also been proven to be effective in steroid-refractory chronic graft-versus-host disease because of its anti-PDGFR action. This paper is a comprehensive review of the role of Imatinib in oncology. PMID:24963404

  13. Improving patient outcomes to targeted therapies in melanoma.

    PubMed

    Eroglu, Zeynep; Smalley, Keiran S M; Sondak, Vernon K

    2016-06-01

    The arrival of targeted therapies has led to significant improvements in clinical outcomes for patients with BRAFV600 mutated advanced melanoma over the past five years. In several clinical trials, BRAF and MEK inhibitors have shown improvement in progression free and overall survival, along with much higher tumor response rates in comparison to chemotherapy, with the combination of these drugs superior to monotherapy. These agents are also being tested in earlier-stage patients, in addition to alternative dosing regimens and in combinations with other therapeutics. Efforts are also ongoing to expand the success found with targeted therapies to other subtypes of melanoma, including NRAS and c-kit mutated melanomas, uveal melanomas, and BRAF/NRAS wild type melanomas. Expert Commentary: We aim to provide an overview of clinical outcomes with targeted therapies in melanoma patients.

  14. Target marketing strategies for occupational therapy entrepreneurs.

    PubMed

    Kautzmann, L N; Kautzmann, F N; Navarro, F H

    1989-01-01

    Understanding marketing techniques is one of the skills needed by successful entre renews. Target marketing is an effective method for occupational therapy entrepreneurs to use in determining when and where to enter the marketplace. The two components of target marketing, market segmentation and the development of marketing mix strategies for each identified market segment, are described. The Profife of Attitudes Toward Health Care (PATH) method of psychographic market segmentation of health care consumers is presented. Occupational therapy marketing mix strategies for each PATH consumer group are delineated and compatible groupings of market segments are suggested.

  15. Enhancing the efficacy of adoptive cellular therapy by targeting tumor-induced immunosuppression.

    PubMed

    Beavis, Paul A; Slaney, Clare Y; Kershaw, Michael H; Neeson, Paul J; Darcy, Phillip K

    2015-01-01

    Strategies aimed at stimulating the immune system against cancer have signaled a new era for designing new effective therapies for patients. Recent breakthroughs in adoptive cellular therapy and in using checkpoint inhibitors for some patients have renewed much enthusiasm in this field. However, it has become apparent that tumors can use a multitude of inhibitory networks to effectively reduce antitumor immunity. This review discusses our current knowledge of these immune suppressive mechanisms used by tumors and describes potential new strategies that may counteract this problem resulting in significantly increasing therapeutic outcomes of adoptive immunotherapy in a higher proportion of patients.

  16. Evolving molecular era of childhood medulloblastoma: time to revisit therapy.

    PubMed

    Khatua, Soumen

    2016-01-01

    Currently medulloblastoma is treated with a uniform therapeutic approach based on histopathology and clinico-radiological risk stratification, resulting in unpredictable treatment failure and relapses. Improved understanding of the biological, molecular and genetic make-up of these tumors now clearly identifies it as a compendium of four distinct subtypes (WNT, SHH, group 3 and 4). Advances in utilization of the genomic and epigenomic machinery have now delineated genetic aberrations and epigenetic perturbations in each subgroup as potential druggable targets. This has resulted in endeavors to profile targeted therapy. The challenge and future of medulloblastoma therapeutics will be to keep pace with the evolving novel biological insights and translating them into optimal targeted treatment regimens.

  17. Choosing a therapy electron accelerator target.

    PubMed

    Hutcheon, R M; Schriber, S O; Funk, L W; Sherman, N K

    1979-01-01

    Angular distributions of photon depth dose produced by 25-MeV electrons incident on several fully stopping single-element targets (C, Al, Cu, Mo, Ta, Pb) and two composite layered targets (Ni-Al, W-Al) were studied. Depth-dose curves measured using TLD-700 (thermoluminescent dosimeter) chips embedded in lucite phantoms. Several useful therapy electron accelerator design curves were determined, including relative flattener thickness as a function of target atomic number, "effective" bremsstrahlung endpoint energy or beam "hardness" as a function of target atomic number and photon emission angle, and estimates of shielding thickness as a function of angle required to reduce the radiation outside the treatment cone to required levels.

  18. Anemia and Red Blood Cell Indices Predict HIV-Associated Neurocognitive Impairment in the Highly Active Antiretroviral Therapy Era

    PubMed Central

    Kallianpur, Asha R.; Wang, Quan; Jia, Peilin; Hulgan, Todd; Zhao, Zhongming; Letendre, Scott L.; Ellis, Ronald J.; Heaton, Robert K.; Franklin, Donald R.; Barnholtz-Sloan, Jill; Collier, Ann C.; Marra, Christina M.; Clifford, David B.; Gelman, Benjamin B.; McArthur, Justin C.; Morgello, Susan; Simpson, David M.; McCutchan, J. A.; Grant, Igor

    2016-01-01

    Background. Anemia has been linked to adverse human immunodeficiency virus (HIV) outcomes, including dementia, in the era before highly active antiretroviral therapy (HAART). Milder forms of HIV-associated neurocognitive disorder (HAND) remain common in HIV-infected persons, despite HAART, but whether anemia predicts HAND in the HAART era is unknown. Methods. We evaluated time-dependent associations of anemia and cross-sectional associations of red blood cell indices with neurocognitive impairment in a multicenter, HAART-era HIV cohort study (N = 1261), adjusting for potential confounders, including age, nadir CD4+ T-cell count, zidovudine use, and comorbid conditions. Subjects underwent comprehensive neuropsychiatric and neuromedical assessments. Results. HAND, defined according to standardized criteria, occurred in 595 subjects (47%) at entry. Mean corpuscular volume and mean corpuscular hemoglobin were positively associated with the global deficit score, a continuous measure of neurocognitive impairment (both P < .01), as well as with all HAND, milder forms of HAND, and HIV-associated dementia in multivariable analyses (all P < .05). Anemia independently predicted development of HAND during a median follow-up of 72 months (adjusted hazard ratio, 1.55; P < .01). Conclusions. Anemia and red blood cell indices predict HAND in the HAART era and may contribute to risk assessment. Future studies should address whether treating anemia may help to prevent HAND or improve cognitive function in HIV-infected persons. PMID:26690344

  19. Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-2-0159 TITLE: Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies PRINCIPAL INVESTIGATOR...Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for...AND SUBTITLE Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  20. Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart.

    PubMed

    Perrino, Cinzia; Barabási, Albert-Laszló; Condorelli, Gianluigi; Davidson, Sean Michael; De Windt, Leon; Dimmeler, Stefanie; Engel, Felix Benedikt; Hausenloy, Derek John; Hill, Joseph Addison; Van Laake, Linda Wilhelmina; Lecour, Sandrine; Leor, Jonathan; Madonna, Rosalinda; Mayr, Manuel; Prunier, Fabrice; Sluijter, Joost Petrus Geradus; Schulz, Rainer; Thum, Thomas; Ytrehus, Kirsti; Ferdinandy, Péter

    2017-06-01

    Despite advances in myocardial reperfusion therapies, acute myocardial ischaemia/reperfusion injury and consequent ischaemic heart failure represent the number one cause of morbidity and mortality in industrialized societies. Although different therapeutic interventions have been shown beneficial in preclinical settings, an effective cardioprotective or regenerative therapy has yet to be successfully introduced in the clinical arena. Given the complex pathophysiology of the ischaemic heart, large scale, unbiased, global approaches capable of identifying multiple branches of the signalling networks activated in the ischaemic/reperfused heart might be more successful in the search for novel diagnostic or therapeutic targets. High-throughput techniques allow high-resolution, genome-wide investigation of genetic variants, epigenetic modifications, and associated gene expression profiles. Platforms such as proteomics and metabolomics (not described here in detail) also offer simultaneous readouts of hundreds of proteins and metabolites. Isolated omics analyses usually provide Big Data requiring large data storage, advanced computational resources and complex bioinformatics tools. The possibility of integrating different omics approaches gives new hope to better understand the molecular circuitry activated by myocardial ischaemia, putting it in the context of the human 'diseasome'. Since modifications of cardiac gene expression have been consistently linked to pathophysiology of the ischaemic heart, the integration of epigenomic and transcriptomic data seems a promising approach to identify crucial disease networks. Thus, the scope of this Position Paper will be to highlight potentials and limitations of these approaches, and to provide recommendations to optimize the search for novel diagnostic or therapeutic targets for acute ischaemia/reperfusion injury and ischaemic heart failure in the post-genomic era. © The Author 2017. Published by Oxford University Press on

  1. Chronic Myeloid Leukemia in the Era of Tyrosine Kinase Inhibitors: An Evolving Paradigm of Molecularly Targeted Therapy.

    PubMed

    Ali, Mohamed A M

    2016-08-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm, characterized by the unrestrained expansion of pluripotent hematopoietic stem cells. CML was the first malignancy in which a unique chromosomal abnormality was identified and a pathophysiologic association was suggested. The hallmark of CML is a reciprocal chromosomal translocation between the long arms of chromosomes 9 and 22, t(9; 22)(q34; q11), creating a derivative 9q+ and a shortened 22q-. The latter, known as the Philadelphia (Ph) chromosome, harbors the breakpoint cluster region-abelson (BCR-ABL) fusion gene, encoding the constitutively active BCR-ABL tyrosine kinase that is necessary and sufficient for initiating CML. The successful implementation of tyrosine kinase inhibitors (TKIs) for the treatment of CML remains a flagship for molecularly targeted therapy in cancer. TKIs have changed the clinical course of CML; however, some patients nonetheless demonstrate primary or secondary resistance to such therapy and require an alternative therapeutic strategy. Therefore, the assessment of early response to treatment with TKIs has become an important tool in the clinical monitoring of CML patients. Although mutations in the BCR-ABL have proven to be the most prominent mechanism of resistance to TKIs, other mechanisms-either rendering the leukemic cells still dependent on BCR-ABL activity or supporting oncogenic properties of the leukemic cells independent of BCR-ABL signaling-have been identified. This article provides an overview of the current understanding of CML pathogenesis; recommendations for diagnostic tools, treatment strategies, and management guidelines; and highlights the BCR-ABL-dependent and -independent mechanisms that contribute to the development of resistance to TKIs.

  2. Molecular mechanisms for vascular complications of targeted cancer therapies.

    PubMed

    Gopal, Srila; Miller, Kenneth B; Jaffe, Iris Z

    2016-10-01

    Molecularly targeted anti-cancer therapies have revolutionized cancer treatment by improving both quality of life and survival in cancer patients. However, many of these drugs are associated with cardiovascular toxicities that are sometimes dose-limiting. Moreover, the long-term cardiovascular consequences of these drugs, some of which are used chronically, are not yet known. Although the scope and mechanisms of the cardiac toxicities are better defined, the mechanisms for vascular toxicities are only beginning to be elucidated. This review summarizes what is known about the vascular adverse events associated with three classes of novel anti-cancer therapies: vascular endothelial growth factor (VEGF) inhibitors, breakpoint cluster-Abelson (BCR-ABL) kinase inhibitors used to treat chronic myelogenous leukaemia (CML) and immunomodulatory agents (IMiDs) used in myeloma therapeutics. Three of the best described vascular toxicities are reviewed including hypertension, increased risk of acute cardiovascular ischaemic events and arteriovenous thrombosis. The available data regarding the mechanism by which each therapy causes vascular complication are summarized. When data are limited, potential mechanisms are inferred from the known effects of inhibiting each target on vascular cell function and disease. Enhanced understanding of the molecular mechanisms of vascular side effects of targeted cancer therapy is necessary to effectively manage cancer patients and to design safer targeted cancer therapies for the future. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  3. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach

    PubMed Central

    Chen, Lian; Cui, Hengmin

    2015-01-01

    Glutamine metabolism has been proved to be dysregulated in many cancer cells, and is essential for proliferation of most cancer cells, which makes glutamine an appealing target for cancer therapy. In order to be well used by cells, glutamine must be transported to cells by specific transporters and converted to glutamate by glutaminase. There are currently several drugs that target glutaminase under development or clinical trials. Also, glutamine metabolism restriction has been proved to be effective in inhibiting tumor growth both in vivo and vitro through inducing apoptosis, growth arrest and/or autophagy. Here, we review recent researches about glutamine metabolism in cancer, and cell death induced by targeting glutamine, and their potential roles in cancer therapy. PMID:26402672

  4. Cardiotoxicity of novel HER2-targeted therapies.

    PubMed

    Sendur, Mehmet A N; Aksoy, Sercan; Altundag, Kadri

    2013-08-01

    Trastuzumab, an anti-HER2 humanized monoclonal antibody, is the standard treatment for both early and metastatic HER2-positive breast cancer. In addition to other chemotherapeutic agents, trastuzumab significantly improves response rate and survival in HER2-positive early and metastatic breast cancer. Although it is well known that trastuzumab therapy is closely associated with both symptomatic and asymptomatic cardiotoxicity, less is known about novel HER2-targeted therapies. The aim of this review is to discuss the cardiac safety data from recent studies of novel anti-HER2 drugs other than trastuzumab. Novel HER2-targeted therapies showed favorable results in HER2 positive metastatic breast cancer patients. Pubmed database, ASCO and San Antonio Breast Cancer Symposium Meeting abstracts were searched until January 2013 using the following search keywords; 'trastuzumab, trastuzumab cardiotoxicity, HER-2 targeted therapies, lapatinib, pertuzumab, trastuzumab emtansine, afatinib and neratinib'; papers which were considered relevant for the aim of this review were selected by the authors. Lapatinib, pertuzumab, T-DM1, neratinib and afatinib molecules are evaluated in the study. In a comprehensive analysis, 3689 lapatinib treated patients enrolled in 49 trials; asymptomatic cardiac events were reported in 53 patients (1.4%) and symptomatic grade III and IV systolic dysfunction was observed only in 7 patients (0.2%) treated with lapatinib. In phase I-III trials of pertuzumab, cardiac dysfunction was seen in 4.5-14.5% of patients with pertuzumab treatment and cardiac dysfunction was usually grade I and II. Cardiotoxicity of pertuzumab was usually reported with the trastuzumab combination and no additive cardiotoxicity was reported with addition of pertuzumab to trastuzumab. T-DM1 had a better safety profile compared to trastuzumab, no significant cardiotoxicity was observed with T-DM1 in heavily pre-treated patients. In the EMILIA study, only in 1.7% of patients in the T

  5. Comparison of treatment regimens for cytomegalovirus retinitis in patients with AIDS in the era of highly active antiretroviral therapy

    PubMed Central

    Jabs, Douglas A.; Ahuja, Alka; Van Natta, Mark; Dunn, JP; Yeh, Steven

    2012-01-01

    Purpose To describe the outcomes of different treatment approaches for cytomegalovirus (CMV) retinitis in the era of highly active antiretroviral therapy (HAART). Design Prospective cohort study, the Longitudinal Study of the Ocular Complications of AIDS. Participants 250 patients with CMV retinitis and CD4+ T cells <100 cells/µL (n=221) at enrollment or incident retinitis (n=29) during cohort follow-up. Methods The effects of systemic therapy (vs. intraocular therapy only) on systemic outcomes and the effect of intraocular therapies (ganciclovir implants, intravitreal injections) on ocular outcomes were evaluated. Main Outcome Measures Mortality, CMV dissemination, retinitis progression, treatment side effects. Results Regimens containing systemic anti-CMV therapy were associated with a 50% reduction in mortality (adjusted hazard ratio [HR]=0.5; 95% confidence interval [CI] = 0.3, 0.7; P=0.006), 90% reduction in new visceral CMV disease (adjusted HR=0.1; 95% CI = 0.04, 0.4;P=0.004), and among those with unilateral CMV retinitis at presentation, an 80% reduction in second eye disease (adjusted HR=0.2; 95% CI= 0.1, 0.5; P=0.0005) when compared to those using only intraocular therapy (implants or injections). Compared to systemic treatment only, regimens containing intravitreal injections had greater rates of retinitis progression (adjusted HR=3.4, P=0.004) and greater visual field loss (for loss of ½ of the normal field, adjusted HR=5.5, P<0.01). Intravitreal implants were not significantly better than systemic therapy (adjusted HR for progression =0.5, P=0.26, and for loss ½ visual field =0.5, P=0.45), but the sample size was small. Hematologic and renal side effect rates were similar between those groups with and without systemic anti-CMV therapy. The rate of endophthalmitis among those treated with intravitreal injections was 0.017/EY (95% CI =0.006, 0.05) and among those treated with an implant 0.01/EY (95% CI =0.002, 0.04). Conclusions In the HAART era

  6. CGRP as the target of new migraine therapies - successful translation from bench to clinic.

    PubMed

    Edvinsson, Lars; Haanes, Kristian Agmund; Warfvinge, Karin; Krause, Diana N

    2018-06-01

    Treatment of migraine is on the cusp of a new era with the development of drugs that target the trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) or its receptor. Several of these drugs are expected to receive approval for use in migraine headache in 2018 and 2019. CGRP-related therapies offer considerable improvements over existing drugs as they are the first to be designed specifically to act on the trigeminal pain system, they are more specific and they seem to have few or no adverse effects. CGRP receptor antagonists such as ubrogepant are effective for acute relief of migraine headache, whereas monoclonal antibodies against CGRP (eptinezumab, fremanezumab and galcanezumab) or the CGRP receptor (erenumab) effectively prevent migraine attacks. As these drugs come into clinical use, we provide an overview of knowledge that has led to successful development of these drugs. We describe the biology of CGRP signalling, summarize key clinical evidence for the role of CGRP in migraine headache, including the efficacy of CGRP-targeted treatment, and synthesize what is known about the role of CGRP in the trigeminovascular system. Finally, we consider how the latest findings provide new insight into the central role of the trigeminal ganglion in the pathophysiology of migraine.

  7. Gene Therapy Targeting Glaucoma: Where Are We?

    PubMed Central

    Liu, Xuyang; Rasmussen, Carol A.; Gabelt, B’Ann T.; Brandt, Curtis R.; Kaufman, Paul L.

    2010-01-01

    In a chronic disease such as glaucoma, a therapy that provides a long lasting local effect, with minimal systemic side effects, while circumventing the issue of patient compliance, is very attractive. The field of gene therapy is growing rapidly and ocular applications are expanding. Our understanding of the molecular pathogenesis of glaucoma is leading to greater specificity in ocular tissue targeting. Improvements in gene delivery techniques, refinement of vector construction methods, and development of better animal models combine to bring this potential therapy closer to reality. PMID:19539835

  8. Prognosis of ocular syphilis in patients infected with HIV in the antiretroviral therapy era.

    PubMed

    Tsuboi, Motoyuki; Nishijima, Takeshi; Yashiro, Shigeko; Teruya, Katsuji; Kikuchi, Yoshimi; Katai, Naomichi; Oka, Shinichi; Gatanaga, Hiroyuki

    2016-12-01

    To describe the clinical course and prognosis of ocular syphilis in patients infected with HIV-1 in the antiretroviral therapy (ART) era. We conducted a single-centre retrospective chart review of ocular syphilis in patients infected with HIV-1 diagnosed between August 1997 and July 2015. The prognosis of best-corrected visual acuity (BCVA) was analysed. The study subjects were 30 eyes of 20 men who had sex with men (MSM) (median age, 41). Loss of vision and posterior uveitis were the most common ocular clinical features (43%) and location of inflammation at presentation (50%), respectively. The median baseline BCVA was 0.4 (IQR 0.2-1.2), including three eyes with hand motion. BCVA≤0.4 at diagnosis was significantly associated with posterior uveitis or panuveitis (p=0.044). Seventy-five per cent were treated with intravenous benzylpenicillin and 53% were diagnosed with neurosyphilis. After treatment (median follow-up: 21 months), BCVA improved in 89% of the eyes, including all eyes with hand motion, to a median BCVA of 1.2 (IQR 0.8-1.2). Kaplan-Meier analysis showed that >28 days of ocular symptoms before diagnosis was the only factor associated with poor prognosis of BCVA. Three patients (15%) developed recurrence after treatment. The prognosis of BCVA in HIV-infected patients with ocular syphilis in the ART era was favourable after proper treatment. Having >28 days of ocular symptoms before diagnosis was associated with poor prognosis. Changes in visual acuity in HIV-infected MSM should prompt an immediate assessment for ocular syphilis as delays in diagnosis and therapy can lead to irreversible visual loss. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Management of pulmonary toxicity associated with targeted anticancer therapies.

    PubMed

    Teuwen, Laure-Anne; Van den Mooter, Tom; Dirix, Luc

    2015-01-01

    Targeted anticancer therapies act by interfering with defined molecular entities and/or biologic pathways. Because of their more specific mechanism of action, adverse events (AEs) on healthy tissues are intended to be minimal, resulting in a different toxicity profile from that observed with conventional cytotoxic chemotherapy. Pulmonary AEs are rare but potentially life-threatening and it is, therefore, critical to recognize early on and manage appropriately. In this review, we aim to offer an overview of both more frequent and rare pulmonary AEs caused by targeted anticancer therapies and discuss possible treatment algorithms. Anti-vascular endothelial growth factor, anti-human epidermal growth factor receptor and anti-CD20 therapy will be reviewed, as well as immune checkpoint inhibitors, anaplastic lymphoma kinase inhibitors and mammalian target of rapamycin inhibitors. Novel agents used in the treatment of cancer have specific side-effects, the result of allergic reactions, on-target and off-target effects. Clinical syndromes associated with pulmonary toxicity vary from bronchospasms, hypersensitivity reactions, pneumonitis, acute respiratory distress, lung bleeding, pleural effusion to pneumothorax. Knowledge of risk factors, a high index of suspicion and a complete diagnostic work-up are essential for limiting the risk of these events becoming life threatening. The development of treatment algorithms is extremely helpful in managing these events. It is probable that these toxicities will be even more frequent with the introduction of combination therapies with the obvious challenge of discerning the responsible agent.

  10. Targeted therapy according to next generation sequencing-based panel sequencing.

    PubMed

    Saito, Motonobu; Momma, Tomoyuki; Kono, Koji

    2018-04-17

    Targeted therapy against actionable gene mutations shows a significantly higher response rate as well as longer survival compared to conventional chemotherapy, and has become a standard therapy for many cancers. Recent progress in next-generation sequencing (NGS) has enabled to identify huge number of genetic aberrations. Based on sequencing results, patients recommend to undergo targeted therapy or immunotherapy. In cases where there are no available approved drugs for the genetic mutations detected in the patients, it is recommended to be facilitate the registration for the clinical trials. For that purpose, a NGS-based sequencing panel that can simultaneously target multiple genes in a single investigation has been used in daily clinical practice. To date, various types of sequencing panels have been developed to investigate genetic aberrations with tumor somatic genome variants (gain-of-function or loss-of-function mutations, high-level copy number alterations, and gene fusions) through comprehensive bioinformatics. Because sequencing panels are efficient and cost-effective, they are quickly being adopted outside the lab, in hospitals and clinics, in order to identify personal targeted therapy for individual cancer patients.

  11. New PARP targets for cancer therapy

    PubMed Central

    Vyas, Sejal; Chang, Paul

    2015-01-01

    Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD+ as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5a, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, the majority of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer relevant functions for these PARPs, indicating that we need to understand more about these PARPs in order to target them effectively. PMID:24898058

  12. Enhancing Targeted Therapy for Myeloproliferative Neoplasms

    DTIC Science & Technology

    2013-10-01

    Myeloproliferative Neoplasms PRINCIPAL INVESTIGATOR: Gary W. Reuther CONTRACTING...2. REPORT TYPE Annual 3. DATES COVERED 30 2012-2 2013 4. TITLE AND SUBTITLE Enhancing Targeted Therapy for Myeloproliferative Neoplasms ...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Myeloproliferative neoplasms

  13. Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach.

    PubMed

    Malhi, Sarandeep; Gu, Xiaochen

    2015-07-01

    Cancer stem cells (CSCs) play an important role in the development of drug resistance, metastasis and recurrence. Current conventional therapies do not commonly target CSCs. Nanocarrier-based delivery systems targeting cancer cells have entered a new era of treatment, where specific targeting to CSCs may offer superior outcomes to efficient cancer therapies. This review discusses the involvement of CSCs in tumor progression and relevant mechanisms associated with CSCs resistance to conventional chemo- and radio-therapies. It highlights CSCs-targeted strategies that are either under evaluation or could be explored in the near future, with a focus on various nanocarrier-based delivery systems of drugs and nucleic acids to CSCs. Novel nanocarriers targeting CSCs are presented in a cancer-specific way to provide a current perspective on anti-CSCs therapeutics. The field of CSCs-targeted therapeutics is still emerging with a few small molecules and macromolecules currently proving efficacy in clinical trials. However considering the complexities of CSCs and existing delivery difficulties in conventional anticancer therapies, CSC-specific delivery systems would face tremendous technical and clinical challenges. Nanocarrier-based approaches have demonstrated significant potential in specific drug delivery and targeting; their success in CSCs-targeted drug delivery would not only significantly enhance anticancer treatment but also address current difficulties associated with cancer resistance, metastasis and recurrence.

  14. Targeted and Nontargeted α-Particle Therapies.

    PubMed

    McDevitt, Michael R; Sgouros, George; Sofou, Stavroula

    2018-06-04

    α-Particle irradiation of cancerous tissue is increasingly recognized as a potent therapeutic option. We briefly review the physics, radiobiology, and dosimetry of α-particle emitters, as well as the distinguishing features that make them unique for radiopharmaceutical therapy. We also review the emerging clinical role of α-particle therapy in managing cancer and recent studies on in vitro and preclinical α-particle therapy delivered by antibodies, other small molecules, and nanometer-sized particles. In addition to their unique radiopharmaceutical characteristics, the increased availability and improved radiochemistry of α-particle radionuclides have contributed to the growing recent interest in α-particle radiotherapy. Targeted therapy strategies have presented novel possibilities for the use of α-particles in the treatment of cancer. Clinical experience has already demonstrated the safe and effective use of α-particle emitters as potent tumor-selective drugs for the treatment of leukemia and metastatic disease.

  15. Targeted and Nontargeted α-Particle Therapies

    PubMed Central

    McDevitt, Michael R.; Sgouros, George; Sofou, Stavroula

    2018-01-01

    α-Particle irradiation of cancerous tissue is increasingly recognized as a potent therapeutic option. We briefly review the physics, radiobiology, and dosimetry of α-particle emitters, as well as the distinguishing features that make them unique for radiopharmaceutical therapy. We also review the emerging clinical role of α-particle therapy in managing cancer and recent studies on in vitro and preclinical α-particle therapy delivered by antibodies, other small molecules, and nanometer-sized particles. In addition to their unique radiopharmaceutical characteristics, the increased availability and improved radiochemistry of α-particle radionuclides have contributed to the growing recent interest in α-particle radiotherapy. Targeted therapy strategies have presented novel possibilities for the use of α-particles in the treatment of cancer. Clinical experience has already demonstrated the safe and effective use of α-particle emitters as potent tumor-selective drugs for the treatment of leukemia and metastatic disease. PMID:29345977

  16. Successes and limitations of targeted therapies in renal cell carcinoma.

    PubMed

    Pracht, Marc; Berthold, Dominik

    2014-01-01

    Until recently, the standard treatment for metastatic renal cell carcinoma (RCC) was nonspecific immunotherapy based on interleukin-2 or interferon-α. This was associated with a modest survival benefit and with significant clinical toxicities. The understanding of numerous molecular pathways in RCC, including HIF, VEGF, mTOR, and the consecutive use of targeted therapies since the beginning of 2005 have significantly improved outcomes for patients with metastatic RCC with an overall survival greater than 2 years. At present, at least 7 targeted agents are approved for first and consecutive lines of treatment of clear cell metastatic RCC. Long-term benefit and extended survival may be achieved through the optimal use of targeted therapies: optimal dosing, adverse event management and treatment duration and compliance. Advances in the finding of prognostic factors highlight the potential for personalizing treatment for patients with metastatic RCC. Data regarding the best sequencing of targeted therapies, predictive biomarkers, best timing of surgery, patient risk profiles, understanding of resistance mechanisms and safety of targeted therapies are growing and will provide a further step ahead in the management of advanced RCC. In parallel, a new class of therapeutics is emerging in RCC: immunotherapy; in particular check-point blockade antibodies are showing very promising results. © 2014 S. Karger AG, Basel.

  17. Precision genome editing in the CRISPR era.

    PubMed

    Salsman, Jayme; Dellaire, Graham

    2017-04-01

    With the introduction of precision genome editing using CRISPR-Cas9 technology, we have entered a new era of genetic engineering and gene therapy. With RNA-guided endonucleases, such as Cas9, it is possible to engineer DNA double strand breaks (DSB) at specific genomic loci. DSB repair by the error-prone non-homologous end-joining (NHEJ) pathway can disrupt a target gene by generating insertions and deletions. Alternatively, Cas9-mediated DSBs can be repaired by homology-directed repair (HDR) using an homologous DNA repair template, thus allowing precise gene editing by incorporating genetic changes into the repair template. HDR can introduce gene sequences for protein epitope tags, delete genes, make point mutations, or alter enhancer and promoter activities. In anticipation of adapting this technology for gene therapy in human somatic cells, much focus has been placed on increasing the fidelity of CRISPR-Cas9 and increasing HDR efficiency to improve precision genome editing. In this review, we will discuss applications of CRISPR technology for gene inactivation and genome editing with a focus on approaches to enhancing CRISPR-Cas9-mediated HDR for the generation of cell and animal models, and conclude with a discussion of recent advances and challenges towards the application of this technology for gene therapy in humans.

  18. Chronic lymphocytic leukemia therapy: new targeted therapies on the way

    PubMed Central

    Vitale, Candida; Burger, Jan A

    2016-01-01

    Introduction The critical role of the tissue microenvironment and B cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL) pathogenesis, and the clinical success of targeted agents that disrupt BCR signaling are currently changing the CLL landscape. Three new drugs were recently approved for CLL therapy, and other agents are in late development. Areas covered In this review, we summarize data on promising new targeted drugs for CLL. The heterogeneous mechanisms of actions of these molecules are described, such as the inhibition of BCR signaling, direct targeting of CD20 molecules on the CLL cell surface, and BCL-2 inhibition. We present preclinical and clinical data from phase I to III studies in order to describe efficacy and side effect profile of these new drugs. Data are derived from peer-reviewed articles indexed in PubMed and from abstracts presented at major international meetings. Expert opinion Ibrutinib and idelalisib are challenging the role of chemo-immunotherapy in CLL therapy in the frontline and relapsed disease settings. High-risk CLL patients particularly benefit from these new agents. Venetoclax and obinutuzumab are other effective agents added to our therapeutic armamentarium. Studies to better define the optimal use of these drugs, alone, or rather in combination or sequenced are underway. PMID:26988407

  19. Palliative chemotherapy and targeted therapies for esophageal and gastroesophageal junction cancer.

    PubMed

    Janmaat, Vincent T; Steyerberg, Ewout W; van der Gaast, Ate; Mathijssen, Ron Hj; Bruno, Marco J; Peppelenbosch, Maikel P; Kuipers, Ernst J; Spaander, Manon Cw

    2017-11-28

    Almost half of people with esophageal or gastroesophageal junction cancer have metastatic disease at the time of diagnosis. Chemotherapy and targeted therapies are increasingly used with a palliative intent to control tumor growth, improve quality of life, and prolong survival. To date, and with the exception of ramucirumab, evidence for the efficacy of palliative treatments for esophageal and gastroesophageal cancer is lacking. To assess the effects of cytostatic or targeted therapy for treating esophageal or gastroesophageal junction cancer with palliative intent. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, the Web of Science, PubMed Publisher, Google Scholar, and trial registries up to 13 May 2015, and we handsearched the reference lists of studies. We did not restrict the search to publications in English. Additional searches were run in September 2017 prior to publication, and they are listed in the 'Studies awaiting assessment' section. We included randomized controlled trials (RCTs) on palliative chemotherapy and/or targeted therapy versus best supportive care or control in people with esophageal or gastroesophageal junction cancer. Two authors independently extracted data. We assessed the quality and risk of bias of eligible studies according to the Cochrane Handbook for Systematic Reviews of Interventions. We calculated pooled estimates of effect using an inverse variance random-effects model for meta-analysis. We identified 41 RCTs with 11,853 participants for inclusion in the review as well as 49 ongoing studies. For the main comparison of adding a cytostatic and/or targeted agent to a control arm, we included 11 studies with 1347 participants. This analysis demonstrated an increase in overall survival in favor of the arm with an additional cytostatic or targeted therapeutic agent with a hazard ratio (HR) of 0.75 (95% confidence interval (CI) 0.68 to 0.84, high-quality evidence). The median increased

  20. Cancer-targeted therapies and radiopharmaceuticals

    PubMed Central

    Rachner, Tilman D; Jakob, Franz; Hofbauer, Lorenz C

    2015-01-01

    The treatment of bone metastases remains a clinical challenge. Although a number of well-established agents, namely bisphosphonates and denosumab, are available to reduce the occurrence of skeletal-related events, additional cancer-targeted therapies are required to improve patients' prognosis and quality of life. This review focuses on novel targets and agents that are under clinical evaluation for the treatment of malignant bone diseases such as activin A, src and endothelin-1 inhibition or agents that are clinically approved and may positively influence bone, such as the mTOR inhibitor everolimus. In addition, the potential of alpharadin, a novel radiopharmaceutical approved for the treatment of prostatic bone disease, is discussed. PMID:26131359

  1. Targeting RNA Splicing for Disease Therapy

    PubMed Central

    Havens, Mallory A.; Duelli, Dominik M.

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. PMID:23512601

  2. Targeting RNA splicing for disease therapy.

    PubMed

    Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies

    PubMed Central

    Thaker, Nikhil G; Pollack, Ian F

    2010-01-01

    Median survival of patients with malignant glioma (MG) from time of diagnosis is approximately 1 year, despite surgery, irradiation and conventional chemotherapy. Improving patient outcome relies on our ability to develop more effective therapies that are directed against the unique molecular aberrations within a patient’s tumor. Such molecularly targeted therapies may provide novel treatments that are more effective than conventional chemotherapeutics. Recently developed therapeutic strategies have focused on targeting several core glioma signaling pathways, including pathways mediated by growth-factors, PI3K/Akt/PTEN/mTOR, Ras/Raf/MEK/MAPK and other vital pathways. However, given the molecular diversity, heterogeneity and diverging and converging signaling pathways associated with MG, it is unlikely that any single agent will have efficacy in more than a subset of tumors. Overcoming these therapeutic barriers will require multiple agents that can simultaneously inhibit these processes, providing a rationale for combination therapies. This review summarizes the currently implemented single-agent and combination molecularly targeted therapies for MG. PMID:19951140

  4. Orthopedic surgery in rheumatoid arthritis in the era of biologic therapy.

    PubMed

    Leon, Leticia; Abasolo, Lydia; Carmona, Loreto; Rodriguez-Rodriguez, Luis; Lamas, Jose Ramon; Hernandez-Garcia, Cesar; Jover, Juan Angel

    2013-11-01

    To analyze sociodemographic and clinic-related factors associated with the use of orthopedic surgical procedures in rheumatoid arthritis (RA), focusing on the potential role of new biologic therapies. A retrospective medical record review was performed in a probability sample of 1272 patients with RA from 47 units distributed in 19 Spanish regions. Sociodemographic and clinical features, use of drugs, and arthritis-related joint surgeries were recorded following a standardized protocol. A total of 94 patients (7.4%) underwent any orthopedic surgery during their disease course, with a total of 114 surgeries; 47 (41.2%) of these surgeries were total joint replacement (TJR). The median time to first orthopedic procedure was 7.9 years from the onset of RA symptoms, and the rate of orthopedic surgery (excluding TJR) was 4.5 procedures per 100 person-years from the beginning of RA, while the rate of TJR was 2.25 interventions per 100 person-years. A higher risk of undergoing an orthopedic surgical procedure was associated with taking nonsteroidal antiinflammatory drugs (NSAID) in the previous 2 years, female sex, longterm disease, and the presence of extraarticular complications. The risk factors for undergoing a TJR were being old, having a longterm disease, and taking biologic therapies. In the era of biologics, our national audit found a low percentage of patients who underwent orthopedic surgery, probably reflecting a thorough management of the RA. Sociodemographic factors, longterm RA, extraarticular complications, and NSAID were associated with orthopedic surgery.

  5. Targeted Therapy: Attacking Cancer with Molecular and Immunological Targeted Agents.

    PubMed

    Wilkes, Gail M

    2018-01-01

    Today, personalized cancer therapy with targeted agents has taken center stage, and offers individualized treatment to many. As the mysteries of the genes in a cell's DNA and their specific proteins are defined, advances in the understanding of cancer gene mutations and how cancer evades the immune system have been made. This article provides a basic and simplified understanding of the available (Food and Drug Administration- approved) molecularly and immunologically targeted agents in the USA. Other agents may be available in Asia, and throughout the USA and the world, many more agents are being studied. Nursing implications for drug classes are reviewed.

  6. Comparison of treatment regimens for cytomegalovirus retinitis in patients with AIDS in the era of highly active antiretroviral therapy.

    PubMed

    Jabs, Douglas A; Ahuja, Alka; Van Natta, Mark; Dunn, J P; Yeh, Steven

    2013-06-01

    To describe the outcomes of different treatment approaches for cytomegalovirus (CMV) retinitis in the era of highly active antiretroviral therapy (HAART). Prospective cohort study, the Longitudinal Study of the Ocular Complications of AIDS. A total of 250 patients with CMV retinitis and a CD4+ T-cell count <100 cells/μl (n = 221) at enrollment or incident retinitis (n = 29) during cohort follow-up. The effects of systemic therapy (vs. intraocular therapy only) on systemic outcomes and the effect of intraocular therapies (ganciclovir implants, intravitreal injections) on ocular outcomes were evaluated. Mortality, CMV dissemination, retinitis progression, and treatment side effects. Regimens containing systemic anti-CMV therapy were associated with a 50% reduction in mortality (adjusted hazard ratio [HR], 0.5; 95% confidence interval [CI], 0.3-0.7; P = 0.006), a 90% reduction in new visceral CMV disease (adjusted HR, 0.1; 95% CI, 0.04-0.4; P = 0.004), and among those with unilateral CMV retinitis at presentation, an 80% reduction in second eye disease (adjusted HR, 0.2; 95% CI, 0.1-0.5; P = 0.0005) when compared with those using only intraocular therapy (implants or injections). Compared with systemic treatment only, regimens containing intravitreal injections had greater rates of retinitis progression (adjusted HR, 3.4; P = 0.004) and greater visual field loss (for loss of one half of the normal field, adjusted HR, 5.5; P < 0.01). Intravitreal implants were not significantly better than systemic therapy (adjusted HR for progression, 0.5; P = 0.26; adjusted HR for loss of one half of the visual field, 0.5; P = 0.45), but the sample size was small. Hematologic and renal side effect rates were similar between those groups with and without systemic anti-CMV therapy. The rate of endophthalmitis was 0.017 per eye-year (EY) (95% CI, 0.006-0.05) among those treated with intravitreal injections and 0.01 per EY (95% CI, 0.002-0.04) among those treated with an implant. In the

  7. Predictors and treatment strategies of HIV-related fatigue in the combined antiretroviral therapy era.

    PubMed

    Jong, Eefje; Oudhoff, Lisanne A; Epskamp, Cynthia; Wagener, Marlies N; van Duijn, Miranda; Fischer, Steven; van Gorp, Eric Cm

    2010-06-19

    To assess predictors and reported treatment strategies of HIV-related fatigue in the combined antiretroviral (cART) era. Five databases were searched and reference lists of pertinent articles were checked. Studies published since 1996 on predictors or therapy of HIV-related fatigue measured by a validated instrument were selected. A total of 42 studies met the inclusion criteria. The reported HIV-related fatigue prevalence in the selected studies varied from 33 to 88%. The strongest predictors for sociodemographic variables were unemployment and inadequate income. Concerning HIV-associated factors, the use of cART was the strongest predictor. Comorbidity and sleeping difficulties were important factors when assessing physiological influences. Laboratory parameters were not predictive of fatigue. The strongest and most uniform associations were observed between fatigue and psychological factors such as depression and anxiety. Reported therapeutic interventions for HIV-related fatigue include testosterone, psycho-stimulants (dextroamphetamine, methylphenidate hydrochloride, pemoline, modafinil), dehydroepiandrosterone, fluoxetine and cognitive behavioural or relaxation therapy. HIV-related fatigue has a high prevalence and is strongly associated with psychological factors such as depression and anxiety. A validated instrument should be used to measure intensity and consequences of fatigue in HIV-infected individuals. In the case of fatigue, clinicians should not only search for physical mechanisms, but should question depression and anxiety in detail. There is a need for intervention studies comparing the effect of medication (antidepressants, anxiolytics) and behavioural interventions (cognitive-behavioural therapy, relaxation therapy, graded exercise therapy) to direct the best treatment strategy. Treatment of HIV-related fatigue is important in the care for HIV-infected patients and requires a multidisciplinary approach.

  8. Development of targeted therapy and immunotherapy for treatment of small cell lung cancer.

    PubMed

    Saito, Motonobu; Shiraishi, Kouya; Goto, Akiteru; Suzuki, Hiroyuki; Kohno, Takashi; Kono, Koji

    2018-05-14

    Targeted therapy against druggable genetic aberrations has shown a significantly positive response rate and longer survival in various cancers, including lung cancer. In lung adenocarcinoma (LADC), specific thyroxin kinase inhibitors against EGFR mutations and ALK fusions are used as a standard treatment regimen and show significant positive efficacy. On the other hand, targeted therapy against driver gene aberrations has not been adapted yet in small cell lung cancer (SCLC). This is because driver genes and druggable aberrations are rarely identified by next generation sequencing in SCLC. Recent advances in the understanding of molecular biology have revealed several candidate therapeutic targets. To date, poly [ADP-ribose] polymerase (PARP), enhancer of zeste homologue 2 (EZH2) or delta-like canonical Notch ligand 3 (DLL3) are considered to be druggable targets in SCLC. In addition, another candidate of personalized therapy for SCLC is immune blockade therapy of programmed death-1 (PD-1) and its ligand, PD-L1. PD-1/PD-L1 blockade therapy is not a standard therapy for SCLC, so many clinical trials have been performed to investigate its efficacy. Herein, we review gene aberrations exploring the utility of targeted therapy and discuss blockade of immune checkpoints therapy in SCLC.

  9. Targeted Therapies in Non-Small Cell Lung Cancer—Beyond EGFR and ALK

    PubMed Central

    Rothschild, Sacha I.

    2015-01-01

    Systemic therapy for non-small cell lung cancer (NSCLC) has undergone a dramatic paradigm shift over the past decade. Advances in our understanding of the underlying biology of NSCLC have revealed distinct molecular subtypes. A substantial proportion of NSCLC depends on oncogenic molecular aberrations (so-called “driver mutations”) for their malignant phenotype. Personalized therapy encompasses the strategy of matching these subtypes with effective targeted therapies. EGFR mutations and ALK translocation are the most effectively targeted oncogenes in NSCLC. EGFR mutations and ALK gene rearrangements are successfully being targeted with specific tyrosine kinase inhibitors. The number of molecular subgroups of NSCLC continues to grow. The scope of this review is to discuss recent data on novel molecular targets as ROS1, BRAF, KRAS, HER2, c-MET, RET, PIK3CA, FGFR1 and DDR2. Thereby the review will focus on therapeutic strategies targeting these aberrations. Moreover, the emerging challenge of acquired resistance to initially effective therapies will be discussed. PMID:26018876

  10. Targeted Therapies in Non-Small Cell Lung Cancer-Beyond EGFR and ALK.

    PubMed

    Rothschild, Sacha I

    2015-05-26

    Systemic therapy for non-small cell lung cancer (NSCLC) has undergone a dramatic paradigm shift over the past decade. Advances in our understanding of the underlying biology of NSCLC have revealed distinct molecular subtypes. A substantial proportion of NSCLC depends on oncogenic molecular aberrations (so-called "driver mutations") for their malignant phenotype. Personalized therapy encompasses the strategy of matching these subtypes with effective targeted therapies. EGFR mutations and ALK translocation are the most effectively targeted oncogenes in NSCLC. EGFR mutations and ALK gene rearrangements are successfully being targeted with specific tyrosine kinase inhibitors. The number of molecular subgroups of NSCLC continues to grow. The scope of this review is to discuss recent data on novel molecular targets as ROS1, BRAF, KRAS, HER2, c-MET, RET, PIK3CA, FGFR1 and DDR2. Thereby the review will focus on therapeutic strategies targeting these aberrations. Moreover, the emerging challenge of acquired resistance to initially effective therapies will be discussed.

  11. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  12. Application of stem cells in targeted therapy of breast cancer: a systematic review.

    PubMed

    Madjd, Zahra; Gheytanchi, Elmira; Erfani, Elham; Asadi-Lari, Mohsen

    2013-01-01

    The aim of this systematic review was to investigate whether stem cells could be effectively applied in targeted therapy of breast cancer. A systematic literature search was performed for original articles published from January 2007 until May 2012. Nine studies met the inclusion criteria for phase I or II clinical trials, of which three used stem cells as vehicles, two trials used autologous hematopoetic stem cells and in four trials cancer stem cells were targeted. Mesenchymal stem cells (MSCs) were applied as cellular vehicles to transfer therapeutic agents. Cell therapy with MSC can successfully target resistant cancers. Cancer stem cells were selectively targeted via a proteasome-dependent suicide gene leading to tumor regression. Wnt/β-catenin signaling pathway has been also evidenced to be an attractive CSC-target. This systematic review focused on two different concepts of stem cells and breast cancer marking a turning point in the trials that applied stem cells as cellular vehicles for targeted delivery therapy as well as CSC-targeted therapies. Applying stem cells as targeted therapy could be an effective therapeutic approach for treatment of breast cancer in the clinic and in therapeutic marketing; however this needs to be confirmed with further clinical investigations.

  13. Targeted Therapy: Attacking Cancer with Molecular and Immunological Targeted Agents

    PubMed Central

    Wilkes, Gail M.

    2018-01-01

    Today, personalized cancer therapy with targeted agents has taken center stage, and offers individualized treatment to many. As the mysteries of the genes in a cell's DNA and their specific proteins are defined, advances in the understanding of cancer gene mutations and how cancer evades the immune system have been made. This article provides a basic and simplified understanding of the available (Food and Drug Administration- approved) molecularly and immunologically targeted agents in the USA. Other agents may be available in Asia, and throughout the USA and the world, many more agents are being studied. Nursing implications for drug classes are reviewed. PMID:29607374

  14. Targeting neutrophils for host-directed therapy to treat tuberculosis.

    PubMed

    Dallenga, Tobias; Linnemann, Lara; Paudyal, Bhesh; Repnik, Urska; Griffiths, Gareth; Schaible, Ulrich E

    2017-10-07

    M. tuberculosis is one of the prime killers from infectious diseases worldwide. Infections with multidrug-resistant variants counting for almost half a million new cases per year are steadily on the rise. Tuberculosis caused by extensively drug-resistant variants that are even resistant against newly developed or last resort antibiotics have to be considered untreaTable Susceptible tuberculosis already requires a six-months combinational therapy which requires further prolongation to treat drug-resistant infections. Such long treatment schedules are often accompanied by serious adverse effects causing patients to stop therapy. To tackle the global tuberculosis emergency, novel approaches for treatment need to be urgently explored. Host-directed therapies that target components of the defense system represent such a novel approach. In this review, we put a spotlight on neutrophils and neutrophil-associated effectors as promising targets for adjunct host-directed therapies to improve antibiotic efficacy and reduce both, treatment time and long-term pathological sequelae. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Role of surgery in severe ulcerative colitis in the era of medical rescue therapy

    PubMed Central

    Dayan, Bosmat; Turner, Dan

    2012-01-01

    - constructing the pouch and the third - closing the stoma. This review focuses on the role of surgical treatment in ulcerative colitis in the era of medical rescue therapy. PMID:22876035

  16. Review of the current targeted therapies for non-small-cell lung cancer

    PubMed Central

    Nguyen, Kim-Son H; Neal, Joel W; Wakelee, Heather

    2014-01-01

    The last decade has witnessed the development of oncogene-directed targeted therapies that have significantly changed the treatment of non-small-cell lung cancer (NSCLC). In this paper we review the data demonstrating efficacy of gefitinib, erlotinib, and afatinib, which target the epidermal growth factor receptor (EGFR), and crizotinib which targets anaplastic lymphoma kinase (ALK). We discuss the challenge of acquired resistance to these small-molecular tyrosine kinase inhibitors and review promising agents which may overcome resistance, including the EGFR T790M-targeted agents CO-1686 and AZD9291, and the ALK-targeted agents ceritinib (LDK378), AP26113, alectinib (CH/RO5424802), and others. Emerging therapies directed against other driver oncogenes in NSCLC including ROS1, HER2, and BRAF are covered as well. The identification of specific molecular targets in a significant fraction of NSCLC has led to the personalized deployment of many effective targeted therapies, with more to come. PMID:25302162

  17. Molecular targeted therapy for the treatment of gastric cancer.

    PubMed

    Xu, Wenting; Yang, Zhen; Lu, Nonghua

    2016-01-04

    Despite the global decline in the incidence and mortality of gastric cancer, it remains one of the most common malignant tumors of the digestive system. Although surgical resection is the preferred treatment for gastric cancer, chemotherapy is the preferred treatment for recurrent and advanced gastric cancer patients who are not candidates for reoperation. The short overall survival and lack of a standard chemotherapy regimen make it important to identify novel treatment modalities for gastric cancer. Within the field of tumor biology, molecular targeted therapy has attracted substantial attention to improve the specificity of anti-cancer efficacy and significantly reduce non-selective resistance and toxicity. Multiple clinical studies have confirmed that molecular targeted therapy acts on various mechanisms of gastric cancer, such as the regulation of epidermal growth factor, angiogenesis, immuno-checkpoint blockade, the cell cycle, cell apoptosis, key enzymes, c-Met, mTOR signaling and insulin-like growth factor receptors, to exert a stronger anti-tumor effect. An in-depth understanding of the mechanisms that underlie molecular targeted therapies will provide new insights into gastric cancer treatment.

  18. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  19. Targeting gene therapy to cancer: a review.

    PubMed

    Dachs, G U; Dougherty, G J; Stratford, I J; Chaplin, D J

    1997-01-01

    In recent years the idea of using gene therapy as a modality in the treatment of diseases other than genetically inherited, monogenic disorders has taken root. This is particularly obvious in the field of oncology where currently more than 100 clinical trials have been approved worldwide. This report will summarize some of the exciting progress that has recently been made with respect to both targeting the delivery of potentially therapeutic genes to tumor sites and regulating their expression within the tumor microenvironment. In order to specifically target malignant cells while at the same time sparing normal tissue, cancer gene therapy will need to combine highly selective gene delivery with highly specific gene expression, specific gene product activity, and, possibly, specific drug activation. Although the efficient delivery of DNA to tumor sites remains a formidable task, progress has been made in recent years using both viral (retrovirus, adenovirus, adeno-associated virus) and nonviral (liposomes, gene gun, injection) methods. In this report emphasis will be placed on targeted rather than high-efficiency delivery, although those would need to be combined in the future for effective therapy. To date delivery has been targeted to tumor-specific and tissue-specific antigens, such as epithelial growth factor receptor, c-kit receptor, and folate receptor, and these will be described in some detail. To increase specificity and safety of gene therapy further, the expression of the therapeutic gene needs to be tightly controlled within the target tissue. Targeted gene expression has been analyzed using tissue-specific promoters (breast-, prostate-, and melanoma-specific promoters) and disease-specific promoters (carcinoembryonic antigen, HER-2/neu, Myc-Max response elements, DF3/MUC). Alternatively, expression could be regulated externally with the use of radiation-induced promoters or tetracycline-responsive elements. Another novel possibility that will be

  20. Advances in targeted therapy for acute myeloid leukaemia.

    PubMed

    Kayser, Sabine; Levis, Mark J

    2018-02-01

    In the past few years, research in the underlying pathogenic mechanisms of acute myeloid leukaemia (AML) has led to remarkable advances in our understanding of the disease. Cytogenetic and molecular aberrations are the most important factors in determining response to chemotherapy as well as long-term outcome, but beyond prognostication are potential therapeutic targets. Our increased understanding of the pathogenesis of AML, facilitated by next-generation sequencing, has spurred the development of new compounds in the treatment of AML, particularly the creation of small molecules that target the disease on a molecular level. Various new agents, such as tyrosine kinase inhibitors, immune checkpoint inhibitors, monoclonal or bispecific T-cell engager antibodies, metabolic and pro-apoptotic agents are currently investigated within clinical trials. The highest response rates are often achieved when new molecularly targeted therapies are combined with standard chemotherapy. Presented here is an overview of novel therapies currently being evaluated in AML. © 2017 John Wiley & Sons Ltd.

  1. Folate-targeted nanoparticles for rheumatoid arthritis therapy.

    PubMed

    Nogueira, Eugénia; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2016-05-01

    Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. Although the cause of RA remains unknown, the complex interaction between immune mediators (cytokines and effector cells) is responsible for the joint damage that begins at the synovial membrane. Activated macrophages are critical in the pathogenesis of RA and showed specifically express a receptor for the vitamin folic acid (FA), folate receptor β (FRβ). This particular receptor allows internalization of FA-coupled cargo. In this review we will address the potential of nanoparticles as an effective drug delivery system for therapies that will directly target activated macrophages. Special attention will be given to stealth degree of the nanoparticles as a strategy to avoid clearance by macrophages of the mononuclear phagocytic system (MPS). This review summarizes the application of FA-target nanoparticles as drug delivery systems for RA and proposes prospective future directions. Rheumatoid arthritis is a debilitating autoimmune disease of the joints which affects many people worldwide. Up till now, there is a lack of optimal therapy against this disease. In this review article, the authors outlined in depth the current mechanism of disease for rheumatoid arthritis and described the latest research in using folic acid-targeted nanoparticles to target synovial macrophages in the fight against rheumatoid arthritis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Renal replacement therapy in Europe: a summary of the 2011 ERA-EDTA Registry Annual Report.

    PubMed

    Noordzij, Marlies; Kramer, Anneke; Abad Diez, José M; Alonso de la Torre, Ramón; Arcos Fuster, Emma; Bikbov, Boris T; Bonthuis, Marjolein; Bouzas Caamaño, Encarnación; Čala, Svetlana; Caskey, Fergus J; Castro de la Nuez, Pablo; Cernevskis, Harijs; Collart, Frederic; Díaz Tejeiro, Rafael; Djukanovic, Ljubica; Ferrer-Alamar, Manuel; Finne, Patrik; García Bazaga, María de Los Angelos; Garneata, Liliana; Golan, Eliezer; Gonzalez Fernández, Raquel; Heaf, James G; Hoitsma, Andries; Ioannidis, George A; Kolesnyk, Mykola; Kramar, Reinhard; Lasalle, Mathilde; Leivestad, Torbjørn; Lopot, Frantisek; van de Luijtgaarden, Moniek W M; Macário, Fernando; Magaz, Ángela; Martín Escobar, Eduardo; de Meester, Johan; Metcalfe, Wendy; Ots-Rosenberg, Mai; Palsson, Runolfur; Piñera, Celestino; Pippias, Maria; Prütz, Karl G; Ratkovic, Marina; Resić, Halima; Rodríguez Hernández, Aurelio; Rutkowski, Boleslaw; Spustová, Viera; Stel, Vianda S; Stojceva-Taneva, Olivera; Süleymanlar, Gültekin; Wanner, Christoph; Jager, Kitty J

    2014-04-01

    This article provides a summary of the 2011 ERA-EDTA Registry Annual Report (available at www.era-edta-reg.org). Data on renal replacement therapy (RRT) for end-stage renal disease (ESRD) from national and regional renal registries in 30 countries in Europe and bordering the Mediterranean Sea were used. From 27 registries, individual patient data were received, whereas 17 registries contributed data in aggregated form. We present the incidence and prevalence of RRT, and renal transplant rates in 2011. In addition, survival probabilities and expected remaining lifetimes were calculated for those registries providing individual patient data. The overall unadjusted incidence rate of RRT in 2011 among all registries reporting to the ERA-EDTA Registry was 117 per million population (pmp) (n = 71.631). Incidence rates varied from 24 pmp in Ukraine to 238 pmp in Turkey. The overall unadjusted prevalence of RRT for ESRD on 31 December 2011 was 692 pmp (n = 425 824). The highest prevalence was reported by Portugal (1662 pmp) and the lowest by Ukraine (131 pmp). Among all registries, a total of 22 814 renal transplantations were performed (37 pmp). The highest overall transplant rate was reported from Spain, Cantabria (81 pmp), whereas the highest rate of living donor transplants was reported from Turkey (39 pmp). For patients who started RRT between 2002 and 2006, the unadjusted 5-year patient survival on RRT was 46.8% [95% confidence interval (CI) 46.6-47.0], and on dialysis 39.3% (95% CI 39.2-39.4). The unadjusted 5-year patient survival after the first renal transplantation performed between 2002 and 2006 was 86.7% (95% CI 86.2-87.2) for kidneys from deceased donors and 94.3% (95% CI 93.6-95.0) for kidneys from living donors.

  3. Virus-Based Cancer Therapeutics for Targeted Photodynamic Therapy.

    PubMed

    Cao, Binrui; Xu, Hong; Yang, Mingying; Mao, Chuanbin

    2018-01-01

    Cancer photodynamic therapy (PDT) involves the absorption of light by photosensitizers (PSs) to generate cytotoxic singlet oxygen for killing cancer cells. The success of this method is usually limited by the lack of selective accumulation of the PS at cancer cells. Bioengineered viruses with cancer cell-targeting peptides fused on their surfaces are great drug carriers that can guide the PS to cancer cells for targeted cancer treatment. Here, we use cell-targeting fd bacteriophages (phages) as an example to describe how to chemically conjugate PSs (e.g., pyropheophorbide-a (PPa)) onto a phage particle to achieve targeted PDT.

  4. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy

    PubMed Central

    Roma-Rodrigues, Catarina; Raposo, Luís R.; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V.; Fernandes, Alexandra R.

    2017-01-01

    Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression. PMID:28098821

  5. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy.

    PubMed

    Roma-Rodrigues, Catarina; Raposo, Luís R; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V; Fernandes, Alexandra R

    2017-01-14

    Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes' release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs' properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs' role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  6. Targeted therapy using nanotechnology: focus on cancer

    PubMed Central

    Sanna, Vanna; Pala, Nicolino; Sechi, Mario

    2014-01-01

    Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has been developed, with the potential to revolutionize the diagnosis and treatment of several diseases, in particular by improving the sensitivity and recognition ability of imaging contrast agents and by selectively directing bioactive agents to biological targets. Focusing on cancer, promising nanoprototypes have been designed to overcome the lack of specificity of conventional chemotherapeutic agents, as well as for early detection of precancerous and malignant lesions. However, several obstacles, including difficulty in achieving the optimal combination of physicochemical parameters for tumor targeting, evading particle clearance mechanisms, and controlling drug release, prevent the translation of nanomedicines into therapy. In spite of this, recent efforts have been focused on developing functionalized nanoparticles for delivery of therapeutic agents to specific molecular targets overexpressed on different cancer cells. In particular, the combination of targeted and controlled-release polymer nanotechnologies has resulted in a new programmable nanotherapeutic formulation of docetaxel, namely BIND-014, which recently entered Phase II clinical testing for patients with solid tumors. BIND-014 has been developed to overcome the limitations facing delivery of nanoparticles to many neoplasms, and represents a validated example of targeted nanosystems with the optimal biophysicochemical properties needed for successful tumor eradication. PMID:24531078

  7. Targeted Drug and Gene Delivery Systems for Lung Cancer Therapy

    PubMed Central

    Sundaram, Sneha; Trivedi, Ruchit; Durairaj, Chandrasekar; Ramesh, Rajagopal; Ambati, Balamurali K.; Kompella, Uday B.

    2009-01-01

    Purpose To evaluate the efficacy of a novel docetaxel derivative of deslorelin, a luteinizing hormone releasing hormone (LHRH) agonist, and its combination in-vivo with RGD peptide conjugated nanoparticles encapsulating an anti-angiogenic, anti-VEGF intraceptor (Flt23k) (RGD-Flt23k-NP) in H1299 lung cancer cells and/or xenografts in athymic nude BALB/c mice. Experimental Design The in-vitro and in-vivo efficacy of the deslorelin-docetaxel conjugate (D-D) was evaluated in H1299 cells and xenografts in athymic nude mice. Co-administration of D-D and RGD-Flt23k-NP was tested in-vivo in mice. Tumor inhibition, apoptosis and VEGF inhibition were estimated in each of the treatment groups. Results The conjugate enhanced in-vitro docetaxel efficacy by 13-fold in H1299 cells compared to docetaxel at 24h, and this effect was inhibited following reduction of LHRH-receptor expression by an antisense oligonucleotide. Combination of the conjugate with the RGD-Flt23k-NP in-vivo resulted in an 82- and 15-fold tumor growth inhibition on day 39 following repeated weekly intravenous injections and a single intratumoral injection, respectively. These effects were significantly greater than individual targeted therapies or docetaxel alone. Similarly, apoptotic indices for the combination therapy were 14 and 10% in the intravenous and intratumoral groups, respectively, and higher than the individual therapies. Combination therapy groups exhibited greater VEGF inhibition in both the intravenous and intratumoral groups. Conclusions Docetaxel efficacy was enhanced by LHRH-receptor targeted deslorelin conjugate and further improved by combination with targeted anti-angiogenic nanoparticle gene therapy. Combination of novel targeted therapeutic approaches described here provides an attractive alternative to the current treatment options for lung cancer therapy. PMID:19920099

  8. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy.

    PubMed

    Mou, Quanbing; Ma, Yuan; Zhu, Xinyuan; Yan, Deyue

    2016-05-28

    Targeted drug delivery is a broadly applicable approach for cancer therapy. However, the nanocarrier-based targeted delivery system suffers from batch-to-batch variation, quality concerns and carrier-related toxicity issues. Thus, to develop a carrier-free targeted delivery system with nanoscale characteristics is very attractive. Here, a novel targeting small molecule nanodrug self-delivery system consisting of targeting ligand and chemotherapy drug was constructed, which combined the advantages of small molecules and nano-assemblies together and showed excellent targeting ability and long blood circulation time with well-defined structure, high drug loading ratio and on-demand drug release behavior. As a proof-of-concept, lactose (Lac) and doxorubicin (DOX) were chosen as the targeting ligand and chemotherapy drug, respectively. Lac and DOX were conjugated through a pH-responsive hydrazone group. For its intrinsic amphiphilic property, Lac-DOX conjugate could self-assemble into nanoparticles in water. Both in vitro and in vivo assays indicated that Lac-DOX nanoparticles exhibited enhanced anticancer activity and weak side effects. This novel active targeting nanodrug delivery system shows great potential in cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Current therapies and targets for type 2 diabetes mellitus: a review.

    PubMed

    Chellapan, Dinesh K; Sheng Yap, Wei; Bt Ahmad Suhaimi, Nurfatihah A; Gupta, Gaurav; Dua, Kamal

    2018-04-24

    The prevalence of type 2 diabetes mellitus (T2DM) has been increasing at an alarming rate. With an increased understanding of the pathophysiology and pathogenesis of T2DM, various new therapeutic options have been developed to target different key defects in T2DM. Incremental innovations of existing therapies either through unprecedented drug combinations, modified drug molecules, or improved delivery systems are capable to nullify some of the undesirable side effects of traditional therapies as well as to enhance effectiveness. The existing administration routes include inhalation, nasal, buccal, parenteral and oral. Newer drug targets such as protein kinase B (Akt/PKB), AMPactivated protein kinase (AMPK), sirtuin (SIRT), and others are novel approaches that act via different mechanisms and possibly treating T2DM of distinct variations and aetiologies. Other therapies such as endobarrier, gene therapy, and stem cell technology utilize advanced techniques to treat T2DM, and the potential of these therapies are still being explored. Gene therapy is plausible to fix the underlying pathology of T2DM instead of using traditional reactive treatments, especially with the debut of Clustered Regularly Interspaced Short Palindromic RepeatsCRISPR associated protein9 (CRISPRCas9) gene editing tool. Molecular targets in T2DM are also being extensively studied as it could target the defects at the molecular level. Furthermore, antibody therapies and vaccinations are also being developed against T2DM; but the ongoing clinical trials are relatively lesser and the developmental progress is slower. Although, there are many therapies designed to cure T2DM, each of them has their own advantages and disadvantages. The preference for the treatment plan usually depends on the health status of the patient and the treatment goal. Therefore, an ideal treatment should take patient's compliance, efficacy, potency, bioavailability, and other pharmacological and nonpharmacological properties

  10. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    PubMed

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  11. Financial relationships in economic analyses of targeted therapies in oncology.

    PubMed

    Valachis, Antonis; Polyzos, Nikolaos P; Nearchou, Andreas; Lind, Pehr; Mauri, Davide

    2012-04-20

    A potential financial relationship between investigators and pharmaceutical manufacturers has been associated with an increased likelihood of reporting favorable conclusions about a sponsor's proprietary agent in pharmacoeconomic studies. The purpose of this study is to investigate whether there is an association between financial relationships and outcome in economic analyses of new targeted therapies in oncology. We searched PubMed (last update June 2011) for economic analyses of targeted therapies (including monoclonal antibodies, tyrosine-kinase inhibitors, and mammalian target of rapamycin inhibitors) in oncology. The trials were qualitatively rated regarding the cost assessment as favorable, neutral, or unfavorable on the basis of prespecified criteria. Overall, 81 eligible studies were identified. Economic analyses that were funded by pharmaceutical companies were more likely to report favorable qualitative cost estimates (28 [82%] of 34 v 21 [45%] of 47; P = .003). The presence of an author affiliated with manufacturer was not associated with study outcome. Furthermore, if only studies including a conflict of interest statement were included (66 of 81), studies that reported any financial relationship with manufacturers (author affiliation and/or funding and/or other financial relationship) were more likely to report favorable results of targeted therapies compared with studies without financial relationship (32 [71%] of 45 v nine [43%] of 21; P = .025). Our study reveals a potential threat for industry-related bias in economic analyses of targeted therapies in oncology in favor of analyses with financial relationships between authors and manufacturers. A more balanced funding of economic analyses from other sources may allow greater confidence in the interpretation of their results.

  12. A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.

    PubMed

    Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique

    2015-06-01

    Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.

  13. From targeting the tumor to targeting the immune system: Transversal challenges in oncology with the inhibition of the PD-1/PD-L1 axis

    PubMed Central

    Bersanelli, Melissa; Buti, Sebastiano

    2017-01-01

    After that the era of chemotherapy in the treatment of solid tumors have been overcome by the “translational era”, with the innovation introduced by targeted therapies, medical oncology is currently looking at the dawn of a new “immunotherapy era” with the advent of immune checkpoint inhibitors (CKI) antibodies. The onset of PD-1/PD-L1 targeted therapy has demonstrated the importance of this axis in the immune escape across almost all human cancers. The new CKI allowed to significantly prolong survival and to generate durable response, demonstrating remarkable efficacy in a wide range of cancer types. The aim of this article is to review the most up to date literature about the clinical effectiveness of CKI antibodies targeting PD-1/PD-L1 axis for the treatment of advanced solid tumors and to explore transversal challenges in the immune checkpoint blockade. PMID:28246584

  14. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy

    PubMed Central

    Heaton, R.K.; Clifford, D.B.; Franklin, D.R.; Woods, S.P.; Ake, C.; Vaida, F.; Ellis, R.J.; Letendre, S.L.; Marcotte, T.D.; Atkinson, J.H.; Rivera-Mindt, M.; Vigil, O.R.; Taylor, M.J.; Collier, A.C.; Marra, C.M.; Gelman, B.B.; McArthur, J.C.; Morgello, S.; Simpson, D.M.; McCutchan, J.A.; Abramson, I.; Gamst, A.; Fennema-Notestine, C.; Jernigan, T.L.; Wong, J.; Grant, I.

    2010-01-01

    Objectives: This is a cross-sectional, observational study to determine the frequency and associated features of HIV-associated neurocognitive disorders (HAND) in a large, diverse sample of infected individuals in the era of combination antiretroviral therapy (CART). Methods: A total of 1,555 HIV-infected adults were recruited from 6 university clinics across the United States, with minimal exclusions. We used standardized neuromedical, psychiatric, and neuropsychological (NP) examinations, and recently published criteria for diagnosing HAND and classifying 3 levels of comorbidity (minimal to severe non-HIV risks for NP impairment). Results: Fifty-two percent of the total sample had NP impairment, with higher rates in groups with greater comorbidity burden (40%, 59%, and 83%). Prevalence estimates for specific HAND diagnoses (excluding severely confounded cases) were 33% for asymptomatic neurocognitive impairment, 12% for mild neurocognitive disorder, and only 2% for HIV-associated dementia (HAD). Among participants with minimal comorbidities (n = 843), history of low nadir CD4 was a strong predictor of impairment, and the lowest impairment rate on CART occurred in the subset with suppressed plasma viral loads and nadir CD4 ≥200 cells/mm3 (30% vs 47% in remaining subgroups). Conclusions: The most severe HAND diagnosis (HAD) was rare, but milder forms of impairment remained common, even among those receiving CART who had minimal comorbidities. Future studies should clarify whether early disease events (e.g., profound CD4 decline) may trigger chronic CNS changes, and whether early CART prevents or reverses these changes. GLOSSARY ANI = asymptomatic neurocognitive impairment; CART = combination antiretroviral therapy; CHARTER = CNS HIV Antiretroviral Therapy Effects Research; CIDI = Composite International Diagnostic Interview; CLIA = Clinical Laboratory Improvement Amendments; CPE = CNS penetration effectiveness; HAD = HIV-associated dementia; HAND = HIV

  15. Cholelithiasis and Nephrolithiasis in HIV-Positive Patients in the Era of Combination Antiretroviral Therapy

    PubMed Central

    Lin, Kuan-Yin; Liao, Sih-Han; Liu, Wen-Chun; Cheng, Aristine; Lin, Shu-Wen; Chang, Sui-Yuan; Tsai, Mao-Song; Kuo, Ching-Hua; Wu, Mon-Ro; Wang, Hsiu-Po; Hung, Chien-Ching; Chang, Shan-Chwen

    2015-01-01

    Objectives This study aimed to describe the epidemiology and risk factors of cholelithiasis and nephrolithiasis among HIV-positive patients in the era of combination antiretroviral therapy. Methods We retrospectively reviewed the medical records of HIV-positive patients who underwent routine abdominal sonography for chronic viral hepatitis, fatty liver, or elevated aminotransferases between January 2004 and January 2015. Therapeutic drug monitoring of plasma concentrations of atazanavir was performed and genetic polymorphisms, including UDP-glucuronosyltransferase (UGT) 1A1*28 and multidrug resistance gene 1 (MDR1) G2677T/A, were determined in a subgroup of patients who received ritonavir-boosted or unboosted atazanavir-containing combination antiretroviral therapy. Information on demographics, clinical characteristics, and laboratory testing were collected and analyzed. Results During the 11-year study period, 910 patients who underwent routine abdominal sonography were included for analysis. The patients were mostly male (96.9%) with a mean age of 42.2 years and mean body-mass index of 22.9 kg/m2 and 85.8% being on antiretroviral therapy. The anchor antiretroviral agents included non-nucleoside reverse-transcriptase inhibitors (49.3%), unboosted atazanavir (34.4%), ritonavir-boosted lopinavir (20.4%), and ritonavir-boosted atazanavir (5.5%). The overall prevalence of cholelithiasis and nephrolithiasis was 12.5% and 8.2%, respectively. Among 680 antiretroviral-experienced patients with both baseline and follow-up sonography, the crude incidence of cholelithiasis and nephrolithiasis was 4.3% and 3.7%, respectively. In multivariate analysis, the independent factors associated with incident cholelithiasis were exposure to ritonavir-boosted atazanavir for >2 years (adjusted odds ratio [AOR], 6.29; 95% confidence interval [CI], 1.12–35.16) and older age (AOR, 1.04; 95% CI, 1.00–1.09). The positive association between duration of exposure to ritonavir

  16. Cancer Nanotheranostics: Improving Imaging and Therapy by Targeted Delivery across Biological Barriers

    PubMed Central

    Kievit, Forrest M.; Zhang, Miqin

    2012-01-01

    Cancer nanotheranostics aims to combine imaging and therapy of cancer through use of nanotechnology. The ability to engineer nanomaterials to interact with cancer cells at the molecular level can significantly improve the effectiveness and specificity of therapy to cancers that are currently difficult to treat. In particular, metastatic cancers, drug-resistant cancers, and cancer stem cells impose the greatest therapeutic challenge that requires targeted therapy to treat effectively. Targeted therapy can be achieved with appropriate designed drug delivery vehicles such as nanoparticles, adult stem cells, or T cells in immunotherapy. In this article, we first review the different types of materials commonly used to synthesize nanotheranostic particles and their use in imaging. We then discuss biological barriers that these nanoparticles encounter and must bypass to reach the target cancer cells, including the blood, liver, kidneys, spleen, and particularly the blood-brain barrier. We then review how nanotheranostics can be used to improve targeted delivery and treatment of cancer cells using nanoparticles, adult stem cells, and T cells in immunotherapy. Finally, we discuss development of nanoparticles to overcome current limitations in cancer therapy. PMID:21842473

  17. Antifungal Therapy for Systemic Mycosis and the Nanobiotechnology Era: Improving Efficacy, Biodistribution and Toxicity.

    PubMed

    Souza, Ana C O; Amaral, Andre C

    2017-01-01

    Fungal diseases have been emerging as an important public health problem worldwide with the increase in host predisposition factors due to immunological dysregulations, immunosuppressive and/or anticancer therapy. Antifungal therapy for systemic mycosis is limited, most of times expensive and causes important toxic effects. Nanotechnology has become an interesting strategy to improve efficacy of traditional antifungal drugs, which allows lower toxicity, better biodistribution, and drug targeting, with promising results in vitro and in vivo . In this review, we provide a discussion about conventional antifungal and nanoantifungal therapies for systemic mycosis.

  18. Genetic heterogeneity in cholangiocarcinoma: a major challenge for targeted therapies

    PubMed Central

    Brandi, Giovanni; Farioli, Andrea; Astolfi, Annalisa; Biasco, Guido; Tavolari, Simona

    2015-01-01

    Cholangiocarcinoma (CC) encompasses a group of related but distinct malignancies whose lack of a stereotyped genetic signature makes challenging the identification of genomic landscape and the development of effective targeted therapies. Accumulated evidences strongly suggest that the remarkable genetic heterogeneity of CC may be the result of a complex interplay among different causative factors, some shared by most human cancers while others typical of this malignancy. Currently, considerable efforts are ongoing worldwide for the genetic characterization of CC, also using advanced technologies such as next-generation sequencing (NGS). Undoubtedly this technology could offer an unique opportunity to broaden our understanding on CC molecular pathogenesis. Despite this great potential, however, the high complexity in terms of factors potentially contributing to genetic variability in CC calls for a more cautionary application of NGS to this malignancy, in order to avoid possible biases and criticisms in the identification of candidate actionable targets. This approach is further justified by the urgent need to develop effective targeted therapies in this disease. A multidisciplinary approach integrating genomic, functional and clinical studies is therefore mandatory to translate the results obtained by NGS into effective targeted therapies for this orphan disease. PMID:26142706

  19. Drug-targeting strategies in cancer therapy.

    PubMed

    Huang, P S; Oliff, A

    2001-02-01

    Genetic changes in cell-cycle, apoptotic, and survival pathways cause tumorigenesis, leading to significant phenotypic changes in transformed cells. These changes in the tumor environment - elevated expression of surface proteases, increased angiogenesis and glucuronidase activity - can be taken advantage of to improve the therapeutic index of existing cancer therapies. Targeting cytotoxics to tumor cells by enzymatic activation is a promising strategy for improving chemotherapeutics.

  20. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    PubMed Central

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  1. [Targeted therapies in hepatocellular carcinomas: recent results and future development].

    PubMed

    Marijon, H; Faivre, S; Raymond, E

    2009-05-01

    Hepatocellular carcinoma (HCC) is one of the 5th most common cancers around the world with a limited number of systemic therapeutic options. Cytotoxic agents, hormonotherapy and immunotherapy have failed to demonstrate benefit compared to best supportive care in patients with advanced HCC. The recent development of targeted therapies provided hope for the treatment of advanced HCC. We reviewed phases II-III trials presented in 2007 and 2008. Results are promising with a clinical benefit reported with molecular therapies targeting EGF/EGFR and VEGF/VEGFR pathways.

  2. Evolving targeted therapies for right ventricular failure.

    PubMed

    Di Salvo, Thomas G

    2015-01-01

    Although right and left ventricular embryological origins, morphology and cardiodynamics differ, the notion of selectively targeted right ventricular therapies remains controversial. This review focuses on both the currently evolving pharmacologic agents targeting right ventricular failure (metabolic modulators, phosphodiesterase type V inhibitors) and future therapeutic approaches including epigenetic modulation by miRNAs, chromatin binding complexes, long non-coding RNAs, genomic editing, adoptive gene transfer and gene therapy, cell regeneration via cell transplantation and cell reprogramming and cardiac tissue engineering. Strategies for adult right ventricular regeneration will require a more holistic approach than strategies for adult left ventricular failure. Instances of right ventricular failure requiring global reconstitution of right ventricular myocardium, attractive approaches include: i) myocardial patches seeded with cardiac fibroblasts reprogrammed into cardiomyocytes in vivo by small molecules, miRNAs or other epigenetic modifiers; and ii) administration of miRNAs, lncRNAs or small molecules by non-viral vector delivery systems targeted to fibroblasts (e.g., episomes) to stimulate in vivo reprogramming of fibroblasts into cardiomyocytes. For selected heritable genetic myocardial diseases, genomic editing affords exciting opportunities for allele-specific silencing by site-specific directed silencing, mutagenesis or gene excision. Genomic editing by adoptive gene transfer affords similarly exciting opportunities for restoration of myocardial gene expression.

  3. RNA-Targeted Therapies and Amyotrophic Lateral Sclerosis

    PubMed Central

    Le Masson, Gwendal

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor disease in adults. Its pathophysiology remains mysterious, but tremendous advances have been made with the discovery of the most frequent mutations of its more common familial form linked to the C9ORF72 gene. Although most cases are still considered sporadic, these genetic mutations have revealed the role of RNA production, processing and transport in ALS, and may be important players in all ALS forms. There are no disease-modifying treatments for adult human neurodegenerative diseases, including ALS. As in spinal muscular atrophy, RNA-targeted therapies have been proposed as potential strategies for treating this neurodegenerative disorder. Successes achieved in various animal models of ALS have proven that RNA therapies are both safe and effective. With careful consideration of the applicability of such therapies in humans, it is possible to anticipate ongoing in vivo research and clinical trial development of RNA therapies for treating ALS. PMID:29342921

  4. RNA-Targeted Therapies and Amyotrophic Lateral Sclerosis.

    PubMed

    Mathis, Stéphane; Le Masson, Gwendal

    2018-01-15

    Amyotrophic lateral sclerosis (ALS) is a fatal motor disease in adults. Its pathophysiology remains mysterious, but tremendous advances have been made with the discovery of the most frequent mutations of its more common familial form linked to the C9ORF72 gene. Although most cases are still considered sporadic, these genetic mutations have revealed the role of RNA production, processing and transport in ALS, and may be important players in all ALS forms. There are no disease-modifying treatments for adult human neurodegenerative diseases, including ALS. As in spinal muscular atrophy, RNA-targeted therapies have been proposed as potential strategies for treating this neurodegenerative disorder. Successes achieved in various animal models of ALS have proven that RNA therapies are both safe and effective. With careful consideration of the applicability of such therapies in humans, it is possible to anticipate ongoing in vivo research and clinical trial development of RNA therapies for treating ALS.

  5. Molecular Approach to Targeted Therapy for Multiple Sclerosis.

    PubMed

    Sherbet, Gajanan V

    2016-01-01

    The development and evolution of targeted therapy to any disease require the identification of targets amenable to treatment of patients. Here the pathogenetic signalling systems involved in multiple sclerosis are scrutinised to locate nodes of deregulation and dysfunction in order to devise strategies of drug development for targeted intervention. Oliogoclonal bands (OCB) are isoelectric focusing profiles of immunoglobulins synthesised in the central nervous system. OCBs enable the diagnosis of multiple sclerosis with high sensitivity and specificity and are related to the course of the disease and progression. The OCB patterns can be linked with the expression of angiogenic molecular species. Angiogenic signalling which has also been implicated in demyelination provides the option of using angiogenesis inhibitors in disease control. The PI3K (phosphoinositide 3-kinase)/Akt axis has emerged with a key role in myelination with its demonstrable links with mTOR mediated transcription of downstream target genes. Inflammatory signals and innate and acquired immunity from the activation of NF-κB (nuclear factor κB) responsive genes are considered. NF-κB signalling could be implicated in myelination. The transcription factor STAT (signal transducers and activators of transcription) and the EBV (Epstein- Barr virus) transcription factor BZLF1 contributing significantly to the disease process are a major environmental factor linked to MS. EBV can activate TGF (transforming growth factor) and VEGF (vascular endothelial growth factor) signalling. EBV microRNAs are reviewed as signalling mediators of pathogenesis. Stem cell transplantation therapy has lately gained much credence, so the current status of mesenchymal and hematopoietic stem cell therapy is reviewed with emphasis on the differential expression immune-related genes and operation of signalling systems.

  6. New perspectives on targeted therapy in ovarian cancer

    PubMed Central

    Coward, Jermaine IG; Middleton, Kathryn; Murphy, Felicity

    2015-01-01

    Epithelial ovarian cancer remains the most lethal gynecologic malignancy. During the last 15 years, there has been only marginal improvement in 5 year overall survival. These daunting statistics are compounded by the fact that despite all subtypes exhibiting striking heterogeneity, their systemic management remains identical. Although changes to the scheduling and administration of chemotherapy have improved outcomes to a degree, a therapeutic ceiling is being reached with this approach, resulting in a number of trials investigating the efficacy of targeted therapies alongside standard treatment algorithms. Furthermore, there is an urge to develop subtype-specific studies in an attempt to improve outcomes, which currently remain poor. This review summarizes the key studies with antiangiogenic agents, poly(adenosine diphosphate [ADP]-ribose) inhibitors, and epidermal growth factor receptor/human epidermal growth factor receptor family targeting, in addition to folate receptor antagonists and insulin growth factor receptor inhibitors. The efficacy of treatment paradigms used in non-ovarian malignancies for type I tumors is also highlighted, in addition to recent advances in appropriate patient stratification for targeted therapies in epithelial ovarian cancer. PMID:25678824

  7. Drug resistance to targeted therapies: déjà vu all over again.

    PubMed

    Groenendijk, Floris H; Bernards, René

    2014-09-12

    A major limitation of targeted anticancer therapies is intrinsic or acquired resistance. This review emphasizes similarities in the mechanisms of resistance to endocrine therapies in breast cancer and those seen with the new generation of targeted cancer therapeutics. Resistance to single-agent cancer therapeutics is frequently the result of reactivation of the signaling pathway, indicating that a major limitation of targeted agents lies in their inability to fully block the cancer-relevant signaling pathway. The development of mechanism-based combinations of targeted therapies together with non-invasive molecular disease monitoring is a logical way forward to delay and ultimately overcome drug resistance development. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Factor XI as a target for antithrombotic therapy

    PubMed Central

    Bane, Charles E.; Gailani, David

    2014-01-01

    Anticoagulants currently used in clinical practice to treat thromboembolic disorders are effective but increase the risk of severe bleeding because they target proteins that are essential for normal coagulation (hemostasis). Drugs with better safety profiles are required for prevention and treatment of thromboembolic disease. Coagulation factor XIa has emerged as a novel target for safer anticoagulant therapy because of its role in thrombosis and its relatively small contribution to hemostasis. PMID:24886766

  9. Prostate Specific Membrane Antigen (PSMA) Targeted Bio-orthogonal Therapy for Metastatic Prostate Cancer

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0595 TITLE: Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate Cancer...Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate

  10. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle

    PubMed Central

    Dekempeneer, Yana; Keyaerts, Marleen; Krasniqi, Ahmet; Puttemans, Janik; Muyldermans, Serge; Lahoutte, Tony; D’huyvetter, Matthias; Devoogdt, Nick

    2016-01-01

    ABSTRACT Introduction: The combination of a targeted biomolecule that specifically defines the target and a radionuclide that delivers a cytotoxic payload offers a specific way to destroy cancer cells. Targeted radionuclide therapy (TRNT) aims to deliver cytotoxic radiation to cancer cells and causes minimal toxicity to surrounding healthy tissues. Recent advances using α-particle radiation emphasizes their potential to generate radiation in a highly localized and toxic manner because of their high level of ionization and short range in tissue. Areas covered: We review the importance of targeted alpha therapy (TAT) and focus on nanobodies as potential beneficial vehicles. In recent years, nanobodies have been evaluated intensively as unique antigen-specific vehicles for molecular imaging and TRNT. Expert opinion: We expect that the efficient targeting capacity and fast clearance of nanobodies offer a high potential for TAT. More particularly, we argue that the nanobodies’ pharmacokinetic properties match perfectly with the interesting decay properties of the short-lived α-particle emitting radionuclides Astatine-211 and Bismuth-213 and offer an interesting treatment option particularly for micrometastatic cancer and residual disease. PMID:27145158

  11. Epithelioid Sarcoma: Opportunities for Biology-Driven Targeted Therapy.

    PubMed

    Noujaim, Jonathan; Thway, Khin; Bajwa, Zia; Bajwa, Ayeza; Maki, Robert G; Jones, Robin L; Keller, Charles

    2015-01-01

    Epithelioid sarcoma (ES) is a soft tissue sarcoma of children and young adults for which the preferred treatment for localized disease is wide surgical resection. Medical management is to a great extent undefined, and therefore for patients with regional and distal metastases, the development of targeted therapies is greatly desired. In this review, we will summarize clinically relevant biomarkers (e.g., SMARCB1, CA125, dysadherin, and others) with respect to targeted therapeutic opportunities. We will also examine the role of EGFR, mTOR, and polykinase inhibitors (e.g., sunitinib) in the management of local and disseminated disease. Toward building a consortium of pharmaceutical, academic, and non-profit collaborators, we will discuss the state of resources for investigating ES with respect to cell line resources, tissue banks, and registries so that a roadmap can be developed toward effective biology-driven therapies.

  12. Targeted therapies in hepatocellular carcinoma.

    PubMed

    Bronte, F; Bronte, G; Cusenza, S; Fiorentino, E; Rolfo, C; Cicero, G; Bronte, E; Di Marco, V; Firenze, A; Angarano, G; Fontana, T; Russo, A

    2014-01-01

    The onset of hepatocellular carcinoma (HCC) is related to the development of non-neoplastic liver disease, such as viral infections and cirrhosis. Even though patients with chronic liver diseases undergo clinical surveillance for early diagnosis of HCC, this cancer is often diagnosed in advanced stage. In this case locoregional treatment is not possible and systemic therapies are the best way to control it. Until now sorafenib, a Raf and multi-kinase inhibitor has been the best, choice to treat HCC systemically. It showed a survival benefit in multicenter phase III trials. However the proper patient setting to treat is not well defined, since the results in Child-Pugh B patients are conflicting. To date various new target drugs are under developed and other biological treatments normally indicated in other malignancies are under investigation also for HCC. These strategies aim to target the different biological pathways implicated in HCC development and progression. The target drugs studied in HCC include anti-VEGF and anti-EGFR monoclonal antibodies, tyrosine kinase inhibitors and mTOR inhibitors. The most important challenge is represented by the best integration of these drugs with standard treatments to achieve improvement in overall survival and quality of life.

  13. Why Targeted Therapies are Necessary for Systemic Lupus Erythematosus

    PubMed Central

    Durcan, Laura; Petri, Michelle

    2016-01-01

    Systemic lupus erythematosus (SLE) continues to have important morbidity and accelerated mortality despite therapeutic advances. Targeted therapies offer the possibility of improved efficacy with fewer side-effects. Current management strategies rely heavily on non-specific immunosuppressive agents. Prednisone, in particular, is responsible for a considerable burden of later organ damage. There are a multitude of diverse mechanisms of disease activity, immunogenic abnormalities and clinical manifestations to take into consideration in SLE. Many targeted agents with robust mechanistic pre-clinical data and promising early phase studies have ultimately been disappointing in phase III randomized controlled studies. Recent efforts have focused on B cell therapies, in particular given the success of belimumab in clinical trials, with limited success. We remain optimistic regarding other specific therapies being evaluated including interferon alpha blockade. It is likely that in SLE, given the heterogeneity of the population involved, precision medicine is needed, rather than expecting that any single biologic will be universally effective. PMID:27497251

  14. Update on B-cell targeted therapies for systemic lupus erythematosus.

    PubMed

    Mok, Chi Chiu

    2014-06-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by flares and remission, leading to accrual of organ damage over time as a result of persistent tissue inflammation and treatment-related complications. Novel therapies aiming at better treatment response and fewer adverse effects are being tested in the pipeline. This review summarizes the B-cell abnormalities observed in patients with SLE, and updates recent data on the efficacy and safety of B-cell targeted therapies in the treatment of SLE. The pitfalls of clinical trial design and future directions of the development of SLE therapeutics are discussed. The variability of clinical response to treatment in SLE reflects the clinical and immunological heterogeneity of the disease. The treatment plan for patients with SLE should be individualized with the aim of eradicating disease activity, preventing flares and minimizing treatment-related complications. Despite the disappointment of recent clinical trials, B-cell remains the promising target of future SLE therapies. Results from ongoing clinical trials on B-cell targeted biological agents are eagerly awaited.

  15. Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer.

    PubMed

    Gower, Arjan; Wang, Yisong; Giaccone, Giuseppe

    2014-07-01

    In the past decade, a shift toward targeted therapies in non-small-cell lung cancer following molecular profiling has dramatically changed the way advanced adenocarcinoma is treated. However, tumor cells inevitably acquire resistance to such therapies, circumventing any sustained clinical benefit. As the genomic classification of lung cancer continues to evolve and as the mechanisms of acquired resistance to targeted therapies become elucidated and more improved target-specific drugs come into sight, the future will see more promising results from the clinic through the development of new therapeutic strategies to overcome, or prevent the development of, resistance for lung cancer patients.

  16. [Molecular-targeted therapy for neurodegenerative diseases].

    PubMed

    Sobue, Gen

    2009-11-01

    Neurodegenerative diseases have been construed as incurable disorders. However, therapeutic development for these diseases is now facing a turning point: analyses of cellular and animal models have provided insights into pathogenesis of neurodegenerative diseases, and have indicated rational therapeutic approaches to them. Therefore, how to realize molecular targeted therapy for neurodegenerative diseases is becoming one of the most challenging issues in the clinical neurology. Primarily, pathophysiological understanding of the disease from basic science is the first step. For the successful clinical trials, effective trial design, sufficient economic and social support, and education are indispensable. The development of androgen deprivation therapy for spinal and bulbar muscular atrophy (SBMA) is a representative study in this field. SBMA is a hereditary neurodegenerative disease caused by expansion of a trinucleotide CAG repeat in the first exon of the androgen receptor (AR) gene. There is increasing evidence that testosterone, the ligand of AR, plays a pivotal role in the neurodegeneration in SBMA. The striking success of androgen deprivation therapy in SBMA mouse models has been translated into phase 2, and then phase 3, clinical trials.

  17. Cancer gene therapy with targeted adenoviruses.

    PubMed

    Bachtarzi, Houria; Stevenson, Mark; Fisher, Kerry

    2008-11-01

    Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.

  18. An overview of targeted alpha therapy with 225Actinium and 213Bismuth.

    PubMed

    Morgenstern, Alfred; Apostolidis, Christos; Kratochwil, Clemens; Sathekge, Mike; Krolicki, Leszek; Bruchertseifer, Frank

    2018-05-01

    Recent reports of the remarkable therapeutic efficacy of 225Ac-labeled PSMA-617 for therapy of metastatic castration-resistant prostate cancer have underlined the clinical potential of targeted alpha therapy. This review describes methods for the production of 225Ac and its daughter nuclide 213Bi and summarizes the current clinical experience with both alpha emitters with particular focus on recent studies of targeted alpha therapy of bladder cancer, brain tumors, neuroendocrine tumors and prostate cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. The offer of chemistry to targeted therapy in cancer.

    PubMed

    Jemel, Ikram; Jellali, Karim; Elloumi, Jihene; Aifa, Sami

    2011-12-01

    Cancer therapy is facing the big challenge of destroying selectively tumour cells without harming the normal tissues. Chemotherapy was trying from the beginning to kill malignant cells because of their proliferative activity since normal cells are in general quiescent. Meanwhile side effects were produced due to the destruction of some normal cells that need regular proliferation. The discovery of biomarkers led to the identification of molecular targets within tumour cells in order to kill them selectively. Chemistry followed the progress of biomarkers biotechnology by the production of target specific antagonists which were the subject of many patents. Meanwhile novel problems of tumour resistance appeared and made the battle against cancer a non stop development of new strategies and new weapons. As a consequence, paralleled activities of patenting biomarkers and chemical antagonists are continuously generated. The offer of chemistry does not actually limit the efficiency of Targeted therapy but the identification of biomarkers is still missing the exclusive specificity to tumour cells.

  20. Novel therapies in benign and malignant bone diseases.

    PubMed

    Rachner, Tilman D; Hadji, Peyman; Hofbauer, Lorenz C

    2012-06-01

    With an ageing population and improving cancer therapies, the two most common benign and malignant bone diseases, osteoporosis and bone metastases, will continue to affect an increasing number of patients. Our expanding knowledge of the molecular processes underlying these conditions has resulted in novel bone targets that are currently being explored in clinical trials. Clearly, the approval of denosumab, a monoclonal antibody directed against RANKL, has just marked the beginning of a new era for bone therapy with several additional new therapies lining up for clinical approval in the coming years. Potential agents targeting the osteoclast include cathepsin K, currently in phase 3 trials, and src inhibitors. Amongst anabolic agents, inhibitors of the Wnt-inhibitor sclerostin and dickkopf-1 are promising in clinical trials. Here, we will provide a comprehensive overview of the most promising agents currently explored for the treatment of bone diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. EGFR Targeted Therapies and Radiation: Optimizing Efficacy by Appropriate Drug Scheduling and Patient Selection

    PubMed Central

    Cuneo, Kyle C.; Nyati, Mukesh K.; Ray, Dipankar; Lawrence, Theodore S.

    2015-01-01

    The epidermal growth factor receptor (EGFR) plays an important role in tumor progression and treatment resistance for many types of malignancies including head and neck, colorectal, and nonsmall cell lung cancer. Several EGFR targeted therapies are efficacious as single agents or in combination with chemotherapy. Given the toxicity associated with chemoradiation and poor outcomes seen in several types of cancers, combinations of EGFR targeted agents with or without chemotherapy have been tested in patients receiving radiation. To date, the only FDA approved use of an anti-EGFR therapy in combination with radiation therapy is for locally advanced head and neck cancer. Given the important role EGFR plays in lung and colorectal cancer and the benefit of EGFR inhibition combined with chemotherapy in these disease sites, it is perplexing why EGFR targeted therapies in combination with radiation or chemoradiation have not been more successful. In this review we summarize the clinical findings of EGFR targeted therapies combined with radiation and chemoradiation regimens. We then discuss the interaction between EGFR and radiation including radiation induced EGFR signaling, the effect of EGFR on DNA damage repair, and potential mechanisms of radiosensitization. Finally, we examine the potential pitfalls with scheduling EGFR targeted therapies with chemoradiation and the use of predictive biomarkers to improve patient selection. PMID:26205191

  2. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy

    NASA Astrophysics Data System (ADS)

    Zhu, Dao-Ming; Xie, Wei; Xiao, Yu-Sha; Suo, Meng; Zan, Ming-Hui; Liao, Qing-Quan; Hu, Xue-Jia; Chen, Li-Ben; Chen, Bei; Wu, Wen-Tao; Ji, Li-Wei; Huang, Hui-Ming; Guo, Shi-Shang; Zhao, Xing-Zhong; Liu, Quan-Yan; Liu, Wei

    2018-02-01

    Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

  3. Pharmacology in the Era of Targeted Therapies: The Case of PI3K Inhibitors.

    PubMed

    Toska, Eneda; Baselga, José

    2016-05-01

    The PI3K pathway is often aberrantly activated in estrogen receptor positive (ER(+)) breast cancer and therapies combining PI3K inhibitors and antiestrogens are under clinical development. Given that many PI3K inhibitors have substantial toxicities with continuous dosing and that alternate dosing schedules are equally active, further clinical exploration is warranted. Clin Cancer Res; 22(9); 2099-101. ©2016 AACRSee related article by Yang et al., p. 2250. ©2016 American Association for Cancer Research.

  4. Targeted anti-IL-13 therapies in asthma: current data and future perspectives.

    PubMed

    Ntontsi, Polyxeni; Papathanassiou, Evgenia; Loukides, Stelios; Bakakos, Petros; Hillas, Georgios

    2018-02-01

    The identification of patients with severe asthma who will benefit from a personalized management approach remains an unmet need. Interleukin-13 (IL-13) is a cytokine possessing a significant role in asthma pathogenesis and progression of disease. Humanised monoclonal antibodies against IL-13 and IL-13 and IL-4 receptors are mainly proposed as add-on therapy in patients with T H 2-high inflammation with uncontrolled asthma despite maximum therapy. Areas covered: The role of IL-13 in airway inflammation in severe asthma, the targeted anti-IL-13 therapies and biomarkers that predict response to anti-IL-13 treatment are discussed. Expert opinion: New effective individualized therapies in severe asthma are urgently needed to block specific inflammatory pathways using monoclonal antibodies. Studies on anti-IL-13 therapies showed that asthmatic patients could benefit from this novel targeted therapy as far as lung function and exacerbation rate are concerned. T H 2-high and especially periostin-high groups of asthmatics with moderate-to-severe uncontrolled asthma seem to compose the group that could benefit from anti-IL-13 therapy. Targeting IL-13 alone may not be sufficient to achieve asthma control. Inhibition of IL-13 and IL-4 with mabs may be more encouraging and patients will probably have additional benefits from these therapeutic interventions because of IL-13/IL-4 overlapping actions in asthma pathophysiology.

  5. Targeting the undruggable: Advances and obstacles in current RNAi therapy

    PubMed Central

    Wu, Sherry Y.; Lopez-Berestein, Gabriel; Calin, George A.; Sood, Anil K.

    2014-01-01

    RNA interference (RNAi) therapeutics represents a rapidly emerging platform for personalized cancer treatment. Recent advances in delivery, target selection, and safety of RNAi cancer therapy provide unprecedented opportunities for clinical translation. Here, we discuss these advances and present strategies for making RNAi-based therapy a viable part of cancer management. PMID:24920658

  6. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma

    PubMed Central

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  7. The Insulin Receptor: A New Target for Cancer Therapy

    PubMed Central

    Malaguarnera, Roberta; Belfiore, Antonino

    2011-01-01

    A large body of evidences have shown that both the IGF-I receptor (IGF-IR) and the insulin receptor (IR) play a role in cancer development and progression. In particular, IR overactivation by IGF-II is common in cancer cells, especially in dedifferentiated/stem-like cells. In spite of these findings, until very recently, only IGF-IR but not IR has been considered a target in cancer therapy. Although several preclinical studies have showed a good anti-cancer activity of selective anti-IGF-IR drugs, the results of the clinical first trials have been disappointing. In fact, only a small subset of malignant tumors has shown an objective response to these therapies. Development of resistance to anti-IGF-IR drugs may include upregulation of IR isoform A (IR-A) in cancer cells and its overactivation by increased secretion of autocrine IGF-II. These findings have led to the concept that co-targeting IR together with IGF-IR may increase therapy efficacy and prevent adaptive resistance to selective anti-IGF-IR drugs. IR blockade should be especially considered in tumors with high IR-A:IGF-IR ratio and high levels of autocrine IGF-II. Conversely, insulin sensitizers, which ameliorate insulin resistance associated with metabolic disorders and cancer treatments, may have important implications for cancer prevention and management. Only few drugs co-targeting the IR and IGF-IR are currently available. Ideally, future IR targeting strategies should be able to selectively inhibit the tumor promoting effects of IR without impairing its metabolic effects. PMID:22654833

  8. The impact of perioperative fluid therapy on short-term outcomes and 5-year survival among patients undergoing colorectal cancer surgery - A prospective cohort study within an ERAS protocol.

    PubMed

    Asklid, D; Segelman, J; Gedda, C; Hjern, F; Pekkari, K; Gustafsson, U O

    2017-08-01

    Restricted perioperative fluid therapy is one of several interventions in the enhanced recovery after surgery (ERAS) protocol, designed to reduce morbidity and hospital stay after surgery. The impact of this single intervention on short and long term outcome after colorectal surgery is unknown. This cohort study includes all consecutive patients operated with abdominal resection of colorectal cancer 2002-2007 at Ersta Hospital, Stockholm, Sweden. All patients were treated within an ERAS protocol and registered in the ERAS-database. Compliance to interventions in the ERAS protocol was analysed. The impact of a restrictive perioperative fluid therapy (≤3000 ml on the day of surgery) protocol on short-term outcomes as well as 5-year survival was assessed with multivariable analysis adjusted for confounding factors. Nine hundred and eleven patients were included. Patients receiving ≤3000 ml of intravenous fluids on the day of surgery had a lower risk of complications OR 0.44 (95% C I 0.28-0.71), symptoms delaying discharge OR 0.47(95% C I 0.32-0.70) and shorter length of stay compared with patients receiving >3000 ml. In cox regression analysis, the risk of cancer specific death was reduced with 55% HR 0.45(95% C I 0.25-0.81) for patients receiving ≤ 3000 ml compared with patients receiving >3000 ml. A restrictive compared with a non-restrictive perioperative fluid therapy on the day of surgery may be associated with lower short-term complication rates, faster recovery, shorter length of stay and improved 5-year survival. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  9. Emerging Molecularly Targeted Therapies in Castration Refractory Prostate Cancer

    PubMed Central

    Patel, Jesal C.; Maughan, Benjamin L.; Agarwal, Archana M.; Batten, Julia A.; Zhang, Tian Y.; Agarwal, Neeraj

    2013-01-01

    Androgen deprivation therapy (ADT) with medical or surgical castration is the mainstay of therapy in men with metastatic prostate cancer. However, despite initial responses, almost all men eventually develop castration refractory metastatic prostate cancer (CRPC) and die of their disease. Over the last decade, it has been recognized that despite the failure of ADT, most prostate cancers maintain some dependence on androgen and/or androgen receptor (AR) signaling for proliferation. Furthermore, androgen independent molecular pathways have been identified as drivers of continued progression of CRPC. Subsequently, drugs have been developed targeting these pathways, many of which have received regulatory approval. Agents such as abiraterone, enzalutamide, orteronel (TAK-700), and ARN-509 target androgen signaling. Sipuleucel-T, ipilimumab, and tasquinimod augment immune-mediated tumor killing. Agents targeting classic tumorogenesis pathways including vascular endothelial growth factor, hepatocyte growth factor, insulin like growth factor-1, tumor suppressor, and those which regulate apoptosis and cell cycles are currently being developed. This paper aims to focus on emerging molecular pathways underlying progression of CRPC, and the drugs targeting these pathways, which have recently been approved or have reached advanced stages of development in either phase II or phase III clinical trials. PMID:23819055

  10. Stroma Breaking Theranostic Nanoparticles for Targeted Pancreatic Cancer Therapy

    Cancer.gov

    This project develops a dual-targeted and stroma breaking theranostic nanoparticle platform to address an unmet, clinical challenge of poor drug delivery efficiency in the application of nanomedicine to cancer therapy.

  11. Renal replacement therapy in Europe: a summary of the 2013 ERA-EDTA Registry Annual Report with a focus on diabetes mellitus.

    PubMed

    Kramer, Anneke; Pippias, Maria; Stel, Vianda S; Bonthuis, Marjolein; Abad Diez, José Maria; Afentakis, Nikolaos; Alonso de la Torre, Ramón; Ambuhl, Patrice; Bikbov, Boris; Bouzas Caamaño, Encarnación; Bubic, Ivan; Buturovic-Ponikvar, Jadranka; Caskey, Fergus J; Castro de la Nuez, Pablo; Cernevskis, Harijs; Collart, Frederic; Comas Farnés, Jordi; Garcia Bazaga, Maria de Los Ángeles; De Meester, Johan; Ferrer Alamar, Manuel; Finne, Patrik; Garneata, Liliana; Golan, Eliezer; G Heaf, James; Hemmelder, Marc; Ioannou, Kyriakos; Kantaria, Nino; Kolesnyk, Mykola; Kramar, Reinhard; Lassalle, Mathilde; Lezaic, Visnja; Lopot, Frantisek; Macário, Fernando; Magaz, Angela; Martín-Escobar, Eduardo; Metcalfe, Wendy; Ots-Rosenberg, Mai; Palsson, Runolfur; Piñera Celestino, Celestino; Resić, Halima; Rutkowski, Boleslaw; Santiuste de Pablos, Carmen; Spustová, Viera; Stendahl, Maria; Strakosha, Ariana; Süleymanlar, Gültekin; Torres Guinea, Marta; Varberg Reisæter, Anna; Vazelov, Evgueniy; Ziginskiene, Edita; Massy, Ziad A; Wanner, Christoph; Jager, Kitty J; Noordzij, Marlies

    2016-06-01

    This article provides a summary of the 2013 European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report (available at http://www.era-edta-reg.org), with a focus on patients with diabetes mellitus (DM) as the cause of end-stage renal disease (ESRD). In 2015, the ERA-EDTA Registry received data on renal replacement therapy (RRT) for ESRD from 49 national or regional renal registries in 34 countries in Europe and bordering the Mediterranean Sea. Individual patient data were provided by 31 registries, while 18 registries provided aggregated data. The total population covered by the participating registries comprised 650 million people. In total, 72 933 patients started RRT for ESRD within the countries and regions reporting to the ERA-EDTA Registry, resulting in an overall incidence of 112 per million population (pmp). The overall prevalence on 31 December 2013 was 738 pmp (n = 478 990). Patients with DM as the cause of ESRD comprised 24% of the incident RRT patients (26 pmp) and 17% of the prevalent RRT patients (122 pmp). When compared with the USA, the incidence of patients starting RRT pmp secondary to DM in Europe was five times lower and the incidence of RRT due to other causes of ESRD was two times lower. Overall, 19 426 kidney transplants were performed (30 pmp). The 5-year adjusted survival for all RRT patients was 60.9% [95% confidence interval (CI) 60.5-61.3] and 50.6% (95% CI 49.9-51.2) for patients with DM as the cause of ESRD.

  12. High Prevalence of Echocardiographic Abnormalities among HIV-infected Persons in the Era of Highly Active Antiretroviral Therapy.

    PubMed

    Mondy, Kristin E; Gottdiener, John; Overton, E Turner; Henry, Keith; Bush, Tim; Conley, Lois; Hammer, John; Carpenter, Charles C; Kojic, Erna; Patel, Pragna; Brooks, John T

    2011-02-01

    in the era of highly active antiretroviral therapy (HAART), human immunodeficiency virus (HIV)-infected persons have higher cardiovascular disease risk. Little is known about asymptomatic abnormalities in cardiac structure and function in this population. the Study to Understand the Natural History of HIV/AIDS in the Era of Effective Therapy (SUN Study) is a prospective, observational, multi-site cohort of 656 HIV-infected participants who underwent baseline echocardiography during 2004-2006. We examined prevalence of and factors associated with left ventricular systolic dysfunction (LVSD), diastolic dysfunction (DD), pulmonary hypertension (PHTN), left ventricular hypertrophy (LVH), and left atrial enlargement (LAE). participant characteristics were as follows: median age, 41 years; 24% women; 29% non-Hispanic black; 73% receiving HAART; and median CD4+ cell count, 462 cells/μL. Among evaluable participants, 18% had LVSD, 26% had DD, 57% had PHTN (right ventricular pressure >30 mm Hg), 6.5% had LVH, and 40% had LAE. In multivariate analyses, significant factors (P < .05) associated with LVSD were history of MI, elevated highly sensitive C-reactive protein (hsCRP) level, and current tobacco smoking; for DD, elevated hsCRP level and hypertension; for PHTN, current use of ritonavir; for LVH, hypertension, diabetes, non-white race, female sex with elevated body mass index, calculated as the weight in kilograms divided by the square of height in meters, of ≥ 25, elevated hsCRP level, and current use of abacavir; for LAE, hypertension and recent marijuana use. in this large contemporary HIV cohort, the prevalence of subclinical functional and structural cardiac abnormalities was greater than expected for age. Abnormalities were mostly associated with expected and often modifiable risks. Lifestyle modification should become a greater priority in the management of chronic HIV disease.

  13. Biomimetic and bioinspired nanoparticles for targeted drug delivery.

    PubMed

    Gagliardi, Mariacristina

    2017-03-01

    In drug targeting, the urgent need for more effective and less iatrogenic therapies is pushing toward a complete revision of carrier setup. After the era of 'articles used as homing systems', novel prototypes are now emerging. Newly conceived carriers are endowed with better biocompatibility, biodistribution and targeting properties. The biomimetic approach bestows such improved functional properties. Exploiting biological molecules, organisms and cells, or taking inspiration from them, drug vector performances are now rapidly progressing toward the perfect carrier. Following this direction, researchers have refined carrier properties, achieving significant results. The present review summarizes recent advances in biomimetic and bioinspired drug vectors, derived from biologicals or obtained by processing synthetic materials with a biomimetic approach.

  14. Immune Effects of Chemotherapy, Radiation, and Targeted Therapy and Opportunities for Combination With Immunotherapy.

    PubMed

    Wargo, Jennifer A; Reuben, Alexandre; Cooper, Zachary A; Oh, Kevin S; Sullivan, Ryan J

    2015-08-01

    There have been significant advances in cancer treatment over the past several years through the use of chemotherapy, radiation therapy, molecularly targeted therapy, and immunotherapy. Despite these advances, treatments such as monotherapy or monomodality have significant limitations. There is increasing interest in using these strategies in combination; however, it is not completely clear how best to incorporate molecularly targeted and immune-targeted therapies into combination regimens. This is particularly pertinent when considering combinations with immunotherapy, as other types of therapy may have significant impact on host immunity, the tumor microenvironment, or both. Thus, the influence of chemotherapy, radiation therapy, and molecularly targeted therapy on the host anti-tumor immune response and the host anti-host response (ie, autoimmune toxicity) must be taken into consideration when designing immunotherapy-based combination regimens. We present data related to many of these combination approaches in the context of investigations in patients with melanoma and discuss their potential relationship to management of patients with other tumor types. Importantly, we also highlight challenges of these approaches and emphasize the need for continued translational research. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Randomized controlled trial comparing cerebral perfusion pressure-targeted therapy versus intracranial pressure-targeted therapy for raised intracranial pressure due to acute CNS infections in children.

    PubMed

    Kumar, Ramesh; Singhi, Sunit; Singhi, Pratibha; Jayashree, Muralidharan; Bansal, Arun; Bhatti, Anuj

    2014-08-01

    In children with acute CNS infection, management of raised intracranial pressure improves mortality and neuromorbidity. We compared cerebral perfusion pressure-targeted approach with the conventional intracranial pressure-targeted approach to treat raised intracranial pressure in these children. Prospective open-label randomized controlled trial. PICU in a tertiary care academic institute. Hundred ten children (1-12 yr) with acute CNS infections having raised intracranial pressure and a modified Glasgow Coma Scale score less than or equal to 8 were enrolled. Patients were randomized to receive either cerebral perfusion pressure-targeted therapy (n = 55) (maintaining cerebral perfusion pressure ≥ 60 mm Hg, using normal saline bolus and vasoactive therapy-dopamine, and if needed noradrenaline) or intracranial pressure-targeted therapy (n = 55) (maintaining intracranial pressure < 20 mm Hg using osmotherapy while ensuring normal blood pressure). The primary outcome was mortality up to 90 days after discharge from PICU. Secondary outcome was modified Glasgow Coma Scale score at 72 hours after enrollment, length of PICU stay, duration of mechanical ventilation, and hearing deficit and functional neurodisability at discharge and 90-day follow-up. A 90-day mortality in intracranial pressure group (38.2%) was significantly higher than cerebral perfusion pressure group (18.2%; relative risk = 2.1; 95% CI, 1.09-4.04; p = 0.020). The cerebral perfusion pressure group in comparison with intracranial pressure group had significantly higher median (interquartile range) modified Glasgow Coma Scale score at 72 hours (10 [8-11] vs 7 [4-9], p < 0.001), shorter length of PICU stay (13 d [10.8-15.2 d] vs. 18 d [14.5-21.5 d], p = 0.002) and mechanical ventilation (7.5 d [5.4-9.6 d] vs. 11.5 d [9.5-13.5 d], p = 0.003), lower prevalence of hearing deficit (8.9% vs 37.1%; relative risk = 0.69; 95% CI, 0.53-0.90; p = 0.005), and neurodisability at discharge from PICU (53.3% vs. 82

  16. Targeting Trypsin-Inflammation Axis for Pancreatitis Therapy in a Humanized Pancreatitis Model

    DTIC Science & Technology

    2016-10-01

    Award Number: W81XWH-15-1-0257 TITLE: Targeting Trypsin-Inflammation Axis for Pancreatitis Therapy in a Humanized Pancreatitis Model PRINCIPAL...AND SUBTITLE Targeting Trypsin-Inflammation Axis for Pancreatitis Therapy in a Humanized Pancreatitis Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER...remains the same since it is covered under the institutional review. We set up monthly video conferences with our partnership PI to discuss any

  17. Rework of the ERA software system: ERA-8

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Skripnichenko, V.

    2015-08-01

    The software system that has been powering many products of the IAA during decades has undergone a major rework. ERA has capabilities for: processing tables of observations of different kinds, fitting parameters to observations, integrating equations of motion of the Solar system bodies. ERA comprises a domain-specific language called SLON, tailored for astronomical tasks. SLON provides a convenient syntax for reductions of observations, choosing of IAU standards to use, applying rules for filtering observations or selecting parameters for fitting. Also, ERA includes a table editor and a graph plotter. ERA-8 has a number of improvements over previous versions such as: integration of the Solar system and TT xA1 TDB with arbitrary number of asteroids; option to use different ephemeris (including DE and INPOP); integrator with 80-bit floating point. The code of ERA-8 has been completely rewritten from Pascal to C (for numerical computations) and Racket (for running SLON programs and managing data). ERA-8 is portable across major operating systems. The format of tables in ERA-8 is based on SQLite. The SPICE format has been chosen as the main format for ephemeris in ERA-8.

  18. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    PubMed Central

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  19. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    PubMed

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  20. Targeted Immune Therapy of Ovarian Cancer

    PubMed Central

    Knutson, Keith L.; Karyampudi, Lavakumar; Lamichhane, Purushottam; Preston, Claudia

    2014-01-01

    Clinical outcomes, such as recurrence free survival and overall survival, in ovarian cancer are quite variable, independent of common characteristics such as stage, response to therapy and grade. This disparity in outcomes warrants further exploration and therapeutic targeting into the interaction between the tumor and host. One compelling host characteristic that contributes both to the initiation and progression of ovarian cancer is the immune system. Hundreds of studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease. Recent studies also show that anti-tumor immunity is often negated by immune regulatory cells present in the tumor microenvironment. Regulatory immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological targets that influence ovarian cancer outcome as well as include an update on newer immunotherapeutic strategies. PMID:25544369

  1. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial.

    PubMed

    Khan, Fakhar Z; Virdee, Mumohan S; Palmer, Christopher R; Pugh, Peter J; O'Halloran, Denis; Elsik, Maros; Read, Philip A; Begley, David; Fynn, Simon P; Dutka, David P

    2012-04-24

    This study sought to assess the impact of targeted left ventricular (LV) lead placement on outcomes of cardiac resynchronization therapy (CRT). Placement of the LV lead to the latest sites of contraction and away from the scar confers the best response to CRT. We conducted a randomized, controlled trial to compare a targeted approach to LV lead placement with usual care. A total of 220 patients scheduled for CRT underwent baseline echocardiographic speckle-tracking 2-dimensional radial strain imaging and were then randomized 1:1 into 2 groups. In group 1 (TARGET [Targeted Left Ventricular Lead Placement to Guide Cardiac Resynchronization Therapy]), the LV lead was positioned at the latest site of peak contraction with an amplitude of >10% to signify freedom from scar. In group 2 (control) patients underwent standard unguided CRT. Patients were classified by the relationship of the LV lead to the optimal site as concordant (at optimal site), adjacent (within 1 segment), or remote (≥2 segments away). The primary endpoint was a ≥15% reduction in LV end-systolic volume at 6 months. Secondary endpoints were clinical response (≥1 improvement in New York Heart Association functional class), all-cause mortality, and combined all-cause mortality and heart failure-related hospitalization. The groups were balanced at randomization. In the TARGET group, there was a greater proportion of responders at 6 months (70% vs. 55%, p = 0.031), giving an absolute difference in the primary endpoint of 15% (95% confidence interval: 2% to 28%). Compared with controls, TARGET patients had a higher clinical response (83% vs. 65%, p = 0.003) and lower rates of the combined endpoint (log-rank test, p = 0.031). Compared with standard CRT treatment, the use of speckle-tracking echocardiography to the target LV lead placement yields significantly improved response and clinical status and lower rates of combined death and heart failure-related hospitalization. (Targeted Left Ventricular Lead

  2. Aptamers: Active Targeting Ligands for Cancer Diagnosis and Therapy

    PubMed Central

    Wu, Xu; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2015-01-01

    Aptamers, including DNA, RNA and peptide aptamers, are a group of promising recognition units that can specifically bind to target molecules and cells. Due to their excellent specificity and high affinity to targets, aptamers have attracted great attention in various fields in which selective recognition units are required. They have been used in biosensing, drug delivery, disease diagnosis and therapy (especially for cancer treatment). In this review, we summarized recent applications of DNA and RNA aptamers in cancer theranostics. The specific binding ability of aptamers to cancer-related markers and cancer cells ensured their high performance for early diagnosis of cancer. Meanwhile, the efficient targeting ability of aptamers to cancer cells and tissues provided a promising way to deliver imaging agents and drugs for cancer imaging and therapy. Furthermore, with the development of nanoscience and nanotechnology, the conjugation of aptamers with functional nanomaterials paved an exciting way for the fabrication of theranostic agents for different types of cancers, which might be a powerful tool for cancer treatment. PMID:25699094

  3. Iodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy.

    PubMed

    Song, Xuejiao; Liang, Chao; Feng, Liangzhu; Yang, Kai; Liu, Zhuang

    2017-08-22

    Combining different therapeutic functions within single tumor-targeted nanoscale delivery systems is promising to overcome the limitations of conventional cancer therapies. Herein, transferrin that recognizes transferrin receptors up-regulated on tumor cells is pre-labeled with iodine-131 ( 131 I) and then utilized as the stabilizer in the fabrication of polypyrrole (PPy) nanoparticles. The obtained transferrin-capped PPy@Tf- 131 I nanoparticles could be used for tumor-targeted radioisotope therapy (RIT) and photothermal therapy (PTT), by employing beta-emission from 131 I and the intrinsic high near-infrared (NIR) absorbance of PPy, respectively. Owing to the transferrin-mediated tumor targeting, PPy@Tf- 131 I nanoparticles exhibit obviously enhanced in vitro cancer cell binding and in vivo tumor uptake compared to its non-targeting counterpart. The combined RIT and PTT based on PPy@Tf- 131 I nanoparticles is then conducted, achieving a remarkable synergistic therapeutic effect. This work thus demonstrates a rather simple one-step approach to fabricate tumor-targeting nanoparticles based on protein-capped conjugated polymers, promising for combination cancer therapy with great efficacy and high safety.

  4. Nanoparticle targeted therapy against childhood acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Satake, Noriko; Lee, Joyce; Xiao, Kai; Luo, Juntao; Sarangi, Susmita; Chang, Astra; McLaughlin, Bridget; Zhou, Ping; Kenney, Elaina; Kraynov, Liliya; Arnott, Sarah; McGee, Jeannine; Nolta, Jan; Lam, Kit

    2011-06-01

    The goal of our project is to develop a unique ligand-conjugated nanoparticle (NP) therapy against childhood acute lymphoblastic leukemia (ALL). LLP2A, discovered by Dr. Kit Lam, is a high-affinity and high-specificity peptidomimetic ligand against an activated α4β1 integrin. Our study using 11 fresh primary ALL samples (10 precursor B ALL and 1 T ALL) showed that childhood ALL cells expressed activated α4β1 integrin and bound to LLP2A. Normal hematopoietic cells such as activated lymphocytes and monocytes expressed activated α4β1 integrin; however, normal hematopoietic stem cells showed low expression of α4β1 integrin. Therefore, we believe that LLP2A can be used as a targeted therapy for childhood ALL. The Lam lab has developed novel telodendrimer-based nanoparticles (NPs) which can carry drugs efficiently. We have also developed a human leukemia mouse model using immunodeficient NOD/SCID/IL2Rγ null mice engrafted with primary childhood ALL cells from our patients. LLP2A-conjugated NPs will be evaluated both in vitro and in vivo using primary leukemia cells and this mouse model. NPs will be loaded first with DiD near infra-red dye, and then with the chemotherapeutic agents daunorubicin or vincristine. Both drugs are mainstays of current chemotherapy for childhood ALL. Targeting properties of LLP2A-conjugated NPs will be evaluated by fluorescent microscopy, flow cytometry, MTS assay, and mouse survival after treatment. We expect that LLP2A-conjugated NPs will be preferentially delivered and endocytosed to leukemia cells as an effective targeted therapy.

  5. Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Stayner, Cherie; Brooke, Darby G; Bates, Michael; Eccles, Michael R

    2018-05-07

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening genetic disease in humans, affecting approximately 1 in 500 people. ADPKD is characterized by cyst growth in the kidney leading to progressive parenchymal damage and is the underlying pathology in approximately 10% of patients requiring hemodialysis or transplantation for end-stage kidney disease. The two proteins that are mutated in ADPKD, polycystin-1 and polycystin-2, form a complex located on the primary cilium and the plasma membrane to facilitate calcium ion release in the cell. There is currently no Food and Drug Administration (FDA)-approved therapy to cure or slow the progression of the disease. Rodent ADPKD models do not completely mimic the human disease, and therefore preclinical results have not always successfully translated to the clinic. Moreover, the toxicity of many of these potential therapies has led to patient withdrawals from clinical trials. Here, we review compounds in a clinical trial for treating ADPKD, and we examine the feasibility of using a kidney-targeted approach, with potential for broadening the therapeutic window, decreasing treatment-associated toxicity and increasing the efficacy of agents that have demonstrated activity in animal models. We make recommendations for integrating kidney-targeted therapies with current treatment regimes, to achieve a combined approach to treating ADPKD. Many compounds are currently in clinical trial for ADPKD, yet to date, none are FDA-approved for treating this disease. Patients could benefit from efficacious pharmacotherapy, especially if it can be kidney-targeted, and intensive efforts continue to be focused on this goal. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. New targets and therapies for gastrointestinal stromal tumors.

    PubMed

    Wozniak, Agnieszka; Gebreyohannes, Yemarshet K; Debiec-Rychter, Maria; Schöffski, Patrick

    2017-12-01

    The majority of gastrointestinal stromal tumors (GIST) are driven by an abnormal receptor tyrosine kinase (RTK) signaling, occurring mainly due to somatic mutations in KIT or platelet derived growth factor receptor alpha (PDGFRA). Although the introduction of tyrosine kinase inhibitors (TKIs) has revolutionized therapy for GIST patients, with time the vast majority of them develop TKI resistance. Advances in understanding the molecular background of GIST resistance allows for the identification of new targets and the development of novel strategies to overcome or delay its occurrence. Areas covered: The focus of this review is on novel, promising therapeutic approaches to overcome heterogeneous resistance to registered TKIs. These approaches involve new TKIs, including drugs specific for a mutated form of KIT/PDGFRA, drugs with inhibitory effect against multiple RTKs, compounds targeting dysregulated downstream signaling pathways, drugs affecting KIT expression and degradation, inhibitors of cell cycle, and immunotherapeutics. Expert commentary: As the resistance to standard TKI treatment can be heterogeneous, a combinational approach for refractory GIST could be beneficial. Moreover, the understanding of the molecular background of resistant disease would allow development of a more personalized approach for these patients and their response to targeted therapy could be monitored closely using 'liquid biopsy'.

  7. Castration-resistant prostate cancer: targeted therapies.

    PubMed

    Leo, S; Accettura, C; Lorusso, V

    2011-01-01

    Castration-resistant prostate cancer (CRPC) refers to patients who no longer respond to surgical or medical castration. Standard treatment options are limited. To review the concepts and rationale behind targeted agents currently in late-stage clinical testing for patients with CRPC. Novel targeted therapies in clinical trials were identified from registries. The Medline database was searched for all relevant reports published from 1996 to October 2009. Bibliographies of the retrieved articles and major international meeting abstracts were hand-searched to identify additional studies. Advances in our understanding of the molecular mechanisms underlying prostate cancer (PCa) progression have translated into a variety of treatment approaches. Agents targeting androgen receptor activation and local steroidogenesis, angiogenesis, immunotherapy, apoptosis, chaperone proteins, the insulin-like growth factor (IGF) pathway, RANK ligand, endothelin receptors, and the Src family kinases are entering or have recently completed accrual to phase III trials for patients with CRPC. There has been an increase in the understanding of the mechanisms of progression of CRPC. A number of new agents targeting mechanisms of PCa progression with early promising results are in clinical trials and have the potential to provide novel treatment options for CRPC in the near future. Copyright © 2011 S. Karger AG, Basel.

  8. New targeted therapies for indolent B-cell malignancies in older patients.

    PubMed

    Krem, Maxwell M; Gopal, Ajay K

    2015-01-01

    Molecularly targeted agents have become an established component of the treatment of indolent B-cell malignancies (iNHL). iNHL disproportionately affects older adults, so treatments that have excellent tolerability and efficacy across multiple lines of therapy are in demand. The numbers and classes of targeted therapies for iNHL have proliferated rapidly in recent years; classes of agents that show promise for older patients with iNHL include anti-CD20 antibodies, phosphatidyl-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway inhibitors, immunomodulators, proteasome inhibitors, epigenetic modulators, and immunotherapies. Here, we review the proposed mechanisms of action, efficacy, and tolerability of novel agents for iNHL, with an emphasis on their applicability to older patients.

  9. Clinical Advancements in the Targeted Therapies against Liver Fibrosis

    PubMed Central

    Nagórniewicz, Beata; Prakash, Jai

    2016-01-01

    Hepatic fibrosis, characterized by excessive accumulation of extracellular matrix (ECM) proteins leading to liver dysfunction, is a growing cause of mortality worldwide. Hepatocellular damage owing to liver injury leads to the release of profibrotic factors from infiltrating inflammatory cells that results in the activation of hepatic stellate cells (HSCs). Upon activation, HSCs undergo characteristic morphological and functional changes and are transformed into proliferative and contractile ECM-producing myofibroblasts. Over recent years, a number of therapeutic strategies have been developed to inhibit hepatocyte apoptosis, inflammatory responses, and HSCs proliferation and activation. Preclinical studies have yielded numerous targets for the development of antifibrotic therapies, some of which have entered clinical trials and showed improved therapeutic efficacy and desirable safety profiles. Furthermore, advancements have been made in the development of noninvasive markers and techniques for the accurate disease assessment and therapy responses. Here, we focus on the clinical developments attained in the field of targeted antifibrotics for the treatment of liver fibrosis, for example, small molecule drugs, antibodies, and targeted drug conjugate. We further briefly highlight different noninvasive diagnostic technologies and will provide an overview about different therapeutic targets, clinical trials, endpoints, and translational efforts that have been made to halt or reverse the progression of liver fibrosis. PMID:27999454

  10. Nanozeolite bioconjugates labeled with 223Ra for targeted alpha therapy.

    PubMed

    Piotrowska, Agata; Męczyńska-Wielgosz, Sylwia; Majkowska-Pilip, Agnieszka; Koźmiński, Przemysław; Wójciuk, Grzegorz; Cędrowska, Edyta; Bruchertseifer, Frank; Morgenstern, Alfred; Kruszewski, Marcin; Bilewicz, Aleksander

    2017-04-01

    Alpha particle emitting isotopes are of considerable interest for radionuclide therapy because of their high cytotoxicity and short path length. Among the many α emitters, 223 Ra exhibits very attractive nuclear properties for application in radionuclide therapy. The decay of this radioisotope and its daughters is accompanied by the emission of four α-particles, releasing 27.9MeV of cumulative energy. Unfortunately the lack of an appropriate bifunctional ligand for radium has so far been a main obstacle for the application of 223 Ra in receptor targeted therapy. In our studies we investigated the use of nanozeolite-Substance P bioconjugates as vehicles for 223 Ra radionuclides for targeted α therapy. The sodium form of an A-type of nanozeolite (NaA) was synthesized using the template method. Next, the nanozeolite particles were conjugated to the Substance P (5-11) peptide fragment, which targets NK-1 receptors on glioma cells. The obtained bioconjugate was characterized by transmission emission spectroscopy, thermogravimetric analysis and dynamic light scattering analysis. The NaA-silane-PEG-SP(5-11) bioconjugates were labeled with 223 Ra by exchange of the Na + cation and the stability, receptor affinity and cytotoxicity of the obtained radiobioconjugates were tested. The 223 Ra-labeled nanozeolite bioconjugate almost quantitatively retains 223 Ra in vitro after 6days, while the retention of decay products varies from 90 to 95%. The synthesized 223 RaA-silane-PEG-SP(5-11) showed high receptor affinity toward NK-1 receptor expressing glioma cells and exhibited a high cytotoxic effect in vitro. Substance P functionalized nanozeolite-A represents a viable solution for the use of the 223 Ra in vivo generator as a therapeutic construct for targeting glioma cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Engineering liposomal nanoparticles for targeted gene therapy.

    PubMed

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  12. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    PubMed Central

    Mavroudi, Maria; Zarogoulidis, Paul; Porpodis, Konstantinos; Kioumis, Ioannis; Lampaki, Sofia; Yarmus, Lonny; Malecki, Raf; Zarogoulidis, Konstantinos; Malecki, Marek

    2014-01-01

    Introduction Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The statistics speak for themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem cells’ guided gene therapy. Review of therapeutic strategies in preclinical and clinical trials Stem cells have the unique potential for self renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for

  13. Genetic tumor profiling and genetically targeted cancer therapy.

    PubMed

    Goetsch, Cathleen M

    2011-02-01

    To discuss how understanding and manipulation of tumor genetics information and technology shapes cancer care today and what changes might be expected in the near future. Published articles, web resources, clinical practice. Advances in our understanding of genes and their regulation provide a promise of more personalized cancer care, allowing selection of the most safe and effective therapy in an individual situation. Rapid progress in the technology of tumor profiling and targeted cancer therapies challenges nurses to keep up-to-date to provide quality patient education and care. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Somatostatin Analogues for Receptor Targeted Photodynamic Therapy

    PubMed Central

    Kaščáková, Slávka; Hofland, Leo J.; De Bruijn, Henriette S.; Ye, Yunpeng; Achilefu, Samuel; van der Wansem, Katy; van der Ploeg-van den Heuvel, Angelique; van Koetsveld, Peter M.; Brugts, Michael P.; van der Lelij, Aart-Jan; Sterenborg, Henricus J. C. M.; ten Hagen, Timo L. M.; Robinson, Dominic J.; van Hagen, Martin P.

    2014-01-01

    Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2 + AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate. PMID:25111655

  15. Convergence of Molecular Targets for Cancer Prevention and Therapy

    Cancer.gov

    Waun Ki Hong, MD, American Cancer Society Professor; Samsung Distinguished University Chair in Cancer Medicine at the University of Texas M. D. Anderson Cancer Center, Houston, TX, presented "Convergence of Molecular Targets for Cancer Prevention and Therapy".

  16. A view on EGFR-targeted therapies from the oncogene-addiction perspective.

    PubMed

    Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto

    2013-01-01

    Tumor cell growth and survival can often be impaired by inactivating a single oncogen- a phenomenon that has been called as "oncogene addiction." It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the "EGFR addiction" phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  17. Targeted exercise therapy for voice and swallow in persons with Parkinson’s disease

    PubMed Central

    Russell, John A.; Ciucci, Michelle R.; Connor, Nadine P.; Schallert, Timothy

    2010-01-01

    Sensorimotor deficits affecting voice and swallowing ability can have a devastating impact on the quality of life of people with Parkinson disease (PD). Recent scientific findings in animal models of PD pinpoint targeted exercise therapy as a potential treatment to reduce neurochemical loss and decrease parkinsonian symptoms. Although there may be beneficial effects, targeted exercise therapy is not a standard component of therapy for the cranial sensiromotor deficits seen in PD. In this paper we review the scientific evidence for targeted training for voice and swallowing deficits. The literature search revealed 19 publications that included targeted training for voice and only one publication that included targeted training for swallowing. We summarize 3 main findings: 1) targeted training may be associated with lasting changes in voice behavior, 2) targeted training of sensorimotor actions with anatomical or functional overlap with voice and swallowing may improve voice and swallowing to some degree, but it is unknown whether these effects endure over time, and 3) evidence regarding cranial sensorimotor interventions for Parkinson disease is sparse. We concluded that targeted training for voice and swallow is a promising but under-studied intervention for cranial sensorimotor deficits associated with PD and posit that animal models can be useful in designing empirically based studies that further the science on targeted training. PMID:20233583

  18. Molecular Targeted Drugs and Biomarkers in NSCLC, the Evolving Role of Individualized Therapy

    PubMed Central

    Domvri, Kalliopi; Zarogoulidis, Paul; Darwiche, Kaid; Browning, Robert F.; Li, Qiang; Turner, J. Francis; Kioumis, Ioannis; Spyratos, Dionysios; Porpodis, Konstantinos; Papaiwannou, Antonis; Tsiouda, Theodora; Freitag, Lutz; Zarogoulidis, Konstantinos

    2013-01-01

    Lung cancer first line treatment has been directed from the non-specific cytotoxic doublet chemotherapy to the molecular targeted. The major limitation of the targeted therapies still remains the small number of patients positive to gene mutations. Furthermore, the differentiation between second line and maintenance therapy has not been fully clarified and differs in the clinical practice between cancer centers. The authors present a segregation between maintenance treatment and second line and present a possible definition for the term “maintenance” treatment. In addition, cancer cell evolution induces mutations and therefore either targeted therapies or non-specific chemotherapy drugs in many patients become ineffective. In the present work pathways such as epidermal growth factor, anaplastic lymphoma kinase, met proto-oncogene and PI3K are extensively presented and correlated with current chemotherapy treatment. Future, perspectives for targeted treatment are presented based on the current publications and ongoing clinical trials. PMID:24312144

  19. Translational research: precision medicine, personalized medicine, targeted therapies: marketing or science?

    PubMed

    Marquet, Pierre; Longeray, Pierre-Henry; Barlesi, Fabrice; Ameye, Véronique; Augé, Pascale; Cazeneuve, Béatrice; Chatelut, Etienne; Diaz, Isabelle; Diviné, Marine; Froguel, Philippe; Goni, Sylvia; Gueyffier, François; Hoog-Labouret, Natalie; Mourah, Samia; Morin-Surroca, Michèle; Perche, Olivier; Perin-Dureau, Florent; Pigeon, Martine; Tisseau, Anne; Verstuyft, Céline

    2015-01-01

    Personalized medicine is based on: 1) improved clinical or non-clinical methods (including biomarkers) for a more discriminating and precise diagnosis of diseases; 2) targeted therapies of the choice or the best drug for each patient among those available; 3) dose adjustment methods to optimize the benefit-risk ratio of the drugs chosen; 4) biomarkers of efficacy, toxicity, treatment discontinuation, relapse, etc. Unfortunately, it is still too often a theoretical concept because of the lack of convenient diagnostic methods or treatments, particularly of drugs corresponding to each subtype of pathology, hence to each patient. Stratified medicine is a component of personalized medicine employing biomarkers and companion diagnostics to target the patients likely to present the best benefit-risk balance for a given active compound. The concept of targeted therapy, mostly used in cancer treatment, relies on the existence of a defined molecular target, involved or not in the pathological process, and/or on the existence of a biomarker able to identify the target population, which should logically be small as compared to the population presenting the disease considered. Targeted therapies and biomarkers represent important stakes for the pharmaceutical industry, in terms of market access, of return on investment and of image among the prescribers. At the same time, they probably represent only the first generation of products resulting from the combination of clinical, pathophysiological and molecular research, i.e. of translational research. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  20. Renal replacement therapy in Europe: a summary of the 2013 ERA-EDTA Registry Annual Report with a focus on diabetes mellitus

    PubMed Central

    Kramer, Anneke; Pippias, Maria; Stel, Vianda S.; Bonthuis, Marjolein; Abad Diez, José Maria; Afentakis, Nikolaos; Alonso de la Torre, Ramón; Ambuhl, Patrice; Bikbov, Boris; Bouzas Caamaño, Encarnación; Bubic, Ivan; Buturovic-Ponikvar, Jadranka; Caskey, Fergus J.; Castro de la Nuez, Pablo; Cernevskis, Harijs; Collart, Frederic; Comas Farnés, Jordi; Garcia Bazaga, Maria de los Ángeles; De Meester, Johan; Ferrer Alamar, Manuel; Finne, Patrik; Garneata, Liliana; Golan, Eliezer; G. Heaf, James; Hemmelder, Marc; Ioannou, Kyriakos; Kantaria, Nino; Kolesnyk, Mykola; Kramar, Reinhard; Lassalle, Mathilde; Lezaic, Visnja; Lopot, Frantisek; Macário, Fernando; Magaz, Angela; Martín-Escobar, Eduardo; Metcalfe, Wendy; Ots-Rosenberg, Mai; Palsson, Runolfur; Piñera Celestino, Celestino; Resić, Halima; Rutkowski, Boleslaw; Santiuste de Pablos, Carmen; Spustová, Viera; Stendahl, Maria; Strakosha, Ariana; Süleymanlar, Gültekin; Torres Guinea, Marta; Varberg Reisæter, Anna; Vazelov, Evgueniy; Ziginskiene, Edita; Massy, Ziad A.; Wanner, Christoph; Jager, Kitty J.; Noordzij, Marlies

    2016-01-01

    Background This article provides a summary of the 2013 European Renal Association–European Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report (available at http://www.era-edta-reg.org), with a focus on patients with diabetes mellitus (DM) as the cause of end-stage renal disease (ESRD). Methods In 2015, the ERA-EDTA Registry received data on renal replacement therapy (RRT) for ESRD from 49 national or regional renal registries in 34 countries in Europe and bordering the Mediterranean Sea. Individual patient data were provided by 31 registries, while 18 registries provided aggregated data. The total population covered by the participating registries comprised 650 million people. Results In total, 72 933 patients started RRT for ESRD within the countries and regions reporting to the ERA-EDTA Registry, resulting in an overall incidence of 112 per million population (pmp). The overall prevalence on 31 December 2013 was 738 pmp (n = 478 990). Patients with DM as the cause of ESRD comprised 24% of the incident RRT patients (26 pmp) and 17% of the prevalent RRT patients (122 pmp). When compared with the USA, the incidence of patients starting RRT pmp secondary to DM in Europe was five times lower and the incidence of RRT due to other causes of ESRD was two times lower. Overall, 19 426 kidney transplants were performed (30 pmp). The 5-year adjusted survival for all RRT patients was 60.9% [95% confidence interval (CI) 60.5–61.3] and 50.6% (95% CI 49.9–51.2) for patients with DM as the cause of ESRD. PMID:27274834

  1. Targeted Therapies in Hematology and Their Impact on Patient Care: Chronic and Acute Myeloid Leukemia

    PubMed Central

    Cortes, Elias Jabbour Jorge; Ravandi, Farhad; O’Brien, Susan; Kantarjian, Hagop

    2014-01-01

    Advances in the genetic and molecular characterizations of leukemias have enhanced our capabilities to develop targeted therapies. The most dramatic examples of targeted therapy in cancer to date are the use of targeted BCR-ABL protein tyrosine kinase inhibitors (TKI) which has revolutionized the treatment of chronic myeloid leukemia (CML). Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target, transforming the prognosis of patients with CML. In contrast, acute myeloid leukemia (AML) is an extremely heterogeneous disease with outcomes that vary widely according to subtype of the disease. Targeted therapy with monoclonal antibodies and small molecule kinase inhibitors are promising strategies to help improve the cure rates in AML. In this review, we will highlight the results of recent clinical trials in which outcomes of CML and AML have been influenced significantly. Also, novel approaches to sequencing and combining available therapies will be covered. PMID:24246694

  2. Gene therapy to target ER stress in brain diseases.

    PubMed

    Valenzuela, Vicente; Martínez, Gabriela; Duran-Aniotz, Claudia; Hetz, Claudio

    2016-10-01

    Gene therapy based on the use of Adeno-associated viruses (AAVs) is emerging as a safe and stable strategy to target molecular pathways involved in a variety of brain diseases. Endoplasmic reticulum (ER) stress is proposed as a transversal feature of most animal models and clinical samples from patients affected with neurodegenerative diseases. Manipulation of the unfolded protein response (UPR), a major homeostatic reaction under ER stress conditions, had proved beneficial in diverse models of neurodegeneration. Although increasing number of drugs are available to target ER stress, the use of small molecules to treat chronic brain diseases is challenging because of poor blood brain barrier permeability and undesirable side effects due to the role of the UPR in the physiology of peripheral organs. Gene therapy is currently considered a possible future alternative to circumvent these problems by the delivery of therapeutic agents to selective regions and cell types of the nervous system. Here we discuss current efforts to design gene therapy strategies to alleviate ER stress on a disease context. This article is part of a Special Issue entitled SI:ER stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Anti-VEGF/VEGFR therapy for cancer: reassessing the target.

    PubMed

    Sitohy, Basel; Nagy, Janice A; Dvorak, Harold F

    2012-04-15

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed antiangiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor VEGF-A as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and, here, we call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least 6 well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All 6 types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A(164). Once formed, 4 of the 6 types lose their VEGF-A dependency, and so their responsiveness to anti-VEGF/VEGF receptor therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels.

  4. Mutation testing for directing upfront targeted therapy and post-progression combination therapy strategies in lung adenocarcinoma

    PubMed Central

    Salgia, Ravi

    2016-01-01

    ABSTRACT Introduction: Advances in the biology of non-small-cell lung cancer, especially adenocarcinoma, reveal multiple molecular subtypes driving oncogenesis. Accordingly, individualized targeted therapeutics are based on mutational diagnostics. Areas covered: Advances in strategies and techniques for individualized treatment, particularly of adenocarcinoma, are described through literature review. Approved therapies are established for some molecular subsets, with new driver mutations emerging that represent increasing proportions of patients. Actionable mutations are de novo oncogenic drivers or acquired resistance mediators, and mutational profiling is important for directing therapy. Patients should be monitored for emerging actionable resistance mutations. Liquid biopsy and associated multiplex diagnostics will be important means to monitor patients during treatment. Expert commentary: Outcomes with targeted agents may be improved by integrating mutation screens during treatment to optimize subsequent therapy. In order for this to be translated into impactful patient benefit, appropriate platforms and strategies need to be optimized and then implemented universally. PMID:27139190

  5. Systemic sclerosis and localized scleroderma--current concepts and novel targets for therapy.

    PubMed

    Distler, Oliver; Cozzio, Antonio

    2016-01-01

    Systemic sclerosis (SSc) is a chronic autoimmune disease with a high morbidity and mortality. Skin and organ fibrosis are key manifestations of SSc, for which no generally accepted therapy is available. Thus, there is a high unmet need for novel anti-fibrotic therapeutic strategies in SSc. At the same time, important progress has been made in the identification and characterization of potential molecular targets in fibrotic diseases over the recent years. In this review, we have selected four targeted therapies, which are tested in clinical trials in SSc, for in depths discussion of their preclinical characterization. Soluble guanylate cyclase (sGC) stimulators such as riociguat might target both vascular remodeling and tissue fibrosis. Blockade of interleukin-6 might be particularly promising for early inflammatory stages of SSc. Inhibition of serotonin receptor 2b signaling links platelet activation to tissue fibrosis. Targeting simultaneously multiple key molecules with the multityrosine kinase-inhibitor nintedanib might be a promising approach in complex fibrotic diseases such as SSc, in which many partially independent pathways are activated. Herein, we also give a state of the art overview of the current classification, clinical presentation, diagnostic approach, and treatment options of localized scleroderma. Finally, we discuss whether the novel targeted therapies currently tested in SSc could be used for localized scleroderma.

  6. A perspective on B-cell-targeting therapy for SLE.

    PubMed

    Looney, R John; Anolik, Jennifer; Sanz, Inaki

    2010-02-01

    In recent years, large controlled trials have tested several new agents for systemic lupus erythematosus (SLE). Unfortunately, none of these trials has met its primary outcome. This does not mean progress has not been made. In fact, a great deal has been learned about doing clinical trials in lupus and about the biological and clinical effects of the drugs being tested. Many of these drugs were designed to target B cells directly, e.g., rituximab, belimumab, epratuzumab, and transmembrane activator and calcium modulator and cyclophilin ligand interactor-immunoglobulin (TACI-Ig). The enthusiasm for targeting B cells derives from substantial evidence showing the critical role of B cells in murine models of SLE, as well promising results from multiple open trials with rituximab, a chimeric anti-CD20 monoclonal antibody that specifically depletes B cells (Martin and Chan in Immunity 20(5):517-527, 2004; Sobel et al. in J Exp Med 173:1441-1449, 1991; Silverman and Weisman in Arthritis Rheum 48:1484-1492, 2003; Silverman in Arthritis Rheum 52(4):1342, 2005; Shlomchik et al. in Nat Rev Immunol 1:147-153, 2001; Looney et al. in Arthritis Rheum 50:2580-2589, 2004; Lu et al. in Arthritis Rheum 61(4):482-487, 2009; Saito et al. in Lupus 12(10):798-800, 2003; van Vollenhoven et al. in Scand J Rheumatol 33(6):423-427, 2004; Sfikakis et al. Arthritis Rheum 52(2):501-513, 2005). Why have the controlled trials of B-cell-targeting therapies failed to demonstrate efficacy? Were there flaws in design or execution of these trials? Or, were promising animal studies and open trials misleading, as so often happens? This perspective discusses the current state of B-cell-targeting therapies for human lupus and the future development of these therapies.

  7. Molecular Targeted Approaches to Cancer Therapy and Prevention Using Chalcones

    PubMed Central

    Jandial, Danielle D.; Blair, Christopher A.; Zhang, Saiyang; Krill, Lauren S.; Zhang, Yan-Bing; Zi, Xiaolin

    2014-01-01

    There is an emerging paradigm shift in oncology that seeks to emphasize molecularly targeted approaches for cancer prevention and therapy. Chalcones (1,3-diphenyl-2-propen-1-ones), naturally-occurring compounds with widespread distribution in spices, tea, beer, fruits and vegetables, consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. Due to their structural diversity, relative ease of chemical manipulation and reaction of α, β-unsaturated carbonyl moiety with cysteine residues in proteins, some lead chalcones from both natural products and synthesis have been identified in a variety of screening assays for modulating important pathways or molecular targets in cancers. These pathways and targets that are affected by chalcones include MDM2/p53, tubulin, proteasome, NF-kappa B, TRIAL/death receptors and mitochondria mediated apoptotic pathways, cell cycle, STAT3, AP-1, NRF2, AR, ER, PPAR-γ and β-catenin/Wnt. Compared to current cancer targeted therapeutic drugs, chalcones have the advantages of being inexpensive, easily available and less toxic; the ease of synthesis of chalcones from substituted benzaldehydes and acetophenones also makes them an attractive drug scaffold. Therefore, this review is focused on molecular targets of chalcones and their potential implications in cancer prevention and therapy. PMID:24467530

  8. Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy

    PubMed Central

    Javan, Bita; Shahbazi, Majid

    2017-01-01

    Transcriptional targeting is the best approach for specific gene therapy. Hypoxia is a common feature of the tumour microenvironment. Therefore, targeting gene expression in hypoxic cells by placing transgene under the control of a hypoxia-responsive promoter can be a good strategy for cancer-specific gene therapy. The hypoxia-inducible gene expression system has been investigated more in suicide gene therapy and it can also be of great help in knocking down cancer gene therapy with siRNAs. However, this system needs to be optimised to have maximum efficacy with minimum side effects in normal tissues. The combination of tissue-/tumour-specific promoters with HRE core sequences has been found to enhance the specificity and efficacy of this system. In this review, hypoxia-inducible gene expression system as well as gene therapy strategies targeting tumour hypoxia will be discussed. This review will also focus on hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation systems developed for cancer-specific gene therapy. PMID:28798809

  9. Targeted Antiangiogenesis Gene Therapy Using Targeted Cationic Microbubbles Conjugated with CD105 Antibody Compared with Untargeted Cationic and Neutral Microbubbles

    PubMed Central

    Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong

    2015-01-01

    Objective This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). Methods CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. Results CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×108 microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble

  10. Targeted antiangiogenesis gene therapy using targeted cationic microbubbles conjugated with CD105 antibody compared with untargeted cationic and neutral microbubbles.

    PubMed

    Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong

    2015-01-01

    This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×10(8) microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble destruction (UTMD

  11. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy.

    PubMed

    Zhan, Changyou; Li, Chong; Wei, Xiaoli; Lu, Wuyuan; Lu, Weiyue

    2015-08-01

    Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Targeted Therapies for Advanced Oesophagogastric Cancer: Recent Progress and Future Directions.

    PubMed

    Young, Kate; Chau, Ian

    2016-01-01

    The genomic landscape of oesophagogastric (OG) cancer is highly complex. The recent elucidation of some of the pathways involved has suggested a number of novel targets for therapy. This therapy is urgently required as with conventional chemotherapy regimens patients with advanced OG cancer still have a median overall survival of under a year. This review outlines the rationale for the current treatment of OG cancer with chemotherapy and describes both previously conducted and ongoing clinical trials of novel agents in this area. The targets and associated treatments discussed include HER-2, EGFR, VEGF, c-Met, FGFR-2, PI3K, mTOR andIGF-1. To date only two targeted treatments, trastuzumab and ramucirumab, have become part of the treatment paradigm for OG cancer, partly due to difficulties in defining predictive biomarkers in this disease. However, there are a number of promising drugs in the pipeline and this article seeks to describe these and other potential novel approaches including targeting DNA repair deficiencies and the immune system.

  13. Long-term Outcomes of Cytomegalovirus Retinitis in the Era of Modern Antiretroviral Therapy; Results from a United States Cohort

    PubMed Central

    Jabs, Douglas A.; Ahuja, Alka; Van Natta, Mark L.; Lyon, Alice T.; Yeh, Steven; Danis, Ronald

    2015-01-01

    Objectives To describe the long-term outcomes of patients with cytomegalovirus (CMV) retinitis and the acquired immunodeficiency syndrome (AIDS)in the modern era of combination antiretroviral therapy. Design Prospective, observational, cohort study Participants Patients with AIDS and CMV retinitis Testing Immune recovery, defined as a CD4+ T cell count>100 cells/μL for ≥ 3 months. Main outcome measures Mortality, visual impairment (visual acuity worse than 20/40) and blindness (visual acuity 20/200 or worse) on logarithmic visual acuity charts, loss of visual field on quantitative Goldmann perimetry. Results Patients without immune recovery had a mortality of 44.4/100 person years (PY), and a median survival of 13.5 months after the diagnosis of CMV retinitis, whereas those with immune recovery had a mortality of 2.7/100 PY (P<0.001), and an estimated median survival of 27.0 years after the diagnosis of CMV retinitis. The rates of bilateral visual impairment and blindness were 0.9/100 PY and 0.4/100 PY, respectively, and were similar between those with and without immune recovery. Among those with immune recovery, the rate of visual field loss was ~1% of the normal field/year, whereas among those without immune recovery it was ~7% of the normal field/year. Conclusions Among persons with CMV retinitis and AIDS, if there is immune recovery, long-term survival is likely, whereas if there is no immune recovery, the mortality rate is substantial. Although higher than the rates seen in the non-HIV-infected population, the rates of bilateral visual impairment and blindness are low, especially when compared to rates seen in the era before modern antiretroviral therapy. PMID:25892019

  14. Long-term Outcomes of Cytomegalovirus Retinitis in the Era of Modern Antiretroviral Therapy: Results from a United States Cohort.

    PubMed

    Jabs, Douglas A; Ahuja, Alka; Van Natta, Mark L; Lyon, Alice T; Yeh, Steven; Danis, Ronald

    2015-07-01

    To describe the long-term outcomes of patients with cytomegalovirus (CMV) retinitis and AIDS in the modern era of combination antiretroviral therapy. Prospective, observational cohort study. Patients with AIDS and CMV retinitis. Immune recovery, defined as a CD4+ T-cell count >100 cells/μl for ≥3 months. Mortality, visual impairment (visual acuity <20/40), and blindness (visual acuity ≤20/200) on logarithmic visual acuity charts and loss of visual field on quantitative Goldmann perimetry. Patients without immune recovery had a mortality of 44.4/100 person-years (PYs) and a median survival of 13.5 months after the diagnosis of CMV retinitis, whereas those with immune recovery had a mortality of 2.7/100 PYs (P < 0.001) and an estimated median survival of 27.0 years after the diagnosis of CMV retinitis. The rates of bilateral visual impairment and blindness were 0.9 and 0.4/100 PYs, respectively, and were similar between those with and without immune recovery. Among those with immune recovery, the rate of visual field loss was approximately 1% of the normal field per year, whereas among those without immune recovery it was approximately 7% of the normal field per year. Among persons with CMV retinitis and AIDS, if there is immune recovery, long-term survival is likely, whereas if there is no immune recovery, the mortality rate is substantial. Although higher than the rates in the population not infected by human immunodeficiency virus, the rates of bilateral visual impairment and blindness are low, especially when compared with rates in the era before modern antiretroviral therapy. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  15. Molecularly-Targeted Gold-Based Nanoparticles for Cancer Imaging and Near-Infrared Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Day, Emily Shannon

    2011-12-01

    This thesis advances the use of nanoparticles as multifunctional agents for molecularly-targeted cancer imaging and photothermal therapy. Cancer mortality has remained relatively unchanged for several decades, indicating a significant need for improvements in care. Researchers are evaluating strategies incorporating nanoparticles as exogenous energy absorbers to deliver heat capable of inducing cell death selectively to tumors, sparing normal tissue. Molecular targeting of nanoparticles is predicted to improve photothermal therapy by enhancing tumor retention. This hypothesis is evaluated with two types of nanoparticles. The nanoparticles utilized, silica-gold nanoshells and gold-gold sulfide nanoparticles, can convert light energy into heat to damage cancerous cells. For in vivo applications nanoparticles are usually coated with poly(ethylene glycol) (PEG) to increase blood circulation time. Here, heterobifunctional PEG links nanoparticles to targeting agents (antibodies and growth factors) to provide cell-specific binding. This approach is evaluated through a series of experiments. In vitro, antibody-coated nanoparticles can bind breast carcinoma cells expressing the targeted receptor and act as contrast agents for multiphoton microscopy prior to inducing cell death via photoablation. Furthermore, antibody-coated nanoparticles can bind tissue ex vivo at levels corresponding to receptor expression, suggesting they should bind their target even in the complex biological milieu. This is evaluated by comparing the accumulation of antibody-coated and PEG-coated nanoparticles in subcutaneous glioma tumors in mice. Contrary to expectations, antibody targeting did not yield more nanoparticles within tumors. Nevertheless, these studies established the sensitivity of glioma to photothermal therapy; mice treated with PEG-coated nanoshells experienced 57% complete tumor regression versus no regression in control mice. Subsequent experiments employed intracranial tumors to

  16. Microbiota-targeted therapies on the intensive care unit.

    PubMed

    Haak, Bastiaan W; Levi, Marcel; Wiersinga, W Joost

    2017-04-01

    The composition and diversity of the microbiota of the human gut, skin, and several other sites is severely deranged in critically ill patients on the ICU, and it is likely that these disruptions can negatively affect outcome. We here review new and ongoing studies that investigate the use of microbiota-targeted therapeutics in the ICU, and provide recommendations for future research. Practically every intervention in the ICU as well as the physiological effects of critical illness itself can have a profound impact on the gut microbiota. Therapeutic modulation of the microbiota, aimed at restoring the balance between 'pathogenic' and 'health-promoting' microbes is therefore of significant interest. Probiotics have shown to be effective in the treatment of ventilator-associated pneumonia, and the first fecal microbiota transplantations have recently been safely and successfully performed in the ICU. However, all-encompassing data in this vulnerable patient group remain sparse, and only a handful of novel studies that study microbiota-targeted therapies in the ICU are currently ongoing. Enormous strides have been made in characterizing the gut microbiome of critically ill patients in the ICU, and an increasing amount of preclinical data reveals the huge potential of microbiota-targeted therapies. Further understanding of the causes and consequences of dysbiosis on ICU-related outcomes are warranted to push the field forward.

  17. Temozolomide nanoparticles for targeted glioblastoma therapy.

    PubMed

    Fang, Chen; Wang, Kui; Stephen, Zachary R; Mu, Qingxin; Kievit, Forrest M; Chiu, Daniel T; Press, Oliver W; Zhang, Miqin

    2015-04-01

    Glioblastoma (GBM) is a deadly and debilitating brain tumor with an abysmal prognosis. The standard therapy for GBM is surgery followed by radiation and chemotherapy with Temozolomide (TMZ). Treatment of GBMs remains a challenge, largely because of the fast degradation of TMZ, the inability to deliver an effective dose of TMZ to tumors, and a lack of target specificity that may cause systemic toxicity. Here, we present a simple method for synthesizing a nanoparticle-based carrier that can protect TMZ from rapid degradation in physiological solutions and can specifically deliver them to GBM cells through the mediation of a tumor-targeting peptide chlorotoxin (CTX). Our nanoparticle, namely NP-TMZ-CTX, had a hydrodynamic size of <100 nm, exhibited sustained stability in cell culture media for up to 2 weeks, and could accommodate stable drug loading. TMZ bound to nanoparticles showed a much higher stability at physiological pH, with a half-life 7-fold greater than that of free TMZ. NP-TMZ-CTX was able to target GBM cells and achieved 2-6-fold higher uptake and a 50-90% reduction of IC50 72 h post-treatment as compared to nontargeted NP-TMZ. NP-TMZ-CTX showed great promise in its ability to deliver a large therapeutic dose of TMZ to GBM cells and could serve as a template for targeted delivery of other therapeutics.

  18. Novel Targeted Therapies for Inflammatory Bowel Disease.

    PubMed

    Coskun, Mehmet; Vermeire, Severine; Nielsen, Ole Haagen

    2017-02-01

    Our growing understanding of the immunopathogenesis of inflammatory bowel disease (IBD) has opened new avenues for developing targeted therapies. These advances in treatment options targeting different mechanisms of action offer new hope for personalized management. In this review we highlight emerging novel and easily administered therapeutics that may be viable candidates for the management of IBD, such as antibodies against interleukin 6 (IL-6) and IL-12/23, small molecules including Janus kinase inhibitors, antisense oligonucleotide against SMAD7 mRNA, and inhibitors of leukocyte trafficking to intestinal sites of inflammation (e.g., sphingosine 1-phosphate receptor modulators). We also provide an update on the current status in clinical development of these new classes of therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Novel medical therapeutics in glioblastomas, including targeted molecular therapies, current and future clinical trials.

    PubMed

    Quant, Eudocia C; Wen, Patrick Y

    2010-08-01

    The prognosis for glioblastoma is poor despite optimal therapy with surgery, radiation, and chemotherapy. New therapies that improve survival and quality of life are needed. Research has increased our understanding of the molecular pathways important for gliomagenesis and disease progression. Novel agents have been developed against these targets, including receptor tyrosine kinases, intracellular signaling molecules, epigenetic abnormalities, and tumor vasculature and microenvironment. This article reviews novel therapies for glioblastoma, with an emphasis on targeted agents. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Targeted drug delivery for cancer therapy: the other side of antibodies

    PubMed Central

    2012-01-01

    Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients. PMID:23140144

  1. Chimaeric antigen receptor T-cell therapy for tumour immunotherapy

    PubMed Central

    Sha, Huan-huan; Wang, Dan-dan; Yan, Da-li; Hu, Yong; Yang, Su-jin; Liu, Si-wen

    2017-01-01

    Chimaeric antigen receptor (CAR) T-cell therapies, as one of the cancer immunotherapies, have heralded a new era of treating cancer. The accumulating data, especially about CAR-modified T cells against CD19 support that CAR T-cell therapy is a highly effective immune therapy for B-cell malignancies. Apart from CD19, there have been many trials of CAR T cells directed other tumour specific or associated antigens (TSAs/TAAs) in haematologic malignancies and solid tumours. This review will briefly summarize basic CAR structure, parts of reported TSAs/TAAs, results of the clinical trials of CAR T-cell therapies as well as two life-threatening side effects. Experiments in vivo or in vitro, ongoing clinical trials and the outlook for CAR T-cell therapies also be included. Our future efforts will focus on identification of more viable cancer targets and more strategies to make CAR T-cell therapy safer. PMID:28053197

  2. Application of molecular targeted therapies in the treatment of head and neck squamous cell carcinoma.

    PubMed

    Kozakiewicz, Paulina; Grzybowska-Szatkowska, Ludmiła

    2018-05-01

    Despite the development of standard therapies, including surgery, radiotherapy and chemotherapy, survival rates for head and neck squamous cell carcinoma (HNSCC) have not changed significantly over the past three decades. Complete recovery is achieved in <50% of patients. The treatment of advanced HNSCC frequently requires multimodality therapy and involves significant toxicity. The promising, novel treatment option for patients with HNSCC is molecular-targeted therapies. The best known targeted therapies include: Epidermal growth factor receptor (EGFR) monoclonal antibodies (cetuximab, panitumumab, zalutumumab and nimotuzumab), EGFR tyrosine kinase inhibitors (gefitinib, erlotinib, lapatinib, afatinib and dacomitinib), vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) or vascular endothelial growth factor receptor (VEGFR) inhibitors (sorafenib, sunitinib and vandetanib) and inhibitors of phosphatidylinositol 3-kinase/serine/threonine-specific protein kinase/mammalian target of rapamycin. There are also various inhibitors of other pathways and targets, which are promising and require evaluation in further studies.

  3. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy.

    PubMed

    Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping

    2014-04-01

    The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.

  4. Dual-Responsive Molecular Probe for Tumor Targeted Imaging and Photodynamic Therapy

    PubMed Central

    Meng, Xiaoqing; Yang, Yueting; Zhou, Lihua; Zhang, li; Lv, Yalin; Li, Sanpeng; Wu, Yayun; Zheng, Mingbin; Li, Wenjun; Gao, Guanhui; Deng, Guanjun; Jiang, Tao; Ni, Dapeng; Gong, Ping; Cai, Lintao

    2017-01-01

    The precision oncology significantly relies on the development of multifunctional agents to integrate tumor targeting, imaging and therapeutics. In this study, a first small-molecule theranostic probe, RhoSSCy is constructed by conjugating 5′-carboxyrhodamines (Rho) and heptamethine cyanine IR765 (Cy) using a reducible disulfide linker and pH tunable amino-group to realize thiols/pH dual sensing. In vitro experiments verify that RhoSSCy is highly sensitive for quantitative analysis and imaging intracellular pH gradient and biothiols. Furthermore, RhoSSCy shows superb tumor targeted dual-modal imaging via near-infrared fluorescence (NIRF) and photoacoustic (PA). Importantly, RhoSSCy also induces strongly reactive oxygen species for tumor photodynamic therapy (PDT) with robust antitumor activity both in vitro and in vivo. Such versatile small-molecule theranostic probe may be promising for tumor targeted imaging and precision therapy. PMID:28638467

  5. Therapies targeting cancer stem cells: Current trends and future challenges

    PubMed Central

    Dragu, Denisa L; Necula, Laura G; Bleotu, Coralia; Diaconu, Carmen C; Chivu-Economescu, Mihaela

    2015-01-01

    Traditional therapies against cancer, chemo- and radiotherapy, have multiple limitations that lead to treatment failure and cancer recurrence. These limitations are related to systemic and local toxicity, while treatment failure and cancer relapse are due to drug resistance and self-renewal, properties of a small population of tumor cells called cancer stem cells (CSCs). These cells are involved in cancer initiation, maintenance, metastasis and recurrence. Therefore, in order to develop efficient treatments that can induce a long-lasting clinical response preventing tumor relapse it is important to develop drugs that can specifically target and eliminate CSCs. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. In this review we discuss targeting surface biomarkers, signaling pathways that regulate CSCs self-renewal and differentiation, drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of miRNA expression, and induction of CSCs apoptosis and differentiation, with specific aim to hamper CSCs regeneration and cancer relapse. Some of these agents are under evaluation in preclinical and clinical studies, most of them for using in combination with traditional therapies. The combined therapy using conventional anticancer drugs with CSCs-targeting agents, may offer a promising strategy for management and eradication of different types of cancers. PMID:26516409

  6. Cutaneous Adverse Events of Targeted Therapies for Hematolymphoid Malignancies.

    PubMed

    Ransohoff, Julia D; Kwong, Bernice Y

    2017-12-01

    The identification of oncogenic drivers of liquid tumors has led to the rapid development of targeted agents with distinct cutaneous adverse event (AE) profiles. The diagnosis and management of these skin toxicities has motivated a novel partnership between dermatologists and oncologists in developing supportive oncodermatology clinics. In this article we review the current state of knowledge of clinical presentation, mechanisms, and management of the most common and significant cutaneous AEs observed during treatment with targeted therapies for hematologic and lymphoid malignancies. We systematically review according to drug-targeting pathway the cutaneous AE profiles of these drugs, and offer insight when possible into whether pharmacologic target versus immunologic modulation primarily underlie presentation. We include discussion of tyrosine kinase inhibitors (imatinib, dasatinib, nilotinib, bosutinib, ponatinib), blinatumomab, ibrutinib, idelalisib, anti-B cell antibodies (rituximab, ibritumomab, obinutuzumab, ofatumumab, tositumomab), immune checkpoint inhibitors (nivolumab, pembrolizumab), alemtuzumab, brentuximab, and proteasome inhibitors (bortezomib, carfilzomib, ixazomib). We highlight skin reactions seen with antiliquid but not solid tumor agents, draw attention to serious cutaneous AEs that might require therapy modification or cessation, and offer management strategies to permit treatment tolerability. We emphasize the importance of early diagnosis and treatment to minimize disruptions to care, optimize prognosis and quality of life, and promptly address life-threatening skin or infectious events. This evolving partnership between oncologists and dermatologists in the iterative characterization and management of skin toxicities will contribute to a better understanding of these drugs' cutaneous targets and improved patient care. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target

    PubMed Central

    Sitohy, Basel; Nagy, Janice A.; Dvorak, Harold F.

    2012-01-01

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed anti-angiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor/vascular endothelial growth factor (VEGF-A) as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and we here call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least six well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All six types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A164. Once formed, four of the six types lose their VEGF-A dependency and so their responsiveness to anti-VEGF/VEGFR therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels. PMID:22508695

  8. Targeting Therapy Resistance: When Glutamine Catabolism Becomes Essential.

    PubMed

    Lukey, Michael J; Katt, William P; Cerione, Richard A

    2018-05-14

    Identifying contexts in which cancer cells become addicted to specific nutrients is critical for developing targeted metabolic therapies. In this issue of Cancer Cell, Momcilovic et al. report that suppressed glycolysis following mTOR inhibition is countered by adaptive glutamine catabolism in lung squamous cell carcinoma, sensitizing tumors to glutaminase inhibition. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Transferrin-Conjugated Nanocarriers as Active-Targeted Drug Delivery Platforms for Cancer Therapy.

    PubMed

    Nogueira-Librelotto, Daniele R; Codevilla, Cristiane F; Farooqi, Ammad; Rolim, Clarice M B

    2017-01-01

    A lot of effort has been devoted to achieving active targeting for cancer therapy in order to reach the right cells. Hence, increasingly it is being realized that active-targeted nanocarriers notably reduce off-target effects, mainly because of targeted localization in tumors and active cellular uptake. In this context, by taking advantage of the overexpression of transferrin receptors on the surface of tumor cells, transferrin-conjugated nanodevices have been designed, in hope that the biomarker grafting would help to maximize the therapeutic benefit and to minimize the side effects. Notably, active targeting nanoparticles have shown improved therapeutic performances in different tumor models as compared to their passive targeting counterparts. In this review, current development of nano-based devices conjugated with transferrin for active tumor-targeting drug delivery are highlighted and discussed. The main objective of this review is to provide a summary of the vast types of nanomaterials that have been used to deliver different chemotherapeutics into tumor cells, and to ultimately evaluate the progression on the strategies for cancer therapy in view of the future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Management of hepatitis C infection in the era of direct-acting antiviral therapy

    NASA Astrophysics Data System (ADS)

    Zain, L. H.; Sungkar, T.

    2018-03-01

    Hepatitis C viral infection globally affects millions of people and commonly results in debilitating complications and mortality. Initial mainstay therapy consisted of pegylated interferon α (pegIFNα) with additional ribavirin that showed unsatisfactory cure rate, common side effects and complicated dosing, contributing to high discontinuation rate. Over the last few years, newer antivirals have been extensively studied, that are Direct-Acting Antivirals (DAAs). Specifically targeting viral protein mainly during replication phase, DAAs showed greater cure rate (commonly measured as sustained virologic response), improved safety profile and shorter treatment duration compared to traditional interferon-ribavirin therapy. Current guidelines have also included Interferon-free, often ribavirin-free, DAAs combinations that suggest promising outcomes. The current review highlights development of rapidly growing hepatitis C treatment including DAAs recommendations.

  11. Targeting the Epigenome in Lung Cancer: Expanding Approaches to Epigenetic Therapy

    PubMed Central

    Jakopovic, Marko; Thomas, Anish; Balasubramaniam, Sanjeeve; Schrump, David; Giaccone, Giuseppe; Bates, Susan E.

    2013-01-01

    Epigenetic aberrations offer dynamic and reversible targets for cancer therapy; increasingly, alteration via overexpression, mutation, or rearrangement is found in genes that control the epigenome. Such alterations suggest a fundamental role in carcinogenesis. Here, we consider three epigenetic mechanisms: DNA methylation, histone tail modification and non-coding, microRNA regulation. Evidence for each of these in lung cancer origin or progression has been gathered, along with evidence that epigenetic alterations might be useful in early detection. DNA hypermethylation of tumor suppressor promoters has been observed, along with global hypomethylation and hypoacetylation, suggesting an important role for tumor suppressor gene silencing. These features have been linked as prognostic markers with poor outcome in lung cancer. Several lines of evidence have also suggested a role for miRNA in carcinogenesis and in outcome. Cigarette smoke downregulates miR-487b, which targets both RAS and MYC; RAS is also a target of miR-let-7, again downregulated in lung cancer. Together the evidence implicates epigenetic aberration in lung cancer and suggests that targeting these aberrations should be carefully explored. To date, DNA methyltransferase and histone deacetylase inhibitors have had minimal clinical activity. Explanations include the possibility that the agents are not sufficiently potent to invoke epigenetic reversion to a more normal state; that insufficient time elapses in most clinical trials to observe true epigenetic reversion; and that doses often used may provoke off-target effects such as DNA damage that prevent epigenetic reversion. Combinations of epigenetic therapies may address those problems. When epigenetic agents are used in combination with chemotherapy or targeted therapy it is hoped that downstream biological effects will provoke synergistic cytotoxicity. This review evaluates the challenges of exploiting the epigenome in the treatment of lung cancer

  12. One-Compound-Multi-Target: Combination Prospect of Natural Compounds with Thrombolytic Therapy in Acute Ischemic Stroke

    PubMed Central

    Chen, Han-Sen; Qi, Su-Hua; Shen, Jian-Gang

    2017-01-01

    Abstract: Tissue plasminogen activator (t-PA) is the only FDA-approved drug for acute ischemic stroke treatment, but its clinical use is limited due to the narrow therapeutic time window and severe adverse effects, including hemorrhagic transformation (HT) and neurotoxicity. One of the potential resolutions is to use adjunct therapies to reduce the side effects and extend t-PA's therapeutic time window. However, therapies modulating single target seem not to be satisfied, and a multi-target strategy is warranted to resolve such complex disease. Recently, large amount of efforts have been made to explore the active compounds from herbal supplements to treat ischemic stroke. Some natural compounds revealed both neuro- and blood-brain-barrier (BBB)-protective effects by concurrently targeting multiple cellular signaling pathways in cerebral ischemia-reperfusion injury. Thus, those compounds are potential to be one-drug-multi-target agents as combined therapy with t-PA for ischemic stroke. In this review article, we summarize current progress about molecular targets involving in t-PA-mediated HT and neurotoxicity in ischemic brain injury. Based on these targets, we select 23 promising compounds from currently available literature with the bioactivities simultaneously targeting several important molecular targets. We propose that those compounds merit further investigation as combined therapy with t-PA. Finally, we discuss the potential drawbacks of the natural compounds' studies and raise several important issues to be addressed in the future for the development of natural compound as an adjunct therapy. PMID:27334020

  13. Driver genes in non-small cell lung cancer: Characteristics, detection methods, and targeted therapies

    PubMed Central

    He, Bing; Zhang, Hu-Qin

    2017-01-01

    Lung cancer is one of the most common causes of cancer-related death in the world. The large number of lung cancer cases is non-small cell lung cancer (NSCLC), which approximately accounting for 75% of lung cancer. Over the past years, our comprehensive knowledge about the molecular biology of NSCLC has been rapidly enriching, which has promoted the discovery of driver genes in NSCLC and directed FDA-approved targeted therapies. Of course, the targeted therapies based on driver genes provide a more exact option for advanced non-small cell lung cancer, improving the survival rate of patients. Now, we will review the landscape of driver genes in NSCLC including the characteristics, detection methods, the application of target therapy and challenges. PMID:28915704

  14. Targeting chemotherapy-resistant leukemia by combining DNT cellular therapy with conventional chemotherapy.

    PubMed

    Chen, Branson; Lee, Jong Bok; Kang, Hyeonjeong; Minden, Mark D; Zhang, Li

    2018-04-24

    While conventional chemotherapy is effective at eliminating the bulk of leukemic cells, chemotherapy resistance in acute myeloid leukemia (AML) is a prevalent problem that hinders conventional therapies and contributes to disease relapse, and ultimately patient death. We have recently shown that allogeneic double negative T cells (DNTs) are able to target the majority of primary AML blasts in vitro and in patient-derived xenograft models. However, some primary AML blast samples are resistant to DNT cell therapy. Given the differences in the modes of action of DNTs and chemotherapy, we hypothesize that DNT therapy can be used in combination with conventional chemotherapy to further improve their anti-leukemic effects and to target chemotherapy-resistant disease. Drug titration assays and flow-based cytotoxicity assays using ex vivo expanded allogeneic DNTs were performed on multiple AML cell lines to identify therapy-resistance. Primary AML samples were also tested to validate our in vitro findings. Further, a xenograft model was employed to demonstrate the feasibility of combining conventional chemotherapy and adoptive DNT therapy to target therapy-resistant AML. Lastly, blocking assays with neutralizing antibodies were employed to determine the mechanism by which chemotherapy increases the susceptibility of AML to DNT-mediated cytotoxicity. Here, we demonstrate that KG1a, a stem-like AML cell line that is resistant to DNTs and chemotherapy, and chemotherapy-resistant primary AML samples both became more susceptible to DNT-mediated cytotoxicity in vitro following pre-treatment with daunorubicin. Moreover, chemotherapy treatment followed by adoptive DNT cell therapy significantly decreased bone marrow engraftment of KG1a in a xenograft model. Mechanistically, daunorubicin increased the expression of NKG2D and DNAM-1 ligands on KG1a; blocking of these pathways attenuated DNT-mediated cytotoxicity. Our results demonstrate the feasibility and benefit of using DNTs as

  15. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress

    PubMed Central

    Garg, Abhishek D; Maes, Hannelore; van Vliet, Alexander R; Agostinis, Patrizia

    2015-01-01

    The endoplasmic reticulum (ER) is at the center of a number of vital cellular processes such as cell growth, death, and differentiation, crosstalk with immune or stromal cells, and maintenance of proteostasis or homeostasis, and ER functions have implications for various pathologies including cancer. Recently, a number of major hallmarks of cancer have been delineated that are expected to facilitate the development of anticancer therapies. However, therapeutic induction of ER stress as a strategy to broadly target multiple hallmarks of cancer has been seldom discussed despite the fact that several primary or secondary ER stress-inducing therapies have been found to exhibit positive clinical activity in cancer patients. In the present review we provide a brief historical overview of the major discoveries and milestones in the field of ER stress biology with important implications for anticancer therapy. Furthermore, we comprehensively discuss possible strategies enabling the targeting of multiple hallmarks of cancer with therapy-induced ER stress. PMID:27308392

  16. Cancer therapy in the necroptosis era

    PubMed Central

    Su, Z; Yang, Z; Xie, L; DeWitt, J P; Chen, Y

    2016-01-01

    Necroptosis is a caspase-independent form of regulated cell death executed by the receptor-interacting protein kinase 1 (RIP1), RIP3, and mixed lineage kinase domain-like protein (MLKL). Recently, necroptosis-based cancer therapy has been proposed to be a novel strategy for antitumor treatment. However, a big controversy exists on whether this type of therapy is feasible or just a conceptual model. Proponents believe that because necroptosis and apoptosis use distinct molecular pathways, triggering necroptosis could be an alternative way to eradicate apoptosis-resistant cancer cells. This hypothesis has been preliminarily validated by recent studies. However, some skeptics doubt this strategy because of the intrinsic or acquired defects of necroptotic machinery observed in many cancer cells. Moreover, two other concerns are whether or not necroptosis inducers are selective in killing cancer cells without disturbing the normal cells and whether it will lead to inflammatory diseases. In this review, we summarize current studies surrounding this controversy on necroptosis-based antitumor research and discuss the advantages, potential issues, and countermeasures of this novel therapy. PMID:26915291

  17. Molecular targeted therapies for solid tumors: management of side effects.

    PubMed

    Grünwald, Viktor; Soltau, Jens; Ivanyi, Philipp; Rentschler, Jochen; Reuter, Christoph; Drevs, Joachim

    2009-03-01

    This review will provide physicians and oncologists with an overview of side effects related to targeted agents that inhibit vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and mammalian target of rapamycin (mTOR) signaling in the treatment of solid tumors. Such targeted agents can be divided into monoclonal antibodies, tyrosine kinase inhibitors, multitargeted tyrosine kinase inhibitors and serine/threonine kinase inhibitors. Molecular targeted therapies are generally well tolerated, but inhibitory effects on the biological function of the targets in healthy tissue can result in specific treatment-related side effects, particularly with multitargeted agents. We offer some guidance on how to manage adverse events in cancer patients based on the range of options currently available. Copyright 2009 S. Karger AG, Basel.

  18. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets.

    PubMed

    Weß, Ludger; Schnieders, Frank

    2017-12-01

    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  19. Glioblastoma multiforme targeted therapy: The Chlorotoxin story.

    PubMed

    Cohen-Inbar, Or; Zaaroor, Menashe

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common malignant primary brain neoplasm having a mean survival of <24months. Scorpion toxins are considered promising cancer drug candidates, primarily due to the discovery of hlorotoxin, derived from the venom of the Israeli yellow scorpion. This intriguing short peptide of only 36 amino-acids length and tight configuration, possess the ability to bind to GBM cells in a grade-related manner with ∼100% of GBM cells staining positive and no cross reactivity to normal brain. Chlorotoxin has an anti-angiogenic effect as well. Molecular targets for Chlorotoxin include voltage gated chloride channels (GCC), calcium-dependent phospholipid-binding protein Annexin-2, and the inducible extracellular enzyme Matrix Metalloproteinase-2 (MMP-2). Of all its targets, MMP-2 seems to bear the most anti-neoplastic potential. Chlorotoxin is a promising tumortargeting peptide. Its small size and compact shape are convenient for intracranial delivery. We present a short discussion on Chlorotoxin. The structure, biological activity, molecular targets and possible clinical role of Chlorotoxin are discussed. Chlorotoxin can be utilized as a targeting domain as well, attaching different effector functions to it. Clinical applications in GBM therapy, intraoperative imaging, nano-probes and nano-vectors based technology; targeted chemotherapy and immunotherapy are discussed as well. Chlorotoxin is likely to play a significant role in effective GBM immunotherapy in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. New Receptor Targets for Medical Therapy in Irritable Bowel Syndrome

    PubMed Central

    Camilleri, Michael

    2010-01-01

    Background Despite setbacks to the approval of new medications for the treatment of irritable bowel syndrome, interim guidelines on endpoints for IBS trials have enhanced interest as new targets for medical therapy are proposed based on novel mechanisms or chemical entities. Aim To review the approved lubiprostone, two targets that are not meeting expectations (tachykinins and corticotrophin-releasing hormone), the efficacy and safety of new 5-HT4 agonists, intestinal secretagogues (chloride channel activators, and guanylate cyclase-C agonists), bile acid modulation, anti-inflammatory agents and visceral analgesics. Methods Review of selected articles based on PubMed search and clinically relevant information on mechanism of action, safety, pharmacodynamics, and efficacy Conclusions The spectrum of peripheral targets of medical therapy address chiefly the bowel dysfunction of IBS, and these effects are associated with pain relief. There are less clear targets related to the abdominal pain or visceral sensation in IBS. The new 5-HT4 agonists are more specific than older agents, and show cardiovascular safety to date. Secretory agents have high specificity, low bioavailability, and efficacy. The potential risks of agents “borrowed” from other indications (like hyperlipidemia, inflammatory bowel disease or somatic pain) deserve further study. There is reason for optimism in medical treatment of IBS. PMID:19785622

  1. EGFR Targeted Theranostic Nanoemulsion For Image-Guided Ovarian Cancer Therapy

    PubMed Central

    Ganta, Srinivas; Singh, Amit; Kulkarni, Praveen; Keeler, Amanda W.; Piroyan, Aleksandr; Sawant, Rupa R.; Patel, Niravkumar R.; Davis, Barbara; Ferris, Craig; O’Neal, Sara; Zamboni, William; Amiji, Mansoor M.; Coleman, Timothy P.

    2015-01-01

    Purpose Platinum-based therapies are the first line treatments for most types of cancer including ovarian cancer. However, their use is associated with dose-limiting toxicities and resistance. We report initial translational studies of a theranostic nanoemulsion loaded with a cisplatin derivative, myrisplatin and pro-apoptotic agent, C6-ceramide. Methods The surface of the nanoemulsion is annotated with an endothelial growth factor receptor (EGFR) binding peptide to improve targeting ability and gadolinium to provide diagnostic capability for image-guided therapy of EGFR overexpressing ovarian cancers. A high shear microfludization process was employed to produce the formulation with particle size below 150 nm. Results Pharmacokinetic study showed a prolonged blood platinum and gadolinium levels with nanoemulsions in nu/nu mice. The theranostic nanoemulsions also exhibited less toxicity and enhanced the survival time of mice as compared to an equivalent cisplatin treatment. Conclusions Magnetic resonance imaging (MRI) studies indicate the theranostic nanoemulsions were effective contrast agents and could be used to track accumulation in a tumor. The MRI study additionally indicate that significantly more EGFR-targeted theranostic nanoemulsion accumulated in a tumor than non-targeted nanoemulsuion providing the feasibility of using a targeted theranostic agent in conjunction with MRI to image disease loci and quantify the disease progression. PMID:25732960

  2. New targeted therapies for relapsed pediatric acute lymphoblastic leukemia.

    PubMed

    Pierro, Joanna; Hogan, Laura E; Bhatla, Teena; Carroll, William L

    2017-08-01

    The improvement in outcomes for children with acute lymphoblastic leukemia (ALL) is one of the greatest success stories of modern oncology however the prognosis for patients who relapse remains dismal. Recent discoveries by high resolution genomic technologies have characterized the biology of relapsed leukemia, most notably pathways leading to the drug resistant phenotype. These observations open the possibility of targeting such pathways to prevent and/or treat relapse. Likewise, early experiences with new immunotherapeutic approaches have shown great promise. Areas covered: We performed a literature search on PubMed and recent meeting abstracts using the keywords below. We focused on the biology and clonal evolution of relapsed disease highlighting potential new targets of therapy. We further summarized the results of early trials of the three most prominent immunotherapy agents currently under investigation. Expert commentary: Discovery of targetable pathways that lead to drug resistance and recent breakthroughs in immunotherapy show great promise towards treating this aggressive disease. The best way to treat relapse, however, is to prevent it which makes incorporation of these new approaches into frontline therapy the best approach. Challenges remain to balance efficacy with toxicity and to prevent the emergence of resistant subclones which is why combining these newer agents with conventional chemotherapy will likely become standard of care.

  3. Targets of perioperative fluid therapy and their effects on postoperative outcome: a systematic review and meta-analysis.

    PubMed

    Berger, M M; Gradwohl-Matis, I; Brunauer, A; Ulmer, H; Dünser, M W

    2015-07-01

    Perioperative fluid management plays a fundamental role in maintaining organ perfusion, and is considered to affect morbidity and mortality. Targets according to which fluid therapy should be administered are poorly defined. This systematic review aimed to identify specific targets for perioperative fluid therapy. The PubMed database (January 1993-December 2013) and reference lists were searched to identify clinical trials which evaluated specific targets of perioperative fluid therapy and reported clinically relevant perioperative endpoints in adult patients. Only studies in which targeted fluid therapy was the sole intervention were included into the main data analysis. A pooled data analysis was used to compare mortality between goal-directed fluid therapy and control interventions. Thirty-six clinical studies were selected. Sixteen studies including 1224 patients specifically evaluated targeted fluid therapy and were included into the main data analysis. Three specific targets for perioperative fluid therapy were identified: a systolic or pulse pressure variation <10-12%, an increase in stroke volume <10%, and a corrected flow time of 0.35-0.4 s in combination with an increase in stroke volume <10%. Targeting any one of these goals resulted in less postoperative complications (pooled data analysis: OR 0.53; CI95, 0.34-0.83; P=0.005) and a shorter length of intensive care unit/hospital stay, but no difference in postoperative mortality (pooled data analysis: OR 0.61; CI95, 0.33-1.11; P=0.12). This systematic review identified three goals for perioperative fluid administration, targeting of which appeared to be associated with less postoperative complications and shorter intensive care unit/hospital lengths of stay. Perioperative mortality remained unaffected.

  4. Designing a definitive trial for adjuvant targeted therapy in genotype defined lung cancer: the ALCHEMIST trials.

    PubMed

    Alden, Ryan S; Mandrekar, Sumithra J; Oxnard, Geoffrey R

    2015-09-01

    Genotype-directed targeted therapies have revolutionized the treatment of metastatic non-small cell lung cancer (NSCLC) but they have not yet been comprehensively studied in the adjuvant setting. Previous trials of adjuvant targeted therapy in unselected early stage NSCLC patients showed no benefit versus placebo, however retrospective data suggests improved disease free survival (DFS) with epidermal growth factor receptor (EGFR) inhibitors in patients with appropriate molecular alterations. A definitive prospective, randomized, placebo-controlled trial of targeted therapies for NSCLC is needed to determine the efficacy of targeted therapy following surgical resection and standard adjuvant therapy. The principal challenges facing such a trial are (I) identification of actionable alterations in early stage patients; and (II) realization of sufficient enrollment to power definitive analyses. The ALCHEMIST trial (Adjuvant Lung Cancer Enrichment Marker Identification and Sequencing Trial) was designed to overcome these challenges. Using the national clinical trials network (NCTN) of the National Cancer Institute (NCI), several thousand patients with operable NSCLC will undergo tumor genotyping for EGFR mutations or rearrangement of anaplastic lymphoma kinase (ALK). Following resection and completion of standard adjuvant therapy, patients with EGFR-mutant NSCLC will be randomized to erlotinib versus placebo (1:1), those with ALK-rearranged NSCLC will be randomized to crizotinib versus placebo (1:1), while those not enrolled onto the adjuvant trials will continue to be followed on the screening trial. ALCHEMIST also provides for the collection of tissue at baseline and at recurrence (if available) to characterize mechanisms of recurrence and of resistance to targeted therapy. Thus, ALCHEMIST is a platform for validation of targeted therapy as part of curative care in NSCLC and creates an opportunity to advance our understanding of disease biology.

  5. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy

    PubMed Central

    Wickens, Jennifer M.; Alsaab, Hashem O.; Kesharwani, Prashant; Bhise, Ketki; Amin, Mohd Cairul Iqbal Mohd; Tekade, Rakesh Kumar; Gupta, Umesh; Iyer, Arun K.

    2016-01-01

    The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy. PMID:28017836

  6. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy.

    PubMed

    Wickens, Jennifer M; Alsaab, Hashem O; Kesharwani, Prashant; Bhise, Ketki; Amin, Mohd Cairul Iqbal Mohd; Tekade, Rakesh Kumar; Gupta, Umesh; Iyer, Arun K

    2017-04-01

    The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Clinical impact of targeted therapies in patients with metastatic clear-cell renal cell carcinoma

    PubMed Central

    Nerich, Virginie; Hugues, Marion; Paillard, Marie Justine; Borowski, Laëtitia; Nai, Thierry; Stein, Ulrich; Nguyen Tan Hon, Thierry; Montcuquet, Philippe; Maurina, Tristan; Mouillet, Guillaume; Kleinclauss, François; Pivot, Xavier; Limat, Samuel; Thiery-Vuillemin, Antoine

    2014-01-01

    Introduction The aim of this retrospective clinical study was to assess, in the context of the recent evolution of systemic therapies, the potential effect of targeted therapies on overall survival (OS) of patients with metastatic clear-cell renal cell carcinoma (mccRCC) in daily practice. Patients and methods All consecutive patients with histologically confirmed mccRCC who received systemic therapy between January 2000 and December 2010 in two oncology treatment centers in our Franche-Comté region in eastern France were included in the analysis. The primary end point was OS. The analysis of prognostic factors was performed using a two-step approach: univariate then multivariate analysis with a stepwise Cox proportional hazards regression model. Results For the entire cohort of 111 patients, the median OS was 17 months (95% confidence interval [CI]; 13–22 months) and the two-year OS was 39%. Three prognostic factors were independent predictors of long survival: prior nephrectomy (hazard ratio =0.38 [0.22–0.64], P<0.0001); systemic therapy by targeted therapy (hazard ratio =0.50 [0.31–0.80], P=0.005); and lack of liver metastasis (hazard ratio =0.43 [0.22–0.82], P=0.002). Median OS was 21 months [14–29 months] for patients who received at least one targeted therapy compared with 12 months [7–15 months] for patients who were treated only by immunotherapy agents (P=0.003). Conclusion Our results suggest that targeted therapies are associated with improved OS in comparison with cytokines, which is in line with other publications. PMID:24600236

  8. Targeted therapies in breast cancer: New challenges to fight against resistance

    PubMed Central

    Masoud, Viviana; Pagès, Gilles

    2017-01-01

    Breast cancer is the most common type of cancer found in women and today represents a significant challenge to public health. With the latest breakthroughs in molecular biology and immunotherapy, very specific targeted therapies have been tailored to the specific pathophysiology of different types of breast cancers. These recent developments have contributed to a more efficient and specific treatment protocol in breast cancer patients. However, the main challenge to be further investigated still remains the emergence of therapeutic resistance mechanisms, which develop soon after the onset of therapy and need urgent attention and further elucidation. What are the recent emerging molecular resistance mechanisms in breast cancer targeted therapy and what are the best strategies to apply in order to circumvent this important obstacle? The main scope of this review is to provide a thorough update of recent developments in the field and discuss future prospects for preventing resistance mechanisms in the quest to increase overall survival of patients suffering from the disease. PMID:28439493

  9. Neurodegenerative diseases in the era of targeted therapeutics: how to handle a tangled issue.

    PubMed

    Tofaris, George K; Schapira, Anthony H V

    2015-05-01

    Neurodegenerative diseases are age-related and relentlessly progressive with increasing prevalence and no cure or lasting symptomatic therapy. The well-recognized prodromal phase in many forms of neurodegeneration suggests a prolonged period of neuronal compensated dysfunction prior to cell loss that may be amenable to therapeutic intervention. Although most efforts to date have been focused on misfolded toxic proteins, it is now clear that widespread changes in protein homeostasis occur early in these diseases and understanding this fundamental biology is key to the design of targeted therapies. What has emerged from molecular genetics and animal studies is a previously less appreciated association of neurodegenerative diseases with defects in the molecular regulation of protein trafficking between cellular organelles, especially the intricate network of endosomes, lysosomes, autophagosomes and mitochondria. Here we summarized the broader concepts that stemmed from this Special Issue on "Protein Clearance in Neurodegenerative diseases: from mechanisms to therapies". This article is part of a Special Issue entitled 'Neuronal Protein'. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Molecular targeted therapy for advanced gastric cancer.

    PubMed

    Kim, Jong Gwang

    2013-03-01

    Although medical treatment has been shown to improve quality of life and prolong survival, no significant progress has been made in the treatment of advanced gastric cancer (AGC) within the last two decades. Thus, the optimum standard first-line chemotherapy regimen for AGC remains debatable, and most responses to chemotherapy are partial and of short duration; the median survival is approximately 7 to 11 months, and survival at 2 years is exceptionally > 10%. Recently, remarkable progress in tumor biology has led to the development of new agents that target critical aspects of oncogenic pathways. For AGC, many molecular targeting agents have been evaluated in international randomized studies, and trastuzumab, an anti-HER-2 monoclonal antibody, has shown antitumor activity against HER-2-positive AGC. However, this benefit is limited to only ~20% of patients with AGC (patients with HER-2-positive AGC). Therefore, there remains a critical need for both the development of more effective agents and the identification of molecular predictive and prognostic markers to select those patients who will benefit most from specific chemotherapeutic regimens and targeted therapies.

  11. Current advances in targeted therapies for metastatic gastric cancer: improving patient care.

    PubMed

    Aguiar, Pedro Nazareth; Muniz, Thiago Pimentel; Miranda, Raelson Rodrigues; Tadokoro, Hakaru; Forones, Nora Manoukian; Monteiro, Ines-de-Paula; Castelo-Branco, Pedro; Janjigian, Yelena Y; De Mello, Ramon Andrade

    2016-03-01

    In this article, we review the literature on the current advances in targeted therapies for metastatic gastric cancer aimed at improving patient care. We conclude that the key to guiding targeted therapy is individual biomarkers, which are not completely elucidated. HER2 overexpression is the only predictive biomarker currently in use. Furthermore, it is necessary to understand that gastric tumors are heterogeneous; therefore, is impossible to evaluate a novel biological compound without evaluating personal biomarkers. The selection of patients who are able to receive each treatment is paramount for improving advanced gastric cancer survival and reducing unnecessary costs.

  12. Personalizing therapies for gastric cancer: Molecular mechanisms and novel targeted therapies

    PubMed Central

    Luis, Michael; Tavares, Ana; Carvalho, Liliana S; Lara-Santos, Lúcio; Araújo, António; de Mello, Ramon Andrade

    2013-01-01

    Globally, gastric cancer is the 4th most frequently diagnosed cancer and the 2nd leading cause of death from cancer, with an estimated 990000 new cases and 738000 deaths registered in 2008. In the advanced setting, standard chemotherapies protocols acquired an important role since last decades in prolong survival. Moreover, recent advances in molecular therapies provided a new interesting weapon to treat advanced gastric cancer through anti-human epidermal growth factor receptor 2 (HER2) therapies. Trastuzumab, an anti-HER2 monoclonal antibody, was the first target drug in the metastatic setting that showed benefit in overall survival when in association with platinum-5-fluorouracil based chemotherapy. Further, HER2 overexpression analysis acquired a main role in predict response for trastuzumab in this field. Thus, we conducted a review that will discuss the main points concerning trastuzumab and HER2 in gastric cancer, providing a comprehensive overview of molecular mechanisms and novel trials involved. PMID:24151357

  13. Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors.

    PubMed

    Abken, Hinrich

    2015-01-01

    Recent spectacular success in the adoptive cell therapy of leukemia and lymphoma with chimeric antigen receptor (CAR)-modified T cells raised the expectations that this therapy may be efficacious in a wide range of cancer entities. The expectations are based on the predefined specificity of CAR T cells by an antibody-derived binding domain that acts independently of the natural T-cell receptor, recognizes targets independently of presentation by the major histocompatibility complex and allows targeting toward virtually any cell surface antigen. We here discuss that targeting CAR T cells toward solid tumors faces certain circumstances critical for the therapeutic success. Targeting tumor stroma and taking advantage of TRUCK cells, in other words, CAR T cells with inducible release of a transgenic payload, are some strategies envisaged to overcome current limitations in the near future.

  14. Targeted Therapy for Breast Cancer Prevention

    PubMed Central

    den Hollander, Petra; Savage, Michelle I.; Brown, Powel H.

    2013-01-01

    With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer. PMID:24069582

  15. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition.

    PubMed

    Riddell, Stanley R; Sommermeyer, Daniel; Berger, Carolina; Liu, Lingfeng Steven; Balakrishnan, Ashwini; Salter, Alex; Hudecek, Michael; Maloney, David G; Turtle, Cameron J

    2014-01-01

    The ability to engineer T cells to recognize tumor cells through genetic modification with a synthetic chimeric antigen receptor has ushered in a new era in cancer immunotherapy. The most advanced clinical applications are in targeting CD19 on B-cell malignancies. The clinical trials of CD19 chimeric antigen receptor therapy have thus far not attempted to select defined subsets before transduction or imposed uniformity of the CD4 and CD8 cell composition of the cell products. This review will discuss the rationale for and challenges to using adoptive therapy with genetically modified T cells of defined subset and phenotypic composition.

  16. Delineation of Internal Mammary Nodal Target Volumes in Breast Cancer Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jethwa, Krishan R.; Kahila, Mohamed M.; Hunt, Katie N.

    Purpose: The optimal clinical target volume for internal mammary (IM) node irradiation is uncertain in an era of increasingly conformal volume-based treatment planning for breast cancer. We mapped the location of gross internal mammary lymph node (IMN) metastases to identify areas at highest risk of harboring occult disease. Methods and Materials: Patients with axial imaging of IMN disease were identified from a breast cancer registry. The IMN location was transferred onto the corresponding anatomic position on representative axial computed tomography images of a patient in the treatment position and compared with consensus group guidelines of IMN target delineation. Results: Themore » IMN location in 67 patients with 130 IMN metastases was mapped. The location was in the first 3 intercostal spaces in 102 of 130 nodal metastases (78%), whereas 18 of 130 IMNs (14%) were located caudal to the third intercostal space and 10 of 130 IMNs (8%) were located cranial to the first intercostal space. Of the 102 nodal metastases within the first 3 intercostal spaces, 54 (53%) were located within the Radiation Therapy Oncology Group consensus volume. Relative to the IM vessels, 19 nodal metastases (19%) were located medially with a mean distance of 2.2 mm (SD, 2.9 mm) whereas 29 (28%) were located laterally with a mean distance of 3.6 mm (SD, 2.5 mm). Ninety percent of lymph nodes within the first 3 intercostal spaces would have been encompassed within a 4-mm medial and lateral expansion on the IM vessels. Conclusions: In women with indications for elective IMN irradiation, a 4-mm medial and lateral expansion on the IM vessels may be appropriate. In women with known IMN involvement, cranial extension to the confluence of the IM vein with the brachiocephalic vein with or without caudal extension to the fourth or fifth interspace may be considered provided that normal tissue constraints are met.« less

  17. Cardiotoxicity in targeted therapy for breast cancer: A study of the FDA adverse event reporting system (FAERS).

    PubMed

    Wittayanukorn, Saranrat; Qian, Jingjing; Johnson, Brandon S; Hansen, Richard A

    2017-03-01

    Purpose Cancer chemotherapy-induced cardiotoxicity is concerning. Certain anthracyclines and targeted therapies are known to have potential for cardiotoxicity, but existing trial evidence is inadequate to understand real-world patterns of cardiotoxicity with newer targeted therapies and their common combinations with older agents. This study evaluated chemotherapy-related cardiotoxicity reports for targeted therapies and their combinations in breast cancer patients. Methods The US Food and Drug Administration Adverse Event Reporting System (FAERS) database from January 2004 through September 2012 was used to summarize characteristics of reported cardiotoxicity events and their health outcomes. Disproportionality analyses with reporting odds ratios (ROR) and 95% confidence intervals (95% CI) were conducted to detect event signals using a case/non-case method for each targeted therapy and combination. Results A total of 59,739 cases of cardiotoxicity reports were identified; 937 cases identified targeted therapy as the suspect drug. Trastuzumab had the highest number of reports followed by bevacizumab and lapatinib. Proportions of reports of death and disability outcomes for each targeted therapy were approximately 20-25% of the total reports of serious events. Trastuzumab had the highest ROR as a single agent (ROR = 5.74; 95% CI = 5.29-6.23) or combination use of cyclophosphamide (ROR = 16.83; 95% CI = 13.32-21.26) or doxorubicin (ROR = 17.84; 95% CI = 13.77-23.11). Relatively low cardiotoxicity reporting rates were found with lapatinib, regardless of use with combination therapy. Conclusions Analysis of FAERS data identified signals for adverse cardiotoxicity events with targeted therapies and their combinations. Practitioners should consider factors that may increase the likelihood of cardiotoxicity when assessing treatment. Findings support continued surveillance, risk factor identification, and comparative studies.

  18. Longitudinal trends in use and costs of targeted therapies for common cancers in Taiwan: a retrospective observational study

    PubMed Central

    Hsu, Jason C; Lu, Christine Y

    2016-01-01

    Objectives Some targeted therapies have improved survival and overall quality of cancer care generally, but these increasingly expensive medicines have led to increases in pharmaceutical expenditure. This study examined trends in use and expenditures of antineoplastic agents in Taiwan, and estimated market shares by prescription volume and costs of targeted therapies over time. We also determined which cancer types accounted for the highest use of targeted therapies. Design This is a retrospective observational study focusing on the utilisation of targeted therapies for treatment of cancer. Setting The monthly claims data for antineoplastic agents were retrieved from Taiwan's National Health Insurance Research Database (2009–2012). Main outcome measures We calculated market shares by prescription volume and costs for each class of antineoplastic agent by cancer type. Using a time series design with Autoregressive Integrated Moving Average (ARIMA) models, we estimated trends in use and costs of targeted therapies. Results Among all antineoplastic agents, use of targeted therapies grew from 6.24% in 2009 to 12.29% in 2012, but their costs rose from 26.16% to 41.57% in that time. Monoclonal antibodies and protein kinase inhibitors contributed the most (respectively, 23.84% and 16.12% of costs for antineoplastic agents in 2012). During 2009–2012, lung (44.64% of use; 28.26% of costs), female breast (16.49% of use; 27.18% of costs) and colorectal (12.11% of use; 13.16% of costs) cancers accounted for the highest use of targeted therapies. Conclusions In Taiwan, targeted therapies are increasingly used for different cancers, representing a substantial economic burden. It is important to establish mechanisms to monitor their use and outcomes. PMID:27266775

  19. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy.

    PubMed

    Nasiri, Hadi; Valedkarimi, Zahra; Aghebati-Maleki, Leili; Majidi, Jafar

    2018-09-01

    Over the recent decades, the use of antibody-drug conjugates (ADCs) has led to a paradigm shift in cancer chemotherapy. Antibody-based treatment of various human tumors has presented dramatic efficacy and is now one of the most promising strategies used for targeted therapy of patients with a variety of malignancies, including hematological cancers and solid tumors. Monoclonal antibodies (mAbs) are able to selectively deliver cytotoxic drugs to tumor cells, which express specific antigens on their surface, and has been suggested as a novel category of agents for use in the development of anticancer targeted therapies. In contrast to conventional treatments that cause damage to healthy tissues, ADCs use mAbs to specifically attach to antigens on the surface of target cells and deliver their cytotoxic payloads. The therapeutic success of future ADCs depends on closely choosing the target antigen, increasing the potency of the cytotoxic cargo, improving the properties of the linker, and reducing drug resistance. If appropriate solutions are presented to address these issues, ADCs will play a more important role in the development of targeted therapeutics against cancer in the next years. We review the design of ADCs, and focus on how ADCs can be exploited to overcome multiple drug resistance (MDR). © 2018 Wiley Periodicals, Inc.

  20. Advances in targeting strategies for nanoparticles in cancer imaging and therapy.

    PubMed

    Yhee, Ji Young; Lee, Sangmin; Kim, Kwangmeyung

    2014-11-21

    In the last decade, nanoparticles have offered great advances in diagnostic imaging and targeted drug delivery. In particular, nanoparticles have provided remarkable progress in cancer imaging and therapy based on materials science and biochemical engineering technology. Researchers constantly attempted to develop the nanoparticles which can deliver drugs more specifically to cancer cells, and these efforts brought the advances in the targeting strategy of nanoparticles. This minireview will discuss the progress in targeting strategies for nanoparticles focused on the recent innovative work for nanomedicine.

  1. Targeted therapy in advanced gastric carcinoma: the future is beginning.

    PubMed

    Schinzari, G; Cassano, A; Orlandi, A; Basso, M; Barone, C

    2014-01-01

    Gastric cancer represents one of the most common cancer worldwide. Unfortunately, the majority of patients present in advanced stage and outcome still remains poor with high mortality rate despite decreasing incidence and new diagnostic and therapeutic strategies. Although utility of classical chemotherapy agents has been widely explored, advances have been slow and the efficacy of these agents has reached a plateau of median overall survival not higher than 12 months. Therefore, researchers focused their attention on better understanding molecular biology of carcinogenesis and deeper knowledge of the cancer cell phenotype, as well on development of rationally designed drugs that would target specific molecular aberrancies in signal transduction pathways. These targets include cell surface receptors, circulating growth and angiogenic factors and other molecules involved in downstream intracellular signaling pathways, including receptor tyrosine kinases. However, therapeutic advances in gastric cancer are not so encouraging when compared to other solid organ malignancies such as breast and colorectal cancer. This article reviews the role of targeted agents in gastric cancer as single-agent therapy or in combination regimens, including their rational and emerging mechanism of action, current and emerging data. We focused our attention mainly on published phase III studies, therefore cornerstone clinical trials with trastuzumab and bevacizumab have been largely discussed. Phase III studies presented in important international meetings are also reviewed as well phase II published studies and promising new therapies investigated in preclinical or phase I studies. Today, in first-line treatment only trastuzumab has shown significantly increased survival in combination with chemotherapy, whereas ramucirumab as single agent resulted effective in progressing patients, but - despite several disappointing results - these are the proof of principle that targeting the proper

  2. [LDL cholesterol lowering therapy: no target value but personalised treatment].

    PubMed

    Simoons, Maarten L; Deckers, Jaap W

    2015-01-01

    We previously recommended that LDL cholesterol lowering therapy be based on the risk for (recurrent) coronary events, rather than on arbitrary targets for serum LDL cholesterol concentration. We also recommended refraining from therapy with ezetimibe until its efficacy in preventing cardiovascular events had been documented. At the American Heart Association scientific sessions 2014 the results of the IMPROVE-IT study were reported. In this large, randomised trial, a modest benefit of the combination of simvastatin plus ezetimibe over simvastatin alone was reported after 7 years of treatment. The efficacy of such combination therapy was similar to the efficacy of high-dose statin therapy, while the combination therapy is much more expensive. Comparing the efficacy and costs of different preventive therapies, we recommend first prescribing aspirin and a moderate dose of statin, secondly an ACE inhibitor. A high-dose statin should be considered in high-risk patients. The combination of simvastatin and ezetimibe should be prescribed only in high-risk patients (e.g. diabetics after myocardial infarction) who do not tolerate high-dose statins.

  3. Evaluating the Efficacy of ERG-Targeted Therapy in Vivo for Prostate Tumors

    DTIC Science & Technology

    2015-04-01

    DeWeese (PI) 5/15/2015-3/31/2017 NIH/NCI “ PSMA -Directed PET/MR Imaging and Image-Guided Therapy of Prostate Cancer” The overall goal is to validate a...positron-emitting, PSMA -targeted imaging agent clinically so it may be used to full advantage in supporting existing and emerging therapies for a

  4. Targeted therapies for diarrhea-predominant irritable bowel syndrome

    PubMed Central

    Olden, Kevin W

    2012-01-01

    Irritable bowel syndrome (IBS) causes gastrointestinal symptoms such as abdominal pain, bloating, and bowel pattern abnormalities, which compromise patients’ daily functioning. Common therapies address one or two IBS symptoms, while others offer wider symptom control, presumably by targeting pathophysiologic mechanisms of IBS. The aim of this targeted literature review was to capture clinical trial reports of agents receiving the highest recommendation (Grade 1) for treatment of IBS from the 2009 American College of Gastroenterology IBS Task Force, with an emphasis on diarrhea-predominant IBS. Literature searches in PubMed captured articles detailing randomized placebo-controlled trials in IBS/diarrhea-predominant IBS for agents receiving Grade I (strong) 2009 American College of Gastroenterology IBS Task Force recommendations: tricyclic antidepressants, nonabsorbable antibiotics, and the 5-HT3 receptor antagonist alosetron. Studies specific for constipation-predominant IBS were excluded. Tricyclic antidepressants appear to improve global IBS symptoms but have variable effects on abdominal pain and uncertain tolerability; effects on stool consistency, frequency, and urgency were not adequately assessed. Nonabsorbable antibiotics show positive effects on global symptoms, abdominal pain, bloating, and stool consistency but may be most efficacious in patients with altered intestinal microbiota. Alosetron improves global symptoms and abdominal pain and normalizes bowel irregularities, including stool frequency, consistency, and fecal urgency. Both the nonabsorbable antibiotic rifaximin and the 5-HT3 receptor antagonist alosetron improve quality of life. Targeted therapies provide more complete relief of IBS symptoms than conventional agents. Familiarization with the quantity and quality of evidence of effectiveness can facilitate more individualized treatment plans for patients with this heterogeneous disorder. PMID:22754282

  5. Palliative systemic therapy for young women with metastatic breast cancer.

    PubMed

    Eng, Lee Guek; Dawood, Shaheenah; Dent, Rebecca

    2015-09-01

    Breast cancer in young women age less than 40 years remains a relatively rare disease. Emerging data suggest that the biology of breast cancer in younger women may differ from that of older women. Although metastatic breast cancer remains incurable, it is definitely treatable; especially in this era of emerging novel therapeutics. Most women have hormone receptor-positive disease and strategies that interfere with proliferation and the PI3 kinase pathway are reporting exciting results. The prognosis of the metastatic HER2 subtype has been extended to a median survival of 56 months with dual HER2 targeting agents in the first-line setting. Finally, triple negative breast cancer has an enlarging range of therapeutic options including immunotherapy, antiangiogenesis therapy, and targeted therapies including agents that interfere with androgen receptor signaling. Combined palliative and holistic approaches are essential to help young women navigate the marathon of treatment for metastatic breast cancer.

  6. New Therapies in Head and Neck Cancer.

    PubMed

    Santuray, Rodell T; Johnson, Daniel E; Grandis, Jennifer R

    2018-05-01

    Head and neck squamous cell carcinoma (HNSCC) is a common malignancy with high rates of mortality and morbidity. Beginning with cetuximab, investigators continue to optimize antibody technology to target cell-surface receptors that promote HNSCC growth. Small molecules and oligonucleotides have also emerged as therapeutic inhibitors of key receptor-mediated signaling pathways. Although many such therapies have been disappointing in clinical trials as single agents, they continue to be studied in combination with standard therapies. Approvals of pembrolizumab and nivolumab opened a new era of immunotherapy that aims to stimulate antitumor immunity in the tumor microenvironment. Immunotherapies are being intensively investigated in new HNSCC clinical trials, with the goal of optimizing the therapeutic potential of this new class of anticancer agent. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Biological therapy targeting the IL-23/IL-17 axis in inflammatory bowel disease.

    PubMed

    Verstockt, Bram; Van Assche, Gert; Vermeire, Séverine; Ferrante, Marc

    2017-01-01

    As many inflammatory bowel disease (IBD) patients do not benefit from long-term anti-tumour necrosis factor treatment, new anti-inflammatories are urgently needed. After the discovery of the interleukin (IL) 23/17 axis being pivotal in IBD pathogenesis, many different compounds were developed, targeting different components within this pathway. Areas covered: A literature search to March 2016 was performed to identify the most relevant reports on the role of the IL-23/IL-17 axis in IBD and on the different molecules targeting this pathway. First, the authors briefly summarize the immunology of the IL-23/IL-17 pathway to elucidate the mode of action of all different agents. Second, they describe all different molecules targeting this pathway. Besides discussing efficacy and safety data, they also explore immunogenicity, exposure during pregnancy and pharmacokinetics. Expert opinion: A new era in IBD treatment has recently been initiated: besides immunomodulators and TNF-antagonists, anti-adhesion molecules and monoclonal antibodies targeting the IL-23/IL-17 pathway have been developed. Biomarkers for personalized medicine are urgently needed. This therapeutic (r)evolution will further improve disease-related and patient-reported outcome, though a lot of questions should still be addressed in future years.

  8. Drug-therapy networks and the prediction of novel drug targets

    PubMed Central

    Spiro, Zoltan; Kovacs, Istvan A; Csermely, Peter

    2008-01-01

    A recent study in BMC Pharmacology presents a network of drugs and the therapies in which they are used. Network approaches open new ways of predicting novel drug targets and overcoming the cellular robustness that can prevent drugs from working. PMID:18710588

  9. Impact of genetic targets on therapy in head and neck squamous cell carcinoma.

    PubMed

    Chaikhoutdinov, Irina; Goldenberg, David

    2013-01-01

    Despite advances in surgical technique, radiation therapy and chemotherapy, the mortality from head and neck squamous cell carcinoma (HNSCC) has not improved significantly. Squamous cell carcinoma is caused by tobacco use, alcohol consumption and infection with high-risk types of human papillomavirus. It is the 6th most common cancer in the world, with upwards of 45,000 new cases reported yearly in the United States alone.In recent years, there has been a significant increase in the understanding of the molecular and genetic pathogenesis of head and neck cancer, shedding light on the unexpected heterogeneity of the disease. Genetic analysis has led to new classification schemes for HNSCC, with different subgroups exhibiting different prognoses. In addition, multiple targets in aberrant signaling pathways have been identified using increasingly sophisticated bio-informatics tools. Advances in technology have allowed for novel delivery mechanisms to introduce genetic material into cells to produce a therapeutic effect by targeting cancer cells via a number of different approaches.A pressing need to develop novel therapies to augment current treatment modalities has led to a number of translational studies involving gene therapy in the treatment of HNSCC. This article will focus on a review of the most recent developments in molecular biology of head and neck squamous cell carcinoma in regards to possible targets for gene therapy, as well as the array of novel therapeutic strategies directed at these targets.

  10. Effects of physical therapy for the management of patients with ankylosing spondylitis in the biological era.

    PubMed

    Giannotti, Erika; Trainito, Sabina; Arioli, Giovanni; Rucco, Vincenzo; Masiero, Stefano

    2014-09-01

    Exercise is considered a fundamental tool for the management of ankylosing spondylitis (AS), in combination with pharmacological therapy that with the advent of biological therapy has improved dramatically the control of signs and symptoms of this challenging disease. Current evidence shows that a specific exercise protocol has not been validated yet. The purpose of this review is to update the most recent evidence (July 2010-November 2013) about physiotherapy in AS, analyzing the possible role and synergistic interactions between exercise and biological drugs. From 117 studies initially considered, only 15 were included in the review. The results support a multimodal approach, including educational sessions, conducted in a group setting, supervised by a physiotherapist and followed by a maintaining home-based regimen. Spa exercise and McKenzie, Heckscher, and Pilates methods seem promising in AS rehabilitation, but their effectiveness should be further investigated in future randomized controlled trials (RCTs). When performed in accordance with the American College of Sports Medicine guidelines, cardiovascular training has been proven safe and effective and should be included in AS rehabilitation protocols. Exercise training plays an important role in the biological era, being now applicable to stabilized patients, leading ultimately to a better management of AS by physiatrists and rheumatologists throughout the world. On the basis of the current evidence, further research should aim to determine which exercise protocols should be recommended.

  11. Changing the paradigm: the potential for targeted therapy in laryngeal squamous cell carcinoma

    PubMed Central

    Ludwig, Megan L.; Birkeland, Andrew C.; Hoesli, Rebecca; Swiecicki, Paul; Spector, Matthew E.; Brenner, J. Chad

    2016-01-01

    Laryngeal squamous cell carcinoma (LSCC) remains a highly morbid and fatal disease. Historically, it has been a model example for organ preservation and treatment stratification paradigms. Unfortunately, survival for LSCC has stagnated over the past few decades. As the era of next-generation sequencing and personalized treatment for cancer approaches, LSCC may be an ideal disease for consideration of further treatment stratification and personalization. Here, we will discuss the important history of LSCC as a model system for organ preservation, unique and potentially targetable genetic signatures of LSCC, and methods for bringing stratified, personalized treatment strategies to the 21st century. PMID:27144065

  12. ALCOHOLIC HEPATITIS: TRANSLATIONAL APPROACHES TO DEVELOP TARGETED THERAPIES

    PubMed Central

    Mandrekar, Pranoti; Bataller, Ramon; Tsukamoto, Hidekazu; Gao, Bin

    2016-01-01

    Alcoholic liver disease (ALD) is a leading cause of liver related mortality worldwide. In contrast to recent advances in therapeutic strategies for patients with viral hepatitis, there is a significant lack of novel therapeutic options for patients with ALD. In particular, there is an urgent need to focus our efforts on effective therapeutic interventions for alcoholic hepatitis (AH), the most severe form of ALD. AH is characterized by an abrupt development of jaundice and complications related to liver insufficiency and portal hypertension in patients with heavy alcohol intake. The mortality of patients with AH is very high (20–50% at 3 months). Available therapies are not effective in many patients and targeted approaches are imminently needed. The development of such therapies requires translational studies in human samples and suitable animal models that reproduce clinical and histological features of AH. In recent years, new animal models that simulate some of the features of human AH have been developed, and translational studies using human samples have identified potential pathogenic factors and histological parameters that predict survival. This review article summarizes the unmet needs for translational studies on the pathogenesis of AH, pre-clinical translational tools, and emerging drug targets to benefit the AH patient. PMID:26940353

  13. Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    PubMed

    Straube, Andreas; Aicher, Bernhard; Fiebich, Bernd L; Haag, Gunther

    2011-03-31

    Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect.As an example the fixed-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Multitarget therapeutics like combined analgesics broaden the array of therapeutic options, enable the completeness

  14. Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    PubMed Central

    2011-01-01

    Background Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. Discussion In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect. As an example the fixesd-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Summary Multitarget therapeutics like combined analgesics broaden the array of therapeutic

  15. DNA topoisomerase I and DNA gyrase as targets for TB therapy.

    PubMed

    Nagaraja, Valakunja; Godbole, Adwait A; Henderson, Sara R; Maxwell, Anthony

    2017-03-01

    Tuberculosis (TB) is the deadliest bacterial disease in the world. New therapeutic agents are urgently needed to replace existing drugs for which resistance is a significant problem. DNA topoisomerases are well-validated targets for antimicrobial and anticancer chemotherapies. Although bacterial topoisomerase I has yet to be exploited as a target for clinical antibiotics, DNA gyrase has been extensively targeted, including the highly clinically successful fluoroquinolones, which have been utilized in TB therapy. Here, we review the exploitation of topoisomerases as antibacterial targets and summarize progress in developing new agents to target DNA topoisomerase I and DNA gyrase from Mycobacterium tuberculosis. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Biodegradable and Multifunctional Polymer Micro-Tubes for Targeting Photothermal Therapy

    PubMed Central

    Wang, Xin; Yu, Guoping; Han, Xiyu; Zhang, Hua; Ren, Jing; Wu, Xia; Qu, Yanfeng

    2014-01-01

    We describe an innovative form of polymer micro-tubes with diverse functions including biodegradation, magnetic manipulation, and photothermal effect that employs and activates photothermal therapy to target cancer cells. The micro-tube comprised soybean protein isolate, poly-l-glutamic acid, magnetite nanoparticles, plus gold nanoparticles. Through electrostatic force, these components, with opposite charges, formed pairs of layers in the pores of the template, various bilayers of soybean protein isolate and poly-l-glutamic acid served as the biodegradable building wall to each micro-tube. The layers of magnetite nanoparticle functionalized micro-tubes enabled the micro-tube manipulate to target the cancer cells by using an external magnetic field. The photo-thermal effect of the layer of gold nanoparticles on the outer surface of the micro-tubes, when under irradiation and when brought about by the near infrared radiation, elevated each sample’s temperature. In addition, and when under the exposure of the near infrared radiation, the elevated temperature of the suspension of the micro-tubes, likewise with a concentration of 0.2 mg/mL, and similarly with a power of 2 W and as well maintained for 10 min, elevated the temperature of the suspension beyond 42 °C. Such temperatures induced apoptosis of target cancer cells through the effect of photothermal therapy. The findings assert that structured micro-tubes have a promising application as a photothermal agent. From this assertion, the implications are that this multifunctional agent will significantly improve the methodology for cancer diagnosis and therapy. PMID:24992593

  17. Central and Peripheral Molecular Targets for Anti-Obesity Pharmacotherapy

    PubMed Central

    Valentino, Michael A.; Lin, Jieru E.; Waldman, Scott A.

    2011-01-01

    Obesity has emerged as one of the principle worldwide health concerns of the modern era, and there exists a tremendous unmet clinical need for safe and effective therapies to combat this global pandemic. The prevalence of obesity and its associated co-morbidities, including cardiovascular and metabolic diseases, has focused drug discovery and development on generating effective modalities for the treatment and prevention of obesity. Early efforts in the field of obesity pharmacotherapy centered on agents with indeterminate mechanisms of action producing treatment paradigms characterized by significant off-target effects. During the past two decades, new insights have been made into the physiologic regulation of energy balance and the subordinate central and peripheral circuits coordinating appetite, metabolism, and lipogenesis. These studies have revealed previously unrecognized molecular targets for controlling appetite and managing weight from which has emerged a new wave of targeted pharmacotherapies to prevent and control obesity. PMID:20445536

  18. High-Density Lipoprotein-Targeted Therapy and Apolipoprotein A-I Mimetic Peptides.

    PubMed

    Uehara, Yoshinari; Chiesa, Giulia; Saku, Keijiro

    2015-01-01

    Numerous randomized clinical trials have established statins as the major standard therapy for atherosclerotic diseases because these molecules decrease the plasma level of low-density lipoprotein (LDL) cholesterol and moderately increase that of plasma high-density lipoprotein (HDL) cholesterol. The reverse cholesterol transport pathway, mediated by HDL particles, has a relevant antiatherogenic potential. An important approach to HDL-targeted therapy is optimization of the HDL-cholesterol level and enhanced removal of plasma cholesterol, together with the prevention and mitigation of inflammation related to atherosclerosis. Small-molecule inhibitors of cholesteryl ester transfer protein (CETP) increase the HDL-cholesterol level in subjects with normal or low HDL-cholesterol. However, CETP inhibitors do not seem to reduce the risk of atherosclerotic diseases. HDL therapies using reconstituted HDL, including apolipoprotein (Apo) A-I Milano, ApoA-I mimetics, or full-length ApoA-I, are dramatically effective in animal models. Of those, the ApoA-I-mimetic peptide called FAMP effectively removes cholesterol via the ABCA1 transporter and acts as an antiatherosclerotic agent by enhancing the biological functions of HDL without elevating the HDL-cholesterol level. Our review of the literature leads us to conclude that HDL-targeted therapies have significant atheroprotective potential and thus may effectively treat patients with cardiovascular diseases.

  19. Recent advances in aptamer-armed multimodal theranostic nanosystems for imaging and targeted therapy of cancer.

    PubMed

    Vandghanooni, Somayeh; Eskandani, Morteza; Barar, Jaleh; Omidi, Yadollah

    2018-05-30

    The side effects of chemotherapeutics during the course of cancer treatment limit their clinical outcomes. The most important mission of the modern cancer therapy modalities is the delivery of anticancer drugs specifically to the target cells/tissue in order to avoid/reduce any inadvertent non-specific impacts on the healthy normal cells. Nanocarriers decorated with a designated targeting ligand such as aptamers (Aps) and antibodies (Abs) are able to deliver cargo molecules to the target cells/tissue without affecting other neighboring cells, resulting in an improved treatment of cancer. For targeted therapy of cancer, different ligands (e.g., protein, peptide, Abs, Aps and small molecules) have widely been used in the development of different targeting drug delivery systems (DDSs). Of these homing agents, nucleic acid Aps show unique targeting potential with high binding affinity to a variety of biological targets (e.g., genes, peptides, proteins, and even cells and organs). Aps have widely been used as the targeting agent, in large part due to their unique 3D structure, simplicity in synthesis and functionalization, high chemical flexibility, low immunogenicity and toxicity, and cell/tissue penetration capability in some cases. Here, in this review, we provide important insights on Ap-decorated multimodal nanosystems (NSs) and discuss their applications in targeted therapy and imaging of cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    PubMed

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Targeting Signaling to YAP for the Therapy of NF2

    DTIC Science & Technology

    2015-10-01

    clear mechanism of Merlin’s tumor suppressor function. Our studies have shown that inactivation of Merlin/NF2 de-regulates the E3 ubiquitin ligase...Keywords NF2, E3 ubiquitin ligase, high throughput small molecule screening, targeted therapy. 6 Accomplishment Major goals and objectives

  2. Biological therapy of hematologic malignancies: toward a chemotherapy-free era.

    PubMed

    Klener, Pavel; Etrych, Tomas; Klener, Pavel

    2017-10-06

    Less than 70 years ago, the vast majority of hematologic malignancies were untreatable diseases with fatal prognoses. The development of modern chemotherapy agents, which had begun after the Second World War, was markedly accelerated by the discovery of the structure of DNA and its role in cancer biology and tumor cell division. The path travelled from the first temporary remissions observed in children with acute lymphoblastic leukemia treated with single-agent antimetabolites until the first cures achieved by multi-agent chemotherapy regimens was incredibly short. Despite great successes, however, conventional genotoxic cytostatics suffered from an inherently narrow therapeutic index and extensive toxicity, which in many instances limited their clinical utilization. In the last decade of the 20th century, increasing knowledge on the biology of certain malignancies resulted in the conception and development of first molecularly targeted agents designed to inhibit specific druggable molecules involved in the survival of cancer cells. Advances in technology and genetic engineering enabled the production of structurally complex anticancer macromolecules called biologicals, including therapeutic monoclonal antibodies, antibody-drug conjugates and antibody fragments. The development of drug delivery systems (DDSs), in which conventional drugs were attached to various types of carriers including nanoparticles, liposomes or biodegradable polymers, represented an alternative approach to the development of new anticancer agents. Despite the fact that the antitumor activity of drugs attached to DDSs was not fundamentally different, the improved pharmacokinetic profiles, decreased toxic side effects and significantly increased therapeutic indexes resulted in their enhanced antitumor efficacy compared to conventional (unbound) drugs. Approval of the first immune checkpoint inhibitor for the treatment of cancer in 2011 initiated the era of cancer immunotherapy. Checkpoint

  3. Octreotide-functionalized and resveratrol-loaded unimolecular micelles for targeted neuroendocrine cancer therapy

    NASA Astrophysics Data System (ADS)

    Xu, Wenjin; Burke, Jocelyn F.; Pilla, Srikanth; Chen, Herbert; Jaskula-Sztul, Renata; Gong, Shaoqin

    2013-09-01

    Medullary thyroid cancer (MTC) is a neuroendocrine tumor (NET) that is often resistant to standard therapies. Resveratrol suppresses MTC growth in vitro, but it has low bioavailability in vivo due to its poor water solubility and rapid metabolic breakdown, as well as lack of tumor-targeting ability. A novel unimolecular micelle based on a hyperbranched amphiphilic block copolymer was designed, synthesized, and characterized for NET-targeted delivery. The hyperbranched amphiphilic block copolymer consisted of a dendritic Boltorn® H40 core, a hydrophobic poly(l-lactide) (PLA) inner shell, and a hydrophilic poly(ethylene glycol) (PEG) outer shell. Octreotide (OCT), a peptide that shows strong binding affinity to somatostatin receptors, which are overexpressed on NET cells, was used as the targeting ligand. Resveratrol was physically encapsulated by the micelle with a drug loading content of 12.1%. The unimolecular micelles exhibited a uniform size distribution and spherical morphology, which were determined by both transmission electron microscopy (TEM) and dynamic light scattering (DLS). Cellular uptake, cellular proliferation, and Western blot analyses demonstrated that the resveratrol-loaded OCT-targeted micelles suppressed growth more effectively than non-targeted micelles. Moreover, resveratrol-loaded NET-targeted micelles affected MTC cells similarly to free resveratrol in vitro, with equal growth suppression and reduction in NET marker production. These results suggest that the H40-based unimolecular micelle may offer a promising approach for targeted NET therapy.

  4. A Surgical Perspective on Targeted Therapy of Hepatocellular Carcinoma

    PubMed Central

    Faltermeier, Claire; Busuttil, Ronald W.; Zarrinpar, Ali

    2015-01-01

    Hepatocellular carcinoma (HCC), the second leading cause of cancer deaths worldwide, is difficult to treat and highly lethal. Since HCC is predominantly diagnosed in patients with cirrhosis, treatment planning must consider both the severity of liver disease and tumor burden. To minimize the impact to the patient while treating the tumor, techniques have been developed to target HCC. Anatomical targeting by surgical resection or locoregional therapies is generally reserved for patients with preserved liver function and minimal to moderate tumor burden. Patients with decompensated cirrhosis and small tumors are optimal candidates for liver transplantation, which offers the best chance of long-term survival. Yet, only 20%–30% of patients have disease amenable to anatomical targeting. For the majority of patients with advanced HCC, chemotherapy is used to target the tumor biology. Despite these treatment options, the five-year survival of patients in the United States with HCC is only 16%. In this review we provide a comprehensive overview of current approaches to target HCC. We also discuss emerging diagnostic and prognostic biomarkers, novel therapeutic targets identified by recent genomic profiling studies, and potential applications of immunotherapy in the treatment of HCC. PMID:28943622

  5. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yu Kyeong; Lee, Jae Ho; Park, Ga-Young

    2013-01-25

    Highlights: ► A CDK4 inhibitor may be used for breast cancer stem cell-targeted therapy. ► The CDK4 inhibitor differentiated the cancer stem cell population (CD24{sup −}/CD44{sup +}) of MDA-MB-231. ► The differentiation of the cancer stem cells by the CDK4 inhibitor radiosensitized MDA-MB-231. -- Abstract: Cancer stem cells (CSCs) are one of the main reasons behind cancer recurrence due to their resistance to conventional anti-cancer therapies. Thus, many efforts are being devoted to developing CSC-targeted therapies to overcome the resistance of CSCs to conventional anti-cancer therapies and decrease cancer recurrence. Differentiation therapy is one potential approach to achieve CSC-targeted therapies.more » This method involves inducing immature cancer cells with stem cell characteristics into more mature or differentiated cancer cells. In this study, we found that a CDK4 inhibitor sensitized MDA-MB-231 cells but not MCF7 cells to irradiation. This difference appeared to be associated with the relative percentage of CSC-population between the two breast cancer cells. The CDK4 inhibitor induced differentiation and reduced the cancer stem cell activity of MDA-MB-231 cells, which are shown by multiple marker or phenotypes of CSCs. Thus, these results suggest that radiosensitization effects may be caused by reducing the CSC-population of MDA-MB-231 through the use of the CDK4 inhibitor. Thus, further investigations into the possible application of the CDK4 inhibitor for CSC-targeted therapy should be performed to enhance the efficacy of radiotherapy for breast cancer.« less

  6. Targeted therapy of multiple myeloma.

    PubMed

    Dolloff, Nathan G; Talamo, Giampaolo

    2013-01-01

    Multiple myeloma (MM) is a plasma cell malignancy and the second most common hematologic cancer. MM is characterized by the accumulation of malignant plasma cells within the bone marrow, and presents clinically with a broad range of symptoms, including hypercalcemia, renal insufficiency, anemia, and lytic bone lesions. MM is a heterogeneous disease associated with genomic instability, where patients may express multiple genetic abnormalities that affect several oncogenic pathways. Commonly detected genetic aberrations are translocations involving immunoglobulin heavy chain (IgH) switch regions (chromosome 14q32) and oncogenes such as c-maf [t(14:16)], cyclin D1 [t(11:14)], and FGFR3/MMSET [t(4:14)]. Advances in the basic understanding of MM and the development of novel agents, such as the immunomodulatory drugs (IMiDs) thalidomide and lenalidomide and the proteasome inhibitor bortezomib, have increased therapeutic response rates and prolonged patient survival. Despite these advances MM remains incurable in the majority of patients, and it is therefore critical to identify additional therapeutic strategies and targets for its treatment. In this chapter, we review the underlying genetic components of MM and discuss the results of recent clinical trials that demonstrate the effectiveness of targeted agents in the management of MM. In addition, we discuss experimental therapies that are currently in clinical development along with their molecular rationale in the treatment of MM.

  7. Target haemoglobin to aim for with erythropoiesis-stimulating agents: a position statement by ERBP following publication of the Trial to reduce cardiovascular events with Aranesp therapy (TREAT) study.

    PubMed

    Locatelli, Francesco; Aljama, Pedro; Canaud, Bernard; Covic, Adrian; De Francisco, Angel; Macdougall, Iain C; Wiecek, Andrzej; Vanholder, Raymond

    2010-09-01

    The European Renal Best Practice (ERBP), which are issued by ERA-EDTA, are suggestions for clinical practice in areas in which evidence is lacking or weak, together with position statements on recently published randomized controlled trials, or on existing guidelines and recommendations. In 2009, the Anaemia Working Group of ERBP published its first position statement about the haemoglobin target to aim for with erythropoietin-stimulating agents (ESA) and on issues that were not covered by K-DOQI in 2006-07. This second position paper of the group follows the publication of the Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT) Study. This multi-centre, placebo-controlled trial compared cardiovascular and renal outcomes in 4038 patients with type 2 diabetes, chronic kidney disease not on dialysis, and anaemia who were randomized to complete anaemia correction (haemoglobin target of 13 g/dL using darbepoetin alpha) or placebo (with a haemoglobin rescue value of 9 g/dL). Following the findings of the TREAT study, the Anaemia Working Group of ERBP maintains its view that 'Hb values of 11-12 g/dL should be generally sought in the CKD population without intentionally exceeding 13 g/dL' and that the doses of ESA therapy to achieve the target haemoglobin should also be considered. More caution is suggested when treating anaemia with ESA therapy in patients with type 2 diabetes not undergoing dialysis (and probably in diabetics at all CKD stages). In those with ischaemic heart disease or with a previous history of stroke, possible benefits should be weighed up against an increased risk of stroke recurrence, when deciding which Hb level to aim for. These recommendations are not intended to represent a new guideline as they are not the result of a systematic review of the evidence.

  8. Blood pressure targets for vasopressor therapy: a systematic review.

    PubMed

    D'Aragon, Frederick; Belley-Cote, Emilie P; Meade, Maureen O; Lauzier, François; Adhikari, Neill K J; Briel, Matthias; Lalu, Manoj; Kanji, Salmaan; Asfar, Pierre; Turgeon, Alexis F; Fox-Robichaud, Alison; Marshall, John C; Lamontagne, François

    2015-06-01

    Physicians often prescribe vasopressors to correct pathological vasodilation and improve tissue perfusion in patients with septic shock, but the evidence to inform practice on vasopressor dosing is weak. We undertook a systematic review of clinical studies evaluating different blood pressure targets for the dosing of vasopressors in septic shock. We searched MEDLINE, EMBASE, CENTRAL (to November 2013), reference lists from included articles, and trial registries for randomized controlled trials (RCTs) and observational and crossover intervention studies comparing different blood pressure targets for vasopressor therapy in septic shock. Two reviewers independently selected eligible studies and extracted data on standardized forms. We identified 2 RCTs and 10 crossover trials but no observational studies meeting our criteria. Only one RCT measured clinical outcomes after comparing mean arterial pressure targets of 80 to 85 mmHg versus 65 to 70 mmHg. There was no effect on 28-day mortality, but confidence intervals were wide (hazard ratio, 95% confidence interval [95% CI] 0.84 - 1.38). In contrast, this intervention was associated with a greater risk of atrial fibrillation (relative risk, 2.36; 95% CI, 1.18 - 4.72) and a lower risk of renal replacement therapy in hypertensive patients (relative risk, 0.75; 95% CI, 0.57 - 1.0). Crossover trials suggest that achieving higher blood pressure targets by increasing vasopressor doses increases heart rate and cardiac index with no effect on serum lactate. Our findings underscore the paucity of clinical evidence to guide the administration of vasopressors in critically ill patients with septic shock. Further rigorous research is needed to establish an evidence base for vasopressor administration in this population.

  9. Targeted Therapies for Brain Metastases from Breast Cancer.

    PubMed

    Venur, Vyshak Alva; Leone, José Pablo

    2016-09-13

    The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor, mechanistic target of rapamycin (mTOR) pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6) pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%-30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways.

  10. Cancer incidence and all-cause mortality in HIV-positive patients in Northeastern Algeria before and during the era of highly active antiretroviral therapy.

    PubMed

    Chaabna, Karima; Newton, Robert; Vanhems, Philippe; Laouar, Maamar; Forman, David; Boudiaf, Zahira; Soerjomataram, Isabelle

    2016-01-01

    To assess cancer incidence and all-cause mortality trends in HIV-positive patients in Algeria before and during the highly active antiretroviral therapy (HAART) era. Cross-sectional study. We used hospital-based data of patients with HIV/AIDS between January 1988 and December 2010. Cancer incidence, standardized mortality ratios (SMRs), risk of death, and proportion of HIV-positive patients treated before and during the HAART era were calculated. The joinpoint model was used to assess the magnitude of changes in SMRs. In 1988-2010, 156 patients were diagnosed as HIV-positive. During pre-HAART era, Kaposi sarcoma (KS) incidence was 5%. After the introduction of HAART, KS incidence decreased to 2%. No other AIDS-related cancer was diagnosed during the study. One-third died (52/156), of which 83.6% died in the same year as or in the year after HIV diagnosis; median age at death (interquartile range) was 34.5 (11.8) years. Yearly risk of death declined from 100% in 1998 to 8% in 2010; percentage of patients treated with HAART increased from 13% in 1998 to >80% after 2002. Overall SMR decreased from 200.2 (95% confidence interval [95% CI], 123.2-325.2) before the HAART era to 91.4 (95% CI, 66.0-126.6) thereafter. From 2003, yearly SMRs decreased significantly by 66.1% (P < 0.05) until 2006 but not thereafter. Since 1998, the proportion of HIV-positive patients treated with HAART increased, reaching 84% in 2010, all-cause mortality decreased, and cancer remained rare. However, almost all patients who died during the study seemed to be diagnosed at a late stage of the disease, emphasizing the need for earlier diagnosis of HIV in Algeria.

  11. Important cellular targets for antimicrobial photodynamic therapy.

    PubMed

    Awad, Mariam M; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2016-09-01

    The persistent problem of antibiotic resistance has created a strong demand for new methods for therapy and disinfection. Photodynamic inactivation (PDI) of microbes has demonstrated promising results for eradication of antibiotic-resistant strains. PDI is based on the use of a photosensitive compound (photosensitizer, PS), which upon illumination with visible light generates reactive species capable of damaging and killing microorganisms. Since photogenerated reactive species are short lived, damage is limited to close proximity of the PS. It is reasonable to expect that the larger the number of damaged targets is and the greater their variety is, the higher the efficiency of PDI is and the lower the chances for development of resistance are. Exact molecular mechanisms and specific targets whose damage is essential for microbial inactivation have not been unequivocally established. Two main cellular components, DNA and plasma membrane, are regarded as the most important PDI targets. Using Zn porphyrin-based PSs and Escherichia coli as a model Gram-negative microorganism, we demonstrate that efficient photoinactivation of bacteria can be achieved without detectable DNA modification. Among the cellular components which are modified early during illumination and constitute key PDI targets are cytosolic enzymes, membrane-bound protein complexes, and the plasma membrane. As a result, membrane barrier function is lost, and energy and reducing equivalent production is disrupted, which in turn compromises cell defense mechanisms, thus augmenting the photoinduced oxidative injury. In conclusion, high PDI antimicrobial effectiveness does not necessarily require impairment of a specific critical cellular component and can be achieved by inducing damage to multiple cellular targets.

  12. Multistage Targeting Strategy Using Magnetic Composite Nanoparticles for Synergism of Photothermal Therapy and Chemotherapy.

    PubMed

    Wang, Yi; Wei, Guoqing; Zhang, Xiaobin; Huang, Xuehui; Zhao, Jingya; Guo, Xing; Zhou, Shaobing

    2018-03-01

    Mitochondrial-targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin-loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core-shell-SS-shell architecture are composed of a core of Fe 3 O 4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near-infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Internal and External Triggering Mechanism of "Smart" Nanoparticle-Based DDSs in Targeted Tumor Therapy.

    PubMed

    Qiana, Xian-Ling; Li, Jun; Wei, Ran; Lin, Hui; Xiong, Li-Xia

    2018-05-09

    Anticancer chemotherapeutics have a lot of problems via conventional drug delivery systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: "passive", "active", and "smart" targeting. To summarize the mechanisms of various internal and external "smart" stimulating factors on the basis of findings from in vivo and in vitro studies. A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), "smart" DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. In this review article, we summarize and classify the internal and external triggering mechanism of "smart" nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. [Advances in nanoparticle-targeting tumor associated macrophages for cancer imaging and therapy].

    PubMed

    Fengliang, Guo; Guping, Tang; Qinglian, H U

    2017-03-25

    Tumor tissues are composed of tumor cells and complicate microenvironment. Tumor associated macrophages (TAMs) as an important component in tumor microenvironment, play fundamental roles in tumor progression, metastasis and microenvironment regulation. Recently, studies have found that nanotechnology, as an emerging platform, provides unique potential for cancer imaging and therapy. With the nanotechnology, TAMs imaging presents direct evidence for cancer development, progression, and the effectiveness of cancer treatments; it also can regulate the immunosuppression of tumor microenvironment and improve therapeutic efficiency through TAMs targeted killing or phenotypic transformation. In this article, we illustrate the function of TAMs and review the latest development in nano-carriers and their applications in tumor associated macrophage targeting cancer imaging and therapy.

  15. Multifunctional nanoparticle-EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy.

    PubMed

    Das, Manasi; Duan, Wei; Sahoo, Sanjeeb K

    2015-02-01

    The promising proposition of multifunctional nanoparticles for cancer diagnostics and therapeutics has inspired the development of theranostic approach for improved cancer therapy. Moreover, active targeting of drug carrier to specific target site is crucial for providing efficient delivery of therapeutics and imaging agents. In this regard, the present study investigates the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles, functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. A wide spectrum of in vitro analysis (cellular uptake study, cytotoxicity assay, cell cycle and apoptosis analysis, apoptosis associated proteins study) revealed superior therapeutic potentiality of targeted NPs over other formulations in EpCAM expressing cells. Moreover, our nanotheranostic system served as a superlative bio-imaging modality both in 2D monolayer culture and tumor spheroid model. Our result suggests that, these aptamer-guided multifunctional NPs may act as indispensable nanotheranostic approach toward cancer therapy. This study investigated the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. It was concluded that the studied multifunctional targeted nanoparticle may become a viable and efficient approach in cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Intermittent targeted therapies and stochastic evolution in patients affected by chronic myeloid leukemia

    NASA Astrophysics Data System (ADS)

    Pizzolato, N.; Persano Adorno, D.; Valenti, D.; Spagnolo, B.

    2016-05-01

    Front line therapy for the treatment of patients affected by chronic myeloid leukemia (CML) is based on the administration of tyrosine kinase inhibitors, namely imatinib or, more recently, axitinib. Although imatinib is highly effective and represents an example of a successful molecular targeted therapy, the appearance of resistance is observed in a proportion of patients, especially those in advanced stages. In this work, we investigate the appearance of resistance in patients affected by CML, by modeling the evolutionary dynamics of cancerous cell populations in a simulated patient treated by an intermittent targeted therapy. We simulate, with the Monte Carlo method, the stochastic evolution of initially healthy cells to leukemic clones, due to genetic mutations and changes in their reproductive behavior. We first present the model and its validation with experimental data by considering a continuous therapy. Then, we investigate how fluctuations in the number of leukemic cells affect patient response to the therapy when the drug is administered with an intermittent time scheduling. Here we show that an intermittent therapy (IT) represents a valid choice in patients with high risk of toxicity, despite an associated delay to the complete restoration of healthy cells. Moreover, a suitably tuned IT can reduce the probability of developing resistance.

  17. Prostate-specific membrane antigen for prostate cancer theranostics: from imaging to targeted therapy.

    PubMed

    Arsenault, Frédéric; Beauregard, Jean-Mathieu; Pouliot, Frédéric

    2018-06-22

    In recent years, major advances in molecular imaging of prostate cancers (PCa) were made with the development and clinical validation of highly accurate PET tracers to stage and restage the disease. Prostate-specific membrane antigen (PSMA) is a transmembrane protein highly expressed in PCa, and its expression has led to the development of PSMA-binding radiopharmaceuticals for molecular imaging or radioligand therapy (RLT). We herein review the recent literature published on diagnostic and therapeutic (i.e. theranostic) PSMA tracers. Development in small PSMA-targeted molecules labeled with gallium-68 and fluorine-18 show promising results for primary staging and detection of disease at biochemical recurrence using PET/computed tomography (PET/CT). Studies show a higher sensitivity and specificity, along with an improved detection rate over conventional imaging (CT scan and bone scan) or choline PET tracers, especially for restaging after prostate-specific antigen failure following loco-regional therapy. In addition, some PSMA tracers can be labeled with beta-minus and alpha particle emitters, yielding encouraging response rates and low toxicity, and potentially offering a new line of targeted therapy for metastatic castration-resistant PCa. PSMA-targeted tracers have shown unprecedented accuracy to stage and restage PCa using PET/CT. Given their specific biodistribution toward PCa tissue, PSMA RLT now offers new therapeutic possibilities to target metastatic PCa. Prospective multicenter randomized studies investigating the clinical impact management impacts of PSMA-targeted molecules are urgently needed.

  18. Alternative therapies for metastatic breast cancer: multimodal approach targeting tumor cell heterogeneity.

    PubMed

    Sambi, Manpreet; Haq, Sabah; Samuel, Vanessa; Qorri, Bessi; Haxho, Fiona; Hill, Kelli; Harless, William; Szewczuk, Myron R

    2017-01-01

    One of the primary challenges in developing effective therapies for malignant tumors is the specific targeting of a heterogeneous cancer cell population within the tumor. The cancerous tumor is made up of a variety of distinct cells with specialized receptors and proteins that could potentially be viable targets for drugs. In addition, the diverse signals from the local microenvironment may also contribute to the induction of tumor growth and metastasis. Collectively, these factors must be strategically studied and targeted in order to develop an effective treatment protocol. Targeted multimodal approaches need to be strategically studied in order to develop a treatment protocol that is successful in controlling tumor growth and preventing metastatic burden. Breast cancer, in particular, presents a unique problem because of the variety of subtypes of cancer that can arise and the multiple drug targets that could be exploited. For example, the tumor stage and subtypes often dictate the appropriate treatment regimen. Alternate multimodal therapies should consider the importance of time-dependent drug administration, as well as targeting the local and systemic tumor environment. Many reviews and papers have briefly touched on the clinical implications of this cellular heterogeneity; however, there has been very little discussion on the development of study models that reflect this diversity and on multimodal therapies that could target these subpopulations. Here, we summarize the current understanding of the origins of intratumoral heterogeneity in breast cancer subtypes, and its implications for tumor progression, metastatic potential, and treatment regimens. We also discuss the advantages and disadvantages of utilizing specific breast cancer models for research, including in vitro monolayer systems and three-dimensional mammospheres, as well as in vivo murine models that may have the capacity to encompass this heterogeneity. Lastly, we summarize some of the current

  19. Targeting p53-MDM2-MDMX Loop for Cancer Therapy

    PubMed Central

    Zhang, Qi; Zeng, Shelya X.

    2015-01-01

    The tumor suppressor p53 plays a central role in anti-tumorigenesis and cancer therapy. It has been described as “the guardian of the genome”, because it is essential for conserving genomic stability by preventing mutation, and its mutation and inactivation are highly related to all human cancers. Two important p53 regulators, MDM2 and MDMX, inactivate p53 by directly inhibiting its transcriptional activity and mediating its ubiquitination in a feedback fashion, as their genes are also the transcriptional targets of p53. On account of the importance of the p53-MDM2- MDMX loop in the initiation and development of wild type p53-containing tumors, intensive studies over the past decade have been aiming to identify small molecules or peptides that could specifically target individual protein molecules of this pathway for developing better anti-cancer therapeutics. In this chapter, we review the approaches for screening and discovering efficient and selective MDM2 inhibitors with emphasis on the most advanced synthetic small molecules that interfere with the p53-MDM2 interaction and are currently on Phase I clinical trials. Other therapeutically useful strategies targeting this loop, which potentially improve the prospects of cancer therapy and prevention, will also be discussed briefly. PMID:25201201

  20. Histopathology of prostate tissue after vascular-targeted photodynamic therapy for localized prostate cancer.

    PubMed

    Eymerit-Morin, Caroline; Zidane, Merzouka; Lebdai, Souhil; Triau, Stéphane; Azzouzi, Abdel Rahmene; Rousselet, Marie-Christine

    2013-10-01

    Low-risk prostate adenocarcinoma is classically managed either with active surveillance or radical therapy (such as external radiotherapy or radical prostatectomy), but both have significant side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy proposed as an alternative approach for localized, low-volume, and low-Gleason score (≤6) carcinomas. We report histological modifications observed in prostate biopsies of 56 patients, performed 6 months after VTP using the photosensitizer TOOKAD® Soluble (WST11) and low-energy laser administered in the tumor area transperineally by optic fibers. In 53 patients, we observed sharply demarcated hyaline fibrotic scars, with or without rare atrophic glands, sometimes reduced to corpora amylacea surrounded by giant multinuclear macrophages. Mild chronic inflammation, hemosiderin, and coagulative necrosis were also observed. When residual cancer was present in a treated lobe (17 patients), it was always located outside the scar, most often close to the prostate capsule, and it showed no therapy-related modification. Histopathological interpretation of post-WST11 VTP prostate biopsies was straightforward, in contrast with that of prostate biopsies after radio or hormonal therapy, which introduces lesions difficult to interpret. VTP resulted in complete ablation of cancer in the targeted area.

  1. Gene therapy in the post-Gelsinger era.

    PubMed

    Smith, Lynn; Byers, Jacqueline Fowler

    2002-12-01

    As gene therapy research races to a first cure of a genetic-based disease, the research community has struggled with the aftermath of the well-publicized death of Jesse Gelsinger from complications of an experimental treatment. In a wrongful death lawsuit against the University of Pennsylvania and its researchers, Jesse Gelsinger's family alleged violations of federal regulations and research ethics. This article reviews gene therapy research, examines the role of the key players in this tragedy, and provides suggestions for preventing future misfortunes.

  2. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0389 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury...2015 4. TITLE AND SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  3. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0388 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast- Induced Traumatic Brain Injury...SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  4. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0419 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal...inappropriate cell growth, fluid secretion, and dysregulation of cellular energy metabolism. The enzyme AMPK regulates a number of cellular pathways, including

  5. A high yield neutron target for cancer therapy

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    A rotating target was developed that has the potential for providing an initial yield of 10 to the 13th power neutrons per second by the T(d,n)He-4 reaction, and a useable lifetime in excess of 600 hours. This yield and lifetime are indicated for a 300 Kv and 30 mA deuteron accelerator and a 30 microns thick titanium tritide film formed of the stoichiometric compound TiT2. The potential for extended lifetime is made possible by incorporating a sputtering electrode that permits use of titanium tritide thicknesses much greater than the deuteron range. The electrode is used to remove in situ depleted titanium layers to expose fresh tritide beneath. The utilization of the rotating target as a source of fast neutrons for cancer therapy is discussed.

  6. Autoradiography imaging in targeted alpha therapy with Timepix detector.

    PubMed

    A L Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.

  7. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector

    PubMed Central

    AL Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy. PMID:25688285

  8. Targeting prostate cancer: Prostate-specific membrane antigen based diagnosis and therapy.

    PubMed

    Wüstemann, Till; Haberkorn, Uwe; Babich, John; Mier, Walter

    2018-05-17

    The high incidence rates of prostate cancer (PCa) raise demand for improved therapeutic strategies. Prostate tumors specifically express the prostate-specific membrane antigen (PSMA), a membrane-bound protease. As PSMA is highly overexpressed on malignant prostate tumor cells and as its expression rate correlates with the aggressiveness of the disease, this tumor-associated biomarker provides the possibility to develop new strategies for diagnostics and therapy of PCa. Major advances have been made in PSMA targeting, ranging from immunotherapeutic approaches to therapeutic small molecules. This review elaborates the diversity of PSMA targeting agents while focusing on the radioactively labeled tracers for diagnosis and endoradiotherapy. A variety of radionuclides have been shown to either enable precise diagnosis or efficiently treat the tumor with minimal effects to nontargeted organs. Most small molecules with affinity for PSMA are based on either a phosphonate or a urea-based binding motif. Based on these pharmacophores, major effort has been made to identify modifications to achieve ideal pharmacokinetics while retaining the specific targeting of the PSMA binding pocket. Several tracers have now shown excellent clinical usability in particular for molecular imaging and therapy as proven by the efficiency of theranostic approaches in current studies. The archetypal expression profile of PSMA may be exploited for the treatment with alpha emitters to break radioresistance and thus to bring the power of systemic therapy to higher levels. © 2018 Wiley Periodicals, Inc.

  9. Targeting phosphoinositide 3-kinase: moving towards therapy.

    PubMed

    Marone, Romina; Cmiljanovic, Vladimir; Giese, Bernd; Wymann, Matthias P

    2008-01-01

    Phosphoinositide 3-kinases (PI3K) orchestrate cell responses including mitogenic signaling, cell survival and growth, metabolic control, vesicular trafficking, degranulation, cytoskeletal rearrangement and migration. Deregulation of the PI3K pathway occurs by activating mutations in growth factor receptors or the PIK3CA locus coding for PI3Kalpha, by loss of function of the lipid phosphatase and tensin homolog deleted in chromosome ten (PTEN/MMAC/TEP1), by the up-regulation of protein kinase B (PKB/Akt), or the impairment of the tuberous sclerosis complex (TSC1/2). All these events are linked to growth and proliferation, and have thus prompted a significant interest in the pharmaceutical targeting of the PI3K pathway in cancer. Genetic targeting of PI3Kgamma (p110gamma) and PI3Kdelta (p110delta) in mice has underlined a central role of these PI3K isoforms in inflammation and allergy, as they modulate chemotaxis of leukocytes and degranulation in mast cells. Proof-of-concept molecules selective for PI3Kgamma have already successfully alleviated disease progress in murine models of rheumatoid arthritis and lupus erythematosus. As targeting PI3K moves forward to therapy of chronic, non-fatal disease, safety concerns for PI3K inhibitors increase. Many of the present inhibitor series interfere with target of rapamycin (TOR), DNA-dependent protein kinase (DNA-PK(cs)) and activity of the ataxia telangiectasia mutated gene product (ATM). Here we review the current disease-relevant knowledge for isoform-specific PI3K function in the above mentioned diseases, and review the progress of >400 recent patents covering pharmaceutical targeting of PI3K. Currently, several drugs targeting the PI3K pathway have entered clinical trials (phase I) for solid tumors and suppression of tissue damage after myocardial infarction (phases I,II).

  10. Delta-opioid receptors as targets for migraine therapy.

    PubMed

    Charles, Andrew; Pradhan, Amynah A

    2016-06-01

    The purpose of this review is to contrast the properties of the δ-opioid receptor with those of the μ-opioid receptor, which is the primary target of most currently available opioid analgesics. We also discuss preclinical evidence that indicates the potential efficacy of δ-opioid receptor agonists as migraine therapy. The use of currently available opioid analgesics is highly problematic for patients with migraine. Delta-opioid receptors have key differences from μ receptors; these differences make the δ receptor an attractive therapeutic target for migraine. Delta-opioid receptors are expressed in both the peripheral and central nervous system in anatomical regions and cell types that are believed to play a role in migraine. Delta-receptor agonists have also shown promising effects in multiple migraine models, including nitroglycerin evoked hyperalgesia and conditioned place aversion, and cortical spreading depression. Evidence from animal models indicates that activation of δ receptors is less likely to cause tolerance and dependence, and less likely to cause hyperalgesia. In addition, δ receptors may have antidepressant and anxiolytic properties that are distinct from those of μ receptors. In human studies investigating other conditions, δ-receptor agonists have been generally safe and well tolerated. Delta-opioid receptor agonists have promising potential as acute and/or preventive migraine therapies, without the problems associated with currently used opioid analgesics.

  11. Alcoholic hepatitis: Translational approaches to develop targeted therapies.

    PubMed

    Mandrekar, Pranoti; Bataller, Ramon; Tsukamoto, Hidekazu; Gao, Bin

    2016-10-01

    Alcoholic liver disease is a leading cause of liver-related mortality worldwide. In contrast to recent advances in therapeutic strategies for patients with viral hepatitis, there is a significant lack of novel therapeutic options for patients with alcoholic liver disease. In particular, there is an urgent need to focus our efforts on effective therapeutic interventions for alcoholic hepatitis (AH), the most severe form of alcoholic liver disease. AH is characterized by an abrupt development of jaundice and complications related to liver insufficiency and portal hypertension in patients with heavy alcohol intake. The mortality of patients with AH is very high (20%-50% at 3 months). Available therapies are not effective in many patients, and targeted approaches are imminently needed. The development of such therapies requires translational studies in human samples and suitable animal models that reproduce the clinical and histological features of AH. In recent years, new animal models that simulate some of the features of human AH have been developed, and translational studies using human samples have identified potential pathogenic factors and histological parameters that predict survival. This review summarizes the unmet needs for translational studies on the pathogenesis of AH, preclinical translational tools, and emerging drug targets to benefit the AH patient. (Hepatology 2016;64:1343-1355). © 2016 by the American Association for the Study of Liver Diseases.

  12. Genetically engineered and self-assembled oncolytic protein nanoparticles for targeted cancer therapy.

    PubMed

    Lee, Joong-Jae; Kang, Jung Ae; Ryu, Yiseul; Han, Sang-Soo; Nam, You Ree; Rho, Jong Kook; Choi, Dae Seong; Kang, Sun-Woong; Lee, Dong-Eun; Kim, Hak-Sung

    2017-03-01

    The integration of a targeted delivery with a tumour-selective agent has been considered an ideal platform for achieving high therapeutic efficacy and negligible side effects in cancer therapy. Here, we present engineered protein nanoparticles comprising a tumour-selective oncolytic protein and a targeting moiety as a new format for the targeted cancer therapy. Apoptin from chicken anaemia virus (CAV) was used as a tumour-selective apoptotic protein. An EGFR-specific repebody, which is composed of LRR (Leucine-rich repeat) modules, was employed to play a dual role as a tumour-targeting moiety and a fusion partner for producing apoptin nanoparticles in E. coli, respectively. The repebody was genetically fused to apoptin, and the resulting fusion protein was shown to self-assemble into supramolecular repebody-apoptin nanoparticles with high homogeneity and stability as a soluble form when expressed in E. coli. The repebody-apoptin nanoparticles showed a remarkable anti-tumour activity with negligible side effects in xenograft mice through a cooperative action of the two protein components with distinct functional roles. The repebody-apoptin nanoparticles can be developed as a systemic injectable and tumour-selective therapeutic protein for targeted cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mortality risk disparities in children receiving chronic renal replacement therapy for the treatment of end-stage renal disease across Europe: an ESPN-ERA/EDTA registry analysis.

    PubMed

    Chesnaye, Nicholas C; Schaefer, Franz; Bonthuis, Marjolein; Holman, Rebecca; Baiko, Sergey; Baskın, Esra; Bjerre, Anna; Cloarec, Sylvie; Cornelissen, Elisabeth A M; Espinosa, Laura; Heaf, James; Stone, Rosário; Shtiza, Diamant; Zagozdzon, Ilona; Harambat, Jérôme; Jager, Kitty J; Groothoff, Jaap W; van Stralen, Karlijn J

    2017-05-27

    We explored the variation in country mortality rates in the paediatric population receiving renal replacement therapy across Europe, and estimated how much of this variation could be explained by patient-level and country-level factors. In this registry analysis, we extracted patient data from the European Society for Paediatric Nephrology/European Renal Association-European Dialysis and Transplant Association (ESPN/ERA-EDTA) Registry for 32 European countries. We included incident patients younger than 19 years receiving renal replacement therapy. Adjusted hazard ratios (aHR) and the explained variation were modelled for patient-level and country-level factors with multilevel Cox regression. The primary outcome studied was all-cause mortality while on renal replacement therapy. Between Jan 1, 2000, and Dec 31, 2013, the overall 5 year renal replacement therapy mortality rate was 15·8 deaths per 1000 patient-years (IQR 6·4-16·4). France had a mortality rate (9·2) of more than 3 SDs better, and Russia (35·2), Poland (39·9), Romania (47·4), and Bulgaria (68·6) had mortality rates more than 3 SDs worse than the European average. Public health expenditure was inversely associated with mortality risk (per SD increase, aHR 0·69, 95% CI 0·52-0·91) and explained 67% of the variation in renal replacement therapy mortality rates between countries. Child mortality rates showed a significant association with renal replacement therapy mortality, albeit mediated by macroeconomics (eg, neonatal mortality reduced from 1·31 [95% CI 1·13-1·53], p=0·0005, to 1·21 [0·97-1·51], p=0·10). After accounting for country distributions of patient age, the variation in renal replacement therapy mortality rates between countries increased by 21%. Substantial international variation exists in paediatric renal replacement therapy mortality rates across Europe, most of which was explained by disparities in public health expenditure, which seems to limit the availability and

  14. Rational Design of Iron Oxide Nanoparticles as Targeted Nanomedicines for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Kievit, Forrest M.

    2011-07-01

    Nanotechnology provides a flexible platform for the development of effective therapeutic nanomaterials that can interact specifically with a target in a biological system and provoke a desired biological response. Of the nanomaterials studied, superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as one of top candidates for cancer therapy due to their intrinsic superparamagnetism that enables non-invasive magnetic resonance imaging (MRI) and biodegradability favorable for in vivo application. This dissertation is aimed at development of SPION-based nanomedicines to overcome the current limitations in cancer therapy. These limitations include non-specificity of therapy which can harm healthy tissue, the difficulty in delivering nucleic acids for gene therapy, the formation of drug resistance, and the inability to detect and treat micrometastases. First, a SPION-based non-viral gene delivery vehicle was developed through functionalization of the SPION core with a co-polymer designed to provide stable binding of DNA and low toxicity which showed excellent gene delivery in vitro and in vivo. This SPION-based non-viral gene delivery vehicle was then activated with a targeting agent to improve gene delivery throughout a xenograft tumor of brain cancer. It was found that targeting did not promote the accumulation of SPIONs at the tumor site, but rather improved the distribution of SPIONs throughout the tumor so a higher proportion of cells received treatment. Next, the high surface area of SPIONs was utilized for loading large amounts of drug which was shown to overcome the multidrug resistance acquired by many cancer cells. Drug bound to SPIONs showed significantly higher multidrug resistant cell uptake as compared to free drug which translated into improved cell kill. Also, an antibody activated SPION was developed and was shown to be able to target micrometastases in a transgenic animal model of metastatic breast cancer. These SPION-based nanomedicines

  15. Targeted therapy for localized non-small-cell lung cancer: a review

    PubMed Central

    Paleiron, Nicolas; Bylicki, Olivier; André, Michel; Rivière, Emilie; Grassin, Frederic; Robinet, Gilles; Chouaïd, Christos

    2016-01-01

    Targeted therapies have markedly improved the management of patients with advanced non-small-cell lung cancer (NSCLC), but their efficacy in localized NSCLC is less well established. The aim of this review is to analyze trials of targeted therapies in localized NSCLC. In patients with wild-type EGFR, tyrosine kinase inhibitors have shown no efficacy in Phase III trials. Few data are available for EGFR-mutated localized NSCLC, as routine biological profiling is not recommended. Available studies are small, often retrospectives, and/or conducted in a single-center making it difficult to draw firm conclusions. Ongoing prospective Phase III trials are comparing adjuvant tyrosine kinase inhibitor administration versus adjuvant chemotherapy. By analogy with the indication of bevacizumab in advanced NSCLC, use of antiangiogenic agents in the perioperative setting is currently restricted to nonsquamous NSCLC. Several trials of adjuvant or neoadjuvant bevacizumab are planned or ongoing, but for the moment there is no evidence of efficacy. Data on perioperative use of biomarkers in early-stage NSCLC come mainly from small, retrospective, uncontrolled studies. Assessment of customized adjuvant or neoadjuvant therapy in localized NSCLC (with or without oncogenic driver mutations) is a major challenge. PMID:27462164

  16. Emerging molecular therapies targeting myocardial infarction-related arrhythmias.

    PubMed

    Driessen, Helen E; van Veen, Toon A B; Boink, Gerard J J

    2017-04-01

    Cardiac disease is the leading cause of death in the developed world. Ventricular arrhythmias associated with myocardial ischaemia and/or infarction are a major contributor to cardiovascular mortality, and require improved prevention and treatment. Drugs, devices, and radiofrequency catheter ablation have made important inroads, but have significant limitations ranging from incomplete success to undesired toxicities and major side effects. These limitations derive from the nature of the intervention. Drugs are frequently ineffective, target the entire heart, and often do not deal with the specific arrhythmia trigger or substrate. Devices can terminate rapid rhythms but at best indirectly affect the underlying disease, while ablation, even when appropriately targeted, induces additional tissue damage. In contrast, exploration of gene and cell therapies are expected to provide a targeted, non-destructive, and potentially regenerative approach to ischaemia- and infarction-related arrhythmias. Although these approaches are in the early stages of development, they carry substantial potential to advance arrhythmia prevention and treatment. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  17. Glycosylated Triterpenoids as Endosomal Escape Enhancers in Targeted Tumor Therapies

    PubMed Central

    Fuchs, Hendrik; Niesler, Nicole; Trautner, Alexandra; Sama, Simko; Jerz, Gerold; Panjideh, Hossein; Weng, Alexander

    2017-01-01

    Protein-based targeted toxins play an increasingly important role in targeted tumor therapies. In spite of their high intrinsic toxicity, their efficacy in animal models is low. A major reason for this is the limited entry of the toxin into the cytosol of the target cell, which is required to mediate the fatal effect. Target receptor bound and internalized toxins are mostly either recycled back to the cell surface or lysosomally degraded. This might explain why no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date although more than 500 targeted toxins have been developed within the last decades. To overcome the problem of insufficient endosomal escape, a number of strategies that make use of diverse chemicals, cell-penetrating or fusogenic peptides, and light-induced techniques were designed to weaken the membrane integrity of endosomes. This review focuses on glycosylated triterpenoids as endosomal escape enhancers and throws light on their structure, the mechanism of action, and on their efficacy in cell culture and animal models. Obstacles, challenges, opportunities, and future prospects are discussed. PMID:28536357

  18. Strategy of Cancer Targeting Gene-Viro-Therapy (CTGVT) a trend in both cancer gene therapy and cancer virotherapy.

    PubMed

    Liu, Xin-Yuan; Li, Hua-Guang; Zhang, Kang-Jian; Gu, Jin-Fa

    2012-07-01

    Cancer Targeting Gene-Viro-Therapy (CTGVT) and Gene Armed Oncolytic Virus Therapy (GAOVT) both are identical by inserting an antitumor gene into an oncolytic virus. This approach has gradually become a hot topic in cancer therapy, because that CTGVT (GAOVT) has much higher antitumor than that of either gene therapy alone or oncolytic virotherapy alone. We proposed the CTGVT strategy in 1999-2001, insisted it as a long term systematic approach to be examined over 10 years and have published 68 SCI papers some in good Journals. The CD gene armed oncolytic adenovirus therapy (GAOVT) for cancer treatment with potent antitumor effect was also named in our laboratory in 2003. Several modifications to CTGVT will be carried out by our group and will be introduced briefly in this paper. Most importantly, the modifications of CTGVT usually resulted in complete eradication of xenograft tumors in nude mice. In future best antitumor drugs may emerge from the modified CTGVT strategy and not from either gene therapy or virotherapy alone.

  19. Particle therapy of moving targets—the strategies for tumour motion monitoring and moving targets irradiation

    PubMed Central

    2016-01-01

    Particle therapy of moving targets is still a great challenge. The motion of organs situated in the thorax and abdomen strongly affects the precision of proton and carbon ion radiotherapy. The motion is responsible for not only the dislocation of the tumour but also the alterations in the internal density along the beam path, which influence the range of particle beams. Furthermore, in case of pencil beam scanning, there is an interference between the target movement and dynamic beam delivery. This review presents the strategies for tumour motion monitoring and moving target irradiation in the context of hadron therapy. Methods enabling the direct determination of tumour position (fluoroscopic imaging of implanted radio-opaque fiducial markers, electromagnetic detection of inserted transponders and ultrasonic tumour localization systems) are presented. Attention is also drawn to the techniques which use external surrogate motion for an indirect estimation of target displacement during irradiation. The role of respiratory-correlated CT [four-dimensional CT (4DCT)] in the determination of motion pattern prior to the particle treatment is also considered. An essential part of the article is the review of the main approaches to moving target irradiation in hadron therapy: gating, rescanning (repainting), gated rescanning and tumour tracking. The advantages, drawbacks and development trends of these methods are discussed. The new accelerators, called “cyclinacs”, are presented, because their application to particle therapy will allow making a breakthrough in the 4D spot scanning treatment of moving organs. PMID:27376637

  20. Are we ready for the ERAS protocol in colorectal surgery?

    PubMed

    Kisielewski, Michał; Rubinkiewicz, Mateusz; Pędziwiatr, Michał; Pisarska, Magdalena; Migaczewski, Marcin; Dembiński, Marcin; Major, Piotr; Rembiasz, Kazimierz; Budzyński, Andrzej

    2017-01-01

    Modern perioperative care principles in elective colorectal surgery have already been established by international surgical authorities. Nevertheless, barriers to the introduction of routine evidence-based clinical care and changing dogmas still exist. One of the factors is the surgeon. To assess perioperative care trends in elective colorectal surgery among general surgery consultants in surgical departments in Malopolska Voivodeship, Poland. An anonymous standardized 20-question questionnaire was developed based on ERAS principles and sent out to Malopolska Voivodeship general surgery departments. Answers of general surgery consultants showed the level of acceptance of elements of perioperative care. The overall response rate was 66%. Several elements (antibiotic and antithrombotic prophylaxis, postoperative oxygen therapy, no nasogastric tubes) had quite a high acceptance rate. On the other hand, most crucial surgical perioperative elements (lack of mechanical bowel preparation, preoperative oral carbohydrate loading, use of laparoscopy and lack of drains, early fluid and oral diet intake, early mobilization) were not followed according to evidence-based ERAS protocol recommendations. Surgeons were not willing to change their practice, but were supportive of changes in anesthesiologist-dependent elements of perioperative care, such as restrictive fluid therapy, use of transversus abdominis plane blocks, etc. Many elements of perioperative care in elective colorectal surgery in Malopolska Voivodeship are still dictated by dogma and are not evidence-based. The level of acceptance of many important ERAS protocol elements is low. Surgeons are ready to accept only changes that do not interfere with their practice.

  1. Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy.

    PubMed

    Huang, Ling; Li, Zhanjun; Zhao, Yang; Zhang, Yuanwei; Wu, Shuang; Zhao, Jianzhang; Han, Gang

    2016-11-09

    Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging-guidable deep-tissue activatable photosensitizers for PDT. Car-BDP possesses an intense, broad NIR absorption band (600-800 nm) with a remarkably high singlet oxygen quantum yield (Φ Δ = 67%). After being encapsulated with biodegradable PLA-PEG-FA polymers, Car-BDP can form uniform and small organic nanoparticles that are water-soluble and tumor-targetable. Rather than using laser light, such nanoparticles offer an unprecedented deep-tissue, tumor targeting photodynamic therapeutic effect by using an exceptionally low-power-density and cost-effective lamp light (12 mW cm -2 ). In addition, these nanoparticles can be simultaneously traced in vivo due to their excellent NIR fluorescence. This study signals a major step forward in photodynamic therapy by developing a new class of NIR-absorbing biocompatible organic nanoparticles for effective targeting and treatment of deep-tissue tumors. This work also provides a potential new platform for precise tumor-targeting theranostics and novel opportunities for future affordable clinical cancer treatment.

  2. An innovative pre-targeting strategy for tumor cell specific imaging and therapy

    NASA Astrophysics Data System (ADS)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-08-01

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging

  3. Combination Platinum-based and DNA Damage Response-targeting Cancer Therapy: Evolution and Future Directions

    PubMed Central

    Basourakos, Spyridon P.; Li, Likun; Aparicio, Ana M.; Corn, Paul G.; Kim, Jeri; Thompson, Timothy C.

    2017-01-01

    Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a “molecular landscape,” i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with ”BRCAness”, i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that

  4. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies.

    PubMed

    Hojjat-Farsangi, Mohammad

    2014-08-08

    Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK-TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK-TKIs have been developed for the treatment of cancer patients. Specific/selective RTK-TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1) the characteristics and function of RTKs and TKIs; (2) the recent advances in the improvement of specific/selective RTK-TKIs in preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs.

  5. Dual Candida albicans and Cryptococcus neoformans fungaemia in an AIDS presenter: a unique disease association in the highly active antiretroviral therapy (HAART) era.

    PubMed

    Manfredi, Roberto; Calza, Leonardo; Chiodo, Francesco

    2002-12-01

    A case report of a patient who discovered his HIV infection concurrently with an advanced immunodeficiency and a dual Candida albicans and Cryptococcus neoformans fungaemia is discussed with reference to the changing epidemiology and clinical features of HIV infection and AIDS in the highly active antiretroviral therapy (HAART) era. The tendency to develop multiple concomitant AIDS-defining illnesses at the time of first hospitalisation seems to be an increasing feature in patients who remain unaware of or neglect their HIV disease and who are still at risk of opportunist infections even with the availability of HAART.

  6. Targeted therapy in severe asthma today: focus on immunoglobulin E.

    PubMed

    Pelaia, Girolamo; Canonica, Giorgio Walter; Matucci, Andrea; Paolini, Rossella; Triggiani, Massimo; Paggiaro, Pierluigi

    2017-01-01

    Asthma is a complex chronic inflammatory disease of multifactorial etiology. International guidelines increasingly recognize that a standard "one size fits all" approach is no longer an effective approach to achieve optimal treatment outcomes, and a number of disease phenotypes have been proposed for asthma, which has the potential to guide treatment decisions. Among the many asthma phenotypes, allergic asthma represents the widest and most easily recognized asthma phenotype, present in up to two-thirds of adults with asthma. Immunoglobulin E (IgE) production is the primary and key cause of allergic asthma leading to persistent symptoms, exacerbations and a poor quality of life. Therefore, limiting IgE activity upstream could stop the entire allergic inflammation cascade in IgE-mediated allergic asthma. The anti-IgE treatment omalizumab has an accepted place in the management of severe asthma (Global Initiative for Asthma [GINA] step 5) and represents the first (and, currently, only) targeted therapy with a specific target in severe allergic asthma. This review summarizes current knowledge of the mechanisms and pathogenesis of severe asthma, examines the actual role of IgE in asthma and the biological rationale for targeting IgE in allergic asthma and reviews the data for the efficacy and safety of omalizumab in the treatment of severe asthma. Current knowledge of the role of IgE in asthma, extensive clinical trial data and a decade of use in clinical practice has established omalizumab as a safe and effective targeted therapy for the treatment of patients with severe persistent IgE-mediated allergic asthma.

  7. Targeted therapy in severe asthma today: focus on immunoglobulin E

    PubMed Central

    Pelaia, Girolamo; Canonica, Giorgio Walter; Matucci, Andrea; Paolini, Rossella; Triggiani, Massimo; Paggiaro, Pierluigi

    2017-01-01

    Asthma is a complex chronic inflammatory disease of multifactorial etiology. International guidelines increasingly recognize that a standard “one size fits all” approach is no longer an effective approach to achieve optimal treatment outcomes, and a number of disease phenotypes have been proposed for asthma, which has the potential to guide treatment decisions. Among the many asthma phenotypes, allergic asthma represents the widest and most easily recognized asthma phenotype, present in up to two-thirds of adults with asthma. Immunoglobulin E (IgE) production is the primary and key cause of allergic asthma leading to persistent symptoms, exacerbations and a poor quality of life. Therefore, limiting IgE activity upstream could stop the entire allergic inflammation cascade in IgE-mediated allergic asthma. The anti-IgE treatment omalizumab has an accepted place in the management of severe asthma (Global Initiative for Asthma [GINA] step 5) and represents the first (and, currently, only) targeted therapy with a specific target in severe allergic asthma. This review summarizes current knowledge of the mechanisms and pathogenesis of severe asthma, examines the actual role of IgE in asthma and the biological rationale for targeting IgE in allergic asthma and reviews the data for the efficacy and safety of omalizumab in the treatment of severe asthma. Current knowledge of the role of IgE in asthma, extensive clinical trial data and a decade of use in clinical practice has established omalizumab as a safe and effective targeted therapy for the treatment of patients with severe persistent IgE-mediated allergic asthma. PMID:28721017

  8. Targeted therapies in cancer - challenges and chances offered by newly developed techniques for protein analysis in clinical tissues

    PubMed Central

    Malinowsky, K; Wolff, C; Gündisch, S; Berg, D; Becker, KF

    2011-01-01

    In recent years, new anticancer therapies have accompanied the classical approaches of surgery and radio- and chemotherapy. These new forms of treatment aim to inhibit specific molecular targets namely altered or deregulated proteins, which offer the possibility of individualized therapies. The specificity and efficiency of these new approaches, however, bring about a number of challenges. First of all, it is essential to specifically identify and quantify protein targets in tumor tissues for the reasonable use of such targeted therapies. Additionally, it has become even more obvious in recent years that the presence of a target protein is not always sufficient to predict the outcome of targeted therapies. The deregulation of downstream signaling molecules might also play an important role in the success of such therapeutic approaches. For these reasons, the analysis of tumor-specific protein expression profiles prior to therapy has been suggested as the most effective way to predict possible therapeutic results. To further elucidate signaling networks underlying cancer development and to identify new targets, it is necessary to implement tools that allow the rapid, precise, inexpensive and simultaneous analysis of many network components while requiring only a small amount of clinical material. Reverse phase protein microarray (RPPA) is a promising technology that meets these requirements while enabling the quantitative measurement of proteins. Together with recently developed protocols for the extraction of proteins from formalin-fixed, paraffin-embedded (FFPE) tissues, RPPA may provide the means to quantify therapeutic targets and diagnostic markers in the near future and reliably screen for new protein targets. With the possibility to quantitatively analyze DNA, RNA and protein from a single FFPE tissue sample, the methods are available for integrated patient profiling at all levels of gene expression, thus allowing optimal patient stratification for

  9. Mesenchymal stem cell-mediated cancer therapy: A dual-targeted strategy of personalized medicine

    PubMed Central

    Sun, Xu-Yong; Nong, Jiang; Qin, Ke; Warnock, Garth L; Dai, Long-Jun

    2011-01-01

    Cancer remains one of the leading causes of mortality and morbidity throughout the world. To a significant extent, current conventional cancer therapies are symptomatic and passive in nature. The major obstacle to the development of effective cancer therapy is believed to be the absence of sufficient specificity. Since the discovery of the tumor-oriented homing capacity of mesenchymal stem cells (MSCs), the application of specific anticancer gene-engineered MSCs has held great potential for cancer therapies. The dual-targeted strategy is based on MSCs’ capacity of tumor-directed migration and incorporation and in situ expression of tumor-specific anticancer genes. With the aim of translating bench work into meaningful clinical applications, we describe the tumor tropism of MSCs and their use as therapeutic vehicles, the dual-targeted anticancer potential of engineered MSCs and a putative personalized strategy with anticancer gene-engineered MSCs. PMID:22180830

  10. Models for discovery of targeted therapy in genetic epileptic encephalopathies.

    PubMed

    Maljevic, Snezana; Reid, Christopher A; Petrou, Steven

    2017-10-01

    Epileptic encephalopathies are severe disorders emerging in the first days to years of life that commonly include refractory seizures, various types of movement disorders, and different levels of developmental delay. In recent years, many de novo occurring variants have been identified in individuals with these devastating disorders. To unravel disease mechanisms, the functional impact of detected variants associated with epileptic encephalopathies is investigated in a range of cellular and animal models. This review addresses efforts to advance and use such models to identify specific molecular and cellular targets for the development of novel therapies. We focus on ion channels as the best-studied group of epilepsy genes. Given the clinical and genetic heterogeneity of epileptic encephalopathy disorders, experimental models that can reflect this complexity are critical for the development of disease mechanisms-based targeted therapy. The convergence of technological advances in gene sequencing, stem cell biology, genome editing, and high throughput functional screening together with massive unmet clinical needs provides unprecedented opportunities and imperatives for precision medicine in epileptic encephalopathies. © 2017 International Society for Neurochemistry.

  11. Trojan horses and guided missiles: targeted therapies in the war on arthritis.

    PubMed

    Ferrari, Mathieu; Onuoha, Shimobi C; Pitzalis, Costantino

    2015-06-01

    Despite major advances in the treatment of rheumatoid arthritis (RA) led by the success of biologic therapies, the lack of response to therapy in a proportion of patients, as well as therapy discontinuation owing to systemic toxicity, are still unsolved issues. Unchecked RA might develop into progressive structural joint damage, loss of function and long-term disability, disorders which are associated with a considerable health-economic burden. Therefore, new strategies are required to actively target and deliver therapeutic agents to disease sites in order to promote in situ activity and decrease systemic toxicity. Polymer-drug conjugates can improve the pharmacokinetics of therapeutic agents, conferring desirable properties such as increased solubility and tissue penetration at sites of active disease. Additionally, nanotechnology is an exciting modality in which drugs are encapsulated to protect them from degradation or early activation in the circulation, as well as to reduce systemic toxicity. Together with the targeting capacity of antibodies and site-specific peptides, these approaches will facilitate selective accumulation of therapeutic agents in the inflamed synovium, potentially improving drug efficacy at disease sites without affecting healthy tissues. This Review aims to summarize key developments in the past 5 years in polymer conjugation, nanoparticulate drug delivery and antibody or peptide-based targeting--strategies that might constitute the platform for the next generation of RA therapeutics.

  12. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    PubMed

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  13. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  14. Pertuzumab: a new targeted therapy for HER2-positive metastatic breast cancer.

    PubMed

    Malenfant, Stephanie J; Eckmann, Karen R; Barnett, Chad M

    2014-01-01

    Trastuzumab, a humanized monoclonal antibody, has become an important targeted therapy for patients with all stages of human epidermal growth factor receptor-2 (HER2)-positive breast cancer. However, primary and acquired resistance to trastuzumab remains a significant problem. Pertuzumab, a humanized monoclonal antibody that binds to a domain of the HER2 receptor separate from trastuzumab, may have the potential to overcome trastuzumab resistance. Clinical trials have shown that pertuzumab can be effectively combined with other biologic therapy or chemotherapy in patients with metastatic HER2-positive breast cancer. Pertuzumab is relatively well tolerated with minimal increases in hematologic and cardiac toxicity observed when added to trastuzumab and/or docetaxel. In addition to becoming the standard of care in combination with docetaxel and trastuzumab in patients with newly diagnosed HER2-positive metastatic breast cancer, clinical trials continue to evaluate pertuzumab in combination with other targeted therapy, chemotherapy, and in patients with early stage breast cancer. These trials will help to further determine the role of pertuzumab in the treatment of HER2-positive breast cancer. © 2013 Pharmacotherapy Publications, Inc.

  15. Adaptive radiation therapy for postprostatectomy patients using real-time electromagnetic target motion tracking during external beam radiation therapy.

    PubMed

    Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M; Gay, Hiram A; Hou, Wei-Hsien; Parikh, Parag J

    2013-03-15

    Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (Dmin) with the planned Dmin to the CTV. Treatments were considered adequate if the delivered CTV Dmin is at least 95% of the planned CTV Dmin. Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: -0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Final Report of Unmet Needs of Interferon-Based Therapy for Chronic Hepatitis C in Korea: Basis for Moving into the Direct-Acting Antiviral Era

    PubMed Central

    Jang, Eun Sun; Kim, Young Seok; Kim, Kyung-Ah; Lee, Youn Jae; Chung, Woo Jin; Kim, In Hee; Lee, Byung Seok; Jeong, Sook-Hyang

    2017-01-01

    Background/Aims To evaluate the era of direct acting antivirals (DAAs), we must understand the treatment patterns and outcomes of interferon-based therapy for hepatitis C virus (HCV) infection. We aimed to elucidate the treatment rate, factors affecting treatment decisions, and efficacy of interferon-based therapy in a real-world setting. Methods This nationwide cohort study included 1,191 newly diagnosed patients with chronic HCV infection at seven tertiary hospitals in South Korea. Subjects were followed retrospectively until March 2015, which was just before the approval of DAA therapy. Results In total, 48.2% and 49.3% of the patients had HCV genotypes 1 and 2, respectively. Interferon-based therapy was initiated in 541 patients (45.4%). The major reasons for no treatment included ineligibility (18.9%), concern about adverse events (22.3%), cost (21.5%), and an age >75 years (19.5%). Interferon-based therapy was discontinued (18.5%) mainly due to adverse events (n=66). The intent-to-treat analysis found that the sustained virologic response (SVR) rate was 58.3% in genotype 1 patients and 74.7% in non-genotype 1 patients. Conclusions Approximately one-third of newly diagnosed HCV patients in South Korea received interferon-based therapy and showed a suboptimal SVR rate. Diagnosis of patients at younger ages and with a less advanced liver status and reducing the DAA therapy cost may fulfill unmet needs. PMID:28506027

  17. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy.

    PubMed

    Kemp, Jessica A; Shim, Min Suk; Heo, Chan Yeong; Kwon, Young Jik

    2016-03-01

    The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Targeting the Cholinergic System to Develop a Novel Therapy for Huntington's Disease.

    PubMed

    D'Souza, Gary X; Waldvogel, Henry J

    2016-12-15

    In this review, we outline the role of the cholinergic system in Huntington's disease, and briefly describe the dysfunction of cholinergic transmission, cholinergic neurons, cholinergic receptors and cholinergic survival factors observed in post-mortem human brains and animal models of Huntington's disease. We postulate how the dysfunctional cholinergic system can be targeted to develop novel therapies for Huntington's disease, and discuss the beneficial effects of cholinergic therapies in pre-clinical and clinical studies.

  19. State of the Art: Response Assessment in Lung Cancer in the Era of Genomic Medicine

    PubMed Central

    Hatabu, Hiroto; Johnson, Bruce E.; McLoud, Theresa C.

    2014-01-01

    Tumor response assessment has been a foundation for advances in cancer therapy. Recent discoveries of effective targeted therapy for specific genomic abnormalities in lung cancer and their clinical application have brought revolutionary advances in lung cancer therapy and transformed the oncologist’s approach to patients with lung cancer. Because imaging is a major method of response assessment in lung cancer both in clinical trials and practice, radiologists must understand the genomic alterations in lung cancer and the rapidly evolving therapeutic approaches to effectively communicate with oncology colleagues and maintain the key role in lung cancer care. This article describes the origin and importance of tumor response assessment, presents the recent genomic discoveries in lung cancer and therapies directed against these genomic changes, and describes how these discoveries affect the radiology community. The authors then summarize the conventional Response Evaluation Criteria in Solid Tumors and World Health Organization guidelines, which continue to be the major determinants of trial endpoints, and describe their limitations particularly in an era of genomic-based therapy. More advanced imaging techniques for lung cancer response assessment are presented, including computed tomography tumor volume and perfusion, dynamic contrast material–enhanced and diffusion-weighted magnetic resonance imaging, and positron emission tomography with fluorine 18 fluorodeoxyglucose and novel tracers. State-of-art knowledge of lung cancer biology, treatment, and imaging will help the radiology community to remain effective contributors to the personalized care of lung cancer patients. © RSNA, 2014 PMID:24661292

  20. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy.

    PubMed

    Samadian, Hadi; Hosseini-Nami, Samira; Kamrava, Seyed Kamran; Ghaznavi, Habib; Shakeri-Zadeh, Ali

    2016-11-01

    Conventional cancer treatment methods suffer from many limitations such as non-specificity and low efficacy in discrimination between healthy and cancer cells. Recent developments in nanotechnology have introduced novel and smart therapeutic nanomaterials that basically take advantage of various targeting approaches. Targeted nanomaterials selectively bind to the cancer cells and affect them with minor effects on healthy cells. Folic acid (folate) is an essential molecule in DNA synthesis pathway which is highly needed for cancer cell duplication. Some certain cancer cells overexpress folate receptors higher than normal cells, and this fact is the basis of folate targeting strategy. There are many publications reporting various folate conjugated nanomaterials among which folate-conjugated gold nanoparticles hold great promises in targeted cancer therapy. Gold nanoparticles have been identified as promising candidates for new cancer therapy modalities because of biocompatibility, easy synthesis and functionalization, chemo-physical stability, and optical tunable characteristics. In the last decade, there has been a significant explosion in gold nanoparticles research, with a rapid increase in publications related to the area of biomedicine. Although there are many reports published on "gold nanoparticles" and "folate targeting," there are a few reports on "folate-conjugated gold nanoparticles" in biomedical literature. This paper intends to review and illustrate the recent advances in biomedicine which have been designed on the basis of folate-conjugated gold nanoparticles.

  1. Targeted systemic gene therapy and molecular imaging of cancer contribution of the vascular-targeted AAVP vector.

    PubMed

    Hajitou, Amin

    2010-01-01

    Gene therapy and molecular-genetic imaging have faced a major problem: the lack of an efficient systemic gene delivery vector. Unquestionably, eukaryotic viruses have been the vectors of choice for gene delivery to mammalian cells; however, they have had limited success in systemic gene therapy. This is mainly due to undesired uptake by the liver and reticuloendothelial system, broad tropism for mammalian cells causing toxicity, and their immunogenicity. On the other hand, prokaryotic viruses such as bacteriophage (phage) have no tropism for mammalian cells, but can be engineered to deliver genes to these cells. However, phage-based vectors have inherently been considered poor vectors for mammalian cells. We have reported a new generation of vascular-targeted systemic hybrid prokaryotic-eukaryotic vectors as chimeras between an adeno-associated virus (AAV) and targeted bacteriophage (termed AAV/phage; AAVP). In this hybrid vector, the targeted bacteriophage serves as a shuttle to deliver the AAV transgene cassette inserted in an intergenomic region of the phage DNA genome. As a proof of concept, we assessed the in vivo efficacy of vector in animal models of cancer by displaying on the phage capsid the cyclic Arg-Gly-Asp (RGD-4C) ligand that binds to alphav integrin receptors specifically expressed on the angiogenic blood vessels of tumors. The ligand-directed vector was able to specifically deliver imaging and therapeutic transgenes to tumors in mice, rats, and dogs while sparing the normal organs. This chapter reviews some gene transfer strategies and the potential of the vascular-targeted AAVP vector for enhancing the effectiveness of existing systemic gene delivery and genetic-imaging technologies. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy.

    PubMed

    Zhang, Jin; Wang, Guan; Zhou, Yuxin; Chen, Yi; Ouyang, Liang; Liu, Bo

    2018-05-01

    Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.

  3. Immune checkpoint inhibitors and targeted therapies for metastatic melanoma: A network meta-analysis.

    PubMed

    Pasquali, Sandro; Chiarion-Sileni, Vanna; Rossi, Carlo Riccardo; Mocellin, Simone

    2017-03-01

    Immune checkpoint inhibitors and targeted therapies, two new class of drugs for treatment of metastatic melanoma, have not been compared in randomized controlled trials (RCT). We quantitatively summarized the evidence and compared immune and targeted therapies in terms of both efficacy and toxicity. A comprehensive search for RCTs of immune checkpoint inhibitors and targeted therapies was conducted to August 2016. Using a network meta-analysis approach, treatments were compared with each other and ranked based on their effectiveness (as measured by the impact on progression-free survival [PFS]) and acceptability (the inverse of high grade toxicity). Twelve RCTs enrolling 6207 patients were included. Network meta-analysis generated 15 comparisons. Combined BRAF and MEK inhibitors were associated with longer PFS as compared to anti-CTLA4 (HR: 0.22; 95% confidence interval [CI]: 0.12-0.41) and anti-PD1 antibodies alone (HR: 0.38; CI: 0.20-0.72). However, anti-PD1 monoclonal antibodies were less toxic than anti-CTLA4 monoclonal antibodies (RR: 0.65; CI: 0.40-0.78) and their combination significantly increased toxicity compared to either single agent anti-CTLA4 (RR: 2.06; CI: 1.45-2.93) or anti-PD1 monoclonal antibodies (RR: 3.67; CI: 2.27-5.96). Consistently, ranking analysis suggested that the combination of targeted therapies is the most effective strategy, whereas single agent anti-PD1 antibodies have the best acceptability. The GRADE level of evidence quality for these findings was moderate to low. The simultaneous inhibition of BRAF and MEK appears the most effective treatment for melanomas harboring BRAF V600 mutation, although anti-PD1 antibodies appear to be less toxic. Further research is needed to increase the quality of evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Personalized Nanoparticles for Cancer Therapy: A Call for Greater Precision.

    PubMed

    Sahakyan, Nare; Haddad, Amir; Richardson, Shye; Forcha-Etieundem, Valery; Christopher, Lee; Alharbi, Hanan; Campbell, Robert

    2017-01-01

    Nanotechnology has brought about the advent of personalized medicine in the era of targeted therapeutic strategies for cancer therapy. The ability to exploit tumor features for therapeutic gain has made it possible to manufacture more effective nanomedicines for cancer treatment. However, known obstacles, including the inability to overcome pathophysiological barriers of tumors, have impeded disease management. In spite of this, recent efforts have been made to develop more functionalized nanosystems that utilize the active-targeting approach. This article reviews the FDA-approved cancer drug delivery systems in the general framework of personalized nanomedicine. We discuss the latest efforts in the development of functionalized nano-systems, and summarize relevant ongoing preclinical and clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    PubMed

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The necessity of nuclear reactors for targeted radionuclide therapies.

    PubMed

    Krijger, Gerard C; Ponsard, Bernard; Harfensteller, Mark; Wolterbeek, Hubert T; Nijsen, Johannes W F

    2013-07-01

    Nuclear medicine has been contributing towards personalized therapies. Nuclear reactors are required for the working horses of both diagnosis and treatment, i.e., Tc-99m and I-131. In fact, reactors will remain necessary to fulfill the demand for a variety of radionuclides and are essential in the expanding field of targeted radionuclide therapies for cancer. However, the main reactors involved in the global supply are ageing and expected to shut down before 2025. Therefore, the fields of (nuclear) medicine, nuclear industry and politics share a global responsibility, faced with the task to secure future access to suitable nuclear reactors. At the same time, alternative production routes should be industrialized. For this, a coordinating entity should be put into place. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The Notch Ligand Jagged1 as a Target for Anti-Tumor Therapy

    PubMed Central

    Li, Demin; Masiero, Massimo; Banham, Alison H.; Harris, Adrian L.

    2014-01-01

    The Notch pathway is increasingly attracting attention as a source of therapeutic targets for cancer. Ligand-induced Notch signaling has been implicated in various aspects of cancer biology; as a consequence, pan-Notch inhibitors and therapeutic antibodies targeting one or more of the Notch receptors have been investigated for cancer therapy. Alternatively, Notch ligands provide attractive options for therapy in cancer treatment due to their more restricted expression and better-defined functions, as well as their low rate of mutations in cancer. One of the Notch ligands, Jagged1 (JAG1), is overexpressed in many cancer types, and plays an important role in several aspects of tumor biology. In fact, JAG1-stimulated Notch activation is directly implicated in tumor growth through maintaining cancer stem cell populations, promoting cell survival, inhibiting apoptosis, and driving cell proliferation and metastasis. In addition, JAG1 can indirectly affect cancer by influencing tumor microenvironment components such as tumor vasculature and immune cell infiltration. This article gives an overview of JAG1 and its role in tumor biology, and its potential as a therapeutic target. PMID:25309874

  8. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer.

    PubMed

    Singh, Prabhsimranjot; Toom, Sudhamshi; Huang, Yiwu

    2017-05-12

    Targeted therapy and immunotherapy have revolutionized treatment of various cancers in the past decade. Despite targeted therapy with trastuzumab in Her2-positive gastric cancer patients, survival has been dismal, mostly due to disease progression and toxicity related to the treatments. One area of active development is looking for ideal monoclonal antibodies (IMAB) specific to the proteins only on the tumor and hence avoiding unnecessary side effects. Claudin proteins with isoform 2 are one such protein, specific for several cancers, particularly gastric cancer and its metastases, leading to the development of anti-claudin 18.2 specific antibody, claudiximab. This review will highlight the latest development of claudiximab as first in class IMAB for the treatment of gastric cancer.

  9. Target therapy: new drugs or new combinations of drugs in malignant pleural mesothelioma.

    PubMed

    Zucali, Paolo A

    2018-01-01

    Malignant pleural mesothelioma (MPM) is a disease with a poor prognosis due to its aggressive nature. The management of patients with MPM is controversial. Considering that the contribution of surgery and radiation therapy in the management of this disease is not yet established, systemic treatments are predominantly considered during the course of MPM. Unfortunately, the currently therapeutic armamentarium is scarce and its outcomes still appear modest. New treatment strategies are needed. In preclinical setting, cell cycle regulation, apoptosis, growth factor pathways, and angiogenesis pathways involved in the development of MPM have been identified. However, in clinical setting, several drugs targeting these pathways resulted without a significant activity. A deeper knowledge of the biology and pathogenesis of this disease is required to develop more effective tools for diagnosis, therapy and prevention. This paper reviews therapeutic advances in MPM, with a particular focus on new drugs and new association of drugs of target therapy.

  10. Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations.

    PubMed

    Ito, Mikako; Ohno, Kinji

    2018-02-20

    Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression

  11. NEW DEVELOPMENTS IN RADIATION THERAPY FOR HEAD AND NECK CANCER: INTENSITY MODULATED RADIATION THERAPY AND HYPOXIA TARGETING

    PubMed Central

    Lee, Nancy Y.; Le, Quynh-Thu

    2008-01-01

    Intensity modulated radiation therapy (IMRT) has revolutionized radiation treatment for head and neck cancers (HNC). When compared to the traditional techniques, IMRT has the unique ability to minimize the dose delivered to normal tissues without compromising tumor coverage. As a result, side effects from high dose radiation have decreased and patient quality of life has improved. In addition to toxicity reduction, excellent clinical outcomes have been reported for IMRT. The first part of this review will focus on clinical results of IMRT for HNC. Tumor hypoxia or the condition of low oxygen is a key factor for tumor progression and treatment resistance. Hypoxia develops in solid tumors due to aberrant blood vessel formation, fluctuation in blood flow and increasing oxygen demands for tumor growth. Because hypoxic tumor cells are more resistant to ionizing radiation, hypoxia has been a focus of clinical research in radiation therapy for half a decade. Interest for targeting tumor hypoxia have waxed and waned as promising treatments emerged from the laboratory, only to fail in the clinics. However, with the development of new technologies, the prospect of targeting tumor hypoxia is more tangible. The second half of the review will focus on approaches for assessing tumor hypoxia and on the strategies for targeting this important microenvironmental factor in HNC. PMID:18544439

  12. Contrast-Enhanced Computed Tomography Evaluation of Hepatic Metastases in Breast Cancer Patients Before and After Cytotoxic Chemotherapy or Targeted Therapy.

    PubMed

    He, Hongying; Cai, Chunyan; Charnsangavej, Chusilp; Theriault, Richard L; Green, Marjorie; Quraishi, Mohammad A; Yang, Wei T

    2015-11-01

    To evaluate change in size vs computed tomography (CT) density of hepatic metastases in breast cancer patients before and after cytotoxic chemotherapy or targeted therapy. A database search in a single institution identified 48 breast cancer patients who had hepatic metastases treated with either cytotoxic chemotherapy alone or targeted therapy alone, and who had contrast-enhanced CT (CECT) scans of the abdomen at baseline and within 4 months of initiation of therapy in the past 10 years. Two radiologists retrospectively evaluated CT scans and identified up to 2 index lesions in each patient. The size (centimeters) of each lesion was measured according to Response Evaluation Criteria in Solid Tumors (RECIST) criteria, and CT density (Hounsfield units) was measured by drawing a region of interest around the margin of the entire lesion. The percent change in sum of lesion size and mean CT density on pre- and post-treatment scans was computed for each patient; results were compared within each treatment group. Thirty-nine patients with 68 lesions received cytotoxic chemotherapy only; 9 patients with 15 lesions received targeted therapy only. The mean percent changes in sum of lesion size and mean CT density were statistically significant within the cytotoxic chemotherapy group before and after treatment, but not significant in the targeted therapy group. The patients in the targeted therapy group tend to have better 2-year survival. The patients who survived at 2 years tend to have more decrease in tumour size in the cytotoxic chemotherapy group. Cytotoxic chemotherapy produced significant mean percent decrease in tumour size and mean CT density of hepatic metastases from breast cancer before and after treatment, whereas targeted therapy did not. Nonetheless, there is a trend that the patients in the targeted therapy group had better 2-year survival rate. This suggests that RECIST is potentially inadequate in evaluating tumour response in breast cancer liver

  13. Liposarcoma: multimodality management and future targeted therapies

    PubMed Central

    Crago, Aimee M.; Dickson, Mark A.

    2016-01-01

    SYNOPSIS There are three biologic groups of liposarcoma: well- and dedifferentiated liposarcoma (WD/DDLS), myxoid/round cell liposarcoma (M/RCLS) and pleomorphic liposarcoma. WD/DDLS is characterized by amplification of 12q13-15 (including the oncogenes MDM2 and CDK4), M/RCLS by FUS-DDIT3 translocations, and pleomorphic liposarcoma by loss of p53 and Rb. In all three groups, complete surgical resection is central in treatment aimed at cure and is based on grade. Radiation can reduce risk of local recurrence in high-grade lesions or minimize surgical morbidity in the highly radiosensitive M/RCLS group. The biologic groups differ greatly in their chemosensitivity, so adjuvant chemotherapy is selectively utilized in chemosensitive histologies with metastatic potential (i.e. round cell and pleomorphic liposarcomas) but not in the relatively resistant subtype DDLS. An improved understanding of the genetic aberrations that lead to liposarcoma initiation is also allowing for the rapid development of targeted therapies for liposarcoma. Among such therapies are CDK4 inhibitors in WD/DDLS and trabectedin, which prevents FUS-DDIT3 binding to DNA, in M/RCLS. PMID:27591497

  14. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

    PubMed

    Pérez-Herrero, Edgar; Fernández-Medarde, Alberto

    2015-06-01

    Cancer is the second worldwide cause of death, exceeded only by cardiovascular diseases. It is characterized by uncontrolled cell proliferation and an absence of cell death that, except for hematological cancers, generates an abnormal cell mass or tumor. This primary tumor grows thanks to new vascularization and, in time, acquires metastatic potential and spreads to other body sites, which causes metastasis and finally death. Cancer is caused by damage or mutations in the genetic material of the cells due to environmental or inherited factors. While surgery and radiotherapy are the primary treatment used for local and non-metastatic cancers, anti-cancer drugs (chemotherapy, hormone and biological therapies) are the choice currently used in metastatic cancers. Chemotherapy is based on the inhibition of the division of rapidly growing cells, which is a characteristic of the cancerous cells, but unfortunately, it also affects normal cells with fast proliferation rates, such as the hair follicles, bone marrow and gastrointestinal tract cells, generating the characteristic side effects of chemotherapy. The indiscriminate destruction of normal cells, the toxicity of conventional chemotherapeutic drugs, as well as the development of multidrug resistance, support the need to find new effective targeted treatments based on the changes in the molecular biology of the tumor cells. These novel targeted therapies, of increasing interest as evidenced by FDA-approved targeted cancer drugs in recent years, block biologic transduction pathways and/or specific cancer proteins to induce the death of cancer cells by means of apoptosis and stimulation of the immune system, or specifically deliver chemotherapeutic agents to cancer cells, minimizing the undesirable side effects. Although targeted therapies can be achieved directly by altering specific cell signaling by means of monoclonal antibodies or small molecules inhibitors, this review focuses on indirect targeted approaches that

  15. Preemptive Therapy Prevents Cytomegalovirus End-Organ Disease in Treatment-Naïve Patients with Advanced HIV-1 Infection in the HAART Era

    PubMed Central

    Mizushima, Daisuke; Nishijima, Takeshi; Gatanaga, Hiroyuki; Tsukada, Kunihisa; Teruya, Katsuji; Kikuchi, Yoshimi; Oka, Shinichi

    2013-01-01

    Background The efficacy of preemptive therapy against cytomegalovirus (CMV) infection remains unknown in treatment-naïve patients with advanced HIV-1 infection in the HAART era. Methods The subjects of this single-center observation study were126 treatment-naïve HIV-1 infected patients with positive CMV viremia between January 1, 2000 and December 31, 2006. Inclusion criteria were age more than 17 years, CD4 count less than 100/μl, plasma CMV DNA positive, never having received antiretroviral therapy (ART) and no CMV end-organ disease (EOD) at first visit. The incidence of CMV-EOD was compared in patients with and without preemptive therapy against CMV-EOD. The effects of the CMV preemptive therapy were estimated in uni- and multivariate Cox hazards models. Results CMV-EOD was diagnosed in 30 of the 96 patients of the non-preemptive therapy group (31%, 230.3 per 1000 person-years), compared with 3 of the 30 patients of the preemptive therapy group (10%, 60.9 per 1000 person-years). Univariate (HR = 0.286; 95%CI, 0.087–0.939; p = 0.039) and multivariate (adjusted HR = 0.170; 95%CI, 0.049–0.602; p = 0.005) analyses confirmed that CMV-EOD is significantly prevented by CMV preemptive therapy. Multivariate analysis showed that plasma CMV DNA level correlated significantly with CMV-EOD (per log10/ml, adjusted HR = 1.941; 95%CI, 1.266–2.975; p = 0.002). Among the 30 patients on preemptive therapy, 7 (23.3%) developed grade 3–4 leukopenia. The mortality rate was not significantly different between the two groups (p = 0.193, Log-rank test). Conclusions The results indicate that preemptive therapy lowers the incidence of CMV-EOD by almost 25%. Preemptive therapy for treatment-naïve patients with CMV viremia is effective, although monitoring of potential treatment-related side effects is required. PMID:23724140

  16. Visually augmented targeted combination light therapy for acne vulgaris: a case report.

    PubMed

    Yazdi, Alireza; Lyons, Colin-William; Roberts, Niamh

    2017-10-31

    Acne vulgaris is a common skin disease. Pharmacological modalities for treatment are proven to be efficacious but have limitations. Light therapy for acne vulgaris has shown promise in previous studies. This case report and its accompanying images show how a novel approach of visually augmented high fluence light therapy has been used to good effect. A 26-year-old Caucasian woman with acne vulgaris resistant to treatment with topical therapy underwent three sessions of combination potassium titanyl phosphate laser (532 nm)/neodymium-doped: yttrium aluminum garnet laser (1064 nm) light therapy with visually augmented narrow spot size and high fluence. A 73% reduction in total inflammatory lesions was evident 6 months after the initial treatment. This case report illustrates that there may be utility in this novel approach of narrow spot size, magnification-assisted, high fluence targeted combination laser therapy for inflammatory acne.

  17. [Progress in application of targeting viral vector regulated by microRNA in gene therapy: a review].

    PubMed

    Zhang, Guohai; Wang, Qizhao; Zhang, Jinghong; Xu, Ruian

    2010-06-01

    A safe and effective targeting viral vector is the key factor for successful clinical gene therapy. microRNA, a class of small, single-stranded endogenous RNAs, act as post-transcriptional regulators of gene expression. The discovery of these kind regulatory elements provides a new approach to regulate gene expression more accurately. In this review, we elucidated the principle of microRNA in regulation of targeting viral vector. The applications of microRNA in the fields of elimination contamination from replication competent virus, reduction of transgene-specific immunity, promotion of cancer-targeted gene therapy and development of live attenuated vaccines were also discussed.

  18. Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy.

    PubMed

    Chen, Dan; Li, Bowen; Cai, Songhua; Wang, Peng; Peng, Shuwen; Sheng, Yuanzhi; He, Yuanyuan; Gu, Yueqing; Chen, Haiyan

    2016-09-01

    Dual targeting towards both extracellular and intracellular receptors specific to tumor is a significant approach for cancer diagnosis and therapy. In the present study, a novel nano-platform (AuNC-cRGD-Apt) with dual targeting function was initially established by conjugating gold nanocluster (AuNC) with cyclic RGD (cRGD) that is specific to αvβ3integrins over-expressed on the surface of tumor tissues and aptamer AS1411 (Apt) that is of high affinity to nucleolin over-expressed in the cytoplasm and nucleus of tumor cells. Then, AuNC-cRGD-Apt was further functionalized with near infrared (NIR) fluorescence dye (MPA), giving a NIR fluorescent dual-targeting probe AuNC-MPA-cRGD-Apt. AuNC-MPA-cRGD-Apt displays low cytotoxicity and favorable tumor-targeting capability at both in vitro and in vivo level, suggesting its clinical potential for tumor imaging. Additionally, Doxorubicin (DOX), a widely used clinical chemotherapeutic drug that kill cancer cells by intercalating DNA in cellular nucleus, was immobilized onto AuNC-cRGD-Apt forming a pro-drug, AuNC-DOX-cRGD-Apt. The enhanced tumor affinity, deep tumor penetration and improved anti-tumor activity of this pro-drug were demonstrated in different tumor cell lines, tumor spheroid and tumor-bearing mouse models. Results in this study suggest not only the prospect of non-toxic AuNC modified with two targeting ligands for tumor targeted imaging, but also confirm the promising future of dual targeting AuNC as a core for the design of prodrug in the field of cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer.

    PubMed

    Fathi, Marziyeh; Majidi, Sima; Zangabad, Parham Sahandi; Barar, Jaleh; Erfan-Niya, Hamid; Omidi, Yadollah

    2018-05-30

    Nanotechnology as an emerging field has established inevitable impacts on nano-biomedicine and treatment of formidable diseases, inflammations, and malignancies. In this regard, substantial advances in the design of systems for delivery of therapeutic agents have emerged magnificent and innovative pathways in biomedical applications. Chitosan (CS) is derived via deacetylation of chitin as the second most abundant polysaccharide. Owing to the unique properties of CS (e.g., biocompatibility, biodegradability, bioactivity, mucoadhesion, cationic nature and functional groups), it is an excellent candidate for diverse biomedical and pharmaceutical applications such as drug/gene delivery, transplantation of encapsulated cells, tissue engineering, wound healing, antimicrobial purposes, etc. In this review, we will document, discuss, and provide some key insights toward design and application of miscellaneous nanoplatforms based on CS. The CS-based nanosystems (NSs) can be employed as advanced drug delivery systems (DDSs) in large part due to their remarkable physicochemical and biological characteristics. The abundant functional groups of CS allow the facile functionalization in order to engineer multifunctional NSs, which can simultaneously incorporate therapeutic agents, molecular targeting, and diagnostic/imaging capabilities in particular against malignancies. These multimodal NSs can be literally translated into clinical applications such as targeted diagnosis and therapy of cancer because they offer minimal systemic toxicity and maximal cytotoxicity against cancer cells and tumors. The recent developments in the CS-based NSs functionalized with targeting and imaging agents prove CS as a versatile polymer in targeted imaging and therapy. © 2018 Wiley Periodicals, Inc.

  20. Combination Platinum-based and DNA Damage Response-targeting Cancer Therapy: Evolution and Future Directions.

    PubMed

    Basourakos, Spyridon P; Li, Likun; Aparicio, Ana M; Corn, Paul G; Kim, Jeri; Thompson, Timothy C

    2017-01-01

    Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a "molecular landscape," i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with "BRCAness", i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that establish a

  1. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation.

    PubMed

    Moreno, Ana M; Fu, Xin; Zhu, Jie; Katrekar, Dhruva; Shih, Yu-Ru V; Marlett, John; Cabotaje, Jessica; Tat, Jasmine; Naughton, John; Lisowski, Leszek; Varghese, Shyni; Zhang, Kang; Mali, Prashant

    2018-04-25

    Development of efficacious in vivo delivery platforms for CRISPR-Cas9-based epigenome engineering will be critical to enable the ability to target human diseases without permanent modification of the genome. Toward this, we utilized split-Cas9 systems to develop a modular adeno-associated viral (AAV) vector platform for CRISPR-Cas9 delivery to enable the full spectrum of targeted in situ gene regulation functionalities, demonstrating robust transcriptional repression (up to 80%) and activation (up to 6-fold) of target genes in cell culture and mice. We also applied our platform for targeted in vivo gene-repression-mediated gene therapy for retinitis pigmentosa. Specifically, we engineered targeted repression of Nrl, a master regulator of rod photoreceptor determination, and demonstrated Nrl knockdown mediates in situ reprogramming of rod cells into cone-like cells that are resistant to retinitis pigmentosa-specific mutations, with concomitant prevention of secondary cone loss. Furthermore, we benchmarked our results from Nrl knockdown with those from in vivo Nrl knockout via gene editing. Taken together, our AAV-CRISPR-Cas9 platform for in vivo epigenome engineering enables a robust approach to target disease in a genomically scarless and potentially reversible manner. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  2. DNA "nano-claw": logic-based autonomous cancer targeting and therapy.

    PubMed

    You, Mingxu; Peng, Lu; Shao, Na; Zhang, Liqin; Qiu, Liping; Cui, Cheng; Tan, Weihong

    2014-01-29

    Cell types, both healthy and diseased, can be classified by inventories of their cell-surface markers. Programmable analysis of multiple markers would enable clinicians to develop a comprehensive disease profile, leading to more accurate diagnosis and intervention. As a first step to accomplish this, we have designed a DNA-based device, called "Nano-Claw". Combining the special structure-switching properties of DNA aptamers with toehold-mediated strand displacement reactions, this claw is capable of performing autonomous logic-based analysis of multiple cancer cell-surface markers and, in response, producing a diagnostic signal and/or targeted photodynamic therapy. We anticipate that this design can be widely applied in facilitating basic biomedical research, accurate disease diagnosis, and effective therapy.

  3. Strategies of targeting the extracellular domain of RON tyrosine kinase receptor for cancer therapy and drug delivery.

    PubMed

    Zarei, Omid; Benvenuti, Silvia; Ustun-Alkan, Fulya; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2016-12-01

    Cancer is one of the most important life-threatening diseases in the world. The current efforts to combat cancer are being focused on molecular-targeted therapies. The main purpose of such approaches is based on targeting cancer cell-specific molecules to minimize toxicity for the normal cells. RON (Recepteur d'Origine Nantais) tyrosine kinase receptor is one of the promising targets in cancer-targeted therapy and drug delivery. In this review, we will summarize the available agents against extracellular domain of RON with potential antitumor activities. The presented antibodies and antibody drug conjugates against RON in this review showed wide spectrum of in vitro and in vivo antitumor activities promising the hope for them entering the clinical trials. Due to critical role of extracellular domain of RON in receptor activation, the development of therapeutic agents against this region could lead to fruitful outcome in cancer therapy.

  4. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    PubMed Central

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  5. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy.

    PubMed

    Cheng, Liang; Yang, Kai; Li, Yonggang; Zeng, Xiao; Shao, Mingwang; Lee, Shuit-Tong; Liu, Zhuang

    2012-03-01

    Theranostics, the combination of diagnostics and therapies, has become a new concept in the battles with various major diseases such as cancer. Herein, we develop multifunctional nanoparticles (MFNPs) with highly integrated functionalities including upconversion luminescence, superparamagnetism, and strong optical absorption in the near-infrared (NIR) region with high photostability. In vivo dual modal optical/magnetic resonance imaging of mice uncovers that by placing a magnet nearby the tumor, MFNPs tend to migrate toward the tumor after intravenous injection and show high tumor accumulation, which is ~8 folds higher than that without magnetic targeting. NIR laser irradiation is then applied to the tumors grown on MFNP-injected mice under magnetic tumor-targeting, obtaining an outstanding photothermal therapeutic efficacy with 100% of tumor elimination in a murine breast cancer model. We present here a strategy for multimodal imaging-guided, magnetically targeted physical cancer therapy and highlight the promise of using multifunctional nanostructures for cancer theranostics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Low-dose radiation potentiates the therapeutic efficacy of folate receptor-targeted hapten therapy.

    PubMed

    Sega, Emanuela I; Lu, Yingjuan; Ringor, Michael; Leamon, Christopher P; Low, Philip S

    2008-06-01

    Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm(3) before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Mice bearing 300-mm(3) subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon alpha) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm(3). More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.

  7. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens

    PubMed Central

    Wittebole, Xavier; De Roock, Sophie; Opal, Steven M

    2014-01-01

    The seemingly inexorable spread of antibiotic resistance genes among microbial pathogens now threatens the long-term viability of our current antimicrobial therapy to treat severe bacterial infections such as sepsis. Antibiotic resistance is reaching a crisis situation in some bacterial pathogens where few therapeutic alternatives remain and pan-resistant strains are becoming more prevalent. Non-antibiotic therapies to treat bacterial infections are now under serious consideration and one possible option is the therapeutic use of specific phage particles that target bacterial pathogens. Bacteriophage therapy has essentially been re-discovered by modern medicine after widespread use of phage therapy in the pre-antibiotic era lost favor, at least in Western countries, after the introduction of antibiotics. We review the current therapeutic rationale and clinical experience with phage therapy as a treatment for invasive bacterial infection as novel alternative to antimicrobial chemotherapy. PMID:23973944

  8. Aptamer-loaded Gold Nanoconstructs for Targeted Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Dam, Duncan Hieu Minh

    Traditional cancer treatments, including chemotherapy, often cause severe side effects in patients. Targeted therapy where tumor cells are targeted via biomarkers overexpressed on the cell surface has been shown to reduce such adverse effects. Monoclonal antibodies (mAbs) are currently the most common chemotherapeutic agents that bind with high affinity to these cancer markers. However, poor intratumoral uptake of mAb and release of drugs from mAb carriers have been the biggest challenge for this delivery method. As a result, recent work has focused on other strategies to improve the efficacy of drug delivery in targeted therapy. Among potential carriers for drug delivery, gold nanoparticles (AuNPs) have emerged as one of the most promising vehicles. This thesis describes the development of a drug delivery nanoconstruct that can both target cancer cells and induce therapeutic effects. The nanoconstructs are composed of gold nanostars (AuNS) as delivery vehicles loaded with the DNA aptamer AS1411 that can target the ubiquitous shuttle protein nucleolin (NCL) in various cancer cell types. The gold nanocarrier stabilizes the oligonucleotides for intracellular delivery and promotes high loading densities of the oligonucleotide drugs. We have investigated the interactions of the nanoconstruct with different subcellular compartments of the cancer cells. This physical phenomenon has shown to correlate with the biological activities such as apoptosis and cell death that happen in the cancer cells after incubation with the nanoconstructs. A thorough screening of the nanoconstructs in 13 different cancer cell lines is conducted to narrow down the potential targets for in vivo study. Before testing the in vivo efficacy, we evaluate the toxicity of the nanoconstructs in non-tumor animals, which confirms its safety for further in vivo applications. The accumulation of the nanoconstructs in two different cancerous tumors, however, suggests that further optimization of the design

  9. [Biotherapies, immunotherapies, targeted therapies, biopharmaceuticals… which word should be used?].

    PubMed

    Watier, Hervé

    2014-05-01

    The ability to accurately describe and name medical advances is a prerequisite to foster public debates with scientists and physicians, and favour faith over fear among patients and citizens. Therapeutic antibodies are a good example of a medical breakthrough which has met with considerable clinical success, and which terminology has changed over the years. If the appellation serotherapy was appropriate a century ago, it has become obsolete. Recent names such as biotherapy, immunotherapy, targeted therapy, biopharmaceuticals have been introduced and are now commonly used, each of those can apply to therapeutic antibodies. It is thus interesting to question the real meaning of these different appellations. Our goal in this manuscript is to analyse the genesis of these terms but also to suggest how to simplify the terminology: biotherapy or targeted therapy need to be eliminated, as well as immunotherapy when communicating with non scientific public. It is recommended to favour the term biopharmaceuticals (biomédicaments in French), which clearly indicates the origin of these molecules, intermediate between chemical drugs and living biologics, whose borders need to be accurately defined also. © 2014 médecine/sciences – Inserm.

  10. Is fibroblast growth factor receptor 4 a suitable target of cancer therapy?

    PubMed

    Heinzle, Christine; Erdem, Zeynep; Paur, Jakob; Grasl-Kraupp, Bettina; Holzmann, Klaus; Grusch, Michael; Berger, Walter; Marian, Brigitte

    2014-01-01

    Fibroblast growth factors (FGF) and their tyrosine kinase receptors (FGFR) support cell proliferation, survival and migration during embryonic development, organogenesis and tissue maintenance and their deregulation is frequently observed in cancer development and progression. Consequently, increasing efforts are focusing on the development of strategies to target FGF/FGFR signaling for cancer therapy. Among the FGFRs the family member FGFR4 is least well understood and differs from FGFRs1-3 in several aspects. Importantly, FGFR4 deletion does not lead to an embryonic lethal phenotype suggesting the possibility that its inhibition in cancer therapy might not cause grave adverse effects. In addition, the FGFR4 kinase domain differs sufficiently from those of FGFRs1-3 to permit development of highly specific inhibitors. The oncogenic impact of FGFR4, however, is not undisputed, as the FGFR4-mediated hormonal effects of several FGF ligands may also constitute a tissue-protective tumor suppressor activity especially in the liver. Therefore it is the purpose of this review to summarize all relevant aspects of FGFR4 physiology and pathophysiology and discuss the options of targeting this receptor for cancer therapy.

  11. Is Fibroblast Growth Factor Receptor 4 a Suitable Target of Cancer Therapy?

    PubMed Central

    Heinzle, Christine; Erdem, Zeynep; Paur, Jakob; Grasl-Kraupp, Bettina; Holzmann, Klaus; Grusch, Michael; Berger, Walter; Marian, Brigitte

    2017-01-01

    Fibroblast growth factors (FGF) and their tyrosine kinase receptors (FGFR) support cell proliferation, survival and migration during embryonic development, organogenesis and tissue maintenance and their deregulation is frequently observed in cancer development and progression. Consequently, increasing efforts are focusing on the development of strategies to target FGF/FGFR signaling for cancer therapy. Among the FGFRs the family member FGFR4 is least well understood and differs from FGFRs1-3 in several aspects. Importantly, FGFR4 deletion does not lead to an embryonic lethal phenotype suggesting the possibility that its inhibition in cancer therapy might not cause grave adverse effects. In addition, the FGFR4 kinase domain differs sufficiently from those of FGFRs1-3 to permit development of highly specific inhibitors. The oncogenic impact of FGFR4, however, is not undisputed, as the FGFR4-mediated hormonal effects of several FGF ligands may also constitute a tissue-protective tumor suppressor activity especially in the liver. Therefore it is the purpose of this review to summarize all relevant aspects of FGFR4 physiology and pathophysiology and discuss the options of targeting this receptor for cancer therapy. PMID:23944363

  12. Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy.

    PubMed

    Zhou, Aiguo; Wei, Yanchun; Wu, Baoyan; Chen, Qun; Xing, Da

    2012-06-04

    Near-infrared (NIR)-to-visible upconversion nanoparticle (UCNP) has shown promising prospects in photodynamic therapy (PDT) as a drug carrier or energy donor. In this work, a photosensitizer pyropheophorbide a (Ppa) and RGD peptide c(RGDyK) comodified chitosan-wrapped NaYF(4):Yb/Er upconversion nanoparticle UCNP-Ppa-RGD was developed for targeted near-infrared photodynamic therapy. The properties of UCNP-Ppa-RGD, such as morphology, stability, optical spectroscopy and singlet oxygen generation efficiency, were investigated. The results show that covalently linked pyropheophorbide a molecule not only is stable but also retains its spectroscopic and functional properties. In vitro studies confirm a stronger targeting specificity of UCNP-Ppa-RGD to integrin α(v)β(3)-positive U87-MG cells compared with that in the corresponding negative group. The photosensitizer-attached nanostructure exhibited low dark toxicity and high phototoxicity against cancer cells upon 980 nm laser irradiation at an appropriate dosage. These results represent the first demonstration of a highly stable and efficient photosensitizer modified upconversion nanostructure for targeted near-infrared photodynamic therapy of cancer cells. The novel UCNP-Ppa-RGD nanoparticle may provide a powerful alternative for near-infrared photodynamic therapy with an improved tumor targeting specificity.

  13. [Current strategies in the treatment of renal-cell cancer: targeted therapies].

    PubMed

    Trigo, José Manuel; Bellmunt, Joaquim

    2008-03-22

    Renal-cell carcinoma represents 95% of all renal tumours. The Von Hippel-Lindau (VHL) tumor-suppressor gene is mutated or silenced in most clear cell renal carcinomas. pVHL loss results in the stabilization of the heterodimeric transcription factor hypoxia-inducible factor (HIF) and enhanced transactivation of HIF target genes. HIF itself has been difficult to inhibit with drug-like molecules although a number of agents that indirectly inhibit HIF, including mTOR (mammalian target of rapamycin) inhibitors, have been identified. Moreover, a number of drugs have been developed that target HIF-responsive gene products, such as vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), implicated in tumor angiogenesis. Many of these targeted therapies, especially sunitinib, have demonstrated significant activity in kidney cancer clinical trials and represent a substantive advance in the treatment of this disease.

  14. A call for new standard of care in perioperative gynecologic oncology practice: Impact of enhanced recovery after surgery (ERAS) programs.

    PubMed

    Miralpeix, Ester; Nick, Alpa M; Meyer, Larissa A; Cata, Juan; Lasala, Javier; Mena, Gabriel E; Gottumukkala, Vijaya; Iniesta-Donate, Maria; Salvo, Gloria; Ramirez, Pedro T

    2016-05-01

    Enhanced recovery after surgery (ERAS) programs aim to hasten functional recovery and improve postoperative outcomes. However, there is a paucity of data on ERAS programs in gynecologic surgery. We reviewed the published literature on ERAS programs in colorectal surgery, general gynecologic surgery, and gynecologic oncology surgery to evaluate the impact of such programs on outcomes, and to identify key elements in establishing a successful ERAS program. ERAS programs are associated with shorter length of hospital stay, a reduction in overall health care costs, and improvements in patient satisfaction. We suggest an ERAS program for gynecologic oncology practice involving preoperative, intraoperative, and postoperative strategies including; preadmission counseling, avoidance of preoperative bowel preparation, use of opioid-sparing multimodal perioperative analgesia (including loco-regional analgesia), intraoperative goal-directed fluid therapy (GDT), and use of minimally invasive surgical techniques with avoidance of routine use of nasogastric tube, drains and/or catheters. Postoperatively, it is important to encourage early feeding, early mobilization, timely removal of tubes and drains, if present, and function oriented multimodal analgesia regimens. Successful implementation of an ERAS program requires a multidisciplinary team effort and active participation of the patient in their goal-oriented functional recovery program. However, future outcome studies should evaluate the efficacy of an intervention within the pathway, include objective measures of symptom burden and control, study measures of functional recovery, and quantify outcomes of the program in relation to the rates of adherence to the key elements of care in gynecologic oncology such as oncologic outcomes and return to intended oncologic therapy (RIOT). Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Bioinspired Gold Nanorod Functionalization Strategies for MUC1-Targeted Imaging and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Zelasko-Leon, Daria Cecylia

    The majority of cancers diagnosed in 2016 are epithelial in origin, constituting 85% of all new cases and predicted to account for 78% of all cancer deaths this year. Given these statistics, improving patient outcomes by providing personalized, multimodal, and minimally invasive medical interventions is critically needed. Mucin 1 (MUC1), a transmembrane glycoprotein, extends over 100 nm from cell membranes and is a key marker promoting epithelial carcinogenesis. Due to its antenna-like manifestation, MUC1 is a unique yet underexplored candidate for targeted cancer therapy, with overexpression in >64% of epithelial cancers. To overcome the limitations of existing treatment strategies for epithelial cancer, this dissertation describes a novel platform for nanomedicine, highlighting bioinspired modifications of gold nanorod (AuNR) surfaces for diagnostic cancer imaging and photothermal therapy. An ongoing challenge in the field of nanomedicine is the need for simple and effective strategies for simple surface modification of nanoparticles to facilitate targeting and enhance efficacy. Here, biofunctionalization of AuNRs was achieved with polydopamine (PD) and tannic acid (TA), polyphenolic compounds found in the marine mussel and throughout the plant kingdom that exhibit promiscuous interfacial binding properties. AuNR stabilization was achieved via PD or TA coatings followed by secondary modification with the serum protein, bovine serum albumin (BSA), or glycoprotein-mimetic polymers. The resultant constructs demonstrated good biocompatibility, enabled diagnostic imaging, and facilitated MUC1-specific photothermal treatment of breast and oral cancer cells. The in vivo performance of BSA and PD modified AuNRs was evaluated in two orthotopic animal models of breast cancer. Clinically relevant hyperthermia and high response rates with MUC1-targeted formulations were found, with significant enhancement of progression-free survival and several complete tumor regressions

  16. Targeted Therapy Database (TTD): A Model to Match Patient's Molecular Profile with Current Knowledge on Cancer Biology

    PubMed Central

    Mocellin, Simone; Shrager, Jeff; Scolyer, Richard; Pasquali, Sandro; Verdi, Daunia; Marincola, Francesco M.; Briarava, Marta; Gobbel, Randy; Rossi, Carlo; Nitti, Donato

    2010-01-01

    Background The efficacy of current anticancer treatments is far from satisfactory and many patients still die of their disease. A general agreement exists on the urgency of developing molecularly targeted therapies, although their implementation in the clinical setting is in its infancy. In fact, despite the wealth of preclinical studies addressing these issues, the difficulty of testing each targeted therapy hypothesis in the clinical arena represents an intrinsic obstacle. As a consequence, we are witnessing a paradoxical situation where most hypotheses about the molecular and cellular biology of cancer remain clinically untested and therefore do not translate into a therapeutic benefit for patients. Objective To present a computational method aimed to comprehensively exploit the scientific knowledge in order to foster the development of personalized cancer treatment by matching the patient's molecular profile with the available evidence on targeted therapy. Methods To this aim we focused on melanoma, an increasingly diagnosed malignancy for which the need for novel therapeutic approaches is paradigmatic since no effective treatment is available in the advanced setting. Relevant data were manually extracted from peer-reviewed full-text original articles describing any type of anti-melanoma targeted therapy tested in any type of experimental or clinical model. To this purpose, Medline, Embase, Cancerlit and the Cochrane databases were searched. Results and Conclusions We created a manually annotated database (Targeted Therapy Database, TTD) where the relevant data are gathered in a formal representation that can be computationally analyzed. Dedicated algorithms were set up for the identification of the prevalent therapeutic hypotheses based on the available evidence and for ranking treatments based on the molecular profile of individual patients. In this essay we describe the principles and computational algorithms of an original method developed to fully exploit

  17. Targeted Therapy Database (TTD): a model to match patient's molecular profile with current knowledge on cancer biology.

    PubMed

    Mocellin, Simone; Shrager, Jeff; Scolyer, Richard; Pasquali, Sandro; Verdi, Daunia; Marincola, Francesco M; Briarava, Marta; Gobbel, Randy; Rossi, Carlo; Nitti, Donato

    2010-08-10

    The efficacy of current anticancer treatments is far from satisfactory and many patients still die of their disease. A general agreement exists on the urgency of developing molecularly targeted therapies, although their implementation in the clinical setting is in its infancy. In fact, despite the wealth of preclinical studies addressing these issues, the difficulty of testing each targeted therapy hypothesis in the clinical arena represents an intrinsic obstacle. As a consequence, we are witnessing a paradoxical situation where most hypotheses about the molecular and cellular biology of cancer remain clinically untested and therefore do not translate into a therapeutic benefit for patients. To present a computational method aimed to comprehensively exploit the scientific knowledge in order to foster the development of personalized cancer treatment by matching the patient's molecular profile with the available evidence on targeted therapy. To this aim we focused on melanoma, an increasingly diagnosed malignancy for which the need for novel therapeutic approaches is paradigmatic since no effective treatment is available in the advanced setting. Relevant data were manually extracted from peer-reviewed full-text original articles describing any type of anti-melanoma targeted therapy tested in any type of experimental or clinical model. To this purpose, Medline, Embase, Cancerlit and the Cochrane databases were searched. We created a manually annotated database (Targeted Therapy Database, TTD) where the relevant data are gathered in a formal representation that can be computationally analyzed. Dedicated algorithms were set up for the identification of the prevalent therapeutic hypotheses based on the available evidence and for ranking treatments based on the molecular profile of individual patients. In this essay we describe the principles and computational algorithms of an original method developed to fully exploit the available knowledge on cancer biology with the

  18. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    PubMed

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  19. Use of Neoadjuvant Chemotherapy Plus Molecular Targeted Therapy in Colorectal Liver Metastases: A Systematic Review and Meta-analysis.

    PubMed

    Sabanathan, Dhanusha; Eslick, Guy D; Shannon, Jenny

    2016-12-01

    Surgery remains the standard of care for patients with colorectal liver metastases (CLMs), with a 5-year survival rate approaching 35%. Perioperative chemotherapy confers a survival benefit in selected patients with CLMs. The use of molecular targeted therapy combined with neoadjuvant chemotherapy for CLMs, however, remains controversial. We reviewed the published data on combination neoadjuvant chemotherapy and molecular targeted therapy for resectable and initially unresectable CLMs. A literature search of the Medline and PubMed databases was conducted to identify studies of neoadjuvant chemotherapy plus molecular targeted therapy in the management of resectable or initially unresectable CLMs. We calculated the pooled proportion and 95% confidence intervals using a random effects model for the relationship of the combination neoadjuvant treatment on the overall response rate and performed a systematic review of all identified studies. The analysis was stratified according to the study design. The data from 11 studies of 908 patients who had undergone systemic chemotherapy plus targeted therapy for CLM were analyzed. The use of combination neoadjuvant therapy was associated with an overall response rate of 68% (95% confidence interval, 63%-73%), with significant heterogeneity observed in the studies (I 2  = 89.35; P < .001). Of the 11 studies, 4 used a combination that included oxaliplatin, 2 included irinotecan, and 5 included a combination of both. Also, 7 studies used cetuximab and 4 bevacizumab. The overall progression-free survival was estimated at 14.4 months. Current evidence suggests that neoadjuvant chemotherapy plus molecular targeted agents for CLM confers high overall response rates. Combination treatment might also increase the resectability rates in initially unresectable CLM. Further studies are needed to examine the survival outcomes, with a focus on the differential role of molecular targeted therapy in the neoadjuvant versus adjuvant setting

  20. Optical Imaging and Gene Therapy with Neuroblastoma-Targeting Polymeric Nanoparticles for Potential Theranostic Applications.

    PubMed

    Lee, Jangwook; Jeong, Eun Ju; Lee, Yeon Kyung; Kim, Kwangmeyung; Kwon, Ick Chan; Lee, Kuen Yong

    2016-03-02

    Recently, targeted delivery systems based on functionalized polymeric nanoparticles have attracted a great deal of attention in cancer diagnosis and therapy. Specifically, as neuroblastoma occurs in infancy and childhood, targeted delivery may be critical to reduce the side effects that can occur with conventional approaches, as well as to achieve precise diagnosis and efficient therapy. Thus, biocompatible poly(d,l-lactide-co-glycolide) (PLG) nanoparticles containing an imaging probe and therapeutic gene are prepared, followed by modification with rabies virus glycoprotein (RVG) peptide for neuroblastoma-targeting delivery. RVG peptide is a well-known neuronal targeting ligand and is chemically conjugated to PLG nanoparticles without changing their size or shape. RVG-modified nanoparticles are effective in specifically targeting neuroblastoma both in vitro and in vivo. RVG-modified nanoparticles loaded with a fluorescent probe are useful to detect the tumor site in a neuroblastoma-bearing mouse model, and those encapsulating a therapeutic gene cocktail (siMyc, siBcl-2, and siVEGF) significantly suppressed tumor growth in the mouse model. This approach to designing and tailoring of polymeric nanoparticles for targeted delivery may be useful in the development of multimodality systems for theranostic approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Novel epigenetic target therapy for prostate cancer: a preclinical study.

    PubMed

    Naldi, Ilaria; Taranta, Monia; Gherardini, Lisa; Pelosi, Gualtiero; Viglione, Federica; Grimaldi, Settimio; Pani, Luca; Cinti, Caterina

    2014-01-01

    Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2'-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.

  2. Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer.

    PubMed

    Nagasaka, Misako; Gadgeel, Shirish M

    2018-01-01

    Adjuvant platinum based chemotherapy is accepted as standard of care in stage II and III non-small cell lung cancer (NSCLC) patients and is often considered in patients with stage IB disease who have tumors ≥ 4 cm. The survival advantage is modest with approximately 5% at 5 years. Areas covered: This review article presents relevant data regarding chemotherapy use in the perioperative setting for early stage NSCLC. A literature search was performed utilizing PubMed as well as clinical trial.gov. Randomized phase III studies in this setting including adjuvant and neoadjuvant use of chemotherapy as well as ongoing trials on targeted therapy and immunotherapy are also discussed. Expert commentary: With increasing utilization of screening computed tomography scans, it is possible that the percentage of early stage NSCLC patients will increase in the coming years. Benefits of adjuvant chemotherapy in early stage NSCLC patients remain modest. There is a need to better define patients most likely to derive survival benefit from adjuvant therapy and spare patients who do not need adjuvant chemotherapy due to the toxicity of such therapy. Trials for adjuvant targeted therapy, including adjuvant EGFR-TKI trials and trials of immunotherapy drugs are ongoing and will define the role of these agents as adjuvant therapy.

  3. Brain-targeted stem cell gene therapy corrects mucopolysaccharidosis type II via multiple mechanisms.

    PubMed

    Gleitz, Hélène Fe; Liao, Ai Yin; Cook, James R; Rowlston, Samuel F; Forte, Gabriella Ma; D'Souza, Zelpha; O'Leary, Claire; Holley, Rebecca J; Bigger, Brian W

    2018-06-08

    The pediatric lysosomal storage disorder mucopolysaccharidosis type II is caused by mutations in IDS, resulting in accumulation of heparan and dermatan sulfate, causing severe neurodegeneration, skeletal disease, and cardiorespiratory disease. Most patients manifest with cognitive symptoms, which cannot be treated with enzyme replacement therapy, as native IDS does not cross the blood-brain barrier. We tested a brain-targeted hematopoietic stem cell gene therapy approach using lentiviral IDS fused to ApoEII (IDS.ApoEII) compared to a lentivirus expressing normal IDS or a normal bone marrow transplant. In mucopolysaccharidosis II mice, all treatments corrected peripheral disease, but only IDS.ApoEII mediated complete normalization of brain pathology and behavior, providing significantly enhanced correction compared to IDS. A normal bone marrow transplant achieved no brain correction. Whilst corrected macrophages traffic to the brain, secreting IDS/IDS.ApoEII enzyme for cross-correction, IDS.ApoEII was additionally more active in plasma and was taken up and transcytosed across brain endothelia significantly better than IDS via both heparan sulfate/ApoE-dependent receptors and mannose-6-phosphate receptors. Brain-targeted hematopoietic stem cell gene therapy provides a promising therapy for MPS II patients. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  4. Assessing the response to targeted therapies in renal cell carcinoma: technical insights and practical considerations.

    PubMed

    Bex, Axel; Fournier, Laure; Lassau, Nathalie; Mulders, Peter; Nathan, Paul; Oyen, Wim J G; Powles, Thomas

    2014-04-01

    The introduction of targeted agents for the treatment of renal cell carcinoma (RCC) has resulted in new challenges for assessing response to therapy, and conventional response criteria using computed tomography (CT) are limited. It is widely recognised that targeted therapies may lead to significant necrosis without significant reduction in tumour size. In addition, the vascular effects of antiangiogenic therapy may occur long before there is any reduction in tumour size. To perform a systematic review of conventional and novel imaging methods for the assessment of response to targeted agents in RCC and to discuss their use from a clinical perspective. Relevant databases covering the period January 2006 to April 2013 were searched for studies reporting on the use of anatomic and functional imaging techniques to predict response to targeted therapy in RCC. Inclusion criteria were randomised trials, nonrandomised controlled studies, retrospective case series, and cohort studies. Reviews, animal and preclinical studies, case reports, and commentaries were excluded. A narrative synthesis of the evidence is presented. A total of 331 abstracts and 76 full-text articles were assessed; 34 studies met the inclusion criteria. Current methods of response assessment in RCC include anatomic methods--based on various criteria including Choi, size and attenuation CT, and morphology, attenuation, size, and structure--and functional techniques including dynamic contrast-enhanced (DCE) CT, DCE-magnetic resonance imaging, DCE-ultrasonography, positron emission tomography, and approaches utilising radiolabelled monoclonal antibodies. Functional imaging techniques are promising surrogate biomarkers of response in RCC and may be more appropriate than anatomic CT-based methods. By enabling quantification of tumour vascularisation, functional techniques can directly and rapidly detect the biologic effects of antiangiogenic therapies compared with the indirect detection of belated effects

  5. Targeted therapies in development for non-small cell lung cancer

    PubMed Central

    Reungwetwattana, Thanyanan; Dy, Grace Kho

    2013-01-01

    The iterative discovery in various malignancies during the past decades that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by “druggable” protein kinases has led to a revolutionary change in drug development. In non-small cell lung cancer (NSCLC), the ErbB family of receptors (e.g., EGFR [epidermal growth factor receptor], HER2 [human epidermal growth factor receptor 2]), RAS (rat sarcoma gene), BRAF (v-raf murine sarcoma viral oncogene homolog B1), MAPK (mitogen-activated protein kinase) c-MET (c-mesenchymal-epithelial transition), FGFR (fibroblast growth factor receptor), DDR2 (discoidin domain receptor 2), PIK3CA (phosphatidylinositol-4,5-bisphosphate3-kinase, catalytic subunit alpha)), PTEN (phosphatase and tensin homolog), AKT (protein kinase B), ALK (anaplastic lym phoma kinase), RET (rearranged during transfection), ROS1 (reactive oxygen species 1) and EPH (erythropoietin-producing hepatoma) are key targets of various agents currently in clinical development. These oncogenic targets exert their selective growth advantage through various intercommunicating pathways, such as through RAS/RAF/MEK, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin and SRC-signal transduction and transcription signaling. The recent clinical studies, EGFR tyrosine kinase inhibitors and crizotinib were considered as strongly effective targeted therapies in metastatic NSCLC. Currently, five molecular targeted agents were approved for treatment of advanced NSCLC: Gefitinib, erlotinib and afatinib for positive EGFR mutation, crizotinib for positive echinoderm microtubule-associated protein-like 4 (EML4)-ALK translocation and bevacizumab. Moreover, oncogenic mutant proteins are subject to regulation by protein trafficking pathways, specifically through the heat shock protein 90 system. Drug combinations affecting various nodes in these signaling and intracellular processes are predicted and demonstrated to be synergistic and

  6. Cell cycle proteins as promising targets in cancer therapy.

    PubMed

    Otto, Tobias; Sicinski, Piotr

    2017-01-27

    Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.

  7. Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Fei; Li, Hongling; Sun, Yong, E-mail: sunfanqi2010@163.com

    2014-11-28

    Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effectmore » of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.« less

  8. Targeted antioxidant therapies in hyperglycemia-mediated endothelial dysfunction.

    PubMed

    de Haan, Judy B; Cooper, Mark E

    2011-01-01

    Although intensive glycaemic and blood pressure control have reduced the risks of micro- and macrovascular complications, diabetes remains a major cause of cardiovascular events, end-stage renal failure, blindness and neuropathy. It is therefore imperative to understand the underlying mechanisms and to establish effective treatments to prevent, retard or reverse diabetic complications. One area of increased focus is the diabetic vascular endothelium. Hyperglycaemia triggers a cascade of events, not least an increase in reactive oxygen species (ROS) leading to enhanced oxidative stress, with its negative impact on endothelial function. In this review, we explore a unifying hypothesis that increased glucose-mediated ROS leads to endothelial dysfunction as the underpinning causative event triggering accelerated micro- and macrovascular complications. In particular, the consequences of deficiencies in the antioxidant enzyme, glutathione peroxidase, on endothelial dysfunction as a trigger of diabetic micro- and macrovascular complications, will be reviewed. Furthermore, novel antioxidant therapies will be highlighted. Specifically, use of Gpx1-mimetics holds promise as a targeted antioxidant approach and an alternative adjunct therapy to reduce diabetic complications.

  9. The targeting mechanism of DHA ligand and its conjugate with Gemcitabine for the enhanced tumor therapy

    PubMed Central

    Li, Siwen; Qin, Jingyi; Tian, Caiping; Cao, Jie; Fida, Guissi; Wang, Zhaohui; Chen, Haiyan; Qian, Zhiyu; Chen, Wei R; Gu, Yueqing

    2014-01-01

    Docosahexaenoic acid (DHA), an omega-3 C22 natural fatty acid serving as a precursor for metabolic and biochemical pathways, was reported as a targeting ligand of anticancer drugs. However, its tumor targeting ability and mechanism has not been claimed. Here we hypothesized that the uptake of DHA by tumor cells is related to the phosphatidylethanolamine (PE) contents in cell membranes. Thus, in this manuscript, the tumor-targeting ability of DHA was initially demonstrated in vitro and in vivo on different tumor cell lines by labeling DHA with fluorescence dyes. Subsequently, the tumor targeting ability was then correlated with the contents of PE in cell membranes to study the uptake mechanism. Further, DHA was conjugated with anticancer drug gemcitabine (DHA-GEM) for targeted tumor therapy. Our results demonstrated that DHA exhibited high tumor targeting ability and PE is the main mediator, which confirmed our hypothesis. The DHA-GEM displayed enhanced therapeutic efficacy than that of GEM itself, indicating that DHA is a promising ligand for tumor targeted therapy. PMID:25004114

  10. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Lena, E-mail: lena.specht@regionh.dk; Yahalom, Joachim; Illidge, Tim

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solelymore » on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data

  11. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG).

    PubMed

    Specht, Lena; Yahalom, Joachim; Illidge, Tim; Berthelsen, Anne Kiil; Constine, Louis S; Eich, Hans Theodor; Girinsky, Theodore; Hoppe, Richard T; Mauch, Peter; Mikhaeel, N George; Ng, Andrea

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  12. Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor-Targeted Hapten Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sega, Emanuela I.; Lu Yingjuan; Ringor, Michael

    2008-06-01

    Purpose: Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm{sup 3} before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapymore » with low-dose radiotherapy. Methods and Materials: Mice bearing 300-mm{sup 3} subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon {alpha}) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Results: Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm{sup 3}. More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. Conclusions: These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.« less

  13. Ovarian stimulation in young adult cancer survivors on targeted cancer therapies

    PubMed Central

    Su, H. Irene; Connell, Meghan W.; Bazhenova, Lyudmila A.

    2016-01-01

    Objective To describe a clinical approach to and outcomes of in vitro fertilization in reproductive-aged cancer survivors on targeted cancer therapies. Design Case report Setting Academic fertility preservation program Patients The first case is of a female patient with metastatic lung cancer on long-term crizotinib, an ALK inhibitor. The second case is of a female patient with metastatic colon cancer on long-term denosumab, a RANKL antibody. Both patients presented desiring fertility. Interventions In vitro fertilization Main outcome measures Live birth and embryo banking Results The potential impact of targeted therapy on oocytes and pregnancy was investigated via literature review and pharmaceutical company inquiries. Following oncologic, fertility and psychological counseling, both survivors underwent ovarian stimulation, in vitro fertilization and preimplantation genetic screening. One couple achieved live births of dizygotic twins via gestational surrogacy. The second couple froze one euploid blastocyst for future fertility. Both survivors are stable from their cancer standpoints. Conclusion Successful fertility treatments are possible in the context of exposure to crizotinib, and denosumab. PMID:27565250

  14. Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy.

    PubMed

    Mühleisen, Laura; Alev, Magdalena; Unterweger, Harald; Subatzus, Daniel; Pöttler, Marina; Friedrich, Ralf P; Alexiou, Christoph; Janko, Christina

    2017-06-29

    The phototoxic effect of hypericin can be utilized for Photodynamic Therapy (PDT) of cancer. After intravenous application and systemic distribution of the drug in the patient's body, the tumor site is exposed to light. Subsequently, toxic reactive oxygen species (ROS) are generated, inducing tumor cell death. To prevent unwanted activation of the drug in other regions of the body, patients have to avoid light during and after the treatment cycles, consequently impairing quality of life. Here, we characterize toxicity and hypericin-mediated effects on cancer cells in vitro and confirm that its effect clearly depends on concentration and illumination time. To reduce side effects and to increase therapy success, selective accumulation of hypericin in the tumor region is a promising solution. Loading hypericin on superparamagnetic iron oxide nanoparticles (SPIONs) and guiding them to the desired place using an external magnetic field might accomplish this task (referred to as Magnetic Drug Targeting (MDT)). Thus, using a double targeting strategy, namely magnetic accumulation and laser induced photoactivation, might improve treatment effectivity as well as specificity and reduce toxic side effects in future clinical applications.

  15. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives.

    PubMed

    Zhou, Li; Wang, Kui; Li, Qifu; Nice, Edouard C; Zhang, Haiyuan; Huang, Canhua

    2016-01-01

    Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.

  16. Recent Reanalysis Activities at ECMWF: Results from ERA-20C and Plans for ERA5

    NASA Astrophysics Data System (ADS)

    Dragani, R.; Hersbach, H.; Poli, P.; Pebeuy, C.; Hirahara, S.; Simmons, A.; Dee, D.

    2015-12-01

    This presentation will provide an overview of the most recent reanalysis activities performed at the European Centre for Medium-Range Weather Forecasts (ECMWF). A pilot reanalysis of the 20th-century (ERA-20C) has recently been completed. Funded through the European FP7 collaborative project ERA-CLIM, ERA-20C is part of a suite of experiments that also includes a model-only integration (ERA-20CM) and a land-surface reanalysis (ERA-20CL). Its data assimilation system is constrained by only surface observations obtained from ISPD (3.2.6) and ICOADS (2.5.1). Surface boundary conditions are provided by the Hadley Centre (HadISST2.1.0.0) and radiative forcing follows CMIP5 recommended data sets. First-guess uncertainty estimates are based on a 10-member ensemble of Data Assimilations, ERA-20C ensemble, run prior to ERA-20C using ten SST and sea-ice realizations from the Hadley Centre. In November 2014, the European Commission entrusted ECMWF to run on its behalf the Copernicus Climate Change Service (C3S) aiming at producing quality-assured information about the past, current and future states of the climate at both European and global scales. Reanalysis will be one of the main components of the C3S portfolio and the first one to be produced is a global modern era reanalysis (ERA5) covering the period from 1979 onwards. Based on a recent version of the ECMWF data assimilation system, ERA5 will replace the widely used ERA-Interim dataset. This new production will benefit from a much improved model, and better characterized and exploited observations compared to its predecessor. The first part of the presentation will focus on the ERA-20C production, provide an overview of its main characteristics and discuss some of the key results from its assessment. The second part of the talk will give an overview of ERA5, and briefly discuss some of its challenges.

  17. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.

    PubMed

    Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry

    2016-10-28

    Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Targeting the S1P Axis and Development of a Novel Therapy for Obesity-Related Triple-Negative Breast Cancer

    DTIC Science & Technology

    2016-09-01

    1 AWARD NUMBER: W81XWH-14-1-0086 TITLE: Targeting the S1P Axis and Development of a Novel Therapy for Obesity -Related Triple- Negative Breast...Sep 2015 - 31Aug2016 4. TITLE AND SUBTITLE Targeting the S1P Axis and Development of a Novel Therapy for Obesity -Related Triple-Negative Breast...hormonal therapies and have limited treatment options. Epidemiological and clinical studies indicate that obesity , which is now endemic, increases

  19. Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy.

    PubMed

    Li, Ke; Qiu, Ling; Liu, Qingzhu; Lv, Gaochao; Zhao, Xueyu; Wang, Shanshan; Lin, Jianguo

    2017-09-01

    In order to improve the efficacy of photodynamic therapy (PDT), biotin was axially conjugated with silicon(IV) phthalocyanine (SiPc) skeleton to develop a new tumor-targeting photosensitizer SiPc-biotin. The target compound SiPc-biotin showed much higher binding affinity toward BR-positive (biotin receptor overexpressed) HeLa human cervical carcinoma cells than its precursor SiPc-pip. However, when the biotin receptors of HeLa cells were blocked by free biotin, >50% uptake of SiPc-biotin was suppressed, demonstrating that SiPc-biotin could selectively accumulate in BR-positive cancer cells via the BR-mediated internalization. The confocal fluorescence images further confirmed the target binding ability of SiPc-biotin. As a consequence of specificity of SiPc-biotin toward BR-positive HeLa cells, the photodynamic effect was also largely dependent on the BR expression level of HeLa cells. The photodynamic activities of SiPc-biotin against HeLa cells were dramatically reduced when the biotin receptors were blocked by the free biotin (IC 50 : 0.18μM vs. 0.46μM). It is concluded that SiPc-biotin can selectively damage BR-positive cancer cells under irradiation. Furthermore, the dark toxicity of SiPc-biotin toward human normal liver cell lines LO2 was much lower than that of its precursor SiPc-pip. The targeting photodynamic activity and low dark toxicity suggest that SiPc-biotin is a promising photosensitizer for tumor-targeting photodynamic therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Role of Akt signaling in resistance to DNA-targeted therapy

    PubMed Central

    Avan, Abolfazl; Narayan, Ravi; Giovannetti, Elisa; Peters, Godefridus J

    2016-01-01

    The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients. PMID:27777878

  1. A review of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer.

    PubMed

    Diaby, Vakaramoko; Tawk, Rima; Sanogo, Vassiki; Xiao, Hong; Montero, Alberto J

    2015-05-01

    Breast cancer is a global health concern. In fact, breast cancer is the primary cause of death among women worldwide and constitutes the most expensive malignancy to treat. As health care resources are finite, decisions regarding the adoption and coverage of breast cancer treatments are increasingly being based on "value for money," i.e., cost-effectiveness. As the evidence about the cost-effectiveness of breast cancer treatments is abundant, therefore difficult to navigate, systematic reviews of published systematic reviews offer the advantage of bringing together the results of separate systematic reviews in a single report. As a consequence, this paper presents an overview of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer to inform policy and reimbursement decision-making. A systematic review was conducted of published systematic reviews documenting cost-effectiveness analyses of breast cancer treatments from 2000 to 2014. Systematic reviews identified through a literature search of health and economic databases were independently assessed against inclusion and exclusion criteria. Systematic reviews of original evaluations were included only if they targeted breast cancer patients and specific breast cancer treatments (hormone therapy, chemotherapy, and targeted therapy only), documented incremental cost-effectiveness ratios, and were reported in the English language. The search strategy used a combination of these key words: "breast cancer," "systematic review/meta-analysis," and "cost-effectiveness/economics." Data were extracted using predefined extraction forms and qualitatively appraised using the assessment of multiple systematic reviews (AMSTAR) tool. The literature search resulted in 511 bibliographic records, of which ten met our inclusion criteria. Five reviews were conducted in the early-stage breast cancer setting and five reviews in the metastatic setting. In early-stage breast

  2. A review of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer

    PubMed Central

    Diaby, Vakaramoko; Xiao, Hong; Montero, Alberto J.

    2015-01-01

    Breast cancer is a global health concern. In fact, breast cancer is the primary cause of death among women worldwide and constitutes the most expensive malignancy to treat. As health care resources are finite, decisions regarding the adoption and coverage of breast cancer treatments are increasingly being based on “value for money,” i.e., cost-effectiveness. As the evidence about the cost-effectiveness of breast cancer treatments is abundant, therefore difficult to navigate, systematic reviews of published systematic reviews offer the advantage of bringing together the results of separate systematic reviews in a single report. As a consequence, this paper presents an overview of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer to inform policy and reimbursement decision-making. A systematic review was conducted of published systematic reviews documenting cost-effectiveness analyses of breast cancer treatments from 2000 to 2014. Systematic reviews identified through a literature search of health and economic databases were independently assessed against inclusion and exclusion criteria. Systematic reviews of original evaluations were included only if they targeted breast cancer patients and specific breast cancer treatments (hormone therapy, chemotherapy, and targeted therapy only), documented incremental cost-effectiveness ratios, and were reported in the English language. The search strategy used a combination of these key words: “breast cancer,” “systematic review/meta-analysis,” and “cost-effectiveness/economics.” Data were extracted using predefined extraction forms and qualitatively appraised using the assessment of multiple systematic reviews (AMSTAR) tool. The literature search resulted in 511 bibliographic records, of which ten met our inclusion criteria. Five reviews were conducted in the early-stage breast cancer setting and five reviews in the metastatic setting. In

  3. Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv.

    PubMed Central

    Xu, L.; Tang, W. H.; Huang, C. C.; Alexander, W.; Xiang, L. M.; Pirollo, K. F.; Rait, A.; Chang, E. H.

    2001-01-01

    BACKGROUND: A long-standing goal in genetic therapy for cancer is a systemic gene delivery system that selectively targets tumor cells, including metastases. Here we describe a novel cationic immunolipoplex system that shows high in vivo gene transfer efficiency and anti- tumor efficacy when used for systemic p53 gene therapy of cancer. MATERIALS AND METHODS: A cationic immunolipoplex incorporating a biosynthetically lipid-tagged, anti-transferrin receptor single-chain antibody (TfRscFv), was designed to target tumor cells both in vitro and in vivo. A human breast cancer metastasis model was employed to evaluate the in vivo efficacy of systemically administered, TfRscFv-immunolipoplex-mediated, p53 gene therapy in combination with docetaxel. RESULTS: The TfRscFv-targeting cationic immunolipoplex had a size of 60-100 nm, showed enhanced tumor cell binding, and improved targeted gene delivery and transfection efficiencies, both in vitro and in vivo. The p53 tumor suppressor gene was not only systemically delivered by the immunolipoplex to human tumor xenografts in nude mice but also functionally expressed. In the nude mouse breast cancer metastasis model, the combination of the p53 gene delivered by the systemic administration of the TfRscFv-immunolipoplex and docetaxel resulted in significantly improved efficacy with prolonged survival. CONCLUSIONS: This is the first report using scFv-targeting immunolipoplexes for systemic gene therapy. The TfRscFv has a number of advantages over the transferrin (Tf) molecule itself: (1) scFv has a much smaller size than Tf producing a smaller immunolipoplex giving better penetration into solid tumors; (2) unlike Tf, the scFv is a recombinant protein, not a blood product; (3) large scale production and strict quality control of the recombinant scFv, as well as scFv-immunolipoplex, are feasible. The sensitization of tumors to chemotherapy by this tumor-targeted and efficient p53 gene delivery method could lower the effective dose of

  4. Fate-Regulating Circuits in Viruses: From Discovery to New Therapy Targets

    PubMed Central

    Pai, Anand; Weinberger, Leor S.

    2018-01-01

    Current antivirals effectively target diverse viruses at various stages of their viral lifecycles. Nevertheless, curative therapy has remained elusive for important pathogens (e.g., HIV-1 and herpesviruses), in large part due to viral latency and the evolution of resistance to existing therapies. Here, we review the discovery of viral ‘master’ circuits: virus-encoded auto-regulatory gene networks that can autonomously control viral expression programs (i.e., between active, latent, and abortive fates). These circuits offer a potential new class of antivirals that could lead to intrinsic combination-antiviral therapies within a single molecule—evolutionary escape from such circuit ‘disruptors’ would require simultaneous evolution of both the cis regulatory element (e.g., the DNA-binding site) and the trans element (e.g., the transcription factor) for the circuit’s function to be recapitulated. We review the architectures of these fate-regulating master circuits in HIV-1 and the human herpesvirus cytomegalovirus (CMV) along with potential circuit-disruption strategies that may ultimately enable escape-resistant antiviral therapies. PMID:28800289

  5. Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy.

    PubMed

    You, Mingxu; Zhu, Guizhi; Chen, Tao; Donovan, Michael J; Tan, Weihong

    2015-01-21

    The specific inventory of molecules on diseased cell surfaces (e.g., cancer cells) provides clinicians an opportunity for accurate diagnosis and intervention. With the discovery of panels of cancer markers, carrying out analyses of multiple cell-surface markers is conceivable. As a trial to accomplish this, we have recently designed a DNA-based device that is capable of performing autonomous logic-based analysis of two or three cancer cell-surface markers. Combining the specific target-recognition properties of DNA aptamers with toehold-mediated strand displacement reactions, multicellular marker-based cancer analysis can be realized based on modular AND, OR, and NOT Boolean logic gates. Specifically, we report here a general approach for assembling these modular logic gates to execute programmable and higher-order profiling of multiple coexisting cell-surface markers, including several found on cancer cells, with the capacity to report a diagnostic signal and/or deliver targeted photodynamic therapy. The success of this strategy demonstrates the potential of DNA nanotechnology in facilitating targeted disease diagnosis and effective therapy.

  6. Programmable and Multiparameter DNA-Based Logic Platform For Cancer Recognition and Targeted Therapy

    PubMed Central

    2014-01-01

    The specific inventory of molecules on diseased cell surfaces (e.g., cancer cells) provides clinicians an opportunity for accurate diagnosis and intervention. With the discovery of panels of cancer markers, carrying out analyses of multiple cell-surface markers is conceivable. As a trial to accomplish this, we have recently designed a DNA-based device that is capable of performing autonomous logic-based analysis of two or three cancer cell-surface markers. Combining the specific target-recognition properties of DNA aptamers with toehold-mediated strand displacement reactions, multicellular marker-based cancer analysis can be realized based on modular AND, OR, and NOT Boolean logic gates. Specifically, we report here a general approach for assembling these modular logic gates to execute programmable and higher-order profiling of multiple coexisting cell-surface markers, including several found on cancer cells, with the capacity to report a diagnostic signal and/or deliver targeted photodynamic therapy. The success of this strategy demonstrates the potential of DNA nanotechnology in facilitating targeted disease diagnosis and effective therapy. PMID:25361164

  7. Trends in the Cost and Use of Targeted Cancer Therapies for the Privately Insured Nonelderly: 2001 to 2011

    PubMed Central

    Shih, Ya-Chen Tina; Smieliauskas, Fabrice; Geynisman, Daniel M.; Kelly, Ronan J.; Smith, Thomas J.

    2015-01-01

    Purpose This study sought to define and identify drivers of trends in cost and use of targeted therapeutics among privately insured nonelderly patients with cancer receiving chemotherapy between 2001 and 2011. Methods We classified oncology drugs as targeted oral anticancer medications, targeted intravenous anticancer medications, and all others. Using the LifeLink Health Plan Claims Database, we studied and disaggregated trends in use and in insurance and out-of-pocket payments per patient per month and during the first year of chemotherapy. Results We found a large increase in the use of targeted intravenous anticancer medications and a gradual increase in targeted oral anticancer medications; targeted therapies accounted for 63% of all chemotherapy expenditures in 2011. Insurance payments per patient per month and in the first year of chemotherapy for targeted oral anticancer medications more than doubled in 10 years, surpassing payments for targeted intravenous anticancer medications, which remained fairly constant throughout. Substitution toward targeted therapies and growth in drug prices both at launch and postlaunch contributed to payer spending growth. Out-of-pocket spending for targeted oral anticancer medications was ≤ half of the amount for targeted intravenous anticancer medications. Conclusion Targeted therapies now dominate anticancer drug spending. More aggressive management of pharmacy benefits for targeted oral anticancer medications and payment reform for injectable drugs hold promise. Restraining the rapid rise in spending will require more than current oral drug parity laws, such as value-based insurance that makes the benefits and costs transparent and involves the patient directly in the choice of treatment. PMID:25987701

  8. 'Treat to Target' - Lessons Learnt.

    PubMed

    Kurti, Zsuzsanna; Vegh, Zsuzsanna; Golovics, Petra Anna; Lakatos, Peter Laszlo

    2016-01-01

    Therapeutic management in inflammatory bowel diseases (IBD) has significantly changed in the last decades with the advent of biological therapy resulting in new treatment targets other than clinical symptoms. Patient stratification in the early stage of the disease is an important step to identify patients with poor prognosis, who might benefit from early aggressive treatment to avoid complications in the later disease course. Recent randomized and hypothesis driven (e.g., Randomized Evaluation of an Algorithm for Crohn's Treatment, Post-Operative Crohn's Endoscopic Recurrence) clinical trials conducted in the biological era underscore the need of objective disease monitoring including assessment of biomarkers (e.g., C-reactive protein and calprotectin), mucosal healing and, for biologically treated patients, therapeutic drug monitoring beside clinical symptom assessment in both Crohn's disease and ulcerative colitis. Assessing the treatment efficacy objectively has become an important element of patient monitoring besides clinical symptom assessment. Further clinical studies are needed to assess whether implementation of new therapeutic algorithms based on these targets and tight monitoring in clinical practice have the potential to further improve long-term disease outcomes in IBD. © 2016 S. Karger AG, Basel.

  9. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    PubMed

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  10. Targeting the NFκB signaling pathways for breast cancer prevention and therapy.

    PubMed

    Wang, Wei; Nag, Subhasree A; Zhang, Ruiwen

    2015-01-01

    The activation of nuclear factor-kappaB (NFκB), a proinflammatory transcription factor, is a commonly observed phenomenon in breast cancer. It facilitates the development of a hormone-independent, invasive, high-grade, and late-stage tumor phenotype. Moreover, the commonly used cancer chemotherapy and radiotherapy approaches activate NFκB, leading to the development of invasive breast cancers that show resistance to chemotherapy, radiotherapy, and endocrine therapy. Inhibition of NFκB results in an increase in the sensitivity of cancer cells to the apoptotic effects of chemotherapeutic agents and radiation and restoring hormone sensitivity, which is correlated with increased disease-free survival in patients with breast cancer. In this review article, we focus on the role of the NFκB signaling pathways in the development and progression of breast cancer and the validity of NFκB as a potential target for breast cancer prevention and therapy. We also discuss the recent findings that NFκB may have tumor suppressing activity in certain cancer types. Finally, this review also covers the state-of-the-art development of NFκB inhibitors for cancer therapy and prevention, the challenges in targeting validation, and pharmacology and toxicology evaluations of these agents from the bench to the bedside.

  11. Uncovering the Origin of Skin Side Effects from EGFR-Targeted Therapies | Center for Cancer Research

    Cancer.gov

    The epidermal growth factor receptor (EGFR), a key regulator of cell proliferation, is often mutated or overexpressed in a variety of cancer types. EGFR-targeted therapies, including monoclonal antibodies and small molecule inhibitors, can effectively treat patients whose tumors depend on aberrant EGFR signaling. Within a few weeks of initiating therapy, however, patients

  12. ALK-targeted therapy for lung cancer: ready for prime time.

    PubMed

    Husain, Hatim; Rudin, Charles M

    2011-06-01

    Lung cancer remains the leading cause of cancer-related death in the United States. Ongoing research into the molecular basis of lung cancer has yielded insight into various critical pathways that are deregulated in lung tumorigenesis, and in particular key driver mutations integral to cancer cell survival and proliferation. One of the most recent examples of this has been definition of translocations and functional dysregulation of the anaplastic lymphoma kinase (ALK) gene in a subset of patients with non-small-cell lung cancer. The pace of research progress in this area has been remarkable: chromosomal rearrangements involving this gene in lung cancer were first reported in 2007 by a team of investigators in Japan. Less than 3 years later, an early-phase clinical trial of a targeted ALK inhibitor has yielded impressive responses in patients with advanced lung cancer containing ALK rearrangements, and mechanisms of acquired resistance to ALK-targeted therapy are being reported. A definitive study randomizing patients with ALK-mutant lung cancer to crizotinib (also known as PF-02341066 or 1066) versus standard therapy has recently completed enrollment.Taken together, these data describe a trajectory of research progress from basic discovery science to real-world implementation that should serve as a model for future integration of preclinical and clinical therapeutic research.

  13. Therapeutic effect of photodynamic therapy combined with targeted delivery of silencing vascular endothelial growth factor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsu, Yih-Chih

    2016-03-01

    Photodynamic therapy is a novel therapeutic modality to treat cancer by using a photosensitizer which is activated by a light source to produce reactive oxygen species and mediates tumours oxygen-independent hypoxic conditions. Vascular endothelial growth factor (VEGF) is one of the primary factors that affect tumor angiogenesis. Another emerging treatment to cure cancer is the use of interference RNA to silence a specific mRNA sequence. Such treatment requires a delivery system such as liposomes. The nanoparticle size measured was about 30 nm. Cellular uptake study was performed to verify that the nanoparticles have a sigma receptor mediated pathway. Non-targeted LCP NPs did not show significant difference with or without haloperidol but has a lower intensity as than targeted LCP NPs. These results confirm that LCP NPs have a receptor mediated pathway. Cell viability was found to decrease at 25 nM of transfected VEGF siRNA. Combined therapy of PDT and VEGF siRNA showed significant response as compared with PDT and gene therapy alone. In vivo toxicity assay with mice treated with targeted LCP NPs containing control siRNA or VEGF siRNA and non-targeted LCP NPs containing VEGF siRNA did not show any significant difference with the PBS injected group which suggests that there is no toxicity with the dose. It suggests that PDT combined with targeted gene therapy has a potential mean to achieve better therapeutic outcome.

  14. The role of targeted therapy in the management of patients with AML

    PubMed Central

    2017-01-01

    Drug therapy for acute myeloid leukemia (AML) is finally undergoing major changes in 2017. This is due to the US Food and Drug Administration’s approval of several new, targeted agents (midostaurin, enasidenib, and gemtuzumab ozogamicin). Paired with the recent approval of a novel liposomal formulation of daunorubicin/cytarabine (CPX-351/Vyxeos), the standard of care is changing rapidly in AML for subgroups. This review will focus on currently approved agents and promising novel agents in development and will highlight controversial areas in targeted treatment. PMID:29296877

  15. The role of targeted therapy in the management of patients with AML.

    PubMed

    Perl, Alexander E

    2017-11-14

    Drug therapy for acute myeloid leukemia (AML) is finally undergoing major changes in 2017. This is due to the US Food and Drug Administration's approval of several new, targeted agents (midostaurin, enasidenib, and gemtuzumab ozogamicin). Paired with the recent approval of a novel liposomal formulation of daunorubicin/cytarabine (CPX-351/Vyxeos), the standard of care is changing rapidly in AML for subgroups. This review will focus on currently approved agents and promising novel agents in development and will highlight controversial areas in targeted treatment.

  16. Liver toxicity of chemotherapy and targeted therapy for breast cancer patients with hepatitis virus infection.

    PubMed

    Liu, Yu; Li, Zhan-Yi; Li, Xi; Wang, Jia-Ni; Huang, Qun-Ai; Huang, Yong

    2017-10-01

    Chemotherapy has greatly improved the prognosis of breast cancer patients. However, it may also result in undesirable side effects such as hepatitis virus reactivation. Little information is available on the liver toxicity of chemotherapy and targeted therapy for breast cancer patients with hepatitis virus (HBV/HCV) infection. We performed a retrospective survey of 835 patients diagnosed with breast cancer between January 2010 and December 2015 at our institution. All patients had been screened for HBV/HCV infection at the time of breast cancer diagnosis. We retrospectively investigated the toxicity of chemotherapy and the changes in HBV/HCV load based on a medical record review. 52 patients with positive anti-HBV antibody test and 21 patients with positive anti-HCV antibody tests received chemotherapy. 762 patients without HBV and HCV infection served as the control group. The morbidity of liver toxicity and disruptions in chemotherapy attributable to liver toxicity were not significantly different among control group, HBV group and HCV groups (27.7% vs 34.6% vs 42.9%, P = 0.189 and 5.0% vs 9.6% vs 9.5%, P = 0.173, respectively). No patients presented with HBV/HCV reactivation. Breast cancer patients with HCV can be treated with chemotherapy and targeted therapy with trastuzumab. Breast cancer patients with HBV who accept antiviral therapy can be treated with chemotherapy and targeted therapy with trastuzumab and patients can benefit from prophylactic antiviral therapy before chemotherapy. However, a multidisciplinary cooperation and closely monitoring liver function during the course of chemotherapy may benefit patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The multilayer nanoparticles formed by layer by layer approach for cancer-targeting therapy.

    PubMed

    Oh, Keun Sang; Lee, Hwanbum; Kim, Jae Yeon; Koo, Eun Jin; Lee, Eun Hee; Park, Jae Hyung; Kim, Sang Yoon; Kim, Kwangmeyung; Kwon, Ick Chan; Yuk, Soon Hong

    2013-01-10

    The multilayer nanoparticles (NPs) were prepared for cancer-targeting therapy using the layer by layer approach. When drug-loaded Pluronic NPs were mixed with vesicles (liposomes) in the aqueous medium, Pluronic NPs were incorporated into the vesicles to form the vesicle NPs. Then, the multilayer NPs were formed by freeze-drying the vesicle NPs in a Pluronic aqueous solution. The morphology and size distribution of the multilayer NPs were observed using a TEM and a particle size analyzer. In order to apply the multilayer NPs as a delivery system for docetaxel (DTX), which is a model anticancer drug, the release pattern of the DTX was observed and the tumor growth was monitored by injecting the multilayer NPs into the tail veins of tumor (squamous cell carcinoma)-bearing mice. The cytotoxicity of free DTX (commercial DTX formulation (Taxotere®)) and the multilayer NPs was evaluated using MTT assay. We also evaluated the tumor targeting ability of the multilayer NPs using magnetic resonance imaging. The multilayer NPs showed excellent tumor targetability and antitumor efficacy in tumor-bearing mice, caused by the enhanced permeation and retention (EPR) effect. These results suggest that the multilayer NPs could be a potential drug delivery system for cancer-targeting therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy.

    PubMed

    Qin, Li; Wang, Cheng-Zheng; Fan, Hui-Jie; Zhang, Chong-Jian; Zhang, Heng-Wei; Lv, Min-Hao; Cui, Shu-DE

    2014-11-01

    The treatment of a brain glioma remains one of the most difficult challenges in oncology. In the present study a delivery system was developed for targeted drug delivery across the blood-brain barrier (BBB) to the brain cancer cells. A cyclic arginine-glycine-aspartic acid (RGD) peptide and transferrin (TF) were utilized as targeting ligands. Cyclic RGD peptides are specific targeting ligands of cancer cells and TFs are ligands that specifically target the BBB and cancer cells. Liposome (LP) was used to conjugate the cyclic RGD and TFs to establish the brain glioma cascade delivery system (RGD/TF-LP). The LPs were prepared by the thin film hydration method and physicochemical characterization was conducted. In vitro cell uptake and three-dimensional tumor spheroid penetration studies demonstrated that the system could target endothelial and tumor cells, as well as penetrate the tumor cells to reach the core of the tumor spheroids. The results of the in vivo imaging further demonstrated that the RGD/TF-LP provided the highest brain distribution. As a result, the paclitaxel-loaded RGD/TF-LP presents the best antiproliferative activity against C6 cells and tumor spheroids. In conclusion, the RGD/TF-LP may precisely target brain glioma, which may be valuable for glioma imaging and therapy.

  19. Ultrasound-Targeted Microbubble Destruction to Deliver siRNA Cancer Therapy

    PubMed Central

    Carson, Andrew R; McTiernan, Charles F; Lavery, Linda; Grata, Michelle; Leng, Xiaoping; Wang, Jianjun; Chen, Xucai; Villanueva, Flordeliza S

    2012-01-01

    Microbubble contrast agents can specifically deliver nucleic acids to target tissues when exposed to ultrasound treatment parameters that mediate microbubble destruction. In this study, we evaluated whether microbubbles and ultrasound targeted microbubble destruction (UTMD) could be used to enhance delivery of EGFR-directed small inhibitory RNA (siRNA) to murine squamous cell carcinomas. Custom designed microbubbles efficiently bound siRNA and mediated RNAse protection. UTMD-mediated delivery of microbubbles loaded with EGFR-directed siRNA to murine squamous carcinoma cells in vitro reduced EGFR expression and EGF-dependent growth, relative to delivery of control siRNA. Similarly, serial UTMD-mediated delivery of EGFR siRNA to squamous cell carcinoma in vivo decreased EGFR expression and increased tumor doubling times, relative to controls receiving EGFR siRNA loaded microbubbles but not ultrasound or control siRNA loaded microbubbles and UTMD. Taken together, our results offer a preclinical proof of concept for customized microbubbles and UTMD to deliver gene-targeted siRNA for cancer therapy. PMID:23010078

  20. The 'robustness' of vocabulary intervention in the public schools: targets and techniques employed in speech-language therapy.

    PubMed

    Justice, Laura M; Schmitt, Mary Beth; Murphy, Kimberly A; Pratt, Amy; Biancone, Tricia

    2014-01-01

    This study examined vocabulary intervention-in terms of targets and techniques-for children with language impairment receiving speech-language therapy in public schools (i.e., non-fee-paying schools) in the United States. Vocabulary treatments and targets were examined with respect to their alignment with the empirically validated practice of rich vocabulary intervention. Participants were forty-eight 5-7-year-old children participating in kindergarten or the first-grade year of school, all of whom had vocabulary-specific goals on their individualized education programmes. Two therapy sessions per child were coded to determine what vocabulary words were being directly targeted and what techniques were used for each. Study findings showed that the majority of words directly targeted during therapy were lower-level basic vocabulary words (87%) and very few (1%) were academically relevant. On average, three techniques were used per word to promote deep understanding. Interpreting findings against empirical descriptions of rich vocabulary intervention indicates that children were exposed to some but not all aspects of this empirically supported practice. © 2013 Royal College of Speech and Language Therapists.

  1. Cannabinoid Receptors: A Novel Target for Therapy of Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    cannabi - 25. Lee C, Sutkowski DM, Sensibar JA, et al. Regulation activation of the CB(2) cannabinoid receptor. Cancer noids. Nature 1993;365:61-5. of...q0 AD Award Number: W81XWH-04-1-0217 TITLE: Cannabinoid Receptors: A Novel Target for Therapy of Prostate Cancer PRINCIPAL INVESTIGATOR: Hasan...2005 TYPE OF REPORT: Annual 20060215 099 PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION

  2. [Targeted therapy: toward a clean and effective war against cancer].

    PubMed

    Castronovo, V; Waltregny, D; Detry, O; Coimbra Marques, C; De Roover, A; Honoré, P; De Pauw, E; Turtoi, A

    2009-01-01

    One promising avenue towards the development of more selective, better anticancer drugs consists in the targeted delivery of bioactive compounds to the tumor environment by means of binding molecules specific for tumor-associated biomarkers. Eligibility of such markers for therapeutic use implies ideally three criteria : (i) accessibility from the bloodstream, (ii) expression at sufficient level and (iii) no (or much lower) expression in normal tissues. Most current discovery strategies (such as biomarker searching into body fluids) provide no clue as to whether proteins of interest are accessible, in human tissues, to suitable high-affinity ligands, such as systemically delivered monoclonal antibodies. Innovative proteomic technologies are able to identify such accessible biomarkers and represent a key step in the clinical development of such target therapies.

  3. In Vitro and In Vivo Tumor Targeted Photothermal Cancer Therapy Using Functionalized Graphene Nanoparticles.

    PubMed

    Kim, Sung Han; Lee, Jung Eun; Sharker, Shazid Md; Jeong, Ji Hoon; In, Insik; Park, Sung Young

    2015-11-09

    Despite the tremendous progress that photothermal therapy (PTT) has recently achieved, it still has a long way to go to gain the effective targeted photothermal ablation of tumor cells. Driven by this need, we describe a new class of targeted photothermal therapeutic agents for cancer cells with pH responsive bioimaging using near-infrared dye (NIR) IR825, conjugated poly(ethylene glycol)-g-poly(dimethylaminoethyl methacrylate) (PEG-g-PDMA, PgP), and hyaluronic acid (HA) anchored reduced graphene oxide (rGO) hybrid nanoparticles. The obtained rGO nanoparticles (PgP/HA-rGO) showed pH-dependent fluorescence emission and excellent near-infrared (NIR) irradiation of cancer cells targeted in vitro to provide cytotoxicity. Using intravenously administered PTT agents, the time-dependent in vivo tumor target accumulation was exactly defined, presenting eminent photothermal conversion at 4 and 8 h post-injection, which was demonstrated from the ex vivo biodistribution of tumors. These tumor environment responsive hybrid nanoparticles generated photothermal heat, which caused dominant suppression of tumor growth. The histopathological studies obtained by H&E staining demonstrated complete healing from malignant tumor. In an area of limited successes in cancer therapy, our translation will pave the road to design stimulus environment responsive targeted PTT agents for the safe eradication of devastating cancer.

  4. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms.

    PubMed

    Mooney, Michael A; Simon, Elias D; Little, Andrew S

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment.

  5. DNA-Aptamer Targeting Vimentin for Tumor Therapy In Vivo

    PubMed Central

    Zamay, Tatyana N.; Kolovskaya, Olga S.; Glazyrin, Yury E.; Zamay, Galina S.; Kuznetsova, Svetlana A.; Spivak, Ekaterina A.; Wehbe, Mohamed; Savitskaya, Anna G.; Zubkova, Olga A.; Kadkina, Anastasia; Wang, Xiaoyan; Muharemagic, Darija; Dubynina, Anna; Sheina, Yuliya; Salmina, Alla B.; Berezovski, Maxim V.

    2014-01-01

    In recent years, new prospects for the use of nucleic acids as anticancer drugs have been discovered. Aptamers for intracellular targets can regulate cellular functions and cause cell death or proliferation. However, intracellular aptamers have limited use for therapeutic applications due to their low bioavailability. In this work, we selected DNA aptamers to cell organelles and nucleus of cancer cells, and showed that an aptamer NAS-24 binds to vimentin and causes apoptosis of mouse ascites adenocarcinoma cells in vitro and in vivo. To deliver the aptamer NAS-24 inside cells, natural polysaccharide arabinogalactan was used as a carrier reagent. The mixture of arabinogalactan and NAS-24 was injected intraperitonealy for 5 days into mice with adenocarcinoma and inhibited adenocarcinoma growth more effectively than free arabinogalactan or the aptamer alone. The use of aptamers to intracellular targets together with arabinogalactan becomes a promising approach for anticancer therapy. PMID:24410722

  6. The role of targeted therapy in the management of patients with AML.

    PubMed

    Perl, Alexander E

    2017-12-08

    Drug therapy for acute myeloid leukemia (AML) is finally undergoing major changes in 2017. This is due to the US Food and Drug Administration's approval of several new, targeted agents (midostaurin, enasidenib, and gemtuzumab ozogamicin). Paired with the recent approval of a novel liposomal formulation of daunorubicin/cytarabine (CPX-351/Vyxeos), the standard of care is changing rapidly in AML for subgroups. This review will focus on currently approved agents and promising novel agents in development and will highlight controversial areas in targeted treatment. © 2016 by The American Society of Hematology. All rights reserved.

  7. Infections in patients with chronic lymphocytic leukaemia: Mitigating risk in the era of targeted therapies.

    PubMed

    Teh, Benjamin W; Tam, Constantine S; Handunnetti, Sasanka; Worth, Leon J; Slavin, Monica A

    2018-04-23

    Chronic lymphocytic leukaemia (CLL) is the most common leukaemia with infections a leading cause of morbidity and mortality. Recently there has been a paradigm shift from the use of chemo-immunotherapies to agents targeting specific B-lymphocyte pathways. These agents include ibrutinib, idelalisib and venetoclax. In this review, the risks and timing of infections associated with these agents are described, taking into account disease and treatment status. Treatment with ibrutinib as monotherapy or in combination with chemo-immunotherapies is not associated with additional risk for infection. In contrast, the use of idelalisib is associated with a 2-fold risk for severe infection and opportunistic infections. Venetoclax does not appear to be associated with additional infection risk. The evolving spectrum of pathogens responsible infections in CLL patients, especially those with relapsed and refractory disease are described, and prevention strategies (prophylaxis, monitoring and vaccination) are proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Getting Personal: Head and Neck Cancer Management in the Era of Genomic Medicine

    PubMed Central

    Birkeland, Andrew C.; Uhlmann, Wendy R.; Brenner, J. Chad; Shuman, Andrew G.

    2015-01-01

    Background Genetic testing is rapidly becoming an important tool in the management of patients with head and neck cancer. As we enter the era of genomics and personalized medicine, providers should be aware of testing options, counseling resources, and the benefits, limitations and future of personalized therapy. Methods This manuscript offers a primer to assist clinicians treating patients in anticipating and managing the inherent practical and ethical challenges of cancer care in the genomic era. Results Clinical applications of genomics for head and neck cancer are emerging. We discuss the indications for genetic testing, types of testing available, implications for care, privacy/disclosure concerns and ethical considerations. Hereditary genetic syndromes associated with head and neck neoplasms are reviewed, and online genetics resources are provided. Conclusions This article summarizes and contextualizes the evolving diagnostic and therapeutic options that impact the care of patients with head and neck cancer in the genomic era. PMID:25995036

  9. Medulloblastoma stem cells: Promising targets in medulloblastoma therapy.

    PubMed

    Huang, Guo-Hao; Xu, Qing-Fu; Cui, You-Hong; Li, Ningning; Bian, Xiu-Wu; Lv, Sheng-Qing

    2016-05-01

    Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite great improvements in the therapeutic regimen, relapse and leptomeningeal dissemination still pose great challenges to the long-term survival of MB patients. Developing more effective strategies has become extremely urgent. In recent years, a number of malignancies, including MB, have been found to contain a subpopulation of cancer cells known as cancer stem cells (CSCs), or tumor initiating/propagating cells. The CSCs are thought to be largely responsible for tumor initiation, maintenance, dissemination, and relapse; therefore, their pivotal roles have revealed them to be promising targets in MB therapy. Our growing understanding of the major medulloblastoma molecular subgroups and the derivation of some of these groups from specific stem or progenitor cells adds additional layers to the CSC knowledge base. Herein we review the current knowledge of MB stem cells, highlight the molecular mechanisms relating to MB relapse and leptomeningeal dissemination, and incorporate these with the need to develop more effective and accurate therapies for MB patients. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. Targeting Host Cell Surface Nucleolin for RSV Therapy: Challenges and Opportunities.

    PubMed

    Mastrangelo, Peter; Norris, Michael J; Duan, Wenming; Barrett, Edward G; Moraes, Theo J; Hegele, Richard G

    2017-09-19

    Nucleolin (NCL) has been reported as a cellular receptor for the human respiratory syncytial virus (RSV). We studied the effects of re-purposing AS1411, an anti-cancer compound that binds cell surface NCL, as a possible novel strategy for RSV therapy in vitro and in vivo. AS1411 was administered to RSV-infected cultures of non-polarized (HEp-2) and polarized (MDCK) epithelial cells and to virus-infected mice and cotton rats. Results of in vitro experiments showed that AS1411, used in micromolar concentrations, was associated with decreases in the number of virus-positive cells. Intranasal administration of AS1411 (50 mg/kg) to RSV-infected mice and cotton rats was associated with partial reductions in lung viral titers, decreased virus-associated airway inflammation, and decreased IL-4/IFN-γ ratios when compared to untreated, infected animals. In conclusion, our findings indicate that therapeutic use of AS1411 has modest effects on RSV replication and host response. While the results underscore the challenges of targeting cell surface NCL as a potential novel strategy for RSV therapy, they also highlight the potential of cell surface NCL as a therapeutic target.

  11. Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy

    PubMed Central

    Mühleisen, Laura; Alev, Magdalena; Unterweger, Harald; Subatzus, Daniel; Pöttler, Marina; Friedrich, Ralf P.; Alexiou, Christoph; Janko, Christina

    2017-01-01

    The phototoxic effect of hypericin can be utilized for Photodynamic Therapy (PDT) of cancer. After intravenous application and systemic distribution of the drug in the patient’s body, the tumor site is exposed to light. Subsequently, toxic reactive oxygen species (ROS) are generated, inducing tumor cell death. To prevent unwanted activation of the drug in other regions of the body, patients have to avoid light during and after the treatment cycles, consequently impairing quality of life. Here, we characterize toxicity and hypericin-mediated effects on cancer cells in vitro and confirm that its effect clearly depends on concentration and illumination time. To reduce side effects and to increase therapy success, selective accumulation of hypericin in the tumor region is a promising solution. Loading hypericin on superparamagnetic iron oxide nanoparticles (SPIONs) and guiding them to the desired place using an external magnetic field might accomplish this task (referred to as Magnetic Drug Targeting (MDT)). Thus, using a double targeting strategy, namely magnetic accumulation and laser induced photoactivation, might improve treatment effectivity as well as specificity and reduce toxic side effects in future clinical applications. PMID:28661430

  12. Efficacy and safety of third-line molecular-targeted therapy in metastatic renal cell carcinoma resistant to first-line vascular endothelial growth factor receptor tyrosine kinase inhibitor and second-line therapy.

    PubMed

    Ishihara, Hiroki; Takagi, Toshio; Kondo, Tsunenori; Tachibana, Hidekazu; Yoshida, Kazuhiko; Omae, Kenji; Iizuka, Junpei; Kobayashi, Hirohito; Tanabe, Kazunari

    2018-06-01

    The number of studies evaluating the efficacy and safety of third-line molecular-targeted therapy for metastatic renal cell carcinoma (mRCC) is limited. The data for 48 patients with disease progression after first-line vascular endothelial growth factor receptor tyrosine kinase inhibitor (TKI) and second-line targeted therapy were evaluated. Patients with prior cytokine therapy were excluded. Overall survival (OS) after first- and second-line therapy initiation was compared between patients with and without third-line therapy. In addition, dose-limiting toxicities (DLTs) were evaluated. Twenty-two of 48 patients (45.8%) received third-line therapy, and TKI and mammalian target of rapamycin inhibitor were each administered in 11 patients (50%). Patients with third-line therapy had significantly longer median OS after first-line therapy (26.6 vs. 14.6 months, p = 0.0010) and second-line therapy (18.2 vs. 7.4 months, p < 0.0001) compared to those without third-line therapy. Multivariate analysis showed that the use of third-line therapy following second-line therapy was an independent prognosticator for longer OS (hazard ratio 0.29, 95% confidence interval 0.14-0.58, p = 0.0005). The median progression-free survival and OS after third-line therapy was 2.76 and 8.71 months, respectively. Although a high frequency of DLTs was observed (n = 10, 45.5%), the frequencies were similar among the sequential therapies. Third-line therapy has a beneficial therapeutic effect in patients with mRCC that is resistant to previous therapies. However, there is a need to evaluate in detail the high frequency of adverse events, including DLTs.

  13. Synthetic lethality in DNA repair network: A novel avenue in targeted cancer therapy and combination therapeutics.

    PubMed

    Bhattacharjee, Sonali; Nandi, Saikat

    2017-12-01

    Synthetic lethality refers to a lethal phenotype that results from the simultaneous disruptions of two genes, while the disruption of either gene alone is viable. Many DNA double strand break repair (DSBR) genes have synthetic lethal relationships with oncogenes and tumor suppressor genes, which can be exploited for targeted cancer therapy, an approach referred to as combination therapy. DNA double-strand breaks (DSBs) are one of the most toxic lesions to a cell and can be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). HR and NHEJ genes are particularly attractive targets for cancer therapy because these genes have altered expression patterns in cancer cells when compared with normal cells and these genetic abnormalities can be targeted for selectively killing cancer cells. Here, we review recent advances in the development of small molecule inhibitors against HR and NHEJ genes to induce synthetic lethality and address the future directions and clinical relevance of this approach. © 2017 IUBMB Life, 69(12):929-937, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  14. Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy.

    PubMed

    Ma, Zhen-Gang; Ma, Rui; Xiao, Xiao-Lin; Zhang, Yong-Hui; Zhang, Xin-Zi; Hu, Nan; Gao, Jin-Lai; Zheng, Yu-Feng; Dong, De-Li; Sun, Zhi-Jie

    2016-10-15

    Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activity on colon cancer cells. Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We synthesized the star-shape amphiphilic polymer with azo bond and fabricated the DMF-loaded azo polymeric micelles. The four-arm polymer star-PCL-azo-mPEG (sPCEG-azo) (constituted by star-shape PCL (polycaprolactone) and mPEG (methoxypolyethylene glycols)-olsalazine) showed self-assembly ability. The average diameter and polydispersity index of the DMF-loaded sPCEG-azo polymeric micelles were 153.6nm and 0.195, respectively. In vitro drug release study showed that the cumulative release of DMF from the DMF-loaded sPCEG-azo polymeric micelles was no more than 20% in rat gastric fluid within 10h, whereas in the rat colonic fluids, the cumulative release of DMF reached 60% in the initial 2h and 100% within 10h, indicating that the DMF-loaded sPCEG-azo polymeric micelles had excellent colon-targeted property. The DMF-loaded sPCEG-azo polymeric micelles had no significant cytotoxicity on colon cancer cells in phosphate buffered solution (PBS) and rat gastric fluid. In rat colonic fluid, the micelles showed significant cytotoxic effect on colon cancer cells. The blank sPCEG-azo polymeric micelles (without DMF) showed no cytotoxic effect on colon cancer cells in rat colonic fluids. In conclusion, the DMF-loaded sPCEG-azo polymeric micelles show colon-targeted DMF release and anti-tumor activity, providing a novel approach potential for colon cancer therapy. Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our

  15. Targeted alpha therapy using Radium-223: From physics to biological effects.

    PubMed

    Marques, I A; Neves, A R; Abrantes, A M; Pires, A S; Tavares-da-Silva, E; Figueiredo, A; Botelho, M F

    2018-05-25

    With the advance of the use of ionizing radiation in therapy, targeted alpha therapy (TAT) has assumed an important role around the world. This kind of therapy can potentially reduce side effects caused by radiation in normal tissues and increased destructive radiobiological effects in tumor cells. However, in many countries, the use of this therapy is still in a pioneering phase. Radium-223 ( 223 Ra), an alpha-emitting radionuclide, has been the first of its kind to be approved for the treatment of bone metastasis in metastatic castration-resistant prostate cancer. Nevertheless, the interaction mechanism and the direct effects of this radiopharmaceutical in tumor cells are not fully understood neither characterized at a molecular level. In fact, the ways how TAT is linked to radiobiological effects in cancer is not yet revised. Therefore, this review introduces some physical properties of TAT that leads to biological effects and links this information to the hallmarks of cancer. The authors also collected the studies developed with 223 Ra to correlate with the three categories reviewed - properties of TAT, 5 R's of radiobiology and hallmarks of cancer- and with the promising future to this radiopharmaceutical. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer

    PubMed Central

    Elgogary, Amira; Xu, Qingguo; Poore, Brad; Alt, Jesse; Zimmermann, Sarah C.; Zhao, Liang; Fu, Jie; Chen, Baiwei; Xia, Shiyu; Liu, Yanfei; Neisser, Marc; Nguyen, Christopher; Lee, Ramon; Park, Joshua K.; Reyes, Juvenal; Hartung, Thomas; Rojas, Camilo; Rais, Rana; Tsukamoto, Takashi; Semenza, Gregg L.; Hanes, Justin; Slusher, Barbara S.; Le, Anne

    2016-01-01

    Targeting glutamine metabolism via pharmacological inhibition of glutaminase has been translated into clinical trials as a novel cancer therapy, but available drugs lack optimal safety and efficacy. In this study, we used a proprietary emulsification process to encapsulate bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a selective but relatively insoluble glutaminase inhibitor, in nanoparticles. BPTES nanoparticles demonstrated improved pharmacokinetics and efficacy compared with unencapsulated BPTES. In addition, BPTES nanoparticles had no effect on the plasma levels of liver enzymes in contrast to CB-839, a glutaminase inhibitor that is currently in clinical trials. In a mouse model using orthotopic transplantation of patient-derived pancreatic tumor tissue, BPTES nanoparticle monotherapy led to modest antitumor effects. Using the HypoxCR reporter in vivo, we found that glutaminase inhibition reduced tumor growth by specifically targeting proliferating cancer cells but did not affect hypoxic, noncycling cells. Metabolomics analyses revealed that surviving tumor cells following glutaminase inhibition were reliant on glycolysis and glycogen synthesis. Based on these findings, metformin was selected for combination therapy with BPTES nanoparticles, which resulted in significantly greater pancreatic tumor reduction than either treatment alone. Thus, targeting of multiple metabolic pathways, including effective inhibition of glutaminase by nanoparticle drug delivery, holds promise as a novel therapy for pancreatic cancer. PMID:27559084

  17. Targeting epithelial-mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring.

    PubMed

    Bhatia, Sugandha; Monkman, James; Toh, Alan Kie Leong; Nagaraj, Shivashankar H; Thompson, Erik W

    2017-09-20

    The concept of epithelial-mesenchymal plasticity (EMP), which describes the dynamic flux within the spectrum of phenotypic states that invasive carcinoma cells may reside, is being increasingly recognised for its role in cancer progression and therapy resistance. The myriad of events that are able to induce EMP, as well as the more recently characterised control loops, results in dynamic transitions of cancerous epithelial cells to more mesenchymal-like phenotypes through an epithelial-mesenchymal transition (EMT), as well as the reverse transition from mesenchymal phenotypes to an epithelial one. The significance of EMP, in its ability to drive local invasion, generate cancer stem cells and facilitate metastasis by the dissemination of circulating tumour cells (CTCs), highlights its importance as a targetable programme to combat cancer morbidity and mortality. The focus of this review is to consolidate the existing knowledge on the strategies currently in development to combat cancer progression via inhibition of specific facets of EMP. The prevalence of relapse due to therapy resistance and metastatic propensity that EMP endows should be considered when designing therapy regimes, and such therapies should synergise with existing chemotherapeutics to benefit efficacy. To further improve upon EMP-targeted therapies, it is imperative to devise monitoring strategies to assess the impact of such treatments on EMP-related phenomenon such as CTC burden, chemosensitivity/-resistance and micrometastasis in patients. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. KSHV Targeted Therapy: An Update on Inhibitors of Viral Lytic Replication

    PubMed Central

    Coen, Natacha; Duraffour, Sophie; Snoeck, Robert; Andrei, Graciela

    2014-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease. Since the discovery of KSHV 20 years ago, there is still no standard treatment and the management of virus-associated malignancies remains toxic and incompletely efficacious. As the majority of tumor cells are latently infected with KSHV, currently marketed antivirals that target the virus lytic cycle have shown inconsistent results in clinic. Nevertheless, lytic replication plays a major role in disease progression and virus dissemination. Case reports and retrospective studies have pointed out the benefit of antiviral therapy in the treatment and prevention of KSHV-associated diseases. As a consequence, potent and selective antivirals are needed. This review focuses on the anti-KSHV activity, mode of action and current status of antiviral drugs targeting KSHV lytic cycle. Among these drugs, different subclasses of viral DNA polymerase inhibitors and compounds that do not target the viral DNA polymerase are being discussed. We also cover molecules that target cellular kinases, as well as the potential of new drug targets and animal models for antiviral testing. PMID:25421895

  19. BCR-ABL PCR testing in chronic myelogenous leukemia: molecular diagnosis for targeted cancer therapy and monitoring.

    PubMed

    Luu, Martin H; Press, Richard D

    2013-09-01

    The use of tyrosine kinase inhibitors (TKIs) to treat chronic myeloid leukemia (CML) represents the paradigm for modern targeted cancer therapy. Importantly, molecular monitoring using BCR-ABL real-time quantitative reverse transcription polymerase chain reaction (RQ-PCR) for assessing treatment efficacy and quantitating minimal residual disease is a major determinate of practical therapeutic decision-making in the long-term management of this now chronic disease. Herein, we present an overview of CML and the use of TKIs for targeted CML therapy, with an emphasis on the role, application and future aspects of PCR-based molecular monitoring.

  20. Review of Real-Time 3-Dimensional Image Guided Radiation Therapy on Standard-Equipped Cancer Radiation Therapy Systems: Are We at the Tipping Point for the Era of Real-Time Radiation Therapy?

    PubMed

    Keall, Paul J; Nguyen, Doan Trang; O'Brien, Ricky; Zhang, Pengpeng; Happersett, Laura; Bertholet, Jenny; Poulsen, Per R

    2018-04-14

    To review real-time 3-dimensional (3D) image guided radiation therapy (IGRT) on standard-equipped cancer radiation therapy systems, focusing on clinically implemented solutions. Three groups in 3 continents have clinically implemented novel real-time 3D IGRT solutions on standard-equipped linear accelerators. These technologies encompass kilovoltage, combined megavoltage-kilovoltage, and combined kilovoltage-optical imaging. The cancer sites treated span pelvic and abdominal tumors for which respiratory motion is present. For each method the 3D-measured motion during treatment is reported. After treatment, dose reconstruction was used to assess the treatment quality in the presence of motion with and without real-time 3D IGRT. The geometric accuracy was quantified through phantom experiments. A literature search was conducted to identify additional real-time 3D IGRT methods that could be clinically implemented in the near future. The real-time 3D IGRT methods were successfully clinically implemented and have been used to treat more than 200 patients. Systematic target position shifts were observed using all 3 methods. Dose reconstruction demonstrated that the delivered dose is closer to the planned dose with real-time 3D IGRT than without real-time 3D IGRT. In addition, compromised target dose coverage and variable normal tissue doses were found without real-time 3D IGRT. The geometric accuracy results with real-time 3D IGRT had a mean error of <0.5 mm and a standard deviation of <1.1 mm. Numerous additional articles exist that describe real-time 3D IGRT methods using standard-equipped radiation therapy systems that could also be clinically implemented. Multiple clinical implementations of real-time 3D IGRT on standard-equipped cancer radiation therapy systems have been demonstrated. Many more approaches that could be implemented were identified. These solutions provide a pathway for the broader adoption of methods to make radiation therapy more accurate

  1. The Molecular, Cellular and Clinical Consequences of Targeting the Estrogen Receptor Following Estrogen Deprivation Therapy

    PubMed Central

    Fan, Ping; Maximov, Philipp Y.; Curpan, Ramona F.; Abderrahman, Balkees; Jordan, V. Craig

    2015-01-01

    During the past twenty years our understanding of the control of breast tumor development, growth and survival has changed dramatically. The once long forgotten application of high dose synthetic estrogen therapy as the first chemical therapy to treat any cancer has been resurrected, refined and reinvented as the new biology of estrogen-induced apoptosis. High dose estrogen therapy was cast aside once tamoxifen, from its origins as a failed “morning after pill”, was reinvented as the first targeted therapy to treat any cancer. The current understanding of the mechanism of estrogen-induced apoptosis is described as a consequence of acquired resistance to long term antihormone therapy in estrogen receptor (ER) positive breast cancer. The ER signal transduction pathway remains a target for therapy in breast cancer despite “antiestrogen” resistance, but becomes a regulator of resistance. Multiple mechanisms of resistance come into play: Selective ER Modulator (SERM) stimulated growth, growth factor/ER crosstalk, estrogen-induced apoptosis and mutations of ER. But it is with the science of estrogen-induced apoptosis that the next innovation in women’s health will be developed. Recent evidence suggests that the glucocorticoid properties of medroxyprogesterone acetate blunt estrogen-induced apoptosis in estrogen deprived breast cancer cell populations. As a result breast cancer develops during long-term Hormone Replacement Therapy (HRT). A new synthetic progestin with estrogen-like properties, such as the 19 nortestosterone derivatives used in oral contraceptives, will continue to protect the uterus from unopposed estrogen stimulation but at the same time, reinforce apoptosis in vulnerable populations of nascent breast cancer cells. PMID:26052034

  2. Cardio-oncology Related to Heart Failure: Epidermal Growth Factor Receptor Target-Based Therapy.

    PubMed

    Kenigsberg, Benjamin; Jain, Varun; Barac, Ana

    2017-04-01

    Cancer therapy targeting the epidermal growth factor receptor (EGFR)/erythroblastic leukemia viral oncogene B (ErbB)/human EGFR receptor (HER) family of tyrosine kinases has been successfully used in treatment of several malignancies. The ErbB pathways play a role in the maintenance of cardiac homeostasis. This article summarizes current knowledge about EGFR/ErbB/HER receptor-targeted cancer therapeutics focusing on their cardiotoxicity profiles, molecular mechanisms, and implications in clinical cardio-oncology. The article discusses challenges in predicting, monitoring, and treating cardiac dysfunction and heart failure associated with ErbB-targeted cancer therapeutics and highlights opportunities for researchers and clinical investigators. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A comparative study of symptoms and quality of life among patients with breast cancer receiving target, chemotherapy, or combined therapy.

    PubMed

    Huang, Sheng-Miauh; Tai, Chen-Jei; Lin, Kuan-Chia; Tai, Cheng-Jeng; Tseng, Ling-Ming; Chien, Li-Yin

    2013-01-01

    Studies have rarely compared health outcomes for patients with breast cancer at different treatment stages. The purpose of the study was to compare symptoms and quality of life among patients with breast carcinoma receiving target, chemotherapy, or combined therapy. A longitudinal study was carried out with 57 patients receiving chemotherapy, 30 receiving target therapy, and 34 receiving combined therapy. Data were collected before the start of treatment, at 4 weeks, and at 12 weeks following the start of treatment. Symptom severity and interference were assessed by the M. D. Anderson Symptom Inventory. The physical and mental components of quality of life (physical component score [PCS] and mental component score [MCS]) were assessed using SF-36. There were no significant differences in symptom severity and interference for patients in the 3 therapy groups. The PCSs did not differ significantly according to the therapy group but did decrease significantly after each treatment. Patients receiving target therapy had significantly higher MCSs than did patients receiving chemotherapy, but the MCSs did not differ significantly before and after the treatment. Patients with higher symptom severity and interference had worse PCS and MCS. Patients at all treatment groups had worse physical components quality of life after treatment as compared with before treatment. Patients receiving target therapy had better mental components of quality of life. The mental components of quality of life remained stable during treatment. Nurses should assess the patients' symptoms during treatment and provide timely intervention to optimize their quality of life.

  4. CLL2-BXX Phase II trials: sequential, targeted treatment for eradication of minimal residual disease in chronic lymphocytic leukemia.

    PubMed

    Cramer, Paula; von Tresckow, Julia; Bahlo, Jasmin; Engelke, Anja; Langerbeins, Petra; Fink, Anna-Maria; Fischer, Kirsten; Wendtner, Clemens-Martin; Kreuzer, Karl-Anton; Stilgenbauer, Stephan; Böttcher, Sebastian; Eichhorst, Barbara; Hallek, Michael

    2018-03-01

    Four Phase II trials (clinical trials numbers: NCT02345863, NCT02401503, NCT02445131 and NCT02689141) evaluate a different combination of targeted agents in an all-comer population of approximately 60 patients with chronic lymphocytic leukemia irrespective of prior treatment, physical fitness and genetic risk factors. Patients with a higher tumor load start with a debulking treatment with bendamustine. The subsequent induction and maintenance treatment with an anti-CD20 antibody (obinutuzumab or ofatumumab) and a targeted oral agent (ibrutinib, idelalisib or venetoclax) are continued until achievement of a complete response and minimal residual disease negativity. This strategy represents a new era of chronic lymphocytic leukemia therapy where chemotherapy is increasingly replaced by targeted agents and treatment duration is tailored to the patient's individual tumor load and response.

  5. Chemotherapy and targeted therapy in advanced biliary tract carcinoma: a pooled analysis of clinical trials.

    PubMed

    Eckel, Florian; Schmid, Roland M

    2014-01-01

    In biliary tract cancer, gemcitabine platinum (GP) doublet palliative chemotherapy is the current standard treatment. The aim of this study was to analyze recent trials, even those small and nonrandomized, and identify superior new regimens. Trials published in English between January 2000 and January 2014 were analyzed, as well as ASCO abstracts from 2010 to 2013. In total, 161 trials comprising 6,337 patients were analyzed. The pooled results of standard therapy GP (no fluoropyrimidine, F, or other drug) were as follows: the median response rate (RR), tumor control rate (TCR), time to tumor progression (TTP) and overall survival (OS) were 25.9 and 63.5%, and 5.3 and 9.5 months, respectively. GFP triplets as well as G-based chemotherapy plus targeted therapy were significantly superior to GP concerning tumor control (TCR, TTP) and OS, with no difference in RR. Triplet combinations of GFP as well as G-based chemotherapy with (predominantly EGFR) targeted therapy are most effective concerning tumor control and survival.

  6. The effect of random or sequential presentation of targets during robot-assisted therapy on children.

    PubMed

    Ladenheim, Barbara; Altenburger, Peter; Cardinal, Ryan; Monterroso, Linda; Dierks, Tracy; Mast, Joelle; Krebs, Hermano Igo

    2013-01-01

    Robot assisted upper extremity therapy has been shown to be effective in adult stroke patients and in children with cerebral palsy (CP) and other acquired brain injuries (ABI). The patient's active involvement is a factor in its efficacy. However, this demands focused attention during training sessions, which can be a challenge for children. To compare results of training requiring two different levels of focused attention. Differences in short term performance and retention of gains as a function of training protocol as measured by the Fugl-Meyer (FM) were predicted. Thirty-one children with CP or ABI were randomly divided into two groups. All received 16 one hour sessions of robot-assisted therapy (twice a week for 8 weeks) where they moved a robot handle to direct a cursor on the screen toward designated targets. One group had targets presented sequentially in clockwise fashion, the other presented in random order. Thus, one group could anticipate the position of each target, the other could not. Both groups showed significant functional improvement after therapy, but no significant difference between groups was observed. Assist-as-needed robotic training is effective in children with CP or ABI with small non-significant differences attributed to attentional demand.

  7. Molecular targeted therapy in enteropancreatic neuroendocrine tumors: from biology to clinical practice.

    PubMed

    Fazio, N; Scarpa, A; Falconi, M

    2014-01-01

    Advanced enteropancreatic (EP) neuroendocrine tumors (NETs) can be treated with several different therapies, including chemotherapy, biotherapy, and locoregional treatments. Over the last few decades, impressive progress has been made in the biotherapy field. Three main druggable molecular targets have been studied and developed in terms of therapy: somatostatin receptor (sstr), mammalian target of rapamycin (mTOR), and angiogenic factors. In particular, research has moved from the old somatostatin analogs (SSAs), such as octreotide (OCT) and lanreotide (LAN), specifically binding to the sstr-2, to the newer pasireotide (PAS), which presents a wider sstr spectrum. Over the last ten years, several molecular targeted agents (MTAs) have been studied in phase II trials, and very few of them have reached phase III. The mTOR inhibitor everolimus and the multitargeted inhibitor sunitinib have been approved for clinical use by the FDA and EMA in advanced well/moderately-differentiated (WD, MD) progressive pancreatic neuroendocrine tumors (PNETs), on the basis of the positive results of two international large randomized phase III trials vs. placebo. Bevacizumab has been studied in a large US phase III trial vs. interferon (IFN)-alfa2b, and results are pending. In this review, the biological and clinical aspects of MTAs introduced into clinical practice or which are currently in an advanced phase of clinical investigation are addressed.

  8. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy.

    PubMed

    Schleich, Nathalie; Po, Chrystelle; Jacobs, Damien; Ucakar, Bernard; Gallez, Bernard; Danhier, Fabienne; Préat, Véronique

    2014-11-28

    Multifunctional nanoparticles combining therapy and imaging have the potential to improve cancer treatment by allowing personalized therapy. Herein, we aimed to compare in vivo different strategies in terms of targeting capabilities: (1) passive targeting via the EPR effect, (2) active targeting of αvβ3 integrin via RGD grafting, (3) magnetic targeting via a magnet placed on the tumor and (4) the combination of magnetic targeting and active targeting of αvβ3 integrin. For a translational approach, PLGA-based nanoparticles loaded with paclitaxel and superparamagnetic iron oxides were used. Electron Spin Resonance spectroscopy and Magnetic Resonance Imaging (MRI) were used to both quantify and visualize the accumulation of multifunctional nanoparticles into the tumors. We demonstrate that compared to untargeted or single targeted nanoparticles, the combination of both active strategy and magnetic targeting drastically enhanced (i) nanoparticle accumulation into the tumor tissue with an 8-fold increase compared to passive targeting (1.12% and 0.135% of the injected dose, respectively), (ii) contrast in MRI (imaging purpose) and (iii) anti-cancer efficacy with a median survival time of 22 days compared to 13 for the passive targeting (therapeutic purpose). Double targeting of nanoparticles to tumors by different mechanisms could be a promising translational approach for the management of therapeutic treatment and personalized therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Interferon-targeted therapy in systemic lupus erythematosus: Is this an alternative to targeting B and T cells?

    PubMed

    Kalunian, K C

    2016-09-01

    Clinical trials of investigational agents in systemic lupus erythematosus (SLE) have focused on targeting dysregulated B and T cells; however, recent translational research findings of the importance of the dysregulation of the innate immune system in SLE have led to clinical trials that target interferon. Three biologics that target type I interferons have been tested for their efficacy and safety in active SLE patients; these phase II trials have tested the hypothesis that down-regulation of interferon-regulated gene expression (the interferon signature) lessen the clinical burden of SLE. Rontalizumab, an anti-interferon-α monoclonal antibody, was studied in patients who had discontinued immunosuppressants. This study failed to show efficacy as assessed by both two outcome assessments; however, in low interferon signature patients, response was higher and corticosteroid usage was less in rontalizumab-treated patients. Sifalimumab, another anti-interferon-α monoclonal antibody, was studied in patients who remained on standard of care therapy. This study showed significantly better efficacy in patients treated with two sifalimumab dosages; significant differences were seen in the high interferon signature group. In a similar design and in a similar population as the sifalimumab study, anifrolumab, a monoclonal antibody that binds to a type I interferon receptor, was studied in patients who remained on standard of care therapy. In this study, one dosage group demonstrated efficacy and statistically significant effects were achieved in both tested dosage groups with secondary end points. Oral corticosteroid reduction to ≤7.5 mg daily was achieved in one of the tested dosage groups and organ-specific outcomes were significantly improved in that same group. For all studies, no significant differences in serious adverse effects were seen; although, herpes zoster infections were increased in sifalimumab- and anifrolumab-treated patients and influenza rates were

  10. DNA Double-Strand Break Repair as Determinant of Cellular Radiosensitivity to Killing and Target in Radiation Therapy

    PubMed Central

    Mladenov, Emil; Magin, Simon; Soni, Aashish; Iliakis, George

    2013-01-01

    Radiation therapy plays an important role in the management of a wide range of cancers. Besides innovations in the physical application of radiation dose, radiation therapy is likely to benefit from novel approaches exploiting differences in radiation response between normal and tumor cells. While ionizing radiation induces a variety of DNA lesions, including base damages and single-strand breaks, the DNA double-strand break (DSB) is widely considered as the lesion responsible not only for the aimed cell killing of tumor cells, but also for the general genomic instability that leads to the development of secondary cancers among normal cells. Homologous recombination repair (HRR), non-homologous end-joining (NHEJ), and alternative NHEJ, operating as a backup, are the major pathways utilized by cells for the processing of DSBs. Therefore, their function represents a major mechanism of radiation resistance in tumor cells. HRR is also required to overcome replication stress – a potent contributor to genomic instability that fuels cancer development. HRR and alternative NHEJ show strong cell-cycle dependency and are likely to benefit from radiation therapy mediated redistribution of tumor cells throughout the cell-cycle. Moreover, the synthetic lethality phenotype documented between HRR deficiency and PARP inhibition has opened new avenues for targeted therapies. These observations make HRR a particularly intriguing target for treatments aiming to improve the efficacy of radiation therapy. Here, we briefly describe the major pathways of DSB repair and review their possible contribution to cancer cell radioresistance. Finally, we discuss promising alternatives for targeting DSB repair to improve radiation therapy and cancer treatment. PMID:23675572

  11. Treatment Patterns and Burden of Illness in Patients Initiating Targeted Therapy or Chemotherapy for Pancreatic Neuroendocrine Tumors.

    PubMed

    Broder, Michael S; Chang, Eunice; Reddy, Sheila R; Neary, Maureen P

    2017-08-01

    The aim of this study was to characterize treatment patterns and burden of pancreatic neuroendocrine tumors (PNET). Using 2 claims databases, we identified patients with PNET initiating targeted therapy (everolimus, sunitinib) or chemotherapy from 2009 to 2012. The first targeted/cytotoxic therapy was considered index treatment. Treatment patterns were graphically evaluated from index treatment initiation until enrollment or study end, whichever occurred first. Disease burden was examined by index group for first follow-up year. In treatment pattern analyses (582 newly treated patients with PNET), 72.2% received chemotherapy index treatment, 16.2% everolimus, and 11.7% received sunitinib. Median index treatment duration was 242, 146, and 126 days for everolimus, sunitinib, and cytotoxics (P < 0.01). Sunitinib initiators switched most often followed by everolimus and cytotoxic initiators. In disease burden analyses, 338 patients met inclusion criteria, with mean age of 54.5 (standard deviation, 9.9) years, 45.6% were female, and there were no significant between-group differences. Targeted therapy initiators had more prior somatostatin analog use versus cytotoxics (53.4% vs 25.1%, P < 0.001); 72.5% had comorbidities after treatment initiation; 42.9% had 1 or more inpatient hospitalization; and 47.9% had 1 or more emergency department visit. Pancreatic neuroendocrine tumor treatment patterns varied; cytotoxics were more often used as early therapy than targeted agents, but for less time. Patients had high health care utilization, irrespective of treatment, potentially from burdensome symptoms and comorbidities.

  12. HIV-derived vectors for gene therapy targeting dendritic cells.

    PubMed

    Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.

  13. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release

    PubMed Central

    Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J. Frank W.; Hennink, Wim E.

    2010-01-01

    ABSTRACT Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a ‘magic bullet’ a major step forward. PMID:20725771

  14. Lifetime risk of renal replacement therapy in Europe: a population-based study using data from the ERA-EDTA Registry.

    PubMed

    van den Brand, Jan A J G; Pippias, Maria; Stel, Vianda S; Caskey, Fergus J; Collart, Frederic; Finne, Partik; Heaf, James; Jais, Jean-Philippe; Kramar, Reinhard; Massy, Ziad A; De Meester, Johan; Traynor, Jamie P; Reisæter, Anna Varberg; Wetzels, Jack F M; Jager, Kitty J

    2017-02-01

    Upcoming KDIGO guidelines for the evaluation of living kidney donors are expected to move towards a personal risk-based evaluation of potential donors. We present the age and sex-specific lifetime risk of renal replacement therapy (RRT) for end-stage renal disease in 10 European countries. We defined lifetime risk of RRT as the cumulative incidence of RRT up to age 90 years. We obtained RRT incidence rates per million population by 5-year age groups and sex using data from the European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry, and used these to estimate the cumulative incidence of RRT, adjusting for competing mortality risk. Lifetime risk of RRT varied from 0.44% to 2.05% at age 20 years and from 0.17% to 1.59% at age 70 years across countries, and was twice as high in men as in women. Lifetime RRT risk decreased with age, ranging from an average of 0.77% to 0.44% in 20- to- 70-year-old women, and from 1.45% to 0.96% in 20- to- 70-year-old men. The lifetime risk of RRT increased slightly over the past decade, more so in men than in women. However, it appears to have stabilized or even decreased slightly in more recent years. The lifetime risk of RRT decreased with age, was lower in women as compared with men of equal age and varied considerably throughout Europe. Given the substantial differences in lifetime risk of RRT between the USA and Europe, country-specific estimates should be used in the evaluation and communication of the risk of RRT for potential living kidney donors. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  15. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles.

    PubMed

    Wang, Mingxin; You, Chaoqun; Gao, Zhiguo; Wu, Hongshuai; Sun, Baiwang; Zhu, Xiaoli; Chen, Renjie

    2018-08-01

    The functionalized nanoparticles have been widely studied and reported as carriers of drug transport recently. Furthermore, many groups have focused more on developing novel and efficient treatment methods, such as photodynamic therapy and photothermal therapy, since both therapies have shown inspiring potential in the application of antitumor. The mentioned treatments exhibited the superiority of cooperative manner and showed the ability to compensate for the adverse effects caused by conventional monotherapy in proposed strategies. In view of the above descriptions, we formulated a thermosensitive drug delivery system, which achieved the enhanced delivery of cisplatin and two photosensitizers (ICG and Ce6) by dual-targeting traction. Drawing on the thin film hydration method, cisplatin and photosensitizers were encapsulated inside nanoparticles. Meanwhile, the targeting peptide cRGD and targeting molecule folate can be modified on the surface of nanoparticles to realize the active identification of tumor cells. The measurements of dynamic light scattering showed that the prepared nanoparticles had an ideal dispersibility and uniform particle size of 102.6 nm. On the basis of the results observed from confocal laser scanning microscope, the modified nanoparticles were more efficient endocytosed by MCF-7 cells as a contrast to SGC-7901 cells. Photothermal conversion-triggered drug release and photo-therapies produced a significant apoptosis rate of 85.9% on MCF-7 cells. The distinguished results made it believed that the formulated delivery system had conducted great efforts and innovations for the realization of concise collaboration and provided a promising strategy for the treatment of breast cancer.

  16. A Smart Responsive Dual Aptamers-Targeted Bubble-Generating Nanosystem for Cancer Triplex Therapy and Ultrasound Imaging.

    PubMed

    Zhao, Feifei; Zhou, Jie; Su, Xiangjie; Wang, Yuhui; Yan, Xiaosa; Jia, Shaona; Du, Bin

    2017-05-01

    The absence of targeted, single treatment methods produces low therapeutic value for treating cancers. To increase the accumulation of drugs in tumors and improve the treatment effectiveness, near-infrared 808 nm photothermal responsive dual aptamers-targeted docetaxel (DTX)-containing nanoparticles is proposed. In this system, DTX and NH 4 HCO 3 are loaded in thermosensitive liposomes. The surface of liposomes is coated with gold nanoshells and connected with sulfydryl (SH) modified AS1411 and S2.2 aptamers. The nanosystem has good biocompatibility and uniform size (diameter about 200 nm). The drug is rapidly released, reaching a maximum amount (84%) at 4 h under 808 nm laser irradiation. The experiments conducted in vitro and in vivo demonstrate the nanosystem can synergistically inhibit tumor growth by combination of chemotherapy, photothermal therapy, and biological therapy. Dual ligand functionalization significantly increases cellular uptake on breast cancer cell line (MCF-7) cells and achieves ultrasound imaging (USI) at tumor site. The results indicate that this drug delivery system is a promising theranostic agent involving light-thermal response at tumor sites, dual ligand targeted triplex therapy, and USI. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells.

    PubMed

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-09-01

    Breast cancer presents greatest challenge in health care in today's world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube's D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 min of photothermal therapy treatment by 1.5 W/cm(2) power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly.

  18. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Clayton B.; Thompson, Holly M.; Benedict, Stanley H.

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and,more » because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of

  19. Using ERA-Interim reanalysis for creating datasets of energy-relevant climate variables

    NASA Astrophysics Data System (ADS)

    Jones, Philip D.; Harpham, Colin; Troccoli, Alberto; Gschwind, Benoit; Ranchin, Thierry; Wald, Lucien; Goodess, Clare M.; Dorling, Stephen

    2017-07-01

    The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. A number of different, variable-dependent, bias-adjustment approaches have been proposed. Here we modify the parameters of different distributions (depending on the variable), adjusting ERA-Interim based on gridded station or direct station observations. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity. These are available on either 3 or 6 h timescales over the period 1979-2016. The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S) and can be accessed at present from target="_blank">ftp://ecem.climate.copernicus.eu. The benefit of performing bias adjustment is demonstrated by comparing initial and bias-adjusted ERA-Interim data against gridded observational fields.

  20. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: Toward a novel active targeting strategy in breast cancer therapy.

    PubMed

    Li, Lin; Di, Xingsheng; Wu, Mingrui; Sun, Zhisu; Zhong, Lu; Wang, Yongjun; Fu, Qiang; Kan, Qiming; Sun, Jin; He, Zhonggui

    2017-04-01

    Designing active targeting nanocarriers with increased cellular accumulation of chemotherapeutic agents is a promising strategy in cancer therapy. Herein, we report a novel active targeting strategy based on the large amino acid transporter 1 (LAT1) overexpressed in a variety of cancers. Glutamate was conjugated to polyoxyethylene stearate as a targeting ligand to achieve LAT1-targeting PLGA nanoparticles. The targeting efficiency of nanoparticles was investigated in HeLa and MCF-7 cells. Significant increase in cellular uptake and cytotoxicity was observed in LAT1-targeting nanoparticles compared to the unmodified ones. More interestingly, the internalized LAT1 together with targeting nanoparticles could recycle back to the cell membrane within 3 h, guaranteeing sufficient transporters on cell membrane for continuous cellular uptake. The LAT1 targeting nanoparticles exhibited better tumor accumulation and antitumor effects. These results suggested that the overexpressed LAT1 on cancer cells holds a great potential to be a high-efficiency target for the rational design of active-targeting nanosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cancer Nanotechnology: The impact of passive and active targeting in the era of modern cancer biology☆

    PubMed Central

    Bertrand, Nicolas; Wu, Jun; Xu, Xiaoyang; Kamaly, Nazila; Farokhzad, Omid C

    2014-01-01

    Cancer nanotherapeutics are progressing at a steady rate; research and development in the field has experienced an exponential growth since early 2000’s. The path to the commercialization of oncology drugs is long and carries significant risk; however, there is considerable excitement that nanoparticle technologies may contribute to the success of cancer drug development. The pace at which pharmaceutical companies have formed partnerships to use proprietary nanoparticle technologies has considerably accelerated. It is now recognized that by enhancing the efficacy and/or tolerability of new drug candidates, nanotechnology can meaningfully contribute to create differentiated products and improve clinical outcome. This review describes the lessons learned since the commercialization of the first-generation nanomedicines including DOXIL® and Abraxane®. It explores our current understanding of targeted and non-targeted nanoparticles that are under various stages of development, including BIND-014 and MM-398. It highlights the opportunities and challenges faced by nanomedicines in contemporary oncology, where personalized medicine is increasingly the mainstay of cancer therapy. We revisit the fundamental concepts of enhanced permeability and retention effect (EPR) and explore the mechanisms proposed to enhance preferential “retention” in the tumor, whether using active targeting of nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated macrophages. The overall objective of this review is to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancers. PMID:24270007

  2. Physiological and biochemical principles underlying volume-targeted therapy--the "Lund concept".

    PubMed

    Nordström, Carl-Henrik

    2005-01-01

    The optimal therapy of sustained increase in intracranial pressure (ICP) remains controversial. The volume-targeted therapy ("Lund concept") discussed in this article focuses on the physiological volume regulation of the intracranial compartments. The balance between effective transcapillary hydrostatic and osmotic pressures constitutes the driving force for transcapillary fluid exchange. The low permeability for sodium and chloride combined with the high crystalloid osmotic pressure (approximately 5700 mmHg) on both sides of the blood-brain barrier (BBB) counteracts fluid exchange across the intact BBB. Additionally, variations in systemic blood pressure generally are not transmitted to these capillaries because cerebral intracapillary hydrostatic pressure (and blood flow) is physio-logically tightly autoregulated. Under pathophysiological conditions, the BBB may be partially disrupted. Transcapillary water exchange is then determined by the differences in hydrostatic and colloid osmotic pressure between the intra- and extracapillary compartments. Pressure autoregulation of cerebral blood flow is likely to be impaired in these conditions. A high cerebral perfusion pressure accordingly increases intracapillary hydrostatic pressure and leads to increased intracerebral water content and an increase in ICP. The volume-targeted "Lund concept" has been evaluated in experimental and clinical studies to examine the physiological and biochemical (utilizing intracerebral microdialysis) effects, and the clinical experiences have been favorable.

  3. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wei, Yanchun; Zhou, Feifan; Zhang, Da; Chen, Qun; Xing, Da

    2016-02-01

    Subcellular organelles play critical roles in cell survival. In this work, a novel photodynamic therapy (PDT) drug delivery and phototoxicity on/off nano-system based on graphene oxide (NGO) as the carrier is developed to implement subcellular targeting and attacking. To construct the nanodrug (PPa-NGO-mAb), NGO is modified with the integrin αvβ3 monoclonal antibody (mAb) for tumor targeting. Pyropheophorbide-a (PPa) conjugated with polyethylene-glycol is used to cover the surface of the NGO to induce phototoxicity. Polyethylene-glycol phospholipid is loaded to enhance water solubility. The results show that the phototoxicity of PPa on NGO can be switched on and off in organic and aqueous environments, respectively. The PPa-NGO-mAb assembly is able to effectively target the αvβ3-positive tumor cells with surface ligand and receptor recognition; once endocytosized by the cells, they are observed escaping from lysosomes and subsequently transferring to the mitochondria. In the mitochondria, the `on' state PPa-NGO-mAb performs its effective phototoxicity to kill cells. The biological and physical dual selections and on/off control of PPa-NGO-mAb significantly enhance mitochondria-mediated apoptosis of PDT. This smart system offers a potential alternative to drug delivery systems for cancer therapy.Subcellular organelles play critical roles in cell survival. In this work, a novel photodynamic therapy (PDT) drug delivery and phototoxicity on/off nano-system based on graphene oxide (NGO) as the carrier is developed to implement subcellular targeting and attacking. To construct the nanodrug (PPa-NGO-mAb), NGO is modified with the integrin αvβ3 monoclonal antibody (mAb) for tumor targeting. Pyropheophorbide-a (PPa) conjugated with polyethylene-glycol is used to cover the surface of the NGO to induce phototoxicity. Polyethylene-glycol phospholipid is loaded to enhance water solubility. The results show that the phototoxicity of PPa on NGO can be switched on and off in

  4. The Spectrum of Monogenic Autoinflammatory Syndromes: Understanding Disease Mechanisms and Use of Targeted Therapies

    PubMed Central

    Glaser, Rachel L.; Goldbach-Mansky, Raphaela

    2009-01-01

    Monogenic autoinflammatory diseases encompass a distinct and growing clinical entity of multisystem inflammatory diseases with known genetic defects in the innate immune system. The diseases present clinically with episodes of seemingly unprovoked inflammation (fever, rashes, and elevation of acute phase reactants). Understanding the genetics has led to discovery of new molecules involved in recognizing exogenous and endogenous danger signals, and the inflammatory response to these stimuli. These advances have furthered understanding of innate inflammatory pathways and spurred collaborative research in rheumatology and infectious diseases. The pivotal roles of interleukin (IL)-1β in cryopyrin-associated periodic syndromes, tumor necrosis factor (TNF) in TNF receptor-associated periodic syndrome, and links to inflammatory cytokine dysregulation in other monogenic autoinflammatory diseases have resulted in effective therapies targeting proinflammatory cytokines IL-1β and TNF and uncovered other new potential targets for anti-inflammatory therapies. PMID:18606080

  5. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Yang, Cheng-Xiong; Chen, Li-Gong; Yan, Xiu-Ping

    2017-05-01

    The integrated functions of diagnostics and therapeutics make theranostics great potential for personalized medicine. Stimulus-responsive therapy allows spatial control of therapeutic effect only in the site of interest, and offers promising opportunities for imaging-guided precision therapy. However, the imaging strategies in previous stimulus-responsive therapies are `always on' or irreversible `turn on' modality, resulting in poor signal-to-noise ratios or even `false positive' results. Here we show the design of dual-stimuli-responsive and reversibly activatable nanoprobe for precision tumour-targeting and fluorescence-guided photothermal therapy. We fabricate the nanoprobe from asymmetric cyanine and glycosyl-functionalized gold nanorods (AuNRs) with matrix metalloproteinases (MMPs)-specific peptide as a linker to achieve MMPs/pH synergistic and pH reversible activation. The unique activation and glycosyl targetibility makes the nanoprobe bright only in tumour sites with negligible background, while AuNRs and asymmetric cyanine give synergistic photothermal effect. This work paves the way to designing efficient nanoprobes for precision theranostics.

  6. Double-Targeting Explosible Nanofirework for Tumor Ignition to Guide Tumor-Depth Photothermal Therapy.

    PubMed

    Zhang, Ming-Kang; Wang, Xiao-Gang; Zhu, Jing-Yi; Liu, Miao-Deng; Li, Chu-Xin; Feng, Jun; Zhang, Xian-Zheng

    2018-04-17

    This study reports a double-targeting "nanofirework" for tumor-ignited imaging to guide effective tumor-depth photothermal therapy (PTT). Typically, ≈30 nm upconversion nanoparticles (UCNP) are enveloped with a hybrid corona composed of ≈4 nm CuS tethered hyaluronic acid (CuS-HA). The HA corona provides active tumor-targeted functionality together with excellent stability and improved biocompatibility. The dimension of UCNP@CuS-HA is specifically set within the optimal size window for passive tumor-targeting effect, demonstrating significant contributions to both the in vivo prolonged circulation duration and the enhanced size-dependent tumor accumulation compared with ultrasmall CuS nanoparticles. The tumors featuring hyaluronidase (HAase) overexpression could induce the escape of CuS away from UCNP@CuS-HA due to HAase-catalyzed HA degradation, in turn activating the recovery of initially CuS-quenched luminescence of UCNP and also driving the tumor-depth infiltration of ultrasmall CuS for effective PTT. This in vivo transition has proven to be highly dependent on tumor occurrence like a tumor-ignited explosible firework. Together with the double-targeting functionality, the pathology-selective tumor ignition permits precise tumor detection and imaging-guided spatiotemporal control over PTT operation, leading to complete tumor ablation under near infrared (NIR) irradiation. This study offers a new paradigm of utilizing pathological characteristics to design nanotheranostics for precise detection and personalized therapy of tumors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Using a cancer registry to capture signals of adverse events following immune and targeted therapy for melanoma.

    PubMed

    Aguiar, João P; Cardoso Borges, Fábio; Murteira, Rodrigo; Ramos, Catarina; Gouveia, Emanuel; Passos, Maria José; Miranda, Ana; da Costa, Filipa Alves

    2018-06-02

    Background Toxicity of oncology treatments in real-life patients is frequently disregarded and hence underreported. Objective To characterize adverse events (AEs) of immunotherapy and targeted therapy reported in patients with locally advanced or metastatic melanoma. Setting District Hospital for Cancer treatment (Instituto Português de Oncologia de Lisboa Francisco Gentil). Method A retrospective cohort of melanoma patients was established, comprising adult patients diagnosed with malignant melanoma treated with immunotherapy or targeted therapy. Exposure was characterized by nature, time and intensity of exposure. To account for different exposure periods, person-time was used as unit of analysis. Main outcomes measure Occurrence of AEs. Results Data from 111 patients included in the cohort indicates the majority received immunotherapy regimens (CTLA-4, anti-PD-1 and combination therapy; (n = 70; 63.1%), among which anti-PD-1 were the predominant treatment. Pembrolizumab was the most frequently prescribed drug (n = 30; 45.7%). Three hundred and seventy-one AEs were extracted. The incidence of AEs was lower in the anti-PD-1 mAc group (54 AEs per 1000 person.months) and the number of AEs/patient was also lower (3.1 ± 2.0). Grade 3 to 4 AEs occurred in 15.3% (n = 17) of the cohort, being more common in the targeted therapy group. Forty-two (11.6%) of the extracted AEs were not described in the Summary of Product Characteristics of the drugs under study. Conclusion This study suggests various known and unknown AEs of immunotherapy and targeted therapy may be identified using the Cancer Registry database. These events should be considered as signals worth further investigation for assessment of causality as the underreporting of AEs in cancer may have potential implications for the patient's quality of life.

  8. Human genetics as a model for target validation: finding new therapies for diabetes.

    PubMed

    Thomsen, Soren K; Gloyn, Anna L

    2017-06-01

    Type 2 diabetes is a global epidemic with major effects on healthcare expenditure and quality of life. Currently available treatments are inadequate for the prevention of comorbidities, yet progress towards new therapies remains slow. A major barrier is the insufficiency of traditional preclinical models for predicting drug efficacy and safety. Human genetics offers a complementary model to assess causal mechanisms for target validation. Genetic perturbations are 'experiments of nature' that provide a uniquely relevant window into the long-term effects of modulating specific targets. Here, we show that genetic discoveries over the past decades have accurately predicted (now known) therapeutic mechanisms for type 2 diabetes. These findings highlight the potential for use of human genetic variation for prospective target validation, and establish a framework for future applications. Studies into rare, monogenic forms of diabetes have also provided proof-of-principle for precision medicine, and the applicability of this paradigm to complex disease is discussed. Finally, we highlight some of the limitations that are relevant to the use of genome-wide association studies (GWAS) in the search for new therapies for diabetes. A key outstanding challenge is the translation of GWAS signals into disease biology and we outline possible solutions for tackling this experimental bottleneck.

  9. A New Era of Image Guidance with Magnetic Resonance-guided Radiation Therapy for Abdominal and Thoracic Malignancies

    PubMed Central

    Paliwal, Bhudatt; Hill, Patrick; Bayouth, John E; Geurts, Mark W; Baschnagel, Andrew M; Bradley, Kristin A; Harari, Paul M; Rosenberg, Stephen; Brower, Jeffrey V; Wojcieszynski, Andrzej P; Hullett, Craig; Bayliss, R A; Labby, Zacariah E; Bassetti, Michael F

    2018-01-01

    Magnetic resonance-guided radiation therapy (MRgRT) offers advantages for image guidance for radiotherapy treatments as compared to conventional computed tomography (CT)-based modalities. The superior soft tissue contrast of magnetic resonance (MR) enables an improved visualization of the gross tumor and adjacent normal tissues in the treatment of abdominal and thoracic malignancies. Online adaptive capabilities, coupled with advanced motion management of real-time tracking of the tumor, directly allow for high-precision inter-/intrafraction localization. The primary aim of this case series is to describe MR-based interventions for localizing targets not well-visualized with conventional image-guided technologies. The abdominal and thoracic sites of the lung, kidney, liver, and gastric targets are described to illustrate the technological advancement of MR-guidance in radiotherapy. PMID:29872602

  10. Noninvasive, targeted gene therapy for acute spinal cord injury using LIFU-mediated BDNF-loaded cationic nanobubble destruction.

    PubMed

    Song, Zhaojun; Ye, Yongjie; Zhang, Zhi; Shen, Jieliang; Hu, Zhenming; Wang, Zhigang; Zheng, Jiazhuang

    2018-02-12

    Various gene delivery systems have been widely studied for the acute spinal cord injury (SCI) treatment. In the present study, a novel type of brain-derived neurotrophic factor (BDNF)-loaded cationic nanobubbles (CNBs) conjugated with MAP-2 antibody (mAb MAP-2 /BDNF/CNBs) was prepared to provide low-intensity focused ultrasound (LIFU)-targeted gene therapy. In vitro experiments, the ultrasound-targeted tranfection to BDNF overexpressioin in neurons and efficiently inhibition neuronal apoptosis have been demonstrated, and the elaborately designed mAb MAP-2 /BDNF/CNBs can specifically target to the neurons. Furthermore, in a acute SCI rat model, LIFU-mediated mAb MAP-2 /BDNF/CNBs transfection significantly increased BDNF expression, attenuated histological injury, decreased neurons loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in SCI rats. LIFU-mediated mAb MAP-2 /BDNF/CNBs destruction significantly increase transfection efficiency of BDNF gene both in vitro and in vivo, and has a significant neuroprotective effect on the injured spinal cord. Therefore, the combination of LIFU irradiation and gene therapy through mAb MAP-2 /BDNF/CNBs can be considered as a novel non-invasive and targeted treatment for gene therapy of SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Photodynamic Therapy with Hypericin Improved by Targeting HSP90 Associated Proteins

    PubMed Central

    Solár, Peter; Chytilová, Mária; Solárová, Zuzana; Mojžiš, Ján; Ferenc, Peter; Fedoročko, Peter

    2011-01-01

    In this study we have focused on the response of SKBR-3 cells to both single 17-DMAG treatment as well as its combination with photodynamic therapy with hypericin. Low concentrations of 17-DMAG without any effect on survival of SKBR-3 cells significantly reduced metabolic activity, viability and cell number when combined with photodynamic therapy with hypericin. Moreover, IC10 concentation of 17-DMAG resulted in significant increase of SKBR-3 cells in G1 phase of the cell cycle, followed by an increase of cells in G2 phase when combined with photodynamic therapy. Furthermore, 17-DMAG already decreased HER2, Akt, P-Erk1/2 and survivin protein levels in SKBR-3 cells a short time after its application. In this regard, 17-DMAG protected also SKBR-3 cells against both P-Erk1/2 as well as survivin upregulations induced by photodynamic therapy with hypericin. Interestingly, IC10 concentration of 17-DMAG led to total depletion of Akt, P-Erk1/2 proteins and to decrease of survivin level at 48 h. On the other hand, 17-DMAG did not change HER2 relative expression in SKBR-3 cells, but caused a significant decrease of HER2 mRNA in MCF-7 cells characterized by low HER2 expression. These results show that targeting HSP90 client proteins increases the efficiency of antineoplastic effect of photodynamic therapy in vitro. PMID:27721334

  12. Mertk on tumor macrophages is a therapeutic target to prevent tumor recurrence following radiation therapy

    PubMed Central

    Crittenden, Marka R.; Baird, Jason; Friedman, David; Savage, Talicia; Uhde, Lauren; Alice, Alejandro; Cottam, Benjamin; Young, Kristina; Newell, Pippa; Nguyen, Cynthia; Bambina, Shelly; Kramer, Gwen; Akporiaye, Emmanuel; Malecka, Anna; Jackson, Andrew; Gough, Michael J.

    2016-01-01

    Radiation therapy provides a means to kill large numbers of cancer cells in a controlled location resulting in the release of tumor-specific antigens and endogenous adjuvants. However, by activating pathways involved in apoptotic cell recognition and phagocytosis, irradiated cancer cells engender suppressive phenotypes in macrophages. We demonstrate that the macrophage-specific phagocytic receptor, Mertk is upregulated in macrophages in the tumor following radiation therapy. Ligation of Mertk on macrophages results in anti-inflammatory cytokine responses via NF-kB p50 upregulation, which in turn limits tumor control following radiation therapy. We demonstrate that in immunogenic tumors, loss of Mertk is sufficient to permit tumor cure following radiation therapy. However, in poorly immunogenic tumors, TGFb inhibition is also required to result in tumor cure following radiation therapy. These data demonstrate that Mertk is a highly specific target whose absence permits tumor control in combination with radiation therapy. PMID:27602953

  13. MOLECULARLY TARGETED THERAPIES IN NON-SMALL CELL LUNG CANCER ANNUAL UPDATE 2014

    PubMed Central

    Morgensztern, Daniel; Campo, Meghan J.; Dahlberg, Suzanne E.; Doebele, Robert C.; Garon, Edward; Gerber, David E.; Goldberg, Sarah B.; Hammerman, Peter S.; Heist, Rebecca; Hensing, Thomas; Horn, Leora; Ramalingam, Suresh S.; Rudin, Charles M.; Salgia, Ravi; Sequist, Lecia; Shaw, Alice T.; Simon, George R.; Somaiah, Neeta; Spigel, David R.; Wrangle, John; Johnson, David; Herbst, Roy S.; Bunn, Paul; Govindan, Ramaswamy

    2015-01-01

    There have been significant advances in the understanding of the biology and treatment of non-small cell lung cancer (NSCLC) over the past few years. A number of molecularly targeted agents are in the clinic or in development for patients with advanced NSCLC (Table 1). We are beginning to understand the mechanisms of acquired resistance following exposure to tyrosine kinase inhibitors in patients with oncogene addicted NSCLC. The advent of next generation sequencing has enabled to study comprehensively genomic alterations in lung cancer. Finally, early results from immune checkpoint inhibitors are very encouraging. This review summarizes recent advances in the area of cancer genomics, targeted therapies and immunotherapy. PMID:25535693

  14. Review article: novel oral-targeted therapies in inflammatory bowel disease.

    PubMed

    White, J R; Phillips, F; Monaghan, T; Fateen, W; Samuel, S; Ghosh, S; Moran, G W

    2018-06-01

    There is a great unmet clinical need for efficacious, tolerable, economical and orally administrated drugs for the treatment of inflammatory bowel disease (IBD). New therapeutic avenues have become possible including the development of medications that target specific genetic pathways found to be relevant in other immune mediated diseases. To provide an overview of recent clinical trials for new generation oral targeted medications that may have a future role in IBD management. Pubmed and Medline searches were performed up to 1 March 2018 using keywords: "IBD", "UC", "CD", "inflammatory bowel disease" "ulcerative colitis", "Crohn's disease" in combination with "phase", "study", "trial" and "oral". A manual search of the clinical trial register, article reference lists, abstracts from meetings of Digestive Disease Week, United European Gastroenterology Week and ECCO congress were also conducted. In randomised controlled trials primary efficacy endpoints were met for tofacitinib (JAK 1/3 inhibitor-phase III), upadacitinib (JAK 1 inhibitor-phase II) and AJM300 (α4-integrin antagonist-phase II) in ulcerative colitis. Ozanimod (S1P receptor agonist-phase II) also demonstrated clinical remission. For Crohn's disease, filgotinib (JAK1 inhibitor-phase II) met primary endpoints and laquinimod (quinolone-3-carboxide small molecule-phase II) was also efficacious. Trials using mongersen (SMAD7 inhibitor) and vidofludimus (dihydroorotate dehydrogenase inhibitor) have been halted. This is potentially the start of an exciting new era in which multiple therapeutic options are at the disposal of physicians to treat IBD on an individualised basis. Head-to-head studies with existing treatments and longer term safety data are needed for this to be possible. © 2018 John Wiley & Sons Ltd.

  15. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy.

    PubMed

    Wu, Xiang Lan; Kim, Jong Ho; Koo, Heebeom; Bae, Sang Mun; Shin, Hyeri; Kim, Min Sang; Lee, Byung-Heon; Park, Rang-Woon; Kim, In-San; Choi, Kuiwon; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Doo Sung

    2010-02-17

    Herein, we prepared tumor-targeting peptide (AP peptide; CRKRLDRN) conjugated pH-responsive polymeric micelles (pH-PMs) in cancer therapy by active and pH-responsive tumor targeting delivery systems, simultaneously. The active tumor targeting and tumoral pH-responsive polymeric micelles were prepared by mixing AP peptide conjugated PEG-poly(d,l-lactic acid) block copolymer (AP-PEG-PLA) into the pH-responsive micelles of methyl ether poly(ethylene glycol) (MPEG)-poly(beta-amino ester) (PAE) block copolymer (MPEG-PAE). These mixed amphiphilic block copolymers were self-assembled to form stable AP peptide-conjugated and pH-responsive AP-PEG-PLA/MPEG-PAE micelles (AP-pH-PMs) with an average size of 150 nm. The AP-pH-PMs containing 10 wt % of AP-PEG-PLA showed a sharp pH-dependent micellization/demicellization transition at the tumoral acid pH. Also, they presented the pH-dependent drug release profile at the acidic pH of 6.4. The fluorescence dye, TRITC, encapsulated AP-pH-PMs (TRITC-AP-pH-PMs) presented the higher tumor-specific targeting ability in vitro cancer cell culture system and in vivo tumor-bearing mice, compared to control pH-responsive micelles of MPEG-PAE. For the cancer therapy, the anticancer drug, doxorubicin (DOX), was efficiently encapsulated into the AP-pH-PMs (DOX-AP-pH-PMs) with a higher loading efficiency. DOX-AP-pH-PMs efficiently deliver anticancer drugs in MDA-MB231 human breast tumor-bearing mice, resulted in excellent anticancer therapeutic efficacy, compared to free DOX and DOX encapsulated MEG-PAE micelles, indicating the excellent tumor targeting ability of AP-pH-PMs. Therefore, these tumor-targeting peptide-conjugated and pH-responsive polymeric micelles have great potential application in cancer therapy.

  16. Pre-clinical Safety and Off-Target Studies to Support Translation of AAV-Mediated RNAi Therapy for FSHD.

    PubMed

    Wallace, Lindsay M; Saad, Nizar Y; Pyne, Nettie K; Fowler, Allison M; Eidahl, Jocelyn O; Domire, Jacqueline S; Griffin, Danielle A; Herman, Adam C; Sahenk, Zarife; Rodino-Klapac, Louise R; Harper, Scott Q

    2018-03-16

    RNAi emerged as a prospective molecular therapy nearly 15 years ago. Since then, two major RNAi platforms have been under development: oligonucleotides and gene therapy. Oligonucleotide-based approaches have seen more advancement, with some promising therapies that may soon reach market. In contrast, vector-based approaches for RNAi therapy have remained largely in the pre-clinical realm, with limited clinical safety and efficacy data to date. We are developing a gene therapy approach to treat the autosomal-dominant disorder facioscapulohumeral muscular dystrophy. Our strategy involves silencing the myotoxic gene DUX4 using adeno-associated viral vectors to deliver targeted microRNA expression cassettes (miDUX4s). We previously demonstrated proof of concept for this approach in mice, and we are now taking additional steps here to assess safety issues related to miDUX4 overexpression and sequence-specific off-target silencing. In this study, we describe improvements in vector design and expansion of our miDUX4 sequence repertoire and report differential toxicity elicited by two miDUX4 sequences, of which one was toxic and the other was not. This study provides important data to help advance our goal of translating RNAi gene therapy for facioscapulohumeral muscular dystrophy.

  17. Effect of magnetic nanoparticles size on rheumatoid arthritis targeting and photothermal therapy.

    PubMed

    Zhang, Shengchang; Wu, Lin; Cao, Jin; Wang, Kaili; Ge, Yanru; Ma, Wanjun; Qi, Xueyong; Shen, Song

    2018-06-13

    Nanoparticles based multifunctional system exhibits great potential in diagnosis and therapy of rheumatoid arthritis (RA). The size of nanoparticles plays an essential role in biodistribution and cellular uptake, in turn affects the drug delivery efficiency and therapeutic effect. To investigate the optimal size for RA targeting, Fe 3 O 4 nanoparticles with well-defined particle sizes (70-350 nm) and identical surface properties were developed as model nanoparticles. The synthesized Fe 3 O 4 nanoparticles exhibited excellent biocompatibility and showed higher temperature response under irradiation of near infrared light. Size-dependent internalization was observed when incubated with inflammatory cells. Compared with large ones, small nanoparticles were more readily be phagocytized, leading to higher cytotoxicity in vitro. However, the in vivo experiment in CIA mice demonstrated a quite different result that nanoparticles with size of 220 nm exerted better accessibility to inflamed joint and resulted in higher temperature and better therapeutic effect under laser irradiation. This study not only offered a novel method for RA therapy but also a guideline for RA targeted drug carrier design. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy.

    PubMed

    Hammerer, Fabien; Poyer, Florent; Fourmois, Laura; Chen, Su; Garcia, Guillaume; Teulade-Fichou, Marie-Paule; Maillard, Philippe; Mahuteau-Betzer, Florence

    2018-01-01

    The proof of concept for two-photon activated photodynamic therapy has already been achieved for cancer treatment but the efficiency of this approach still heavily relies on the availability of photosensitizers combining high two-photon absorption and biocompatibility. In this line we recently reported on a series of porphyrin-triphenylamine hybrids which exhibit high singlet oxygen production quantum yield as well as high two-photon absorption cross-sections but with a very poor cellular internalization. We present herein new photosensitizers of the same porphyrin-triphenylamine hybrid series but bearing cationic charges which led to strongly enhanced water solubility and thus cellular penetration. In addition the new compounds have been found localized in mitochondria that are preferential target organelles for photodynamic therapy. Altogether the strongly improved properties of the new series combined with their specific mitochondrial localization lead to a significantly enhanced two-photon activated photodynamic therapy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. HAI-178 antibody-conjugated fluorescent magnetic nanoparticles for targeted imaging and simultaneous therapy of gastric cancer

    NASA Astrophysics Data System (ADS)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Zhang, Lingxia; Fu, Hualin; Wang, Yutian; Wang, Kan; Li, Chao; Deng, Min; Liao, Qiande; Ni, Jian; Cui, Daxiang

    2014-05-01

    The successful development of safe and highly effective nanoprobes for targeted imaging and simultaneous therapy of in vivo gastric cancer is a great challenge. Herein we reported for the first time that anti-α-subunit of ATP synthase antibody, HAI-178 monoclonal antibody-conjugated fluorescent magnetic nanoparticles, was successfully used for targeted imaging and simultaneous therapy of in vivo gastric cancer. A total of 172 specimens of gastric cancer tissues were collected, and the expression of α-subunit of ATP synthase in gastric cancer tissues was investigated by immunohistochemistry method. Fluorescent magnetic nanoparticles were prepared and conjugated with HAI-178 monoclonal antibody, and the resultant HAI-178 antibody-conjugated fluorescent magnetic nanoparticles (HAI-178-FMNPs) were co-incubated with gastric cancer MGC803 cells and gastric mucous GES-1 cells. Gastric cancer-bearing nude mice models were established, were injected with prepared HAI-178-FMNPs via tail vein, and were imaged by magnetic resonance imaging and small animal fluorescent imaging system. The results showed that the α-subunit of ATP synthase exhibited high expression in 94.7% of the gastric cancer tissues. The prepared HAI-178-FMNPs could target actively MGC803 cells, realized fluorescent imaging and magnetic resonance imaging of in vivo gastric cancer, and actively inhibited growth of gastric cancer cells. In conclusion, HAI-178 antibody-conjugated fluorescent magnetic nanoparticles have a great potential in applications such as targeted imaging and simultaneous therapy of in vivo early gastric cancer cells in the near future.

  20. ERA-MIN: The European network (ERA-NET) on non-energy raw materials

    NASA Astrophysics Data System (ADS)

    vidal, o.; christmann, p.; Bol, d.; Goffé, b.; Groth, m.; Kohler, e.; Persson Nelson, k.; Schumacher, k.

    2012-04-01

    Non-energy raw materials are vital for the EU's economy, and for the development of environmentally friendly technologies. The EU is the world's largest consumers of non-energy minerals, but it remains dependent on the importation of many metals, as its domestic production is limited to about 3% of world production. We will present the project ERA-MIN, which is an ERA-NET on the Industrial Handling of Raw Materials for European industries, financially supported by the European Commission. The main objectives of ERA-MIN are: 1) Mapping and Networking: interconnecting the members of the currently fragmented European mineral resources research area, to the aim of fostering convergence of public research programs, industry, research institutes, academia and the European Commission, 2) Coordinating: establishing a permanent mechanism for planning and coordination of the European non-energy mineral raw materials research community (ENERC). 3) Roadmapping: defining the most important scientific and technological challenges that should be supported by the EU and its state members, 4) Programming: designing a Joint European Research Programme model and implementating it into a call for proposals open to academic and industrial research. The topics of interest in ERA-MIN are the primary continental and marine resources, the secondary resources and their related technologies, substitution and material efficiency, along with transversal topics such as environmental impact, public policy support, mineral intelligence, and public education and teaching. Public scientific research is very central in the scope of the ERA-MIN activity, whose consortium is indeed lead by a public organisation of fundamental research. Thus, universities and public research organisations are warmly invited to play an active role in defining the scientific questions and challenges that shall determine the European Raw Materials Roadmap and should be addressed by joint programming at the European scale