Sample records for targeting angiogenesis-dependent calcified

  1. Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis

    PubMed Central

    Chen, Zhen; Lai, Tsung-Ching; Jan, Yi-Hua; Lin, Feng-Mao; Wang, Wei-Chi; Xiao, Han; Wang, Yun-Ting; Sun, Wei; Cui, Xiaopei; Li, Ying-Shiuan; Fang, Tzan; Zhao, Hongwei; Padmanabhan, Chellappan; Sun, Ruobai; Wang, Danny Ling; Jin, Hailing; Chau, Gar-Yang; Huang, Hsien-Da; Hsiao, Michael; Shyy, John Y-J.

    2013-01-01

    Despite a general repression of translation under hypoxia, cells selectively upregulate a set of hypoxia-inducible genes. Results from deep sequencing revealed that Let-7 and miR-103/107 are hypoxia-responsive microRNAs (HRMs) that are strongly induced in vascular endothelial cells. In silico bioinformatics and in vitro validation showed that these HRMs are induced by HIF1α and target argonaute 1 (AGO1), which anchors the microRNA-induced silencing complex (miRISC). HRM targeting of AGO1 resulted in the translational desuppression of VEGF mRNA. Inhibition of HRM or overexpression of AGO1 without the 3′ untranslated region decreased hypoxia-induced angiogenesis. Conversely, AGO1 knockdown increased angiogenesis under normoxia in vivo. In addition, data from tumor xenografts and human cancer specimens indicate that AGO1-mediated translational desuppression of VEGF may be associated with tumor angiogenesis and poor prognosis. These findings provide evidence for an angiogenic pathway involving HRMs that target AGO1 and suggest that this pathway may be a suitable target for anti- or proangiogenesis strategies. PMID:23426184

  2. Human IgG1 antibodies suppress angiogenesis in a target-independent manner

    PubMed Central

    Bogdanovich, Sasha; Kim, Younghee; Mizutani, Takeshi; Yasuma, Reo; Tudisco, Laura; Cicatiello, Valeria; Bastos-Carvalho, Ana; Kerur, Nagaraj; Hirano, Yoshio; Baffi, Judit Z; Tarallo, Valeria; Li, Shengjian; Yasuma, Tetsuhiro; Arpitha, Parthasarathy; Fowler, Benjamin J; Wright, Charles B; Apicella, Ivana; Greco, Adelaide; Brunetti, Arturo; Ruvo, Menotti; Sandomenico, Annamaria; Nozaki, Miho; Ijima, Ryo; Kaneko, Hiroki; Ogura, Yuichiro; Terasaki, Hiroko; Ambati, Balamurali K; Leusen, Jeanette HW; Langdon, Wallace Y; Clark, Michael R; Armour, Kathryn L; Bruhns, Pierre; Verbeek, J Sjef; Gelfand, Bradley D; De Falco, Sandro; Ambati, Jayakrishna

    2016-01-01

    Aberrant angiogenesis is implicated in diseases affecting nearly 10% of the world’s population. The most widely used anti-angiogenic drug is bevacizumab, a humanized IgG1 monoclonal antibody that targets human VEGFA. Although bevacizumab does not recognize mouse Vegfa, it inhibits angiogenesis in mice. Here we show bevacizumab suppressed angiogenesis in three mouse models not via Vegfa blockade but rather Fc-mediated signaling through FcγRI (CD64) and c-Cbl, impairing macrophage migration. Other approved humanized or human IgG1 antibodies without mouse targets (adalimumab, alemtuzumab, ofatumumab, omalizumab, palivizumab and tocilizumab), mouse IgG2a, and overexpression of human IgG1-Fc or mouse IgG2a-Fc, also inhibited angiogenesis in wild-type and FcγR humanized mice. This anti-angiogenic effect was abolished by Fcgr1 ablation or knockdown, Fc cleavage, IgG-Fc inhibition, disruption of Fc-FcγR interaction, or elimination of FcRγ-initated signaling. Furthermore, bevacizumab’s Fc region potentiated its anti-angiogenic activity in humanized VEGFA mice. Finally, mice deficient in FcγRI exhibited increased developmental and pathological angiogenesis. These findings reveal an unexpected anti-angiogenic function for FcγRI and a potentially concerning off-target effect of hIgG1 therapies. PMID:26918197

  3. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Yingfeng; Liu, Li; Zhao, Dongliang

    Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less

  4. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2

    DOE PAGES

    Tu, Yingfeng; Liu, Li; Zhao, Dongliang; ...

    2015-09-08

    Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less

  5. HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geis, Theresa, E-mail: geis@biochem.uni-frankfurt.de; Döring, Claudia, E-mail: C.Doering@em.uni-frankfurt.de; Popp, Rüdiger, E-mail: popp@vrc.uni-frankfurt.de

    Hypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment. The naturally occuring oxygen and nutrient gradients within the cocultures allow us to question the role of distinct HIF isoforms in regulating HCC angiogenesis. Inmore » cocultures with a HIF-2α knockdown, angiogenesis was attenuated, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1) as a HIF-2α target gene in HepG2 cells. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis. Blocking plasmin, the downstream target of PAI-1, with aprotinin in HIF-2α knockdown (k/d) cells proved a cause–effect relation and restored angiogenesis, with no effect on control cocultures. Suggestively, HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. We conclude that the HIF-2α target gene PAI-1 favors the angiogenic switch in HCC. - Highlights: • HepG2 were cocultured with stem cells to mimic a cancer microenvironment in vitro. • A knockdown of HIF-2α reduces angiogenesis. • PAI-1 was identified as a HIF-2α target gene in HCC by microarray analysis. • HIF-2α induces the angiogenic switch via inhibition of plasmin.« less

  6. Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

    NASA Astrophysics Data System (ADS)

    Wang, Jinfeng; Zhang, Lin; Pan, Xiaoyan; Dai, Bingling; Sun, Ying; Li, Chuansheng; Zhang, Jie

    2017-03-01

    Recently, we have identified a biphenyl-aryl urea incorporated with salicylaldoxime (BPS-7) as an anti-angiogenesis agent. Herein, we disclosed a series of novel anti-angiogenesis agents with BPS-7 as lead compound through combining diarylureas with N-pyridin-2-ylcyclopropane carboxamide. Several title compounds exhibited simultaneous inhibition effects against three pro-angiogenic RTKs (VEGFR-2, TIE-2 and EphB4). Some of them displayed potent anti-proliferative activity against human vascular endothelial cell (EA.hy926). In particular, two potent compounds (CDAU-1 and CDAU-2) could be considered as promising anti-angiogenesis agents with triplet inhibition profile. The biological evaluation and molecular docking results indicate that N-pyridin-2-ylcyclopropane carboxamide could serve as a hinge-binding group (HBG) for the discovery of multi-target anti-angiogenesis agents. CDAU-2 also exhibited promising anti-angiogenic potency in a tissue model for angiogenesis.

  7. Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

    PubMed Central

    Wang, Jinfeng; Zhang, Lin; Pan, Xiaoyan; Dai, Bingling; Sun, Ying; Li, Chuansheng; Zhang, Jie

    2017-01-01

    Recently, we have identified a biphenyl-aryl urea incorporated with salicylaldoxime (BPS-7) as an anti-angiogenesis agent. Herein, we disclosed a series of novel anti-angiogenesis agents with BPS-7 as lead compound through combining diarylureas with N-pyridin-2-ylcyclopropane carboxamide. Several title compounds exhibited simultaneous inhibition effects against three pro-angiogenic RTKs (VEGFR-2, TIE-2 and EphB4). Some of them displayed potent anti-proliferative activity against human vascular endothelial cell (EA.hy926). In particular, two potent compounds (CDAU-1 and CDAU-2) could be considered as promising anti-angiogenesis agents with triplet inhibition profile. The biological evaluation and molecular docking results indicate that N-pyridin-2-ylcyclopropane carboxamide could serve as a hinge-binding group (HBG) for the discovery of multi-target anti-angiogenesis agents. CDAU-2 also exhibited promising anti-angiogenic potency in a tissue model for angiogenesis. PMID:28332573

  8. Calcified lesion modeling for excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Scott, Holly A.; Archuleta, Andrew; Splinter, Robert

    2009-06-01

    Objective: Develop a representative calcium target model to evaluate penetration of calcified plaque lesions during atherectomy procedures using 308 nm Excimer laser ablation. Materials and Methods: An in-vitro model representing human calcified plaque was analyzed using Plaster-of-Paris and cement based composite materials as well as a fibrinogen model. The materials were tested for mechanical consistency. The most likely candidate(s) resulting from initial mechanical and chemical screening was submitted for ablation testing. The penetration rate of specific multi-fiber catheter designs and a single fiber probe was obtained and compared to that in human cadaver calcified plaque. The effects of lasing parameters and catheter tip design on penetration speed in a representative calcified model were verified against the results in human cadaver specimens. Results: In Plaster of Paris, the best penetration was obtained using the single fiber tip configuration operating at 100 Fluence, 120 Hz. Calcified human lesions are twice as hard, twice as elastic as and much more complex than Plaster of Paris. Penetration of human calcified specimens was highly inconsistent and varied significantly from specimen to specimen and within individual specimens. Conclusions: Although Plaster of Paris demonstrated predictable increases in penetration with higher energy density and repetition rate, it can not be considered a totally representative laser ablation model for calcified lesions. This is in part due to the more heterogeneous nature and higher density composition of cadaver intravascular human calcified occlusions. Further testing will require a more representative model of human calcified lesions.

  9. Broad targeting of angiogenesis for cancer prevention and therapy

    PubMed Central

    Wang, Zongwei; Dabrosin, Charlotta; Yin, Xin; Fuster, Mark M.; Arreola, Alexandra; Rathmell, W. Kimryn; Generali, Daniele; Nagaraju, Ganji P.; El-Rayes, Bassel; Ribatti, Domenico; Chen, Yi Charlie; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G.; Nowsheen, Somaira; Amedei, Amedeo; Niccolai, Elena; Amin, Amr; Ashraf, S. Salman; Helferich, Bill; Yang, Xujuan; Guha, Gunjan; Bhakta, Dipita; Ciriolo, Maria Rosa; Aquilano, Katia; Chen, Sophie; Halicka, Dorota; Mohammed, Sulma I.; Azmi, Asfar S.; Bilsland, Alan; Keith, W. Nicol; Jensen, Lasse D.

    2015-01-01

    Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor

  10. MiR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA.

    PubMed

    Lu, Zhanping; Zhang, Weiying; Gao, Shan; Jiang, Qiulei; Xiao, Zelin; Ye, Lihong; Zhang, Xiaodong

    MicroRNAs acting as oncogenes or tumor suppressor genes play crucial roles in human cancers. Sphingosine kinase 1 (SPHK1) and its metabolite sphingosine 1-phosphate (S1P) contribute to tumor angiogenesis. We have reported that the down-regulation of miR-506 targeting YAP mRNA results in the hepatocarcinogenesis. In the present study, we report a novel function of miR-506, which suppresses tumor angiogenesis through targeting SPHK1 mRNA in liver cancer. Bioinformatics analysis showed that miR-506 might target 3'-untranslated region (3'UTR) of SPHK1 mRNA. Then, we validated that by luciferase reporter gene assays. MiR-506 was able to reduce the expression of SPHK1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blot analysis in hepatoma HepG2 cells. Functionally, human umbilical vein endothelial cell (HUVEC) tube formation assays demonstrated that the forced miR-506 expression remarkably inhibited the production of S1P in the supernatant of hepatoma cells. The supernatant resulted in the inhibition of tumor angiogenesis. Interestingly, the supernatant with overexpression of SPHK1 could rescue the inhibition of angiogenesis of liver cancer mediated by miR-506. Anti-miR-506 increased the production of S1P in the supernatant of hepatoma cells, but the supernatant with silencing of SPHK1 abolished anti-miR-506-induced acceleration of tumor angiogenesis. Clinically, we observed that the levels of miR-506 were negatively related to those of SPHK1 mRNA in liver cancer tissues. Thus, we conclude that miR-506 depresses the angiogenesis of liver cancer through targeting 3'UTR of SPHK1 mRNA. Our finding provides new insights into the mechanism of tumor angiogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells.

    PubMed

    Kogan, Natalya M; Blázquez, Cristina; Alvarez, Luis; Gallily, Ruth; Schlesinger, Michael; Guzmán, Manuel; Mechoulam, Raphael

    2006-07-01

    Recent findings on the inhibition of angiogenesis and vascular endothelial cell proliferation by anthracycline antibiotics, which contain a quinone moiety, make this type of compound a very promising lead in cancer research/therapy. We have reported that a new cannabinoid anticancer quinone, cannabidiol hydroxyquinone (HU-331), is highly effective against tumor xenografts in nude mice. For evaluation of the antiangiogenic action of cannabinoid quinones, collagen-embedded rat aortic ring assay was used. The ability of cannabinoids to cause endothelial cell apoptosis was assayed by TUNEL staining and flow cytometry analysis. To examine the genes and pathways targeted by HU-331 in vascular endothelial cells, human cDNA microarrays and polymerase chain reaction were used. Immunostaining with anti-CD31 of tumors grown in nude mice served to indicate inhibition of tumor angiogenesis. HU-331 was found to be strongly antiangiogenic, significantly inhibiting angiogenesis at concentrations as low as 300 nM. HU-331 inhibited angiogenesis by directly inducing apoptosis of vascular endothelial cells without changing the expression of pro- and antiangiogenic cytokines and their receptors. A significant decrease in the total area occupied by vessels in HU-331-treated tumors was also observed. These data lead us to consider HU-331 to have high potential as a new antiangiogenic and anticancer drug.

  12. A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis.

    PubMed

    Kerr, Georgina; Sheldon, Helen; Chaikuad, Apirat; Alfano, Ivan; von Delft, Frank; Bullock, Alex N; Harris, Adrian L

    2015-04-01

    Activin receptor-like kinase 1 (ALK1, encoded by the gene ACVRL1) is a type I BMP/TGF-β receptor that mediates signalling in endothelial cells via phosphorylation of SMAD1/5/8. During angiogenesis, sprouting endothelial cells specialise into tip cells and stalk cells. ALK1 synergises with Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2 and thereby represses tip cell formation and angiogenic sprouting. The ALK1-Fc soluble protein fusion has entered clinic trials as a therapeutic strategy to sequester the high-affinity extracellular ligand BMP9. Here, we determined the crystal structure of the ALK1 intracellular kinase domain and explored the effects of a small molecule kinase inhibitor K02288 on angiogenesis. K02288 inhibited BMP9-induced phosphorylation of SMAD1/5/8 in human umbilical vein endothelial cells to reduce both the SMAD and the Notch-dependent transcriptional responses. In endothelial sprouting assays, K02288 treatment induced a hypersprouting phenotype reminiscent of Notch inhibition. Furthermore, K02288 caused dysfunctional vessel formation in a chick chorioallantoic membrane assay of angiogenesis. Such activity may be advantageous for small molecule inhibitors currently in preclinical development for specific BMP gain of function conditions, including diffuse intrinsic pontine glioma and fibrodysplasia ossificans progressiva, as well as more generally for other applications in tumour biology.

  13. New Radiotracers for Imaging of Vascular Targets in Angiogenesis-related Diseases

    PubMed Central

    Hong, Hao; Chen, Feng; Zhang, Yin; Cai, Weibo

    2014-01-01

    Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients. PMID:25086372

  14. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wen-wen; Yu, Jia-ying; Xu, Huai-long

    2011-10-22

    Highlights: {yields} ConA induces cancer cell death targeting apoptosis and autophagy. {yields} ConA inhibits cancer cell angiogenesis. {yields} ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca{sup 2+}/Mn{sup 2+}-dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-{kappa}B-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor.more » These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.« less

  15. Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis

    PubMed Central

    Kluza, Ewelina; Van Tilborg, Geralda A. F.; van der Schaft, Daisy W. J.; Griffioen, Arjan W.; Mulder, Willem J. M.; Nicolay, Klaas

    2010-01-01

    Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy. PMID:20390447

  16. MicroRNA-939 governs vascular integrity and angiogenesis through targeting γ-catenin in endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Shiqiang; Fang, Ming; Zhu, Qian

    Coronary collateral circulation (CCC) functions as a natural bypass in the event of coronary obstruction, which markedly improves prognosis in patients with coronary artery disease (CAD). MicroRNAs (miRNAs) have been implicated in multiple physiological and pathological processes, including angiogenesis involved in CCC growth. The roles that miRNA-939 (miR-939) plays in angiogenesis remain largely unknown. We conducted this study to explore the expression of miR-939 in CAD patients and its role in angiogenesis. For the first time, our results indicated that the expression of circulating miR-939 was down-regulated in patients with sufficient CCC compared with patients with poor CCC. Overexpression ofmore » miR-939 in primary human umbilical vein endothelial cells (HUVECs) significantly inhibited the proliferation, adhesion and tube formation, but promoted the migration of cells. In contrast, miR-939 knockdown exerted reverse effects. We further identified that γ-catenin was a novel target of miR-939 by translational repression, which could rescue the effects of miR-939 in HUVECs. In summary, this study revealed that the expression of circulating miR-939 was down-regulated in CAD patients with sufficient CCC. MiR-939 abolished vascular integrity and repressed angiogenesis through directly targeting γ-catenin. It provided a potential biomarker and a therapeutic target for CAD. - Highlights: • Circulating miR-939 is decreased in sufficient coronary collateral circulation. • MiR-939 abolishes vascular integrity in endothelial cells. • MiR-939 represses angiogenesis. • γ-catenin is a novel target of miR-939.« less

  17. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulatingmore » the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.« less

  18. Galpha13 regulates MEF2-dependent gene transcription in endothelial cells: role in angiogenesis.

    PubMed

    Liu, Guoquan; Han, Jingyan; Profirovic, Jasmina; Strekalova, Elena; Voyno-Yasenetskaya, Tatyana A

    2009-01-01

    The alpha subunit of heterotrimeric G13 protein is required for the embryonic angiogenesis (Offermanns et al., Science 275:533-536, 1997). However, the molecular mechanism of Galpha13-dependent angiogenesis is not understood. Here, we show that myocyte-specific enhancer factor-2 (MEF2) mediates Galpha13-dependent angiogenesis. Our data showed that constitutively activated Galpha13Q226L stimulated MEF2-dependent gene transcription. In addition, downregulation of endogenous Galpha13 inhibited thrombin-stimulated MEF2-dependent gene transcription in endothelial cells. Both Ca(2+)/calmodulin-dependent kinase IV (CaMKIV) and histone deacetylase 5 (HDAC5) were involved in Galpha13-mediated MEF2-dependent gene transcription. Galpha13Q226L also increased Ca(2+)/calmodulin-independent CaMKIV activity, while dominant negative mutant of CaMKIV inhibited MEF2-dependent gene transcription induced by Galpha13Q226L. Furthermore, Galpha13Q226L was able to derepress HDAC5-mediated repression of gene transcription and induce the translocation of HDAC5 from nucleus to cytoplasm. Finally, downregulation of endogenous Galpha13 and MEF2 proteins in endothelial cells reduced cell proliferation and capillary tube formation. Decrease of endothelial cell proliferation that was caused by the Galpha13 downregulation was partially restored by the constitutively active MEF2-VP16. Our studies suggest that MEF2 proteins are an important component in Galpha13-mediated angiogenesis.

  19. Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents.

    PubMed

    Zhang, Guishui; Dass, Crispin R; Sumithran, Eric; Di Girolamo, Nick; Sun, Lun-Quan; Khachigian, Levon M

    2004-05-05

    The basic region-leucine zipper protein c-Jun has been linked to cell proliferation, transformation, and apoptosis. However, a direct role for c-Jun in angiogenesis has not been shown. We used human microvascular endothelial cells (HMEC-1) transfected with a DNAzyme targeting the c-Jun mRNA (Dz13), related oligonucleotides, or vehicle in in vitro models of microvascular endothelial cell proliferation, migration, chemoinvasion, and tubule formation, a rat model of corneal neovascularization, and a mouse model of solid tumor growth and vascular endothelial growth factor (VEGF)-induced angiogenesis. All statistical tests were two-sided. Compared with mock-transfected cells, HMEC-1 cells transfected with Dz13 expressed less c-Jun protein and possessed lower DNA-binding activity. Dz13 blocked endothelial cell proliferation, migration, chemoinvasion, and tubule formation. Dz13 inhibited the endothelial cell expression and proteolytic activity of MMP-2, a c-Jun-dependent gene. Dz13 inhibited VEGF-induced neovascularization in the rat cornea compared with vehicle control (Dz13 versus vehicle: 4.0 neovessels versus 30.7 neovessels, difference = 26.7 neovessels; P =.004; area occupied by new blood vessels for Dz13 versus vehicle: 0.35 mm2 versus 1.52 mm2, difference = 1.17 mm2; P =.005) as well as solid melanoma growth in mice (Dz13 versus vehicle at 14 days: 108 mm3 versus 283 mm3, difference = 175 mm3; P =.006) with greatly reduced vascular density (Dz13 versus vehicle: 30% versus 100%, difference = 70%; P<.001). DNAzymes targeting c-Jun may have therapeutic potential as inhibitors of tumor angiogenesis and growth.

  20. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription.

    PubMed

    Fernández, Jaime G; Rodríguez, Diego A; Valenzuela, Manuel; Calderon, Claudia; Urzúa, Ulises; Munroe, David; Rosas, Carlos; Lemus, David; Díaz, Natalia; Wright, Mathew C; Leyton, Lisette; Tapia, Julio C; Quest, Andrew Fg

    2014-09-09

    Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and β-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-β-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased β-catenin protein levels, β-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced β-catenin protein levels and β-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These

  1. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth

    NASA Astrophysics Data System (ADS)

    Holmgren, Lars; Ambrosino, Elena; Birot, Olivier; Tullus, Carl; Veitonmäki, Niina; Levchenko, Tetyana; Carlson, Lena-Maria; Musiani, Piero; Iezzi, Manuela; Curcio, Claudia; Forni, Guido; Cavallo, Federica; Kiessling, Rolf

    2006-06-01

    Endogenous angiogenesis inhibitors have shown promise in preclinical trials, but clinical use has been hindered by low half-life in circulation and high production costs. Here, we describe a strategy that targets the angiostatin receptor angiomotin (Amot) by DNA vaccination. The vaccination procedure generated antibodies that detected Amot on the endothelial cell surface. Purified Ig bound to the endothelial cell membrane and inhibited endothelial cell migration. In vivo, DNA vaccination blocked angiogenesis in the matrigel plug assay and prevented growth of transplanted tumors for up to 150 days. We further demonstrate that a combination of DNA vaccines encoding Amot and the extracellular and transmembrane domains of the human EGF receptor 2 (Her-2)/neu oncogene inhibited breast cancer progression and impaired tumor vascularization in Her-2/neu transgenic mice. No toxicity or impairment of normal blood vessels could be detected. This work shows that DNA vaccination targeting Amot may be used to mimic the effect of angiostatin. cancer vaccines | neoplasia | neovascularization | breast cancer | angiostatin

  2. SRF selectively controls tip cell invasive behavior in angiogenesis.

    PubMed

    Franco, Claudio A; Blanc, Jocelyne; Parlakian, Ara; Blanco, Raquel; Aspalter, Irene M; Kazakova, Natalia; Diguet, Nicolas; Mylonas, Elena; Gao-Li, Jacqueline; Vaahtokari, Anne; Penard-Lacronique, Virgine; Fruttiger, Markus; Rosewell, Ian; Mericskay, Mathias; Gerhardt, Holger; Li, Zhenlin

    2013-06-01

    Efficient angiogenic sprouting is essential for embryonic, postnatal and tumor development. Serum response factor (SRF) is known to be important for embryonic vascular development. Here, we studied the effect of inducible endothelial-specific deletion of Srf in postnatal and adult mice. We find that endothelial SRF activity is vital for postnatal growth and survival, and is equally required for developmental and pathological angiogenesis, including during tumor growth. Our results demonstrate that SRF is selectively required for endothelial filopodia formation and cell contractility during sprouting angiogenesis, but seems dispensable for vascular remodeling. At the molecular level, we observe that vascular endothelial growth factor A induces nuclear accumulation of myocardin-related transcription factors (MRTFs) and regulates MRTF/SRF-dependent target genes including Myl9, which is important for endothelial cell migration in vitro. We conclude that SRF has a unique function in regulating migratory tip cell behavior during sprouting angiogenesis. We hypothesize that targeting the SRF pathway could provide an opportunity to selectively target tip cell filopodia-driven angiogenesis to restrict tumor growth.

  3. COX-2 – A Novel Target for Reducing Tumor Angiogenesis and Metastasis | Center for Cancer Research

    Cancer.gov

    Angiogenesis is essential for tumor growth and metastasis, by supplying a steady stream of nutrients, removing waste, and providing tumor cells access to other sites in the body. The vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a key role in tumor-mediated angiogenesis, and this pathway is the target of monoclonal antibodies and tyrosine kinase

  4. COX-2 – A Novel Target for Reducing Tumor Angiogenesis and Metastasis | Center for Cancer Research

    Cancer.gov

    Angiogenesis is essential for tumor growth and metastasis, by supplying a steady stream of nutrients, removing waste, and providing tumor cells access to other sites in the body. The vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a key role in tumor-mediated angiogenesis, and this pathway is the target of monoclonal antibodies and tyrosine kinase inhibitors (TKIs) that have been approved to treat patients with cancer. Unfortunately, tumors can use alternative angiogenesis mechanisms to escape VEGF pathway blockade, but these alternate pathways are not well understood. Brad St. Croix, Ph.D., of CCR’s Mouse Cancer Genetics Program, along with Lihong Xu, Ph.D., a Postdoctoral Fellow in the St. Croix laboratory, and colleagues set out to identify VEGF-independent mediators of tumor angiogenesis.

  5. Study on calcifying treatments of hydroxyapatite (HAp) using calcifying promotion solution

    NASA Astrophysics Data System (ADS)

    Wakaki, Moriaki; Yazaki, Syungo; Sunada, Yoshikazu

    2009-02-01

    Apatite is expected to be a useful material for artificial bones in surgery and artificial dental roots in dentistry. In particular, studies have recently been conducted into the reconstruction of teeth using Hydroxyapatite (HAp), and several supplements such as gum have become popular for keeping teeth in good condition. However, the decalcifying and calcifying processes are still not well understood. The aim of this research is to study the decalcifying and calcifying mechanisms of HAp. Specifically, the calcifying treatments were carried out on sintered pellets of HAp without pores using Phosphate Acid Maltodextrin (PMD) and Xylitol calcifying promotion agents. A natural calcifying liquid which simulates the situation within a human mouth was used as a reference. SEM, EDX, X-ray, IR and Raman measurements were used for the characterization of structures, morphologies, formed elements and physical properties. It was confirmed that a precursor material OCP was grown on the HAp pellet by the calcification treatment using each promotion agent.

  6. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells.

    PubMed

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-07-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2(+) perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  7. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis.

    PubMed

    Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin

    2015-10-12

    Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis.

  8. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.

    PubMed

    Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K

    2017-10-02

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  9. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis

    PubMed Central

    Matkar, Pratiek N.; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K.

    2017-01-01

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review. PMID:28974056

  10. Palmitoylated SCP1 is targeted to the plasma membrane and negatively regulates angiogenesis

    PubMed Central

    Liao, Peng; Wang, Weichao; Li, Yu; Wang, Rui; Jin, Jiali; Pang, Weijuan; Chen, Yunfei; Shen, Mingyue; Wang, Xinbo; Jiang, Dongyang; Pang, Jinjiang; Liu, Mingyao; Lin, Xia; Feng, Xin-Hua; Wang, Ping; Ge, Xin

    2017-01-01

    SCP1 as a nuclear transcriptional regulator acts globally to silence neuronal genes and to affect the dephosphorylation of RNA Pol ll. However, we report the first finding and description of SCP1 as a plasma membrane-localized protein in various cancer cells using EGFP- or other epitope-fused SCP1. Membrane-located SCP1 dephosphorylates AKT at serine 473, leading to the abolishment of serine 473 phosphorylation that results in suppressed angiogenesis and a decreased risk of tumorigenesis. Consistently, we observed increased AKT phosphorylation and angiogenesis followed by enhanced tumorigenesis in Ctdsp1 (which encodes SCP1) gene - knockout mice. Importantly, we discovered that the membrane localization of SCP1 is crucial for impeding angiogenesis and tumor growth, and this localization depends on palmitoylation of a conserved cysteine motif within its NH2 terminus. Thus, our study discovers a novel mechanism underlying SCP1 shuttling between the plasma membrane and nucleus, which constitutes a unique pathway in transducing AKT signaling that is closely linked to angiogenesis and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.22058.001 PMID:28440748

  11. A novel angiogenesis inhibitor impairs lovo cell survival via targeting against human VEGFR and its signaling pathway of phosphorylation.

    PubMed

    Zhang, Y M; Dai, B L; Zheng, L; Zhan, Y Z; Zhang, J; Smith, W W; Wang, X L; Chen, Y N; He, L C

    2012-10-11

    Colorectal cancer represents the fourth commonest malignancy, and constitutes a major cause of significant morbidity and mortality among other diseases. However, the chemical therapy is still under development. Angiogenesis plays an important role in colon cancer development. We developed HMQ18-22 (a novel analog of taspine) with the aim to target angiogenesis. We found that HMQ18-22 significantly reduced angiogenesis of chicken chorioallantoic membrane (CAM) and mouse colon tissue, and inhibited cell migration and tube formation as well. Then, we verified the interaction between HMQ18-22 and VEGFR2 by AlphaScreen P-VEGFR assay, screened the targets on angiogenesis by VEGF Phospho Antibody Array, validated the target by western blot and RNAi in lovo cells. We found HMQ18-22 could decrease phosphorylation of VEGFR2(Tyr(1214)), VEGFR1(Tyr(1333)), Akt(Tyr(326)), protein kinase Cα (PKCα) (Tyr(657)) and phospholipase-Cγ-1 (PLCγ-1) (Tyr(771)). Most importantly, HMQ18-22 inhibited proliferation of lovo cell and tumor growth in a human colon tumor xenografted model of athymic mice. Compared with normal lovo cells proliferation, the inhibition on proliferation of knockdown cells (VEGFR2, VEGFR1, Akt, PKCα and PLCγ-1) by HMQ18-22 decreased. These results suggested that HMQ18-22 is a novel angiogenesis inhibitor and can be a useful therapeutic candidate for colon cancer intervention.

  12. Bioresponsive cancer-targeted polysaccharide nanosystem to inhibit angiogenesis.

    PubMed

    Yang, Fang; Fang, Xueyang; Jiang, Wenting; Chen, Tianfeng

    2017-01-01

    With many desirable features, such as being more effective and having multiple effects, antiangiogenesis has become one of the promising cancer treatments. The aim of this study was to design and synthesize a new targeted bioresponsive nanosystem with antiangiogenesis properties. The mUPR@Ru(POP) nanosystem was constructed by the polymerization of Ulva lactuca polysaccharide and N -isopropyl acrylamide, decorated with methoxy polyethylene glycol and Arg-Gly-Asp peptide, and encapsulated with anticancer complex [Ru(phen)2p-MOPIP](PF 6 ) 2 ·2H 2 O. The nanosystem was both pH responsive and targeted. Therefore, the cellular uptake of the drug was greatly improved. Moreover, the mUPR@Ru(POP) had strong suppressive effects against vascular endothelial growth factor (VEGF)-induced angiogenesis through apoptosis. The mUPR@Ru(POP) significantly inhibited VEGF-induced human umbilical vein endothelial cell migration, invasion, and tube formation. These findings have presented new insights into the development of antiangiogenesis drugs.

  13. Angiogenesis assays.

    PubMed

    Mydlo, J H

    2001-01-01

    Angiogenesis-the formation of a vascular network-is essential for the support of a developing tumor when simple diffusion of nutrients is impossible. The ability of a solid tumor to achieve metabolic needs beyond simple diffusion is dependent on the development of this neovascular network. The process of angiogenesis lets the tumor become self-sufficient to grow, and also gives it the ability to metastasize. Growth factors added to human-vein endothelial cells in culture may demonstrate tubularization of cells, but this does not necessarily imply angiogenesis. True in vivo angiogenesis means not only the mobilization of endothelial cells, but the degradation of the matrix and the formation of vessel sprouts in a network that can transport red blood cells (RBCs).

  14. A novel angiogenesis inhibitor impairs lovo cell survival via targeting against human VEGFR and its signaling pathway of phosphorylation

    PubMed Central

    Zhang, Y M; Dai, B L; Zheng, L; Zhan, Y Z; Zhang, J; Smith, W W; Wang, X L; Chen, Y N; He, L C

    2012-01-01

    Colorectal cancer represents the fourth commonest malignancy, and constitutes a major cause of significant morbidity and mortality among other diseases. However, the chemical therapy is still under development. Angiogenesis plays an important role in colon cancer development. We developed HMQ18–22 (a novel analog of taspine) with the aim to target angiogenesis. We found that HMQ18–22 significantly reduced angiogenesis of chicken chorioallantoic membrane (CAM) and mouse colon tissue, and inhibited cell migration and tube formation as well. Then, we verified the interaction between HMQ18–22 and VEGFR2 by AlphaScreen P-VEGFR assay, screened the targets on angiogenesis by VEGF Phospho Antibody Array, validated the target by western blot and RNAi in lovo cells. We found HMQ18–22 could decrease phosphorylation of VEGFR2(Tyr1214), VEGFR1(Tyr1333), Akt(Tyr326), protein kinase Cα (PKCα) (Tyr657) and phospholipase-Cγ-1 (PLCγ-1) (Tyr771). Most importantly, HMQ18–22 inhibited proliferation of lovo cell and tumor growth in a human colon tumor xenografted model of athymic mice. Compared with normal lovo cells proliferation, the inhibition on proliferation of knockdown cells (VEGFR2, VEGFR1, Akt, PKCα and PLCγ-1) by HMQ18–22 decreased. These results suggested that HMQ18–22 is a novel angiogenesis inhibitor and can be a useful therapeutic candidate for colon cancer intervention. PMID:23059825

  15. Mitochondrially Targeted α-Tocopheryl Succinate Is Antiangiogenic: Potential Benefit Against Tumor Angiogenesis but Caution Against Wound Healing

    PubMed Central

    Kluckova, Katarina; Zobalova, Renata; Goodwin, Jacob; Tilly, David; Stursa, Jan; Pecinova, Alena; Philimonenko, Anatoly; Hozak, Pavel; Banerjee, Jaideep; Ledvina, Miroslav; Sen, Chandan K.; Houstek, Josef; Coster, Mark J.

    2011-01-01

    Abstract Aims A plausible strategy to reduce tumor progress is the inhibition of angiogenesis. Therefore, agents that efficiently suppress angiogenesis can be used for tumor suppression. We tested the antiangiogenic potential of a mitochondrially targeted analog of α-tocopheryl succinate (MitoVES), a compound with high propensity to induce apoptosis. Results MitoVES was found to efficiently kill proliferating endothelial cells (ECs) but not contact-arrested ECs or ECs deficient in mitochondrial DNA, and suppressed angiogenesis in vitro by inducing accumulation of reactive oxygen species and induction of apoptosis in proliferating/angiogenic ECs. Resistance of arrested ECs was ascribed, at least in part, to the lower mitochondrial inner transmembrane potential compared with the proliferating ECs, thus resulting in the lower level of mitochondrial uptake of MitoVES. Shorter-chain homologs of MitoVES were less efficient in angiogenesis inhibition, thus suggesting a molecular mechanism of its activity. Finally, MitoVES was found to suppress HER2-positive breast carcinomas in a transgenic mouse as well as inhibit tumor angiogenesis. The antiangiogenic efficacy of MitoVES was corroborated by its inhibitory activity on wound healing in vivo. Innovation and Conclusion We conclude that MitoVES, a mitochondrially targeted analog of α-tocopheryl succinate, is an efficient antiangiogenic agent of potential clinical relevance, exerting considerably higher activity than its untargeted counterpart. MitoVES may be helpful against cancer but may compromise wound healing. Antioxid. Redox Signal. 15, 2923–2935. PMID:21902599

  16. Requirement of Vascular Integrin α_vβ_3 for Angiogenesis

    NASA Astrophysics Data System (ADS)

    Brooks, Peter C.; Clark, Richard A. F.; Cheresh, David A.

    1994-04-01

    Angiogenesis depends on the adhesive interactions of vascular cells. The adhesion receptor integrin α_vβ_3 was identified as a marker of angiogenic vascular tissue. Integrin α_vβ_3 was expressed on blood vessels in human wound granulation tissue but not in normal skin, and it showed a fourfold increase in expression during angiogenesis on the chick chorioallantoic membrane. In the latter assay, a monoclonal antibody to α_vβ_3 blocked angiogenesis induced by basic fibroblast growth factor, tumor necrosis factor-α, and human melanoma fragments but had no effect on preexisting vessels. These findings suggest that α_vβ_3 may be a useful therapeutic target for diseases characterized by neovascularization.

  17. Targeted therapy of chronic liver diseases with the inhibitors of angiogenesis.

    PubMed

    Srivastava, Ankita; Shukla, Vanistha; Tiwari, Deepika; Gupta, Jaya; Kumar, Sunil; Kumar, Awanish

    2018-05-30

    Angiogenesis appears to be intrinsically associated with the progression of chronic liver diseases, which eventually leads to the development of cirrhosis and related complications, including hepatocellular carcinoma. Several studies have suggested that this association is relevant for chronic liver disease (CLD) progression, with angiogenesis. The fact that angiogenesis plays a pivotal role in CLDs gives rise to new opportunities for treating CLDs. Inhibitor of angiogenesis has proved effective for the treatment of patients suffering from CLD. However, it is limited in diagnosis. The last decade has witnessed a plethora of publications which elucidate the potential of angiogenesis inhibitors for the therapy of CLD. The close relationship between the progression of CLDs and angiogenesis emphasizes the need for anti-angiogenic therapy to block/slow down CLD progression. The present review summarizes all these discussions, the results of the related studies carried out to date and the future prospects in this field. We discuss liver angiogenesis in normal and pathophysiologic conditions with a focus on the role and future use of angiogenic factors as second-line treatment of CLD. This review compiles relevant findings and offers opinions that have emerged in last few years relating liver angiogenesis and its treatment using anti-angiogenic factors. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Platelet-derived growth factor-DD targeting arrests pathological angiogenesis by modulating glycogen synthase kinase-3beta phosphorylation.

    PubMed

    Kumar, Anil; Hou, Xu; Lee, Chunsik; Li, Yang; Maminishkis, Arvydas; Tang, Zhongshu; Zhang, Fan; Langer, Harald F; Arjunan, Pachiappan; Dong, Lijin; Wu, Zhijian; Zhu, Linda Y; Wang, Lianchun; Min, Wang; Colosi, Peter; Chavakis, Triantafyllos; Li, Xuri

    2010-05-14

    Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.

  19. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix

    NASA Technical Reports Server (NTRS)

    Landis, W. J.

    1995-01-01

    High-voltage electron-microscopic tomographic (3D) studies of the ultrastructural interaction between mineral and organic matrix in a variety of calcified tissues reveal different crystal structural and organizational features in association with their respective organic matrices. In brittle or weak pathologic or ectopic calcifications, including examples of osteogenesis imperfecta, calciphylaxis, calcergy, and dermatomyositis, hydroxyapatite crystals occur in various sizes and shapes and are oriented and aligned with respect to collagen in a manner which is distinct from that found in normal calcified tissues. A model of collagen-mineral interaction is proposed which may account for the observed crystal structures and organization. The results indicate that the ultimate strength, support, and other mechanical properties provided by a calcified tissue are dependent in part upon the molecular structure and arrangement of its constituent mineral crystals within their organic matrix.

  20. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix.

    PubMed

    Landis, W J

    1995-05-01

    High-voltage electron-microscopic tomographic (3D) studies of the ultrastructural interaction between mineral and organic matrix in a variety of calcified tissues reveal different crystal structural and organizational features in association with their respective organic matrices. In brittle or weak pathologic or ectopic calcifications, including examples of osteogenesis imperfecta, calciphylaxis, calcergy, and dermatomyositis, hydroxyapatite crystals occur in various sizes and shapes and are oriented and aligned with respect to collagen in a manner which is distinct from that found in normal calcified tissues. A model of collagen-mineral interaction is proposed which may account for the observed crystal structures and organization. The results indicate that the ultimate strength, support, and other mechanical properties provided by a calcified tissue are dependent in part upon the molecular structure and arrangement of its constituent mineral crystals within their organic matrix.

  1. Targeting p35/Cdk5 signalling via CIP-peptide promotes angiogenesis in hypoxia.

    PubMed

    Bosutti, Alessandra; Qi, Jie; Pennucci, Roberta; Bolton, David; Matou, Sabine; Ali, Kamela; Tsai, Li-Huei; Krupinski, Jerzy; Petcu, Eugene B; Montaner, Joan; Al Baradie, Raid; Caccuri, Francesca; Caruso, Arnaldo; Alessandri, Giulio; Kumar, Shant; Rodriguez, Cristina; Martinez-Gonzalez, Jose; Slevin, Mark

    2013-01-01

    Cyclin-dependent kinase-5 (Cdk5) is over-expressed in both neurons and microvessels in hypoxic regions of stroke tissue and has a significant pathological role following hyper-phosphorylation leading to calpain-induced cell death. Here, we have identified a critical role of Cdk5 in cytoskeleton/focal dynamics, wherein its activator, p35, redistributes along actin microfilaments of spreading cells co-localising with p(Tyr15)Cdk5, talin/integrin beta-1 at the lamellipodia in polarising cells. Cdk5 inhibition (roscovitine) resulted in actin-cytoskeleton disorganisation, prevention of protein co-localization and inhibition of movement. Cells expressing Cdk5 (D144N) kinase mutant, were unable to spread, migrate and form tube-like structures or sprouts, while Cdk5 wild-type over-expression showed enhanced motility and angiogenesis in vitro, which was maintained during hypoxia. Gene microarray studies demonstrated myocyte enhancer factor (MEF2C) as a substrate for Cdk5-mediated angiogenesis in vitro. MEF2C showed nuclear co-immunoprecipitation with Cdk5 and almost complete inhibition of differentiation and sprout formation following siRNA knock-down. In hypoxia, insertion of Cdk5/p25-inhibitory peptide (CIP) vector preserved and enhanced in vitro angiogenesis. These results demonstrate the existence of critical and complementary signalling pathways through Cdk5 and p35, and through which coordination is a required factor for successful angiogenesis in sustained hypoxic condition.

  2. Detection of hydroxyapatite in calcified cardiovascular tissues.

    PubMed

    Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan

    2012-10-01

    The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Detection of Hydroxyapatite in Calcified Cardiovascular Tissues

    PubMed Central

    Lee, Jae Sam; Morrisett, Joel D.; Tung, Ching-Hsuan

    2012-01-01

    Objective The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. Methods A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Results Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Conclusion Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. PMID:22877867

  4. Transforming growth factor β-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium.

    PubMed

    Wang, Jun; Wang, Youliang; Wang, Yu; Ma, Ying; Lan, Yu; Yang, Xiao

    2013-04-12

    The TGF-β pathway plays an important role in physiological and pathological angiogenesis. MicroRNAs (miRNAs) are a class of 18- to 25-nucleotide, small, noncoding RNAs that function by regulating gene expression. A number of miRNAs have been found to be regulated by the TGF-β pathway. However, the role of endothelial miRNAs in the TGF-β-mediated control of angiogenesis is still largely unknown. Here we investigated the regulation of endothelial microRNA-29a (miR-29a) by TGF-β signaling and the potential role of miR-29a in angiogenesis. MiR-29a was directly up-regulated by TGF-β/Smad4 signaling in human and mice endothelial cells. In a chick chorioallantoic membrane assay, miR-29a overexpression promoted the formation of new blood vessels, and miR-29a suppression completely blocked TGF-β1-stimulated angiogenesis. Consistently, miR-29a overexpression increased tube formation and migration in endothelial cultures. Mechanistically, miR-29a directly targeted the phosphatase and tensin homolog (PTEN) in endothelial cells, leading to activation of the AKT pathway. PTEN knockdown recapitulated the role of miR-29a in endothelial migration, whereas AKT inhibition completely attenuated the stimulating role of miR-29a in angiogenesis. Taken together, these results reveal a crucial role of a TGF-β-regulated miRNA in promoting angiogenesis by targeting PTEN to stimulate AKT activity.

  5. Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS

    PubMed Central

    Waters, Emily A; Chen, Junjie; Allen, John S; Zhang, Huiying; Lanza, Gregory M; Wickline, Samuel A

    2008-01-01

    Background Angiogenesis is a critical early feature of atherosclerotic plaque development and may also feature prominently in the pathogenesis of aortic valve stenosis. It has been shown that MRI can detect and quantify specific molecules of interest expressed in cardiovascular disease and cancer by measuring the unique fluorine signature of appropriately targeted perfluorocarbon (PFC) nanoparticles. In this study, we demonstrated specific binding of ανβ3 integrin targeted nanoparticles to neovasculature in a rabbit model of aortic valve disease. We also showed that fluorine MRI could be used to detect and quantify the development of neovasculature in the excised aortic valve leaflets. Methods New Zealand White rabbits consumed a cholesterol diet for ~180 days and developed aortic valve thickening, inflammation, and angiogenesis mimicking early human aortic valve disease. Rabbits (n = 7) were treated with ανβ3 integrin targeted PFC nanoparticles or control untargeted PFC nanoparticles (n = 6). Competitive inhibition in vivo of nanoparticle binding (n = 4) was tested by pretreatment with targeted nonfluorinated nanoparticles followed 2 hours later by targeted PFC nanoparticles. 2 hours after treatment, aortic valves were excised and 19F MRS was performed at 11.7T. Integrated 19F spectral peaks were compared using a one-way ANOVA and Hsu's MCB (multiple comparisons with the best) post hoc t test. In 3 additional rabbits treated with ανβ3 integrin targeted PFC nanoparticles, 19F spectroscopy was performed on a 3.0T clinical scanner. The presence of angiogenesis was confirmed by immunohistochemistry. Results Valves of rabbits treated with targeted PFC nanoparticles had 220% more fluorine signal than valves of rabbits treated with untargeted PFC nanoparticles (p < 0.001). Pretreatment of rabbits with targeted oil-based nonsignaling nanoparticles reduced the fluorine signal by 42% due to competitive inhibition, to a level not significantly different from control

  6. Disrupting Tumor Angiogenesis and "the Hunger Games" for Breast Cancer.

    PubMed

    Zhou, Ziwei; Yao, Herui; Hu, Hai

    2017-01-01

    Angiogenesis, one of the hallmarks of cancers, has become an attractive target for cancer therapy since decades ago. It is broadly thought that upregulation of angiogenesis is involved in tumor progression and metastasis. Though tumor vessels are tortuous, disorganized, and leaky, they deliver oxygen and nutrients for tumor development. Based on this knowledge, many kinds of drugs targeting angiogenesis pathways have been developed, such as bevacizumab. However, the clinical outcomes of anti-angiogenesis therapies are moderate in metastatic breast cancer as well as in metastatic colorectal cancer and non-small cell lung cancer, even combined with traditional chemotherapy. In this chapter, the morphologic angiogenesis patterns and the key molecular pathways regulating angiogenesis are elaborated. The FDA-approved anti-angiogenesis drugs and current challenges of anti-angiogenesis therapy are described. The strategies to overcome the barriers will also be elucidated.

  7. Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells

    PubMed Central

    Zhang, Feng; Zhang, Zili; Chen, Li; Kong, Desong; Zhang, Xiaoping; Lu, Chunfeng; Lu, Yin; Zheng, Shizhong

    2014-01-01

    Hepatic fibrosis is concomitant with sinusoidal pathological angiogenesis, which has been highlighted as novel therapeutic targets for the treatment of chronic liver disease. Our prior studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of a number of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells and rat aortic ring angiogenesis were not impaired by curcumin. These results indicated that hepatic stellate cells (HSCs) that are characterized as liver-specific pericytes could be potential target cells for curcumin. Further investigations showed that curcumin inhibited VEGF expression in HSCs associated with disrupting platelet-derived growth factor-β receptor (PDGF-βR)/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin associated with blocking PDGF-βR/focal adhesion kinase/RhoA cascade. Gain- or loss-of-function analyses revealed that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPAR-γ activation-dependent mechanism. PPAR-γ could be a target molecule for reducing pathological angiogenesis during liver fibrosis. PMID:24779927

  8. Dose Dependent Dual Effect of Baicalin and Herb Huang Qin Extract on Angiogenesis

    PubMed Central

    Lawless, John; He, Jianchen

    2016-01-01

    Huang Qin (root of Scutellaria baicalensis) is a widely used herb in different countries for adjuvant therapy of inflammation, diabetes, hypertension, different kinds of cancer and virus related diseases. Baicalin is the main flavonoid in this herb and has been extensively studied for 30 years. The angiogenic effect of herb Huang Qin extract and baicalin was found 13 years ago, however, the results were controversial with pro-angiogenic effect in some studies and anti-angiogenic effect in others. In this paper, the angiogenic effect of baicalin, its aglycone form baicalein and aqueous extract of Huang Qin was studied in chick embryo chorioallantoic membrane (CAM) model. Dose dependent dual effect was found in both aqueous extract and baicalin, but not in baicalein, in which only inhibitory effect was observed. In order to reveal the cellular and molecular mechanism of how baicalin and baicalein affect angiogenesis, cell proliferation and programmed cell death assays were performed in treated CAM. In addition, quantitative PCR array including 84 angiogenesis related genes was used to detect high and low dosage of baicalin and baicalein responsive genes. Low dose baicalin increased cell proliferation in developing blood vessels through upregulation of multiple angiogenic genes expression, but high dose baicalin induced cell death, performing inhibitory effect on angiogenesis. Both high and low dose of baicalein down regulated the expression of multiple angiogenic genes, decreased cell proliferation, and leads to inhibitory effects on angiogenesis. PMID:27902752

  9. Adipose Tissue Angiogenesis: Impact on Obesity and Type-2 Diabetes

    PubMed Central

    Corvera, Silvia; Gealekman, Olga

    2013-01-01

    The growth and function of tissues is critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data point to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. PMID:23770388

  10. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis.

    PubMed

    Ridiandries, Anisyah; Tan, Joanne T M; Ravindran, Dhanya; Williams, Helen; Medbury, Heather J; Lindsay, Laura; Hawkins, Clare; Prosser, Hamish C G; Bursill, Christina A

    2017-03-01

    Increasing evidence shows that CC-chemokines promote inflammatory-driven angiogenesis, with little to no effect on hypoxia-mediated angiogenesis. Inhibition of the CC-chemokine class may therefore affect angiogenesis differently depending on the pathophysiological context. We compared the effect of CC-chemokine inhibition in inflammatory and physiological conditions. In vitro , the broad-spectrum CC-chemokine inhibitor "35K" inhibited inflammatory-induced endothelial cell proliferation, migration, and tubulogenesis, with more modest effects in hypoxia. In vivo , adenoviruses were used to overexpress 35K (Ad35K) and GFP (AdGFP, control virus). Plasma chemokine activity was suppressed by Ad35K in both models. In the periarterial femoral cuff model of inflammatory-driven angiogenesis, overexpression of 35K inhibited adventitial neovessel formation compared with control AdGFP-infused mice. In contrast, 35K preserved neovascularization in the hindlimb ischemia model and had no effect on physiological neovascularization in the chick chorioallantoic membrane assay. Mechanistically, 2 key angiogenic proteins (VEGF and hypoxia-inducible factor-1α) were conditionally regulated by 35K, such that expression was inhibited in inflammation but was unchanged in hypoxia. In conclusion, CC-chemokine inhibition by 35K suppresses inflammatory-driven angiogenesis while preserving physiological ischemia-mediated angiogenesis via conditional regulation of VEGF and hypoxia-inducible factor-1α. CC-chemokine inhibition may be an alternative therapeutic strategy for suppressing diseases associated with inflammatory angiogenesis without inducing the side effects caused by global inhibition.- Ridiandries, A., Tan, J. T. M., Ravindran, D., Williams, H., Medbury, H. J., Lindsay, L., Hawkins, C., Prosser, H. C. G., Bursill, C. A. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis. © FASEB.

  11. miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis.

    PubMed

    Sun, Xiaojuan; Charbonneau, Cherie; Wei, Lei; Chen, Qian; Terek, Richard M

    2015-09-01

    Chondrosarcoma is the most common primary malignant bone tumor in adults, has no effective systemic treatment, and patients with this disease have poor survival. Altered expression of microRNA (miR) is involved in tumorigenesis; however, its role in chondrosarcoma is undetermined. miR-181a is overexpressed in high-grade chondrosarcoma, is upregulated by hypoxia, and increases VEGF expression. Here, the purpose was to determine the mechanism of miR-181a regulation of VEGF, determine whether miR-181a overexpression promotes tumor progression, and to evaluate an antagomir-based approach for chondrosarcoma treatment. Therapeutic inhibition of miR-181a decreased expression of VEGF and MMP1 in vitro, and angiogenesis, MMP1 activity, tumor growth, and lung metastasis, all by more than 50%, in a xenograft mouse model. A target of miR-181a is a regulator of G-protein signaling 16 (RGS16), a negative regulator of CXC chemokine receptor 4 (CXCR4) signaling. CXCR4 signaling is increased in chondrosarcoma, its expression is also increased by hypoxia, and is associated with angiogenesis and metastasis; however, receptor blockade is only partially effective. RGS16 expression is restored after miR-181a inhibition and partially accounts for the antiangiogenic and antimetastatic effects of miR-181a inhibition. These data establish miR-181a as an oncomiR that promotes chondrosarcoma progression through a new mechanism involving enhancement of CXCR4 signaling by inhibition of RGS16. Targeting miR-181a can inhibit tumor angiogenesis, growth, and metastasis, thus suggesting the possibility of antagomir-based therapy in chondrosarcoma. ©2015 American Association for Cancer Research.

  12. Non-canonical NOTCH3 signalling limits tumour angiogenesis.

    PubMed

    Lin, Shuheng; Negulescu, Ana; Bulusu, Sirisha; Gibert, Benjamin; Delcros, Jean-Guy; Ducarouge, Benjamin; Rama, Nicolas; Gadot, Nicolas; Treilleux, Isabelle; Saintigny, Pierre; Meurette, Olivier; Mehlen, Patrick

    2017-07-18

    Notch signalling is a causal determinant of cancer and efforts have been made to develop targeted therapies to inhibit the so-called canonical pathway. Here we describe an unexpected pro-apoptotic role of Notch3 in regulating tumour angiogenesis independently of the Notch canonical pathway. The Notch3 ligand Jagged-1 is upregulated in a fraction of human cancer and our data support the view that Jagged-1, produced by cancer cells, is inhibiting the apoptosis induced by the aberrant Notch3 expression in tumour vasculature. We thus present Notch3 as a dependence receptor inducing endothelial cell death while this pro-apoptotic activity is blocked by Jagged-1. Along this line, using Notch3 mutant mice, we demonstrate that tumour growth and angiogenesis are increased when Notch3 is silenced in the stroma. Consequently, we show that the well-documented anti-tumour effect mediated by γ-secretase inhibition is at least in part dependent on the apoptosis triggered by Notch3 in endothelial cells.

  13. Non-canonical NOTCH3 signalling limits tumour angiogenesis

    PubMed Central

    Lin, Shuheng; Negulescu, Ana; Bulusu, Sirisha; Gibert, Benjamin; Delcros, Jean-Guy; Ducarouge, Benjamin; Rama, Nicolas; Gadot, Nicolas; Treilleux, Isabelle; Saintigny, Pierre; Meurette, Olivier; Mehlen, Patrick

    2017-01-01

    Notch signalling is a causal determinant of cancer and efforts have been made to develop targeted therapies to inhibit the so-called canonical pathway. Here we describe an unexpected pro-apoptotic role of Notch3 in regulating tumour angiogenesis independently of the Notch canonical pathway. The Notch3 ligand Jagged-1 is upregulated in a fraction of human cancer and our data support the view that Jagged-1, produced by cancer cells, is inhibiting the apoptosis induced by the aberrant Notch3 expression in tumour vasculature. We thus present Notch3 as a dependence receptor inducing endothelial cell death while this pro-apoptotic activity is blocked by Jagged-1. Along this line, using Notch3 mutant mice, we demonstrate that tumour growth and angiogenesis are increased when Notch3 is silenced in the stroma. Consequently, we show that the well-documented anti-tumour effect mediated by γ-secretase inhibition is at least in part dependent on the apoptosis triggered by Notch3 in endothelial cells. PMID:28719575

  14. Ta1722, an anti-angiogenesis inhibitor targeted on VEGFR-2 against human hepatoma.

    PubMed

    Zheng, Lei; He, Xu; Ma, Weina; Dai, Bingling; Zhan, Yingzhuan; Zhang, Yanmin

    2012-10-01

    In order to investigate the anti-angiogenesis potential and related mechanisms of Ta1722 (a novel taspine derivative compound), a series of experiments in vivo and in vitro were carried out. The proliferation on human cell lines of SMMC-7721, A549, MCF-7, Lovo, and ECV304 was examined by MTT. Angiogenesis inhibition was examined by chick embryo chorioallantoic membrane (CAM) angiogenesis and tube formation assays. Related angiogenesis proteins and their mRNA expression were determined by western blotting and RT-PCR. In addition, the SMMC-7721 nude mouse xenotransplant model was used to evaluate the inhibition of tumor growth. The results showed that Ta1722 inhibited cell proliferation, angiogenesis of CAM and tube formation, and downregulated related positive angiogenesis proteins. The above indicated Ta1722 could serve as a promising candidate of angiogenesis inhibitors by interrupting the VEGF/VEGFR-2 pathway. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis and immunotherapy

    PubMed Central

    Okkenhaug, Klaus; Graupera, Mariona; Vanhaesebroeck, Bart

    2017-01-01

    The PI3K pathway is hyperactivated in most cancers, yet the capacity of PI3K inhibitors to induce tumor cell death is limited. The efficacy of PI3K inhibition can also derive from interference with the cancer cells’ ability to respond to stromal signals, as illustrated by the approved PI3Kδ inhibitor Idelalisib in B-cell malignancies. Inhibition of the leukocyte-enriched PI3Kδ or PI3Kγ may unleash more potent anti-tumor T-cell responses, by inhibiting regulatory T-cells and immune-suppressive myeloid cells. Moreover, tumor angiogenesis may be targeted by PI3K inhibitors to enhance cancer therapy. Future work should therefore focus on the effects of PI3K inhibitors on the stroma, in addition to their direct effects on tumors. Significance The PI3K pathway extends beyond the direct regulation of cancer cell proliferation and survival. In B-cell malignancies, targeting PI3K purges the tumor cells from their protective microenvironment. Moreover, we propose that PI3K isoform-selective inhibitors may be exploited in the context of cancer immunotherapy and by targeting angiogenesis to improve drug and immune cell delivery. PMID:27655435

  16. Apurinic/apyrimidinic endonuclease 1 regulates angiogenesis in a transforming growth factor β-dependent manner in human osteosarcoma.

    PubMed

    Jiang, Xuan; Shan, Jinlu; Dai, Nan; Zhong, Zhaoyang; Qing, Yi; Yang, Yuxing; Zhang, Shiheng; Li, Chongyi; Sui, Jiangdong; Ren, Tao; Li, Mengxia; Wang, Dong

    2015-10-01

    Angiogenesis plays an important role in tumor growth and metastasis and has been reported to be inversely correlated with overall survival of osteosarcoma patients. It has been shown that apurinic/apyrimidinic endonuclease 1 (APE1), a dually functional protein possessing both base excision repair and redox activities, is involved in tumor angiogenesis, although these mechanisms are not fully understood. Our previous study showed that the expression of transforming growth factor β (TGFβ) was significantly reduced in APE1-deficient osteosarcoma cells. Transforming growth factor β promotes cancer metastasis through various mechanisms including immunosuppression, angiogenesis, and invasion. In the current study, we initially revealed that APE1, TGFβ, and microvessel density (MVD) have pairwise correlation in osteosarcoma tissue samples, whereas TGFβ, tumor size, and MVD were inversely related to the prognosis of the cohort. We found that knocking down APE1 in osteosarcoma cells resulted in TGFβ downregulation. In addition, APE1-siRNA led to suppression of angiogenesis in vitro based on HUVECs in Transwell and Matrigel tube formation assays. Reduced secretory protein level of TGFβ of culture medium also resulted in decreased phosphorylation of Smad3 of HUVECs. In a mouse xenograft model, siRNA-mediated silencing of APE1 downregulated TGFβ expression, tumor size, and MVD. Collectively, the current evidence indicates that APE1 regulates angiogenesis in osteosarcoma by controlling the TGFβ pathway, suggesting a novel target for anti-angiogenesis therapy in human osteosarcoma. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  17. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis.

    PubMed

    Manieri, Nicholas A; Mack, Madison R; Himmelrich, Molly D; Worthley, Daniel L; Hanson, Elaine M; Eckmann, Lars; Wang, Timothy C; Stappenbeck, Thaddeus S

    2015-09-01

    Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I₂ (PGI₂) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair.

  18. Orbital Atherectomy for Treating De Novo Severely Calcified Coronary Narrowing (1-Year Results from the Pivotal ORBIT II Trial).

    PubMed

    Généreux, Philippe; Lee, Arthur C; Kim, Christopher Y; Lee, Michael; Shlofmitz, Richard; Moses, Jeffrey W; Stone, Gregg W; Chambers, Jeff W

    2015-06-15

    Percutaneous coronary intervention of severely calcified lesions has historically been associated with major adverse cardiac event (MACE) rates as high as 30%. In the ORBIT II (Evaluate the Safety and Efficacy of OAS in Treating Severely Calcified Coronary Lesions) trial, treatment of de novo severely calcified lesions with the Diamondback 360° Coronary Orbital Atherectomy System (OAS) resulted in low rates of procedural and 30-day adverse ischemic events. The long-term results from this trial have not been reported. We sought to determine the 1-year outcomes after orbital atherectomy of severely calcified coronary lesions. ORBIT II was a single-arm trial enrolling 443 subjects at 49 US sites with severely calcified lesions usually excluded from randomized trials. OAS utilizes a centrifugal differential sanding mechanism of action for plaque modification prior to stent implantation. After OAS drug-eluting stents were implanted in 88.2% of the patients. The primary safety end point was 30-day MACE, the composite of cardiac death, myocardial infarction, or target vessel revascularization [TVR]. The present analysis reports the 1-year follow-up results from ORBIT II. One-year data were available in 433 of 443 patients (97.7%), with median follow-up time of 16.7 months. The 1-year MACE rate was 16.4%, including cardiac death (3.0%), myocardial infarction (9.7%), and target vessel revascularization (5.9%). The 1-year target lesion revascularization rate was 4.7%, and stent thrombosis occurred in 1 patient (0.2%). Independent predictors of 1-year MACE and target vessel revascularization were diameter stenosis at baseline and the use of bare-metal stents. In patients with severely calcified lesions who underwent percutaneous coronary intervention, the use of OAS was associated with low rates of 1-year adverse ischemic events compared with historical controls. This finding has important clinical implications for the selection of optimum treatment strategies for patients

  19. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future.

  20. Large calcified subdural empyema.

    PubMed

    Sarkar, S; Mazumder, U; Chowdhury, D; Dey, S K; Hossain, M; Nag, U K; Riaz, B K

    2012-04-01

    Subdural empyema is a known disease entity; however, calcified subdural empyema is uncommon. The authors present a case of an 11-year-old boy in whom there was diagnosed a chronic calcified subdural empyema 10 years after an attack of meningitis. The patient had suffered from generalized tonic clonic seizures occurring 2-6 times in a month. A large fronto-temporo-parietal craniotomy was carried out and the subdural empyema filled with numerous uncharacteristic tissue fragments with thick pus together with the partially calcified and ossified capsule was removed. The empyema mass was found to be sterile for bacteria. After the operation, no epileptic seizure occurred and the boy is on sodium valporate. We must emphasize the unusual occurrence of the chronic subdural empyema presenting with calcification-ossification and large size as observed in our case.

  1. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-α pathway.

    PubMed

    Lee, Hsiang-Ping; Lin, Chih-Yang; Shih, Jhao-Sheng; Fong, Yi-Chin; Wang, Shih-Wei; Li, Te-Mao; Tang, Chih-Hsin

    2015-11-03

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. On the other hand, angiogenesis is a critical step in tumor growth and metastasis. However, the relationship of adiponectin with vascular endothelial growth factor-A (VEGF-A) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study we first demonstrated that the expression of adiponectin was correlated with tumor stage of human chondrosarcoma tissues. In addition, we also found that adiponectin increased VEGF-A expression in human chondrosarcoma cells and subsequently induced migration and tube formation in human endothelial progenitor cells (EPCs). Adiponectin promoted VEGF-A expression through adiponectin receptor (AdipoR), phosphoinositide 3 kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF)-1α signaling cascades. Knockdown of adiponectin decreased VEGF-A expression and also abolished chondrosarcoma conditional medium-mediated tube formation in EPCs in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. Therefore, adiponectin is crucial for tumor angiogenesis and growth, which may represent a novel target for anti-angiogenic therapy in human chondrosarcoma.

  2. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-α pathway

    PubMed Central

    Shih, Jhao-Sheng; Fong, Yi-Chin; Wang, Shih-Wei; Li, Te-Mao; Tang, Chih-Hsin

    2015-01-01

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. On the other hand, angiogenesis is a critical step in tumor growth and metastasis. However, the relationship of adiponectin with vascular endothelial growth factor-A (VEGF-A) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study we first demonstrated that the expression of adiponectin was correlated with tumor stage of human chondrosarcoma tissues. In addition, we also found that adiponectin increased VEGF-A expression in human chondrosarcoma cells and subsequently induced migration and tube formation in human endothelial progenitor cells (EPCs). Adiponectin promoted VEGF-A expression through adiponectin receptor (AdipoR), phosphoinositide 3 kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF)-1α signaling cascades. Knockdown of adiponectin decreased VEGF-A expression and also abolished chondrosarcoma conditional medium-mediated tube formation in EPCs in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. Therefore, adiponectin is crucial for tumor angiogenesis and growth, which may represent a novel target for anti-angiogenic therapy in human chondrosarcoma. PMID:26468982

  3. Protein Kinase D-dependent Phosphorylation and Nuclear Export of Histone Deacetylase 5 Mediates Vascular Endothelial Growth Factor-induced Gene Expression and Angiogenesis*S⃞

    PubMed Central

    Ha, Chang Hoon; Wang, Weiye; Jhun, Bong Sook; Wong, Chelsea; Hausser, Angelika; Pfizenmaier, Klaus; McKinsey, Timothy A.; Olson, Eric N.; Jin, Zheng-Gen

    2008-01-01

    Vascular endothelial growth factor (VEGF) is essential for normal and pathological angiogenesis. However, the signaling pathways linked to gene regulation in VEGF-induced angiogenesis are not fully understood. Here we demonstrate a critical role of protein kinase D (PKD) and histone deacetylase 5 (HDAC5) in VEGF-induced gene expression and angiogenesis. We found that VEGF stimulated HDAC5 phosphorylation and nuclear export in endothelial cells through a VEGF receptor 2-phospholipase Cγ-protein kinase C-PKD-dependent pathway. We further showed that the PKD-HDAC5 pathway mediated myocyte enhancer factor-2 transcriptional activation and a specific subset of gene expression in response to VEGF, including NR4A1, an orphan nuclear receptor involved in angiogenesis. Specifically, inhibition of PKD by overexpression of the PKD kinase-negative mutant prevents VEGF-induced HDAC5 phosphorylation and nuclear export as well as NR4A1 induction. Moreover, a mutant of HDAC5 specifically deficient in PKD-dependent phosphorylation inhibited VEGF-mediated NR4A1 expression, endothelial cell migration, and in vitro angiogenesis. These findings suggest that the PKD-HDAC5 pathway plays an important role in VEGF regulation of gene transcription and angiogenesis. PMID:18332134

  4. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    DTIC Science & Technology

    2008-08-01

    AD_________________ Award Number: W81XWH-04-1-0697 TITLE: Alpha -v Integrin Targeted PET Imaging of...SUBTITLE 5a. CONTRACT NUMBER Alpha -v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low- Dose Metronomic Anti-Angiogenic...Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide-paclitaxel conjugate in mice with breast cancer” was published in Eur J Nucl

  5. [Virtual screening of anti-angiogenesis flavonoids from Sophora flavescens].

    PubMed

    Chen, Xi-Xin; Liu, Yi; Huang, Rong; Zhao, Lin-Lin; Chen, Lei; Wang, Shu-Mei

    2017-03-01

    Angiogenesis is a dynamic, multi-step process. It is known that about 70 diseases are related to angiogenesis. Both the experimental and the literature reports showed that Sophora flavescens inhibit angiogenesis significantly, but the material basis and the mechanism of action have not been clear. In this study, molecular docking was used for screening of anti-angiogenesis flavonoids from the roots of S. flavescens. One handred and twenty-six flavonoids selected from S. flavescens were screened in the docking ligand database with six targets(VEGF-a,TEK,KDR,Flt1,FGFR1 and FGFR2) as the receptors. In addition, the small-molecule approved drugs of targets from DrugBank database were set as a reference with minimum score of each target's approved drugs as threshold. The LibDock module in Discovery Studio 2.5 (DS2.5) software was applied to screen the compounds. As a result, 37 compounds were screened out that their scores were higher than the minimum score of approved drugs as well as being in the top of 10%. At last the mechanism of flavonoids anti-angiogenesis was preliminarily revealed, which provided a new method for the development of angiogenesis inhibitor drugs. Copyright© by the Chinese Pharmaceutical Association.

  6. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth.

    PubMed

    Lyu, Junfang; Yang, Eun Ju; Head, Sarah A; Ai, Nana; Zhang, Baoyuan; Wu, Changjie; Li, Ruo-Jing; Liu, Yifan; Yang, Chen; Dang, Yongjun; Kwon, Ho Jeong; Ge, Wei; Liu, Jun O; Shim, Joong Sup

    2017-11-28

    Cholesterol is an important modulator of membrane protein function and signaling in endothelial cells, thus making it an emerging target for anti-angiogenic agents. In this study, we employed a phenotypic screen that detects intracellular cholesterol distribution in endothelial cells (HUVEC) and identified 13 existing drugs as cholesterol trafficking inhibitors. Cepharanthine, an approved drug for anti-inflammatory and cancer management use, was amongst the candidates, which was selected for in-depth mechanistic studies to link cholesterol trafficking and angiogenesis. Cepharanthine inhibited the endolysosomal trafficking of free-cholesterol and low-density lipoprotein in HUVEC by binding to Niemann-Pick disease, type C1 (NPC1) protein and increasing the lysosomal pH. The blockade of cholesterol trafficking led to a cholesterol-dependent dissociation of mTOR from the lysosomes and inhibition of its downstream signaling. Cepharanthine inhibited angiogenesis in HUVEC and in zebrafish in a cholesterol-dependent manner. Furthermore, cepharanthine suppressed tumor growth in vivo by inhibiting angiogenesis and it enhanced the antitumor activity of the standard chemotherapy cisplatin in lung and breast cancer xenografts in mice. Altogether, these results strongly support the idea that cholesterol trafficking is a viable drug target for anti-angiogenesis and that the inhibitors identified among existing drugs, such as cepharanthine, could be potential anti-angiogenic and antitumor agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Paclitaxel targets VEGF-mediated angiogenesis in ovarian cancer treatment

    PubMed Central

    Ai, Bin; Bie, Zhixin; Zhang, Shuai; Li, Ailing

    2016-01-01

    Ovarian cancer is one of the gynecologic cancers with the highest mortality, wherein vascular endothelial growth factor (VEGF) is involved in regulating tumor vascularization, growth, migration, and invasion. VEGF-mediated angiogenesis in tumors has been targeted in various cancer treatments, and anti-VEGF therapy has been used clinically for treatment of several types of cancer. Paclitaxel is a natural antitumor agent in the standard front-line treatment that has significant efficiency to treat advanced cancers, including ovarian cancer. Although platinum/paclitaxel-based chemotherapy has good response rates, most patients eventually relapse because the disease develops drug resistance. We aim to review the recent advances in paclitaxel treatment of ovarian cancer via antiangiogenesis. Single-agent therapy may be used in selected cases of ovarian cancer. However, to prevent drug resistance, drug combinations should be identified for optimal effectiveness and existing therapies should be improved. PMID:27648354

  8. Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma

    PubMed Central

    Dong, R; Liu, G-B; Liu, B-H; Chen, G; Li, K; Zheng, S; Dong, K-R

    2016-01-01

    Hepatoblastoma is the most common liver tumor of early childhood, which is usually characterized by unusual hypervascularity. Recently, long non-coding RNAs (lncRNA) have emerged as gene regulators and prognostic markers in several cancers, including hepatoblastoma. We previously reveal that lnRNA-TUG1 is upregulated in hepatoblastoma specimens by microarray analysis. In this study, we aim to elucidate the biological and clinical significance of TUG1 upregulation in hepatoblastoma. We show that TUG1 is significantly upregulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. TUG1 knockdown inhibits tumor growth and angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, migration, and invasion in vitro. TUG1, miR-34a-5p, and VEGFA constitutes to a regulatory network, and participates in regulating hepatoblastoma cell function, tumor progression, and tumor angiogenesis. Overall, our findings indicate that TUG1 upregulation contributes to unusual hypervascularity of hepatoblastoma. TUG1 is a promising therapeutic target for aggressive, recurrent, or metastatic hepatoblastoma. PMID:27362796

  9. Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma.

    PubMed

    Dong, R; Liu, G-B; Liu, B-H; Chen, G; Li, K; Zheng, S; Dong, K-R

    2016-06-30

    Hepatoblastoma is the most common liver tumor of early childhood, which is usually characterized by unusual hypervascularity. Recently, long non-coding RNAs (lncRNA) have emerged as gene regulators and prognostic markers in several cancers, including hepatoblastoma. We previously reveal that lnRNA-TUG1 is upregulated in hepatoblastoma specimens by microarray analysis. In this study, we aim to elucidate the biological and clinical significance of TUG1 upregulation in hepatoblastoma. We show that TUG1 is significantly upregulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. TUG1 knockdown inhibits tumor growth and angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, migration, and invasion in vitro. TUG1, miR-34a-5p, and VEGFA constitutes to a regulatory network, and participates in regulating hepatoblastoma cell function, tumor progression, and tumor angiogenesis. Overall, our findings indicate that TUG1 upregulation contributes to unusual hypervascularity of hepatoblastoma. TUG1 is a promising therapeutic target for aggressive, recurrent, or metastatic hepatoblastoma.

  10. Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide

    NASA Astrophysics Data System (ADS)

    Lebrato, M.; Andersson, A. J.; Ries, J. B.; Aronson, R. B.; Lamare, M. D.; Koeve, W.; Oschlies, A.; Iglesias-Rodriguez, M. D.; Thatje, S.; Amsler, M.; Vos, S. C.; Jones, D. O. B.; Ruhl, H. A.; Gates, A. R.; McClintock, J. B.

    2016-07-01

    Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms that build CaCO3 structures. A large proportion of benthic marine calcifiers incorporate Mg2+ into their skeletons (Mg-calcite), which, in general, reduces mineral stability. The relative vulnerability of some marine calcifiers to ocean acidification appears linked to the relative solubility of their shell or skeletal mineralogy, although some organisms have sophisticated mechanisms for constructing and maintaining their CaCO3 structures causing deviation from this dependence. Nevertheless, few studies consider seawater saturation state with respect to the actual Mg-calcite mineralogy (ΩMg-x) of a species when evaluating the effect of ocean acidification on that species. Here, a global dataset of skeletal mole % MgCO3 of benthic calcifiers and in situ environmental conditions spanning a depth range of 0 m (subtidal/neritic) to 5600 m (abyssal) was assembled to calculate in situ ΩMg-x. This analysis shows that 24% of the studied benthic calcifiers currently experience seawater mineral undersaturation (ΩMg-x < 1). As a result of ongoing anthropogenic ocean acidification over the next 200 to 3000 years, the predicted decrease in seawater mineral saturation will expose approximately 57% of all studied benthic calcifying species to seawater undersaturation. These observations reveal a surprisingly high proportion of benthic marine calcifiers exposed to seawater that is undersaturated with respect to their skeletal mineralogy, underscoring the importance of using species-specific seawater mineral saturation states when investigating the impact of CO2-induced ocean acidification on benthic marine calcification.

  11. Why marine phytoplankton calcify.

    PubMed

    Monteiro, Fanny M; Bach, Lennart T; Brownlee, Colin; Bown, Paul; Rickaby, Rosalind E M; Poulton, Alex J; Tyrrell, Toby; Beaufort, Luc; Dutkiewicz, Stephanie; Gibbs, Samantha; Gutowska, Magdalena A; Lee, Renee; Riebesell, Ulf; Young, Jeremy; Ridgwell, Andy

    2016-07-01

    Calcifying marine phytoplankton-coccolithophores- are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know "why" coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming.

  12. Why marine phytoplankton calcify

    PubMed Central

    Monteiro, Fanny M.; Bach, Lennart T.; Brownlee, Colin; Bown, Paul; Rickaby, Rosalind E. M.; Poulton, Alex J.; Tyrrell, Toby; Beaufort, Luc; Dutkiewicz, Stephanie; Gibbs, Samantha; Gutowska, Magdalena A.; Lee, Renee; Riebesell, Ulf; Young, Jeremy; Ridgwell, Andy

    2016-01-01

    Calcifying marine phytoplankton—coccolithophores— are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know “why” coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming. PMID:27453937

  13. Imaging angiogenesis.

    PubMed

    Charnley, Natalie; Donaldson, Stephanie; Price, Pat

    2009-01-01

    There is a need for direct imaging of effects on tumor vasculature in assessment of response to antiangiogenic drugs and vascular disrupting agents. Imaging tumor vasculature depends on differences in permeability of vasculature of tumor and normal tissue, which cause changes in penetration of contrast agents. Angiogenesis imaging may be defined in terms of measurement of tumor perfusion and direct imaging of the molecules involved in angiogenesis. In addition, assessment of tumor hypoxia will give an indication of tumor vasculature. The range of imaging techniques available for these processes includes positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), perfusion computed tomography (CT), and ultrasound (US).

  14. Orbital atherectomy for treating de novo, severely calcified coronary lesions: 3-year results of the pivotal ORBIT II trial.

    PubMed

    Lee, Michael; Généreux, Philippe; Shlofmitz, Richard; Phillipson, Daniel; Anose, Bynthia M; Martinsen, Brad J; Himmelstein, Stevan I; Chambers, Jeff W

    2017-06-01

    The presence of heavy coronary artery calcification increases the complexity of percutaneous coronary intervention (PCI) and increases the incidence of major adverse cardiac events (MACE): death, myocardial infarction (MI), target vessel revascularization (TVR), and stent thrombosis. The ORBIT II (Evaluate the Safety and Efficacy of OAS in Treating Severely Calcified Coronary Lesions) trial reported low rates of procedural, 30-day, 1-year, and 2-year ischemic complications after treatment of de novo, severely calcified lesions with the Diamondback 360° Coronary Orbital Atherectomy System (OAS) (Cardiovascular Systems, Inc.). ORBIT II was a single-arm trial that enrolled 443 patients at 49U.S. sites; in this study, de novo, severely calcified coronary lesions were treated with OAS prior to stenting. The primary safety endpoint was 30-day MACE: the composite of cardiac death, MI, and TVR (inclusive of target lesion revascularization (TLR)). The primary efficacy endpoint was procedural success: stent delivery with a residual stenosis of <50% without the occurrence of in-hospital MACE.The present analysis reports the final, 3-year follow-up results from ORBIT II. The majority of subjects (88.2%) underwent PCI with drug-eluting stents after orbital atherectomy. There were 360 (81.3%) subjects who completed the protocol-mandated 3-year visit.The overall cumulative rate of 3-year MACE was 23.5%, including cardiac death (6.7%), MI (11.2%), and TVR (10.2%). The 3-year target lesion revascularization rate was 7.8%. In the final 3-year analysis of the ORBIT II trial, orbital atherectomy of severely calcified coronary lesions followed by stenting resulted in a low rate of adverse ischemic events compared with historical controls.Orbital atherectomy represents a safe and effective revascularization strategy for patients with severely calcified coronary lesions. The ORBIT II trial enrolled 443 subjects to study orbital atherectomy followed by stenting for de novo severely

  15. The Role of NOX4 and TRX2 in Angiogenesis and Their Potential Cross-Talk

    PubMed Central

    Chen, Chaofei; Li, Li; Zhou, Huanjiao Jenny; Min, Wang

    2017-01-01

    The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) family is the major source of reactive oxygen species (ROS) in the vascular system. In this family, NOX4, a constitutive active form of NOXs, plays an important role in angiogenesis. Thioredoxin 2 (TRX2) is a key mitochondrial redox protein that maintains normal protein function and also provides electrons to peroxiredoxin 3 (PRX3) to scavenge H2O2 in mitochondria. Angiogenesis, a process of new blood vessel formation, is involved in a variety of physiological processes and pathological conditions. It seems to be paradoxical for ROS-producing NOX4 and ROS-scavenging TRX2 to have a similar role in promoting angiogenesis. In this review, we will focus on data supporting the role of NOX4 and TRX2 in angiogenesis and their cross-talks and discuss how ROS can positively or negatively regulate angiogenesis, depending on their species, levels and locations. NOX4 and TRX2-mediated ROS signaling could be promising targets for the treatment of angiogenesis-related diseases. PMID:28594389

  16. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levelsmore » in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.« less

  17. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis

    PubMed Central

    Manieri, Nicholas A.; Mack, Madison R.; Himmelrich, Molly D.; Worthley, Daniel L.; Hanson, Elaine M.; Eckmann, Lars; Wang, Timothy C.; Stappenbeck, Thaddeus S.

    2015-01-01

    Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I2 (PGI2) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair. PMID:26280574

  18. TEM8 May Be a Better Anti-Angiogenesis Target | Center for Cancer Research

    Cancer.gov

    Anti-angiogenesis agents have improved the efficacy of many treatment strategies for solid tumors, but their ability to inhibit tumor vasculature is often incomplete and comes at a price, namely, side effects that can harm normal tissues including blood vessels. As a result, tumor angiogenesis is seldom completely halted, and both angiogenesis and tumor growth inevitably

  19. TEM8 May Be a Better Anti-Angiogenesis Target | Center for Cancer Research

    Cancer.gov

    Anti-angiogenesis agents have improved the efficacy of many treatment strategies for solid tumors, but their ability to inhibit tumor vasculature is often incomplete and comes at a price, namely, side effects that can harm normal tissues including blood vessels. As a result, tumor angiogenesis is seldom completely halted, and both angiogenesis and tumor growth inevitably progress.

  20. How ocean acidification can benefit calcifiers.

    PubMed

    Connell, Sean D; Doubleday, Zoë A; Hamlyn, Sarah B; Foster, Nicole R; Harley, Christopher D G; Helmuth, Brian; Kelaher, Brendan P; Nagelkerken, Ivan; Sarà, Gianluca; Russell, Bayden D

    2017-02-06

    Reduction in seawater pH due to rising levels of anthropogenic carbon dioxide (CO 2 ) in the world's oceans is a major force set to shape the future of marine ecosystems and the ecological services they provide [1,2]. In particular, ocean acidification is predicted to have a detrimental effect on the physiology of calcifying organisms [3]. Yet, the indirect effects of ocean acidification on calcifying organisms, which may counter or exacerbate direct effects, is uncertain. Using volcanic CO 2 vents, we tested the indirect effects of ocean acidification on a calcifying herbivore (gastropod) within the natural complexity of an ecological system. Contrary to predictions, the abundance of this calcifier was greater at vent sites (with near-future CO 2 levels). Furthermore, translocation experiments demonstrated that ocean acidification did not drive increases in gastropod abundance directly, but indirectly as a function of increased habitat and food (algal biomass). We conclude that the effect of ocean acidification on algae (primary producers) can have a strong, indirect positive influence on the abundance of some calcifying herbivores, which can overwhelm any direct negative effects. This finding points to the need to understand ecological processes that buffer the negative effects of environmental change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Beta-Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP-Dependent Mechanism and Wound Angiogenesis.

    PubMed

    O'Leary, Andrew P; Fox, James M; Pullar, Christine E

    2015-02-01

    Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. © 2014 The Authors. Journal of Cellular Physiology Published by

  2. Angiogenesis-regulating microRNAs and ischemic stroke

    PubMed Central

    Yin, Ke-Jie; Hamblin, Milton; Chen, Y. Eugene

    2014-01-01

    Stroke is a leading cause of death and disability worldwide. Ischemic stroke is the dominant subtype of stroke and results from focal cerebral ischemia due to occlusion of major cerebral arteries. Thus, the restoration or improvement of reduced regional cerebral blood supply in a timely manner is very critical for improving stroke outcomes and post-stroke functional recovery. The recovery from ischemic stroke largely relies on appropriate restoration of blood flow via angiogenesis. Newly formed vessels would allow increased cerebral blood flow, thus increasing the amount of oxygen and nutrients delivered to affected brain tissue. Angiogenesis is strictly controlled by many key angiogenic factors in the central nervous system, and these molecules have been well-documented to play an important role in the development of angiogenesis in response to various pathological conditions. Promoting angiogenesis via various approaches that target angiogenic factors appears to be a useful treatment for experimental ischemic stroke. Most recently, microRNAs (miRs) have been identified as negative regulators of gene expression in a post-transcriptional manner. Accumulating studies have demonstrated that miRs are essential determinants of vascular endothelial cell biology/angiogenesis as well as contributors to stroke pathogenesis. In this review, we summarize the knowledge of stroke-associated angiogenic modulators, as well as the role and molecular mechanisms of stroke-associated miRs with a focus on angiogenesis-regulating miRs. Moreover, we further discuss their potential impact on miR-based therapeutics in stroke through targeting and enhancing post-ischemic angiogenesis. PMID:26156265

  3. Angiomodulin is a specific marker of vasculature and regulates VEGF-A dependent neo-angiogenesis

    PubMed Central

    Hooper, Andrea T.; Shmelkov, Sergey V.; Gupta, Sunny; Milde, Till; Bambino, Kathryn; Gillen, Kelly; Goetz, Mollie; Chavala, Sai; Baljevic, Muhamed; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; Vahdat, Linda; Evans, Todd; Rafii, Shahin

    2010-01-01

    Blood vessel formation is controlled by the balance between pro- and anti-angiogenic pathways. Although much is known about the factors that drive sprouting of neovessels, the factors that stabilize and pattern neovessels are undefined. The expression of angiomodulin (AGM), a VEGF-A binding protein, was increased in the vasculature of several human tumors as compared to normal tissue, raising the hypothesis that AGM may modulate VEGF-A-dependent vascular patterning. To elucidate the expression pattern of AGM, we developed an AGM knockin reporter mouse (AGMlacZ/+) wherein we demonstrate that AGM is predominantly expressed in the vasculature of developing embryos and adult organs. During physiological and pathological angiogenesis, AGM is upregulated in the angiogenic vasculature. Using the zebrafish model, we found that AGM is restricted to developing vasculature by 17-22 hpf. Blockade of AGM activity with morpholino oligomers (MO) results in prominent angiogenesis defects in vascular sprouting and remodeling. Concurrent knockdown of both AGM and VEGF-A results in synergistic angiogenesis defects. When VEGF-A is overexpressed, the compensatory induction of the VEGF-A receptor, VEGFR-2/flk-1, is blocked by the simultaneous injection of AGM MO. These results demonstrate that the vascular-specific marker AGM modulates vascular remodeling in part by temporizing the pro-angiogenic effects of VEGF-A. PMID:19542015

  4. Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; D'Olivo, Juan P.; Foster, Taryn; Holcomb, Michael; Becker, Thomas; McCulloch, Malcolm T.

    2017-11-01

    Quantifying the saturation state of aragonite (ΩAr) within the calcifying fluid of corals is critical for understanding their biomineralization process and sensitivity to environmental changes including ocean acidification. Recent advances in microscopy, microprobes, and isotope geochemistry enable the determination of calcifying fluid pH and [CO32-], but direct quantification of ΩAr (where ΩAr = [CO32-][Ca2+]/Ksp) has proved elusive. Here we test a new technique for deriving ΩAr based on Raman spectroscopy. First, we analysed abiogenic aragonite crystals precipitated under a range of ΩAr from 10 to 34, and we found a strong dependence of Raman peak width on ΩAr with no significant effects of other factors including pH, Mg/Ca partitioning, and temperature. Validation of our Raman technique for corals is difficult because there are presently no direct measurements of calcifying fluid ΩAr available for comparison. However, Raman analysis of the international coral standard JCp-1 produced ΩAr of 12.3 ± 0.3, which we demonstrate is consistent with published skeletal Mg/Ca, Sr/Ca, B/Ca, δ11B, and δ44Ca data. Raman measurements are rapid ( ≤ 1 s), high-resolution ( ≤ 1 µm), precise (derived ΩAr ± 1 to 2 per spectrum depending on instrument configuration), accurate ( ±2 if ΩAr < 20), and require minimal sample preparation, making the technique well suited for testing the sensitivity of coral calcifying fluid ΩAr to ocean acidification and warming using samples from natural and laboratory settings. To demonstrate this, we also show a high-resolution time series of ΩAr over multiple years of growth in a Porites skeleton from the Great Barrier Reef, and we evaluate the response of ΩAr in juvenile Acropora cultured under elevated CO2 and temperature.

  5. Impaired angiogenesis in aminopeptidase N-null mice

    PubMed Central

    Rangel, Roberto; Sun, Yan; Guzman-Rojas, Liliana; Ozawa, Michael G.; Sun, Jessica; Giordano, Ricardo J.; Van Pelt, Carolyn S.; Tinkey, Peggy T.; Behringer, Richard R.; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata

    2007-01-01

    Aminopeptidase N (APN, CD13; EC 3.4.11.2) is a transmembrane metalloprotease with several functions, depending on the cell type and tissue environment. In tumor vasculature, APN is overexpressed in the endothelium and promotes angiogenesis. However, there have been no reports of in vivo inactivation of the APN gene to validate these findings. Here we evaluated, by targeted disruption of the APN gene, whether APN participates in blood vessel formation and function under normal conditions. Surprisingly, APN-null mice developed with no gross or histological abnormalities. Standard neurological, cardiovascular, metabolic, locomotor, and hematological studies revealed no alterations. Nonetheless, in oxygen-induced retinopathy experiments, APN-deficient mice had a marked and dose-dependent deficiency of the expected retinal neovascularization. Moreover, gelfoams embedded with growth factors failed to induce functional blood vessel formation in APN-null mice. These findings establish that APN-null mice develop normally without physiological alterations and can undergo physiological angiogenesis but show a severely impaired angiogenic response under pathological conditions. Finally, in addition to vascular biology research, APN-null mice may be useful reagents in other medical fields such as malignant, cardiovascular, immunological, or infectious diseases. PMID:17360568

  6. N-acetylcysteine inhibits endothelial cell invasion and angiogenesis.

    PubMed

    Cai, T; Fassina, G; Morini, M; Aluigi, M G; Masiello, L; Fontanini, G; D'Agostini, F; De Flora, S; Noonan, D M; Albini, A

    1999-09-01

    The thiol N-acetylcysteine (NAC) is a chemopreventive agent that acts through a variety of mechanisms and can prevent in vivo carcinogenesis. We have previously shown that NAC inhibits invasion and metastasis of malignant cells as well as tumor take. Neovascularization is critical for tumor mass expansion and metastasis formation. We investigated whether a target of the anti-cancer activity of NAC could be the inhibition of the tumor angiogenesis-associated phenotype in vitro and in vivo using the potent angiogenic mixture of Kaposi's sarcoma cell products as a stimulus. Two endothelial (EAhy926 and human umbilical vein endothelial [HUVE]) cell lines were utilized in a panel of assays to test NAC ability in inhibiting chemotaxis, invasion, and gelatinolytic activity in vitro. NAC treatment of EAhy926 and HUVE cells in vitro dose-dependently reduced their ability to invade a reconstituted basement membrane, an indicator of endothelial cell activation. Invasion of HUVE cells was inhibited with an ID50 of 0.24 mM NAC, whereas inhibition of chemotaxis required a 10 fold higher doses, indicating that invasion is a preferential target. NAC inhibited the enzymatic activity and conversion to active forms of the gelatinase produced by endothelial cells. The matrigel in vivo assay was used for the evaluation of angiogenesis; NAC strongly inhibited neovascularization of the matrigel sponges in response to Kaposi's sarcoma cell products. NAC prevented angiogenesis while preserving endothelial cells, implying that it could be safely used as an anti-angiogenic treatment.

  7. Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis.

    PubMed

    Imamaki, Rie; Ogawa, Kazuko; Kizuka, Yasuhiko; Komi, Yusuke; Kojima, Soichi; Kotani, Norihiro; Honke, Koichi; Honda, Takashi; Taniguchi, Naoyuki; Kitazume, Shinobu

    2018-05-02

    Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 -/- mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 -/- endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 -/- mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.

  8. Atherectomy for calcified coronary lesions: When and how?

    PubMed

    Karatasakis, Aris; Brilakis, Emmanouil S

    2016-03-01

    Percutaneous coronary intervention of heavily calcified lesions can be challenging. Although the ROTAXUS trial did not demonstrate long-term clinical benefit with routine rotational atherectomy, atherectomy remains an indispensable tool to achieve acute procedural success. Until new data becomes available determining when and how to optimally use coronary atherectomy depends heavily on personal experience and clinical judgment. © 2016 Wiley Periodicals, Inc.

  9. History of research on angiogenesis.

    PubMed

    Ribatti, Domenico

    2014-01-01

    Over the past 25 years, the number of Medline publications dealing with angiogenesis has increased in a nonlinear fashion, reflecting the interest among basic scientists and clinicians in this field. Under physiological conditions, angiogenesis is regulated by the local balance between endogenous stimulators and inhibitors of this process. In tumor growth, there is an imbalance between endogenous stimulator and inhibitor levels, leading to an 'angiogenic switch'. Starting with the hypothesis formulated by Judah Folkman that tumor growth is angiogenesis-dependent, this area of research has a solid scientific foundation and inhibition of angiogenesis is a major area of therapeutic development for the treatment of cancer. This paper offers an account of the most relevant discoveries in this field of biomedical research. Copyright © 2014 S. Karger AG, Basel.

  10. Celiac Disease–Specific TG2-Targeted Autoantibodies Inhibit Angiogenesis Ex Vivo and In Vivo in Mice by Interfering with Endothelial Cell Dynamics

    PubMed Central

    Kalliokoski, Suvi; Sulic, Ana-Marija; Korponay-Szabó, Ilma R.; Szondy, Zsuzsa; Frias, Rafael; Perez, Mileidys Alea; Martucciello, Stefania; Roivainen, Anne; Pelliniemi, Lauri J.; Esposito, Carla; Griffin, Martin; Sblattero, Daniele; Mäki, Markku; Kaukinen, Katri; Lindfors, Katri; Caja, Sergio

    2013-01-01

    A characteristic feature of celiac disease is the presence of circulating autoantibodies targeted against transglutaminase 2 (TG2), reputed to have a function in angiogenesis. In this study we investigated whether TG2-specific autoantibodies derived from celiac patients inhibit angiogenesis in both ex vivo and in vivo models and sought to clarify the mechanism behind this phenomenon. We used the ex vivo murine aorta-ring and the in vivo mouse matrigel-plug assays to address aforementioned issues. We found angiogenesis to be impaired as a result of celiac disease antibody supplementation in both systems. Our results also showed the dynamics of endothelial cells was affected in the presence of celiac antibodies. In the in vivo angiogenesis assays, the vessels formed were able to transport blood despite impairment of functionality after treatment with celiac autoantibodies, as revealed by positron emission tomography. We conclude that celiac autoantibodies inhibit angiogenesis ex vivo and in vivo and impair vascular functionality. Our data suggest that the anti-angiogenic mechanism of the celiac disease-specific autoantibodies involves extracellular TG2 and inhibited endothelial cell mobility. PMID:23824706

  11. Aortic calcified particles modulate valvular endothelial and interstitial cells.

    PubMed

    van Engeland, Nicole C A; Bertazzo, Sergio; Sarathchandra, Padmini; McCormack, Ann; Bouten, Carlijn V C; Yacoub, Magdi H; Chester, Adrian H; Latif, Najma

    Normal and calcified human valve cusps, coronary arteries, and aortae harbor spherical calcium phosphate microparticles of identical composition and crystallinity, and their role remains unknown. The objective was to examine the direct effects of isolated calcified particles on human valvular cells. Calcified particles were isolated from healthy and diseased aortae, characterized, quantitated, and applied to valvular endothelial cells (VECs) and interstitial cells (VICs). Cell differentiation, viability, and proliferation were analyzed. Particles were heterogeneous, differing in size and shape, and were crystallized as calcium phosphate. Diseased donors had significantly more calcified particles compared to healthy donors (P<.05), but there were no differences between the composition of the particles from healthy and diseased donors. VECs treated with calcified particles showed a significant decrease in CD31 and VE-cadherin and an increase in von Willebrand factor expression, P<.05. There were significantly increased α-SMA and osteopontin in treated VICs (P<.05), significantly decreased VEC and VIC viability (P<.05), and significantly increased number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive VECs (P<.05) indicating apoptosis when treated with the calcified particles. Isolated calcified particles from human aortae are not innocent bystanders but induce a phenotypical and pathological change of VECs and VICs characteristic of activated and pathological cells. Therapy tailored to reduce these calcified particles should be investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners

    PubMed Central

    Li, Yang; Lv, Zhaohui; Zhu, Jie; Lin, Jing; Ding, Lihua; Ye, Qinong

    2016-01-01

    The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis. PMID:26988756

  13. A phosphodiesterase 4B-dependent interplay between tumor cells and the microenvironment regulates angiogenesis in B-cell lymphoma

    PubMed Central

    Suhasini, Avvaru N.; Lin, An-Ping; Bhatnagar, Harshita; Kim, Sang-Woo; Moritz, August W.; Aguiar, Ricardo C. T.

    2015-01-01

    Angiogenesis associates with poor outcome in diffuse large B-cell lymphoma (DLBCL), but the contribution of the lymphoma cells to this process remains unclear. Addressing this knowledge gap may uncover unsuspecting proangiogenic signaling nodes and highlight alternative antiangiogenic therapies. Here we identify the second messenger cyclic-AMP (cAMP) and the enzyme that terminates its activity, phosphodiesterase 4B (PDE4B), as regulators of B-cell lymphoma angiogenesis. We first show that cAMP, in a PDE4B-dependent manner, suppresses PI3K/AKT signals to down-modulate VEGF secretion and vessel formation in vitro. Next, we create a novel mouse model that combines the lymphomagenic Myc transgene with germline deletion of Pde4b. We show that lymphomas developing in a Pde4b-null background display significantly lower microvessel density in association with lower VEGF levels and PI3K/AKT activity. We recapitulate these observations by treating lymphoma-bearing mice with the FDA-approved PDE4 inhibitor Roflumilast. Lastly, we show that primary human DLBCLs with high PDE4B expression display significantly higher microvessel density. Here, we defined an unsuspected signaling circuitry in which the cAMP generated in lymphoma cells downmodulates PI3K/AKT and VEGF secretion to negatively influence vessel development in the microenvironment. These data identify PDE4 as an actionable antiangiogenic target in DLBCL. PMID:26503641

  14. Targeting oncogenic KRAS in non-small cell lung cancer cells by phenformin inhibits growth and angiogenesis.

    PubMed

    Wang, Zhi Dong; Wei, Sheng Quan; Wang, Qin Yi

    2015-01-01

    Tumors require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors. Many potential oncogenic mutations have been identified in tumor angiogenesis. Somatic mutations in the small GTPase KRAS are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Biguanides, such as the diabetes therapeutics metformin and phenformin, have demonstrated anti-tumor activity both in vitro and in vivo. The extracellular regulated protein kinases (ERK) signaling is known to be a major cellular target of biguanides. Based on KRAS activates several down-stream effectors leading to the stimulation of the RAF/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAF/MEK/ERK) and phosphatidylinositol-3-kinase (PI3K) pathways, we investigated the anti-tumor effects of biguanides on the proliferation of KRAS-mutated tumor cells in vitro and on KRAS-driven tumor growth in vivo. In cancer cells harboring oncogenic KRAS, phenformin switches off the ERK pathway and inhibit the expression of pro-angiogenic molecules. In tumor xenografts harboring the KRAS mutation, phenformin extensively modifies the tumor growth causing abrogation of angiogenesis. These results strongly suggest that significant therapeutic advantage may be achieved by phenformin anti-angiogenesis for the treatment of tumor.

  15. Decursin inhibited proliferation and angiogenesis of endothelial cells to suppress diabetic retinopathy via VEGFR2.

    PubMed

    Yang, Ying; Yang, Ke; Li, Yiping; Li, Xianli; Sun, Qiangming; Meng, Hua; Zeng, Ying; Hu, Yong; Zhang, Ying

    2013-09-25

    Diabetes induces pathologic proliferation and angiogenesis in the retina that leads to catastrophic loss of vision. Decursin is a novel therapeutic that targets the vascular endothelial growth factor (VEGF) receptor (VEGFR) with putative anti-proliferative and anti-angiogenic activities. Thereby we utilized human retinal microvascular endothelial cells (HRMEC) and human umbilical vein endothelial cells (HUVEC) under conditions of excess glucose to explore dose-dependent responses of decursin on markers of migration, angiogenesis, and proliferation. Decursin dose-dependently inhibited tube formation, VEGFR-2 expression, along with relative metabolic activity and 5-bromo-2'-deoxy-uridine (BrdU) activity in both cell lines. We then correlated our findings to the streptozotocin-induced rat model of diabetes. Following three months of decursin treatment VEGFR-2 expression was significantly inhibited. Our data would suggest that decursin may be a potent anti-angiogenic and anti-proliferative agent targeting the VEGFR-2 signaling pathway, which significantly inhibits diabetic retinal neovascularization. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Orbital atherectomy for severely calcified lesions: More dissections in women but similar 30-day outcomes to men.

    PubMed

    Chandrasekhar, Jaya; Mehran, Roxana

    2016-03-01

    Calcified lesions are associated with lower rates of successful percutaneous coronary intervention (PCI), greater stent thrombosis, and increased target vessel revascularization. Women undergoing PCI are more often older than men and likely to present with severe lesion calcification. The ORBIT II study, for the first time compares the effect of the orbital atherectomy system (OAS) in men and women undergoing PCI for severely calcified lesions. Although the adjusted risk of severe dissections was higher in women, the incidence of in-hospital and 30-day outcomes was similar to men. Randomized comparisons of the OAS with rotational atherectomy and with stenting without atherectomy are needed to further elucidate sex-based differences in calcified lesion PCI. © 2016 Wiley Periodicals, Inc.

  17. Long Non-Coding RNA Malat1 Regulates Angiogenesis in Hindlimb Ischemia.

    PubMed

    Zhang, Xuejing; Tang, Xuelian; Hamblin, Milton H; Yin, Ke-Jie

    2018-06-11

    Angiogenesis is a complex process that depends on the delicate regulation of gene expression. Dysregulation of transcription during angiogenesis often leads to various human diseases. Emerging evidence has recently begun to show that long non-coding RNAs (lncRNAs) may mediate angiogenesis in both physiological and pathological conditions; concurrently, underlying molecular mechanisms are largely unexplored. Previously, our lab identified metastasis associates lung adenocarcinoma transcript 1 ( Malat1 ) as an oxygen-glucose deprivation (OGD)-responsive endothelial lncRNA. Here we reported that genetic deficiency of Malat1 leads to reduced blood vessel formation and local blood flow perfusion in mouse hind limbs at one to four weeks after hindlimb ischemia. Malat1 and vascular endothelial growth factor receptor 2 ( VEGFR2 ) levels were found to be increased in both cultured mouse primary skeletal muscle microvascular endothelial cells (SMMECs) after 16 h OGD followed by 24 h reperfusion and in mouse gastrocnemius muscle that underwent hindlimb ischemia followed by 28 days of reperfusion. Moreover, Malat1 silencing by locked nucleic acid (LNA)-GapmeRs significantly reduced tube formation, cell migration, and cell proliferation in SMMEC cultures. Mechanistically, RNA subcellular isolation and RNA-immunoprecipitation experiments demonstrate that Malat1 directly targets VEGFR2 to facilitate angiogenesis. The results suggest that Malat1 regulates cell-autonomous angiogenesis through direct regulation of VEGFR2.

  18. CS2164, a novel multi-target inhibitor against tumor angiogenesis, mitosis and chronic inflammation with anti-tumor potency.

    PubMed

    Zhou, You; Shan, Song; Li, Zhi-Bin; Xin, Li-Jun; Pan, De-Si; Yang, Qian-Jiao; Liu, Ying-Ping; Yue, Xu-Peng; Liu, Xiao-Rong; Gao, Ji-Zhou; Zhang, Jin-Wen; Ning, Zhi-Qiang; Lu, Xian-Ping

    2017-03-01

    Although inhibitors targeting tumor angiogenic pathway have provided improvement for clinical treatment in patients with various solid tumors, the still very limited anti-cancer efficacy and acquired drug resistance demand new agents that may offer better clinical benefits. In the effort to find a small molecule potentially targeting several key pathways for tumor development, we designed, discovered and evaluated a novel multi-kinase inhibitor, CS2164. CS2164 inhibited the angiogenesis-related kinases (VEGFR2, VEGFR1, VEGFR3, PDGFRα and c-Kit), mitosis-related kinase Aurora B and chronic inflammation-related kinase CSF-1R in a high potency manner with the IC 50 at a single-digit nanomolar range. Consequently, CS2164 displayed anti-angiogenic activities through suppression of VEGFR/PDGFR phosphorylation, inhibition of ligand-dependent cell proliferation and capillary tube formation, and prevention of vasculature formation in tumor tissues. CS2164 also showed induction of G2/M cell cycle arrest and suppression of cell proliferation in tumor tissues through the inhibition of Aurora B-mediated H3 phosphorylation. Furthermore, CS2164 demonstrated the inhibitory effect on CSF-1R phosphorylation that led to the suppression of ligand-stimulated monocyte-to-macrophage differentiation and reduced CSF-1R + cells in tumor tissues. The in vivo animal efficacy studies revealed that CS2164 induced remarkable regression or complete inhibition of tumor growth at well-tolerated oral doses in several human tumor xenograft models. Collectively, these results indicate that CS2164 is a highly selective multi-kinase inhibitor with potent anti-tumor activities against tumor angiogenesis, mitosis and chronic inflammation, which may provide the rationale for further clinical assessment of CS2164 as a therapeutic agent in the treatment of cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Peripheral calcifying cystic odontogenic tumour of the maxillary gingiva.

    PubMed

    de Lima, Ana Paula; Kitakawa, Dárcio; Almeida, Janete Dias; Brandão, Adriana Aigotti Haberbeck; Anbinder, Ana Lia

    2012-08-23

    Odontogenic tumors are lesions that are derived from remnants of the components of the developing tooth germ. The calcifying cystic odontogenic tumor or calcifying odontogenic cyst is a benign cystic neoplasm of odontogenic origin that is characterized by an ameloblastoma-like epithelium and ghost cells. Calcifying cystic odontogenic tumor may be centrally or peripherally located, and its ghost cells may exhibit calcification, as first described by Gorlin in 1962. Most peripheral calcifying cystic odontogenic tumors are located in the anterior gingiva of the mandible or maxilla. Authors report a rare case of a peripheral calcifying cystic odontogenic tumor of the maxillary gingiva. A 39-year-old male patient presented with a fibrous mass on the attached buccal gingiva of the upper left cuspid teeth. It was 0.7-cm-diameter, painless and it was clinically diagnosed as a peripheral ossifying fibroma. After an excisional biopsy, the diagnosis was peripheric calcifying cystic odontogenic tumor. The patient was monitored for five years following the excision, and no recurrence was detected. All biopsy material must be sent for histological examination. If the histological examination of gingival lesions with innocuous appearance is not performed, the frequency of peripheral calcifying cystic odontogenic tumor and other peripheral odontogenic tumors may be underestimated.

  20. Peripheral calcifying cystic odontogenic tumour of the maxillary gingiva

    PubMed Central

    2012-01-01

    Background Odontogenic tumors are lesions that are derived from remnants of the components of the developing tooth germ. The calcifying cystic odontogenic tumor or calcifying odontogenic cyst is a benign cystic neoplasm of odontogenic origin that is characterized by an ameloblastoma-like epithelium and ghost cells. Calcifying cystic odontogenic tumor may be centrally or peripherally located, and its ghost cells may exhibit calcification, as first described by Gorlin in 1962. Most peripheral calcifying cystic odontogenic tumors are located in the anterior gingiva of the mandible or maxilla. Case presentation Authors report a rare case of a peripheral calcifying cystic odontogenic tumor of the maxillary gingiva. A 39-year-old male patient presented with a fibrous mass on the attached buccal gingiva of the upper left cuspid teeth. It was 0.7-cm-diameter, painless and it was clinically diagnosed as a peripheral ossifying fibroma. After an excisional biopsy, the diagnosis was peripheric calcifying cystic odontogenic tumor. The patient was monitored for five years following the excision, and no recurrence was detected. Conclusions All biopsy material must be sent for histological examination. If the histological examination of gingival lesions with innocuous appearance is not performed, the frequency of peripheral calcifying cystic odontogenic tumor and other peripheral odontogenic tumors may be underestimated. PMID:22917449

  1. Food supply confers calcifiers resistance to ocean acidification.

    PubMed

    Ramajo, Laura; Pérez-León, Elia; Hendriks, Iris E; Marbà, Núria; Krause-Jensen, Dorte; Sejr, Mikael K; Blicher, Martin E; Lagos, Nelson A; Olsen, Ylva S; Duarte, Carlos M

    2016-01-18

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification.

  2. Food supply confers calcifiers resistance to ocean acidification

    NASA Astrophysics Data System (ADS)

    Ramajo, Laura; Pérez-León, Elia; Hendriks, Iris E.; Marbà, Núria; Krause-Jensen, Dorte; Sejr, Mikael K.; Blicher, Martin E.; Lagos, Nelson A.; Olsen, Ylva S.; Duarte, Carlos M.

    2016-01-01

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification.

  3. Food supply confers calcifiers resistance to ocean acidification

    PubMed Central

    Ramajo, Laura; Pérez-León, Elia; Hendriks, Iris E.; Marbà, Núria; Krause-Jensen, Dorte; Sejr, Mikael K.; Blicher, Martin E.; Lagos, Nelson A.; Olsen, Ylva S.; Duarte, Carlos M.

    2016-01-01

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification. PMID:26778520

  4. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis.

    PubMed

    Chillà, Anastasia; Margheri, Francesca; Biagioni, Alessio; Del Rosso, Mario; Fibbi, Gabriella; Laurenzana, Anna

    2018-04-03

    Controlling vascular growth is a challenging aim for the inhibition of tumor growth and metastasis. The amoeboid and mesenchymal types of invasiveness are two modes of migration interchangeable in cancer cells: the Rac-dependent mesenchymal migration requires the activity of proteases; the Rho-ROCK-dependent amoeboid motility is protease-independent and has never been described in endothelial cells. A cocktail of physiologic inhibitors (Ph-C) of serine-proteases, metallo-proteases and cysteine-proteases, mimicking the physiological environment that cells encounter during their migration within the angiogenesis sites was used to induce amoeboid style migration of Endothelial colony forming cells (ECFCs) and mature endothelial cells (ECs). To evaluate the mesenchymal-ameboid transition RhoA and Rac1 activation assays were performed along with immunofluorescence analysis of proteins involved in cytoskeleton organization. Cell invasion was studied in Boyden chambers and Matrigel plug assay for the in vivo angiogenesis. In the present study we showed in both ECFCs and ECs, a decrease of activated Rac1 and an increase of activated RhoA upon shifting of cells to the amoeboid conditions. In presence of Ph-C inhibitors both cell lines acquired a round morphology and Matrigel invasion was greatly enhanced with respect to that observed in the absence of protease inhibition. We also observed that the urokinase-plasminogen-activator (uPAR) receptor silencing and uPAR-integrin uncoupling with the M25 peptide abolished both mesenchymal and amoeboid angiogenesis of ECFCs and ECs in vitro and in vivo, indicating a role of the uPAR-integrin-actin axis in the regulation of amoeboid angiogenesis. Furthermore, under amoeboid conditions endothelial cells seem to be indifferent to VEGF stimulation, which induces an amoeboid signaling pattern also in mesenchymal conditions. Here we first provide a data set disclosing that endothelial cells can move and differentiate into vascular

  5. Plants and their active compounds: natural molecules to target angiogenesis.

    PubMed

    Lu, Kai; Bhat, Madhavi; Basu, Sujit

    2016-07-01

    Angiogenesis, or new blood vessel formation, is an important process in the pathogenesis of several diseases and thus has been targeted for the prevention and treatment for many disorders. However, the anti-angiogenic agents that are currently in use are mainly synthetic compounds and humanized monoclonal antibodies, which are either expensive or toxic, thereby limiting their use in many patients. Therefore, it is necessary to identify less toxic, inexpensive, novel and effective anti-angiogenic molecules. Several studies have indicated that natural plant products can meet these criteria. In this review, we discuss the anti-angiogenic properties of natural compounds isolated from plants and the molecular mechanisms by which these molecules act. Finally, we summarize the advantages of using plant products as anti-angiogenic agents. Compared with currently available anti-angiogenic drugs, plant products may not only have similar therapeutic potential but are also inexpensive, less toxic, and easy to administer. However, novel and effective strategies are necessary to improve their bioavailability for clinical use.

  6. Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling.

    PubMed

    Namkoong, Seung; Kim, Chun-Ki; Cho, Young-Lai; Kim, Ji-Hee; Lee, Hansoo; Ha, Kwon-Soo; Choe, Jongseon; Kim, Pyeung-Hyeun; Won, Moo-Ho; Kwon, Young-Geun; Shim, Eun Bo; Kim, Young-Myeong

    2009-06-01

    Forskolin, a potent activator of adenylyl cyclases, has been implicated in modulating angiogenesis, but the underlying mechanism has not been clearly elucidated. We investigated the signal mechanism by which forskolin regulates angiogenesis. Forskolin stimulated angiogenesis of human endothelial cells and in vivo neovascularization, which was accompanied by phosphorylation of CREB, ERK, Akt, and endothelial nitric oxide synthase (eNOS) as well as NO production and VEGF expression. Forskolin-induced CREB phosphorylation, VEGF promoter activity, and VEGF expression were blocked by the PKA inhibitor PKI.Moreover, phosphorylation of ERK by forskolin was inhibited by the MEK inhibitor PD98059, but not PKI. The forskolin-induced Akt/eNOS/NO pathway was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, but not significantly suppressed by PKI. These inhibitors and a NOS inhibitor partially inhibited forskolin-induced angiogenesis. The exchange protein directly activated by cAMP (Epac) activator, 8CPT-2Me-cAMP, promoted the Akt/eNOS/NO pathway and ERK phosphorylation,but did not induce CREB phosphorylation and VEGF expression. The angiogenic effect of the Epac activator was diminished by the inhibition of PI3K and MEK, but not by the PKA inhibitor. Small interfering RNA-mediated knockdown of Epac1 suppressed forskolin-induced angiogenesis and phosphorylation of ERK, Akt, and eNOS, but not CREB phosphorylation and VEGF expression. These results suggest that forskolin stimulates angiogenesis through coordinated cross-talk between two distinct pathways, PKA-dependent VEGF expression and Epac-dependent ERKactivation and PI3K/Akt/eNOS/NO signaling.

  7. MR angiogenesis imaging with Robo4- vs. αVβ3-targeted nanoparticles in a B16/F10 mouse melanoma model

    PubMed Central

    Boles, Kent S.; Schmieder, Anne H.; Koch, Alexander W.; Carano, Richard A. D.; Wu, Yan; Caruthers, Shelton D.; Tong, Raymond K.; Stawicki, Scott; Hu, Grace; Scott, Michael J.; Zhang, Huiying; Reynolds, Benton A.; Wickline, Samuel A.; Lanza, Gregory M.

    2010-01-01

    The primary objective of this study was to utilize MR molecular imaging to compare the 3-dimensional spatial distribution of Robo4 and αVβ3-integrin as biosignatures of angiogenesis, in a rapidly growing, syngeneic tumor. B16-F10 melanoma-bearing mice were imaged with magnetic resonance (MR; 3.0 T) 11 d postimplantation before and after intravenous administration of either Robo4- or αVβ3-targeted paramagnetic nanoparticles. The percentage of MR signal-enhanced voxels throughout the tumor volume was low and increased in animals receiving αVβ3- and Robo4-targeted nanoparticles. Neovascular signal enhancement was predominantly associated with the tumor periphery (i.e., outer 50% of volume). Microscopic examination of tumors coexposed to the Robo4- and αVβ3-targeted nanoparticles corroborated the MR angiogenesis mapping results and further revealed that Robo4 expression generally colocalized with αVβ3-integrin. Robo4- and αVβ3-targeted nanoparticles were compared to irrelevant or nontargeted control groups in all modalities. These results suggest that αVβ3-integrin and Robo4 are useful biomarkers for noninvasive MR molecular imaging in syngeneic mouse tumors, but αVβ3-integrin expression was more detectable by MR at 3.0 T than Robo4. Noninvasive, neovascular assessments of the MR signal of Robo4, particularly combined with αVβ3-integrin expression, may help define tumor character prior to and following cancer therapy.—Boles, K. S., Schmieder, A. H., Koch, A. W., Carano, R. A. D., Wu, Y., Caruthers, S. D., Tong, R. K., Stawicki, S., Hu, G., Scott, M. J., Zhang, H., Reynolds, B. A., Wickline, S. A., and Lanza, G. M. MR angiogenesis imaging with Robo4- vs. αVβ3-targeted nanoparticles in a B16/F10 mouse melanoma model. PMID:20585027

  8. Upregulation of CREM/ICER suppresses wound endothelial CRE-HIF-1α-VEGF-dependent signaling and impairs angiogenesis in type 2 diabetes

    PubMed Central

    Bitar, Milad S.; Al-Mulla, Fahd

    2015-01-01

    Impaired angiogenesis and endothelial dysfunction in type 2 diabetes constitute dominant risk factors for non-healing wounds and most forms of cardiovascular disease. We propose that diabetes shifts the ‘angiogenic balance’ in favor of an excessive anti-angiogenic phenotype. Herein, we report that diabetes impairs in vivo sponge angiogenic capacity by decreasing VEGF expression and fibrovascular invasion, and reciprocally enhances the formation of angiostatic molecules, such as thrombospondins, NFκB and FasL. Defective in vivo angiogenesis prompted cellular studies in cultured endothelial cells derived from subcutaneous sponge implants (SIECs) of control and Goto-Kakizaki rats. Ensuing data from diabetic SIECs demonstrated a marked upregulation in cAMP-PKA-CREB signaling, possibly stemming from increased expression of adenylyl cyclase isoforms 3 and 8, and decreased expression of PDE3. Mechanistically, we found that oxidative stress and PKA activation in diabetes enhanced CREM/ICER expression. This reduces IRS2 cellular content by inhibiting cAMP response element (CRE) transcriptional activity. Consequently, a decrease in the activity of Akt-mTOR ensued with a concomitant reduction in the total and nuclear protein levels of HIF-1α. Limiting HIF-1α availability for the specific hypoxia response elements in diabetic SIECs elicited a marked reduction in VEGF expression, both at the mRNA and protein levels. These molecular abnormalities were illustrated functionally by a defect in various pro-angiogenic properties, including cell proliferation, migration and tube formation. A genetic-based strategy in diabetic SIECs using siRNAs against CREM/ICER significantly augmented the PKA-dependent VEGF expression. To this end, the current data identify the importance of CREM/ICER as a negative regulator of endothelial function and establish a link between CREM/ICER overexpression and impaired angiogenesis during the course of diabetes. Moreover, it could also point to

  9. Restraint of angiogenesis by zinc finger transcription factor CTCF-dependent chromatin insulation

    PubMed Central

    Tang, Ming; Chen, Bo; Pardo, Carolina; Pampo, Christine; Chen, Jing; Lien, Ching-Ling; Wu, Lizi; Wang, Heiman; Yao, Kai; Oh, S. Paul; Seto, Edward; Smith, Lois E. H.; Siemann, Dietmar W.; Kladde, Michael P.; Cepko, Constance L.; Lu, Jianrong

    2011-01-01

    Angiogenesis is meticulously controlled by a fine balance between positive and negative regulatory activities. Vascular endothelial growth factor (VEGF) is a predominant angiogenic factor and its dosage is precisely regulated during normal vascular formation. In cancer, VEGF is commonly overproduced, resulting in abnormal neovascularization. VEGF is induced in response to various stimuli including hypoxia; however, very little is known about the mechanisms that confine its induction to ensure proper angiogenesis. Chromatin insulation is a key transcription mechanism that prevents promiscuous gene activation by interfering with the action of enhancers. Here we show that the chromatin insulator-binding factor CTCF binds to the proximal promoter of VEGF. Consistent with the enhancer-blocking mode of chromatin insulators, CTCF has little effect on basal expression of VEGF but specifically affects its activation by enhancers. CTCF knockdown cells are sensitized for induction of VEGF and exhibit elevated proangiogenic potential. Cancer-derived CTCF missense mutants are mostly defective in blocking enhancers at the VEGF locus. Moreover, during mouse retinal development, depletion of CTCF causes excess angiogenesis. Therefore, CTCF-mediated chromatin insulation acts as a crucial safeguard against hyperactivation of angiogenesis. PMID:21896759

  10. Developing and applying a gene functional association network for anti-angiogenic kinase inhibitor activity assessment in an angiogenesis co-culture model

    PubMed Central

    Chen, Yuefeng; Wei, Tao; Yan, Lei; Lawrence, Frank; Qian, Hui-Rong; Burkholder, Timothy P; Starling, James J; Yingling, Jonathan M; Shou, Jianyong

    2008-01-01

    Background Tumor angiogenesis is a highly regulated process involving intercellular communication as well as the interactions of multiple downstream signal transduction pathways. Disrupting one or even a few angiogenesis pathways is often insufficient to achieve sustained therapeutic benefits due to the complexity of angiogenesis. Targeting multiple angiogenic pathways has been increasingly recognized as a viable strategy. However, translation of the polypharmacology of a given compound to its antiangiogenic efficacy remains a major technical challenge. Developing a global functional association network among angiogenesis-related genes is much needed to facilitate holistic understanding of angiogenesis and to aid the development of more effective anti-angiogenesis therapeutics. Results We constructed a comprehensive gene functional association network or interactome by transcript profiling an in vitro angiogenesis model, in which human umbilical vein endothelial cells (HUVECs) formed capillary structures when co-cultured with normal human dermal fibroblasts (NHDFs). HUVEC competence and NHDF supportiveness of cord formation were found to be highly cell-passage dependent. An enrichment test of Biological Processes (BP) of differentially expressed genes (DEG) revealed that angiogenesis related BP categories significantly changed with cell passages. Built upon 2012 DEGs identified from two microarray studies, the resulting interactome captured 17226 functional gene associations and displayed characteristics of a scale-free network. The interactome includes the involvement of oncogenes and tumor suppressor genes in angiogenesis. We developed a network walking algorithm to extract connectivity information from the interactome and applied it to simulate the level of network perturbation by three multi-targeted anti-angiogenic kinase inhibitors. Simulated network perturbation correlated with observed anti-angiogenesis activity in a cord formation bioassay. Conclusion We

  11. Odonto calcifying cyst.

    PubMed

    Aswath, Nalini; Mastan, Kader; Manikandan, Tirupathi; Samuel, Gigi

    2013-01-01

    The calcifying odontogenic cyst (COC) is reported to be associated with odontoma in 24% of cases. Separation of the cases of calcifying odontogenic cyst associated with odontoma (COCaO) may lead to a better understanding of the pathogenesis of this lesion. The literature revealed 52 cases of COCaO. The male to female ratio was 1:1.9, with a mean age of 16 years. Most common location was the maxilla (61.5%). The radiographic appearance of most cases (80.5%) was a well-defined, mixed radiolucent-radiopaque lesion. Histologically, the lesions consisted of a single large cyst with tooth-like structures as an integral part, giving the impression of a single lesion. In addition to the unique histologic features, differences in gender and distribution were found between the cases of COCaO and those of simple COC. COCaO may be regarded as a separate entity and classified as a benign, mixed odontogenic tumor. The term odontocalcifying odontogenic cyst is suggested.

  12. Anti-angiogenesis target therapy for advanced osteosarcoma

    PubMed Central

    Xie, Lu; Ji, Tao; Guo, Wei

    2017-01-01

    Osteosarcomas (OS), especially those with metastatic or unresectable disease, have limited treatment options. The greatest advancement in treatments occurred in the 1980s when multi-agent chemotherapy, including doxorubicin, cisplatin, high-dose methotrexate, and, in some regimens, ifosfamide, was demonstrated to improve overall survival compared with surgery alone. However, standard chemotherapeutic options have been limited by poor response rates in patients with relapsed or advanced cases. It has been reported that VEGFR expression correlates with the outcome of patients with osteosarcoma and circulating VEGF level has been associated with the development of lung metastasis. At present, it seems to us that progress has not been made since Grignani reported a phase II cohort trial of sorafenib and sorafenib combined with everolimus for advanced osteosarcoma, which, in a sense, have become a milestone as a second-line therapy for osteosarcoma. Although the recognization of muramyltripepetide phosphatidyl-ethanolamine has made some progress based on its combination with standard chemotherapy, its effect on refractory cases is controversial. Personalized comprehensive molecular profiling of high-risk osteosarcoma up to now has not changed the therapeutic prospect of advanced osteosarcoma significantly. Thus, how far have we moved forward and what therapeutic strategy should we prefer for anti-angiogenesis therapy? This review provides an overview of the most updated anti-angiogenesis therapy in OS and discusses some clinical options in order to maintain or even improve progression-free survival. PMID:28656259

  13. Angiogenesis in Spontaneous Tumors and Implications for Comparative Tumor Biology

    PubMed Central

    Benazzi, C.; Al-Dissi, A.; Chau, C. H.; Figg, W. D.; Sarli, G.; de Oliveira, J. T.; Gärtner, F.

    2014-01-01

    Blood supply is essential for development and growth of tumors and angiogenesis is the fundamental process of new blood vessel formation from preexisting ones. Angiogenesis is a prognostic indicator for a variety of tumors, and it coincides with increased shedding of neoplastic cells into the circulation and metastasis. Several molecules such as cell surface receptors, growth factors, and enzymes are involved in this process. While antiangiogenic therapy for cancer has been proposed over 20 years ago, it has garnered much controversy in recent years within the scientific community. The complex relationships between the angiogenic signaling cascade and antiangiogenic substances have indicated the angiogenic pathway as a valid target for anticancer drug development and VEGF has become the primary antiangiogenic drug target. This review discusses the basic and clinical perspectives of angiogenesis highlighting the importance of comparative biology in understanding tumor angiogenesis and the integration of these model systems for future drug development. PMID:24563633

  14. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment.

    PubMed

    Wang, Shih-Wei; Liu, Shih-Chia; Sun, Hui-Lung; Huang, Te-Yang; Chan, Chia-Han; Yang, Chen-Yu; Yeh, Hung-I; Huang, Yuan-Li; Chou, Wen-Yi; Lin, Yu-Min; Tang, Chih-Hsin

    2015-01-01

    Chemokines modulate angiogenesis and metastasis that dictate cancer development in tumor microenvironment. Osteosarcoma is the most frequent bone tumor and is characterized by a high metastatic potential. Chemokine CCL5 (previously called RANTES) has been reported to facilitate tumor progression and metastasis. However, the crosstalk between chemokine CCL5 and vascular endothelial growth factor (VEGF) as well as tumor angiogenesis in human osteosarcoma microenvironment has not been well explored. In this study, we found that CCL5 increased VEGF expression and production in human osteosarcoma cells. The conditioned medium (CM) from CCL5-treated osteosarcoma cells significantly induced tube formation and migration of human endothelial progenitor cells. Pretreatment of cells with CCR5 antibody or transfection with CCR5 specific siRNA blocked CCL5-induced VEGF expression and angiogenesis. CCL5/CCR5 axis demonstrably activated protein kinase Cδ (PKCδ), c-Src and hypoxia-inducible factor-1 alpha (HIF-1α) signaling cascades to induce VEGF-dependent angiogenesis. Furthermore, knockdown of CCL5 suppressed VEGF expression and attenuated osteosarcoma CM-induced angiogenesis in vitro and in vivo. CCL5 knockdown dramatically abolished tumor growth and angiogenesis in the osteosarcoma xenograft animal model. Importantly, we demonstrated that the expression of CCL5 and VEGF were correlated with tumor stage according the immunohistochemistry analysis of human osteosarcoma tissues. Taken together, our findings provide evidence that CCL5/CCR5 axis promotes VEGF-dependent tumor angiogenesis in human osteosarcoma microenvironment through PKCδ/c-Src/HIF-1α signaling pathway. CCL5 may represent a potential therapeutic target against human osteosarcoma. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence.

    PubMed

    Goradel, Nasser Hashemi; Asghari, Mohammad Hossein; Moloudizargari, Milad; Negahdari, Babak; Haghi-Aminjan, Hamed; Abdollahi, Mohammad

    2017-11-15

    Melatonin, a pineal indolamine, participates in different body functions and is shown to possess diverse biological activities such as anti-tumor action. Angiogenesis inhibition is one of the mechanisms by which melatonin exerts its oncostatic effects. Increased angiogenesis is a major feature of tumor progression, thus angiogenesis inhibition is a critical step in cancer therapy. Melatonin employs a variety of mechanisms to target nutrients and oxygen supply to cancer cells. At the transcriptional level, hypoxia induced factor-1α (HIF-1α) and the genes under its control, such as vascular endothelial growth factor (VEGF) are the main targets of melatonin for inhibition of angiogenesis. Melatonin prevents translocation of HIF-1α into the nucleus thereby hindering VEGF expression and also prevents the formation of HIF-1α, phospho-STAT3 and CBP/p300 complex which is involved in the expression of angiogenesis-related genes. Angiostatic properties of melatonin could be also due to its ability to inhibit VEGFR2's activation and expression. Other angiostatic mechanisms of melatonin include the inhibition of endothelial cell migration, invasion, and tube formation. In the present study, we have reviewed the molecular anti-angiogenesis pathways mediated by melatonin and the responsible mechanisms in various types of cancers both in vitro and in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Inhibition of angiogenesis by vitamin D-binding protein: characterization of anti-endothelial activity of DBP-maf.

    PubMed

    Kalkunte, Satyan; Brard, Laurent; Granai, Cornelius O; Swamy, Narasimha

    2005-01-01

    Angiogenesis is a complex process involving coordinated steps of endothelial cell activation, proliferation, migration, tube formation and capillary sprouting with participation of intracellular signaling pathways. Regulation of angiogenesis carries tremendous potential for cancer therapy. Our earlier studies showed that vitamin D-binding protein-macrophage activating factor (DBP-maf) acts as a potent anti-angiogenic factor and inhibits tumor growth in vivo. The goal of this investigation was to understand the effect of DBP-maf on human endothelial cell (HEC) and the mechanism of angiogenesis inhibition. DBP-maf inhibited human endothelial cell (HEC) proliferation by inhibiting DNA synthesis (IC(50) = 7.8 +/- 0.15 microg/ml). DBP-maf significantly induced S- and G0/G1-phase arrest in HEC in 72 h. DBP-maf potently blocked VEGF-induced migration, tube-formation of HEC in a dose dependent manner. In addition, DBP-maf inhibited growth factor-induced microvessel sprouting in rat aortic ring assay. Moreover, DBP-maf inhibited VEGF signaling by decreasing VEGF-mediated phosphorylation of VEGFR-2 and ERK1/2, a downstream target of VEGF signaling cascade. However, Akt activation was not affected. These studies collectively demonstrate that DBP-maf inhibits angiogenesis by blocking critical steps such as HEC proliferation, migration, tube formation and microvessel sprouting. DBP-maf exerts its effect by inhibiting VEGR-2 and ERK1/2 signaling cascades. Understanding the cellular and molecular mechanisms of anti-endothelial activity of DBP-maf will allow us to develop it as an angiogenesis targeting novel drug for tumor therapy.

  17. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells

    PubMed Central

    Liu, Guan-Ting; Chen, Hsien-Te; Tsou, Hsi-Kai; Tan, Tzu-Wei; Fong, Yi-Chin; Chen, Po-Chen; Yang, Wei-Hung; Wang, Shih-Wei; Chen, Jui-Chieh; Tang, Chih-Hsin

    2014-01-01

    Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway. PMID:25301739

  18. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yingying; Fang, Shanshan; Sun, Qiushi

    Glioblastoma is one of the most vascular brain tumour and highly resistant to current therapy. Targeting both glioblastoma cells and angiogenesis may present an effective therapeutic strategy for glioblastoma. In our work, we show that an anthelmintic drug, ivermectin, is active against glioblastoma cells in vitro and in vivo, and also targets angiogenesis. Ivermectin significantly inhibits growth and anchorage-independent colony formation in U87 and T98G glioblastoma cells. It induces apoptosis in these cells through a caspase-dependent manner. Ivermectin significantly suppresses the growth of two independent glioblastoma xenograft mouse models. In addition, ivermectin effectively targets angiogenesis through inhibiting capillary network formation, proliferation andmore » survival in human brain microvascular endothelial cell (HBMEC). Mechanistically, ivermectin decreases mitochondrial respiration, membrane potential, ATP levels and increases mitochondrial superoxide in U87, T98G and HBMEC cells exposed to ivermectin. The inhibitory effects of ivermectin are significantly reversed in mitochondria-deficient cells or cells treated with antioxidants, further confirming that ivermectin acts through mitochondrial respiration inhibition and induction of oxidative stress. Importantly, we show that ivermectin suppresses phosphorylation of Akt, mTOR and ribosomal S6 in glioblastoma and HBMEC cells, suggesting its inhibitory role in deactivating Akt/mTOR pathway. Altogether, our work demonstrates that ivermectin is a useful addition to the treatment armamentarium for glioblastoma. Our work also highlights the therapeutic value of targeting mitochondrial metabolism in glioblastoma. - Highlights: • Ivermectin is effective in glioblastoma cells in vitro and in vivo. • Ivermectin inhibits angiogenesis. • Ivermectin induces mitochondrial dysfunction and oxidative stress. • Ivermectin deactivates Akt/mTOR signaling pathway.« less

  19. FAK-heterozygous mice display enhanced tumour angiogenesis.

    PubMed

    Kostourou, Vassiliki; Lechertier, Tanguy; Reynolds, Louise E; Lees, Delphine M; Baker, Marianne; Jones, Dylan T; Tavora, Bernardo; Ramjaun, Antoine R; Birdsey, Graeme M; Robinson, Stephen D; Parsons, Maddy; Randi, Anna M; Hart, Ian R; Hodivala-Dilke, Kairbaan

    2013-01-01

    Genetic ablation of endothelial focal adhesion kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularization. Here we show that reduced stromal FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumour growth in vivo. Our results highlight a potential novel role for FAK as a nonlinear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis.

  20. FAK-heterozygous mice display enhanced tumour angiogenesis

    PubMed Central

    Kostourou, Vassiliki; Lechertier, Tanguy; Reynolds, Louise E.; Lees, Delphine M.; Baker, Marianne; Jones, Dylan T.; Tavora, Bernardo; Ramjaun, Antoine R.; Birdsey, Graeme M.; Robinson, Stephen D.; Parsons, Maddy; Randi, Anna M.; Hart, Ian R; Hodivala-Dilke, Kairbaan

    2013-01-01

    Genetic ablation of endothelial Focal Adhesion Kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularisation. Here we show that reduced stromal-FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumor growth in vivo. Our results highlight a potential novel role for FAK as a non-linear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis. PMID:23799510

  1. LIBS analysis of artificial calcified tissues matrices.

    PubMed

    Kasem, M A; Gonzalez, J J; Russo, R E; Harith, M A

    2013-04-15

    In most laser-based analytical methods, the reproducibility of quantitative measurements strongly depends on maintaining uniform and stable experimental conditions. For LIBS analysis this means that for accurate estimation of elemental concentration, using the calibration curves obtained from reference samples, the plasma parameters have to be kept as constant as possible. In addition, calcified tissues such as bone are normally less "tough" in their texture than many samples, especially metals. Thus, the ablation process could change the sample morphological features rapidly, and result in poor reproducibility statistics. In the present work, three artificial reference sample sets have been fabricated. These samples represent three different calcium based matrices, CaCO3 matrix, bone ash matrix and Ca hydroxyapatite matrix. A comparative study of UV (266 nm) and IR (1064 nm) LIBS for these three sets of samples has been performed under similar experimental conditions for the two systems (laser energy, spot size, repetition rate, irradiance, etc.) to examine the wavelength effect. The analytical results demonstrated that UV-LIBS has improved reproducibility, precision, stable plasma conditions, better linear fitting, and the reduction of matrix effects. Bone ash could be used as a suitable standard reference material for calcified tissue calibration using LIBS with a 266 nm excitation wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Green tea and its anti-angiogenesis effects.

    PubMed

    Rashidi, Bahman; Malekzadeh, Mehrnoush; Goodarzi, Mohammad; Masoudifar, Aria; Mirzaei, Hamed

    2017-05-01

    The development of new blood vessels from a pre-existing vasculature (also known as angiogenesis) is required for many physiological processes including embryogenesis and post-natal growth. However, pathological angiogenesis is also a hallmark of cancer and many ischaemic and inflammatory diseases. The pro-angiogenic members of the VEGF family (vascular endothelial growth factor family), VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental growth factor (PlGF), and the related receptors, VEGFR-1, VEGFR-2 and VEGFR-3 have a central and decisive role in angiogenesis. Indeed, they are the targets for anti-angiogenic drugs currently approved. Green tea (from the Camellia sinensis plant) is one of the most popular beverages in the world. It is able to inhibit angiogenesis by different mechanisms such as microRNAs (miRNAs). Green tea and its polyphenolic substances (like catechins) show chemo-preventive and chemotherapeutic features in various types of cancer and experimental models for human cancers. The tea catechins, including (-)-epigallocatechin-3-gallate (EGCG), have multiple effects on the cellular proteome and signalome. Note that the polyphenolic compounds from green tea are able to change the miRNA expression profile associated with angiogenesis in various cancer types. This review focuses on the ability of the green tea constituents to suppress angiogenesis signaling and it summarizes the mechanisms by which EGCG might inhibit the VEGF family. We also highlighted the miRNAs affected by green tea which are involved in anti-angiogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Calcified right atrial thrombus in HIV infected patient.

    PubMed

    Mwita, Julius Chacha; Goepamang, Monkgogi; Mkubwa, Jack Joseph; Gunness, Teeluck Kumar; Reebye, Deshmukh; Motumise, Kelebogile

    2013-01-01

    Calcified right atrial thrombi are rare cardiac masses that may be complicated by pulmonary embolism. Although they can be discovered by a transthoracic echocardiography, they may need histological examination to differentiate them from other cardiac masses. We report a case of a 44-year-old woman who presented with a calcified right atrial thrombus and progressive dyspnoea.

  4. Irregularly calcified eggs and eggshells of Caiman latirostris (Alligatoridae: Crocodylia).

    PubMed

    Fernández, Mariela Soledad; Simoncini, Melina Soledad; Dyke, Gareth

    2013-05-01

    We describe irregularly calcified egg and eggshell morphologies for the first time in nests of the broad-snouted caiman, Caiman latirostris. Research is based on detailed descriptions of 270 eggs from a total sample of 46,800 collected between 2005 and 2011 in Santa Fe Province, Argentina, and encompasses animals from both natural habitats and held in captivity. We discuss possible reasons for the occurrence of eggs with different mineralisation patterns in our extensive C. latirostris field sample and its conservation significance; the chemistry of egg laying in amniotes is sensitive to environmental contamination which, in turn, has biological implications. Based on our egg sample, we identify two caiman eggshell abnormalities: (1) regularly calcified eggs with either calcitic nodules or superficial wrinkles at one egg end and (2) irregularly calcified eggs with structural gaps that weaken the shell. Some recently laid clutches we examined included eggs with most of the shell broken and detached from the flexible membrane. Most type 1 regularly calcified eggs lost their initial calcified nodules during incubation, suggesting that these deposits do not affect embryo survival rates. In contrast, irregularly calcified caiman eggs have a mean hatching success rate of 8.9% (range 0-38%) across our sample compared to a mean normal success of 75%. Most irregularly calcified caiman eggs probably die because of infections caused by fungi and bacteria in the organic nest material, although another possible explanation that merits further investigation could be an increase in permeability, leading to embryo dehydration.

  5. Irregularly calcified eggs and eggshells of Caiman latirostris (Alligatoridae: Crocodylia)

    NASA Astrophysics Data System (ADS)

    Fernández, Mariela Soledad; Simoncini, Melina Soledad; Dyke, Gareth

    2013-05-01

    We describe irregularly calcified egg and eggshell morphologies for the first time in nests of the broad-snouted caiman, Caiman latirostris. Research is based on detailed descriptions of 270 eggs from a total sample of 46,800 collected between 2005 and 2011 in Santa Fe Province, Argentina, and encompasses animals from both natural habitats and held in captivity. We discuss possible reasons for the occurrence of eggs with different mineralisation patterns in our extensive C. latirostris field sample and its conservation significance; the chemistry of egg laying in amniotes is sensitive to environmental contamination which, in turn, has biological implications. Based on our egg sample, we identify two caiman eggshell abnormalities: (1) regularly calcified eggs with either calcitic nodules or superficial wrinkles at one egg end and (2) irregularly calcified eggs with structural gaps that weaken the shell. Some recently laid clutches we examined included eggs with most of the shell broken and detached from the flexible membrane. Most type 1 regularly calcified eggs lost their initial calcified nodules during incubation, suggesting that these deposits do not affect embryo survival rates. In contrast, irregularly calcified caiman eggs have a mean hatching success rate of 8.9 % (range 0-38 %) across our sample compared to a mean normal success of 75 %. Most irregularly calcified caiman eggs probably die because of infections caused by fungi and bacteria in the organic nest material, although another possible explanation that merits further investigation could be an increase in permeability, leading to embryo dehydration.

  6. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice.

    PubMed

    Khajavi, Mehrdad; Zhou, Yi; Birsner, Amy E; Bazinet, Lauren; Rosa Di Sant, Amanda; Schiffer, Alex J; Rogers, Michael S; Krishnaji, Subrahmanian Tarakkad; Hu, Bella; Nguyen, Vy; Zon, Leonard; D'Amato, Robert J

    2017-06-01

    Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF) pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA) mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs). Of these, we found the expression of peptidyl arginine deiminase type II (Padi2), known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for diagnosis and

  7. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice

    PubMed Central

    Zhou, Yi; Bazinet, Lauren; Rosa Di Sant, Amanda; Hu, Bella; Nguyen, Vy; Zon, Leonard

    2017-01-01

    Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF) pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA) mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs). Of these, we found the expression of peptidyl arginine deiminase type II (Padi2), known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for diagnosis and

  8. Combination of Anti-angiogenesis with Chemotherapy for More Effective Cancer Treatment*

    PubMed Central

    Ma, Jie; Waxman, David J.

    2008-01-01

    Angiogenesis is a hallmark of tumor development and metastasis and is now a validated target for cancer treatment. Overall, however, the survival benefits of anti-angiogenic drugs have, thus far, been rather modest, stimulating interest in developing more effective ways to combine anti-angiogenic drugs with established chemotherapies. This review discusses recent progress and emerging challenges in this field; interactions between anti-angiogenic drugs and conventional chemotherapeutic agents are examined, and strategies for the optimization of combination therapies are discussed. Anti-angiogenic drugs such as the anti-VEGF antibody bevacizumab can induce a functional normalization of the tumor vasculature that is transient and can potentiate the activity of co-administered chemoradiotherapies. However, chronic angiogenesis inhibition typically reduces tumor uptake of co-administered chemotherapeutics, indicating a need to explore new approaches, including intermittent treatment schedules and provascular strategies to increase chemotherapeutic drug exposure. In cases where anti-angiogenesis-induced tumor cell starvation augments the intrinsic cytotoxic effects of a conventional chemotherapeutic drug, combination therapy may increase anti-tumor activity despite a decrease in cytotoxic drug exposure. As new angiogenesis inhibitors enter the clinic, reliable surrogate markers are needed to monitor the progress of anti-angiogenic therapies and to identify responsive patients. New targets for anti-angiogenesis continue to be discovered, increasing the opportunities to interdict tumor angiogenesis and circumvent resistance mechanisms that may emerge with chronic use of these drugs. PMID:19074844

  9. Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism

    PubMed Central

    Kaur, Balveen; Cork, Sarah M; Sandberg, Eric M; Devi, Narra S; Zhang, Zhaobin; Klenotic, Philip A; Febbraio, Maria; Shim, Hyunsuk; Mao, Hui; Tucker-Burden, Carol; Silverstein, Roy L; Brat, Daniel J; Olson, Jeffrey J; Van Meir, Erwin G

    2008-01-01

    Angiogenesis is a critical physiological process that is appropriated during tumorigenesis. Little is known about how this process is specifically regulated in the brain. Brain Angiogenesis Inhibitor-1 (BAI1) is a primarily brain specific seven-transmembrane protein that contains five anti-angiogenic thrombospondin type-1 repeats (TSR). We recently showed that BAI1 is cleaved at a conserved proteolytic cleavage site releasing a soluble, 120 kDa anti-angiogenic factor called Vasculostatin (Vstat120). Vstat120 has been shown to inhibit in vitro angiogenesis and suppress subcutaneous tumor growth. Here, we examine its effect on intracranial growth of malignant gliomas and further study the mechanism of its anti-tumor effects. First, we show that expression of Vstat120 strongly suppresses the intracranial growth of malignant gliomas, even in the presence of the strong pro-angiogenic stimulus mediated by the oncoprotein Epidermal Growth Factor Receptor variant III (EGFRvIII). This tumor suppressive effect is accompanied by a decrease in vascular density in the tumors, suggesting a potent anti-angiogenic effect in the brain. Second, and consistent with this interpretation, we find that treatment with Vstat120 reduces the migration of cultured microvascular endothelial cells in vitro and inhibits corneal angiogenesis in vivo. Third, we demonstrate that these anti-vascular effects are critically dependent on the presence of the cell surface receptor CD36 on endothelial cells in vitro and in vivo, supporting a role of the Vstat120 TSRs in mediating these effects. These results advance the understanding of brain-specific angiogenic regulation, and suggest that Vstat120 has therapeutic potential in the treatment of brain tumors and other intra-cerebral vasculopathies. PMID:19176395

  10. Anti-Cancer Activity of an Osthole Derivative, NBM-T-BMX-OS01: Targeting Vascular Endothelial Growth Factor Receptor Signaling and Angiogenesis

    PubMed Central

    Chiu, Pei-Ting; Ho, Shiau-Jing; Wang, Chi-Han; Chi, Chih-Chin; Huang, Yu-Han; Lee, Cheng-Feng; Li, Ying-Shiuan; Ou, George; Hsu, Ming-Jen

    2013-01-01

    Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX), derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L.) Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX) in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs). BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer. PMID:24312323

  11. Phloroglucinol Inhibits the Bioactivities of Endothelial Progenitor Cells and Suppresses Tumor Angiogenesis in LLC-Tumor-Bearing Mice

    PubMed Central

    Kwon, Yi-Hong; Jung, Seok-Yun; Kim, Jae-Won; Lee, Sang-Hun; Lee, Jun-Hee; Lee, Boo-Yong; Kwon, Sang-Mo

    2012-01-01

    Background There is increasing evidence that phloroglucinol, a compound from Ecklonia cava, induces the apoptosis of cancer cells, eventually suppressing tumor angiogenesis. Methodology/Principal Findings This is the first report on phloroglucinol's ability to potentially inhibit the functional bioactivities of endothelial progenitor cells (EPCs) and thereby attenuate tumor growth and angiogenesis in the Lewis lung carcinoma (LLC)-tumor-bearing mouse model. Although Phloroglucinol did not affect their cell toxicity, it specifically inhibited vascular endothelial growth factor (VEGF) dependent migration and capillary-like tube formation of EPCs. Our matrigel plug assay clearly indicated that orally injected phloroglucinol effectively disrupts VEGF-induced neovessel formation. Moreover, we demonstrated that when phloroglucinol is orally administered, it significantly inhibits tumor growth and angiogenesis as well as CD45−/CD34+ progenitor mobilization into peripheral blood in vivo in the LLC-tumor-bearing mouse model. Conclusions/Significance These results suggest a novel role for phloroglucinol: Phloroglucinol might be a modulator of circulating EPC bioactivities, eventually suppressing tumorigenesis. Therefore, phloroglucinol might be a candidate compound for biosafe drugs that target tumor angiogenesis. PMID:22496756

  12. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis.

    PubMed

    Cui, Xin; Morales, Renee-Tyler Tan; Qian, Weiyi; Wang, Haoyu; Gagner, Jean-Pierre; Dolgalev, Igor; Placantonakis, Dimitris; Zagzag, David; Cimmino, Luisa; Snuderl, Matija; Lam, Raymond H W; Chen, Weiqiang

    2018-04-01

    Glioblastoma (GBM) is the most lethal primary adult brain tumor and its pathology is hallmarked by distorted neovascularization, diffuse tumor-associated macrophage infiltration, and potent immunosuppression. Reconstituting organotypic tumor angiogenesis models with biomimetic cell heterogeneity and interactions, pro-/anti-inflammatory milieu and extracellular matrix (ECM) mechanics is critical for preclinical anti-angiogenic therapeutic screening. However, current in vitro systems do not accurately mirror in vivo human brain tumor microenvironment. Here, we engineered a three-dimensional (3D), microfluidic angiogenesis model with controllable and biomimetic immunosuppressive conditions, immune-vascular and cell-matrix interactions. We demonstrate in vitro, GL261 and CT-2A GBM-like tumors steer macrophage polarization towards a M2-like phenotype for fostering an immunosuppressive and proangiogenic niche, which is consistent with human brain tumors. We distinguished that GBM and M2-like immunosuppressive macrophages promote angiogenesis, while M1-like pro-inflammatory macrophages suppress angiogenesis, which we coin "inflammation-driven angiogenesis." We observed soluble immunosuppressive cytokines, predominantly TGF-β1, and surface integrin (α v β 3 ) endothelial-macrophage interactions are required in inflammation-driven angiogenesis. We demonstrated tuning cell-adhesion receptors using an integrin (α v β 3 )-specific collagen hydrogel regulated inflammation-driven angiogenesis through Src-PI3K-YAP signaling, highlighting the importance of altered cell-ECM interactions in inflammation. To validate the preclinical applications of our 3D organoid model and mechanistic findings of inflammation-driven angiogenesis, we screened a novel dual integrin (α v β 3 ) and cytokine receptor (TGFβ-R1) blockade that suppresses GBM tumor neovascularization by simultaneously targeting macrophage-associated immunosuppression, endothelial-macrophage interactions, and

  13. Nano to micro delivery systems: targeting angiogenesis in brain tumors.

    PubMed

    Gilert, Ariel; Machluf, Marcelle

    2010-10-08

    Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain.

  14. Nano to micro delivery systems: targeting angiogenesis in brain tumors

    PubMed Central

    2010-01-01

    Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain. PMID:20932320

  15. Angiogenesis in the Infarcted Myocardium

    PubMed Central

    Cochain, Clement; Channon, Keith M.

    2013-01-01

    Abstract Significance: Proangiogenic therapy appeared a promising strategy for the treatment of patients with acute myocardial infarction (MI), as de novo formation of microvessels, has the potential to salvage ischemic myocardium at early stages after MI, and is also essential to prevent the transition to heart failure through the control of cardiomyocyte hypertrophy and contractility. Recent Advances: Exciting preclinical studies evaluating proangiogenic therapies for MI have prompted the initiation of numerous clinical trials based on protein or gene transfer delivery of growth factors and administration of stem/progenitor cells, mainly from bone marrow origin. Nonetheless, these clinical trials showed mixed results in patients with acute MI. Critical Issues: Even though methodological caveats, such as way of delivery for angiogenic growth factors (e.g., protein vs. gene transfer) and stem/progenitor cells or isolation/culture procedure for regenerative cells might partially explain the failure of such trials, it appears that delivery of a single growth factor or cell type does not support angiogenesis sufficiently to promote cardiac repair. Future Directions: Optimization of proangiogenic therapies might include stimulation of both angiogenesis and vessel maturation and/or the use of additional sources of stem/progenitor cells, such as cardiac progenitor cells. Experimental unraveling of the mechanisms of angiogenesis, vessel maturation, and endothelial cell/cardiomyocyte cross talk in the ischemic heart, analysis of emerging pathways, as well as a better understanding of how cardiovascular risk factors impact endogenous and therapeutically stimulated angiogenesis, would undoubtedly pave the way for the development of novel and hopefully efficient angiogenesis targeting therapeutics for the treatment of acute MI. Antioxid. Redox Signal. 18, 1100–1113. PMID:22870932

  16. [Calcifying tendinitis of the rotator cuff with focal umeral osteolysis. Imaging features].

    PubMed

    Mascarenhas, V V; Morais, F; Marques, H; Guerra, A; Carpinteiro, E; Gaspar, A

    2015-01-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. The authors report two cases of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed.

  17. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish

    PubMed Central

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    2016-01-01

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)-b-poly(ε-caprolactone) (PCL), namely PEG-b-PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG-b-PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG-b-PCL nano-micelle on cardiovascular development. The results showed that PEG-b-PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG-b-PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG-b-PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG-b-PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG-b-PCL nano-micelles, indicating that PEG-b-PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG-b-PCL nano-micelle could pose potential hazards

  18. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish.

    PubMed

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)- b -poly( ε -caprolactone) (PCL), namely PEG- b -PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG- b -PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG- b -PCL nano-micelle on cardiovascular development. The results showed that PEG- b -PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG- b -PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG- b -PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG- b -PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG- b -PCL nano-micelles, indicating that PEG- b -PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG- b -PCL nano-micelle could

  19. Utilizing combinatorial engineering to develop Tie2 targeting antagonistic angiopoetin-2 ligands as candidates for anti-angiogenesis therapy.

    PubMed

    Shlamkovich, Tomer; Aharon, Lidan; Barton, William A; Papo, Niv

    2017-05-16

    In many human cancers, the receptor tyrosine kinase (RTK) Tie2 plays important roles in mediating proliferation, survival, migration and angiogenesis. Thus, molecules that could potently inhibit activation of the Tie2 receptor would have a significant impact on cancer therapy. Nevertheless, attempts to develop Tie2-targeted inhibitors have met with little success, and there is currently no FDA-approved therapeutic selectively targeting Tie2. We used a combinatorial protein engineering approach to develop a new generation of angiopoietin (Ang)2-derived Tie2 antagonists as potential cancer therapeutics and as tools to study angiogenesis. The construct for designing a yeast surface display (YSD) library of potential antagonists was an Ang2 binding domain (Ang2-BD) that retains Tie2 binding ability but prevents ligand multimerization and receptor dimerization and activation. This mutant library was then screened by quantitative high-throughput flow cytometric sorting to identify Ang2-BD variants with increased expression, stability and affinity to Tie2. The selected variants were recombinantly expressed and showed high affinity to soluble and cellular Tie2 and strongly inhibited both Tie2 phosphorylation and endothelial capillary tube formation and cell invasion compared to the parental Ang2-BD. The significance of the study lies in the insight it provides into the sequence-structure-function relationships and mechanism of action of the antagonistic Ang mutants. The approach of using a natural protein ligand as a molecular scaffold for engineering high-affinity agents can be applied to other ligands to create functional protein antagonists against additional biomedical targets.

  20. Plasma membrane calcium ATPase isoform 4 inhibits vascular endothelial growth factor-mediated angiogenesis through interaction with calcineurin.

    PubMed

    Baggott, Rhiannon R; Alfranca, Arantzazu; López-Maderuelo, Dolores; Mohamed, Tamer M A; Escolano, Amelia; Oller, Jorge; Ornes, Beatriz C; Kurusamy, Sathishkumar; Rowther, Farjana B; Brown, James E; Oceandy, Delvac; Cartwright, Elizabeth J; Wang, Weiguang; Gómez-del Arco, Pablo; Martínez-Martínez, Sara; Neyses, Ludwig; Redondo, Juan Miguel; Armesilla, Angel Luis

    2014-10-01

    Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis. © 2014 American Heart Association, Inc.

  1. Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma.

    PubMed

    Babae, Negar; Bourajjaj, Meriem; Liu, Yijia; Van Beijnum, Judy R; Cerisoli, Francesco; Scaria, Puthupparampil V; Verheul, Mark; Van Berkel, Maaike P; Pieters, Ebel H E; Van Haastert, Rick J; Yousefi, Afrouz; Mastrobattista, Enrico; Storm, Gert; Berezikov, Eugene; Cuppen, Edwin; Woodle, Martin; Schaapveld, Roel Q J; Prevost, Gregoire P; Griffioen, Arjan W; Van Noort, Paula I; Schiffelers, Raymond M

    2014-08-30

    Tumor-angiogenesis is the multi-factorial process of sprouting of endothelial cells (EC) into micro-vessels to provide tumor cells with nutrients and oxygen. To explore miRNAs as therapeutic angiogenesis-inhibitors, we performed a functional screen to identify miRNAs that are able to decrease EC viability. We identified miRNA-7 (miR-7) as a potent negative regulator of angiogenesis. Introduction of miR-7 in EC resulted in strongly reduced cell viability, tube formation, sprouting and migration. Application of miR-7 in the chick chorioallantoic membrane assay led to a profound reduction of vascularization, similar to anti-angiogenic drug sunitinib. Local administration of miR-7 in an in vivo murine neuroblastoma tumor model significantly inhibited angiogenesis and tumor growth. Finally, systemic administration of miR-7 using a novel integrin-targeted biodegradable polymeric nanoparticles that targets both EC and tumor cells, strongly reduced angiogenesis and tumor proliferation in mice with human glioblastoma xenografts. Transcriptome analysis of miR-7 transfected EC in combination with in silico target prediction resulted in the identification of OGT as novel target gene of miR-7. Our study provides a comprehensive validation of miR-7 as novel anti-angiogenic therapeutic miRNA that can be systemically delivered to both EC and tumor cells and offers promise for miR-7 as novel anti-tumor therapeutic.

  2. [Shoulder calcifying tendinitis].

    PubMed

    Clavert, P; Sirveaux, F

    2008-12-01

    Calcifying tendinitis is a frequent shoulder disease but the surgical treatment is still debatable. The authors of this symposium reviewed retrospectively 450 patients treated by arthroscopal excision for calcifying tendinitis. Imaging were used to assess the cuff status in every case. The minimum follow-up was five years except for subscapularis and infraspinatus calcification (minimum two years). At the same time, we led a prospective study evaluating the prevalence of the calcifications on 1276 asymptomatic shoulders. The prevalence of rotator cuff calcification was 7.3%, with a female predominance specially in the operated group. Calcifications have been found as well in patients more than 70 years old. The inter- and intraobserver agreement for the A-B-C classification was poor, specially to differentiate the type A and B calcifications. The long-term follow-up allows to prove that the calcifying tendinitis is temporary without any relation with rotator cuff rupture. Recurrence of the calcific deposit after complete disappearance was never observed and the rate of full thickness tears was 3.9% at an average of nine years follow-up (mean age 56 years). These findings allowed to conclude than cuff suture after removing the deposit is not mandatory. However, the preoperative cuff status had a significant influence on the functional results at follow-up. Preoperative associated partial tear of the cuff or a preoperative positive Jobe test affected significantly the results and increased the rate of full thickness tear at follow-up. The subscapularis calcifications were rare (6% of the calcifications) and were associated with further deposit on the cuff. Infraspinatus calcifications were more frequent (20%), mostly associated to over tendons calcifications. The arthroscopic treatment obtained good results independently from the calcification location but the surgical approach should be adapted. Functional results were lower after removing a type C calcification

  3. A Lipopeptide-Based αvβ₃ Integrin-Targeted Ultrasound Contrast Agent for Molecular Imaging of Tumor Angiogenesis.

    PubMed

    Yan, Fei; Xu, Xiuxia; Chen, Yihan; Deng, Zhiting; Liu, Hongmei; Xu, Jianrong; Zhou, Jie; Tan, Guanghong; Wu, Junru; Zheng, Hairong

    2015-10-01

    The design and fabrication of targeted ultrasound contrast agents are key factors in the success of ultrasound molecular imaging applications. Here, we introduce a transformable αvβ3 integrin-targeted microbubble (MB) by incorporation of iRGD-lipopeptides into the MB membrane for non-invasive ultrasound imaging of tumor angiogenesis. First, the iRGD-lipopeptides were synthesized by conjugating iRGD peptides to distearoylphosphatidylethanolamine-polyethylene glycol 2000-maleimide. The resulting iRGD-lipopeptides were used for fabrication of the iRGD-carrying αvβ3 integrin-targeted MBs (iRGD-MBs). The binding specificity of iRGD-MBs for endothelial cells was found to be significantly stronger than that of control MBs (p < 0.01) under in vitro static and dynamic conditions. The binding of iRGD-MBs on the endothelial cells was competed off by pre-incubation with the anti-αv or anti-β3 antibody (p < 0.01). Ultrasound images taken of mice bearing 4T1 breast tumors after intravenous injections of iRGD-MBs or control MBs revealed strong contrast enhancement within the tumors from iRGD-MBs but not from the control MBs; the mean acoustic signal intensity was 10.71 ± 2.75 intensity units for iRGD-MBs versus 1.13 ± 0.18 intensity units for the control MBs (p < 0.01). The presence of αvβ3 integrin was confirmed by immunofluorescence staining. These data indicate that iRGD-MBs can be used as an ultrasound imaging probe for the non-invasive molecular imaging of tumor angiogenesis, and may have further implications for ultrasound image-guided tumor targeting drug delivery. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  4. miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis

    PubMed Central

    Sun, Xiaojuan; Charbonneau, Cherie; Wei, Lei; Chen, Qian; Terek, Richard M.

    2015-01-01

    Chondrosarcoma is the most common primary malignant bone tumor in adults, has no effective systemic treatment, and patients with this disease have poor survival. Altered expression of microRNA (miR) is involved in tumorigenesis, however its role in chondrosarcoma is undetermined. MicroRNA-181a is overexpressed in high grade chondrosarcoma, is upregulated by hypoxia, and increases VEGF expression. Here, the purpose was to determine the mechanism of miR-181a regulation of VEGF, determine if miR-181a overexpression promotes tumor progression, and to evaluate an antagomir-based approach for chondrosarcoma treatment. Therapeutic inhibition of miR-181a decreased expression of VEGF and MMP1 in vitro, and angiogenesis, MMP1 activity, tumor growth, and lung metastasis, all by more than 50%, in a xenograft mouse model. A target of miR-181a is regulator of G-protein signaling 16 (RGS16), a negative regulator of CXC chemokine receptor 4 (CXCR4) signaling. CXCR4 signaling is increased in chondrosarcoma, its expression is also increased by hypoxia, and is associated with angiogenesis and metastasis, however, receptor blockade is only partially effective. RGS16 expression is restored after miR-181a inhibition and partially accounts for the anti-angiogenic and anti-metastatic effects of miR-181a inhibition. These data establish miR-181a as an oncomiR that promotes chondrosarcoma progression through a new mechanism involving enhancement of CXCR4 signaling by inhibition of RGS16. PMID:26013170

  5. Knockdown of long non-coding RNA XIST increases blood–tumor barrier permeability and inhibits glioma angiogenesis by targeting miR-137

    PubMed Central

    Yu, H; Xue, Y; Wang, P; Liu, X; Ma, J; Zheng, J; Li, Z; Li, Z; Cai, H; Liu, Y

    2017-01-01

    Antiangiogenic therapy plays a significant role in combined glioma treatment. However, poor permeability of the blood–tumor barrier (BTB) limits the transport of chemotherapeutic agents, including antiangiogenic drugs, into tumor tissues. Long non-coding RNAs (lncRNAs) have been implicated in various diseases, especially malignant tumors. The present study found that lncRNA X-inactive-specific transcript (XIST) was upregulated in endothelial cells that were obtained in a BTB model in vitro. XIST knockdown increased BTB permeability and inhibited glioma angiogenesis. The analysis of the mechanism of action revealed that the reduction of XIST inhibited the expression of the transcription factor forkhead box C1 (FOXC1) and zonula occludens 2 (ZO-2) by upregulating miR-137. FOXC1 decreased BTB permeability by increasing the promoter activity and expression of ZO-1 and occludin, and promoted glioma angiogenesis by increasing the promoter activity and expression of chemokine (C–X–C motif) receptor 7b (CXCR7). Overall, the present study demonstrates that XIST plays a pivotal role in BTB permeability and glioma angiogenesis, and the inhibition of XIST may be a potential target for the clinical management of glioma. PMID:28287613

  6. Vasculogenic Mimicry and Tumor Angiogenesis

    PubMed Central

    Folberg, Robert; Hendrix, Mary J. C.; Maniotis, Andrew J.

    2000-01-01

    Tumors require a blood supply for growth and hematogenous dissemination. Much attention has been focused on the role of angiogenesis—the recruitment of new vessels into a tumor from pre-existing vessels. However, angiogenesis may not be the only mechanism by which tumors acquire a microcirculation. Highly aggressive and metastatic melanoma cells are capable of forming highly patterned vascular channels in vitro that are composed of a basement membrane that stains positive with the periodic acid-Schiff (PAS) reagent in the absence of endothelial cells and fibroblasts. These channels formed in vitro are identical morphologically to PAS-positive channels in histological preparations from highly aggressive primary uveal melanomas, in the vertical growth phase of cutaneous melanomas, and in metastatic uveal and cutaneous melanoma. The generation of microvascular channels by genetically deregulated, aggressive tumor cells was termed “vasculogenic mimicry” to emphasize their de novo generation without participation by endothelial cells and independent of angiogenesis. Techniques designed to identify the tumor microcirculation by the staining of endothelial cells may not be applicable to tumors that express vasculogenic mimicry. Although it is not known if therapeutic strategies targeting endothelial cells will be effective in tumors whose blood supply is formed by tumor cells in the absence of angiogenesis, the biomechanical and molecular events that regulate vasculogenic mimicry provide opportunities for the development of novel forms of tumor-targeted treatments. The unique patterning characteristic of vasculogenic mimicry provides an opportunity to design noninvasive imaging techniques to detect highly aggressive neoplasms and their metastases. PMID:10666364

  7. RGD-Targeted Ultrasound Contrast Agent for Longitudinal Assessment of Hep-2 Tumor Angiogenesis In Vivo.

    PubMed

    Hu, Qiao; Wang, Xiao-Yan; Kang, Li-Ke; Wei, Hai-Ming; Xu, Chun-Mei; Wang, Tao; Wen, Zong-Hua

    2016-01-01

    To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis. RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression. The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01). RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts.

  8. RGD-Targeted Ultrasound Contrast Agent for Longitudinal Assessment of Hep-2 Tumor Angiogenesis In Vivo

    PubMed Central

    Hu, Qiao; Wang, Xiao-Yan; Kang, Li-Ke; Wei, Hai-Ming; Xu, Chun-Mei; Wang, Tao; Wen, Zong-Hua

    2016-01-01

    Objective To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis. Methods RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression. Results The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01). Conclusions RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts. PMID:26862757

  9. Outcomes After Orbital Atherectomy of Severely Calcified Left Main Lesions: Analysis of the ORBIT II Study.

    PubMed

    Lee, Michael S; Shlofmitz, Evan; Shlofmitz, Richard; Sahni, Sheila; Martinsen, Brad; Chambers, Jeffrey

    2016-09-01

    The ORBIT II trial reported excellent outcomes in patients with severely calcified coronary lesions treated with orbital atherectomy. Severe calcification of the left main (LM) artery represents a complex coronary lesion subset. This study evaluated the safety and efficacy of coronary orbital atherectomy to prepare severely calcified protected LM artery lesions for stent placement. The ORBIT II trial was a prospective, multicenter clinical trial that enrolled 443 patients with severely calcified coronary lesions in the United States. The major adverse cardiac event (MACE) rate through 2 years post procedure, defined by cardiac death, myocardial infarction (CK-MB >3x upper limit of normal with or without a new pathologic Q-wave) and target-vessel revascularization, was compared in the LM and non-left main (NLM) groups. Among the 443 patients, a total of 10 underwent orbital atherectomy of protected LM artery lesions. At 2 years, there was no significant difference in the 2-year MACE rate in the LM and NLM groups (30.0% vs 19.1%, respectively; P=.36). Cardiac death was low in both groups (0% vs 4.4%, respectively; P=.99). Myocardial infarction occurred within 30 days in both groups (10.0% vs 9.7%, respectively; P=.99). Severe dissection, perforation, persistent slow flow, and persistent no reflow did not occur in the LM group. Abrupt closure occurred in 1 patient in the LM group. Orbital atherectomy for patients with heavily calcified LM coronary artery lesions is safe and feasible. Further studies are needed to assess the safety and efficacy of orbital atherectomy in patients with severely calcified LM artery lesions.

  10. Percutaneous Coronary Intervention in Severely Calcified Unprotected Left Main Coronary Artery Disease: Initial Experience With Orbital Atherectomy.

    PubMed

    Lee, Michael S; Shlofmitz, Evan; Kaplan, Barry; Shlofmitz, Richard

    2016-04-01

    We report the clinical outcomes of patients who underwent percutaneous coronary intervention (PCI) with orbital atherectomy for severely calcified unprotected left main coronary artery (ULMCA) disease. Although surgical revascularization is the gold standard for patients with ULMCA disease, not all patients are candidates for this. PCI is increasingly used to treat complex coronary artery disease, including ULMCA disease. The presence of severely calcified lesions increases the complexity of PCI. Orbital atherectomy can be used to facilitate stent delivery and expansion in severely calcified lesions. The clinical outcomes of patients treated with orbital atherectomy for severely calcified ULMCA disease have not been reported. From May 2014 to July 2015, a total of 14 patients who underwent PCI with orbital atherectomy for ULMCA disease were retrospectively evaluated. The primary endpoint was major cardiac and cerebrovascular event (cardiac death, myocardial infarction, stroke, and target-lesion revascularization) at 30 days. The mean age was 78.2 ± 5.8 years. The mean ejection fraction was 41.8 ± 19.8%. Distal bifurcation disease was present in 9 of 14 patients. Procedural success was achieved in all 14 patients. The 30-day major adverse cardiac and cerebrovascular event rate was 0%. One patient had coronary dissection that was successfully treated with stenting. No patient had perforation, slow flow, or thrombosis. Orbital atherectomy in patients with severely calcified ULMCA disease is feasible, even in high-risk patients who were considered poor surgical candidates. Randomized trials are needed to determine the role of orbital atherectomy in ULMCA disease.

  11. Thymosin β4 promotes endothelial progenitor cell angiogenesis via a vascular endothelial growth factor‑dependent mechanism.

    PubMed

    Zhao, Yanbo; Song, Jiale; Bi, Xukun; Gao, Jing; Shen, Zhida; Zhu, Junhui; Fu, Guosheng

    2018-06-20

    Endothelial progenitor cells (EPCs) are a promising cell source for tissue repair and regeneration, predominantly through angiogenesis promotion. Paracrine functions serve a pivotal role in EPC‑mediated angiogenesis, which may be impaired by various cardiovascular risk factors. Therefore, it is important to identify a solution that optimizes the paracrine function of EPCs. Thymosin β4 (Tβ4) is a peptide with the potential to promote tissue regeneration and wound healing. A previous study demonstrated that Tβ4 enhances the EPC‑mediated angiogenesis of the ischemic myocardium. In the present study, whether Tβ4 improved angiogenesis by enhancing the paracrine effects of EPCs was investigated. A tube formation assay was used to assess the effect of angiogenesis, and the paracrine effects were measured using an ELISA kit. The results indicated that Tβ4 improved the paracrine effects of EPCs, evidenced by an increase in the expression of vascular endothelial growth factor (VEGF). EPC‑conditioned medium (EPC‑CM) significantly promoted human umbilical vein endothelial cell angiogenesis in vitro, which was further enhanced by pretreatment with Tβ4. The effect of Tβ4 pretreated EPC‑CM on angiogenesis was abolished by VEGF neutralizing antibody in vitro, indicating that increased VEGF secretion had a pivotal role in Tβ4‑mediated EPC angiogenesis. Furthermore, transplantation of EPCs pretreated with Tβ4 into infarcted rat hearts resulted in significantly higher VEGF expression in the border zone, compared with EPC transplantation alone. To further investigate whether the Akt/eNOS pathway was involved in Tβ4‑induced VEGF secretion in EPCs, the expression levels of VEGF in EPC‑CM were significantly decreased following knockdown of Akt or eNOS by small interfering RNA transfection. In conclusion, Tβ4 significantly increased angiogenesis by enhancing the paracrine effects of EPCs, evidenced by the increased expression of VEGF. The RAC‑α serine

  12. [Study on shape and structure of calcified cartilage zone in normal human knee joint].

    PubMed

    Wang, Fuyou; Yang, Liu; Duan, Xiaojun; Tan, Hongbo; Dai, Gang

    2008-05-01

    To explore the shape and structure of calcified cartilage zone and its interface between the non-calcified articular cartilage and subchondral bone plate. The normal human condyles of femur (n=20) were obtained from the tissue bank donated by the residents, 10 males and 10 females, aged 17-45 years. The longitudinal and transverse paraffin sections were prepared by the routine method. The shape and structure of calcified cartilage zone were observed with the Safranin O/fast green and von kossa stain method. The interface conjunction among zones of cartilage was researched by SEM and the 3D structural model was established by serial sections and modeling technique. Articular bone-cartilage safranin O/fast green staining showed that cartilage was stained red and subchondral bone was stained blue. The calcified cartilage zone was located between the tidemark and cement line. Von kossa staining showed that calcified cartilage zone was stained black and sharpness of structure border. Upper interface gomphosised tightly with the non-calcified cartilage by the wave shaped tidemark and lower interface anchored tightly with the subchondral bone by the uneven comb shaped cement line. The non-calcified cartilage zone was interlocked tightly in the manner of "ravine-engomphosis" by the calcified cartilage zone as observed under SEM, and the subchondral bone was anchored tightly in the manner of"comb-anchor" by the in the calcified cartilage zone 3D reconstruction model. The calcified cartilage zone is an important structure in the articular cartilage. The articular cartilage is fixed firmly into subchondral bone plate by the distinctive conjunct interfaces of calcified cartilage zone.

  13. Mesoscopic and continuum modelling of angiogenesis

    PubMed Central

    Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.

    2016-01-01

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. PMID:24615007

  14. Retinal angiogenesis suppression through small molecule activation of p53

    PubMed Central

    Chavala, Sai H.; Kim, Younghee; Tudisco, Laura; Cicatiello, Valeria; Milde, Till; Kerur, Nagaraj; Claros, Nidia; Yanni, Susan; Guaiquil, Victor H.; Hauswirth, William W.; Penn, John S.; Rafii, Shahin; De Falco, Sandro; Lee, Thomas C.; Ambati, Jayakrishna

    2013-01-01

    Neovascular age-related macular degeneration is a leading cause of irreversible vision loss in the Western world. Cytokine-targeted therapies (such as anti-vascular endothelial growth factor) are effective in treating pathologic ocular angiogenesis, but have not led to a durable effect and often require indefinite treatment. Here, we show that Nutlin-3, a small molecule antagonist of the E3 ubiquitin protein ligase MDM2, inhibited angiogenesis in several model systems. We found that a functional p53 pathway was essential for Nutlin-3–mediated retinal antiangiogenesis and disruption of the p53 transcriptional network abolished the antiangiogenic activity of Nutlin-3. Nutlin-3 did not inhibit established, mature blood vessels in the adult mouse retina, suggesting that only proliferating retinal vessels are sensitive to Nutlin-3. Furthermore, Nutlin-3 inhibited angiogenesis in nonretinal models such as the hind limb ischemia model. Our work demonstrates that Nutlin-3 functions through an antiproliferative pathway with conceivable advantages over existing cytokine-targeted antiangiogenesis therapies. PMID:24018558

  15. Calcifying Bursitis ischioglutealis: A Case report

    PubMed Central

    Schuh, Alexander; Narayan, Chirag Thonse; Schuh, Ralph; Hönle, Wolfgang

    2011-01-01

    Introduction: The ischiogluteal bursa is an inconstant anatomical finding located between the ischial tuberosity and the gluteus maximus. Ischiogluteal bursitis is a rare disorder. Case Report: We report the case of a 43-year-old female patient with bilateral calcifying ischiogluteal bursitis. The patient had no relevant medical history of systemic illness or major trauma to the buttock. After aspiration of both ischiogluteal bursitis which delievered calcareous deposits and instillation of a mixture of 1cc betamethasone (6 mg) and 4 cc of 1% lidocaine the patient was out of any complaints. Conclusion: Calcifying ischiogluteal bursitis is a rare entity but easily diagnosed on radiographs. Aspiration and local steroid instillation give good relief from symptoms. PMID:27298836

  16. Persistent apical periodontitis associated with a calcifying odontogenic cyst.

    PubMed

    Estrela, C; Decurcio, D A; Silva, J A; Mendonça, E F; Estrela, C R A

    2009-06-01

    To report a case of calcifying odontogenic cyst (COC) that was suggestive of apical periodontitis adjacent to the roots of the maxillary incisor teeth. Tooth 21 presented with clinical and radiographic signs of secondary infection, a post within the root canal and substantial internal tooth destruction; it was scheduled for endodontic surgery. Teeth 12 and 22 were root filled following the placement of a calcium hydroxide intracanal dressing for 21 days. Three attempts at root canal disinfection in tooth 11 were unsuccessful, and a persistent purulent drainage precluded completion of root canal treatment. Surgical enucleation of the periapical lesion was undertaken and the tissues submitted for histopathological examination. A diagnosis of COC was established based on the microscopic analysis. COC is an unusual benign lesion that represents 2% of all odontogenic lesions. Depending on the stage of development, it can mimic a large lesion associated with apical periodontitis and should therefore be considered in the differential diagnosis. In the case of COC, the definitive diagnosis can only be made with histopathological analysis. Persistent apical periodontitis may be of nonendodontic origin. * Histological examination is essential to establish the cause of persistent apical periodontitis. * Calcifying odontogenic cyst can mimic apical periodontitis.

  17. 5-Methoxyleoligin, a Lignan from Edelweiss, Stimulates CYP26B1-Dependent Angiogenesis In Vitro and Induces Arteriogenesis in Infarcted Rat Hearts In Vivo

    PubMed Central

    Messner, Barbara; Kern, Johann; Wiedemann, Dominik; Schwaiger, Stefan; Türkcan, Adrian; Ploner, Christian; Trockenbacher, Alexander; Aumayr, Klaus; Bonaros, Nikolaos; Laufer, Günther; Stuppner, Hermann; Untergasser, Gerold; Bernhard, David

    2013-01-01

    Background Insufficient angiogenesis and arteriogenesis in cardiac tissue after myocardial infarction (MI) is a significant factor hampering the functional recovery of the heart. To overcome this problem we screened for compounds capable of stimulating angiogenesis, and herein investigate the most active molecule, 5-Methoxyleoligin (5ML), in detail. Methods and Results 5ML potently stimulated endothelial tube formation, angiogenic sprouting, and angiogenesis in a chicken chorioallantoic membrane assay. Further, microarray- and knock down- based analyses revealed that 5ML induces angiogenesis by upregulation of CYP26B1. In an in vivo rat MI model 5ML potently increased the number of arterioles in the peri-infarction and infarction area, reduced myocardial muscle loss, and led to a significant increase in LV function (plus 21% 28 days after MI). Conclusion The present study shows that 5ML induces CYP26B1-dependent angiogenesis in vitro, and arteriogenesis in vivo. Whether or not CYP26B1 is relevant for in vivo arteriogenesis is not clear at the moment. Importantly, 5ML-induced arteriogenesis in vivo makes the compound even more interesting for a post MI therapy. 5ML may constitute the first low molecular weight compound leading to an improvement of myocardial function after MI. PMID:23554885

  18. Ginsenoside-Rg{sub 1} induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Hoi-Hin; Chan, Lai-Sheung; Poon, Po-Ying

    2015-09-15

    Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg{sub 1} (Rg{sub 1}), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg{sub 1}-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg{sub 1} could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a.more » Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3′-UTR. Intriguingly, ginsenoside-Rg{sub 1} was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg{sub 1}-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg{sub 1} could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg{sub 1,} and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy. - Highlights: • Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. • Ginsenoside-Rg{sub 1} (Rg{sub 1}) has been demonstrated as an angiogenesis-stimulating compound. • We found that Rg{sub 1} induces angiogenesis

  19. Prevalence of calcified carotid artery on panoramic radiographs in postmenopausal women.

    PubMed

    Taheri, Jamileh Beigom; Moshfeghi, Mahkameh

    2009-01-01

    This study was designed to evaluate the prevalence of calcified carotid artery in 50 year-old and older postmenopausal dental outpatients for early diagnosis of individuals at risk of stroke. This is a descriptive study of 200 panoramic radiographs. These radiographs included post-menopausal women referring to the Department of Oral Medicine at Shahid Beheshti Faculty of Dentistry during 2006-2007. The x-ray machine, developer and film type were the same for all the radiographs. Statistical analysis included chi-square test and Fisher's exact test. We found 22 calcified carotid arteries. The left and right carotid arteries were involved in 7 and 9 cases, respec-tively. In 6 cases both carotid arteries were calcified. Four individuals had no vascular risk factor excluding age and others had at least one risk factor. We found significant statistical correlation between hypertension, past history of myocardial infarction, and hypercholesterolemia with calcified carotid artery on panoramic radiographs. Under the limitations of the present study, prevalence of calcified carotid arteries is 11.0 % in 50 year-old and older postmenopausal dental outpatients.

  20. Autophagy triggered by magnolol derivative negatively regulates angiogenesis

    PubMed Central

    Kumar, S; Guru, S K; Pathania, A S; Kumar, A; Bhushan, S; Malik, F

    2013-01-01

    Angiogenesis has a key role in the tumor progression and metastasis; targeting endothelial cell proliferation has emerged as a promising therapeutic strategy for the prevention of cancer. Previous studies have revealed a complex association between the process of angiogenesis and autophagy and its outcome on tumorigenesis. Autophagy, also known as type-II cell death, has been identified as an alternative way of cell killing in apoptotic-resistant cancer cells. However, its involvement in chemoresistance and tumor promotion is also well known. In this study, we used a derivate of natural product magnolol (Ery5), a potent autophagy inducer, to study the association between the autophagy and angiogenesis in both in vitro and in vivo model system. We found that the robust autophagy triggered by Ery5, inhibited angiogenesis and caused cell death independent of the apoptosis in human umbilical cord vein endothelial cells and PC-3 cells. Ery5 induced autophagy effectively inhibited cell proliferation, migration, invasion and tube formation. We further demonstrated that Ery5-mediated autophagy and subsequent inhibition of angiogenesis was reversed when autophagy was inhibited through 3-methyl adenine and knocking down of key autophagy proteins ATG7 and microtubule-associated protein light chain 3. While evaluating the negative regulation of autophagy on angiogenesis, it was interesting to find that angiogenic environment produced by the treatment of VEGF and CoCl2 remarkably downregulated the autophagy and autophagic cell death induced by Ery5. These studies, while disclosing the vital role of autophagy in the regulation of angiogenesis, also suggest that the potent modulators of autophagy can lead to the development of effective therapeutics in apoptosis-resistant cancer. PMID:24176847

  1. Endothelial TWIST1 Promotes Pathological Ocular Angiogenesis

    PubMed Central

    Li, Jie; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Fu, Zhongjie; Evans, Lucy P.; Tian, Katherine T.; Juan, Aimee M.; Hurst, Christian G.; Mammoto, Akiko; Chen, Jing

    2014-01-01

    Purpose. Pathological neovessel formation impacts many blinding vascular eye diseases. Identification of molecular signatures distinguishing pathological neovascularization from normal quiescent vessels is critical for developing new interventions. Twist-related protein 1 (TWIST1) is a transcription factor important in tumor and pulmonary angiogenesis. This study investigated the potential role of TWIST1 in modulating pathological ocular angiogenesis in mice. Methods. Twist1 expression and localization were analyzed in a mouse model of oxygen-induced retinopathy (OIR). Pathological ocular angiogenesis in Tie2-driven conditional Twist1 knockout mice were evaluated in both OIR and laser-induced choroidal neovascularization models. In addition, the effects of TWIST1 on angiogenesis and endothelial cell function were analyzed in sprouting assays of aortic rings and choroidal explants isolated from Twist1 knockout mice, and in human retinal microvascular endothelial cells treated with TWIST1 small interfering RNA (siRNA). Results. TWIST1 is highly enriched in pathological neovessels in OIR retinas. Conditional Tie2-driven depletion of Twist1 significantly suppressed pathological neovessels in OIR without impacting developmental retinal angiogenesis. In a laser-induced choroidal neovascularization model, Twist1 deficiency also resulted in significantly smaller lesions with decreased vascular leakage. In addition, loss of Twist1 significantly decreased vascular sprouting in both aortic ring and choroid explants. Knockdown of TWIST1 in endothelial cells led to dampened expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased endothelial cell proliferation. Conclusions. Our study suggests that TWIST1 is a novel regulator of pathologic ocular angiogenesis and may represent a new molecular target for developing potential therapeutic treatments to suppress pathological neovascularization in vascular eye diseases. PMID:25414194

  2. Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis.

    PubMed

    Chiodelli, P; Rezzola, S; Urbinati, C; Federici Signori, F; Monti, E; Ronca, R; Presta, M; Rusnati, M

    2017-11-23

    Vascular endothelial growth factor receptor-2 (VEGFR2) is the main pro-angiogenic receptor expressed by endothelial cells (ECs). Using surface plasmon resonance, immunoprecipitation, enzymatic digestion, immunofluorescence and cross-linking experiments with specific sugar-binding lectins, we demonstrated that VEGFR2 bears both α,1-fucose and α(2,6)-linked sialic acid (NeuAc). However, only the latter is required for VEGF binding to VEGFR2 and consequent VEGF-dependent VEGFR2 activation and motogenic response in ECs. Notably, downregulation of β-galactoside α(2,6)-sialyltransferase expression by short hairpin RNA transduction inhibits VEGFR2 α(2,6) sialylation that is paralleled by an increase of β-galactoside α(2,3)-sialyltransferase expression. This results in an ex-novo α(2,3)-NeuAc sialylation of the receptor that functionally replaces the lacking α(2,6)-NeuAc, thus allowing VEGF/VEGFR2 interaction. In keeping with the role of VEGFR2 sialylation in angiogenesis, the α(2,6)-NeuAc-binding lectin Sambucus nigra (SNA) prevents VEGF-dependent VEGFR2 autophosphorylation and EC motility, proliferation and motogenesis. In addition, SNA exerts a VEGF-antagonist activity in tridimensional angiogenesis models in vitro and in the chick-embryo chorioallantoic membrane neovascularization assay and mouse matrigel plug assay in vivo. In conclusion, VEGFR2-associated NeuAc plays an important role in modulating VEGF/VEGFR2 interaction, EC pro-angiogenic activation and neovessel formation. VEGFR2 sialylation may represent a target for the treatment of angiogenesis-dependent diseases.

  3. Cell-cycle-dependent drug-resistant quiescent cancer cells induce tumor angiogenesis after chemotherapy as visualized by real-time FUCCI imaging.

    PubMed

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-03-04

    We previously demonstrated that quiescent cancer cells in a tumor are resistant to conventional chemotherapy as visualized with a fluorescence ubiquitination cell cycle indicator (FUCCI). We also showed that proliferating cancer cells exist in a tumor only near nascent vessels or on the tumor surface as visualized with FUCCI and green fluorescent protein (GFP)-expressing tumor vessels. In the present study, we show the relationship between cell-cycle phase and chemotherapy-induced tumor angiogenesis using in vivo FUCCI real-time imaging of the cell cycle and nestin-driven GFP to detect nascent blood vessels. We observed that chemotherapy-treated tumors, consisting of mostly of quiescent cancer cells after treatment, had much more and deeper tumor vessels than untreated tumors. These newly-vascularized cancer cells regrew rapidly after chemotherapy. In contrast, formerly quiescent cancer cells decoyed to S/G 2 phase by a telomerase-dependent adenovirus did not induce tumor angiogenesis. The present results further demonstrate the importance of the cancer-cell position in the cell cycle in order that chemotherapy be effective and not have the opposite effect of stimulating tumor angiogenesis and progression.

  4. Cell-cycle-dependent drug-resistant quiescent cancer cells induce tumor angiogenesis after chemotherapy as visualized by real-time FUCCI imaging

    PubMed Central

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2017-01-01

    ABSTRACT We previously demonstrated that quiescent cancer cells in a tumor are resistant to conventional chemotherapy as visualized with a fluorescence ubiquitination cell cycle indicator (FUCCI). We also showed that proliferating cancer cells exist in a tumor only near nascent vessels or on the tumor surface as visualized with FUCCI and green fluorescent protein (GFP)-expressing tumor vessels. In the present study, we show the relationship between cell-cycle phase and chemotherapy-induced tumor angiogenesis using in vivo FUCCI real-time imaging of the cell cycle and nestin-driven GFP to detect nascent blood vessels. We observed that chemotherapy-treated tumors, consisting of mostly of quiescent cancer cells after treatment, had much more and deeper tumor vessels than untreated tumors. These newly-vascularized cancer cells regrew rapidly after chemotherapy. In contrast, formerly quiescent cancer cells decoyed to S/G2 phase by a telomerase-dependent adenovirus did not induce tumor angiogenesis. The present results further demonstrate the importance of the cancer-cell position in the cell cycle in order that chemotherapy be effective and not have the opposite effect of stimulating tumor angiogenesis and progression. PMID:27715464

  5. Synthesis and characterization of theranostic poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymer targeting tumor angiogenesis: tumor localization visualized by positron emission tomography.

    PubMed

    Yuan, Jianchao; Zhang, Haiyuan; Kaur, Harpreet; Oupicky, David; Peng, Fangyu

    2013-05-01

    Poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers were synthesized and characterized for tumor localization in vivo as a theranostic scaffold for cancer imaging and anticancer drug delivery targeting tumor angiogenesis. Tumor localization of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was visualized in mice bearing human prostate cancer xenografts by positron emission tomography (PET) using a microPET scanner. PET quantitative analysis demonstrated that tumor 64Cu radioactivity (2.75 ± 0.34 %ID/g) in tumor-bearing mice 3 hours following intravenous injection of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was significantly higher than the tumor 64Cu radioactivity (1.29 ± 0.26 %ID/g) in tumor-bearing mice injected with the nontargeted poly(HPMA)-DOTA-64Cu copolymers (p = .004). The poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers hold potential as a theranostic scaffold for cancer imaging and radiochemotherapy of prostate cancer targeting tumor angiogenesis by noninvasive tracking with PET.

  6. Regulatory effects of ferritin on angiogenesis

    PubMed Central

    Coffman, Lan G.; Parsonage, Derek; D'Agostino, Ralph; Torti, Frank M.; Torti, Suzy V.

    2009-01-01

    Angiogenesis, the synthesis of new blood vessels from preexisting vessels, plays a critical role in normal wound healing and tumor growth. HKa (cleaved high molecular weight kininogen) is an endogenous inhibitor of angiogenesis formed by the cleavage of kininogen on endothelial cells. Ferritin is a protein principally known for its central role in iron storage. Here, we demonstrate that ferritin binds to HKa with high affinity (Kd 13 nM). Further, ferritin antagonizes the antiangiogenic effects of HKa, enhancing the migration, assembly, and survival of HKa-treated endothelial cells. Effects of ferritin were independent of its iron content. Peptide mapping revealed that ferritin binds to a 22-aa subdomain of HKa that is critical to its antiangiogenic activity. In vivo, ferritin opposed HKa's antiangiogenic effects in a human prostate cancer xenograft, restoring tumor-dependent vessel growth. Ferritin-mediated regulation of angiogenesis represents a new angiogenic regulatory pathway, and identifies a new role for ferritin in cell biology. PMID:19126685

  7. Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis.

    PubMed

    Larrivée, Bruno; Freitas, Catarina; Trombe, Marc; Lv, Xiang; Delafarge, Benjamin; Yuan, Li; Bouvrée, Karine; Bréant, Christiane; Del Toro, Raquel; Bréchot, Nicolas; Germain, Stéphane; Bono, Françoise; Dol, Frédérique; Claes, Filip; Fischer, Christian; Autiero, Monica; Thomas, Jean-Léon; Carmeliet, Peter; Tessier-Lavigne, Marc; Eichmann, Anne

    2007-10-01

    Netrins are secreted molecules with roles in axonal growth and angiogenesis. The Netrin receptor UNC5B is required during embryonic development for vascular patterning, suggesting that it may also contribute to postnatal and pathological angiogenesis. Here we show that unc5b is down-regulated in quiescent adult vasculature, but re-expressed during sprouting angiogenesis in matrigel and tumor implants. Stimulation of UNC5B-expressing neovessels with an agonist (Netrin-1) inhibits sprouting angiogenesis. Genetic loss of function of unc5b reduces Netrin-1-mediated angiogenesis inhibition. Expression of UNC5B full-length receptor also triggers endothelial cell repulsion in response to Netrin-1 in vitro, whereas a truncated UNC5B lacking the intracellular signaling domain fails to induce repulsion. These data show that UNC5B activation inhibits sprouting angiogenesis, thus identifying UNC5B as a potential anti-angiogenic target.

  8. Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis

    PubMed Central

    Larrivée, Bruno; Freitas, Catarina; Trombe, Marc; Lv, Xiang; DeLafarge, Benjamin; Yuan, Li; Bouvrée, Karine; Bréant, Christiane; Del Toro, Raquel; Bréchot, Nicolas; Germain, Stéphane; Bono, Françoise; Dol, Frédérique; Claes, Filip; Fischer, Christian; Autiero, Monica; Thomas, Jean-Léon; Carmeliet, Peter; Tessier-Lavigne, Marc; Eichmann, Anne

    2007-01-01

    Netrins are secreted molecules with roles in axonal growth and angiogenesis. The Netrin receptor UNC5B is required during embryonic development for vascular patterning, suggesting that it may also contribute to postnatal and pathological angiogenesis. Here we show that unc5b is down-regulated in quiescent adult vasculature, but re-expressed during sprouting angiogenesis in matrigel and tumor implants. Stimulation of UNC5B-expressing neovessels with an agonist (Netrin-1) inhibits sprouting angiogenesis. Genetic loss of function of unc5b reduces Netrin-1-mediated angiogenesis inhibition. Expression of UNC5B full-length receptor also triggers endothelial cell repulsion in response to Netrin-1 in vitro, whereas a truncated UNC5B lacking the intracellular signaling domain fails to induce repulsion. These data show that UNC5B activation inhibits sprouting angiogenesis, thus identifying UNC5B as a potential anti-angiogenic target. PMID:17908930

  9. FKBPL Is a Critical Antiangiogenic Regulator of Developmental and Pathological Angiogenesis

    PubMed Central

    Yakkundi, Anita; Bennett, Rachel; Hernández-Negrete, Ivette; Delalande, Jean-Marie; Hanna, Mary; Lyubomska, Oksana; Arthur, Kenneth; Short, Amy; McKeen, Hayley; Nelson, Laura; McCrudden, Cian M.; McNally, Ross; McClements, Lana; McCarthy, Helen O.; Burns, Alan J.; Bicknell, Roy; Kissenpfennig, Adrien

    2015-01-01

    Objective— The antitumor effects of FK506-binding protein like (FKBPL) and its extracellular role in angiogenesis are well characterized; however, its role in physiological/developmental angiogenesis and the effect of FKBPL ablation has not been evaluated. This is important as effects of some angiogenic proteins are dosage dependent. Here we evaluate the regulation of FKBPL secretion under angiogenic stimuli, as well as the effect of FKBPL ablation in angiogenesis using mouse and zebrafish models. Approach and Results— FKBPL is secreted maximally by human microvascular endothelial cells and fibroblasts, and this was specifically downregulated by proangiogenic hypoxic signals, but not by the angiogenic cytokines, VEGF or IL8. FKBPL’s critical role in angiogenesis was supported by our inability to generate an Fkbpl knockout mouse, with embryonic lethality occurring before E8.5. However, whilst Fkbpl heterozygotic embryos showed some vasculature irregularities, the mice developed normally. In murine angiogenesis models, including the ex vivo aortic ring assay, in vivo sponge assay, and tumor growth assay, Fkbpl+/− mice exhibited increased sprouting, enhanced vessel recruitment, and faster tumor growth, respectively, supporting the antiangiogenic function of FKBPL. In zebrafish, knockdown of zFkbpl using morpholinos disrupted the vasculature, and the phenotype was rescued with hFKBPL. Interestingly, this vessel disruption was ineffective when zcd44 was knocked-down, supporting the dependency of zFkbpl on zCd44 in zebrafish. Conclusions— FKBPL is an important regulator of angiogenesis, having an essential role in murine and zebrafish blood vessel development. Mouse models of angiogenesis demonstrated a proangiogenic phenotype in Fkbpl heterozygotes. PMID:25767277

  10. Giant, Completely Calcified Lumbar Juxtafacet Cyst: Report of an Unusual Case

    PubMed Central

    Huang, Kevin T.; Owens, Timothy R.; Wang, Teresa S.; Moreno, Jessica R.; Bagley, Jacob H.; Bagley, Carlos A.

    2013-01-01

    Study Design Case report. Objective To report the case of one patient who developed a giant, completely calcified, juxtafacet cyst. Methods A 57-year-old woman presented with a 2-year history of progressively worsening lower back pain, left leg pain, weakness, and paresthesias. Imaging showed a giant, completely calcified mass arising from the left L5–S1 facet joint, with coexisting grade I L5 on S1 anterolisthesis. The patient was treated with laminectomy, excision of the mass, and L5–S1 fixation and fusion. Results The patient had an uncomplicated postoperative course and had complete resolution of her symptoms as of 1-year follow-up. Conclusions When presented with a solid-appearing, calcified mass arising from the facet joint, a completely calcified juxtafacet cyst should be considered as part of the differential diagnosis. PMID:25083359

  11. Angiogenesis inhibitors: current strategies and future prospects.

    PubMed

    Cook, Kristina M; Figg, William D

    2010-01-01

    Angiogenesis has become an attractive target for drug therapy because of its key role in tumor growth. An extensive array of compounds is currently in preclinical development, with many now entering the clinic and/or achieving approval from the US Food and Drug Administration. Several regulatory and signaling molecules governing angiogenesis are of interest, including growth factors (eg, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, and epidermal growth factor), receptor tyrosine kinases, and transcription factors such as hypoxia inducible factor, as well as molecules involved in mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling. Pharmacologic agents have been identified that target these pathways, yet for some agents (notably thalidomide), an understanding of the specific mechanisms of antitumor action has proved elusive. The following review describes key molecular mechanisms and novel therapies that are on the horizon for antiangiogenic tumor therapy. (c) 2010 American Cancer Society, Inc.

  12. Angiogenesis in arthritis: role in disease pathogenesis and as a potential therapeutic target.

    PubMed

    Paleolog, E M; Miotla, J M

    1998-01-01

    Rheumatoid arthritis (RA) is a chronic destructive musculo-skeletal disorder, associated with thickening of the synovial membrane lining the joints, inflammation and hyperproliferation of synovial cells, as well as a pro-inflammatory cytokine cascade, leukocyte infiltration, and tissue damage and bone resorption. An early event in RA is an alteration in blood vessel density and prominent neovascularisation. The hyperplasia of the synovium necessitates a compensatory increase in the number of blood vessels to nourish and oxygenate the tissue. However, angiogenesis may not keep pace with synovial proliferation, leading to regions of hypoperfusion and hypoxia. VEGF, a potent endothelial cell mitogen, is expressed in RA synovium and elevated in the serum of RA patients. We have reported that dissociated RA synovial membrane cells spontaneously secrete VEGF, and that release of VEGF by these cells is upregulated by cytokines and hypoxia. In a murine model of RA, VEGF is released from synovial cells isolated from the knees of arthritic but not healthy mice, and the extent of VEGF production correlates with the severity of arthritis. VEGF thus appears to play a key role in mediating alterations in synovial vessel density in arthritis. As a consequence, RA may be a potential target for anti-angiogenic therapy, and targeting VEGF may prove to be especially beneficial.

  13. Identification of an Endogenously Generated Cryptic Collagen Epitope (XL313) That May Selectively Regulate Angiogenesis by an Integrin Yes-associated Protein (YAP) Mechano-transduction Pathway*

    PubMed Central

    Ames, Jacquelyn J.; Contois, Liangru; Caron, Jennifer M.; Tweedie, Eric; Yang, Xuehui; Friesel, Robert; Vary, Calvin; Brooks, Peter C.

    2016-01-01

    Extracellular matrix (ECM) remodeling regulates angiogenesis. However, the precise mechanisms by which structural changes in ECM proteins contribute to angiogenesis are not fully understood. Integrins are molecules with the ability to detect compositional and structural changes within the ECM and integrate this information into a network of signaling circuits that coordinate context-dependent cell behavior. The role of integrin αvβ3 in angiogenesis is complex, as evidence exists for both positive and negative functions. The precise downstream signaling events initiated by αvβ3 may depend on the molecular characteristics of its ligands. Here, we identified an RGD-containing cryptic collagen epitope that is generated in vivo. Surprisingly, rather than inhibiting αvβ3 signaling, this collagen epitope promoted αvβ3 activation and stimulated angiogenesis and inflammation. An antibody directed to this RGDKGE epitope but not other RGD collagen epitopes inhibited angiogenesis and inflammation in vivo. The selective ability of this RGD epitope to promote angiogenesis and inflammation depends in part on its flanking KGE motif. Interestingly, a subset of macrophages may represent a physiologically relevant source of this collagen epitope. Here, we define an endothelial cell mechano-signaling pathway in which a cryptic collagen epitope activates αvβ3 leading to an Src and p38 MAPK-dependent cascade that leads to nuclear accumulation of Yes-associated protein (YAP) and stimulation of endothelial cell growth. Collectively, our findings not only provide evidence for a novel mechano-signaling pathway, but also define a possible therapeutic strategy to control αvβ3 signaling by targeting a pro-angiogenic and inflammatory ligand of αvβ3 rather than the receptor itself. PMID:26668310

  14. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH.

    PubMed

    Comeau, S; Tambutté, E; Carpenter, R C; Edmunds, P J; Evensen, N R; Allemand, D; Ferrier-Pagès, C; Tambutté, S; Venn, A A

    2017-01-25

    Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pH CF ) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pH CF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (A T ). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pH CF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [A T ], revealing that seawater pH is not the sole driver of pH CF Notably, when we synthesize our results with published data, we identify linear relationships of pH CF with the seawater [DIC]/[H + ] ratio, [A T ]/ [H + ] ratio and [[Formula: see text

  15. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling

    USDA-ARS?s Scientific Manuscript database

    VEGF is one of the most critical factors that induce angiogenesis, and has thus become an attractive target for anti-angiogenesis treatment. However, most of the current anti-VEGF agents that often cause side effects cannot be recommended for long term use. Identification of natural VEGF inhibitors...

  16. Clotrimazole ameliorates intestinal inflammation and abnormal angiogenesis by inhibiting interleukin-8 expression through a nuclear factor-kappaB-dependent manner.

    PubMed

    Thapa, Dinesh; Lee, Jong Suk; Park, Su-Young; Bae, Yun-Hee; Bae, Soo-Kyung; Kwon, Jun Bum; Kim, Kyoung-Jin; Kwak, Mi-Kyoung; Park, Young-Joon; Choi, Han Gon; Kim, Jung-Ae

    2008-11-01

    Increased interleukin (IL)-8 plays an important role not only in activation and recruitment of neutrophils but also in inducing exaggerated angiogenesis at the inflamed site. In the present study, we investigated the fact that clotrimazole (CLT) inhibits intestinal inflammation, and the inhibitory action is mediated through suppression of IL-8 expression. In the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model, CLT dose-dependently protected from the TNBS-induced weight loss, colon ulceration, and myeloperoxidase activity increase. In the lesion site, CLT also suppressed the TNBS-induced angiogenesis, IL-8 expression, and nuclear factor (NF)-kappaB activation. In a cellular model of colitis using tumor necrosis factor (TNF)-alpha-stimulated HT29 colon epithelial cells, treatment with CLT significantly suppressed TNF-alpha-mediated IL-8 induction and NF-kappaB transcriptional activity revealed by a luciferase reporter gene assay. Furthermore, cotreatment with CLT and pyrrolidine dithiocarbamate, a NF-kappaB inhibitor, synergistically reduced the NF-kappaB transcriptional activity as well as IL-8 expression. In an in vitro angiogenesis assay, CLT suppressed IL-8-induced proliferation, tube formation, and invasion of human umbilical vein endothelial cells. The in vivo angiogenesis assay using chick chorioallantoic membrane also showed that CLT significantly inhibited the IL-8-induced formation of new blood vessels. Taken together, these results suggest that CLT may prevent the progression of intestinal inflammation by not only down-regulating IL-8 expression but also inhibiting the action of IL-8 in both colon epithelial and vascular endothelial cells during pathogenesis of intestinal inflammation.

  17. How Should We Perform Rotational Atherectomy to an Angulated Calcified Lesion?

    PubMed

    Sakakura, Kenichi; Taniguchi, Yousuke; Matsumoto, Mitsunari; Wada, Hiroshi; Momomura, Shin-Ichi; Fujita, Hideo

    2016-05-25

    Rotational atherectomy to an angulated calcified lesion is always challenging. The risk of catastrophic complications such as a burr becoming stuck or vessel perforation is greater when the calcified lesion is angulated. We describe the case of an 83-year-old female suffering from unstable angina. Diagnostic coronary angiography revealed an angulated calcified lesion in the proximal segment of the right coronary artery. We performed rotational atherectomy to the lesion, but intentionally did not advance the rotational atherectomy burr beyond the top of the angulation. We controlled the rotational atherectomy burr and stopped it just before the top of the angulation to avoid complications. Following rotational atherectomy, balloon dilatation with a non-compliant balloon was performed, and drug-eluting stents were successfully deployed. In this manuscript, we provide a review of the literature on this topic, and discuss how rotational atherectomy to an angulated calcified lesion should be performed.

  18. ALK1 Signaling Inhibits Angiogenesis by Cooperating with the Notch Pathway

    PubMed Central

    Larrivée, Bruno; Prahst, Claudia; Gordon, Emma; del Toro, Raquel; Mathivet, Thomas; Duarte, Antonio; Simons, Michael; Eichmann, Anne

    2014-01-01

    SUMMARY Activin receptor-like kinase 1 (ALK1) is an endothelial-specific member of the TGF-β/BMP receptor family that is inactivated in patients with hereditary hemorrhagic telangiectasia (HHT). How ALK1 signaling regulates angiogenesis remains incompletely understood. Here we show that ALK1 inhibits angiogenesis by cooperating with the Notch pathway. Blocking Alk1 signaling during postnatal development in mice leads to retinal hypervascularization and the appearance of arteriovenous malformations (AVMs). Combined blockade of Alk1 and Notch signaling further exacerbates hypervascularization, whereas activation of Alk1 by its high-affinity ligand BMP9 rescues hypersprouting induced by Notch inhibition. Mechanistically, ALK1-dependent SMAD signaling synergizes with activated Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2, thereby repressing VEGF signaling, tip cell formation, and endothelial sprouting. Taken together, these results uncover a direct link between ALK1 and Notch signaling during vascular morpho-genesis that may be relevant to the pathogenesis of HHT vascular lesions. PMID:22421041

  19. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway.

    PubMed

    Larrivée, Bruno; Prahst, Claudia; Gordon, Emma; del Toro, Raquel; Mathivet, Thomas; Duarte, Antonio; Simons, Michael; Eichmann, Anne

    2012-03-13

    Activin receptor-like kinase 1 (ALK1) is an endothelial-specific member of the TGF-β/BMP receptor family that is inactivated in patients with hereditary hemorrhagic telangiectasia (HHT). How ALK1 signaling regulates angiogenesis remains incompletely understood. Here we show that ALK1 inhibits angiogenesis by cooperating with the Notch pathway. Blocking Alk1 signaling during postnatal development in mice leads to retinal hypervascularization and the appearance of arteriovenous malformations (AVMs). Combined blockade of Alk1 and Notch signaling further exacerbates hypervascularization, whereas activation of Alk1 by its high-affinity ligand BMP9 rescues hypersprouting induced by Notch inhibition. Mechanistically, ALK1-dependent SMAD signaling synergizes with activated Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2, thereby repressing VEGF signaling, tip cell formation, and endothelial sprouting. Taken together, these results uncover a direct link between ALK1 and Notch signaling during vascular morphogenesis that may be relevant to the pathogenesis of HHT vascular lesions. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Soliton driven angiogenesis

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  1. Establishment of primary cell cultures from fish calcified tissues

    PubMed Central

    Marques, Cátia L.; Rafael, Marta S.; Cancela, M. Leonor

    2007-01-01

    Fishes have been recently recognized as a suitable model organism to study vertebrate physiological processes, in particular skeletal development and tissue mineralization. However, there is a lack of well characterized in vitro cell systems derived from fish calcified tissues. We describe here a protocol that was successfully used to develop the first calcified tissue-derived cell cultures of fish origin. Vertebra and branchial arches collected from young gilthead seabreams were fragmented then submitted to the combined action of collagenase and trypsin to efficiently release cells embedded in the collagenous extracellular matrix. Primary cultures were maintained under standard conditions and spontaneously transformed to form continuous cell lines suitable for studying mechanisms of tissue mineralization in seabream. This simple and inexpensive protocol is also applicable to other calcified tissues and species by adjusting parameters to each particular case. PMID:19002990

  2. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms.

    PubMed

    Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E

    2007-04-01

    Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.

  3. Molecular regulation and role of angiogenesis in reproduction.

    PubMed

    Rizov, Momchil; Andreeva, Petya; Dimova, Ivanka

    2017-04-01

    Angiogenesis is an essential process for proper functioning of the female reproductive system and for successful pregnancy realization. The multitude of factors required for physiological angiogenesis and the complexity of regulation of their temporal-spatial activities contribute to aberrations in human fertilization and pregnancy outcomes. In this study, we reviewed the current knowledge of the temporal expression patterns, functions, and regulatory mechanisms of angiogenic factors during foliculogenesis, early implantation/placentation and embryo development, as well as recurrent spontaneous abortions. Angiogenic factors including vascular endothelial growth factors and angiopoietins have documented roles in the development of primordial follicles into mature antral follicles. They also participate in decidualization, which is accompanied by the creation of an extensive network of vessels in the stromal bed that support the growth of the embryo and the placenta, and maintain early pregnancy. During placentation angiogenic and angiomodulatory cytokines, T and B lymphocytes and macrophages affect angiogenesis in a context-dependent manner. Defects in angiogenesis at the maternal-fetal interface contribute to miscarriage in humans. The establishment of more polymorphisms in the genes involved in angiogenesis/vasculogenesis, and their pathological phenotype and expression could give opportunities for prediction, creating a therapeutic strategy, and treatment of diseases related to female reproductive health and problematic conception. Copyright © 2017. Published by Elsevier B.V.

  4. Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension.

    PubMed

    Tiani, Carolina; Garcia-Pras, Ester; Mejias, Marc; de Gottardi, Andrea; Berzigotti, Annalisa; Bosch, Jaime; Fernandez, Mercedes

    2009-02-01

    Angiogenesis is a pathological hallmark of portal hypertension. Although VEGF is considered to be the most important proangiogenic factor in neoangiogenesis, this process requires the coordinated action of a variety of factors. Identification of novel molecules involved in angiogenesis is highly relevant, since they may represent potential new targets to suppress pathological neovascularization in angiogenesis-related diseases like portal hypertension. The apelin/APJ signaling pathway plays a crucial role in angiogenesis. Therefore, we determined whether the apelin system modulates angiogenesis-driven processes in portal hypertension. Partial portal vein-ligated rats were treated with the APJ antagonist F13A for seven days. Splanchnic neovascularization and expression of angiogenesis mediators (Western blotting) was determined. Portosystemic collateral formation (microspheres), and hemodynamic parameters (flowmetry) were also assessed. Apelin and its receptor APJ were overexpressed in the splanchnic vasculature of portal hypertensive rats. F13A effectively decreased, by 52%, splanchnic neovascularization and expression of proangiogenic factors VEGF, PDGF and angiopoietin-2 in portal hypertensive rats. F13A also reduced, by 35%, the formation of portosystemic collateral vessels. This study provides the first experimental evidence showing that the apelin/APJ system contributes to portosystemic collateralization and splanchnic neovascularization in portal hypertensive rats, presenting a potential novel therapeutic target for portal hypertension.

  5. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models.

    PubMed

    Wu, Xiao Yu; Xu, Hao; Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang

    2015-12-29

    Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis.

  6. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models

    PubMed Central

    Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang

    2015-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis. PMID:26575424

  7. HULC long noncoding RNA silencing suppresses angiogenesis by regulating ESM-1 via the PI3K/Akt/mTOR signaling pathway in human gliomas.

    PubMed

    Zhu, Yu; Zhang, Xuebin; Qi, Lisha; Cai, Ying; Yang, Ping; Xuan, Geng; Jiang, Yuan

    2016-03-22

    Tumor angiogenesis plays a critical role in the tumor progression. Highly upregulated in liver cancer (HULC) is a long noncoding RNA (lncRNA) that acts as an oncogene in gliomas. We found that HULC, vascular endothelial growth factor (VEGF), and ESM-1 (endothelial cell specific molecule 1) expression and microvessel density were positively correlated with grade dependency in glioma patient tissues, and that HULC silencing suppressed angiogenesis by inhibiting glioma cells proliferation and invasion. This process induced anoikis and blocked the cell cycle at G1/S phase via the PI3K/Akt/mTOR signaling pathway, thus regulating the tumor-related genes involved in the above biological behavior in human glioma U87MG and U251 cells. However, these effects were reversed by ESM-1 overexpression, suggesting a mediating role of ESM-1 in the pro-angiogenesis effect of HULC. Our results define the mechanism of the pro-angiogenesis activity of HULC, which shows potential for application as a therapeutic target in glioma.

  8. MDA-9/Syntenin and IGFBP-2 Promote Angiogenesis in Human Melanoma

    PubMed Central

    Das, Swadesh K.; Bhutia, Sujit K.; Azab, Belal; Kegelman, Timothy P.; Peachy, Leyla; Santhekadur, Prasanna K.; Dasgupta, Santanu; Dash, Rupesh; Dent, Paul; Grant, Steven; Emdad, Luni; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B.

    2012-01-01

    Melanoma differentiation associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacological approaches were employed to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, CAM assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several pro-angiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the ECM activating Src and FAK resulting in activation by phosphorylation of Akt, which induces HIF-1α. The HIF-1α activates transcription of Insulin Growth Factor Binding Protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell non-autonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (non-autonomous). PMID:23233738

  9. Sympathetic nerves: How do they affect angiogenesis, particularly during wound healing of soft tissues?

    PubMed

    Pan, Liangli; Tang, Jianbing; Liu, Hongwei; Cheng, Biao

    2016-01-01

    Angiogenesis is essential for wound healing, and angiogenesis impairment can result in chronic ulcers. Studies have shown that the sympathetic nervous system has an important role in angiogenesis. In recent years, researchers have focused on the roles of sympathetic nerves in tumor angiogenesis. In fact, sympathetic nerves can affect angiogenesis in the wound healing of soft tissues, and may have a similar mechanism of action as that seen in tumorigenesis. Sympathetic nerves act primarily through interactions between the neurotransmitters released from nerve endings and receptors present in target organs. Among this, activation or inhibition of adrenergic receptors (mainly β-adrenergic receptors) influence formation of new blood vessels considerably. As sympathetic nerves locate near pericytes in microvessel, go along the capillaries and there are adrenergic receptors present in endothelial cells and pericytes, sympathetic nerves may participate in angiogenesis by influencing the endothelial cells and pericytes of new capillaries. Studying the roles of sympathetic nerves on the angiogenesis of wound healing can contribute to understanding the mechanisms of tissue repair, tissue regeneration, and tumorigenesis, thereby providing new therapeutic perspectives.

  10. New treatment options for metastatic renal cell carcinoma with prior anti-angiogenesis therapy.

    PubMed

    Zarrabi, Kevin; Fang, Chunhui; Wu, Shenhong

    2017-02-02

    Angiogenesis is a critical process in the progression of advanced renal cell carcinoma. Agents targeting angiogenesis have played a primary role in the treatment of metastatic renal cell carcinoma. However, resistance to anti-angiogenesis therapy almost always occurs, and major progress has been made in understanding its underlying molecular mechanism. Axitinib and everolimus have been used extensively in patients whom have had disease progression after prior anti-angiogenesis therapy. Recently, several new agents have been shown to improve overall survival in comparison with everolimus. This review provides an in-depth summary of drugs employable in the clinical setting, the rationale to their use, and the studies conducted leading to their approval for use and provides perspective on the paradigm shift in the treatment of renal cell carcinoma. Highlighted are the newly approved agents cabozantinib, nivolumab, and lenvatinib for advanced renal cell carcinoma patients treated with prior anti-angiogenesis therapy.

  11. [Arthroscopic treatment of calcifying tendinitis of the rotator cuff].

    PubMed

    Boyer, T

    2006-11-01

    The treatment of symptomatic calcifying tendinitis of the rotator cuff is usally medical. Whereas, chronic and painfull features can beneficiate of a surgical treatment. With shoulder arthroscopy it's possible to remove the type A and B calcifications and to perform a bursectomy and acromioplasty in type C uncollected. The clinical and radiological results with one year of follow-up upgrate 90% of good and excellent results. Calcifying tendinitis reatment appear like one of the best indications of the shoulder arthroscopy.

  12. [Arthroscopic treatment of calcifying tendinitis of the rotator cuff.

    PubMed

    Boyer, T

    2006-11-01

    The treatment of symptomatic calcifying tendinitis of the rotator cuff is usally medical. Whereas, chronic and painfull features can beneficiate of a surgical treatment. With shoulder arthroscopy it's possible to remove the type A and B calcifications and to perform a bursectomy and acromioplasty in type C uncollected. The clinical and radiological results with one year of follow-up upgrate 90% of good and excellent results. Calcifying tendinitis reatment appear like one of the best indications of the shoulder arthroscopy.

  13. Marine-derived angiogenesis inhibitors for cancer therapy.

    PubMed

    Wang, Ying-Qing; Miao, Ze-Hong

    2013-03-15

    Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis inhibitors based on their primary targets and/or mechanisms of action. Then, the marine-derived antiangiogenic protein kinase inhibitors will be focused on. And finally, the clinical trials of the marine-derived antiangiogenic agents will be discussed, with special emphasis on their application potentials, problems and possible coping strategies in their future development as anticancer drugs.

  14. Guide Catheter Extension Device Is Effective in Renal Angioplasty for Severely Calcified Lesions.

    PubMed

    Sugimoto, Takeshi; Nomura, Tetsuya; Hori, Yusuke; Yoshioka, Kenichi; Kubota, Hiroshi; Miyawaki, Daisuke; Urata, Ryota; Kikai, Masakazu; Keira, Natsuya; Tatsumi, Tetsuya

    2017-05-23

    BACKGROUND The GuideLiner catheter extension device is a monorail-type "Child" support catheter that facilitates coaxial alignment with the guide catheter and provides an appropriate back-up force. This device has been developed in the field of coronary intervention, and now is becoming widely applied in the field of endovascular treatment. However, there has been no report on the effectiveness of the guide catheter extension device in percutaneous transluminal renal angioplasty (PTRA). CASE REPORT We encountered a case of atherosclerotic subtotal occlusion at the ostium of the left renal artery. Due to the severely calcified orifice and weaker back-up force provided by a JR4 guide catheter, we could not pass any guidewires through the target lesion. Therefore, we introduced a guide catheter extension device, the GuideLiner catheter, through the guide catheter and achieved good guidewire maneuverability. We finally deployed 2 balloon-expandable stents and successfully performed all PTRA procedures. CONCLUSIONS The guide catheter extension device can be effective in PTRA for severely calcified subtotal occlusion.

  15. Macrophages: An Inflammatory Link between Angiogenesis and Lymphangiogenesis

    PubMed Central

    Corliss, Bruce A.; Azimi, Mohammad S.; Munson, Jenny; Peirce, Shayn M.; Murfee, Walter Lee

    2015-01-01

    Angiogenesis and lymphangiogenesis often occur in response to tissue injury or in the presence of pathology (e.g. cancer), and it is these types of environments in which macrophages are activated and increased in number. Moreover, the blood vascular microcirculation and the lymphatic circulation serve as the conduits for entry and exit for monocyte-derived macrophages in nearly every tissue and organ. Macrophages both affect and are affected by the vessels through which they travel. Therefore, it is not surprising that examination of macrophage behaviors in both angiogenesis and lymphangiogenesis has yielded interesting observations that suggest macrophages may be key regulators of these complex growth and remodeling processes. In this review, we will take a closer look at macrophages through the lens of angiogenesis and lymphangiogenesis, examining how their dynamic behaviors may regulate vessel sprouting and function. We present macrophages as a cellular link that spatially and temporally connects angiogenesis with lymphangiogenesis, in both physiological growth and in pathological adaptations, such as tumorigenesis. As such, attempts to therapeutically target macrophages in order to affect these processes may be particularly effective, and studying macrophages in both settings will accelerate the field’s understanding of this important cell type in health and disease. PMID:26614117

  16. Breast cancer: the role of angiogenesis and antiangiogenic therapy.

    PubMed

    Miller, Kathy D; Dul, Carrie L

    2004-10-01

    Angiogenesis plays a role in breast cancer development. Preclinical and clinical evidence is reviewed. Development of targeted antiangiogenic agents provides new challenges to clinical trial design. Current antiangiogenic therapy with traditional agents and novel agents are classified and reviewed.

  17. Synthesis and biological evaluation of novel alkyl diamine linked bivalent β-carbolines as angiogenesis inhibitors.

    PubMed

    Chen, Wei; Zhang, Guoxian; Guo, Liang; Fan, Wenxi; Ma, Qin; Zhang, Xiaodong; Du, Runlei; Cao, Rihui

    2016-11-29

    We have synthesized and evaluated a series of novel alkyl diamine linked bivalent β-carbolines as potent angiogenesis inhibitors. The results demonstrated that most bivalent β-carbolines exhibited significant antiproliferative effects against human umbilical vein cell lines EA.HY926. Compound 4m was found to be the most potent antiproliferative agent with IC 50 value of 2.16 μM against EA.HY926 cell lines. Mechanism investigations revealed that compound 4m could significantly inhibit EA.HY926 cells migration and tube formation in a dose-dependent manner. Moreover, compound 4m also showed obvious angiogenesis inhibitory effects in CAM assay, and the antiangiogenetic potency was more potent than the reference drug Endostar. The bivalent β-carbolines might be served as candidates for the development of vascular targeting antitumor drugs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. MicroRNAs modulating angiogenesis: miR-129-1 and miR-133 act as angio-miR in HUVECs.

    PubMed

    Soufi-Zomorrod, Mina; Hajifathali, Abbas; Kouhkan, Fatemeh; Mehdizadeh, Mahshid; Rad, Seyed Mohammad Ali Hosseini; Soleimani, Masoud

    2016-07-01

    The sprouting of new blood vessels by angiogenesis is critical in vascular development and homeostasis. Aberrant angiogenesis leads to enormous pathological conditions such as ischemia and cancer. MicroRNAs (also known as miRNAs or miRs) play key roles in regulation of a range of cellular processes by posttranscriptional suppression of their target genes. Recently, new studies have indicated that miRNAs are involved in certain angiogenic settings and signaling pathways use these non-coding RNAs to promote or suppress angiogenic processes. Herein, VEGFR2 and FGFR1 were identified as miR-129-1 and miR-133 targets using bioinformatic algorithms, respectively. Afterwards, using luciferase reporter assay and gene expression analysis at both mRNA and protein levels, VEGFR2 and FGFR1 were validated as miR-129-1 and miR-133 targets. In addition, we showed that miR-129-1 and miR-133 suppress angiogenesis properties such as proliferation rate, cell viability, and migration activity of human umbilical vein endothelial cells (HUVEC) in vitro. We conclude that these miRNAs can suppress key factors of angiogenesis by directly targeting them. These results have important therapeutic implications for a variety of diseases involving deregulation of angiogenesis, including cancer.

  19. Calcifying (juvenile) aponeurotic fibroma of the scalp.

    PubMed

    Thakur, Jagdeep S; Diwana, Vijay K; Sharma, Sudarshan; Thakur, Anamika

    2011-10-01

    Calcifying aponeurotic fibroma is a benign tumor with a predilection for distal parts of the extremities; it is very rare in the head and neck region. It commonly affects young patients-hence the term juvenile in the name. It is fibroblastic in origin and considered a cartilage analogue of fibromatosis, but its exact etiology remains unknown. Clinically, this tumor needs to be differentiated from fibromatosis, nodular fasciitis, chondroma, schwannoma, and rheumatoid nodule. A 24-year-old woman presented with swelling in the forehead for the previous 6 months. Wide surgical excision of the lesion was performed, and histopathologic examination revealed a calcifying aponeurotic fibroma. We reviewed the literature on this rare clinical entity and present our hypothesis on its etiology.

  20. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts.

    PubMed

    Rapisarda, Annamaria; Zalek, Jessica; Hollingshead, Melinda; Braunschweig, Till; Uranchimeg, Badarch; Bonomi, Carrie A; Borgel, Suzanne D; Carter, John P; Hewitt, Stephen M; Shoemaker, Robert H; Melillo, Giovanni

    2004-10-01

    We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.

  1. Angiogenesis and lymphangiogenesis are downregulated in primary breast cancer

    PubMed Central

    Boneberg, E-M; Legler, D F; Hoefer, M M; Öhlschlegel, C; Steininger, H; Füzesi, L; Beer, G M; Dupont-Lampert, V; Otto, F; Senn, H-J; Fürstenberger, G

    2009-01-01

    Background: Angiogenesis and lymphangiogenesis are considered to play key roles in tumour growth, progression and metastasis. However, targeting tumour angiogenesis in clinical trials showed only modest efficacy. We therefore scrutinised the concept of tumour angiogenesis and lymphangiogenesis by analysing the expression of crucial markers involved in these processes in primary breast cancer. Methods: We analysed the expression of angiogenic, lymphangiogenic or antiangiogenic factors, their respective receptors and specific markers for endothelial and lymphendothelial cells by quantitative real-time RT-PCR in primary breast cancer and compared the expression profiles to non-cancerous, tumour-adjacent tissues and breast tissues from healthy women. Results: We found decreased mRNA amounts of major angiogenic and lymphangiogenic factors in tumour compared to healthy tissues, whereas antiangiogenic factors were upregulated. Concomitantly, angiogenic and lymphangiogenic receptors were downregulated in breast tumours. This antiangiogenic, antilymphangiogenic microenvironment was even more pronounced in aggressive tumours and accompanied by reduced amounts of endothelial and lymphatic endothelial cell markers. Conclusion: Primary breast tumours are not a site of highly active angiogenesis and lymphangiogenesis. Selection for tumour cells that survive with minimal vascular supply may account for this observation in clinical apparent tumours. PMID:19672262

  2. [Angiogenesis and endometriose].

    PubMed

    Becker, C M; Bartley, J; Mechsner, S; Ebert, A D

    2004-08-01

    Endometriosis is considered a chronic disease of women during their reproductive phase, which resembles many signs of malignancy. So far, therapeutic options for endometriosis-associated pain and infertility are unsatisfactory and often lead to recurrence of disease after termination of treatment. Angiogenesis seems to play an important role in the pathogenesis of endometriosis. The use of angiogenesis inhibitors may add an important new tool to well-established treatment schedules. Therefore, it is very important to thoroughly investigate the role of angiogenesis in endometriosis with respect to the female reproductive system.

  3. Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1-induced differentiation to target cancer angiogenesis.

    PubMed

    Conrad, Claudius; Hüsemann, Yves; Niess, Hanno; von Luettichau, Irene; Huss, Ralf; Bauer, Christian; Jauch, Karl-Walter; Klein, Christoph A; Bruns, Christiane; Nelson, Peter J

    2011-03-01

    To specifically target tumor angiogenesis by linking transgene expression of engineered mesenchymal stem cells to angiopoietin-1-induced differentiation. Mesenchymal stem cells (MSCs) have been used to deliver therapeutic genes into solid tumors. These strategies rely on their homing mechanisms only to deliver the therapeutic agent. We engineered murine MSC to express reporter genes or therapeutic genes under the selective control of the Tie2 promoter/enhancer. This approach uses the differentiative potential of MSCs induced by the tumor microenvironment to drive therapeutic gene expression only in the context of angiogenesis. When injected into the peripheral circulation of mice with either, orthotopic pancreatic or spontaneous breast cancer, the engineered MSCs were actively recruited to growing tumor vasculature and induced the selective expression of either reporter red florescent protein or suicide genes [herpes simplex virus-thymidine kinase (TK) gene] when the adoptively transferred MSC developed endothelial-like characteristics. The TK gene product in combination with the prodrug ganciclovir (GCV) produces a potent toxin, which affects replicative cells. The homing of engineered MSC with selective induction of TK in concert with GCV resulted in a toxic tumor-specific environment. The efficacy of this approach was demonstrated by significant reduction in primary tumor growth and prolongation of life in both tumor models. This "Trojan Horse" combined stem cell/gene therapy represents a novel treatment strategy for tailored therapy of solid tumors.

  4. MDA-9/syntenin and IGFBP-2 promote angiogenesis in human melanoma.

    PubMed

    Das, Swadesh K; Bhutia, Sujit K; Azab, Belal; Kegelman, Timothy P; Peachy, Leyla; Santhekadur, Prasanna K; Dasgupta, Santanu; Dash, Rupesh; Dent, Paul; Grant, Steven; Emdad, Luni; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B

    2013-01-15

    Melanoma differentiation-associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacologic approaches were used to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma, and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, chorioallantoic membrane (CAM) assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several proangiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the extracellular matrix (ECM), activating Src and FAK resulting in activation by phosphorylation of Akt, which induces hypoxia inducible factor 1-α (HIF-1α). The HIF-1α activates transcription of insulin growth factor-binding protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell nonautonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (nonautonomous).

  5. Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?

    PubMed

    Bobryshev, Yuri V; Killingsworth, Murray C; Huynh, Thuan G; Lord, Reginald S A; Grabs, Anthony J; Valenzuela, Stella M

    2007-03-01

    Over recent years, the role of matrix vesicles in the initial stages of arterial calcification has been recognized. Matrix calcifying vesicles have been isolated from atherosclerotic arteries and the biochemical composition of calcified vesicles has been studied. No studies have yet been carried out to examine the fine structure of matrix vesicles in order to visualize the features of the consequent stages of their calcification in arteries. In the present work, a high resolution ultrastructural analysis has been employed and the study revealed that matrix vesicles in human atherosclerotic lesions are heterogeneous with two main types which we classified. Type I calcified vesicles were presented by vesicles surrounded by two electron-dense layers and these vesicles were found to be resistant to the calcification process in atherosclerotic lesions in situ. Type II matrix vesicles were presented by vesicles surrounded by several electron-dense layers and these vesicles were found to represent calcifying vesicles in atherosclerotic lesions. To test the hypothesis that calcification of matrix vesicles surrounded by multilayer sheets may occur simply as a physicochemical process, independently from the cell regulation, we produced multilamellar liposomes and induced their calcification in vitro in a manner similar to that occurring in matrix vesicles in atherosclerotic lesions in situ.

  6. Alteration of Developmental and Pathological Retinal Angiogenesis in angptl4-deficient Mice*

    PubMed Central

    Perdiguero, Elisa Gomez; Galaup, Ariane; Durand, Mélanie; Teillon, Jérémie; Philippe, Josette; Valenzuela, David M.; Murphy, Andrew J.; Yancopoulos, George D.; Thurston, Gavin; Germain, Stéphane

    2011-01-01

    Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice. We report altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions. PMID:21832056

  7. Endogenous developmental endothelial locus-1 limits ischemia-related angiogenesis by blocking inflammation

    PubMed Central

    Klotzsche - von Ameln, Anne; Cremer, Sebastian; Hoffmann, Jedrzej; Schuster, Peggy; Khedr, Sherif; Korovina, Irina; Troulinaki, Maria; Neuwirth, Ales; Sprott, David; Chatzigeorgiou, Antonios; Economopoulou, Matina; Orlandi, Alessia; Hain, Andreas; Zeiher, Andreas M.; Deussen, Andreas; Hajishengallis, George; Dimmeler, Stefanie; Chavakis, Triantafyllos; Chavakis, Emmanouil

    2017-01-01

    We have recently identified endothelial cell-secreted developmental endothelial locus-1 (Del-1) as an endogenous inhibitor of β2-integrin–dependent leukocyte infiltration. Del-1 was previously also implicated in angiogenesis. Here, we addressed the role of endogenously produced Del-1 in ischemia-related angiogenesis. Intriguingly, Del-1–deficient mice displayed increased neovascularization in two independent ischemic models (retinopathy of prematurity and hind-limb ischemia), as compared to Del-1–proficient mice. On the contrary, angiogenic sprouting in vitro or ex vivo (aortic ring assay) and physiological developmental retina angiogenesis were not affected by Del-1 deficiency. Mechanistically, the enhanced ischemic neovascularization in Del-1-deficiency was linked to higher infiltration of the ischemic tissue by CD45+ hematopoietic and immune cells. Moreover, Del-1-deficiency promoted β2-integrin–dependent adhesion of hematopoietic cells to endothelial cells in vitro, and the homing of hematopoietic progenitor cells and of immune cell populations to ischemic muscles in vivo. Consistently, the increased hind limb ischemia-related angiogenesis in Del-1 deficiency was completely reversed in mice lacking both Del-1 and the β2-integrin LFA-1. Additionally, enhanced retinopathy-associated neovascularization in Del-deficient mice was reversed by LFA-1 blockade. Our data reveal a hitherto unrecognized function of endogenous Del-1 as a local inhibitor of ischemia-induced angiogenesis by restraining LFA-1–dependent homing of pro-angiogenic hematopoietic cells to ischemic tissues. Our findings are relevant for the optimization of therapeutic approaches in the context of ischemic diseases. PMID:28447099

  8. Targeting tissue factor-expressing tumor angiogenesis and tumors with EF24 conjugated to factor VIIa.

    PubMed

    Shoji, Mamoru; Sun, Aiming; Kisiel, Walter; Lu, Yang J; Shim, Hyunsuk; McCarey, Bernard E; Nichols, Christopher; Parker, Ernest T; Pohl, Jan; Mosley, Cara A; Alizadeh, Aaron R; Liotta, Dennis C; Snyder, James P

    2008-04-01

    Tissue factor (TF) is aberrantly expressed on tumor vascular endothelial cells (VECs) and on cancer cells in many malignant tumors, but not on normal VECs, making it a promising target for cancer therapy. As a transmembrane receptor for coagulation factor VIIa (fVIIa), TF forms a high-affinity complex with its cognate ligand, which is subsequently internalized through receptor-mediated endocytosis. Accordingly, we developed a method for selectively delivering EF24, a potent synthetic curcumin analog, to TF-expressing tumor vasculature and tumors using fVIIa as a drug carrier. EF24 was chemically conjugated to fVIIa through a tripeptide-chloromethyl ketone. After binding to TF-expressing targets by fVIIa, EF24 will be endocytosed along with the drug carrier and will exert its cytotoxicity. Our results showed that the conjugate inhibits vascular endothelial growth factor-induced angiogenesis in a rabbit cornea model and in a Matrigel model in athymic nude mice. The conjugate-induced apoptosis in tumor cells and significantly reduced tumor size in human breast cancer xenografts in athymic nude mice as compared with the unconjugated EF24. By conjugating potent drugs to fVIIa, this targeted drug delivery system has the potential to enhance therapeutic efficacy, while reducing toxic side effects. It may also prove to be useful for treating drug-resistant tumors and micro-metastases in addition to primary tumors.

  9. Lysyl oxidase-like-2 promotes tumour angiogenesis and is a potential therapeutic target in angiogenic tumours.

    PubMed

    Zaffryar-Eilot, Shelly; Marshall, Derek; Voloshin, Tali; Bar-Zion, Avinoam; Spangler, Rhyannon; Kessler, Ofra; Ghermazien, Haben; Brekhman, Vera; Suss-Toby, Edith; Adam, Dan; Shaked, Yuval; Smith, Victoria; Neufeld, Gera

    2013-10-01

    Lysyl oxidase-like 2 (LOXL2), a secreted enzyme that catalyzes the cross-linking of collagen, plays an essential role in developmental angiogenesis. We found that administration of the LOXL2-neutralizing antibody AB0023 inhibited bFGF-induced angiogenesis in Matrigel plug assays and suppressed recruitment of angiogenesis promoting bone marrow cells. Small hairpin RNA-mediated inhibition of LOXL2 expression or inhibition of LOXL2 using AB0023 reduced the migration and network-forming ability of endothelial cells, suggesting that the inhibition of angiogenesis results from a direct effect on endothelial cells. To examine the effects of AB0023 on tumour angiogenesis, AB0023 was administered to mice bearing tumours derived from SKOV-3 ovarian carcinoma or Lewis lung carcinoma (LLC) cells. AB0023 treatment significantly reduced the microvascular density in these tumours but did not inhibit tumour growth. However, treatment of mice bearing SKOV-3-derived tumours with AB0023 also promoted increased coverage of tumour vessels with pericytes and reduced tumour hypoxia, providing evidence that anti-LOXL2 therapy results in the normalization of tumour blood vessels. In agreement with these data, treatment of mice bearing LLC-derived tumours with AB0023 improved the perfusion of the tumour-associated vessels as determined by ultrasonography. Improved perfusion and normalization of tumour vessels after treatment with anti-angiogenic agents were previously found to improve the delivery of chemotherapeutic agents into tumours and to result in an enhancement of chemotherapeutic efficiency. Indeed, treatment with AB0023 significantly enhanced the anti-tumourigenic effects of taxol. Our results suggest that inhibition of LOXL2 may prove beneficial for the treatment of angiogenic tumours.

  10. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.

    PubMed

    Sonveaux, Pierre; Copetti, Tamara; De Saedeleer, Christophe J; Végran, Frédérique; Verrax, Julien; Kennedy, Kelly M; Moon, Eui Jung; Dhup, Suveera; Danhier, Pierre; Frérart, Françoise; Gallez, Bernard; Ribeiro, Anthony; Michiels, Carine; Dewhirst, Mark W; Feron, Olivier

    2012-01-01

    Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.

  11. Targeting the Lactate Transporter MCT1 in Endothelial Cells Inhibits Lactate-Induced HIF-1 Activation and Tumor Angiogenesis

    PubMed Central

    Sonveaux, Pierre; Copetti, Tamara; De Saedeleer, Christophe J.; Végran, Frédérique; Verrax, Julien; Kennedy, Kelly M.; Moon, Eui Jung; Dhup, Suveera; Danhier, Pierre; Frérart, Françoise; Gallez, Bernard; Ribeiro, Anthony; Michiels, Carine

    2012-01-01

    Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities. PMID:22428047

  12. Angiogenesis and inflammation signaling are targets of beer polyphenols on vascular cells.

    PubMed

    Negrão, Rita; Costa, Raquel; Duarte, Delfim; Taveira Gomes, Tiago; Mendanha, Mário; Moura, Liane; Vasques, Luísa; Azevedo, Isabel; Soares, Raquel

    2010-12-01

    Emerging evidence indicates that chronic inflammation and oxidative stress cluster together with angiogenic imbalance in a wide range of pathologies. In general, natural polyphenols present health-protective properties, which are likely attributed to their effect on oxidative stress and inflammation. Hops used in beer production are a source of polyphenols such as xanthohumol (XN), and its metabolites isoxanthohumol (IXN) and phytoestrogen 8-prenylnaringenin (8PN). Our study aimed to evaluate XN, IXN, and 8PN effects on angiogenesis and inflammation processes. Opposite in vitro effects were observed between 8PN, stimulating endothelial and smooth muscle cell (SMC) growth, motility, invasion and capillary-like structures formation, and XN and IXN, which inhibited them. Mouse matrigel plug and rat skin wound-healing assays confirmed that XN and IXN treatments reduced vessel number as well as serum macrophage enzymatic activity, whereas 8PN increased blood vessels formation in both assays and enzyme activity in the wound-healing assay. A similar profile was found for serum inflammatory interleukin-1β quantification, in the wound-healing assay. Our data indicate that whereas 8PN stimulates angiogenesis, XN and IXN manifested anti-angiogenic and anti-inflammatory effects in identical conditions. These findings suggest that the effects observed for individual compounds on vascular wall cells must be carefully taken into account, as these polyphenols are metabolized after in vivo administration. The modulation of SMC proliferation and migration is also of special relevance, given the role of these cells in many pathological conditions. Furthermore, these results may provide clues for developing useful therapeutic agents against inflammation- and angiogenesis-associated pathologies. Copyright © 2010 Wiley-Liss, Inc.

  13. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target

    PubMed Central

    Sitohy, Basel; Nagy, Janice A.; Dvorak, Harold F.

    2012-01-01

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed anti-angiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor/vascular endothelial growth factor (VEGF-A) as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and we here call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least six well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All six types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A164. Once formed, four of the six types lose their VEGF-A dependency and so their responsiveness to anti-VEGF/VEGFR therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels. PMID:22508695

  14. Feasibility study for removing calcified material using a planar rectangular ultrasound transducer.

    PubMed

    Damianou, Christakis; Couppis, Andreas

    2016-01-01

    The aim of the proposed study was to conduct a feasibility study using a flat rectangular (3 mm × 10 mm) MRI compatible transducer operating at 5.3 MHz for destroying calcified material in an in vitro model. The proposed method can be used in the future for treating atherosclerosis plaques of the coronary, carotid or peripheral arteries. The system was tested initially on calcium rods. Another test was performed in a hydroxyapatite-polylactide model. A parametric study was performed where the mass of calcified material removed was studied as a function of intensity, pulse repetition frequency (PRF), duty factor (DF) and presence of bubbles. The amount of calcified material removed is directly related to the intensity, PRF and DF. It was found that the presence of bubbles accelerates the removal of calcified material. In order to ensure that pure mechanical mode ultrasound was used, the protocols were designed so that the temperature does not exceed 1 °C.

  15. PET imaging of tumor angiogenesis in mice with VEGF-A targeted 86Y-CHX-A″-DTPA-bevacizumab

    PubMed Central

    Nayak, Tapan K.; Garmestani, Kayhan; Baidoo, Kwamena E.; Milenic, Diane E.; Brechbiel, Martin W.

    2010-01-01

    Bevacizumab is a humanized monoclonal antibody that binds to tumor-secreted VEGF-A and inhibits tumor angiogenesis. In 2004, the antibody was approved by the United States FDA for the treatment of metastatic colorectal carcinoma in combination with chemotherapy. This report describes the preclinical evaluation of a radioimmunoconjugate, 86Y-CHX-A″-DTPA-bevacizumab, for potential use in PET imaging of VEGF-A tumor angiogenesis and as a surrogate marker for 90Y based radioimmunotherapy. Bevacizumab was conjugated to CHX-A″-DTPA and radiolabeled with 86Y. In vivo biodistribution and PET imaging studies were performed on mice bearing VEGF-A secreting human colorectal (LS-174T), human ovarian (SKOV-3) and VEGF-A negative human mesothelioma (MSTO-211H) xenografts. Biodistribution and PET imaging studies demonstrated high specific tumor uptake of the radioimmunoconjugate. In mice bearing VEGF-A secreting LS-174T, SKOV-3 and VEGF-A negative MSTO-211H tumors, the tumor uptake at 3 d post-injection (p.i) was 13.6 ± 1.5, 17.4 ± 1.7 and 6.8 ± 0.7 % ID/g, respectively. The corresponding tumor uptake in mice co-injected with 0.05 mg cold bevacizumab were 5.8 ± 1.3, 8.9 ± 1.9 and 7.4 ± 1.0 % ID/g, respectively at the same time point, demonstrating specific blockage of the target in VEGF-A secreting tumors. The LS-174T and SKOV3 tumors were clearly visualized by PET imaging after injecting 1.8–2.0 MBq 86Y-CHX-A″-DTPA-bevacizumab. Organ uptake quantified by PET closely correlated (r2=0.87, p=0.64, n=18) to values determined by biodistribution studies. This preclinical study demonstrates the potential of the radioimmunoconjugate, 86Y-CHX-A″-DTPA-bevacizumab, for non-invasive assessment of the VEGF-A tumor angiogenesis status and as a surrogate marker for 90Y-CHX-A″-DTPA-bevacizumab radioimmunotherapy. PMID:20473899

  16. Sudden Unilateral Vision Loss Arising from Calcified Amorphous Tumor of the Left Ventricle

    PubMed Central

    Nazli, Yunus; Colak, Necmettin; Atar, Inci Asli; Alpay, Mehmet Fatih; Haltas, Hacer; Eryonucu, Beyhan; Cakir, Omer

    2013-01-01

    Calcified amorphous tumor of the heart is a very rare non-neoplastic intracavitary mass. The clinical presentation is similar to that of other cardiac masses. The precise cause and best approach to treatment remain unclear. We describe a case of cardiac calcified amorphous tumor presenting with refractory unilateral vision loss that was successfully treated by surgical excision. To our knowledge, this is only the 2nd reported case of retinal arterial embolism due to cardiac calcified amorphous tumor in the English-language literature. PMID:24082378

  17. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    PubMed

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  18. Involvement of {gamma}-secretase in postnatal angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi

    2007-11-23

    {gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-inducedmore » angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.« less

  19. Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1.

    PubMed

    Juarez, Jose C; Betancourt, Oscar; Pirie-Shepherd, Steven R; Guan, Xiaojun; Price, Melissa L; Shaw, David E; Mazar, Andrew P; Doñate, Fernando

    2006-08-15

    A second-generation tetrathiomolybdate analogue (ATN-224; choline tetrathiomolybdate), which selectively binds copper with high affinity, is currently completing two phase I clinical trials in patients with advanced solid and advanced hematologic malignancies. However, there is very little information about the mechanism of action of ATN-224 at the molecular level. The effects of ATN-224 on endothelial and tumor cell growth were evaluated in cell culture experiments in vitro. The antiangiogenic activity of ATN-224 was investigated using the Matrigel plug model of angiogenesis. ATN-224 inhibits superoxide dismutase 1 (SOD1) in tumor and endothelial cells. The inhibition of SOD1 leads to inhibition of endothelial cell proliferation in vitro and attenuation of angiogenesis in vivo. The inhibition of SOD1 activity in endothelial cells is dose and time dependent and leads to an increase in the steady-state levels of superoxide anions, resulting in the inhibition of extracellular signal-regulated kinase phosphorylation without apparent induction of apoptosis. In contrast, the inhibition of SOD1 in tumor cells leads to the induction of apoptosis. The effects of ATN-224 on endothelial and tumor cells could be substantially reversed using Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, a catalytic small-molecule SOD mimetic. These data provide a distinct molecular target for the activity of ATN-224 and provide validation for SOD1 as a target for the inhibition of angiogenesis and tumor growth.

  20. Calcified Neurocysticercosis Associates with Hippocampal Atrophy: A Population-Based Study

    PubMed Central

    Del Brutto, Oscar H.; Salgado, Perla; Lama, Julio; Del Brutto, Victor J.; Campos, Xavier; Zambrano, Mauricio; García, Héctor H.

    2015-01-01

    Calcified neurocysticercosis has been associated with hippocampal atrophy in patients with refractory epilepsy, but the relevance of this association in the population at large is unknown. We assessed calcified cysticerci and its association with hippocampal atrophy in elderly persons living in Atahualpa, an Ecuadorian village endemic for neurocysticercosis. All Atahualpa residents ≥ 60 years of age were invited to undergo computed tomography/magnetic resonance imaging for neurocysticercosis detection. Twenty-eight (11%) out of 248 enrolled persons had calcified cysticerci (case-patients) and were matched 1:1 by age, sex, and years of education to individuals without neurocysticercosis on computed tomography/magnetic resonance imaging (controls). Four case-patients and none of the controls had epilepsy (P = 0.134). Cognitive performance was similar across both groups. The Scheltens' medial temporal atrophy scale was used for hippocampal rating in case-patients and matched controls without neurocysticercosis. Mean score in the Scheltens' scale was higher in case-patients than in controls (P < 0.001). Atrophic hippocampi were noticed in 19 case-patients and five controls (P = 0.003). Atrophy was bilateral in 11 case-patients and unilateral in eight. All case-patients with unilateral hippocampal atrophy had at least one ipsilateral calcification. This study shows an association between calcified cysticerci and hippocampal atrophy and raises the possibility of an inflammation-mediated hippocampal damage as the responsible mechanism for these findings. PMID:25349375

  1. Association between Randall's Plaque and Calcifying Nanoparticles

    NASA Technical Reports Server (NTRS)

    Citfcioglu, Neva; Vejdani, Kaveh; Lee, Olivia; Mathew, Grace; Aho, Katja M.; Kajander, Olavi; McKay, David S.; Jones, Jeffrey A.; Feiveson, Alan H.; Stoller, Marshall L.

    2007-01-01

    Randall initially described calcified subepithelial papillary plaques, which he hypothesized as nidi for kidney stone formation. The discovery of calcifying nanoparticles (CNP) in many calcifying processes of human tissues has raised another hypothesis about their possible involvement in urinary stone formation. This research is the first attempt to investigate the potential association of these two hypotheses. We collected renal papilla and blood samples from 17 human patients who had undergone laparoscopic nephrectomy due to neoplasia. Immunohistochemical staining (IHS) was applied on the tissue samples using monoclonal antibody 8D10 (mAb) against CNP. Homogenized papillary tissues and serum samples were cultured for CNP. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis were performed on fixed papillary samples. Randall's plaques were visible on gross inspection in 11 out of 17 collected samples. IHS was positive for CNP antigen in 8 of these 11 visually positive samples, but in only 1 of the remaining 6 samples. SEM revealed spherical apatite formations in 14 samples, all of which had calcium and phosphate peaks detected by EDS analysis. From this study, there was some evidence of a link between the presence of Randall's plaques and the detection of CNP, also referred to as nanobacteria. Although causality was not demonstrated, these results suggest that further studies with negative control samples should be made to explore the etiology of Randall's plaque formation, thus leading to a better understanding of the pathogenesis of stone formation.

  2. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation

    PubMed Central

    Kim, Yoo Hyung; Kim, Jaeryung; Park, Do Young; Bae, Hosung; Lee, Da-Hye; Kim, Kyun Hoo; Hong, Seon Pyo; Jang, Seung Pil; Kwon, Young-Guen; Lim, Dae-Sik

    2017-01-01

    Angiogenesis is a multistep process that requires coordinated migration, proliferation, and junction formation of vascular endothelial cells (ECs) to form new vessel branches in response to growth stimuli. Major intracellular signaling pathways that regulate angiogenesis have been well elucidated, but key transcriptional regulators that mediate these signaling pathways and control EC behaviors are only beginning to be understood. Here, we show that YAP/TAZ, a transcriptional coactivator that acts as an end effector of Hippo signaling, is critical for sprouting angiogenesis and vascular barrier formation and maturation. In mice, endothelial-specific deletion of Yap/Taz led to blunted-end, aneurysm-like tip ECs with fewer and dysmorphic filopodia at the vascular front, a hyper-pruned vascular network, reduced and disarranged distributions of tight and adherens junction proteins, disrupted barrier integrity, subsequent hemorrhage in growing retina and brain vessels, and reduced pathological choroidal neovascularization. Mechanistically, YAP/TAZ activates actin cytoskeleton remodeling, an important component of filopodia formation and junction assembly. Moreover, YAP/TAZ coordinates EC proliferation and metabolic activity by upregulating MYC signaling. Overall, these results show that YAP/TAZ plays multifaceted roles for EC behaviors, proliferation, junction assembly, and metabolism in sprouting angiogenesis and barrier formation and maturation and could be a potential therapeutic target for treating neovascular diseases. PMID:28805663

  3. Cell-oriented modeling of angiogenesis.

    PubMed

    Guidolin, Diego; Rebuffat, Piera; Albertin, Giovanna

    2011-01-01

    Due to its significant involvement in various physiological and pathological conditions, angiogenesis (the development of new blood vessels from an existing vasculature) represents an important area of the actual biological research and a field in which mathematical modeling proved particularly useful in supporting the experimental work. In this paper, we focus on a specific modeling strategy, known as "cell-centered" approach. This type of mathematical models work at a "mesoscopic scale," assuming the cell as the natural level of abstraction for computational modeling of development. They treat cells phenomenologically, considering their essential behaviors to study how tissue structure and organization emerge from the collective dynamics of multiple cells. The main contributions of the cell-oriented approach to the study of the angiogenic process will be described. From one side, they have generated "basic science understanding" about the process of capillary assembly during development, growth, and pathology. On the other side, models were also developed supporting "applied biomedical research" for the purpose of identifying new therapeutic targets and clinically relevant approaches for either inhibiting or stimulating angiogenesis.

  4. BAG3 controls angiogenesis through regulation of ERK phosphorylation.

    PubMed

    Falco, A; Festa, M; Basile, A; Rosati, A; Pascale, M; Florenzano, F; Nori, S L; Nicolin, V; Di Benedetto, M; Vecchione, M L; Arra, C; Barbieri, A; De Laurenzi, V; Turco, M C

    2012-12-13

    BAG3 is a co-chaperone of the heat shock protein (Hsp) 70, is expressed in many cell types upon cell stress, however, its expression is constitutive in many tumours. We and others have previously shown that in neoplastic cells BAG3 exerts an anti-apoptotic function thus favoring tumour progression. As a consequence we have proposed BAG3 as a target of antineoplastic therapies. Here we identify a novel role for BAG3 in regulation of neo-angiogenesis and show that its downregulation results in reduced angiogenesis therefore expanding the role of BAG3 as a therapeutical target. In brief we show that BAG3 is expressed in endothelial cells and is essential for the interaction between ERK and its phosphatase DUSP6, as a consequence its removal results in reduced binding of DUSP6 to ERK and sustained ERK phosphorylation that in turn determines increased levels of p21 and p15 and cell-cycle arrest in the G1 phase.

  5. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH

    PubMed Central

    Tambutté, E.; Carpenter, R. C.; Edmunds, P. J.; Evensen, N. R.; Allemand, D.; Ferrier-Pagès, C.; Tambutté, S.; Venn, A. A.

    2017-01-01

    Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pHCF) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pHCF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (AT). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pHCF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [AT], revealing that seawater pH is not the sole driver of pHCF. Notably, when we synthesize our results with published data, we identify linear relationships of pHCF with the seawater [DIC]/[H+] ratio, [AT]/ [H+] ratio and []. Our findings contribute new insights into the mechanisms determining the sensitivity of coral calcification to changes in seawater carbonate chemistry, which are needed for predicting effects of environmental change on coral reefs and for robust interpretations of isotopic palaeoenvironmental records in coral skeletons. PMID:28100813

  6. Guide Catheter Extension Device Is Effective in Renal Angioplasty for Severely Calcified Lesions

    PubMed Central

    Sugimoto, Takeshi; Nomura, Tetsuya; Hori, Yusuke; Yoshioka, Kenichi; Kubota, Hiroshi; Miyawaki, Daisuke; Urata, Ryota; Kikai, Masakazu; Keira, Natsuya; Tatsumi, Tetsuya

    2017-01-01

    Patient: Male, 69 Final Diagnosis: Atherosclerotic renal artery stenosis Symptoms: None Medication: — Clinical Procedure: — Specialty: Radiology Objective: Unusual setting of medical care Background: The GuideLiner catheter extension device is a monorail-type “Child” support catheter that facilitates coaxial alignment with the guide catheter and provides an appropriate back-up force. This device has been developed in the field of coronary intervention, and now is becoming widely applied in the field of endovascular treatment. However, there has been no report on the effectiveness of the guide catheter extension device in percutaneous transluminal renal angioplasty (PTRA). Case Report: We encountered a case of atherosclerotic subtotal occlusion at the ostium of the left renal artery. Due to the severely calcified orifice and weaker back-up force provided by a JR4 guide catheter, we could not pass any guide-wires through the target lesion. Therefore, we introduced a guide catheter extension device, the GuideLiner catheter, through the guide catheter and achieved good guidewire maneuverability. We finally deployed 2 balloon-expandable stents and successfully performed all PTRA procedures. Conclusions: The guide catheter extension device can be effective in PTRA for severely calcified subtotal occlusion. PMID:28533503

  7. Placental angiogenesis in sheep models of compromised pregnancy

    PubMed Central

    Reynolds, Lawrence P; Borowicz, Pawel P; Vonnahme, Kimberly A; Johnson, Mary Lynn; Grazul-Bilska, Anna T; Redmer, Dale A; Caton, Joel S

    2005-01-01

    Because the placenta is the organ that transports nutrients, respiratory gases and wastes between the maternal and fetal systems, development of its vascular beds is essential to normal placental function, and thus in supporting normal fetal growth. Compromised fetal growth and development have adverse health consequences during the neonatal period and throughout adult life. To establish the role of placental angiogenesis in compromised pregnancies, we first evaluated the pattern of placental angiogenesis and expression of angiogenic factors throughout normal pregnancy. In addition, we and others have established a variety of sheep models to evaluate the effects on fetal growth of various factors including maternal nutrient excess or deprivation and specific nutrients, maternal age, maternal and fetal genotype, increased numbers of fetuses, environmental thermal stress, and high altitude (hypobaric) conditions. Although placental angiogenesis is altered in each of these models in which fetal growth is adversely affected, the specific effect on placental angiogenesis depends on the type of ‘stress’ to which the pregnancy is subjected, and also differs between the fetal and maternal systems and between genotypes. We believe that the models of compromised pregnancy and the methods described in this review will enable us to develop a much better understanding of the mechanisms responsible for alterations in placental vascular development. PMID:15760944

  8. Long non-coding RNA-CRNDE: a novel regulator of tumor growth and angiogenesis in hepatoblastoma.

    PubMed

    Dong, Rui; Liu, Xiang-Qi; Zhang, Bin-Bin; Liu, Bai-Hui; Zheng, Shan; Dong, Kui-Ran

    2017-06-27

    Long non-coding RNAs (lncRNAs) are involved in many biological processes, such as angiogenesis, invasion, cell proliferation, and apoptosis. They have emerged as key players in the pathology of several tumors, including hepatoblastoma. In this study, we elucidate the biological and clinical significance of CRNDE up-regulation in hepatoblastoma. CRNDE is significantly up-regulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. CRNDE knockdown reduces tumor growth and tumor angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, and angiogenic effect in vitro. Mechanistic studies show that CRNDE knockdown plays its anti-proliferation and anti-angiogenesis role via regulating mammalian target of rapamycin (mTOR) signaling. Taken together, this study reveals a crucial role of CRNDE in the pathology of hepatoblastoma. CRNDE may serve as a promising diagnostic marker and therapeutic target for hepatoblastoma.

  9. Long non-coding RNA-CRNDE: a novel regulator of tumor growth and angiogenesis in hepatoblastoma

    PubMed Central

    Dong, Rui; Liu, Xiang-Qi; Zhang, Bin-Bin; Liu, Bai-Hui; Zheng, Shan; Dong, Kui-Ran

    2017-01-01

    Long non-coding RNAs (lncRNAs) are involved in many biological processes, such as angiogenesis, invasion, cell proliferation, and apoptosis. They have emerged as key players in the pathology of several tumors, including hepatoblastoma. In this study, we elucidate the biological and clinical significance of CRNDE up-regulation in hepatoblastoma. CRNDE is significantly up-regulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. CRNDE knockdown reduces tumor growth and tumor angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, and angiogenic effect in vitro. Mechanistic studies show that CRNDE knockdown plays its anti-proliferation and anti-angiogenesis role via regulating mammalian target of rapamycin (mTOR) signaling. Taken together, this study reveals a crucial role of CRNDE in the pathology of hepatoblastoma. CRNDE may serve as a promising diagnostic marker and therapeutic target for hepatoblastoma. PMID:28178668

  10. Endosymbiotic calcifying bacteria across sponge species and oceans

    NASA Astrophysics Data System (ADS)

    Garate, Leire; Sureda, Jan; Agell, Gemma; Uriz, Maria J.

    2017-03-01

    From an evolutionary point of view, sponges are ideal targets to study marine symbioses as they are the most ancient living metazoans and harbour highly diverse microbial communities. A recently discovered association between the sponge Hemimycale columella and an intracellular bacterium that generates large amounts of calcite spherules has prompted speculation on the possible role of intracellular bacteria in the evolution of the skeleton in early animals. To gain insight into this purportedly ancestral symbiosis, we investigated the presence of symbiotic bacteria in Mediterranean and Caribbean sponges. We found four new calcibacteria OTUs belonging to the SAR116 in two orders (Poecilosclerida and Clionaida) and three families of Demospongiae, two additional OTUs in cnidarians and one more in seawater (at 98.5% similarity). Using a calcibacteria targeted probe and CARD-FISH, we also found calcibacteria in Spirophorida and Suberitida and proved that the calcifying bacteria accumulated at the sponge periphery, forming a skeletal cortex, analogous to that of siliceous microscleres in other demosponges. Bacteria-mediated skeletonization is spread in a range of phylogenetically distant species and thus the purported implication of bacteria in skeleton formation and evolution of early animals gains relevance.

  11. Calcified miliary brain metastases with mitochondrial inclusion bodies.

    PubMed Central

    Yamazaki, T; Harigaya, Y; Noguchi, O; Okamoto, K; Hirai, S

    1993-01-01

    A patient with calcified miliary brain metastases from lung adenocarcinoma is reported. Electron microscopic study of the metastatic tumour cells showed membranous inclusion bodies in mitochondria. Images PMID:8429312

  12. ORBIT II sub-analysis: Impact of impaired renal function following treatment of severely calcified coronary lesions with the Orbital Atherectomy System.

    PubMed

    Lee, Michael S; Lee, Arthur C; Shlofmitz, Richard A; Martinsen, Brad J; Hargus, Nick J; Elder, Mahir D; Généreux, Philippe; Chambers, Jeffrey W

    2017-04-01

    To investigate the safety and efficacy of the coronary Orbital Atherectomy System (OAS) to prepare severely calcified lesions for stent deployment in patients grouped by renal function. Percutaneous coronary intervention (PCI) of severely calcified lesions is associated with increased rates of major adverse cardiac events (MACE), including death, myocardial infarction (MI), and target vessel revascularization (TVR) compared with PCI of non-calcified vessels. Patients with chronic kidney disease (CKD) are at increased risk for MACE after PCI. The impact of CKD on coronary orbital atherectomy treatment has not been well characterized. ORBIT II was a prospective, multicenter trial in the U.S., which enrolled 443 patients with severely calcified coronary lesions. The MACE rate was defined as a composite of cardiac death, MI, and target vessel revascularization. Of the 441 patients enrolled with known estimated glomerular filtration rate (eGFR) values at baseline, 333 (75.5%) patients had eGFR < 90 ml/min/1.73 m 2 and 108 patients had eGFR ≥ 90 ml/min/1.73 m 2 . The mean eGFR at baseline in the eGFR < 90 ml/min/1.73 m 2 and eGFR ≥ 90 ml/min/1.73 m 2 groups was 65.0 ± 0.9 ml/min/1.73 m 2 and 109.1 ± 2.0 ml/min/1.73 m 2 , respectively. Freedom from MACE was lower in the eGFR < 90 ml/min/1.73 m 2 group at 30 days (87.4% vs. 96.3%, P = 0.02) and 1-year (80.6% vs. 90.7%, P = 0.02). Patients with renal impairment had a higher MACE rate through one year follow-up due to a higher rate of periprocedural MI. Interestingly, the rates of cardiac death and revascularization through 1-year were similar in patients with eGFR < 90 ml/min/1.73 m 2 and eGFR ≥ 90 ml/min/1.73 m 2 . Future studies are needed to identify the ideal revascularization strategy for patients with renal impairment and severely calcified coronary lesions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Uncaria rhynchophylla induces angiogenesis in vitro and in vivo.

    PubMed

    Choi, Do-Young; Huh, Jeong-Eun; Lee, Jae-Dong; Cho, Eun-Mi; Baek, Yong-Hyeon; Yang, Ha-Ru; Cho, Yoon-Je; Kim, Kang-Il; Kim, Deog-Yoon; Park, Dong-Suk

    2005-12-01

    Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine the angiogenic properties of Uncaria rhynchophylla. Uncaria rhynchophylla significantly enhanced human umbilical vein endothelial cells (HUVECs) proliferation in a dose-dependent manner. Neutralization of vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) by monoclonal antibody suppressed the Uncaria rhynchophylla stimulatory effect on proliferation. In addition, Uncaria rhynchophylla significantly increased chemotactic-migration on gelatin and tubular structures on Matrigel of HUVECs in a dose-dependent manner. Interestingly, Uncaria rhynchophylla dose-dependently increased VEGF, and bFGF gene expression and protein secretion of HUVEC. The angiogenic activity of Uncaria rhynchophylla was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. These results suggest that Uncaria rhynchophylla could potentially used to accelerate vascular wound healing or to promote the growth of collateral blood vessel in ischemic tissues.

  14. Malignant pericytes expressing GT198 give rise to tumor cells through angiogenesis.

    PubMed

    Zhang, Liyong; Wang, Yan; Rashid, Mohammad H; Liu, Min; Angara, Kartik; Mivechi, Nahid F; Maihle, Nita J; Arbab, Ali S; Ko, Lan

    2017-08-01

    Angiogenesis promotes tumor development. Understanding the crucial factors regulating tumor angiogenesis may reveal new therapeutic targets. Human GT198 ( PSMC3IP or Hop2) is an oncoprotein encoded by a DNA repair gene that is overexpressed in tumor stromal vasculature to stimulate the expression of angiogenic factors. Here we show that pericytes expressing GT198 give rise to tumor cells through angiogenesis. GT198 + pericytes and perivascular cells are commonly present in the stromal compartment of various human solid tumors and rodent xenograft tumor models. In human oral cancer, GT198 + pericytes proliferate into GT198 + tumor cells, which migrate into lymph nodes. Increased GT198 expression is associated with increased lymph node metastasis and decreased progression-free survival in oral cancer patients. In rat brain U-251 glioblastoma xenografts, GT198 + pericytes of human tumor origin encase endothelial cells of rat origin to form mosaic angiogenic blood vessels, and differentiate into pericyte-derived tumor cells. The net effect is continued production of glioblastoma tumor cells from malignant pericytes via angiogenesis. In addition, activation of GT198 induces the expression of VEGF and promotes tube formation in cultured U251 cells. Furthermore, vaccination using GT198 protein as an antigen in mouse xenograft of GL261 glioma delayed tumor growth and prolonged mouse survival. Together, these findings suggest that GT198-expressing malignant pericytes can give rise to tumor cells through angiogenesis, and serve as a potential source of cells for distant metastasis. Hence, the oncoprotein GT198 has the potential to be a new target in anti-angiogenic therapies in human cancer.

  15. Neutrophil-derived cytokines involved in physiological and pathological angiogenesis.

    PubMed

    Tecchio, Cristina; Cassatella, Marco Antonio

    2014-01-01

    Increasing data from the literature point to a neutrophil-mediated role via cytokine production in several aspects of mammalian biology, including angiogenesis. In such regard, neutrophils have been shown to synthetize and release a number of molecules able to promote, directly or indirectly, the growth and migration of endothelial cells, in turn inducing the formation of new blood vessels from preexisting ones. Interestingly, neutrophil-derived cytokines can be involved either in physiological or in pathological angiogenesis, depending on either the functioning or dysregulation of sophisticated interplays among different cell types, extracellular matrix and soluble mediators within the microenvironment. Our review resumes the most interesting studies elucidating the role of neutrophil-derived cytokines in human physiological and pathological angiogenesis. When appropriate, supporting observations generated in animal models will be also mentioned. Particular emphasis will be given to VEGF and PK2/Bv8, rather than CXCL8/IL-8 and OSM. We will also discuss the potential role of neutrophil-derived cytokines such as FGF2, Ang1 and IL-17, whose roles in angiogenesis - albeit anticipated - remain to be elucidated. Copyright © 2014 S. Karger AG, Basel.

  16. Aspartame induces angiogenesis in vitro and in vivo models.

    PubMed

    Yesildal, F; Aydin, F N; Deveci, S; Tekin, S; Aydin, I; Mammadov, R; Fermanli, O; Avcu, F; Acikel, C H; Ozgurtas, T

    2015-03-01

    Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation (p < 0.001). In addition, in vivo rat model of skin wound-healing study showed that aspartame group had better healing than control group, and this was statistically significant at p < 0.05. There was a slight proliferative effect of aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases. © The Author(s) 2015.

  17. Structure, composition and properties of naturally occurring non-calcified crustacean cuticle.

    PubMed

    Cribb, B W; Rathmell, A; Charters, R; Rasch, R; Huang, H; Tibbetts, I R

    2009-05-01

    Crustaceans are known for their hard, calcified exoskeleton; however some regions appear different in colour and opacity. These include leg and cheliped tips in the grapsid crab, Metopograpsus frontalis. The chelipeds and leg tips contain only trace levels of calcium but a significant mass of the halogens, chlorine (Cl) and bromine (Br). In contrast, the carapace is heavily calcified and contains only a trace mass of Cl and no Br. In transverse section across the non-calcified tip regions of cheliped and leg the mass percent of halogens varies with position. As such, the exoskeleton of M. frontalis provides a useful model to examine a possible correlation of halogen concentration with the physical properties of hardness (H) and reduced elastic modulus (E(r)), within a chitin-based matrix. Previously published work suggests a correlation exists between Cl concentration and hardness in similar tissues that contain a metal (e.g. zinc). However, in M. frontalis H and E(r) did not vary significantly across cheliped or leg tip despite differences in halogen concentration. The non-calcified regions of M. frontalis are less hard and less stiff than the carapace but equivalent to values found for insect cuticle lacking metals. Cheliped tips showed a complex morphological layering that differed from leg tips.

  18. Calcified Mass on Brain CT in a Teenager with Refractory Seizures.

    PubMed

    Khalatbari, Mahmoud Reza; Brunetti, Enrico; Shobeiri, Elham; Moharamzad, Yashar

    2014-12-01

    Cerebral echinococcosis is very rare, representing 2% of all cystic echinococcosis (CE) cases. Primary echinococcal cysts of the brain are extremely rare in pediatric patients. We report on a 16-year-old boy referred to our tertiary center with intractable epilepsy for the previous three years despite receiving full doses of three antiepileptic medications. Brain computed tomography (CT) showed a left frontal calcified mass. Magnetic resonance imaging (MRI) of the brain revealed a well-defined spherical mass in the left frontal lobe, slightly hypointense on T1-weighted and heterogeneous hyperintense on T2-weighted images with no contrast enhancement. With a broad differential list in mind, a surgical intervention was planned. During surgery, a primary calcified cerebral echinococcal cyst with severe adhesion to the adjacent dura of the frontal region was discovered and removed intact. Histopathology examination confirmed the diagnosis. Only phenobarbital was continued and no medical therapy for CE was administered. Two years after surgery, the patient remained free of seizures. In areas endemic for CE, cerebral echinococcal cyst should be included in the differential list of patients with intractable seizures. Though rare, this entity can present itself as a calcified mass on neuroimaging. Surgical removal of the calcified cyst is necessary for control and treatment of the epilepsy.

  19. Secreted HoxA3 Promotes Epidermal Proliferation and Angiogenesis in Genetically Modified Three-Dimensional Composite Skin Constructs

    PubMed Central

    Kuo, Jennifer H.; Cuevas, Ileana; Chen, Amy; Dunn, Ashley; Kuri, Mauricio; Boudreau, Nancy

    2014-01-01

    Objective: Homeobox (HOX) transcription factors coordinate gene expression in wound repair and angiogenesis. Previous studies have shown that gene transfer of HoxA3 to wounds of diabetic mice accelerates wound healing, increasing angiogenesis and keratinocyte migration. In this study, we examined whether HoxA3 can also improve angiogenesis, epidermal integrity, and viability of composite skin grafts. Approach: To determine the effects of HoxA3 on composite skin grafts, we constructed bilayered composite grafts incorporating fibroblasts engineered to constitutively secrete HoxA3. We then transplanted these composite grafts in vivo. Results: The composite grafts produced a stratified epidermal layer after seventeen days in culture and following transplantation in vivo, these grafts exhibit normal epidermal differentiation and reduced contraction compared to controls. In addition, HoxA3 grafts showed increased angiogenesis. Quantitative polymerase chain reaction (PCR) analyses of HoxA3 graft tissue reveal an increase in the downstream HoxA3 target genes MMP-14 and uPAR expression, as well as a reduction in CCL-2 and CxCl-12. Innovation: Expression of secreted HoxA3 in composite grafts represents a comprehensive approach that targets both keratinocytes and endothelial cells to promote epidermal proliferation and angiogenesis. Conclusion: Secreted HoxA3 improves angiogenesis, reduces expression of inflammatory mediators, and prolongs composite skin graft integrity. PMID:25302136

  20. Angiogenesis Dysregulation in Term Asphyxiated Newborns Treated with Hypothermia

    PubMed Central

    Shaikh, Henna; Boudes, Elodie; Khoja, Zehra; Shevell, Michael; Wintermark, Pia

    2015-01-01

    Background Neonatal encephalopathy following birth asphyxia is a major predictor of long-term neurological impairment. Therapeutic hypothermia is currently the standard of care to prevent brain injury in asphyxiated newborns but is not protective in all cases. More robust and versatile treatment options are needed. Angiogenesis is a demonstrated therapeutic target in adult stroke. However, no systematic study examines the expression of angiogenesis-related markers following birth asphyxia in human newborns. Objective This study aimed to evaluate the expression of angiogenesis-related protein markers in asphyxiated newborns developing and not developing brain injury compared to healthy control newborns. Design/Methods Twelve asphyxiated newborns treated with hypothermia were prospectively enrolled; six developed eventual brain injury and six did not. Four healthy control newborns were also included. We used Rules-Based Medicine multi-analyte profiling and protein array technologies to study the plasma concentration of 49 angiogenesis-related proteins. Mean protein concentrations were compared between each group of newborns. Results Compared to healthy newborns, asphyxiated newborns not developing brain injury showed up-regulation of pro-angiogenic proteins, including fatty acid binding protein-4, glucose-6-phosphate isomerase, neuropilin-1, and receptor tyrosine-protein kinase erbB-3; this up-regulation was not evident in asphyxiated newborns eventually developing brain injury. Also, asphyxiated newborns developing brain injury showed a decreased expression of anti-angiogenic proteins, including insulin-growth factor binding proteins -1, -4, and -6, compared to healthy newborns. Conclusions These findings suggest that angiogenesis pathways are dysregulated following birth asphyxia and are putatively involved in brain injury pathology and recovery. PMID:25996847

  1. EIF3C-enhanced exosome secretion promotes angiogenesis and tumorigenesis of human hepatocellular carcinoma

    PubMed Central

    Lee, Hsin-Yi; Chen, Chi-Kuan; Ho, Chun-Ming; Lee, Szu-Shuo; Chang, Chieh-Yu; Chen, Kuan-Ju; Jou, Yuh-Shan

    2018-01-01

    Targeting tumor angiogenesis is a common strategy against human hepatocellular carcinoma (HCC). However, identification of molecular targets as biomarker for elevating therapeutic efficacy is critical to prolong HCC patient survival. Here, we showed that EIF3C (eukaryotic translation initiation factor 3 subunit C) is upregulated during HCC tumor progression and associated with poor patient survival. Expression of EIF3C did not alter proliferation and expression of other tumor progressive genes such as HIF1A, TGFβ1 and VEGF, but reduced cell migration in HCC cells. Nevertheless, expression of EIF3C in HCC cells significantly increase secretion of extracellular exosomes confirmed by increased exosomes labelling by PKH26 fluorescent dye, vesicles in exosome size detected by electronic microscopy and nanoparticle tracking analysis, and expression of divergent exosome markers. The EIF3C-increased exosomes were oncogenic to potentiate tumor angiogenesis via tube formation of HUVEC cells and growth of vessels by plugs assays on nude mice. Subcutaneous inoculation of EIF3C-exosomes mixed with Huh7 HCC cells not only promoted growth of vessels but also increased expression of EIF3C in tumors. Conversely, treatment of exosome inhibitor GW4869 reversed aforementioned oncogenic assays. We identified EIF3C activated expression of S100A11 involved in EIF3C-exosome increased tube formation in angiogenesis. Simultaneous high expression of EIF3C and S100A11 in human HCC tumors for RNA level in TCGA and protein level by IHC are associated with poor survival of HCC patients. Collectively, our results demonstrated that EIF3C overexpression is a potential target of angiogenesis for treatment with exosome inhibitor or S100A11 reduction to suppress HCC angiogenesis and tumorigenesis. PMID:29568350

  2. Slit2/Robo1 signaling is involved in angiogenesis of glomerular endothelial cells exposed to a diabetic-like environment.

    PubMed

    Liu, Junhui; Hou, Weiping; Guan, Tao; Tang, Luyao; Zhu, Xufei; Li, Yi; Hou, Shihui; Zhang, Jun; Chen, Hua; Huang, Yunjian

    2018-05-01

    tube formation. The effects induced by Slit2 were also abolished by Robo1 siRNA and PI3K inhibitor. Taken together, our findings indicate that in a diabetic-like environment, in addition to mesangial cells, autocrine activation of Slit2/Robo1 signaling of HRGECs may contribute to angiogenesis of HRGECs through PI3K/Akt/VEGF pathway; therefore, Slit2/Robo1 signaling may be a potent therapeutic target for the treatment of abnormal angiogenesis in early DN and may have broad implications for the treatment of other diseases dependent on pathologic angiogenesis.

  3. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    PubMed

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  4. Inhibition of angiogenesis by leflunomide via targeting the soluble ephrin-A1/EphA2 system in bladder cancer.

    PubMed

    Chu, Maolin; Zhang, Chunying

    2018-01-24

    Angiogenesis plays an important role in bladder cancer (BCa). The immunosuppressive drug leflunomide has attracted worldwide attention. However, the effects of leflunomide on angiogenesis in cancer remain unclear. Here, we report the increased expression of soluble ephrin-A1 (sEphrin-A1) in supernatants of BCa cell lines (RT4, T24, and TCCSUP) co-cultured with human umbilical vein endothelial cells (HUVECs) compared with that in immortalized uroepithelial cells (SV-HUC-1) co-cultured with HUVECs. sEphrin-A1 is released from BCa cells as a monomeric protein that is a functional form of the ligand. The co-culture supernatants containing sEphrin-A1 caused the internalization and down-regulation of EphA2 on endothelial cells and dramatic functional activation of HUVECs. This sEphrin-A1/EphA2 system is mainly functional in regulating angiogenesis in BCa tissue. We showed that leflunomide (LEF) inhibited angiogenesis in a N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced bladder carcinogenesis model and a tumor xenograft model, as well as in BCa cell and HUVEC co-culture systems, via significant inhibition of the sEphrin-A1/EphA2 system. Ephrin-A1 overexpression could partially reverse LEF-induced suppression of angiogenesis and subsequent tumor growth inhibition. Thus, LEF has a significant anti-angiogenesis effect on BCa cells and BCa tissue via its inhibition of the functional angiogenic sEphrin-A1/EphA2 system and may have potential for treating BCa beyond immunosuppressive therapy.

  5. Inhibition of angiogenesis in vitro by Arg-Gly-Asp-containing synthetic peptide.

    PubMed Central

    Nicosia, R. F.; Bonanno, E.

    1991-01-01

    This study was designed to evaluate the effect of the synthetic peptide Gly-Arg-Gly-Asp-Ser (GRGDS) on angiogenesis in serum-free collagen gel culture of rat aorta. The GRGDS peptide contains the amino acid sequence Arg-Gly-Asp (RGD), which has been implicated as a recognition site in interactions between extracellular matrix (ECM) molecules and cell membrane receptors. RGD-containing synthetic peptides are known to inhibit attachment of endothelial cells to substrates, but their effect on angiogenesis has not been fully characterized. Aortic explants embedded in collagen gel in the absence of GRGDS generated branching microvessels through a process of endothelial migration and proliferation. Addition of GRGDS to the culture medium caused a marked inhibition of angiogenesis. In contrast, GRGES, a control peptide lacking the RGD sequence, failed to inhibit angiogenesis. The inhibitory effect of GRGDS was nontoxic and reversible. The angiogenic activity of aortic explants previously inhibited with GRGDS could be restored by incubating the cultures in GRGDS-free medium. These findings suggest that angiogenesis is an anchorage-dependent process that can be inhibited by interfering with the attachment of endothelial cells to the ECM. It also indicates that synthetic peptides can be used as probes to study the mechanisms by which the ECM regulates angiogenesis. Images Figure 1 PMID:1707235

  6. A Designed Angiopoietin-1 Variant, Dimeric CMP-Ang1 Activates Tie2 and Stimulates Angiogenesis and Vascular Stabilization in N-glycan Dependent Manner

    PubMed Central

    Oh, Nuri; Kim, Kangsan; Jin Kim, Soo; Park, Intae; Lee, Jung-Eun; Suk Seo, Young; Joo An, Hyun; Min Kim, Ho; Young Koh, Gou

    2015-01-01

    Angiopoietin-1 (Ang1), a potential growth factor for therapeutic angiogenesis and vascular stabilization, is known to specifically cluster and activate Tie2 in high oligomeric forms, which is a unique and essential process in this ligand-receptor interaction. However, highly oligomeric native Ang1 and Ang1 variants are difficult to produce, purify, and store in a stable and active form. To overcome these limitations, we developed a simple and active dimeric CMP-Ang1 by replacing the N-terminal of native Ang1 with the coiled-coil domain of cartilage matrix protein (CMP) bearing mutations in its cysteine residues. This dimeric CMP-Ang1 effectively increased the migration, survival, and tube formation of endothelial cells via Tie2 activation. Furthermore, dimeric CMP-Ang1 induced angiogenesis and suppressed vascular leakage in vivo. Despite its dimeric structure, the potencies of such Tie2-activation-induced effects were comparable to those of a previously engineered protein, COMP-Ang1. We also revealed that these effects of dimeric CMP-Ang1 were affected by specified N-glycosylation in its fibrinogen-like domain. Taken together, our results indicate that dimeric CMP-Ang1 is capable of activating Tie2 and stimulating angiogenesis in N-glycan dependent manner. PMID:26478188

  7. Gli3 Regulation of Myogenesis Is Necessary for Ischemia-Induced Angiogenesis

    PubMed Central

    Renault, Marie-Ange; Vandierdonck, Soizic; Chapouly, Candice; Yu, Yang; Qin, Gangjian; Metras, Alexandre; Couffinhal, Thierry; Losordo, Douglas W.; Yao, Qinyu; Reynaud, Annabel; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Desgranges, Claude; Gadeau, Alain-Pierre

    2015-01-01

    Rationale A better understanding of the mechanism underlying skeletal muscle repair is required to develop therapies that promote tissue regeneration in adults. Hedgehog signaling has been shown previously to be involved in myogenesis and angiogenesis: 2 crucial processes for muscle development and regeneration. Objective The objective of this study was to identify the role of the hedgehog transcription factor Gli3 in the crosstalk between angiogenesis and myogenesis in adults. Methods and Results Using conditional knockout mice, we found that Gli3 deficiency in endothelial cells did not affect ischemic muscle repair, whereas in myocytes, Gli3 deficiency resulted in severely delayed ischemia-induced myogenesis. Moreover, angiogenesis was also significantly impaired in HSA-CreERT2; Gli3Flox/Flox mice, demonstrating that impaired myogenesis indirectly affects ischemia-induced angiogenesis. The role of Gli3 in myocytes was then further investigated. We found that Gli3 promotes myoblast differentiation through myogenic factor 5 regulation. In addition, we found that Gli3 regulates several proangiogenic factors, including thymidine phosphorylase and angiopoietin-1 both in vitro and in vivo, which indirectly promote endothelial cell proliferation and arteriole formation. In addition, we found that Gli3 is upregulated in proliferating myoblasts by the cell cycle–associated transcription factor E2F1. Conclusions This study shows for the first time that Gli3-regulated postnatal myogenesis is necessary for muscle repair–associated angiogenesis. Most importantly, it implies that myogenesis drives angiogenesis in the setting of skeletal muscle repair and identifies Gli3 as a potential target for regenerative medicine. PMID:24044950

  8. Anti-VEGF/VEGFR therapy for cancer: reassessing the target.

    PubMed

    Sitohy, Basel; Nagy, Janice A; Dvorak, Harold F

    2012-04-15

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed antiangiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor VEGF-A as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and, here, we call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least 6 well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All 6 types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A(164). Once formed, 4 of the 6 types lose their VEGF-A dependency, and so their responsiveness to anti-VEGF/VEGF receptor therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels.

  9. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms

    PubMed Central

    Kachgal, Suraj; Putnam, Andrew J.

    2012-01-01

    Using a fibrin-based angiogenesis model, we have established that there is no canonical mechanism used by ECs to degrade the surrounding extracellular matrix (ECM), but rather the set of proteases used is dependent on the mural cells providing the angiogenic cues. Mesenchymal stem cells (MSCs) originating from different tissues, which are thought to be phenotypically similar, promote angiogenesis through distinct mechanisms. Specifically, adipose-derived stem cells (ASCs) promote utilization of the plasminogen activator-plasmin axis by ECs as the primary means of vessel invasion and elongation in fibrin. Matrix metalloproteinases (MMPs) serve a purpose in regulating capillary diameter and possibly in stabilizing the nascent vessels. These proteolytic mechanisms are more akin to those involved in fibroblast-mediated angiogenesis than to those in bone marrow-derived stem cell (BMSC)-mediated angiogenesis. In addition, expression patterns of angiogenic factors such as urokinase plasminogen activator (uPA), hepatocyte growth factor (HGF), and tumor necrosis factor alpha (TNFα) were similar for ASC and fibroblast-mediated angiogenesis, and in direct contrast to BMSC-mediated angiogenesis. The present study illustrates that the nature of the heterotypic interactions between mural cells and endothelial cells depend on the identity of the mural cell used. Even MSCs which are shown to behave phenotypically similar do not stimulate angiogenesis via the same mechanisms. PMID:21104120

  10. Antitumor Activity of Emodin against Pancreatic Cancer Depends on Its Dual Role: Promotion of Apoptosis and Suppression of Angiogenesis

    PubMed Central

    Chen, Kang-Jie; Tong, Hong-Fei; Wang, Zhao-Hong; Ni, Zhong-Lin; Liu, Hai-Bin; Guo, Hong-Chun; Liu, Dian-Lei

    2012-01-01

    Background Emodin has been showed to induce apoptosis of pancreatic cancer cells and inhibit tumor growth in our previous studies. This study was designed to investigate whether emodin could inhibit the angiogenesis of pancreatic cancer tissues and its mechanism. Methodology/Principal Finding In accordance with our previous study, emodin inhibited pancreatic cancer cell growth, induced apoptosis, and enhanced the anti-tumor effect of gemcitabine on pancreatic caner cells in vitro and in vivo by inhibiting the activity of NF-κB. Here, for the first time, we demonstrated that emodin inhibited tumor angiogenesis in vitro and in implanted pancreatic cancer tissues, decreased the expression of angiogenesis-associated factors (NF-κB and its regulated factors VEGF, MMP-2, MMP-9, and eNOS), and reduced eNOS phosphorylation, as evidenced by both immunohistochemistry and western blot analysis of implanted tumors. In addition, we found that emodin had no effect on VEGFR expression in vivo. Conclusions/Significance Our results suggested that emodin has potential anti-tumor effect on pancreatic cancer via its dual role in the promotion of apoptosis and suppression of angiogenesis, probably through regulating the expression of NF-κB and NF-κB-regulated angiogenesis-associated factors. PMID:22876305

  11. Targeted Identification of Sialoglycoproteins in Hypoxic Endothelial Cells and Validation in Zebrafish Reveal Roles for Proteins in Angiogenesis

    PubMed Central

    Delcourt, Nicolas; Quevedo, Celia; Nonne, Christelle; Fons, Pierre; O'Brien, Donogh; Loyaux, Denis; Diez, Maria; Autelitano, François; Guillemot, Jean-Claude; Ferrara, Pascual; Muriana, Arantza; Callol, Carlos; Hérault, Jean-Pascal; Herbert, Jean-Marc; Favre, Gilles; Bono, Françoise

    2015-01-01

    The formation of new vessels in the tumor, termed angiogenesis, is essential for primary tumor growth and facilitates tumor invasion and metastasis. Hypoxia has been described as one trigger of angiogenesis. Indeed, hypoxia, which is characterized by areas of low oxygen levels, is a hallmark of solid tumors arising from an imbalance between oxygen delivery and consumption. Hypoxic conditions have profound effects on the different components of the tumoral environment. For example, hypoxia is able to activate endothelial cells, leading to angiogenesis but also thereby initiating a cascade of reactions involving neutrophils, smooth muscle cells, and fibroblasts. In addition, hypoxia directly regulates the expression of many genes for which the role and the importance in the tumoral environment remain to be completely elucidated. In this study, we used a method to selectively label sialoglycoproteins to identify new membrane and secreted proteins involved in the adaptative process of endothelial cells by mass spectrometry-based proteomics. We used an in vitro assay under hypoxic condition to observe an increase of protein expression or modifications of glycosylation. Then the function of the identified proteins was assessed in a vasculogenesis assay in vivo by using a morpholino strategy in zebrafish. First, our approach was validated by the identification of sialoglycoproteins such as CD105, neuropilin-1, and CLEC14A, which have already been described as playing key roles in angiogenesis. Second, we identified several new proteins regulated by hypoxia and demonstrated for the first time the pivotal role of GLUT-1, TMEM16F, and SDF4 in angiogenesis. PMID:25384978

  12. Dual targeting of ANGPT1 and TGFBR2 genes by miR-204 controls angiogenesis in breast cancer

    PubMed Central

    Flores-Pérez, Ali; Marchat, Laurence A.; Rodríguez-Cuevas, Sergio; Bautista-Piña, Verónica; Hidalgo-Miranda, Alfredo; Ocampo, Elena Aréchaga; Martínez, Mónica Sierra; Palma-Flores, Carlos; Fonseca-Sánchez, Miguel A.; Astudillo-de la Vega, Horacio; Ruíz-García, Erika; González-Barrios, Juan Antonio; Pérez-Plasencia, Carlos; Streber, María L.; López-Camarillo, César

    2016-01-01

    Deregulated expression of microRNAs has been associated with angiogenesis. Studying the miRNome of locally advanced breast tumors we unsuspectedly found a dramatically repression of miR-204, a small non-coding RNA with no previous involvement in tumor angiogenesis. Downregulation of miR-204 was confirmed in an independent cohort of patients and breast cancer cell lines. Gain-of-function analysis indicates that ectopic expression of miR-204 impairs cell proliferation, anchorage-independent growth, migration, invasion, and the formation of 3D capillary networks in vitro. Likewise, in vivo vascularization and angiogenesis were suppressed by miR-204 in a nu/nu mice model. Genome-wide profiling of MDA-MB-231 cells expressing miR-204 revealed changes in the expression of hundred cancer-related genes. Of these, we focused on the study of pro-angiogenic ANGPT1 and TGFβR2. Functional analysis using luciferase reporter and rescue assays confirmed that ANGPT1 and TGFβR2 are novel effectors downstream of miR-204. Accordingly, an inverse correlation between miR-204 and ANGPT1/TGFβR2 expression was found in breast tumors. Knockdown of TGFβR2, but not ANGPT1, impairs cell proliferation and migration whereas inhibition of both genes inhibits angiogenesis. Taken altogether, our findings reveal a novel role for miR-204/ANGPT1/TGFβR2 axis in tumor angiogenesis. We propose that therapeutic manipulation of miR-204 levels may represent a promising approach in breast cancer. PMID:27703260

  13. Radiation and inhibition of angiogenesis by canstatin synergize to induce HIF-1α–mediated tumor apoptotic switch

    PubMed Central

    Magnon, Claire; Opolon, Paule; Ricard, Marcel; Connault, Elisabeth; Ardouin, Patrice; Galaup, Ariane; Métivier, Didier; Bidart, Jean-Michel; Germain, Stéphane; Perricaudet, Michel; Schlumberger, Martin

    2007-01-01

    Tumor radioresponsiveness depends on endothelial cell death, which leads in turn to tumor hypoxia. Radiation-induced hypoxia was recently shown to trigger tumor radioresistance by activating angiogenesis through hypoxia-inducible factor 1–regulated (HIF-1–regulated) cytokines. We show here that combining targeted radioiodide therapy with angiogenic inhibitors, such as canstatin, enhances direct tumor cell apoptosis, thereby overcoming radio-induced HIF-1–dependent tumor survival pathways in vitro and in vivo. We found that following dual therapy, HIF-1α increases the activity of the canstatin-induced αvβ5 signaling tumor apoptotic pathway and concomitantly abrogates mitotic checkpoint and tetraploidy triggered by radiation. Apoptosis in conjunction with mitotic catastrophe leads to lethal tumor damage. We discovered that HIF-1 displays a radiosensitizing activity that is highly dependent on treatment modalities by regulating key apoptotic molecular pathways. Our findings therefore support a crucial role for angiogenesis inhibitors in shifting the fate of radiation-induced HIF-1α activity from hypoxia-induced tumor radioresistance to hypoxia-induced tumor apoptosis. This study provides a basis for developing new biology-based clinically relevant strategies to improve the efficacy of radiation oncology, using HIF-1 as an ally for cancer therapy. PMID:17557121

  14. Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions

    PubMed Central

    Winter, P. M.; Caruthers, S. D.; Hughes, M. S.; Hu, Grace; Schmieder, A. H.; Wickline, S. A.

    2011-01-01

    Molecular imaging agents are extending the potential of noninvasive medical diagnosis from basic gross anatomical descriptions to complicated phenotypic characterizations based upon the recognition of unique cell-surface biochemical signatures. Although originally the purview of nuclear medicine, “molecular imaging” is now studied in conjunction with all clinically relevant imaging modalities. Of the myriad of particles that have emerged as prospective candidates for clinical translation, perfluorocarbon nanoparticles offer great potential for combining targeted imaging with drug delivery, much like the “magic bullet” envisioned by Paul Ehrlich 100 years ago. Perfluorocarbon nanoparticles, once studied in Phase III clinical trials as blood substitutes, have found new life for molecular imaging and drug delivery. The particles have been adapted for use with all clinically relevant modalities and for targeted drug delivery. In particular, their intravascular constraint due to particle size provides a distinct advantage for angiogenesis imaging and antiangiogenesis therapy. As perfluorocarbon nanoparticles have recently entered Phase I clinical study, this review provides a timely focus on the development of this platform technology and its application for angiogenesis-related pathologies. PMID:20411320

  15. Juglone reduces growth and migration of U251 glioblastoma cells and disrupts angiogenesis.

    PubMed

    Wang, Jian; Liu, Ke; Wang, Xiao-Feng; Sun, Dian-Jun

    2017-10-01

    Accumulating data show that prolylisomerase (Pin1) is overexpressed in human glioblastoma multiforme (GBM) specimens. Therefore, Pin1 inhibitors should be investigated as a new chemotherapeutic drug that may enhance the clinical management of human gliomas. Recently, juglone, a Pin1 inhibitor, was shown to exhibit potent anticancer activity in various tumor cells, but its role in human glioma cells remains unknown. In the present study, we determined if juglone exerts antitumor effects in the U251 human glioma cell line and investigated its potential underlying molecular mechanisms. Cell survival, apoptosis, migration, angiogenesis and molecular targets were identified with multiple detection techniques including the MTT cell proliferation assay, dual acridine orange/ethidium bromide staining, electron microscopy, transwell migration assay, chick chorioallantoic membrane assay, quantitative real-time polymerase chain reaction and immunoblotting. The results showed that 5-20 µM juglone markedly suppressed cell proliferation, induced apoptosis, and enhanced caspase-3 activity in U251 cells in a dose- and time-dependent manner. Moreover, juglone inhibited cell migration and the formation of new blood vessels. At the molecular level, juglone markedly suppressed Pin1 levels in a time-dependent manner. TGF-β1/Smad signaling, a critical upstream regulator of miR-21, was also suppressed by juglone. Moreover, the transient overexpression of Pin1 reversed its antitumor effects in U251 cells and inhibited juglone-mediated changes to the TGF-β1/miR-21 signaling pathway. These findings suggest that juglone inhibits cell growth by causing apoptosis, thereby inhibiting the migration of U251 glioma cells and disrupting angiogenesis; and that Pin1 is a critical target for juglone's antitumor activity. The present study provides evidence that juglone has in vitro efficacy against glioma. Therefore, additional studies are warranted to examine the clinical potential of juglone in

  16. Lipo-chitin oligosaccharides, plant symbiosis signalling molecules that modulate mammalian angiogenesis in vitro.

    PubMed

    Djordjevic, Michael A; Bezos, Anna; Susanti; Marmuse, Laurence; Driguez, Hugues; Samain, Eric; Vauzeilles, Boris; Beau, Jean-Marie; Kordbacheh, Farzaneh; Rolfe, Barry G; Schwörer, Ralf; Daines, Alison M; Gresshoff, Peter M; Parish, Christopher R

    2014-01-01

    Lipochitin oligosaccharides (LCOs) are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM) receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO-like molecules may have the

  17. Ocean acidification compromises a planktic calcifier with implications for global carbon cycling.

    PubMed

    Davis, Catherine V; Rivest, Emily B; Hill, Tessa M; Gaylord, Brian; Russell, Ann D; Sanford, Eric

    2017-05-22

    Anthropogenically-forced changes in ocean chemistry at both the global and regional scale have the potential to negatively impact calcifying plankton, which play a key role in ecosystem functioning and marine carbon cycling. We cultured a globally important calcifying marine plankter (the foraminifer, Globigerina bulloides) under an ecologically relevant range of seawater pH (7.5 to 8.3 total scale). Multiple metrics of calcification and physiological performance varied with pH. At pH > 8.0, increased calcification occurred without a concomitant rise in respiration rates. However, as pH declined from 8.0 to 7.5, calcification and oxygen consumption both decreased, suggesting a reduced ability to precipitate shell material accompanied by metabolic depression. Repair of spines, important for both buoyancy and feeding, was also reduced at pH < 7.7. The dependence of calcification, respiration, and spine repair on seawater pH suggests that foraminifera will likely be challenged by future ocean conditions. Furthermore, the nature of these effects has the potential to actuate changes in vertical transport of organic and inorganic carbon, perturbing feedbacks to regional and global marine carbon cycling. The biological impacts of seawater pH have additional, important implications for the use of foraminifera as paleoceanographic indicators.

  18. Targeted identification of sialoglycoproteins in hypoxic endothelial cells and validation in zebrafish reveal roles for proteins in angiogenesis.

    PubMed

    Delcourt, Nicolas; Quevedo, Celia; Nonne, Christelle; Fons, Pierre; O'Brien, Donogh; Loyaux, Denis; Diez, Maria; Autelitano, François; Guillemot, Jean-Claude; Ferrara, Pascual; Muriana, Arantza; Callol, Carlos; Hérault, Jean-Pascal; Herbert, Jean-Marc; Favre, Gilles; Bono, Françoise

    2015-02-06

    The formation of new vessels in the tumor, termed angiogenesis, is essential for primary tumor growth and facilitates tumor invasion and metastasis. Hypoxia has been described as one trigger of angiogenesis. Indeed, hypoxia, which is characterized by areas of low oxygen levels, is a hallmark of solid tumors arising from an imbalance between oxygen delivery and consumption. Hypoxic conditions have profound effects on the different components of the tumoral environment. For example, hypoxia is able to activate endothelial cells, leading to angiogenesis but also thereby initiating a cascade of reactions involving neutrophils, smooth muscle cells, and fibroblasts. In addition, hypoxia directly regulates the expression of many genes for which the role and the importance in the tumoral environment remain to be completely elucidated. In this study, we used a method to selectively label sialoglycoproteins to identify new membrane and secreted proteins involved in the adaptative process of endothelial cells by mass spectrometry-based proteomics. We used an in vitro assay under hypoxic condition to observe an increase of protein expression or modifications of glycosylation. Then the function of the identified proteins was assessed in a vasculogenesis assay in vivo by using a morpholino strategy in zebrafish. First, our approach was validated by the identification of sialoglycoproteins such as CD105, neuropilin-1, and CLEC14A, which have already been described as playing key roles in angiogenesis. Second, we identified several new proteins regulated by hypoxia and demonstrated for the first time the pivotal role of GLUT-1, TMEM16F, and SDF4 in angiogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Hyperforin acts as an angiogenesis inhibitor.

    PubMed

    Schempp, Christoph M; Kiss, Judit; Kirkin, Vladimir; Averbeck, Marco; Simon-Haarhaus, Birgit; Kremer, Bernhard; Termeer, Christian C; Sleeman, Jonathan; Simon, Jan C

    2005-11-01

    Hyperforin is a plant compound from Hypericum perforatum that inhibits tumor cell proliferation in vitro by induction of apoptosis. Here, we report that hyperforin also acts as an angiogenesis inhibitor in vitro and in vivo. In vitro, hyperforin blocked microvessel formation of human dermal microvascular endothelial cells (HDMEC) on a complex extracellular matrix. Furthermore, hyperforin reduced proliferation of HDMEC in a dose-dependent manner, without displaying toxic effects or inducing apoptosis of the cells. To evaluate the antiangiogenic activity of hyperforin in vivo, Wistar rats were subcutaneously injected with MT-450 mammary carcinoma cells and were treated with peritumoral injections of hyperforin or solvent. Hyperforin significantly inhibited tumor growth, induced apoptosis of tumor cells and reduced tumor vascularization, as shown by in situ staining of CD31-positive microvessels in the tumor stroma. These data suggest that, in addition to the induction of tumor cell apoptosis, hyperforin can also suppress angiogenesis by a direct, non-toxic effect on endothelial cells.

  20. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis.

    PubMed

    Choi, Hyeong Sim; Lee, Kangwook; Kim, Min Kyoung; Lee, Kang Min; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-04-19

    Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.

  1. Phenotype-based Discovery of 2-[(E)-2-(Quinolin-2-yl)vinyl]phenol as a Novel Regulator of Ocular Angiogenesis*

    PubMed Central

    Reynolds, Alison L.; Alvarez, Yolanda; Sasore, Temitope; Waghorne, Nora; Butler, Clare T.; Kilty, Claire; Smith, Andrew J.; McVicar, Carmel; Wong, Vickie H. Y.; Galvin, Orla; Merrigan, Stephanie; Osman, Janina; Grebnev, Gleb; Sjölander, Anita; Stitt, Alan W.; Kennedy, Breandán N.

    2016-01-01

    Retinal angiogenesis is tightly regulated to meet oxygenation and nutritional requirements. In diseases such as proliferative diabetic retinopathy and neovascular age-related macular degeneration, uncontrolled angiogenesis can lead to blindness. Our goal is to better understand the molecular processes controlling retinal angiogenesis and discover novel drugs that inhibit retinal neovascularization. Phenotype-based chemical screens were performed using the ChemBridge DiversetTM library and inhibition of hyaloid vessel angiogenesis in Tg(fli1:EGFP) zebrafish. 2-[(E)-2-(Quinolin-2-yl)vinyl]phenol, (quininib) robustly inhibits developmental angiogenesis at 4–10 μm in zebrafish and significantly inhibits angiogenic tubule formation in HMEC-1 cells, angiogenic sprouting in aortic ring explants, and retinal revascularization in oxygen-induced retinopathy mice. Quininib is well tolerated in zebrafish, human cell lines, and murine eyes. Profiling screens of 153 angiogenic and inflammatory targets revealed that quininib does not directly target VEGF receptors but antagonizes cysteinyl leukotriene receptors 1 and 2 (CysLT1–2) at micromolar IC50 values. In summary, quininib is a novel anti-angiogenic small-molecule CysLT receptor antagonist. Quininib inhibits angiogenesis in a range of cell and tissue systems, revealing novel physiological roles for CysLT signaling. Quininib has potential as a novel therapeutic agent to treat ocular neovascular pathologies and may complement current anti-VEGF biological agents. PMID:26846851

  2. Extract of Artemisia lavandulaefolia Inhibits In Vitro Angiogenesis in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Yi, Eui-Yeun; Han, Kyung-Suk; Kim, Yung-Jin

    2014-01-01

    Angiogenesis is important processes for tumor growth and metastasis. Anti-angiogenesis target therapy has recently been known to be new anti-cancer therapeutic strategies. Natural products such as traditional medicine comprise a major source of angiogenesis inhibitors. Artemisia lavandulaefolia has been known to use in the traditional medical practices. However, its molecular mechanism on the tumor protection and therapy was not clearly elucidated. In this study, we investigated the possibility that extract of A. lavandulaefolia inhibits in vitro angiogenesis. Therefore, we examined the effect of extract of A. lavandulaefolia on the vascular network formation of human umbilical vein endothelial cells (HUVECs). We found that the treatment of A. lavandulaefolia extract suppressed the tube formation of HUVECs without any influence on the viability of HUVECs. In addition, extract of A. lavandulaefolia inhibited the migration and invasion of HUVECs. These results suggest that extract of A. lavandulaefolia could be act for an angiogenic inhibitor. PMID:25574458

  3. Two-Year Clinical Outcomes of Newer-Generation Drug-Eluting Stent Implantation Following Rotational Atherectomy for Heavily Calcified Lesions.

    PubMed

    Jinnouchi, Hiroyuki; Kuramitsu, Shoichi; Shinozaki, Tomohiro; Kobayashi, Yohei; Hiromasa, Takashi; Morinaga, Takashi; Mazaki, Toru; Sakakura, Kenichi; Soga, Yoshimitsu; Hyodo, Makoto; Shirai, Shinichi; Ando, Kenji

    2015-01-01

    Clinical outcomes of implantation of the newer-generation drug-eluting stent (DES) following rotational atherectomy for heavily calcified lesions remain unclear in the real-world setting. We enrolled 252 consecutive patients (273 lesions) treated with newer-generation DES following rotational atherectomy. The primary endpoint was the cumulative 2-year incidence of major adverse cardiovascular events (MACE), defined as cardiac death, myocardial infarction, clinically-driven target lesion revascularization, and definite stent thrombosis. Complete clinical follow-up information at 2-year was obtained for all patients. The mean age was 73.2±9.0 years and 155 patients (61.5%) were male. Cumulative 2-year incidence of MACE (cardiac death, myocardial infarction, clinically-driven target lesion revascularization and definite stent thrombosis) was 20.3% (7.0%, 2.1%, 18.1% and 2.1%, respectively). Predictors of MACE were presenting with acute coronary syndrome (hazard ratio [HR]: 3.80, 95% confidence interval [CI]: 1.29-11.2, P=0.02), hemodialysis (HR: 1.93, 95% CI: 1.04-3.56, P=0.04) and previous coronary artery bypass graft (HR: 2.26, 95% CI: 1.02-5.00, P=0.045). PCI for calcified lesions requiring rotational atherectomy is still challenging even in the era of newer-generation DES.

  4. EMP2 regulates angiogenesis in endometrial cancer cells through induction of VEGF

    PubMed Central

    Gordon, L K; Kiyohara, M; Fu, M; Braun, J; Dhawan, P; Chan, A; Goodglick, L; Wadehra, M

    2013-01-01

    Understanding tumor-induced angiogenesis is a challenging problem with important consequences for the diagnosis and treatment of cancer. In this study, we define a novel function for epithelial membrane protein-2 (EMP2) in the control of angiogenesis. EMP2 functions as an oncogene in endometrial cancer, and its expression has been linked to decreased survival. Using endometrial cancer xenografts, modulation of EMP2 expression resulted in profound changes to the tumor microvasculature. Under hypoxic conditions, upregulation of EMP2 promoted vascular endothelial growth factors (VEGF) expression through a HIF-1α-dependent pathway and resulted in successful capillary-like tube formation. In contrast, reduction of EMP2 correlated with reduced HIF-1α and VEGF expression with the net consequence of poorly vascularized tumors in vivo. We have previously shown that targeting of EMP2 using diabodies in endometrial cancer resulted in a reduction of tumor load, and since then we have constructed a fully human EMP2 IgG1. Treatment of endometrial cancer cells with EMP2-IgG1 reduced tumor load with a significant improvement in survival. These results support the role of EMP2 in the control of the tumor microenvironment and confirm the cytotoxic effects observed by EMP2 treatment in vivo. PMID:23334331

  5. Calcified pilocytic astrocytoma of the medulla mimicking a brainstem "stone".

    PubMed

    Berhouma, M; Jemel, H; Kchir, N

    2008-10-01

    Brainstem gliomas are a heterogeneous group of tumours commonly found in children, comprising about 10% of central nervous system tumours in paediatric patients, but less than 2% in adults. Pilocytic astrocytomas usually involve the midbrain and the medulla, and their surgical resection, when feasible, is generally curative. Thin calcifications can be normally found within low grade gliomas, but densely calcified pilocytic astrocytomas of the brainstem have been only rarely reported. We present the case of a young man presenting with a large brainstem calcification involving the medulla, which was subtotally resected using a posterior suboccipital approach. The definitive pathological diagnosis was calcified pilocytic astrocytoma.

  6. A novel regulator of angiogenesis in endothelial cells: 5-hydroxytriptamine 4 receptor.

    PubMed

    Profirovic, Jasmina; Strekalova, Elena; Urao, Norifumi; Krbanjevic, Aleksandar; Andreeva, Alexandra V; Varadarajan, Sudhahar; Fukai, Tohru; Hen, René; Ushio-Fukai, Masuko; Voyno-Yasenetskaya, Tatyana A

    2013-01-01

    The 5-hydroxytryptamine type 4 receptor (5-HT(4)R) regulates many physiological processes, including learning and memory, cognition, and gastrointestinal motility. Little is known about its role in angiogenesis. Using mouse hindlimb ischemia model of angiogenesis, we observed a significant reduction of limb blood flow recovery 14 days after ischemia and a decrease in density of CD31-positive vessels in adductor muscles in 5-HT(4)R(-/-) mice compared to wild type littermates. Our in vitro data indicated that 5-HT(4)R endogenously expressed in endothelial cells (ECs) may promote angiogenesis. Inhibition of the receptor with 5-HT(4)R antagonist RS 39604 reduced EC capillary tube formation in the reconstituted basement membrane. Using Boyden chamber migration assay and wound healing "scratch" assay, we demonstrated that RS 39604 treatment significantly suppressed EC migration. Transendothelial resistance measurement and immunofluorescence analysis showed that a 5-HT(4)R agonist RS 67333 led to an increase in endothelial permeability, actin stress fiber and interendothelial gap formation. Importantly, we provided the evidence that 5-HT(4)R-regulated EC migration may be mediated by Gα13 and RhoA. Our results suggest a prominent role of 5-HT(4)R in promoting angiogenesis and identify 5-HT(4)R as a potential therapeutic target for modulating angiogenesis under pathological conditions.

  7. Esculin and its oligomer fractions inhibit adhesion and migration of U87 glioblastoma cells and in vitro angiogenesis.

    PubMed

    Mokdad-Bzeouich, Imen; Kovacic, Hervé; Ghedira, Kamel; Chebil, Latifa; Ghoul, Mohamed; Chekir-Ghedira, Leila; Luis, José

    2016-03-01

    Cancer metastasis is the major cause of cancer-related death. Chemoprevention is defined as the use of natural or synthetic substances to prevent cancer formation or cancer progress. In the present study, we investigate the antitumor activity of esculin and its oligomer fractions in U87 glioblastoma cells. We showed that esculin and its oligomers reduced U87 cell growth in a dose dependent manner. They also inhibited cell adhesion to collagen IV and vitronectin by interfering with the function of their respective receptors α2β1 and αvβ5 integrins. Furthermore, the tested samples were able to reduce migration of U87 cells towards another extracellular matrix fibronectin. Moreover, esculin and its oligomer fractions inhibited in vitro angiogenesis of endothelial cells (HMEC-1). In summary, our data provide the first evidence that esculin and its oligomer fractions are able to reduce adhesion, migration of glioblastoma cells and in vitro angiogenesis. Esculin and its oligomers may thus exert multi-target functions against cancer cells.

  8. Targeting VEGF/VEGFRs Pathway in the Antiangiogenic Treatment of Human Cancers by Traditional Chinese Medicine.

    PubMed

    Zhang, Cheng; Wang, Ning; Tan, Hor-Yue; Guo, Wei; Li, Sha; Feng, Yibin

    2018-05-01

    Bearing in mind the doctrine of tumor angiogenesis hypothesized by Folkman several decades ago, the fundamental strategy for alleviating numerous cancer indications may be the strengthening application of notable antiangiogenic therapies to inhibit metastasis-related tumor growth. Under physiological conditions, vascular sprouting is a relatively infrequent event unless when specifically stimulated by pathogenic factors that contribute to the accumulation of angiogenic activators such as the vascular endothelial growth factor (VEGF) family and basic fibroblast growth factor (bFGF). Since VEGFs have been identified as the principal cytokine to initiate angiogenesis in tumor growth, synthetic VEGF-targeting medicines containing bevacizumab and sorafenib have been extensively used, but prominent side effects have concomitantly emerged. Traditional Chinese medicines (TCM)-derived agents with distinctive safety profiles have shown their multitarget curative potential by impairing angiogenic stimulatory signaling pathways directly or eliciting synergistically therapeutic effects with anti-angiogenic drugs mainly targeting VEGF-dependent pathways. This review aims to summarize ( a) the up-to-date understanding of the role of VEGF/VEGFR in correlation with proangiogenic mechanisms in various tissues and cells; ( b) the elaboration of antitumor angiogenesis mechanisms of 4 representative TCMs, including Salvia miltiorrhiza, Curcuma longa, ginsenosides, and Scutellaria baicalensis; and ( c) circumstantial clarification of TCM-driven therapeutic actions of suppressing tumor angiogenesis by targeting VEGF/VEGFRs pathway in recent years, based on network pharmacology.

  9. Notch Decoys that Selectively Block Dll/Notch or Jagged/Notch Disrupt Angiogenesis by Unique Mechanisms to Inhibit Tumor Growth

    PubMed Central

    Kangsamaksin, Thaned; Murtomaki, Aino; Kofler, Natalie M.; Cuervo, Henar; Chaudhri, Reyhaan A.; Tattersall, Ian W.; Rosenstiel, Paul E.; Shawber, Carrie J.; Kitajewski, Jan

    2015-01-01

    A pro-angiogenic role for Jagged-dependent activation of Notch signaling in the endothelium has yet to be described. Using proteins that encoded different NOTCH1 EGF-like repeats, we identified unique regions of DLL-class and JAG-class ligand/receptor interactions, and developed Notch decoys that function as ligand-specific Notch inhibitors. N110-24 decoy blocked JAG1/JAG2-mediated NOTCH1 signaling, angiogenic sprouting in vitro and retinal angiogenesis, demonstrating JAG-dependent Notch signal activation promotes angiogenesis. In tumors, N110-24 decoy reduced angiogenic sprouting, vessel perfusion, pericyte coverage, and tumor growth. JAG/NOTCH signaling uniquely inhibited expression of anti-angiogenic sVEFGFR-1/sFlt-1. N11-13 decoy interfered with DLL1/DLL4-mediated NOTCH1 signaling and caused endothelial hypersprouting in vitro, in retinal angiogenesis and in tumors. Thus, blockade of JAG- or DLL-mediated Notch signaling inhibits angiogenesis by distinct mechanisms. JAG/Notch signaling positively regulates angiogenesis by suppressing sVEGFR-1/sFlt-1 and promoting mural/endothelial cell interactions. Blockade of JAG-class ligands represents a novel, viable therapeutic approach to block tumor angiogenesis and growth. PMID:25387766

  10. Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells.

    PubMed

    Lee, W D; Hurtig, M B; Pilliar, R M; Stanford, W L; Kandel, R A

    2015-08-01

    In healthy joints, a zone of calcified cartilage (ZCC) provides the mechanical integration between articular cartilage and subchondral bone. Recapitulation of this architectural feature should serve to resist the constant shear force from the movement of the joint and prevent the delamination of tissue-engineered cartilage. Previous approaches to create the ZCC at the cartilage-substrate interface have relied on strategic use of exogenous scaffolds and adhesives, which are susceptible to failure by degradation and wear. In contrast, we report a successful scaffold-free engineering of ZCC to integrate tissue-engineered cartilage and a porous biodegradable bone substitute, using sheep bone marrow stromal cells (BMSCs) as the cell source for both cartilaginous zones. BMSCs were predifferentiated to chondrocytes, harvested and then grown on a porous calcium polyphosphate substrate in the presence of triiodothyronine (T3). T3 was withdrawn, and additional predifferentiated chondrocytes were placed on top of the construct and grown for 21 days. This protocol yielded two distinct zones: hyaline cartilage that accumulated proteoglycans and collagen type II, and calcified cartilage adjacent to the substrate that additionally accumulated mineral and collagen type X. Constructs with the calcified interface had comparable compressive strength to native sheep osteochondral tissue and higher interfacial shear strength compared to control without a calcified zone. This protocol improves on the existing scaffold-free approaches to cartilage tissue engineering by incorporating a calcified zone. Since this protocol employs no xenogeneic material, it will be appropriate for use in preclinical large-animal studies. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Case report - calcification of the medial collateral ligament of the knee with simultaneous calcifying tendinitis of the rotator cuff.

    PubMed

    Kamawal, Yama; Steinert, Andre F; Holzapfel, Boris M; Rudert, Maximilian; Barthel, Thomas

    2016-07-13

    Calcification of the medial collateral ligament (MCL) of the knee is a very rare disease. We report on a case of a patient with a calcifying lesion within the MCL and simultaneous calcifying tendinitis of the rotator cuff in both shoulders. Calcification of the MCL was diagnosed both via x-ray and magnetic resonance imaging (MRI) and was successfully treated surgically. Calcifying tendinitis of the rotator cuff was successfully treated applying conservative methods. This is the first case report of a patient suffering from both a calcifying lesion within the medial collateral ligament and calcifying tendinitis of the rotator cuff in both shoulders. Clinical symptoms, radio-morphological characteristics and macroscopic features were very similar and therefore it can be postulated that the underlying pathophysiology is the same in both diseases. Our experience suggests that magnetic resonance imaging and x-ray are invaluable tools for the diagnosis of this inflammatory calcifying disease of the ligament, and that surgical repair provides a good outcome if conservative treatment fails. It seems that calcification of the MCL is more likely to require surgery than calcifying tendinitis of the rotator cuff. However, the exact reason for this remains unclear to date.

  12. Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis

    NASA Astrophysics Data System (ADS)

    Liu, Longwei; You, Zhifeng; Yu, Hongsheng; Zhou, Lyu; Zhao, Hui; Yan, Xiaojun; Li, Dulei; Wang, Bingjie; Zhu, Lu; Xu, Yuzhou; Xia, Tie; Shi, Yan; Huang, Chenyu; Hou, Wei; Du, Yanan

    2017-12-01

    The role of pathological angiogenesis on liver fibrogenesis is still unknown. Here, we developed fibrotic microniches (FμNs) that recapitulate the interaction of liver sinusoid endothelial cells (LSECs) and hepatic stellate cells (HSCs). We investigated how the mechanical properties of their substrates affect the formation of capillary-like structures and how they relate to the progression of angiogenesis during liver fibrosis. Differences in cell response in the FμNs were synonymous of the early and late stages of liver fibrosis. The stiffness of the early-stage FμNs was significantly elevated due to condensation of collagen fibrils induced by angiogenesis, and led to activation of HSCs by LSECs. We utilized these FμNs to understand the response to anti-angiogenic drugs, and it was evident that these drugs were effective only for early-stage liver fibrosis in vitro and in an in vivo mouse model of liver fibrosis. Late-stage liver fibrosis was not reversed following treatment with anti-angiogenic drugs but rather with inhibitors of collagen condensation. Our work reveals stage-specific angiogenesis-induced liver fibrogenesis via a previously unrevealed mechanotransduction mechanism which may offer precise intervention strategies targeting stage-specific disease progression.

  13. ARTHROSCOPIC TREATMENT OF CALCIFYING TENDINITIS OF THE ROTATOR CUFF.

    PubMed

    Neto, Arnaldo Amado Ferreira; Trevizani, Cassio Silva; Benegas, Eduardo; Malavolta, Eduardo Angeli; Gracitelli, Mauro Emílio Conforto; Bitar, Alexandre Carneiro; Neto, Francisco José Dos Santos

    2010-01-01

    To evaluate the clinical and radiographic results from arthroscopic surgical treatment of the rotator cuff in patients with calcifying tendinitis. A retrospective study was conducted on twenty patients who underwent arthroscopic treatment for calcifying tendinitis of the shoulder between March 1999 and November 2005. Six patients were excluded due to loss of follow-up. The average follow-up period was 41.4 months. Eight patients (57%) were female and six (43%) were male. The right side was affected in 10 cases (71%) and the left in four cases (29%). Nine cases (64%) had calcification in the supraspinatus tendon, two (14%) in the infraspinatus tendon, and three (21%) in both tendons. In all cases, resection of the calcium deposits was performed by means of a needle (Jelco® No. 14) in combination with curettage (mini-curette). Two shoulders (14%) underwent subacromial decompression, and one (7%) underwent excision of the distal clavicle. A tendon-tendon suture was performed in three shoulders (21%). None of the patients underwent tendon-bone reinsertion. The mean score obtained on the UCLA scale was 33 points (26-35), thus indicating that a majority of patients had good results. In the final radiographic evaluation, none of the patients showed signs of calcification. Arthroscopic treatment of calcifying tendinitis of the shoulder safely allows excision of the calcification, leading to good results in relation to shoulder pain and function.

  14. Prognostic value of angiogenesis in solitary bone plasmacytoma.

    PubMed

    Kumar, Shaji; Fonseca, Rafael; Dispenzieri, Angela; Lacy, Martha Q; Lust, John A; Wellik, Linda; Witzig, Thomas E; Gertz, Morie A; Kyle, Robert A; Greipp, Philip R; Rajkumar, S Vincent

    2003-03-01

    Angiogenesis plays an important role in the biology of multiple myeloma (MM) and has prognostic importance in this disease. Solitary plasmacytoma is a localized plasma cell malignancy that progresses to MM in a significant number of patients. We examined if angiogenesis is increased in solitary plasmacytoma and if it can help identify patients likely to progress to myeloma. We studied angiogenesis in plasmacytoma biopsy samples and bone marrow biopsies from 25 patients. High-grade angiogenesis was present in 64% of plasmacytomas. In contrast, bone marrow angiogenesis was low in all patients. Patients with high-grade angiogenesis in the plasmacytoma sample were more likely to progress to myeloma and had a shorter progression-free survival compared with patients with low-grade angiogenesis (P =.02). Angiogenesis is increased in solitary plasmacytoma and is a significant predictor of progression to myeloma and provides further evidence of its importance in the pathogenesis of myeloma.

  15. Leakage detection on CT myelography for targeted epidural blood patch in spontaneous cerebrospinal fluid leaks: calcified or ossified spinal lesions ventral to the thecal sac.

    PubMed

    Yoshida, Hiroki; Takai, Keisuke; Taniguchi, Makoto

    2014-09-01

    The purpose of this study was to describe significant CT myelography findings for determination of the leak site and outcome of targeted epidural blood patch (EBP) in patients with spontaneous CSF leaks. During 2005-2013, spontaneous CSF leaks were diagnosed for 12 patients with orthostatic headaches. The patients received targeted EBP on the basis of CT myelography assessments. Computed tomography myelograms revealed ventral extradural collection of contrast medium distributed over multiple spinal levels (average 16 levels). Intraforaminal contrast medium extravasations were observed at multiple spinal levels (average 8.2 levels). For 8 (67%) of 12 patients, spinal lesions were noted around the thecal sac and included calcified discs with osteophytes, an ossified posterior longitudinal ligament, and an ossified yellow ligament; lesions were mostly located ventral to the thecal sac and were in close contact with the dura mater. The levels of these spinal lesions were considered potential leak sites and were targeted for EBP. For the remaining 4 patients who did not have definite spinal lesions around the thecal sac, leak site determination was based primarily on the contrast gradient hypothesis. The authors hypothesized that the concentration of extradural contrast medium would be the greatest and the same as that of intradural contrast medium at the leak site but that it would decrease with increased distance from the leak site according to the contrast gradient. Epidural blood patch was placed at the level of spinal lesions and/or of the greatest and same concentration of contrast medium between the intradural and extradural spaces. For 10 of the 12 patients, the orthostatic headaches decreased significantly within a week of EBP and disappeared within a month. For the remaining 2 patients, headaches persisted and medical treatment was required for several months. For 3 patients, thick chronic subdural hematomas caused severe headaches and/or disturbed

  16. Osteosarcoma cells induce endothelial cell proliferation during neo-angiogenesis.

    PubMed

    de Nigris, Filomena; Mancini, Francesco Paolo; Schiano, Concetta; Infante, Teresa; Zullo, Alberto; Minucci, Pellegrino Biagio; Al-Omran, Mohammed; Giordano, Antonio; Napoli, Claudio

    2013-04-01

    Understanding the mechanisms inducing endothelial cell (EC) proliferation following tumor microenvironment stimuli may be important for the development of antiangiogenic therapies. Here, we show that cyclin-dependent kinase 2 and 5 (Cdk2, Cdk5) are important mediators of neoangiogenesis in in vitro and in vivo systems. Furthermore, we demonstrate that a specific Yin Yang 1 (YY1) protein-dependent signal from osteosarcoma (SaOS) cells determines proliferation of human aortic endothelial cells (HAECs). Following tumor cell stimuli, HAECs overexpress Cdk2 and Cdk5, display increased Cdk2 activity, undergo enhanced proliferation, and form capillary-like structures. Moreover, Roscovitine, an inhibitor of Cdks, blunted overexpression of Cdk2 and Cdk5 and Cdk2 activity induced by the YY1-dependent signal secreted by SaOS cells. Furthermore, Roscovitine decreased HAEC proliferation and angiogenesis (the latter by 70% in in vitro and 50% in in vivo systems; P < 0.01 vs. control). Finally, the finding that Roscovitine triggers apoptosis in SaOS cells as well as in HAECs by activating caspase-3/7 indicates multiple mechanisms for the potential antitumoral effect of Roscovitine. Present work suggests that Cdk2 and Cdk5 might be pharmacologically accessible targets for both antiangiogenic and antitumor therapy. Copyright © 2012 Wiley Periodicals, Inc.

  17. REGULATION OF VASCULOGENESIS AND ANGIOGENESIS

    EPA Science Inventory

    Regulation of vasculogenesis and angiogenesis.
    B.D. Abbott
    Reproductive Toxicology Division, Environmental Protection Agency, Research Triangle Park, North Carolina, USA
    Vasculogenesis and angiogenesis are regulated by a complex, interactive family of receptors and lig...

  18. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    PubMed Central

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J.; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2–neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.—Fan, X., Krieg, S., Kuo, C. J., Wiegand, S. J., Rabinovitch, M., Druzin, M. L., Brenner, R. M., Giudice, L. C., Nayak, N. R. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. PMID:18606863

  19. Inhibitory effect of tocotrienol on eukaryotic DNA polymerase {lambda} and angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizushina, Yoshiyuki; Nakagawa, Kiyotaka; Shibata, Akira

    2006-01-20

    Tocotrienols, vitamin E compounds that have an unsaturated side chain with three double bonds, selectively inhibited the activity of mammalian DNA polymerase {lambda} (pol {lambda}) in vitro. These compounds did not influence the activities of replicative pols such as {alpha}, {delta}, and {epsilon}, or even the activity of pol {beta} which is thought to have a very similar three-dimensional structure to the pol {beta}-like region of pol {lambda}. Since {delta}-tocotrienol had the strongest inhibitory effect among the four ({alpha}- to {delta}-) tocotrienols, the isomer's structure might be an important factor in the inhibition of pol {lambda}. The inhibitory effect ofmore » {delta}-tocotrienol on both intact pol {lambda} (residues 1-575) and a truncated pol {lambda} lacking the N-terminal BRCA1 C-terminus (BRCT) domain (residues 133-575, del-1 pol {lambda}) was dose-dependent, with 50% inhibition observed at a concentration of 18.4 and 90.1 {mu}M, respectively. However, del-2 pol {lambda} (residues 245-575) containing the C-terminal pol {beta}-like region was unaffected. Tocotrienols also inhibited the proliferation of and formation of tubes by bovine aortic endothelial cells, with {delta}-tocotrienol having the greatest effect. These results indicated that tocotrienols targeted both pol {lambda} and angiogenesis as anti-cancer agents. The relationship between the inhibition of pol {lambda} and anti-angiogenesis by {delta}-tocotrienol was discussed.« less

  20. α-santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/mTOR/P70S6K signaling pathway

    PubMed Central

    2013-01-01

    Background VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, recently, most of these anticancer drugs have some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. Methods We used α-santalol and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVECs) and Prostate tumor cells (PC-3 or LNCaP) in vitro. Tumor xenografts in nude mice were used to examine the in vivo activity of α-santalol. Results α-santalol significantly inhibits HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis indicated that α-santalol inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including AKT, ERK, FAK, Src, mTOR, and pS6K in HUVEC, PC-3 and LNCaP cells. α-santalol treatment inhibited ex vivo and in vivo angiogenesis as evident by rat aortic and sponge implant angiogenesis assay. α-santalol significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model. The antiangiogenic effect by CD31 immunohistochemical staining indicated that α-santalol inhibited tumorigenesis by targeting angiogenesis. Furthermore, α-santalol reduced the cell viability and induced apoptosis in PC-3 cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Molecular docking simulation indicated that α-santalol form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR2 kinase unit. Conclusion α-santalol inhibits angiogenesis by targeting VEGFR2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy. PMID:24261856

  1. Pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta as regulators of angiogenesis and cancer.

    PubMed

    Papadimitriou, Evangelia; Pantazaka, Evangelia; Castana, Penelope; Tsalios, Thomas; Polyzos, Alexandros; Beis, Dimitris

    2016-12-01

    Pleiotrophin (PTN) is a secreted heparin-binding growth factor that through its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) has a significant regulatory effect on angiogenesis and cancer. PTN and RPTPβ/ζ are over-expressed in several types of human cancers and regulate important cancer cell functions in vitro and cancer growth in vivo. This review begins with a brief introduction of PTN and the regulation of its expression. PTN receptors are described with special emphasis on RPTPβ/ζ, which also interacts with and/or affects the function of other important targets for cancer therapy, such as vascular endothelial growth factor A, α ν β 3 and cell surface nucleolin. PTN biological activities related to angiogenesis and cancer are extensively discussed. Finally, up to date approaches of targeting PTN or RPTPβ/ζ for cancer treatment are presented. Insights into the regulatory role of PTN/RPTPβ/ζ on angiogenesis will be extremely beneficial for future development of alternative anti-angiogenic approaches in cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Infiltrating mast cells promote renal cell carcinoma angiogenesis by modulating PI3K→︀AKT→︀GSK3β→︀AM signaling.

    PubMed

    Chen, Y; Li, C; Xie, H; Fan, Y; Yang, Z; Ma, J; He, D; Li, L

    2017-05-18

    The recruitment of vascular endothelial cells from the tumor microenvironment (TME) to promote angiogenesis plays key roles in the progression of renal cell carcinoma (RCC). The potential impact of immune cells in the TME on RCC angiogenesis, however, remains unclear. Here, we found that recruitment of mast cells resulted in increased RCC angiogenesis in both in vitro cell lines and in vivo mouse models. Mechanistic analyses revealed that RCC recruited mast cells by modulating PI3K→︀AKT→︀GSK3β→︀AM signaling. A clinical survey of human RCC samples also showed that higher expression of the PI3K→︀AKT→︀GSK3β→︀AM signaling pathway correlated with increased angiogenesis. Interruption of PI3K→︀AKT→︀GSK3β→︀AM signaling via specific inhibitors led to decreased recruitment of mast cells, and targeting this infiltrating mast cell-related signaling via an AKT-specific inhibitor suppressed RCC angiogenesis in xenograft mouse models. Together, these results identified a novel role of infiltrating mast cells in RCC angiogenesis and metastasis and suggest a new strategy for treating RCC by targeting this newly identified signaling pathway.

  3. Risk Factor Differences in Calcified and Non-Calcified Aortic Plaque: The Framingham Heart Study

    PubMed Central

    Chuang, Michael L.; Gona, Philimon; Oyama-Manabe, Noriko; Manders, Emily S.; Salton, Carol J.; Hoffmann, Udo; Manning, Warren J.; O'Donnell, Christopher J.

    2014-01-01

    Objective Determine the prevalence and risk factor (RF) correlates of aortic plaque (AP) detected by cardiovascular magnetic resonance (CMR), which mainly shows noncalcified plaques, and by noncontrast computed tomography (CT), which best depicts calcified plaques, in community-dwelling adults. Approach and Results 1016 Framingham Offspring cohort members (64±9y, 474 men) underwent CMR and CT of the aorta. Potential RFs for AP (age; sex; BMI; blood pressure; LDL and HDL cholesterol; fasting glucose; C-reactive protein; prevalent hypertension, diabetes, smoking; use of antihypertensive, diabetes or lipid-lowering drugs) were compared between participants with zero versus nonzero AP by CMR and by CT. Candidate RFs attaining p<0.05 for difference with either imaging modality were entered into multivariable logistic regression models adjusting for age, sex and other RFs. Odds ratios were calculated for modality-specific prevalence of AP. Associations between RFs and continuous measures of AP were assessed using Tobit regression. Prevalences of CMR and CT AP were 49% and 82% respectively. AP burdens by CMR and CT were correlated, r=0.28, p<0.0001. Increasing age and smoking were associated with prevalent AP by both CMR and CT. Additionally, prevalent AP by CMR was associated with female sex and fasting glucose, prevalent AP by CT with hypertension treatment and with adverse lipid profile. Conclusions AP by CMR and CT are both associated with smoking and increasing age, but other risk factors differ between calcified and noncalcified AP. The relative predictive value of AP detected by CMR versus by CT for incident cardiovascular events remains to be determined. PMID:24833796

  4. OASIS modulates hypoxia pathway activity to regulate bone angiogenesis

    PubMed Central

    Cui, Min; Kanemoto, Soshi; Cui, Xiang; Kaneko, Masayuki; Asada, Rie; Matsuhisa, Koji; Tanimoto, Keiji; Yoshimoto, Yuki; Shukunami, Chisa; Imaizumi, Kazunori

    2015-01-01

    OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis−/−) mouse embryonic fibroblasts. In coimmunoprecipitation experiments, the N-terminal fragment of OASIS (OASIS-N; activated form of OASIS) bound to HIF-1α through the bZIP domain. Luciferase assays showed that OASIS-N promoted the transcription activities of a reporter gene via a hypoxia-response element (HRE). Furthermore, the expression levels of an angiogenic factor Vegfa was decreased in Oasis−/− osteoblasts. Immunostaining and metatarsal angiogenesis assay showed retarded vascularization in bone tissue of Oasis−/− mice. These results suggest that OASIS affects the expression of HIF-1α target genes through the protein interaction with HIF-1α, and that OASIS-HIF-1α complexes may play essential roles in angiogenesis during bone development. PMID:26558437

  5. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice

    PubMed Central

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Ho-Yuet Cheng, Grace; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-01-01

    Abstract Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. PMID:19874420

  6. Long-Term Trends in Calcifying Plankton and pH in the North Sea

    PubMed Central

    Beare, Doug; McQuatters-Gollop, Abigail; van der Hammen, Tessa; Machiels, Marcel; Teoh, Shwu Jiau; Hall-Spencer, Jason M.

    2013-01-01

    Relationships between six calcifying plankton groups and pH are explored in a highly biologically productive and data-rich area of the central North Sea using time-series datasets. The long-term trends show that abundances of foraminiferans, coccolithophores, and echinoderm larvae have risen over the last few decades while the abundances of bivalves and pteropods have declined. Despite good coverage of pH data for the study area there is uncertainty over the quality of this historical dataset; pH appears to have been declining since the mid 1990s but there was no statistical connection between the abundance of the calcifying plankton and the pH trends. If there are any effects of pH on calcifying plankton in the North Sea they appear to be masked by the combined effects of other climatic (e.g. temperature), chemical (nutrient concentrations) and biotic (predation) drivers. Certain calcified plankton have proliferated in the central North Sea, and are tolerant of changes in pH that have occurred since the 1950s but bivalve larvae and pteropods have declined. An improved monitoring programme is required as ocean acidification may be occurring at a rate that will exceed the environmental niches of numerous planktonic taxa, testing their capacities for acclimation and genetic adaptation. PMID:23658686

  7. Selective inhibitors of zinc-dependent histone deacetylases. Therapeutic targets relevant to cancer.

    PubMed

    Kollar, Jakub; Frecer, Vladimir

    2015-01-01

    Histone deacetylases (HDACs), which act on acetylated histones and/or other non-histone protein substrates, represent validated epigenetic targets for the treatment of cancer and other human diseases. The inhibition of HDAC activity was shown to induce cell cycle arrest, differentiation, apoptosis as well as a decrease in proliferation, angiogenesis, migration, and cell resistance to chemotherapy. Targeting single HDAC isoforms with selective inhibitors will help to reveal the role of individual HDACs in cancer development or uncover further biological consequences of protein acetylation. This review focuses on conventional zinc-containing HDACs. In its first part, the biological role of individual HDACs in various types of cancer is summarized. In the second part, promising HDAC inhibitors showing activity both in enzymatic and cell-based assays are surveyed with an emphasis on the inhibitors selective to the individual HDACs.

  8. Cannabidiol inhibits angiogenesis by multiple mechanisms

    PubMed Central

    Solinas, M; Massi, P; Cantelmo, AR; Cattaneo, MG; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, LM; Noonan, DM; Albini, A; Parolaro, D

    2012-01-01

    BACKGROUND AND PURPOSE Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. EXPERIMENTAL APPROACH Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability – through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis – and in vitro motility – both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. KEY RESULTS CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. CONCLUSIONS AND IMPLICATIONS This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. PMID:22624859

  9. Cannabidiol inhibits angiogenesis by multiple mechanisms.

    PubMed

    Solinas, M; Massi, P; Cantelmo, A R; Cattaneo, M G; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, L M; Noonan, D M; Albini, A; Parolaro, D

    2012-11-01

    Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability - through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis - and in vitro motility - both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  10. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium.

    PubMed

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L; Brenner, Robert M; Giudice, Linda C; Nayak, Nihar R

    2008-10-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2-neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.

  11. Inhibitors of Angiogenesis.

    PubMed

    Büning, H; Hacker, U T

    Angiogenesis plays a pivotal role in malignant, ischemic, inflammatory, infectious and immune disorders. The increasing molecular understanding of angiogenic processes fostered the development of strategies to induce or inhibit angiogenesis for therapeutic purposes. Here, we focus on anti-angiogenic therapies, which represent a standard of care in the treatment of different cancer types and in neovascular age-related macular degeneration. Specifically, strategies related to the blockade of angiogenic proteins and receptors will be outlined covering both preclinical and clinical aspects. Finally, examples of gene therapy based anti-angiogenic approaches are presented.

  12. Inhibitory effects of clotrimazole on TNF-alpha-induced adhesion molecule expression and angiogenesis.

    PubMed

    Thapa, Dinesh; Lee, Jong Suk; Park, Min-A; Cho, Mi-Yeon; Park, Young-Joon; Choi, Han Gon; Jeong, Tae Cheon; Kim, Jung-Ae

    2009-04-01

    Cell adhesion molecules play a pivotal role in chronic inflammation and pathological angiogenesis. In the present study, we investigated the inhibitory effects of clotrimazole (CLT) on tumor necrosis factor (TNF)-alpha-induced changes in adhesion molecule expression. CLT dose-dependently inhibited monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expressions in TNF-alpha-stimulated HT29 colonic epithelial cells. This inhibitory action of CLT correlated with a significant reduction in TNF-alpha-induced adhesion of monocytes to HT29 cells, which was comparable to the inhibitory effects of anti-ICAM-1 and VCAM-1 monoclonal antibodies on monocyte-epithelial adhesion. These inhibitory actions of CLT were, at least in part, attributable to the inhibition of redox sensitive NF-kappaB activation, as CLT inhibited TNF-alpha-induced ROS generation as well as NF-kappaB nuclear translocation and activation in HT29 cells. Furthermore, the inhibition of TNF-alpha-induced monocyte adhesion was also mimicked by the specific NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). Inflammatory mediators including TNF-alpha have known to promote angiogenesis, which in turn further contributes to inflammatory pathology. Therefore, we additionally evaluated whether CLT modulates TNF-alpha-induced angiogenesis using in vivo chick chorioallantoic membrane (CAM) assay. The CAM assay showed that CLT dose-dependently attenuated TNF-alpha-induced angiogenesis, and the effect was correlated with decreased inflammation of the CAM tissue. In conclusion, our results suggest that CLT can inhibit TNF-alpha-triggered expression of adhesion molecules, ICAM-1 and VCAM-1, and angiogenesis during inflammation.

  13. Active subnetwork recovery with a mechanism-dependent scoring function; with application to angiogenesis and organogenesis studies

    PubMed Central

    2013-01-01

    Background The learning active subnetworks problem involves finding subnetworks of a bio-molecular network that are active in a particular condition. Many approaches integrate observation data (e.g., gene expression) with the network topology to find candidate subnetworks. Increasingly, pathway databases contain additional annotation information that can be mined to improve prediction accuracy, e.g., interaction mechanism (e.g., transcription, microRNA, cleavage) annotations. We introduce a mechanism-based approach to active subnetwork recovery which exploits such annotations. We suggest that neighboring interactions in a network tend to be co-activated in a way that depends on the “correlation” of their mechanism annotations. e.g., neighboring phosphorylation and de-phosphorylation interactions may be more likely to be co-activated than neighboring phosphorylation and covalent bonding interactions. Results Our method iteratively learns the mechanism correlations and finds the most likely active subnetwork. We use a probabilistic graphical model with a Markov Random Field component which creates dependencies between the states (active or non-active) of neighboring interactions, that incorporates a mechanism-based component to the function. We apply a heuristic-based EM-based algorithm suitable for the problem. We validated our method’s performance using simulated data in networks downloaded from GeneGO against the same approach without the mechanism-based component, and two other existing methods. We validated our methods performance in correctly recovering (1) the true interaction states, and (2) global network properties of the original network against these other methods. We applied our method to networks generated from time-course gene expression studies in angiogenesis and lung organogenesis and validated the findings from a biological perspective against current literature. Conclusions The advantage of our mechanism-based approach is best seen in

  14. Intravital Fluorescence Videomicroscopy to Study Tumor Angiogenesis and Microcirculation1

    PubMed Central

    Vajkoczy, Peter; Ullrich, Axel; Meager, Michael D

    2000-01-01

    Abstract Angiogenesis and microcirculation play a central role in growth and metastasis of human neoplasms, and, thus, represent a major target for novel treatment strategies. Mechanistic analysis of processes involved in tumor vascularization, however, requires sophisticated in vivo experimental models and techniques. Intravital microscopy allows direct assessment of tumor angiogenesis, microcirculation and overall perfusion. Its application to the study of tumor-induced neovascularization further provides information on molecular transport and delivery, intra- and extravascular cell-to-cell and cell-to-matrix interaction, as well as tumor oxygenation and metabolism. With the recent advances in the field of bioluminescence and fluorescent reporter genes, appropriate for in vivo imaging, the intravital fluorescent microscopic approach has to be considered a powerful tool to study microvascular, cellular and molecular mechanisms of tumor growth. PMID:10933068

  15. An Additional Potential Factor for Kidney Stone Formation during Space Flights: Calcifying Nanoparticles (Nanobacteria): A Case Report

    NASA Technical Reports Server (NTRS)

    Jones, Jeffrey A.; Ciftcioglu, Neva; Schmid, Joseph; Griffith, Donald

    2007-01-01

    Spaceflight-induced microgravity appears to be a risk factor for the development of urinary calculi due to skeletal calcium liberation and other undefined factors, resulting in stone disease in crewmembers during and after spaceflight. Calcifying nanoparticles, or nanobacteria, reproduce at a more rapid rate in simulated microgravity conditions and create external shells of calcium phosphate in the form of apatite. The questions arises whether calcifying nanoparticles are niduses for calculi and contribute to the development of clinical stone disease in humans, who possess environmental factors predisposing to the development of urinary calculi and potentially impaired immunological defenses during spaceflight. A case of a urinary calculus passed from an astronaut post-flight with morphological characteristics of calcifying nanoparticles and staining positive for a calcifying nanoparticle unique antigen, is presented.

  16. Clinical biomarkers of angiogenesis inhibition

    PubMed Central

    Brown, Aaron P.; Citrin, Deborah E.; Camphausen, Kevin A.

    2009-01-01

    Introduction An expanding understanding of the importance of angiogenesis in oncology and the development of numerous angiogenesis inhibitors are driving the search for biomarkers of angiogenesis. We review currently available candidate biomarkers and surrogate markers of anti-angiogenic agent effect. Discussion A number of invasive, minimally invasive, and non-invasive tools are described with their potential benefits and limitations. Diverse markers can evaluate tumor tissue or biological fluids, or specialized imaging modalities. Conclusions The inclusion of these markers into clinical trials may provide insight into appropriate dosing for desired biological effects, appropriate timing of additional therapy, prediction of individual response to an agent, insight into the interaction of chemotherapy and radiation following exposure to these agents, and perhaps most importantly, a better understanding of the complex nature of angiogenesis in human tumors. While many markers have potential for clinical use, it is not yet clear which marker or combination of markers will prove most useful. PMID:18414993

  17. Nerve Growth Factor-Induced Angiogenesis: 1. Endothelial Cell Tube Formation Assay.

    PubMed

    Lazarovici, Philip; Lahiani, Adi; Gincberg, Galit; Haham, Dikla; Fluksman, Arnon; Benny, Ofra; Marcinkiewicz, Cezary; Lelkes, Peter I

    2018-01-01

    Nerve growth factor (NGF) is a neurotrophin promoting survival, proliferation, differentiation, and neuroprotection in the embryonal and adult nervous system. NGF also induces angiogenic effects in the cardiovascular system, which may be beneficial in engineering new blood vessels and for developing novel anti-angiogenesis therapies for cancer. Angiogenesis is a cellular process characterized by a number of events, including endothelial cell migration, invasion, and assembly into capillaries. In vitro endothelial tube formation assays are performed using primary human umbilical vein endothelial cells, human aortic endothelial cells, and other human or rodent primary endothelial cells isolated from the vasculature of both tumors and normal tissues. Immortalized endothelial cell lines are also used for these assays. When seeded onto Matrigel, these cells reorganize to create tubelike structure, which may be used as models for studying some aspects of in vitro angiogenesis. Image acquisition by light and fluorescence microscopy and/or quantification of fluorescently labeled cells can be carried out manually or digitally, using commercial software and automated image processing. Here we detail materials, procedure, assay conditions, and cell labeling for quantification of endothelial cell tube formation. This model can be applied to study cellular and molecular mechanisms by which NGF or other neurotrophins promote angiogenesis. This model may also be useful for the development of potential angiogenic and/or anti-angiogenic drugs targeting NGF receptors.

  18. Infectious Angiogenesis-Different Pathways, the Same Goal.

    PubMed

    Urbanowicz, Maria; Kutzner, Heinz; Riveiro-Falkenbach, Erica; Rodriguez-Peralto, Jose L

    2016-11-01

    Infectious angiogenesis is the biological response of neoangiogenesis induced by infectious organisms. The authors present 3 exemplary entities which show paradigmatic clinico-pathological settings of infectious angiogenesis: Bacillary angiomatosis, Orf (ecthyma contagiosum), and Kaposi sarcoma. The authors review the literature and elucidate etiopathogenetic pathways leading to the phenomenon of neovascularization stimulated by infectious organisms. The authors describe the clinical and histological pictures, interactions between microorganisms and host cells, and changes that occur within cellular structures, as well as angiogenic factors that underpin infectious angiogenesis. The importance of chronic inflammation and tumor angiogenesis is emphasized.

  19. Cannabinoids reduce granuloma-associated angiogenesis in rats by controlling transcription and expression of mast cell protease-5

    PubMed Central

    De Filippis, D; Russo, A; D'Amico, A; Esposito, G; Concetta, P; Cinelli, M; Russo, G; Iuvone, T

    2008-01-01

    Background and purpose: Chronic inflammatory conditions, such as granulomas, are associated with angiogenesis. Mast cells represent the main cell type orchestrating angiogenesis, through the release of their granule content. Therefore, compounds able to modulate mast cell behaviour may be considered as a new pharmacological approach to treat angiogenesis-dependent events. Here, we tested the effect of selective cannabinoid (CB) receptor agonists in a model of angiogenesis-dependent granuloma formation induced by λ-carrageenin in rats. Experimental approach: Granulomas were induced by λ-carrageenin-soaked sponges implanted subcutaneously on the back of male Wistar rats. After 96 h, implants were removed and granuloma formation was measured (wet weight); angiogenesis was evaluated by histological analysis and by the measurement of haemoglobin content. Mast cells in the granulomas were evaluated histologically and by RT-PCR and immunoblotting analysis for mast cell-derived proteins (rat mast cell protease-5 (rMCP-5) and nerve growth factor). Selective CB1 and CB2 receptor agonists, ACEA and JWH-015 (0.001–0.1 mg mL−1), were given locally only once, at the time of implantation. Key results: The CB1 and CB2 receptor agonists decreased the weight and vascularization of granulomas after 96 h. This treatment also reduced mast cell number and activation in granulomatous tissue. Specifically, these compounds prevented the transcription and expression of rMCP-5, a protein involved in sprouting and advance of new blood vessels. Conclusion and implications: Modulation of mast cell function by cannabinoids reduced granuloma formation and associated angiogenesis. Therefore cannabinoid-related drugs may be useful in the management of granulomatous diseases accompanied by angiogenesis. PMID:18552882

  20. Successful penetration and bougie dilatation with Brockenbrough needle for severely calcified occlusion in superficial femoral artery.

    PubMed

    Makita, Toshio; Suzuki, Kenji; Takizawa, Kaname; Ootomo, Tatsushi; Inoue, Naoto; Meguro, Taiichirou

    2014-04-01

    A 75-year-old hemodialysis patient with right critical limb ischemia received endovascular therapy for a chronic total occlusion (CTO) in a diffusely calcified superficial femoral artery (SFA). During a retrograde approach, a Brockenbrough needle (BN) was able to penetrate the calcified hard plaque formed in the middle segment of the CTO. Moreover, bougie dilatation with the BN allowed balloon crossing and stent deployment, even after failure to pass a 2.0-mm monorail balloon across the plaque. These results suggest that the BN offers a new therapeutic option in the penetration and modification of severely calcified CTO in SFA.

  1. Disruption of Angiogenesis by Anthocyanin-Rich Extracts of Hibiscus sabdariffa

    PubMed Central

    Joshua, Madu; Okere, Christiana; Sylvester, O’Donnell; Yahaya, Muhammad; Precious, Omale; Dluya, Thagriki; Um, Ji-Yeon; Neksumi, Musa; Boyd, Jessica; Vincent-Tyndall, Jennifer; Choo, Dong-Won; Gutsaeva, Diana R.; Jahng, Wan Jin

    2017-01-01

    Abnormal vessel formations contribute to the progression of specific angiogenic diseases including age-related macular degeneration. Adequate vessel growth and maintenance represent the coordinated process of endothelial cell proliferation, matrix remodeling, and differentiation. However, the molecular mechanism of the proper balance between angiogenic activators and inhibitors remains elusive. In addition, quantitative analysis of vessel formation has been challenging due to complex angiogenic morphology. We hypothesized that conjugated double bond containing-natural products, including anthocyanin extracts from Hibiscus sabdariffa, may control the proper angiogenesis. The current study was designed to determine whether natural molecules from African plant library modulate angiogenesis. Further, we questioned how the proper balance of anti- or pro-angiogenic signaling can be obtained in the vascular microenvironment by treating anthocyanin or fatty acids using chick chorioallantoic membrane angiogenesis model in ovo. The angiogenic morphology was analyzed systematically by measuring twenty one angiogenic indexes using Angiogenic Analyzer software. Chick chorioallantoic model demonstrated that anthocyanin-rich extracts inhibited angiogenesis in time- and concentration-dependent manner. Molecular modeling analysis proposed that hibiscetin as a component in Hibiscus may bind to the active site of vascular endothelial growth factor receptor 2 (VEGFR2) with ΔG= −8.42 kcal/mol of binding energy. Our results provided the evidence that anthocyanin is an angiogenic modulator that can be used to treat uncontrolled neovascular-related diseases, including age-related macular degeneration. PMID:28459020

  2. The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells.

    PubMed

    Orecchioni, Stefania; Reggiani, Francesca; Talarico, Giovanna; Mancuso, Patrizia; Calleri, Angelica; Gregato, Giuliana; Labanca, Valentina; Noonan, Douglas M; Dallaglio, Katiuscia; Albini, Adriana; Bertolini, Francesco

    2015-03-15

    The human white adipose tissue (WAT) contains progenitors with cooperative roles in breast cancer (BC) angiogenesis, local and metastatic progression. The biguanide Metformin (Met), commonly used for Type 2 diabetes, might have activity against BC and was found to inhibit angiogenesis in vivo. We studied Met and another biguanide, phenformin (Phe), in vitro and in vivo in BC models. In vitro, biguanides activated AMPK, inhibited Complex 1 of the respiratory chain and induced apoptosis of BC and WAT endothelial cells. In coculture, biguanides inhibited the production of several angiogenic proteins. In vivo, biguanides inhibited local and metastatic growth of triple negative and HER2+ BC in immune-competent and immune-deficient mice orthotopically injected with BC. Biguanides inhibited local and metastatic BC growth in a genetically engineered murine model model of HER2+ BC. In vivo, biguanides increased pimonidazole binding (but not HIF-1 expression) of WAT progenitors, reduced tumor microvessel density and altered the vascular pericyte/endothelial cell ratio, so that cancer vessels displayed a dysplastic phenotype. Phe was significantly more active than Met both in vitro and in vivo. Considering their safety profile, biguanides deserve to be further investigated for BC prevention in high-risk subjects, in combination with chemo and/or targeted therapy and/or as post-therapy consolidation or maintenance therapy for the prevention of BC recurrence. © 2014 UICC.

  3. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.

    PubMed

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-02-01

    Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  4. Androgen dependent mechanisms of pro-angiogenic networks in placental and tumor development.

    PubMed

    Metzler, Veronika M; de Brot, Simone; Robinson, Robert S; Jeyapalan, Jennie N; Rakha, Emad; Walton, Thomas; Gardner, David S; Lund, Emma F; Whitchurch, Jonathan; Haigh, Daisy; Lochray, Jack M; Robinson, Brian D; Allegrucci, Cinzia; Fray, Rupert G; Persson, Jenny L; Ødum, Niels; Miftakhova, Regina R; Rizvanov, Albert A; Hughes, Ieuan A; Tadokoro-Cuccaro, Rieko; Heery, David M; Rutland, Catrin S; Mongan, Nigel P

    2017-08-01

    The placenta and tumors share important characteristics, including a requirement to establish effective angiogenesis. In the case of the placenta, optimal angiogenesis is required to sustain the blood flow required to maintain a successful pregnancy, whereas in tumors establishing new blood supplies is considered a key step in supporting metastases. Therefore the development of novel angiogenesis inhibitors has been an area of active research in oncology. A subset of the molecular processes regulating angiogenesis are well understood in the context of both early placentation and tumorigenesis. In this review we focus on the well-established role of androgen regulation of angiogenesis in cancer and relate these mechanisms to placental angiogenesis. The physiological actions of androgens are mediated by the androgen receptor (AR), a ligand dependent transcription factor. Androgens and the AR are essential for normal male embryonic development, puberty and lifelong health. Defects in androgen signalling are associated with a diverse range of clinical disorders in men and women including disorders of sex development (DSD), polycystic ovary syndrome in women and many cancers. We summarize the diverse molecular mechanisms of androgen regulation of angiogenesis and infer the potential significance of these pathways to normal and pathogenic placental function. Finally, we offer potential research applications of androgen-targeting molecules developed to treat cancer as investigative tools to help further delineate the role of androgen signalling in placental function and maternal and offspring health in animal models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Extracorporeal shockwave therapy in calcifying tendinitis of the shoulder.

    PubMed

    Farr, Sebastian; Sevelda, Florian; Mader, Patrick; Graf, Alexandra; Petje, Gert; Sabeti-Aschraf, Manuel

    2011-12-01

    Strategies for extracorporeal shockwave therapy in calcifying tendinitis of the rotator cuff vary concerning quantity of sessions and doses. The purpose of this prospective pilot study was to determine the difference between the outcome of a single high-dosage extracorporeal shockwave therapy and two sessions of low-dosage extracorporeal shockwave therapy. This study compared a single high-level middle-energetic extracorporeal shockwave therapy (0.3 mJ/mm(2)) with a low-level middle-energetic extracorporeal shockwave therapy applied twice in a weekly interval (0.2 mJ/mm(2)). Thirty patients that suffered from calcifying tendinitis for at least 6 months received navigated, fluoroscopy-guided extracorporeal shockwave therapy. The gain of Constant Murley Score, Visual Analogue Scale during state of rest and weight-bearing situations ("stress") and radiographic progress was documented 6 and 12 weeks after therapy. In both groups, a significant reduction in pain during stress and improvement of function was observed. In contrast, no significant reduction in pain during rest was observed. No significant difference between both groups concerning reduction in the calcific deposit after 6 weeks was detected. Group B showed minor advantages in radiographical improvement after 12 weeks. In 36% of the patients, the calcific deposit completely dissoluted after 12 weeks. This pilot study indicates that a single high-level extracorporeal shockwave therapy may be as effective as two applications of a lower-dosed extracorporeal shockwave therapy for calcifying tendinitis. An effective single-session strategy could reduce treatment time, material costs and healthcare expenses and ionizing radiation in case of fluoroscopy guidance.

  6. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.

    PubMed

    Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2013-12-17

    Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.

  7. Inositol Polyphosphate Multikinase Inhibits Angiogenesis via Inositol Pentakisphosphate-Induced HIF-1α Degradation.

    PubMed

    Fu, Chenglai; Tyagi, Richa; Chin, Alfred C; Rojas, Tomas; Li, Ruo-Jing; Guha, Prasun; Bernstein, Isaac A; Rao, Feng; Xu, Risheng; Cha, Jiyoung Y; Xu, Jing; Snowman, Adele M; Semenza, Gregg L; Snyder, Solomon H

    2018-02-02

    Inositol polyphosphate multikinase (IPMK) and its major product inositol pentakisphosphate (IP5) regulate a variety of cellular functions, but their role in vascular biology remains unexplored. We have investigated the role of IPMK in regulating angiogenesis. Deletion of IPMK in fibroblasts induces angiogenesis in both in vitro and in vivo models. IPMK deletion elicits a substantial increase of VEGF (vascular endothelial growth factor), which mediates the regulation of angiogenesis by IPMK. The regulation of VEGF by IPMK requires its catalytic activity. IPMK is predominantly nuclear and regulates gene transcription. However, IPMK does not apparently serve as a transcription factor for VEGF. HIF (hypoxia-inducible factor)-1α is a major determinant of angiogenesis and induces VEGF transcription. IPMK deletion elicits a major enrichment of HIF-1α protein and thus VEGF. HIF-1α is constitutively ubiquitinated by pVHL (von Hippel-Lindau protein) followed by proteasomal degradation under normal conditions. However, HIF-1α is not recognized and ubiquitinated by pVHL in IPMK KO (knockout) cells. IP5 reinstates the interaction of HIF-1α and pVHL. HIF-1α prolyl hydroxylation, which is prerequisite for pVHL recognition, is interrupted in IPMK-deleted cells. IP5 promotes HIF-1α prolyl hydroxylation and thus pVHL-dependent degradation of HIF-1α. Deletion of IPMK in mouse brain increases HIF-1α/VEGF levels and vascularization. The increased VEGF in IPMK KO disrupts blood-brain barrier and enhances brain blood vessel permeability. IPMK, via its product IP5, negatively regulates angiogenesis by inhibiting VEGF expression. IP5 acts by enhancing HIF-1α hydroxylation and thus pVHL-dependent degradation of HIF-1α. © 2017 American Heart Association, Inc.

  8. The SH3BGR/STAT3 Pathway Regulates Cell Migration and Angiogenesis Induced by a Gammaherpesvirus MicroRNA

    PubMed Central

    Ding, Xiangya; Shen, Chenyou; Hu, Minmin; Zhu, Ying; Qin, Di; Lu, Hongmei; Krueger, Brian J.; Renne, Rolf; Gao, Shou-Jiang; Lu, Chun

    2016-01-01

    Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a gammaherpesvirus etiologically associated with KS, a highly disseminated angiogenic tumor of hyperproliferative spindle endothelial cells. KSHV encodes 25 mature microRNAs but their roles in KSHV-induced tumor dissemination and angiogenesis remain unknown. Here, we investigated KSHV-encoded miR-K12-6-3p (miR-K6-3p) promotion of endothelial cell migration and angiogenesis, which are the underlying mechanisms of tumor dissemination and angiogenesis. We found that ectopic expression of miR-K6-3p promoted endothelial cell migration and angiogenesis. Mass spectrometry, bioinformatics and luciferase reporter analyses revealed that miR-K6-3p directly targeted sequence in the 3’ untranslated region (UTR) of SH3 domain binding glutamate-rich protein (SH3BGR). Overexpression of SH3BGR reversed miR-K6-3p induction of cell migration and angiogenesis. Mechanistically, miR-K6-3p downregulated SH3BGR, hence relieved STAT3 from SH3BGR direct binding and inhibition, which was required for miR-K6-3p maximum activation of STAT3 and induction of cell migration and angiogenesis. Finally, deletion of miR-K6 from the KSHV genome abrogated its effect on the SH3BGR/STAT3 pathway, and KSHV-induced migration and angiogenesis. Our results illustrated that, by inhibiting SH3BGR, miR-K6-3p enhances cell migration and angiogenesis by activating the STAT3 pathway, and thus contributes to the dissemination and angiogenesis of KSHV-induced malignancies. PMID:27128969

  9. Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms

    PubMed Central

    Zamykal, Martin; Martens, Tobias; Matschke, Jakob; Günther, Hauke S.; Kathagen, Annegret; Schulte, Alexander; Peters, Regina; Westphal, Manfred; Lamszus, Katrin

    2015-01-01

    Background Signaling by insulin-like growth factor 1 receptor (IGF-1R) can contribute to the formation and progression of many diverse tumor types, including glioblastoma. We investigated the effect of the IGF-1R blocking antibody IMC-A12 on glioblastoma growth in different in vivo models. Methods U87 cells were chosen to establish rapidly growing, angiogenesis-dependent tumors in the brains of nude mice, and the GS-12 cell line was used to generate highly invasive tumors. IMC-A12 was administered using convection-enhanced local delivery. Tumor parameters were quantified histologically, and the functional relevance of IGF-1R activation was analyzed in vitro. Results IMC-A12 treatment inhibited the growth of U87 and GS-12 tumors by 75% and 50%, respectively. In GS-12 tumors, the invasive tumor extension and proliferation rate were significantly reduced by IMC-A12 treatment, while apoptosis was increased. In IMC-A12–treated U87 tumors, intratumoral vascularization was markedly decreased, and tumor cell proliferation was moderately reduced. Flow cytometry showed that <2% of U87 cells but >85% of GS-12 cells expressed IGF-1R. Activation of IGF-1R by IGF-1 and IGF-2 in GS-12 cells was blocked by IMC-A12. Both ligands stimulated GS-12 cell proliferation, and IGF-2 also stimulated migration. IMC-A12 inhibited these stimulatory effects and increased apoptosis. In U87 cells, stimulation with either ligand had no functional effect. Conclusions IGF-1R blockade can inhibit glioblastoma growth by different mechanisms, including direct effects on the tumor cells as well as indirect anti-angiogenic effects. Hence, blocking IGF-1R may be useful to target both the highly proliferative, angiogenesis-dependent glioblastoma core component as well as the infiltrative periphery. PMID:25543125

  10. An in vitro model that can distinguish between effects on angiogenesis and on established vasculature: actions of TNP-470, marimastat and the tubulin-binding agent Ang-510.

    PubMed

    van Wijngaarden, Jens; Snoeks, Thomas J A; van Beek, Ermond; Bloys, Henny; Kaijzel, Eric L; van Hinsbergh, Victor W M; Löwik, Clemens W G M

    2010-01-08

    In anti-cancer therapy, current investigations explore the possibility of two different strategies to target tumor vasculature; one aims at interfering with angiogenesis, the process involving the outgrowth of new blood vessels from pre-existing vessels, while the other directs at affecting the already established tumor vasculature. However, the majority of in vitro model systems currently available examine the process of angiogenesis, while the current focus in anti-vascular therapies moves towards exploring the benefit of targeting established vasculature as well. This urges the need for in vitro systems that are able to differentiate between the effects of compounds on angiogenesis as well as on established vasculature. To achieve this, we developed an in vitro model in which effects of compounds on different vascular targets can be studied specifically. Using this model, we examined the actions of the fumagillin derivate TNP-470, the MMP-inhibitor marimastat and the recently developed tubulin-binding agent Ang-510. We show that TNP-470 and marimastat solely inhibited angiogenesis, whereas Ang-510 potently inhibited angiogenesis and caused massive disruption of newly established vasculature. We show that the use of this in vitro model allows for specific and efficient screening of the effects of compounds on different vascular targets, which may facilitate the identification of agents with potential clinical benefit. The indicated differences in the mode of action between marimastat, TNP-470 and Ang-510 to target vasculature are illustrative for this approach. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Remnant Woven Bone and Calcified Cartilage in Mouse Bone: Differences between Ages/Sex and Effects on Bone Strength

    PubMed Central

    Ip, Victoria; Toth, Zacharie; Chibnall, John; McBride-Gagyi, Sarah

    2016-01-01

    Introduction Mouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength. Woven Bone Origin Studies In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods. Mechanical Strength Studies Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic

  12. KSHV-Mediated Angiogenesis in Tumor Progression

    PubMed Central

    Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C.

    2016-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman’s disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661

  13. Galectins in angiogenesis: consequences for gestation.

    PubMed

    Blois, Sandra M; Conrad, Melanie L; Freitag, Nancy; Barrientos, Gabriela

    2015-04-01

    Members of the galectin family have been shown to exert several roles in the context of reproduction. They contribute to placentation, maternal immune regulation and facilitate angiogenesis encompassing decidualisation and placenta formation during pregnancy. In the context of neo-vascularisation, galectins have been shown to augment signalling pathways that lead to endothelial cell activation, cell proliferation, migration and tube formation in vitro in addition to angiogenesis in vivo. Angiogenesis during gestation ensures not only proper foetal growth and development, but also maternal health. Consequently, restriction of placental blood flow has major consequences for both foetus and mother, leading to pregnancy diseases. In this review we summarise both the established and the emerging roles of galectin in angiogenesis and discuss the possible implications during healthy and pathological gestation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Pericyte-targeting drug delivery and tissue engineering.

    PubMed

    Kang, Eunah; Shin, Jong Wook

    2016-01-01

    Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes.

  15. Orbital atherectomy for the treatment of severely calcified coronary lesions: evidence, technique, and best practices.

    PubMed

    Shlofmitz, Evan; Martinsen, Brad J; Lee, Michael; Rao, Sunil V; Généreux, Philippe; Higgins, Joe; Chambers, Jeffrey W; Kirtane, Ajay J; Brilakis, Emmanouil S; Kandzari, David E; Sharma, Samin K; Shlofmitz, Richard

    2017-11-01

    The presence of severe coronary artery calcification is associated with higher rates of angiographic complications during percutaneous coronary intervention (PCI), as well as higher major adverse cardiac events compared with non-calcified lesions. Incorporating orbital atherectomy (OAS) for effective preparation of severely calcified lesions can help maximize the benefits of PCI by attaining maximal luminal gain (or stent expansion) and improve long-term outcomes (by reducing need for revascularization). Areas covered: In this manuscript, the prevalence, risk factors, and impact of coronary artery calcification on PCI are reviewed. Based on current data and experience, the authors review orbital atherectomy technique and best practices to optimize lesion preparation. Expert Commentary: The coronary OAS is the only device approved for use in the U.S. as a treatment for de novo, severely calcified coronary lesions to facilitate stent delivery. Advantages of the device include its ease of use and a mechanism of action that treats bi-directionally, allowing for continuous blood flow during treatment, minimizing heat damage, slow flow, and subsequent need for revascularization. The OAS technique tips reviewed in this article will help inform interventional cardiologists treating patients with severely calcified lesions.

  16. Orbital atherectomy as an adjunct to debulk difficult calcified lesions prior to mesenteric artery stenting.

    PubMed

    Manunga, Jesse M; Oderich, Gustavo S

    2012-08-01

    To describe a technique in which percutaneous orbital atherectomy is used to debulk heavily calcified superior mesenteric artery (SMA) occlusions as an adjunct in patients undergoing angioplasty and stenting. The technique is demonstrated in a 62-year-old woman with a replaced right hepatic artery originating from an SMA occluded by densely calcified lesions. Via a left transbrachial approach, a 7-F MPA guide catheter was used to engage the ostium of the SMA, which was crossed using a catheter and guidewire. The calcified lesion was debulked using the 2-mm Diamondback 360° orbital atherectomy system. The wire was exchanged for a 0.014-inch filter wire and 0.018-inch guidewire. Using a 2-guidewire technique, the SMA was stented with a self-expanding stent for the distal lesion that crossed side branches and a balloon-expandable stent at the ostium. A 0.014-inch guidewire was placed into the replaced hepatic artery through a cell of the self-expanding stent, followed by deployment of a small balloon-expandable stent to address the residual lesion. The use of orbital atherectomy to debulk occluded and heavily calcified SMA lesions may optimize the technical results with angioplasty and stenting.

  17. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis.

    PubMed

    Lin, Chih-Yang; Tzeng, Huey-En; Li, Te-Mao; Chen, Hsien-Te; Lee, Yi; Yang, Yi-Chen; Wang, Shih-Wei; Yang, Wei-Hung; Tang, Chih-Hsin

    2017-06-13

    Chondrosarcoma is the second most prevalent general primary tumor of bone following osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). VEGF-A level has been recognized as a prognostic marker in angiogenesis. WNT1-inducible signaling pathway protein-3 (WISP)-3/CCN6 belongs to the CCN family and is involved in regulating several cellular functions, including cell proliferation, differentiation, and migration. Nevertheless, the effect of WISP-3 on VEGF-A production and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that WISP-3 promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, WISP-3-enhanced VEGF-A expression and angiogenesis involved the c-Src and p38 signaling pathways, while miR-452 expression was negatively affected by WISP-3 via the c-Src and p38 pathways. Our results illustrate the clinical significance of WISP-3, VEGF-A and miR-452 in human chondrosarcoma patients. WISP-3 may illustrate a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.

  18. Competition of calcified calmodulin N lobe and PIP2 to an LQT mutation site in Kv7.1 channel

    PubMed Central

    Tobelaim, William Sam; Dvir, Meidan; Lebel, Guy; Cui, Meng; Buki, Tal; Peretz, Asher; Marom, Milit; Haitin, Yoni; Logothetis, Diomedes E.; Hirsch, Joel Alan; Attali, Bernard

    2017-01-01

    Voltage-gated potassium 7.1 (Kv7.1) channel and KCNE1 protein coassembly forms the slow potassium current IKS that repolarizes the cardiac action potential. The physiological importance of the IKS channel is underscored by the existence of mutations in human Kv7.1 and KCNE1 genes, which cause cardiac arrhythmias, such as the long-QT syndrome (LQT) and atrial fibrillation. The proximal Kv7.1 C terminus (CT) binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP2), but the role of CaM in channel function is still unclear, and its possible interaction with PIP2 is unknown. Our recent crystallographic study showed that CaM embraces helices A and B with the apo C lobe and calcified N lobe, respectively. Here, we reveal the competition of PIP2 and the calcified CaM N lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor an LQT mutation. Protein pulldown, molecular docking, molecular dynamics simulations, and patch-clamp recordings indicate that residues K526 and K527 in Kv7.1 helix B form a critical site where CaM competes with PIP2 to stabilize the channel open state. Data indicate that both PIP2 and Ca2+-CaM perform the same function on IKS channel gating by producing a left shift in the voltage dependence of activation. The LQT mutant K526E revealed a severely impaired channel function with a right shift in the voltage dependence of activation, a reduced current density, and insensitivity to gating modulation by Ca2+-CaM. The results suggest that, after receptor-mediated PIP2 depletion and increased cytosolic Ca2+, calcified CaM N lobe interacts with helix B in place of PIP2 to limit excessive IKS current inhibition. PMID:28096388

  19. Competition of calcified calmodulin N lobe and PIP2 to an LQT mutation site in Kv7.1 channel.

    PubMed

    Tobelaim, William Sam; Dvir, Meidan; Lebel, Guy; Cui, Meng; Buki, Tal; Peretz, Asher; Marom, Milit; Haitin, Yoni; Logothetis, Diomedes E; Hirsch, Joel Alan; Attali, Bernard

    2017-01-31

    Voltage-gated potassium 7.1 (Kv7.1) channel and KCNE1 protein coassembly forms the slow potassium current I KS that repolarizes the cardiac action potential. The physiological importance of the I KS channel is underscored by the existence of mutations in human Kv7.1 and KCNE1 genes, which cause cardiac arrhythmias, such as the long-QT syndrome (LQT) and atrial fibrillation. The proximal Kv7.1 C terminus (CT) binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP 2 ), but the role of CaM in channel function is still unclear, and its possible interaction with PIP 2 is unknown. Our recent crystallographic study showed that CaM embraces helices A and B with the apo C lobe and calcified N lobe, respectively. Here, we reveal the competition of PIP 2 and the calcified CaM N lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor an LQT mutation. Protein pulldown, molecular docking, molecular dynamics simulations, and patch-clamp recordings indicate that residues K526 and K527 in Kv7.1 helix B form a critical site where CaM competes with PIP 2 to stabilize the channel open state. Data indicate that both PIP 2 and Ca 2+ -CaM perform the same function on I KS channel gating by producing a left shift in the voltage dependence of activation. The LQT mutant K526E revealed a severely impaired channel function with a right shift in the voltage dependence of activation, a reduced current density, and insensitivity to gating modulation by Ca 2+ -CaM. The results suggest that, after receptor-mediated PIP 2 depletion and increased cytosolic Ca 2+ , calcified CaM N lobe interacts with helix B in place of PIP 2 to limit excessive I KS current inhibition.

  20. miRNA-27b Targets Vascular Endothelial Growth Factor C to Inhibit Tumor Progression and Angiogenesis in Colorectal Cancer

    PubMed Central

    Wu, Dang; Wu, Pin; Ni, Chao; Zhang, Zhigang; Chen, Zhigang; Qiu, Fuming; Xu, Jinghong; Huang, Jian

    2013-01-01

    Colorectal cancer (CRC) is one of the most prevalent cancers globally and is one of the leading causes of cancer-related deaths due to therapy resistance and metastasis. Understanding the mechanism underlying colorectal carcinogenesis is essential for the diagnosis and treatment of CRC. microRNAs (miRNAs) can act as either oncogenes or tumor suppressors in many cancers. A tumor suppressor role for miR-27b has recently been reported in neuroblastoma, while no information about miR-27b in CRC is available. In this study, we demonstrated that miR-27b expression is decreased in most CRC tissues and determined that overexpression of miR-27b represses CRC cell proliferation, colony formation and tumor growth in vitro and in vivo. We identified vascular endothelial growth factor C (VEGFC) as a novel target gene of miR-27b and determined that miR-27b functioned as an inhibitor of tumor progression and angiogenesis through targeting VEGFC in CRC. We further determined that DNA hypermethylation of miR-27b CpG islands decreases miR-27b expression. In summary, an anti-tumor role for miR-27b and its novel target VEGFC in vivo could lead to tumor necrosis and provide a rationale for developing miR-27b as a therapeutic agent. PMID:23593282

  1. CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer.

    PubMed

    Svensson, Susanne; Abrahamsson, Annelie; Rodriguez, Gabriela Vazquez; Olsson, Anna-Karin; Jensen, Lasse; Cao, Yihai; Dabrosin, Charlotta

    2015-08-15

    Novel therapeutic targets of estrogen receptor (ER)-positive breast cancers are urgently needed because current antiestrogen therapy causes severe adverse effects, nearly 50% of patients are intrinsically resistant, and the majority of recurrences have maintained ER expression. We investigated the role of estrogen-dependent chemokine expression and subsequent cancer growth in human tissues and experimental breast cancer models. For in vivo sampling of human chemokines, microdialysis was used in breast cancers of women or normal human breast tissue before and after tamoxifen therapy. Estrogen exposure and targeted therapies were assessed in immune competent PyMT murine breast cancer, orthotopic human breast cancers in nude mice, cell culture of cancer cells, and freshly isolated human macrophages. Cancer cell dissemination was investigated using zebrafish. ER(+) cancers in women produced high levels of extracellular CCL2 and CCL5 in vivo, which was associated with infiltration of tumor-associated macrophages. In experimental breast cancer, estradiol enhanced macrophage influx and angiogenesis through increased release of CCL2, CCL5, and vascular endothelial growth factor. These effects were inhibited by anti-CCL2 or anti-CCL5 therapy, which resulted in potent inhibition of cancer growth. In addition, estradiol induced a protumorigenic activation of the macrophages. In a zebrafish model, macrophages increased cancer cell dissemination via CCL2 and CCL5 in the presence of estradiol, which was inhibited with anti-CCL2 and anti-CCL5 treatment. Our findings shed new light on the mechanisms underlying the progression of ER(+) breast cancer and indicate the potential of novel therapies targeting CCL2 and CCL5 pathways. ©2015 American Association for Cancer Research.

  2. Tumor-targeting Salmonella typhimurium A1-R Inhibits Osteosarcoma Angiogenesis in the In Vivo Gelfoam® Assay Visualized by Color-coded Imaging.

    PubMed

    Kiyuna, Tasuku; Tome, Yasunori; Uehara, Fuminari; Murakami, Takashi; Zhang, Yong; Zhao, Ming; Kanaya, Fuminori; Hoffman, Robert M

    2018-01-01

    We previously developed a color-coded imaging model that can quantify the length of nascent blood vessels using Gelfoam® implanted in nestin-driven green fluorescent protein (ND-GFP) nude mice. In this model, nascent blood vessels selectively express GFP. We also previously showed that osteosarcoma cells promote angiogenesis in this assay. We have also previously demonstrated the tumor-targeting bacteria Salmonella typhimurium A1-R (S. typhimurium A1-R) can inhibit or regress all tested tumor types in mouse models. The aim of the present study was to determine if S. typhimurium A1-R could inhibit osteosarcoma angiogenesis in the in vivo Gelfoam® color-coded imaging assay. Gelfoam® was implanted subcutaneously in ND-GFP nude mice. Skin flaps were made 7 days after implantation and 143B-RFP human osteosarcoma cells expressing red fluorescent protein (RFP) were injected into the implanted Gelfoam. After establishment of tumors in the Gelfoam®, control-group mice were treated with phosphate buffered saline via tail-vein injection (iv) and the experimental group was treated with S. typhimurium A1-R iv Skin flaps were made at day 7, 14, 21, and 28 after implantation of the Gelfoam® to allow imaging of vascularization in the Gelfoam® using a variable-magnification small-animal imaging system and confocal fluorescence microscopy. Nascent blood vessels expressing ND-GFP extended into the Gelfoam® over time in both groups. However, the extent of nascent blood-vessel growth was significantly inhibited by S. typhimurium A1-R treatment by day 28. The present results indicate S. typhimurium A1-R has potential for anti-angiogenic targeted therapy of osteosarcoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. In vivo near-infrared fluorescence imaging of CD105 expression during tumor angiogenesis.

    PubMed

    Yang, Yunan; Zhang, Yin; Hong, Hao; Liu, Glenn; Leigh, Bryan R; Cai, Weibo

    2011-11-01

    Angiogenesis is an indispensable process during tumor development. The currently accepted standard method for quantifying tumor angiogenesis is to assess microvessel density (MVD) based on CD105 staining, which is an independent prognostic factor for survival in patients with most solid tumor types. The goal of this study is to evaluate tumor angiogenesis in a mouse model by near-infrared fluorescence (NIRF) imaging of CD105 expression. TRC105, a human/murine chimeric anti-CD105 monoclonal antibody, was conjugated to an NIRF dye (IRDye 800CW; Ex: 778 nm; Em: 806 nm). FACS analysis and microscopy studies were performed to compare the CD105 binding affinity of TRC105 and 800CW-TRC105. In vivo/ex vivo NIRF imaging, blocking studies, and ex vivo histology were performed on 4T1 murine breast tumor-bearing mice to evaluate the ability of 800CW-TRC105 to target tumor angiogenesis. Another chimeric antibody, cetuximab, was used as an isotype-matched control. FACS analysis of human umbilical vein endothelial cells (HUVECs) revealed no difference in CD105 binding affinity between TRC105 and 800CW-TRC105, which was further validated by fluorescence microscopy. 800CW conjugation of TRC105 was achieved in excellent yield (> 85%), with an average of 0.4 800CW molecules per TRC105. Serial NIRF imaging after intravenous injection of 800CW-TRC105 revealed that the 4T1 tumor could be clearly visualized as early as 30 min post-injection. Quantitative region of interest (ROI) analysis showed that the tumor uptake peaked at about 16 h post-injection. Based on ex vivo NIRF imaging at 48 h post-injection, tumor uptake of 800CW-TRC105 was higher than most organs, thus providing excellent tumor contrast. Blocking experiments, control studies with 800CW-cetuximab and 800CW, as well as ex vivo histology all confirmed the in vivo target specificity of 800CW-TRC105. This is the first successful NIRF imaging study of CD105 expression in vivo. Fast, prominent, persistent, and CD105-specific

  4. Heparanase and Syndecan-4 Are Involved in Low Molecular Weight Fucoidan-Induced Angiogenesis

    PubMed Central

    Haddad, Oualid; Guyot, Erwan; Marinval, Nicolas; Chevalier, Fabien; Maillard, Loïc; Gadi, Latifa; Laguillier-Morizot, Christelle; Oudar, Olivier; Sutton, Angela; Charnaux, Nathalie; Hlawaty, Hanna

    2015-01-01

    Induction of angiogenesis is a potential treatment for chronic ischemia. Low molecular weight fucoidan (LMWF), the sulfated polysaccharide from brown seaweeds, has been shown to promote revascularization in a rat limb ischemia, increasing angiogenesis in vivo. We investigated the potential role of two heparan sulfate (HS) metabolism enzymes, exostosin-2 (EXT2) and heparanase (HPSE), and of two HS-membrane proteoglycans, syndecan-1 and -4 (SDC-1 and SDC-4), in LMWF induced angiogenesis. Our results showed that LMWF increases human vascular endothelial cell (HUVEC) migration and angiogenesis in vitro. We report that the expression and activity of the HS-degrading HPSE was increased after LMWF treatment. The phenotypic tests of LMWF-treated and EXT2- or HPSE-siRNA-transfected cells indicated that EXT2 or HPSE expression significantly affect the proangiogenic potential of LMWF. In addition, LMWF increased SDC-1, but decreased SDC-4 expressions. The effect of LMWF depends on SDC-4 expression. Silencing EXT2 or HPSE leads to an increased expression of SDC-4, providing the evidence that EXT2 and HPSE regulate the SDC-4 expression. Altogether, these data indicate that EXT2, HPSE, and SDC-4 are involved in the proangiogenic effects of LMWF, suggesting that the HS metabolism changes linked to LMWF-induced angiogenesis offer the opportunity for new therapeutic strategies of ischemic diseases. PMID:26516869

  5. Angelica Dahurica ethanolic extract improves impaired wound healing by activating angiogenesis in diabetes.

    PubMed

    Zhang, Xiao-Na; Ma, Ze-Jun; Wang, Ying; Sun, Bei; Guo, Xin; Pan, Cong-Qing; Chen, Li-Ming

    2017-01-01

    Abnormal angiogenesis plays an important role in impaired wound healing and development of chronic wounds in diabetes mellitus. Angelica dahurica radix is a common traditional Chinese medicine with wide spectrum medicinal effects. In this study, we analyzed the potential roles of Angelica dahurica ethanolic extract (ADEE) in correcting impaired angiogenesis and delayed wound healing in diabetes by using streptozotocin-induced diabetic rats. ADEE treatment accelerated diabetic wound healing through inducing angiogenesis and granulation tissue formation. The angiogenic property of ADEE was subsequently verified ex vivo using aortic ring assays. Furthermore, we investigated the in vitro angiogenic activity of ADEE and its underlying mechanisms using human umbilical vein endothelial cells. ADEE treatment induced HUVECs proliferation, migration, and tube formation, which are typical phenomena of angiogenesis, in dose-dependent manners. These effects were associated with activation of angiogenic signal modulators, including extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, endothelial nitric oxide synthase (eNOS) as well as increased NO production, and independent of affecting VEGF expression. ADEE-induced angiogenic events were inhibited by the MEK inhibitor PD98059, the PI3K inhibitor Wortmannin, and the eNOS inhibitor L-NAME. Our findings highlight an angiogenic role of ADEE and its ability to protect against impaired wound healing, which may be developed as a promising therapy for impaired angiogenesis and delayed wound healing in diabetes.

  6. Circulating microparticles from obstructive sleep apnea syndrome patients induce endothelin-mediated angiogenesis.

    PubMed

    Tual-Chalot, Simon; Gagnadoux, Frédéric; Trzepizur, Wojciech; Priou, Pascaline; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2014-02-01

    Microparticles are deemed true biomarkers and vectors of biological information between cells. Depending on their origin, the composition of microparticles varies and the subsequent message transported by them, such as proteins, mRNA, or miRNA, can differ. In obstructive sleep apnea syndrome (OSAS), circulating microparticles are associated with endothelial dysfunction by reducing endothelial-derived nitric oxide production. Here, we have analyzed the potential role of circulating microparticles from OSAS patients on the regulation of angiogenesis and the involved pathway. VEGF content carried by circulating microparticles from OSAS patients was increased when compared with microparticles from non-OSAS patients. Circulating microparticles from OSAS patients induced an increase of angiogenesis that was abolished in the presence of the antagonist of endothelin-1 receptor type B. In addition, endothelin-1 secretion was increased in human endothelial cells treated by OSAS microparticles. We highlight that circulating microparticles from OSAS patients can modify the secretome of endothelial cells leading to angiogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. SH003 represses tumor angiogenesis by blocking VEGF binding to VEGFR2

    PubMed Central

    Choi, Hyeong Sim; Kim, Min Kyoung; Lee, Kangwook; Lee, Kang Min; Choi, Youn Kyung; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-01-01

    Tumor angiogenesis is a key feature of cancer progression, because a tumor requires abundant oxygen and nutrition to grow. Here, we demonstrate that SH003, a mixed herbal extract containing Astragalus membranaceus (Am), Angelica gigas (Ag) and Trichosanthes Kirilowii Maximowicz (Tk), represses VEGF-induced tumor angiogenesis both in vitro and in vivo. SH003 inhibited VEGF-induced migration, invasion and tube formation in human umbilical vein endothelial cells (HUVEC) with no effect on the proliferation. SH003 reduced CD31-positive vessel numbers in tumor tissues and retarded tumor growth in our xenograft mouse tumor model, while SH003 did not affect pancreatic tumor cell viability. Consistently, SH003 inhibited VEGF-stimulated vascular permeability in ears and back skins. Moreover, SH003 inhibited VEGF-induced VEGFR2-dependent signaling by blocking VEGF binding to VEGFR2. Therefore, our data conclude that SH003 represses tumor angiogenesis by inhibiting VEGF-induced VEGFR2 activation, and suggest that SH003 may be useful for treating cancer. PMID:27105528

  8. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Fang; Li, Xiuli; Kong, Jian

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarianmore » cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.« less

  9. Tumour angiogenesis is reduced in the Tc1 mouse model of Down's syndrome.

    PubMed

    Reynolds, Louise E; Watson, Alan R; Baker, Marianne; Jones, Tania A; D'Amico, Gabriela; Robinson, Stephen D; Joffre, Carine; Garrido-Urbani, Sarah; Rodriguez-Manzaneque, Juan Carlos; Martino-Echarri, Estefanía; Aurrand-Lions, Michel; Sheer, Denise; Dagna-Bricarelli, Franca; Nizetic, Dean; McCabe, Christopher J; Turnell, Andrew S; Kermorgant, Stephanie; Imhof, Beat A; Adams, Ralf; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Hart, Ian R; Hodivala-Dilke, Kairbaan M

    2010-06-10

    Down's syndrome (DS) is a genetic disorder caused by full or partial trisomy of human chromosome 21 and presents with many clinical phenotypes including a reduced incidence of solid tumours. Recent work with the Ts65Dn model of DS, which has orthologues of about 50% of the genes on chromosome 21 (Hsa21), has indicated that three copies of the ETS2 (ref. 3) or DS candidate region 1 (DSCR1) genes (a previously known suppressor of angiogenesis) is sufficient to inhibit tumour growth. Here we use the Tc1 transchromosomic mouse model of DS to dissect the contribution of extra copies of genes on Hsa21 to tumour angiogenesis. This mouse expresses roughly 81% of Hsa21 genes but not the human DSCR1 region. We transplanted B16F0 and Lewis lung carcinoma tumour cells into Tc1 mice and showed that growth of these tumours was substantially reduced compared with wild-type littermate controls. Furthermore, tumour angiogenesis was significantly repressed in Tc1 mice. In particular, in vitro and in vivo angiogenic responses to vascular endothelial growth factor (VEGF) were inhibited. Examination of the genes on the segment of Hsa21 in Tc1 mice identified putative anti-angiogenic genes (ADAMTS1and ERG) and novel endothelial cell-specific genes, never previously shown to be involved in angiogenesis (JAM-B and PTTG1IP), that, when overexpressed, are responsible for inhibiting angiogenic responses to VEGF. Three copies of these genes within the stromal compartment reduced tumour angiogenesis, explaining the reduced tumour growth in DS. Furthermore, we expect that, in addition to the candidate genes that we show to be involved in the repression of angiogenesis, the Tc1 mouse model of DS will permit the identification of other endothelium-specific anti-angiogenic targets relevant to a broad spectrum of cancer patients.

  10. Computed Tomography Features of Benign and Malignant Calcified Thyroid Nodules: A Single-Center Study.

    PubMed

    Kim, Donghyun; Kim, Dong Wook; Heo, Young Jin; Baek, Jin Wook; Lee, Yoo Jin; Park, Young Mi; Baek, Hye Jin; Jung, Soo Jin

    No previous studies have investigated thyroid calcification on computed tomography (CT) quantitatively by using Hounsfield unit (HU) values. This study aimed to analyze quantitative HU values of thyroid calcification on preoperative neck CT and to assess the characteristics of benign and malignant calcified thyroid nodules (CTNs). Two hundred twenty patients who underwent neck CT before thyroid surgery from January 2015 to June 2016 were included. On soft-tissue window CT images, CTNs with calcified components of 3 mm or larger in minimum diameter were included in this study. The HU values and types of CTNs were determined and analyzed. Of 61 CTNs in 49 patients, there were 42 malignant nodules and 19 benign nodules. The mean largest diameter of the calcified component was 5.3 (2.5) mm (range, 3.1-17.1 mm). A statistically significant difference was observed in the HU values of calcified portions between benign and malignant CTNs, whereas there was no significant difference in patient age or sex or in the size, location, or type of each CTN. Of the 8 CTNs with pure calcification, 3 exhibited a honeycomb pattern on bone window CT images, and these 3 CTNs were all diagnosed as papillary thyroid carcinoma on histopathological examination. Hounsfield unit values of CTNs may be helpful for differentiating malignancy from benignity.

  11. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    PubMed Central

    Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui

    2013-01-01

    Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556

  12. Methyl 2-Cyano-3,11-dioxo-18-olean-1,12-dien-30-oate (CDODA-Me), a Derivative of Glycyrrhetinic Acid, Functions as a Potent Angiogenesis Inhibitor

    PubMed Central

    Pang, Xiufeng; Zhang, Li; Wu, Yougen; Lin, Lei; Li, Jingjie; Qu, Weijing; Safe, Stephen

    2010-01-01

    Methyl 2-cyano-3,11-dioxo-18-olean-1,12-dien-30-oate (CDODA-Me), a triterpenoid acid derived synthetically from glycyrrhetinic acid, has been characterized as a peroxisome proliferator-activated receptor γ agonist with a broad range of receptor-dependent and -independent anticancer activities. Although CDODA-Me decreases the expression of some angiogenic genes in cancer cells, the direct effects of this compound on angiogenesis have not been defined. In this study, we have extensively investigated the activities of CDODA-Me in multiple angiogenesis assays. Our results showed that this agent inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, invasion, and lamellipodium and capillary-like structure formation of human umbilical endothelial cells (HUVECs) in a concentration-dependent manner. Moreover, CDODA-Me abrogated VEGF-induced sprouting of microvessels from rat aortic rings ex vivo and inhibited the generation of new vasculature in the Matrigel plugs in vivo, where CDODA-Me significantly decreased the number of infiltrating von Willebrand factor-positive endothelial cells. To understand the molecular basis of this antiangiogenic activity, we examined the signaling pathways in CDODA-Me-treated HUVECs. Our results showed that CDODA-Me significantly suppressed the activation of VEGF receptor 2 (VEGFR2) and interfered with the mammalian target of rapamycin (mTOR) signaling, including mTOR kinase and its downstream ribosomal S6 kinase (S6K), but had little effect on the activities of extracellular signal-regulated protein kinase and AKT. Taken together, CDODA-Me blocks several key steps of angiogenesis by inhibiting VEGF/VEGFR2 and mTOR/S6K signaling pathways, making the compound a promising agent for the treatment of cancer and angiogenesis-related pathologies. PMID:20631299

  13. Over-calcified forms of the coccolithophore Emiliania huxleyi in high-CO2 waters are not preadapted to ocean acidification

    NASA Astrophysics Data System (ADS)

    von Dassow, Peter; Díaz-Rosas, Francisco; Mahdi Bendif, El; Gaitán-Espitia, Juan-Diego; Mella-Flores, Daniella; Rokitta, Sebastian; John, Uwe; Torres, Rodrigo

    2018-03-01

    Marine multicellular organisms inhabiting waters with natural high fluctuations in pH appear more tolerant to acidification than conspecifics occurring in nearby stable waters, suggesting that environments of fluctuating pH hold genetic reservoirs for adaptation of key groups to ocean acidification (OA). The abundant and cosmopolitan calcifying phytoplankton Emiliania huxleyi exhibits a range of morphotypes with varying degrees of coccolith mineralization. We show that E. huxleyi populations in the naturally acidified upwelling waters of the eastern South Pacific, where pH drops below 7.8 as is predicted for the global surface ocean by the year 2100, are dominated by exceptionally over-calcified morphotypes whose distal coccolith shield can be almost solid calcite. Shifts in morphotype composition of E. huxleyi populations correlate with changes in carbonate system parameters. We tested if these correlations indicate that the hyper-calcified morphotype is adapted to OA. In experimental exposures to present-day vs. future pCO2 (400 vs. 1200 µatm), the over-calcified morphotypes showed the same growth inhibition (-29.1±6.3 %) as moderately calcified morphotypes isolated from non-acidified water (-30.7±8.8 %). Under the high-CO2-low-pH condition, production rates of particulate organic carbon (POC) increased, while production rates of particulate inorganic carbon (PIC) were maintained or decreased slightly (but not significantly), leading to lowered PIC / POC ratios in all strains. There were no consistent correlations of response intensity with strain origin. The high-CO2-low-pH condition affected coccolith morphology equally or more strongly in over-calcified strains compared to moderately calcified strains. High-CO2-low-pH conditions appear not to directly select for exceptionally over-calcified morphotypes over other morphotypes, but perhaps indirectly by ecologically correlated factors. More generally, these results suggest that oceanic planktonic

  14. Novel endogenous angiogenesis inhibitors and their therapeutic potential

    PubMed Central

    Rao, Nithya; Lee, Yu Fei; Ge, Ruowen

    2015-01-01

    Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application. PMID:26364800

  15. Novel endogenous angiogenesis inhibitors and their therapeutic potential.

    PubMed

    Rao, Nithya; Lee, Yu Fei; Ge, Ruowen

    2015-10-01

    Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application.

  16. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis.

    PubMed

    Suárez, Yajaira; Fernández-Hernando, Carlos; Yu, Jun; Gerber, Scott A; Harrison, Kenneth D; Pober, Jordan S; Iruela-Arispe, M Luisa; Merkenschlager, Matthias; Sessa, William C

    2008-09-16

    Posttranscriptional gene regulation by microRNAs (miRNAs) is important for many aspects of development, homeostasis, and disease. Here, we show that reduction of endothelial miRNAs by cell-specific inactivation of Dicer, the terminal endonuclease responsible for the generation of miRNAs, reduces postnatal angiogenic response to a variety of stimuli, including exogenous VEGF, tumors, limb ischemia, and wound healing. Furthermore, VEGF regulated the expression of several miRNAs, including the up-regulation of components of the c-Myc oncogenic cluster miR-17-92. Transfection of endothelial cells with components of the miR-17-92 cluster, induced by VEGF treatment, rescued the induced expression of thrombospondin-1 and the defect in endothelial cell proliferation and morphogenesis initiated by the loss of Dicer. Thus, endothelial miRNAs regulate postnatal angiogenesis and VEGF induces the expression of miRNAs implicated in the regulation of an integrated angiogenic response.

  17. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway.

    PubMed

    Wang, Chao-Qun; Huang, Yu-Wen; Wang, Shih-Wei; Huang, Yuan-Li; Tsai, Chun-Hao; Zhao, Yong-Ming; Huang, Bi-Fei; Xu, Guo-Hong; Fong, Yi-Chin; Tang, Chih-Hsin

    2017-01-28

    Chondrosarcoma is the second most common primary malignancy of bone after myeloma and osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). The expression of VEGF-A has been recognized as a prognostic marker in angiogenesis. Amphiregulin (AR), an epidermal growth factor receptor ligand, promotes tumor proliferation, metastasis and angiogenesis. However, the role of AR in VEGF-A expression and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that AR promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, AR-enhanced VEGF-A expression and angiogenesis involved the FAK, c-Src and PKCδ signaling pathways, while miR-206 expression was negatively mediated by AR via the FAK, c-Src and PKCδ pathways. Our results illustrate the clinical significance between AR, VEGF-A and miR-206, as well as tumor stage, in human chondrosarcoma. AR may represent a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Apatinib as targeted therapy for sarcoma

    PubMed Central

    Li, Feng; Liao, Zhichao; Zhang, Chao; Zhao, Jun; Xing, Ruwei; Teng, Sheng; Zhang, Jin; Yang, Yun; Yang, Jilong

    2018-01-01

    Sarcomas are a group of malignant tumors originating from mesenchymal tissue with a variety of cell subtypes. Despite several major treatment breakthroughs, standard treatment using surgery, radiation, and chemotherapy has failed to improve overall survival. Therefore, there is an urgent need to explore new strategies and innovative therapies to further improve the survival rates of patients with sarcomas. Pathological angiogenesis has an important role in the growth and metastasis of tumors. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) play a central role in tumor angiogenesis and represent potential targets for anticancer therapy. As a novel targeted therapy, especially with regard to angiogenesis, apatinib is a new type of small molecule tyrosine kinase inhibitor that selectively targets VEGFR-2 and has shown encouraging anticancer activity in a wide range of malignancies, including gastric cancer, non-small cell lung cancer, breast cancer, hepatocellular carcinoma, and sarcomas. In this review, we summarize the preclinical and clinical data for apatinib, focusing primarily on its use in the treatment of sarcomas. PMID:29849960

  19. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification.

    PubMed

    Comeau, S; Carpenter, R C; Nojiri, Y; Putnam, H M; Sakai, K; Edmunds, P J

    2014-09-07

    Ocean acidification (OA) and its associated decline in calcium carbonate saturation states is one of the major threats that tropical coral reefs face this century. Previous studies of the effect of OA on coral reef calcifiers have described a wide variety of outcomes for studies using comparable partial pressure of CO2 (pCO2) ranges, suggesting that key questions remain unresolved. One unresolved hypothesis posits that heterogeneity in the response of reef calcifiers to high pCO2 is a result of regional-scale variation in the responses to OA. To test this hypothesis, we incubated two coral taxa (Pocillopora damicornis and massive Porites) and two calcified algae (Porolithon onkodes and Halimeda macroloba) under 400, 700 and 1000 μatm pCO2 levels in experiments in Moorea (French Polynesia), Hawaii (USA) and Okinawa (Japan), where environmental conditions differ. Both corals and H. macroloba were insensitive to OA at all three locations, while the effects of OA on P. onkodes were location-specific. In Moorea and Hawaii, calcification of P. onkodes was depressed by high pCO2, but for specimens in Okinawa, there was no effect of OA. Using a study of large geographical scale, we show that resistance to OA of some reef species is a constitutive character expressed across the Pacific. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-κB and MAPK signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, Hany A.; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514; Arafa, El-Shaimaa A.

    2013-11-01

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to studymore » the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9

  1. Anti-angiogenesis in hepatocellular carcinoma treatment: Current evidence and future perspectives

    PubMed Central

    Welker, Martin-Walter; Trojan, Joerg

    2011-01-01

    Hepatocellular carcinoma (HCC) is among the most common cancer diseases worldwide. Arterial hypervascularisation is an essential step for HCC tumorigenesis and can be targeted by transarterial chemoembolization (TACE). This interventional method is the standard treatment for patients with intermediate stage HCC, but is also applied as “bridging” therapy for patients awaiting liver transplantation in many centers worldwide. Usually the devascularization effect induced by TACE is transient, consequently resulting in repeated cycles of TACE every 4-8 wk. Despite documented survival benefits, TACE can also induce the up-regulation of proangiogenic and growth factors, which might contribute to accelerated progression in patients with incomplete response. In 2007, sorafenib, a multi-tyrosine kinase and angiogenesis inhibitor, was approved as the first systemic treatment for advanced stage HCC. Other active targeted compounds, either inhibitors of angiogenesis and/or growth factors, are currently being investigated in numerous clinical trials. To overcome revascularisation or tumor progression under TACE treatment it seems therefore attractive to combine TACE with systemic targeted agents, which might theoretically block the effects of proangiogenic and growth factors. Over the last 12 mo, several retrospective or prospective cohort studies combining TACE and sorafenib have been published. Nevertheless, robust results of the efficacy and tolerability of such combination strategies as proven by randomized, controlled trials are awaited in the next two years. PMID:21912449

  2. The peptidomimetic Vasotide targets two retinal VEGF receptors and reduces pathological angiogenesis in murine and nonhuman primate models of retinal disease

    PubMed Central

    Sidman, Richard L.; Li, Jianxue; Lawrence, Matthew; Hu, Wenzheng; Musso, Gary F.; Giordano, Ricardo J.; Cardó-Vila, Marina; Pasqualini, Renata; Arap, Wadih

    2016-01-01

    Blood vessel growth from preexisting vessels (angiogenesis) underlies many severe diseases including major blinding retinal diseases such as retinopathy of prematurity (ROP) and aged macular degeneration (AMD). This observation has driven development of antibody inhibitors that block a central factor in AMD, named vascular endothelial growth factor (VEGF), from binding to its receptors VEGFR-1 and VEGFR-2. However, some patients are insensitive to current anti-VEGF drugs or develop resistance, and the required repeated intravitreal injection of these large molecules is costly and clinically problematic. Here, we have evaluated a small cyclic retro-inverted peptidomimetic, D(Cys-Leu-Pro-Arg-Cys), abbreviated as D(CLPRC), and hereafter named Vasotide, that inhibits retinal angiogenesis by binding selectively to the VEGF receptors, VEGFR-1 and Neuropilin-1 (NRP-1). Delivery of Vasotide in eye drops or via intraperitoneal injection in a laser-induced monkey model of human wet AMD, a mouse genetic knockout model of the AMD subtype called retinal angiomatous proliferation (RAP), and a mouse oxygen-induced model of retinopathy of prematurity (ROP) markedly decreased retinal angiogenesis in all three animal models. This prototype drug candidate is a promising new dual receptor inhibitor of the VEGF ligand with potential for translation into safer, less invasive applications to combat pathological angiogenesis in retinal disorders. PMID:26468327

  3. G-protein-coupled receptor-2-interacting protein-1 is required for endothelial cell directional migration and tumor angiogenesis via cortactin-dependent lamellipodia formation.

    PubMed

    Majumder, Syamantak; Sowden, Mark P; Gerber, Scott A; Thomas, Tamlyn; Christie, Christine K; Mohan, Amy; Yin, Guoyong; Lord, Edith M; Berk, Bradford C; Pang, Jinjiang

    2014-02-01

    Recent evidence suggests G-protein-coupled receptor-2-interacting protein-1 (GIT1) overexpression in several human metastatic tumors, including breast, lung, and prostate. Tumor metastasis is associated with an increase in angiogenesis. We have showed previously that GIT1 is required for postnatal angiogenesis during lung development. However, the functional role of GIT1 in pathological angiogenesis during tumor growth is unknown. In the present study, we show inhibition of angiogenesis in matrigel implants as well as reduced tumor angiogenesis and melanoma tumor growth in GIT1-knockout mice. We demonstrate that this is a result of impaired directional migration of GIT1-depleted endothelial cells toward a vascular endothelial growth factor gradient. Cortactin-mediated lamellipodia formation in the leading edge is critical for directional migration. We observed a significant reduction in cortactin localization and lamellipodia formation in the leading edge of GIT1-depleted endothelial cells. We specifically identified that the Spa homology domain (aa 250-420) of GIT1 is required for GIT1-cortactin complex localization to the leading edge. The mechanisms involved extracellular signal-regulated kinases 1 and 2-mediated Cortactin-S405 phosphorylation and activation of Rac1/Cdc42. Finally, using gain of function studies, we show that a constitutively active mutant of cortactin restored directional migration of GIT1-depleted cells. Our data demonstrated that a GIT1-cortactin association through GIT1-Spa homology domain is required for cortactin localization to the leading edge and is essential for endothelial cell directional migration and tumor angiogenesis.

  4. Extracellular matrix as a solid-state regulator in angiogenesis: identification of new targets for anti-cancer therapy

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.

    1992-01-01

    Angiogenesis, the growth of blood capillaries, is regulated by soluble growth factors and insoluble extracellular matrix (ECM) molecules. Soluble angiogenic mitogens act over large distances to initiate capillary growth whereas changes in ECM govern whether individual cells will grow, differentiate, or involute in response to these stimuli in the local tissue microenvironment. Analysis of this local control mechanism has revealed that ECM molecules switch capillary endothelial cells between differentiation and growth by both binding specific transmembrane integrin receptors and physically resisting cell-generated mechanical loads that are applied to these receptors. Control of capillary endothelial cell form and function therefore may be exerted by altering the mechanical properties of the ECM as well as its chemical composition. Understanding of this mechanochemical control mechanism has led to the development of new angiogenesis inhibitors that may be useful for the treatment of cancer.

  5. HIF-2α-ILK Is Involved in Mesenchymal Stromal Cell Angiogenesis in Multiple Myeloma Under Hypoxic Conditions

    PubMed Central

    Zhang, Xiaoying; Xu, Yinhui; Liu, Hongbo; Zhao, Pan; Chen, Yafang; Yue, Zhijie; Zhang, Zhiqing; Wang, Xiaofang

    2018-01-01

    Mesenchymal stromal cells are proven to be likely induce the angiogenic response in multiple myeloma and thus represent an enticing target for antiangiogenesis therapies for multiple myeloma. Substantial evidence indicates that angiogenesis in multiple myeloma is complex and involves direct production of angiogenic cytokines by abnormal plasma cells and these B-cell neoplasia generated pathophysiology change within the microenvironment. In this study, we demonstrated that mesenchymal stromal cells cultured with U266/Lp-1 under hypoxic conditions resulted in an increased α-smooth muscle actin expression and high productive levels of both hypoxia-inducible factor-2α and integrin-linked kinase proteins. Moreover, inhibition of hypoxia-inducible factor-2α by Small interfering RNA (siRNA) in mesenchymal stromal cells decreased the protein levels of both α-smooth muscle actin and integrin-linked kinase after mesenchymal stromal cells cultured with U266 under hypoxic conditions. We further demonstrated that transfection of integrin-linked kinase-siRNA reduced the protein level of α-smooth muscle actin and attenuated angiogenesis in vitro by decreasing the attachment of Q-dot labeled cells and secretion of angiogenic factors. In conclusion, our research showed that mesenchymal stromal cells cultured with myeloma cells under hypoxia participated in the angiogenesis of multiple myeloma, which is regulated by the hypoxia-inducible factor-2α-integrin-linked kinase pathway. Thus, targeting integrin-linked kinase may represent an effective strategy to block hypoxia-inducible factor-2α-induced angiogenesis in the treatment of multiple myeloma. PMID:29656700

  6. Calcifying supracoracoid bursitis as a cause of chronic shoulder pain.

    PubMed Central

    Mens, J; van der Korst, J K

    1984-01-01

    A case of chronic shoulder pain is reported with marked limitation of both active and passive elevations and a normal range of motion of the glenohumeral joint. X-ray examination demonstrated cloudy calcification in the coracoclavicular region, presumably indicating calcifying supracoracoid bursitis. Images PMID:6497468

  7. Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis.

    PubMed

    Piqueras, Laura; Reynolds, Andrew R; Hodivala-Dilke, Kairbaan M; Alfranca, Arántzazu; Redondo, Juan M; Hatae, Toshihisa; Tanabe, Tadashi; Warner, Timothy D; Bishop-Bailey, David

    2007-01-01

    The role of the nuclear receptor peroxisome-proliferator activated receptor (PPAR)-beta/delta in endothelial cells remains unclear. Interestingly, the selective PPARbeta/delta ligand GW501516 is in phase II clinical trials for dyslipidemia. Here, using GW501516, we have assessed the involvement of PPARbeta/delta in endothelial cell proliferation and angiogenesis. Western blot analysis indicated PPARbeta/delta was expressed in primary human umbilical and aortic endothelial cells, and in the endothelial cell line, EAHy926. Treatment with GW501516 increased human endothelial cell proliferation and morphogenesis in cultures in vitro, endothelial cell outgrowth from murine aortic vessels in vitro, and angiogenesis in a murine matrigel plug assay in vivo. GW501516 induced vascular endothelial cell growth factor mRNA and peptide release, as well as adipose differentiation-related protein (ADRP), a PPARbeta/delta target gene. GW501516-induced proliferation, morphogenesis, vascular endothelial growth factor (VEGF), and ADRP were absent in endothelial cells transfected with dominant-negative PPARbeta/delta. Furthermore, treatment of cells with cyclo-VEGFI, a VEGF receptor1/2 antagonist, abolished GW501516-induced endothelial cell proliferation and tube formation. PPARbeta/delta is a novel regulator of endothelial cell proliferation and angiogenesis through VEGF. The use of GW501516 to treat dyslipidemia may need to be carefully monitored in patients susceptible to angiogenic disorders.

  8. microRNA-200b as a Switch for Inducible Adult Angiogenesis.

    PubMed

    Sinha, Mithun; Ghatak, Subhadip; Roy, Sashwati; Sen, Chandan K

    2015-05-10

    Angiogenesis is the process by which new blood vessels develop from a pre-existing vascular system. It is required for physiological processes such as developmental biology and wound healing. Angiogenesis also plays a crucial role in pathological conditions such as tumor progression. The underlying importance of angiogenesis necessitates a highly regulated process. Recent works have demonstrated that the process of angiogenesis is regulated by small noncoding RNA molecules called microRNAs (miRs). These miRs, collectively referred to as angiomiRs, have been reported to have a profound effect on the process of angiogenesis by acting as either pro-angiogenic or anti-angiogenic regulators. In this review, we will discuss the role of miR-200b as a regulator of angiogenesis. Once the process of angiogenesis is complete, anti-angiogenic miR-200b has been reported to provide necessary braking. Downregulation of miR-200b has been reported across various tumor types, as deregulated angiogenesis is necessary for tumor development. Transient downregulation of miR-200b in wounds drives wound angiogenesis. New insights and understanding of the molecular mechanism of regulation of angiogenesis by miR-200b has opened new avenues of possible therapeutic interventions to treat angiogenesis-related patho-physiological conditions. Antioxid. Redox Signal. 22, 1257-1272.

  9. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis

    PubMed Central

    Hu, Zhiwei; Brooks, Samira A.; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W. Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Prudhomme, Kalan R.; Colacci, Annamaria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P.; Woodrick, Jordan; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Lowe, Leroy; Jensen, Lasse; Bisson, William H.; Kleinstreuer, Nicole

    2015-01-01

    One of the important ‘hallmarks’ of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. PMID:26106137

  10. Berberine promotes ischemia-induced angiogenesis in mice heart via upregulation of microRNA-29b.

    PubMed

    Zhu, Mo-Li; Yin, Ya-Ling; Ping, Song; Yu, Hai-Ya; Wan, Guang-Rui; Jian, Xu; Li, Peng

    2017-01-01

    Berberine has several preventive effects on cardiovascular diseases. Increased expression of miR-29b has been reported to attenuate cardiac remodeling after myocardial infarction (MI). We hypothesized that berberine via an miR-29b-dependent mechanism promotes angiogenesis and improves heart functions in mice after MI. The MI model was established in mice by ligation of left anterior descending coronary artery. The expression of miR-29b was examined by RT-qPCR. Angiogenesis was assessed by immunohistochemistry. Berberine increased miR-29b expression and promoted cell proliferations and migrations in cultured endothelial cells, which were abolished by miR-29b antagomir or AMP-activated protein kinase inhibitor compound C. In mice following MI, administration of berberine significantly increased miR-29b expressional level, promoted angiogenesis, reduced infarct size, and improved heart functions after 14 postoperative days. Importantly, these in vivo effects of berberine were ablated by antagonism of miR-29b. Berberine via upregulation of miR-29b promotes ischemia-induced angiogenesis and improves heart functions.

  11. Animal models of ocular angiogenesis: from development to pathologies.

    PubMed

    Liu, Chi-Hsiu; Wang, Zhongxiao; Sun, Ye; Chen, Jing

    2017-11-01

    Pathological angiogenesis in the eye is an important feature in the pathophysiology of many vision-threatening diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, as well as corneal diseases with abnormal angiogenesis. Development of reproducible and reliable animal models of ocular angiogenesis has advanced our understanding of both the normal development and the pathobiology of ocular neovascularization. These models have also proven to be valuable experimental tools with which to easily evaluate potential antiangiogenic therapies beyond eye research. This review summarizes the current available animal models of ocular angiogenesis. Models of retinal and choroidal angiogenesis, including oxygen-induced retinopathy, laser-induced choroidal neovascularization, and transgenic mouse models with deficient or spontaneous retinal/choroidal neovascularization, as well as models with induced corneal angiogenesis, are widely used to investigate the molecular and cellular basis of angiogenic mechanisms. Theoretical concepts and experimental protocols of these models are outlined, as well as their advantages and potential limitations, which may help researchers choose the most suitable models for their investigative work.-Liu, C.-H., Wang, Z., Sun, Y., Chen, J. Animal models of ocular angiogenesis: from development to pathologies. © FASEB.

  12. Rapamycin enhances the anti-angiogenesis and anti-proliferation ability of YM155 in oral squamous cell carcinoma.

    PubMed

    Li, Kong-Liang; Wang, Yu-Fan; Qin, Jia-Ruo; Wang, Feng; Yang, Yong-Tao; Zheng, Li-Wu; Li, Ming-Hua; Kong, Jie; Zhang, Wei; Yang, Hong-Yu

    2017-06-01

    YM155, a small molecule inhibitor of survivin, has been studied in many tumors. It has been shown that YM155 inhibited oral squamous cell carcinoma through promoting apoptosis and autophagy and inhibiting proliferation. It was found that YM155 also inhibited the oral squamous cell carcinoma-mediated angiogenesis through the inactivation of the mammalian target of rapamycin pathway. Rapamycin, a mammalian target of rapamycin inhibitor, played an important role in the proliferation and angiogenesis of oral squamous cell carcinoma cell lines. In our study, cell proliferation assay, transwell assay, tube formation assay, and western blot assay were used to investigate the synergistic effect of rapamycin on YM155 in oral squamous cell carcinoma. Either in vitro or in vivo, rapamycin and YM155 exerted a synergistic effect on the inhibition of survivin and vascular endothelial growth factor through mammalian target of rapamycin pathway. Overall, our results revealed that low-dose rapamycin strongly promoted the sensitivity of oral squamous cell carcinoma cell lines to YM155.

  13. Promotion of adipogenesis by an EP2 receptor agonist via stimulation of angiogenesis in pulmonary emphysema.

    PubMed

    Tsuji, Takao; Yamaguchi, Kazuhiro; Kikuchi, Ryota; Itoh, Masayuki; Nakamura, Hiroyuki; Nagai, Atsushi; Aoshiba, Kazutetsu

    2014-08-01

    Body weight loss is a common manifestation in patients with chronic obstructive pulmonary disease (COPD), particularly those with severe emphysema. Adipose angiogenesis is a key mediator of adipogenesis and use of pro-angiogenic agents may serve as a therapeutic option for lean COPD patients. Since angiogenesis is stimulated by PGE2, we examined whether ONO-AE1-259, a selective E-prostanoid (EP) 2 receptor agonist, might promote adipose angiogenesis and adipogenesis in a murine model of elastase-induced pulmonary emphysema (EIE mice). Mice were intratracheally instilled with elastase or saline, followed after 4 weeks by intraperitoneal administration of ONO-AE1-259 for 4 weeks. The subcutaneous adipose tissue (SAT) weight decreased in the EIE mice, whereas in the EIE mice treated with ONO-AE1-259, the SAT weight was largely restored, which was associated with significant increases in SAT adipogenesis, angiogenesis, and VEGF protein production. In contrast, ONO-AE1-259 administration induced no alteration in the weight of the visceral adipose tissue. These results suggest that in EIE mice, ONO-AE1-259 stimulated adipose angiogenesis possibly via VEGF production, and thence, adipogenesis. Our data pave the way for the development of therapeutic interventions for weight loss in emphysema patients, e.g., use of pro-angiogenic agents targeting the adipose tissue vascular component. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Salicin, an extract from white willow bark, inhibits angiogenesis by blocking the ROS-ERK pathways.

    PubMed

    Kong, Chang-Seok; Kim, Ka-Hyun; Choi, Jae-Sun; Kim, Ja-Eun; Park, Chan; Jeong, Joo-Won

    2014-08-01

    Salicin has been studied as a potent antiinflammatory agent. Angiogenesis is an essential process for tumor progression, and negative regulation of angiogenesis provides a good strategy for antitumor therapy. However, the potential medicinal value of salicin on antitumorigenic and antiangiogenic effects remain unexplored. In this study, we examined the antitumorigenic and antiangiogenic activity of salicin and its underlying mechanism of action. Salicin suppressed the angiogenic activity of endothelial cells, such as migration, tube formation, and sprouting from an aorta. Moreover, salicin reduced reactive oxygen species production and activation of the extracellular signal-regulated kinase pathway. The expression of vascular endothelial growth factor was also decreased by salicin in endothelial cells. When the salicin was administered to mice, salicin inhibited tumor growth and angiogenesis in a mouse tumor model. Taken together, salicin targets the signaling pathways mediated by reactive oxygen species and extracellular signal-regulated kinase, providing new perspectives into a potent therapeutic agent for hypervascularized tumors. Copyright © 2014 John Wiley & Sons, Ltd.

  15. A role for diatom-like silicon transporters in calcifying coccolithophores

    PubMed Central

    Durak, Grażyna M.; Taylor, Alison R.; Walker, Charlotte E.; Probert, Ian; de Vargas, Colomban; Audic, Stephane; Schroeder, Declan; Brownlee, Colin; Wheeler, Glen L.

    2016-01-01

    Biomineralization by marine phytoplankton, such as the silicifying diatoms and calcifying coccolithophores, plays an important role in carbon and nutrient cycling in the oceans. Silicification and calcification are distinct cellular processes with no known common mechanisms. It is thought that coccolithophores are able to outcompete diatoms in Si-depleted waters, which can contribute to the formation of coccolithophore blooms. Here we show that an expanded family of diatom-like silicon transporters (SITs) are present in both silicifying and calcifying haptophyte phytoplankton, including some globally important coccolithophores. Si is required for calcification in these coccolithophores, indicating that Si uptake contributes to the very different forms of biomineralization in diatoms and coccolithophores. Significantly, SITs and the requirement for Si are absent from highly abundant bloom-forming coccolithophores, such as Emiliania huxleyi. These very different requirements for Si in coccolithophores are likely to have major influence on their competitive interactions with diatoms and other siliceous phytoplankton. PMID:26842659

  16. Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification.

    PubMed

    Ramesh, Kirti; Hu, Marian Y; Thomsen, Jörn; Bleich, Markus; Melzner, Frank

    2017-11-22

    Understanding mollusk calcification sensitivity to ocean acidification (OA) requires a better knowledge of calcification mechanisms. Especially in rapidly calcifying larval stages, mechanisms of shell formation are largely unexplored-yet these are the most vulnerable life stages. Here we find rapid generation of crystalline shell material in mussel larvae. We find no evidence for intracellular CaCO 3 formation, indicating that mineral formation could be constrained to the calcifying space beneath the shell. Using microelectrodes we show that larvae can increase pH and [CO 3 2- ] beneath the growing shell, leading to a ~1.5-fold elevation in calcium carbonate saturation state (Ω arag ). Larvae exposed to OA exhibit a drop in pH, [CO 3 2- ] and Ω arag at the site of calcification, which correlates with decreased shell growth, and, eventually, shell dissolution. Our findings help explain why bivalve larvae can form shells under moderate acidification scenarios and provide a direct link between ocean carbonate chemistry and larval calcification rate.

  17. Evaluation of a Dedicated Balloon Catheter for Infrapopliteal Difficult Calcified Lesions in Diabetic Patients With Critical Limb Ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupattelli, Tommaso, E-mail: tommasolupattelli@hotmail.com

    2011-02-15

    The purpose of this study was to assess the technical performance and immediate procedural outcome of a new balloon catheter in the treatment of calcified lesions in infrapopliteal arterial disease. Sixty-one patients (81 vessels) with infrapopliteal arterial disease were evaluated. Seventy-four of the 81 treated vessels had total occlusions. The ReeKross 18 peripheral transluminal angioplasty catheter (ClearStream, Wexford, Ireland) is an 0.018-inch guidewire system with 4F sheath compatibility and a rigid shaft intended for enhanced pushability. Only technical procedural outcomes were recorded. In 37 of 61 patients (50 infrapopliteal severely stenosed or occluded vessels), an attempt with a standard balloonmore » was made before the ReeKross 18 was used. In 24 patients, the ReeKross 18 was used as the primary catheter in 23 cases involving crural arteries and in 8 cases involving the foot. The ReeKross 18 crossed the lesion in 55 of 59 (93.2%) patients and 72 of 77 (94.5%) vessels, respectively. Postdilatation results for the 51 patients (64 target lesions) in whom ReeKross 18 balloon dilation was achieved showed <30% residual stenosis in all but 4 patients (5 lesions). Of the patients treated with the ReeKross 18 as the primary catheter, the technical success rate (no adjunctive treatment/stent) was obtained in 20 of 24 (83.3%) patients (27 of 31 [87.1%] target lesions). In the treatment of difficult calcified lesions, the choice of a high-pushability angioplasty catheter, such as the ReeKross 18, warrants consideration.« less

  18. The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.

    PubMed

    Yin, Haoyuan; Shao, Ying; Chen, Xuan

    2017-01-01

    To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P < 0.05). Downregulated the expression of CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.

  19. microRNA–200b as a Switch for Inducible Adult Angiogenesis

    PubMed Central

    Sinha, Mithun; Ghatak, Subhadip; Roy, Sashwati

    2015-01-01

    Abstract Significance: Angiogenesis is the process by which new blood vessels develop from a pre-existing vascular system. It is required for physiological processes such as developmental biology and wound healing. Angiogenesis also plays a crucial role in pathological conditions such as tumor progression. The underlying importance of angiogenesis necessitates a highly regulated process. Recent Advances: Recent works have demonstrated that the process of angiogenesis is regulated by small noncoding RNA molecules called microRNAs (miRs). These miRs, collectively referred to as angiomiRs, have been reported to have a profound effect on the process of angiogenesis by acting as either pro-angiogenic or anti-angiogenic regulators. Critical Issues: In this review, we will discuss the role of miR-200b as a regulator of angiogenesis. Once the process of angiogenesis is complete, anti-angiogenic miR-200b has been reported to provide necessary braking. Downregulation of miR-200b has been reported across various tumor types, as deregulated angiogenesis is necessary for tumor development. Transient downregulation of miR-200b in wounds drives wound angiogenesis. Future Directions: New insights and understanding of the molecular mechanism of regulation of angiogenesis by miR-200b has opened new avenues of possible therapeutic interventions to treat angiogenesis-related patho-physiological conditions. Antioxid. Redox Signal. 22, 1257–1272. PMID:25761972

  20. Tumour angiogenesis is reduced in the Tc1 mouse model of Down Syndrome

    PubMed Central

    Reynolds, Louise E.; Watson, Alan R.; Baker, Marianne; Jones, Tania A.; D’Amico, Gabriela; Robinson, Stephen D.; Joffre, Carine; Garrido-Urbani, Sarah; Rodriguez-Manzaneque, Juan Carlos; Martino-Echarri, Estefanía; Aurrand-Lions, Michel; Sheer, Denise; Dagna-Bricarelli, Franca; Nizetic, Dean; McCabe, Christopher J.; Turnell, Andrew S.; Kermorgant, Stephanie; Imhof, Beat A.; Adams, Ralf; Fisher, Elizabeth M.C.; Tybulewicz, Victor L. J.; Hart, Ian R.; Hodivala-Dilke, Kairbaan M.

    2012-01-01

    Down Syndrome (DS) is a genetic disorder caused by full or partial trisomy of chromosome 21. It occurs in approximately 1/750 live births and presents with many clinical phenotypes including a reduced incidence of solid tumours1,2. Recent work using the Ts65Dn model of DS, that has orthologs of approximately 50% of the genes on human chromosome 21 (Hsa21), has suggested that three copies of the ETS23 or Down Syndrome candidate region 1 (DSCR1) genes4 (a previously known suppressor of angiogenesis5,6) is sufficient to inhibit tumour growth. We have used the Tc1 transchromosomic mouse model of DS9 to dissect the contribution of extra copies of genes on Hsa21 to tumour angiogenesis. This mouse expresses approximately 81% of Hsa21 genes but not the human DSCR1 region (Supplementary Fig. 1). We transplanted B16F0 and Lewis Lung Carcinoma (LLC) tumour cells into Tc1 mice and showed that growth of these tumours was reduced substantially when compared to wild-type littermate controls. Furthermore, tumour angiogenesis was repressed significantly in Tc1 mice. In particular, in vitro and in vivo angiogenic responses to vascular endothelial growth factor (VEGF) were inhibited. Examination of the genes on the segment of Hsa21 in Tc1 mice identified putative anti-angiogenic genes (ADAMTS17,8 and ERG9) and novel endothelial cell-specific genes10, never shown before to be involved in angiogenesis (JAM-B11 and PTTG1IP) that, when overexpressed, are responsible for the inhibition of angiogenic responses to VEGF. Three copies of these genes within the stromal compartment reduced tumour angiogenesis providing an explanation for the reduced tumour growth in DS. Furthermore, we anticipate that, in addition to the candidate genes that we show to be involved in the repression of angiogenesis, the Tc1 mouse model of DS will likely allow for the identification of other endothelial-specific anti-angiogenic targets relevant to a broad spectrum of cancer patients. PMID:20535211

  1. MVL-PLA2, a Snake Venom Phospholipase A2, Inhibits Angiogenesis through an Increase in Microtubule Dynamics and Disorganization of Focal Adhesions

    PubMed Central

    Bazaa, Amine; Pasquier, Eddy; Defilles, Céline; Limam, Ines; Kessentini-Zouari, Raoudha; Kallech-Ziri, Olfa; Battari, Assou El; Braguer, Diane; Ayeb, Mohamed El; Marrakchi, Naziha; Luis, José

    2010-01-01

    Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (HMEC-1) in a dose-dependent manner without being cytotoxic. Using Matrigel™ and chick chorioallantoic membrane assays, we demonstrated that MVL-PLA2, as well as its catalytically inactivated form, significantly inhibited angiogenesis both in vitro and in vivo. We have also found that the actin cytoskeleton and the distribution of αvβ3 integrin, a critical regulator of angiogenesis and a major component of focal adhesions, were disturbed after MVL-PLA2 treatment. In order to further investigate the mechanism of action of this protein on endothelial cells, we analyzed the dynamic instability behavior of microtubules in living endothelial cells. Interestingly, we showed that MVL-PLA2 significantly increased microtubule dynamicity in HMEC-1 cells by 40%. We propose that the enhancement of microtubule dynamics may explain the alterations in the formation of focal adhesions, leading to inhibition of cell adhesion and migration. PMID:20405031

  2. Role of endogenous insulin gene enhancer protein ISL-1 in angiogenesis

    PubMed Central

    Xiong, Si-qi; Jiang, Hai-bo; Li, Yan-xiu; Li, Hai-bo; Xu, Hui-zhuo; Wu, Zhen-kai; Zheng, Wei

    2016-01-01

    Objective To elucidate the role of insulin gene enhancer protein ISL-1 (Islet-1) in angiogenesis and regulation of vascular endothelial growth factor (VEGF) expression in vitro and in vivo. Methods siRNA targeting Islet-1 was transfected to human umbilical vein endothelial cell lines (HUVECs). The expression of Islet-1 and VEGF in the cultured cells was measured using real-time PCR and immunoblotting. 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide; thiazolyl blue (MTT) assay was used to analyze the proliferation of HUVECs affected by Islet-1. Wound healing and Transwell assays were conducted to assess the motility of HUVECs. The formation of capillary-like structures was examined using growth factor–reduced Matrigel. siRNA targeting Islet-1 was intravitreally injected into the murine model of oxygen-induced retinopathy (OIR). Retinal neovascularization was evaluated with angiography using fluorescein-labeled dextran and then quantified histologically. Real-time PCR and immunoblotting were used to determine whether local Islet-1 silencing affected the expression of Islet-1 and VEGF in murine retinas. Results The expression of Islet-1 and VEGF in HUVECs was knocked down by siRNA. Reduced endogenous Islet-1 levels in cultured cells greatly inhibited the proliferation, migration, and tube formation in HUVECs in vitro. Retinal neovascularization following injection of Islet-1 siRNA was significantly reduced compared with that of the contralateral control eye. Histological analysis indicated that the neovascular nuclei protruding into the vitreous cavity were decreased. Furthermore, the Islet-1 and VEGF expression levels were downregulated in murine retinas treated with siRNA against Islet-1. Conclusions Reducing the expression of endogenous Islet-1 inhibits proliferation, migration, and tube formation in vascular endothelial cells in vitro and suppresses retinal angiogenesis in vivo. Endogenous Islet-1 regulates angiogenesis via VEGF. PMID:27994436

  3. Neoadjuvant Anti-Angiogenesis Therapy for Prostate Cancer

    DTIC Science & Technology

    2004-08-01

    O’Laughlin, R, Landini, C, Shalhav, AL, Stadler, WM, Zagaja , GP, Desai, A, Holroyd, K, Sokoloff, MH. Neoadjuvant combination anti- angiogenesis and androgen...CB, Zagaja , GP, Shalhav, AL. Neoadjuvant combination androgen ablation and anti-angiogenesis therapy in men with high grade and locally-advanced

  4. Advances and challenges in skeletal muscle angiogenesis

    PubMed Central

    Baum, Oliver; Hellsten, Ylva; Egginton, Stuart

    2015-01-01

    The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis. PMID:26608338

  5. Angiogenesis is inhibitory for mammalian digit regeneration

    PubMed Central

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  6. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion.

    PubMed

    Cai, Yan; Xu, Shixiong; Wu, Jie; Long, Quan

    2011-06-21

    We propose a mathematical modelling system to investigate the dynamic process of tumour cell proliferation, death and tumour angiogenesis by fully coupling the vessel growth, tumour growth and blood perfusion. Tumour growth and angiogenesis are coupled by the chemical microenvironment and the cell-matrix interaction. The haemodynamic calculation is carried out on the updated vasculature. The domains of intravascular, transcapillary and interstitial fluid flow were coupled in the model to provide a comprehensive solution of blood perfusion variables. An estimation of vessel collapse is made according to the wall shear stress criterion to provide feedback on vasculature remodelling. The simulation can show the process of tumour angiogenesis and the spatial distribution of tumour cells for periods of up to 24 days. It can show the major features of tumour and tumour microvasculature during the period such as the formation of a large necrotic core in the tumour centre with few functional vessels passing through, and a well circulated tumour periphery regions in which the microvascular density is high and associated with more aggressive proliferating cells of the growing tumour which are all consistent with physiological observations. The study also demonstrated that the simulation results are not dependent on the initial tumour and networks, which further confirms the application of the coupled model feedback mechanisms. The model enables us to examine the interactions between angiogenesis and tumour growth, and to study the dynamic response of a solid tumour to the changes in the microenvironment. This simulation framework can be a foundation for further applications such as drug delivery and anti-angiogenic therapies. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  7. Yes-Associated Protein Promotes Angiogenesis via Signal Transducer and Activator of Transcription 3 in Endothelial Cells.

    PubMed

    He, Jinlong; Bao, Qiankun; Zhang, Yan; Liu, Mingming; Lv, Huizhen; Liu, Yajin; Yao, Liu; Li, Bochuan; Zhang, Chenghu; He, Shuang; Zhai, Guijin; Zhu, Yan; Liu, Xin; Zhang, Kai; Wang, Xiu-Jie; Zou, Ming-Hui; Zhu, Yi; Ai, Ding

    2018-02-16

    Angiogenesis is a complex process regulating endothelial cell (EC) functions. Emerging lines of evidence support that YAP (Yes-associated protein) plays an important role in regulating the angiogenic activity of ECs. The objective of this study was to specify the effect of EC YAP on angiogenesis and its underlying mechanisms. In ECs, vascular endothelial growth factor reduced YAP phosphorylation time and dose dependently and increased its nuclear accumulation. Using Tie2Cre-mediated YAP transgenic mice, we found that YAP promoted angiogenesis in the postnatal retina and tumor tissues. Mass spectrometry revealed signal transducer and activator of transcription 3 (STAT3) as a potential binding partner of YAP in ECs. Western blot and immunoprecipitation assays indicated that binding with YAP prolonged interleukin 6-induced STAT3 nuclear accumulation by blocking chromosomal maintenance 1-mediated STAT3 nuclear export without affecting its phosphorylation. Moreover, angiopoietin-2 expression induced by STAT3 was enhanced by YAP overexpression in ECs. Finally, a selective STAT3 inhibitor or angiopoietin-2 blockage partly attenuated retinal angiogenesis in Tie2Cre-mediated YAP transgenic mice. YAP binding sustained STAT3 in the nucleus to enhance the latter's transcriptional activity and promote angiogenesis via regulation of angiopoietin-2. © 2018 American Heart Association, Inc.

  8. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis.

    PubMed

    Hu, Zhiwei; Brooks, Samira A; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Prudhomme, Kalan R; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K; Lowe, Leroy; Jensen, Lasse; Bisson, William H; Kleinstreuer, Nicole

    2015-06-01

    One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Silica nanoparticles inhibit macrophage activity and angiogenesis via VEGFR2-mediated MAPK signaling pathway in zebrafish embryos.

    PubMed

    Duan, Junchao; Hu, Hejing; Feng, Lin; Yang, Xiaozhe; Sun, Zhiwei

    2017-09-01

    The safety evaluation of silica nanoparticles (SiNPs) are getting great attention due to its widely-used in food sciences, chemical industry and biomedicine. However, the adverse effect and underlying mechanisms of SiNPs on cardiovascular system, especially on angiogenesis is still unclear. This study was aimed to illuminate the possible mechanisms of SiNPs on angiogenesis in zebrafish transgenic lines, Tg(fli-1:EGFP) and Albino. SiNPs caused the cardiovascular malformations in a dose-dependent manner via intravenous microinjection. The incidences of cardiovascular malformations were observed as: Pericardial edema > Bradycardia > Blood deficiency. The area of subintestinal vessels (SIVs) was significant reduced in SiNPs-treated groups, accompanied with the weaken expression of vascular endothelial cells in zebrafish embryos. Using neutral red staining, the quantitative number of macrophage was declined; whereas macrophage inhibition rate was elevated in a dose-dependent way. Furthermore, SiNPs significantly decreased the mRNA expression of macrophage activity related gene, macrophage migration inhibitory factor (MIF) and the angiogenesis related gene, vascular endothelial growth factor receptor 2 (VEGFR2). The protein levels of p-Erk1/2 and p-p38 MAPK were markedly decreased in zebrafish exposed to SiNPs. Our results implicate that SiNPs inhibited the macrophage activity and angiogenesis via the downregulation of MAPK singaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Regulation of angiogenesis by phospholipid lysophosphatidic acid.

    PubMed

    Chen, Yiliang; Ramakrishnan, Devi Prasadh; Ren, Bin

    2013-06-01

    Lysophosphatidic acid (LPA) as a bioactive phospholipid signaling mediator is emerging as an important regulator of endothelial cell functions and angiogenesis. Many studies have shown that LPA is an active player in regulating the processes of endothelial cell migration, proliferation, and differentiation, all essential in angiogenesis. Through modulating angiogenesis associated gene expression, LPA also promotes pathological angiogenesis. Intriguingly, the angiogenic signaling mechanisms mediated by LPA have been linked to specific G-protein coupled receptors and down stream MAPK including Erk1/2, p38 and JNK, protein kinase D (PKD-1), Rho kinase (ROCK), and the NF-kappa B signaling pathways. LPA regulates angiogenic responses via a complex signaling network, and LPA signaling is integrated and transduced to the nucleus to coordinate the transcription of different angiogenic genes. Investigation of these mechanisms will provide novel and valuable insights into the understanding of endothelial cell biology and angiogenic programs. This knowledge will facilitate designs for better therapies for the ischemic cardiovascular diseases and malignant tumors.

  11. Ghost cells in pilomatrixoma, craniopharyngioma, and calcifying cystic odontogenic tumor: histological, immunohistochemical, and ultrastructural study.

    PubMed

    Rumayor, Alicia; Carlos, Román; Kirsch, Hernán Molina; de Andrade, Bruno A Benevenuto; Romañach, Mario J; de Almeida, Oslei Paes

    2015-04-01

    Pilomatrixoma, craniopharyngioma, and calcifying cystic odontogenic tumor are the main entities presenting ghost cells as an important histological feature, in spite their quite different clinical presentation; it seems that they share a common pathway in the formation of these cells. The aim of this study is to examine and compare the characteristics of ghost and other cells that form these lesions. Forty-three cases including 21 pilomatrixomas, 14 craniopharyngiomas, and eight calcifying cystic odontogenic tumors were evaluated by immunohistochemistry for cytokeratins, CD138, β-catenin, D2-40, Glut-1, FAS, CD10 and also by scanning electron microscopy. The CKs, CD138, β-catenin, Glut-1, FAS, and CD10 were more often expressed by transitional cells of craniopharyngioma and calcifying cystic odontogenic tumor, compared with pilomatrixoma. Basaloid cells of pilomatrixoma showed strong positivity for CD138 and CD10. Differences on expression pattern were identified in transitional and basal cells, as ghost cells were negative for most antibodies used, except by low expression for cytokeratins. By scanning electron microscopy, the morphology of ghost cells were similar in their fibrillar cytoplasm, but their pattern varied from sheets in pilomatrixoma to small clusters in craniopharyngioma and calcifying cystic odontogenic tumor. Mechanisms involved in formation of ghost cells are unknown, but probably they follow different pathways as protein expression in the basal/transitional cells was not uniform in the three tumors studied. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb).

    PubMed

    Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Sorenson, Christine M; Sheibani, Nader

    2016-02-01

    Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. The expression of miR-125b regulates angiogenesis during the recovery of heat-denatured HUVECs.

    PubMed

    Zhou, Situo; Zhang, Pihong; Liang, Pengfei; Huang, Xiaoyuan

    2015-06-01

    In previous studies we found that miR-125b was down-regulated in denatured dermis of deep partial thickness burn patients. Moreover, miR-125b inhibited tumor-angiogenesis associated with the decrease of ERBB2 and VEGF expression in ovarian cancer cells and breast cancer cells, etc. In this study, we investigated the expression patterns and roles of miR-125b during the recovery of denatured dermis and heat-denatured human umbilical vein endothelial cells (HUVECs). Deep partial thickness burns in Sprague-Dawley rats and the heat-denatured cells (52°C, 35 s) were used for analysis. Western blot analysis and real-time PCR were applied to evaluate the expression of miR-125b and ERBB2 and VEGF. The ability of angiogenesis in heat-denatured HUVECs was analyzed by scratch wound healing and tube formation assay after pri-miR-125b or anti-miR-125b transfection. miR-125b expression was time-dependent during the recovery of heat-denatured dermis and HUVECs. Moreover, miR-125b regulated ERBB2 mRNA and Protein Expression and regulated angiogenesis association with regulating the expression of VEGF in heat-denatured HUVECs. Taken together our results show that the expression of miR-125b is time-dependent and miR-125b plays a regulatory role of angiogenesis during wound healing after burns. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  14. In Vivo Assays for Assessing the Role of the Wilms' Tumor Suppressor 1 (Wt1) in Angiogenesis.

    PubMed

    McGregor, Richard J; Ogley, R; Hadoke, Pwf; Hastie, Nicholas

    2016-01-01

    The Wilms' tumor suppressor gene (WT1) is widely expressed during neovascularization, but it is almost entirely absent in quiescent adult vasculature. However, in vessels undergoing angiogenesis, WT1 is dramatically upregulated. Studies have shown Wt1 has a role in both tumor and ischemic angiogenesis, but the mechanism of Wt1 action in angiogenic tissue remains to be elucidated. Here, we describe two methods for induction of in vivo angiogenesis (subcutaneous sponge implantation, femoral artery ligation) that can be used to assess the influence of Wt1 on new blood vessel formation. Subcutaneously implanted sponges stimulate an inflammatory and fibrotic response including cell infiltration and angiogenesis. Femoral artery ligation creates ischemia in the distal hindlimb and produces an angiogenic response to reperfuse the limb which can be quantified in vivo by laser Doppler flowmetry. In both of these models, the role of Wt1 in the angiogenic process can be assessed using histological/immunohistochemical staining, molecular analysis (qPCR) and flow cytometry. Furthermore, combined with suitable genetic modifications, these models can be used to explore the causal relationship between Wt1 expression and angiogenesis and to trace the lineage of cells expressing Wt1. This approach will help to clarify the importance of Wt1 in regulating neovascularization in the adult, and its potential as a therapeutic target.

  15. Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay

    PubMed Central

    Smith, Helen E. K.; Tyrrell, Toby; Charalampopoulou, Anastasia; Dumousseaud, Cynthia; Legge, Oliver J.; Birchenough, Sarah; Pettit, Laura R.; Garley, Rebecca; Hartman, Sue E.; Hartman, Mark C.; Sagoo, Navjit; Daniels, Chris J.; Achterberg, Eric P.; Hydes, David J.

    2012-01-01

    Coccolithophores are an important component of the Earth system, and, as calcifiers, their possible susceptibility to ocean acidification is of major concern. Laboratory studies at enhanced pCO2 levels have produced divergent results without overall consensus. However, it has been predicted from these studies that, although calcification may not be depressed in all species, acidification will produce “a transition in dominance from more to less heavily calcified coccolithophores” [Ridgwell A, et al., (2009) Biogeosciences 6:2611–2623]. A recent observational study [Beaufort L, et al., (2011) Nature 476:80–83] also suggested that coccolithophores are less calcified in more acidic conditions. We present the results of a large observational study of coccolithophore morphology in the Bay of Biscay. Samples were collected once a month for over a year, along a 1,000-km-long transect. Our data clearly show that there is a pronounced seasonality in the morphotypes of Emiliania huxleyi, the most abundant coccolithophore species. Whereas pH and CaCO3 saturation are lowest in winter, the E. huxleyi population shifts from <10% (summer) to >90% (winter) of the heavily calcified form. However, it is unlikely that the shifts in carbonate chemistry alone caused the morphotype shift. Our finding that the most heavily calcified morphotype dominates when conditions are most acidic is contrary to the earlier predictions and raises further questions about the fate of coccolithophores in a high-CO2 world. PMID:22615387

  16. The controversial origin of pericytes during angiogenesis - Implications for cell-based therapeutic angiogenesis and cell-based therapies.

    PubMed

    Blocki, Anna; Beyer, Sebastian; Jung, Friedrich; Raghunath, Michael

    2018-01-01

    Pericytes reside within the basement membrane of small vessels and are often in direct cellular contact with endothelial cells, fulfilling important functions during blood vessel formation and homeostasis. Recently, these pericytes have been also identified as mesenchymal stem cells. Mesenchymal stem cells, and especially their specialized subpopulation of pericytes, represent promising candidates for therapeutic angiogenesis applications, and have already been widely applied in pre-clinical and clinical trials. However, cell-based therapies of ischemic diseases (especially of myocardial infarction) have not resulted in significant long-term improvement. Interestingly, pericytes from a hematopoietic origin were observed in embryonic skin and a pericyte sub-population expressing leukocyte and monocyte markers was described during adult angiogenesis in vivo. Since mesenchymal stem cells do not express hematopoietic markers, the latter cell type might represent an alternative pericyte population relevant to angiogenesis. Therefore, we sourced blood-derived angiogenic cells (BDACs) from monocytes that closely resembled hematopoietic pericytes, which had only been observed in vivo thus far. BDACs displayed many pericytic features and exhibited enhanced revascularization and functional tissue regeneration in a pre-clinical model of critical limb ischemia. Comparison between BDACs and mesenchymal pericytes indicated that BDACs (while resembling hematopoietic pericytes) enhanced early stages of angiogenesis, such as endothelial cell sprouting. In contrast, mesenchymal pericytes were responsible for blood vessel maturation and homeostasis, while reducing endothelial sprouting.Since the formation of new blood vessels is crucial during therapeutic angiogenesis or during integration of implants into the host tissue, hematopoietic pericytes (and therefore BDACs) might offer an advantageous addition or even an alternative for cell-based therapies.

  17. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells.

    PubMed

    Liu, Guan-Ting; Huang, Yuan-Li; Tzeng, Huey-En; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-02-28

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell

    PubMed Central

    2010-01-01

    Background The formation of the molluscan shell is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called "calcifying matrix" is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, most of its protein components remain uncharacterised. Results Recent expressed sequence tag (EST) investigations of the mantle tissue from the tropical abalone (Haliotis asinina) provide an opportunity to further characterise the proteins in the shell by a proteomic approach. In this study, we have identified a total of 14 proteins from distinct calcified layers of the shell. Only two of these proteins have been previously characterised from abalone shells. Among the novel proteins are several glutamine- and methionine-rich motifs and hydrophobic glycine-, alanine- and acidic aspartate-rich domains. In addition, two of the new proteins contained Kunitz-like and WAP (whey acidic protein) protease inhibitor domains. Conclusion This is one of the first comprehensive proteomic study of a molluscan shell, and should provide a platform for further characterization of matrix protein functions and interactions. PMID:21050442

  19. Fascin 1 is dispensable for developmental and tumour angiogenesis

    PubMed Central

    Ma, Yafeng; Reynolds, Louise E.; Li, Ang; Stevenson, Richard P.; Hodivala-Dilke, Kairbaan M.; Yamashiro, Shigeko; Machesky, Laura M.

    2013-01-01

    Summary The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis. PMID:24244855

  20. Fascin 1 is dispensable for developmental and tumour angiogenesis.

    PubMed

    Ma, Yafeng; Reynolds, Louise E; Li, Ang; Stevenson, Richard P; Hodivala-Dilke, Kairbaan M; Yamashiro, Shigeko; Machesky, Laura M

    2013-01-01

    The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis.

  1. Angiogenesis in the degeneration of the lumbar intervertebral disc

    PubMed Central

    David, Gh; Iencean, SM; Mohan, A

    2010-01-01

    The goal of the study is to show the histological and biochemical changes that indicate the angiogenesis of the intervertebral disc in lumbar intervertebral disc hernia and the existence of epidemiological correlations between these changes and the risk factors of lumbar intervertebral disc hernia, as well as the patient's quality of life (QOL). We have studied 50 patients aged between 18 and 73 years old, who have undergone lumbar intervertebral disc hernia surgery, making fibroblast growth factor and vascular endothelial growth factor level measurements, as elements in the process of appreciating the disc angiogenesis. Also, pre–surgery and post–surgery QOL has been measured, as well as the intensity of the pain syndrome. We have identified factors capable of stimulating vascular endothelial growth (VEGF, FGF–2) for the examined disc material, but histological examination did not show angiogenesis. The process of angiogenesis at the degenerated intervertebral disc level affects the patient's quality of life both pre and postoperatively, and may be a predictive factor for the post–operative results. Patients can prevent the appearance of angiogenesis type degenerative processes of the intervertebral disc by avoiding angiogenesis correlated factors (weight control, physical effort, and smoking). PMID:20968201

  2. Angiogenesis within the developing mouse neural tube is dependent on sonic hedgehog signaling: possible roles of motor neurons.

    PubMed

    Nagase, Takashi; Nagase, Miki; Yoshimura, Kotaro; Fujita, Toshiro; Koshima, Isao

    2005-06-01

    Embryonic morphogenesis of vascular and nervous systems is tightly coordinated, and recent studies revealed that some neurogenetic factors such as Sonic hedgehog (Shh) also exhibit angiogenetic potential. Vascularization within the developing mouse neural tube depends on vessel sprouting from the surrounding vascular plexus. Previous studies implicated possible roles of VEGF/Flk-1 and Angiopoietin-1(Ang-1)/Tie-2 signaling as candidate molecules functioning in this process. Examining gene expressions of these factors at embryonic day (E) 9.5 and 10.5, we unexpectedly found that both VEGF and Ang-1 were expressed in the motor neurons in the ventral neural tube. The motor neurons were indeed located in the close vicinity of the infiltrating vessels, suggesting involvement of motor neurons in the sprouting. To substantiate this possibility, we inhibited induction of the motor neurons in the cultured mouse embryos by cyclopamine, a Shh signaling blocker. The vessel sprouting was dramatically impaired by inhibition of Shh signaling, together with nearly complete loss of the motor neurons. Expression of Ang-1, but not VEGF, within the neural tube was remarkably reduced in the cyclopamine treated embryos. These results suggest that the neural tube angiogenesis is dependent on Shh signaling, and mediated, at least in part, by the Ang-1 positive motor neurons.

  3. A Heterogeneous In Vitro Three Dimensional Model of Tumour-Stroma Interactions Regulating Sprouting Angiogenesis

    PubMed Central

    Correa de Sampaio, Pedro; Auslaender, David; Krubasik, Davia; Failla, Antonio Virgilio; Skepper, Jeremy N.; Murphy, Gillian; English, William R.

    2012-01-01

    Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular heterogeneity and complexity of angiogenesis within the tumour microenvironment. In this study we describe the Minitumour model – a 3 dimensional human spheroid-based system consisting of endothelial cells and fibroblasts in co-culture with the breast cancer cell line MDA-MB-231, for the study of tumour angiogenesis in vitro. After implantation in collagen-I gels, Minitumour spheroids form quantifiable endothelial capillary-like structures. The endothelial cell pre-capillary sprouts are supported by the fibroblasts, which act as mural cells, and their growth is increased by the presence of cancer cells. Characterisation of the Minitumour model using small molecule inhibitors and inhibitory antibodies show that endothelial sprout formation is dependent on growth factors and cytokines known to be important for tumour angiogenesis. The model also shows a response to anti-angiogenic agents similar to previously described in vivo data. We demonstrate that independent manipulation of the different cell types is possible, using common molecular techniques, before incorporation into the model. This aspect of Minitumour spheroid analysis makes this model ideal for high content studies of gene function in individual cell types, allowing for the dissection of their roles in cell-cell interactions. Finally, using this technique, we were able to show the requirement of the metalloproteinase MT1-MMP in endothelial cells and fibroblasts, but not cancer cells, for sprouting angiogenesis. PMID:22363483

  4. Alpha-, gamma- and delta-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells.

    PubMed

    Wells, Shannon R; Jennings, Merilyn H; Rome, Courtney; Hadjivassiliou, Vicky; Papas, Konstantinos A; Alexander, Jonathon S

    2010-07-01

    Vitamin E, a micronutrient (comprising alpha-, beta-, gamma- and delta-tocopherols, alpha-, beta-, gamma- and delta-tocotrienols), has documented antioxidant and non-antioxidant effects, some of which inhibit inflammation and angiogenesis. We compared the abilities of alpha-, gamma- and delta-tocopherols to regulate human blood cytotoxicity (BEC) and lymphatic endothelial cytotoxicity (LEC), proliferation, invasiveness, permeability, capillary formation and suppression of TNF-alpha-induced VCAM-1 as in vitro models of inflammatory angiogenesis. alpha-, gamma- and delta-tocopherols were not toxic to either cell type up to 40 microM. In BEC, confluent cell density was decreased by all concentrations of delta- and gamma-tocopherol (10-40 microM) but not by alpha-tocopherol. LEC showed no change in cell density in response to tocopherols. delta-Tocopherol (40 microM), but not other isomers, decreased BEC invasiveness. In LEC, all doses of gamma-tocopherol, as well as the highest dose of alpha-tocopherol (40 microM), decreased cell invasiveness. delta-Tocopherol had no effect on LEC invasiveness at any molarity. delta-Tocopherol dose dependently increased cell permeability at 48 h in BEC and LEC; alpha- and gamma-tocopherols showed slight effects. Capillary tube formation was decreased by high dose (40 microM) concentrations of alpha-, gamma- and delta-tocopherol, but showed no effects with smaller doses (10-20 microM) in BEC. gamma-Tocopherol (10-20 microM) and alpha-tocopherol (10 microM), but not delta-tocopherol, increased LEC capillary tube formation. Lastly, in BEC, alpha-, gamma- and delta-tocopherol each dose-dependently reduced TNF-alpha-induced expression of VCAM-1. In LEC, there was no significant change to TNF-alpha-induced VCAM-1 expression with any concentration of alpha-, gamma- or delta-tocopherol. These data demonstrate that physiological levels (0-40 microM) of alpha-, gamma- and delta-tocopherols are nontoxic and dietary tocopherols, especially delta

  5. Rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: Two-year clinical outcome of the randomized ROTAXUS trial.

    PubMed

    de Waha, Suzanne; Allali, Abdelhakim; Büttner, Heinz-Joachim; Toelg, Ralph; Geist, Volker; Neumann, Franz-Josef; Khattab, Ahmed A; Richardt, Gert; Abdel-Wahab, Mohamed

    2016-03-01

    In the randomized ROTAXUS trial, routine lesion preparation of complex calcified coronary lesions using rotational atherectomy (RA) prior to paclitaxel-eluting stent implantation did not reduce the primary endpoint of angiographic late lumen loss at 9 months compared to stenting without RA. So far, no long-term data of prospective head-to-head comparisons between both treatment strategies have been reported. ROTAXUS randomly assigned patients with complex calcified coronary lesions to RA followed by stenting (n = 120) or stenting without RA (n = 120). The primary endpoint of the current analysis was the occurrence of major adverse cardiac events (MACE) at 2-year follow-up defined as the composite of death, myocardial infarction, and target vessel revascularization (TVR). At 2 years, MACE occurred in 32 patients in the RA group and 37 patients in the standard therapy group (29.4% vs. 34.3%, P = 0.47). The rates of death (8.3% vs. 7.4%, P = 1.00), myocardial infarction (8.3% vs. 6.5%, P = 0.80), target lesion revascularization (TLR, 13.8% vs. 16.7%, P = 0.58), and TVR (19.3% vs. 22.2%, P = 0.62) were similar in both groups. Despite high rates of initial angiographic success, nearly one third of patients enrolled in ROTAXUS experienced MACE within 2-year follow-up, with no differences between patients treated with or without RA. © 2015 Wiley Periodicals, Inc.

  6. Inhibition of angiogenic attributes by decursin in endothelial cells and ex vivo rat aortic ring angiogenesis model.

    PubMed

    Bhat, Tariq A; Moon, Jung S; Lee, Sookyeon; Yim, Dongsool; Singh, Rana P

    2011-11-01

    The present study was undertaken to observe the inhibition of angiogenesis by decursin. It was the first time to show that decursin offered strong anti-angiogenic activities under the biologically relevant growth (with serum) conditions. Decursin significantly inhibited human umbilical vein endothelial cell (HUVEC) proliferation concomitant with G1 phase cell cycle arrest. Decursin also inhibited HUVEC-capillary tube formation and invasion/migration in a dose-dependant manner which was associated with the suppression of matrix metalloproteinase (MMP) -2 and -9 activities. Decursin suppressed angiogenesis in ex vivo rat aortic ring angiogenesis model where it significantly inhibited blood capillary-network sprouting from rat aortic sections. Taken together, these findings suggested anti-angiogenic activity of decursin in biologically relevant condition, and warrants further pre-clinical studies for its potential clinical usefulness.

  7. Angiogenesis in the reparatory mucosa of the mandibular edentulous ridge is driven by endothelial tip cells.

    PubMed

    Stănescu, Ruxandra; Didilescu, Andreea Cristiana; Jianu, Adelina Maria; Rusu, M C

    2012-01-01

    Sprouting angiogenesis is led by specialized cell--the endothelial tip cells (ETCs) which can be targeted by pro- or anti-angiogenic therapies. We aimed to perform a qualitative study in order to assess the guidance by tip cells of the endothelial sprouts in the repairing mucosa of the edentulous mandibular crest. Mucosa of the mandibular edentulous ridge was collected from six adult patients, prior to healing abutment placement (second surgery). Slides were prepared and immunostained with antibodies for CD34 and Ki67. The abundant vasculature of the lamina propria was observed on slides and the CD34 antibodies labeled endothelial tip cells in various stages of the endothelial sprouts. Ki67 identified positive endothelial cells, confirming the proliferative status of the microvascular bed. According to the results, the in situ sprouting angiogenesis is driven by tip cells in the oral mucosa of the edentulous ridge and these cells can be targeted by various therapies, as required by the local pathologic or therapeutic conditions.

  8. The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis.

    PubMed

    Aidoudi, Sallouha; Bujakowska, Kinga; Kieffer, Nelly; Bikfalvi, Andreas

    2008-07-16

    The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet alpha-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with alphavbeta3 on the surface of alphavbeta3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through alphavbeta3 integrin, and also through other integrins, such as alphavbeta5 and alpha5beta1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.

  9. The CXC-Chemokine CXCL4 Interacts with Integrins Implicated in Angiogenesis

    PubMed Central

    Aidoudi, Sallouha; Bujakowska, Kinga; Kieffer, Nelly; Bikfalvi, Andreas

    2008-01-01

    The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet α-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with αvβ3 on the surface of αvβ3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through αvβ3 integrin, and also through other integrins, such as αvβ5 and α5β1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect. PMID:18648521

  10. Directional atherectomy of a heavy calcified axillary artery stenosis inducing critical hand ischemia.

    PubMed

    Anzuini, Angelo; Palloshi, Altin; Aprigliano, Gianfranco; Ielasi, Alfonso

    2013-07-01

    The presence of a severe calcified peripheral artery lesion is responsible for a poor response to balloon dilation, due to significant acute vessel recoil and frequent flow-limiting dissections requiring stent implantation. This possibility could be associated with very high compression and/or fracture rates particularly in cases of lesion located at the mobile joints. In this setting directional atherectomy offers the theoretical advantages of eliminating stretch injury on arterial walls and reducing the restenosis rate by direct plaque excision. In this report, we present a case of critical hand ischemia due to a heavily calcified axillary artery lesion managed by directional atherectomy and balloon angioplasty followed by immediate angiographic success and sustained clinical benefit up to 3 years of follow-up.

  11. Vasculogenesis and Angiogenesis: Molecular and Cellular Controls

    PubMed Central

    Kubis, N.; Levy, B.I.

    2003-01-01

    Summary Angiogenesis characterizes embryonic development, but also occurs in adulthood in physiological situations such as adaptation to muscle exercise, and in pathological conditions like cancer. Major advances have been made in understanding the molecular mechanisms responsible for vasculogenesis and angiogenesis, largely due to the use of “knock-out mice”, i.e. mice in which the gene coding for the protein under investigation has been inactivated. Interestingly, the same growth factors and their receptors are equally involved in the different aspects of vasculogenesis and angiogenesis during development and in adulthood. This review aims to describe in detail their respective roles and how interactions between them lead to a newly formed vessel. PMID:20591248

  12. Calcium homeostasis and vitamin D metabolism and expression in strongly calcifying laying birds.

    PubMed

    Bar, Arie

    2008-12-01

    Egg laying and shell calcification impose severe extra demands on ionic calcium (Ca2+) homeostasis; especially in birds characterized by their long clutches (series of eggs laid sequentially before a "pause day"). These demands induce vitamin D metabolism and expression. The metabolism of vitamin D is also altered indirectly, by other processes associated with increased demands for calcium, such as growth, bone formation and egg production. A series of intestinal, renal or bone proteins are consequently expressed in the target organs via mechanisms involving a vitamin D receptor. Some of these proteins (carbonic anhydrase, calbindin and calcium-ATPase) are also found in the uterus (eggshell gland) or are believed to be involved in calcium transport in the intestine or kidney (calcium channels). The present review deals with vitamin D metabolism and the expression of the above-mentioned proteins in birds, with special attention to the strongly calcifying laying bird.

  13. Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma

    PubMed Central

    Lamanuzzi, Aurelia; Saltarella, Ilaria; Desantis, Vanessa; Frassanito, Maria Antonia; Leone, Patrizia; Racanelli, Vito; Nico, Beatrice; Ribatti, Domenico; Ditonno, Paolo; Prete, Marcella; Solimando, Antonio Giovanni; Dammacco, Francesco; Vacca, Angelo; Ria, Roberto

    2018-01-01

    The mammalian Target of Rapamycin (mTOR) is an intracellular serine/threonine kinase that mediates intracellular metabolism, cell survival and actin rearrangement. mTOR is made of two independent complexes, mTORC1 and mTORC2, activated by the scaffold proteins RAPTOR and RICTOR, respectively. The activation of mTORC1 triggers protein synthesis and autophagy inhibition, while mTORC2 activation promotes progression, survival, actin reorganization, and drug resistance through AKT hyper-phosphorylation on Ser473. Due to the mTOR pivotal role in the survival of tumor cells, we evaluated its activation in endothelial cells (ECs) from 20 patients with monoclonal gammopathy of undetermined significance (MGUS) and 47 patients with multiple myeloma (MM), and its involvement in angiogenesis. MM-ECs showed a significantly higher expression of mTOR and RICTOR than MGUS-ECs. These data were supported by the higher activation of mTORC2 downstream effectors, suggesting a major role of mTORC2 in the angiogenic switch to MM. Specific inhibition of mTOR activity through siRNA targeting RICTOR and dual mTOR inhibitor PP242 reduced the MM-ECs angiogenic functions, including cell migration, chemotaxis, adhesion, invasion, in vitro angiogenesis on Matrigel®, and cytoskeleton reorganization. In addition, PP242 treatment showed anti-angiogenic effects in vivo in the Chick Chorioallantoic Membrane (CAM) and Matrigel® plug assays. PP242 exhibited a synergistic effect with lenalidomide and bortezomib, suggesting that mTOR inhibition can enhance the anti-angiogenic effect of these drugs. Data to be shown indicate that mTORC2 is involved in MM angiogenesis, and suggest that the dual mTOR inhibitor PP242 may be useful for the anti-angiogenic management of MM patients. PMID:29755672

  14. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma.

    PubMed

    Kayamori, Kou; Katsube, Ken-Ichi; Sakamoto, Kei; Ohyama, Yoshio; Hirai, Hideaki; Yukimori, Akane; Ohata, Yae; Akashi, Takumi; Saitoh, Masao; Harada, Kiyoshi; Harada, Hiroyuki; Yamaguchi, Akira

    2016-01-01

    Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs.

  15. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma

    PubMed Central

    Kayamori, Kou; Katsube, Ken-ichi; Sakamoto, Kei; Ohyama, Yoshio; Hirai, Hideaki; Yukimori, Akane; Ohata, Yae; Akashi, Takumi; Saitoh, Masao; Harada, Kiyoshi; Harada, Hiroyuki; Yamaguchi, Akira

    2016-01-01

    Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs. PMID:27124156

  16. Transcatheter closure of calcified patent ductus arteriosus in older adult patients: Immediate and 12-month follow-up results.

    PubMed

    Gu, Xinghua; Zhang, Qiuwang; Sun, Hourong; Fei, Jianchun; Zhang, Xiquan; Kutryk, Michael J

    2017-05-01

    To present our experience in transcatheter closure of calcified patent ductus arteriosus (PDA) in older adult patients, which has rarely been reported. From 2009 to 2014, a total of 16 patients (median age 58 years) with calcified PDA underwent transcatheter closure in our center. All patients were symptomatic with major symptoms being exertional dyspnea (in 12), palpitations (in 8), and fatigue (in 5). A continuous murmur was heard in all patients. The median ductus diameter was 4 mm (range 3-7 mm). The median Qp/Qs was 1.6 (range 1.4-2.9). Transcatheter closure was performed for all patients. The size of the occluder selected was 2-3 mm greater than the narrowest portion of PDA. We experienced difficulties in advancing the multipurpose catheter through the calcified duct in about one third of patients (5/16). Considering that calcified tissue has a greater tendency to rupture, hence, to close PDA in these patients, they adopted the retrograde wire-assisted technique and modified the procedure to reduce the shear stress of sheath and avoid any sheath kinking. For the remaining 11 patients, the advancement of the multipurpose catheter through the calcified duct was smooth and the conventional antegrade approach was applied. Clinical examination, standard 12-lead electrocardiography, chest x-ray, and transthoracic echocardiography were performed before hospital discharge, at 1-, 3-, 6-, and 12-months follow-ups. All PDAs were successfully closed. There were no deaths. Three patients had a trivial residual shunt, with one also having intravascular hemolysis. Following pharmacological treatment, hemolysis signs vanished at 7 days postprocedure. The trivial residual shunt disappeared in all three patients at 3-month follow-up. No new-onset residual shunt, device embolization, device dislocation, infective endocarditis, or embolism was observed at all follow-up time points. Successful closure of calcified PDA with few complications in older adult patients was achieved

  17. Active modulation of the calcifying fluid carbonate chemistry (δ11B, B/Ca) and seasonally invariant coral calcification at sub-tropical limits.

    PubMed

    Ross, Claire L; Falter, James L; McCulloch, Malcolm T

    2017-10-23

    Coral calcification is dependent on both the supply of dissolved inorganic carbon (DIC) and the up-regulation of pH in the calcifying fluid (cf). Using geochemical proxies (δ 11 B, B/Ca, Sr/Ca, Li/Mg), we show seasonal changes in the pH cf and DIC cf for Acropora yongei and Pocillopora damicornis growing in-situ at Rottnest Island (32°S) in Western Australia. Changes in pH cf range from 8.38 in summer to 8.60 in winter, while DIC cf is 25 to 30% higher during summer compared to winter (×1.5 to ×2 seawater). Thus, both variables are up-regulated well above seawater values and are seasonally out of phase with one another. The net effect of this counter-cyclical behaviour between DIC cf and pH cf is that the aragonite saturation state of the calcifying fluid (Ω cf ) is elevated ~4 times above seawater values and is ~25 to 40% higher during winter compared to summer. Thus, these corals control the chemical composition of the calcifying fluid to help sustain near-constant year-round calcification rates, despite a seasonal seawater temperature range from just ~19° to 24 °C. The ability of corals to up-regulate Ω cf is a key mechanism to optimise biomineralization, and is thus critical for the future of coral calcification under high CO 2 conditions.

  18. Primary Xenografts of Human Prostate Tissue as a Model to Study Angiogenesis Induced by Reactive Stroma

    PubMed Central

    Montecinos, Viviana P.; Godoy, Alejandro; Hinklin, Jennifer; Vethanayagam, R. Robert; Smith, Gary J.

    2012-01-01

    Characterization of the mechanism(s) of androgen-driven human angiogenesis could have significant implications for modeling new forms of anti-angiogenic therapies for CaP and for developing targeted adjuvant therapies to improve efficacy of androgen-deprivation therapy. However, models of angiogenesis by human endothelial cells localized within an intact human prostate tissue architecture are until now extremely limited. This report characterizes the burst of angiogenesis by endogenous human blood vessels in primary xenografts of fresh surgical specimens of benign prostate or prostate cancer (CaP) tissue that occurs between Days 6–14 after transplantation into SCID mice pre-implanted with testosterone pellets. The wave of human angiogenesis was preceded by androgen-mediated up-regulation of VEGF-A expression in the stromal compartment. The neo-vessel network anastomosed to the host mouse vascular system between Days 6–10 post-transplantation, the angiogenic response ceased by Day 15, and by Day 30 the vasculature had matured and stabilized, as indicated by a lack of leakage of serum components into the interstitial tissue space and by association of nascent endothelial cells with mural cells/pericytes. The angiogenic wave was concurrent with the appearance of a reactive stroma phenotype, as determined by staining for α-SMA, Vimentin, Tenascin, Calponin, Desmin and Masson's trichrome, but the reactive stroma phenotype appeared to be largely independent of androgen availability. Transplantation-induced angiogenesis by endogenous human endothelial cells present in primary xenografts of benign and malignant human prostate tissue was preceded by induction of androgen-driven expression of VEGF by the prostate stroma, and was concurrent with and the appearance of a reactive stroma phenotype. Androgen-modulated expression of VEGF-A appeared to be a causal regulator of angiogenesis, and possibly of stromal activation, in human prostate xenografts. PMID:22303438

  19. Impact of angiogenesis-related gene expression on the tracer kinetics of 18F-FDG in colorectal tumors.

    PubMed

    Strauss, Ludwig G; Koczan, Dirk; Klippel, Sven; Pan, Leyun; Cheng, Caixia; Willis, Stefan; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2008-08-01

    18F-FDG kinetics are primarily dependent on the expression of genes associated with glucose transporters and hexokinases but may be modulated by other genes. The dependency of 18F-FDG kinetics on angiogenesis-related gene expression was evaluated in this study. Patients with primary colorectal tumors (n = 25) were examined with PET and 18F-FDG within 2 days before surgery. Tissue specimens were obtained from the tumor and the normal colon during surgery, and gene expression was assessed using gene arrays. Overall, 23 angiogenesis-related genes were identified with a tumor-to-normal ratio exceeding 1.50. Analysis revealed a significant correlation between k1 and vascular endothelial growth factor (VEGF-A, r = 0.51) and between fractal dimension and angiopoietin-2 (r = 0.48). k3 was negatively correlated with VEGF-B (r = -0.46), and a positive correlation was noted for angiopoietin-like 4 gene (r = 0.42). A multiple linear regression analysis was used for the PET parameters to predict the gene expression, and a correlation coefficient of r = 0.75 was obtained for VEGF-A and of r = 0.76 for the angiopoietin-2 expression. Thus, on the basis of these multiple correlation coefficients, angiogenesis-related gene expression contributes to about 50% of the variance of the 18F-FDG kinetic data. The global 18F-FDG uptake, as measured by the standardized uptake value and influx, was not significantly correlated with angiogenesis-associated genes. 18F-FDG kinetics are modulated by angiogenesis-related genes. The transport rate for 18F-FDG (k1) is higher in tumors with a higher expression of VEGF-A and angiopoietin-2. The regression functions for the PET parameters provide the possibility to predict the gene expression of VEGF-A and angiopoietin-2.

  20. Photoacoustic molecular imaging of angiogenesis using theranostic ανβ3-targeted copper nanoparticles incorporating a sn-2 lipase-labile fumagillin prodrug

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiying; Cai, Xin; Yang, Xiaoxia; Senpan, Angana; Allen, John S.; Pan, Dipanjan; Lanza, Gregory M.; Wang, Lihong V.

    2014-03-01

    Photoacoustic (PA) tomography imaging is an emerging, versatile, and noninvasive imaging modality, which combines the advantages of both optical imaging and ultrasound imaging. It opens up opportunities for noninvasive imaging of angiogenesis, a feature of skin pathologies including cancers and psoriasis. In this study, high-density copper oleate encapsulated within a phospholipid surfactant (CuNPs) generated a soft nanoparticle with PA contrast comparable to gold. Within the near-infrared window, the copper nanoparticles can provide a signal more than 7 times higher that of blood. ανβ3-targeted of CuNPs in a Matrigel mouse model demonstrated prominent PA contrast enhancement of the neovasculature compared to mice given nontargeted or competitively inhibited CuNPs. Incorporation of a sn-2 lipase-labile fumagillin prodrug into the CuNPs produced marked antiangiogenesis in the same model, demonstrating the theranostic potential of a PA agent for the first time in vivo. With a PA signal comparable to gold-based nanoparticles yet a lower cost and demonstrated drug delivery potential, ανβ3-targeted CuNPs hold great promise for the management of skin pathologies with neovascular features.

  1. Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis.

    PubMed

    Sinha, Sonam; Khan, Sajid; Shukla, Samriddhi; Lakra, Amar Deep; Kumar, Sudhir; Das, Gunjan; Maurya, Rakesh; Meeran, Syed Musthapa

    2016-08-01

    Available breast cancer therapeutic strategies largely target the primary tumor but are ineffective against tumor metastasis and angiogenesis. In our current study, we determined the effect of Cucurbitacin B (CuB), a plant triterpenoid, on the metastatic and angiogenic potential of breast cancer cells. CuB was found to inhibit cellular proliferation and induce apoptosis in breast cancer cells in a time- and dose-dependent manner. Further, CuB-treatment significantly inhibited the migratory and invasive potential of highly metastatic breast cancer MDA-MB-231 and 4T1 cells at sub-IC50 concentrations, where no significant apoptosis was observed. CuB was also found to inhibit migratory, invasive and tube-forming capacities of HUVECs in vitro. In addition, inhibition of pre-existing vasculature in chick embryo chorioallantoic membrane ex vivo further supports the anti-angiogenic effect of CuB. CuB-mediated anti-metastatic and anti-angiogenic effects were associated with the downregulation of VEGF/FAK/MMP-9 signaling, which has been validated by using FAK-inhibitor (FI-14). CuB-treatment resulted in a significant inhibition of VEGF-induced phosphorylation of FAK and MMP-9 expressions similar to the action of FI-14. CuB was also found to decrease the micro-vessel density as evidenced by the decreased expression of CD31, a marker for neovasculature. Further, CuB-treatment inhibited tumor growth, lung metastasis and angiogenesis in a highly metastatic 4T1-syngeneic mouse mammary cancer. Collectively, our findings suggest that CuB inhibited breast cancer metastasis and angiogenesis, at least in part, through the downregulation of VEGF/FAK/MMP-9 signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Aggressive plaque modification with rotational atherectomy and cutting balloon for optimal stent expansion in calcified lesions

    PubMed Central

    Tang, Zhe; Bai, Jing; Su, Shao-Ping; Lee, Pui-Wai; Peng, Liang; Zhang, Tao; Sun, Ting; Nong, Jing-Guo; Li, Tian-De; Wang, Yu

    2016-01-01

    Objective To evaluate the factors affecting optimal stent expansion in calcified lesions treated by aggressive plaque modification with rotational atherectomy (RA) and a cutting balloon (CB). Methods From January 2014 to May 2015, 92 patients with moderate to severe coronary calcified lesions underwent rotational atherectomy and intravascular ultrasound imaging at Chinese PLA General Hospital (Beijing, China) were included in this study. They were divided into a rotational artherectomy combined with cutting balloon (RACB) group (46 patients treated with RA followed by CB angioplasty) and an RA group (46 patients treated with RA followed by plain balloon angioplasty). Another 40 patients with similar severity of their calcified lesions treated with plain old balloon angioplasty (POBA) were demographically matched to the other groups and defined as the POBA group. All patients received a drug-eluting stent after plaque preparation. Lumen diameter and lumen diameter stenosis (LDS) were measured by quantitative coronary angiography at baseline, after RA, after dilatation, and after stenting. Optimal stent expansion was defined as the final LDS < 10%. Results The initial and post-RA LDS values were similar among the three groups. However, after dilatation, the LDS significantly decreased in the RACB group (from 54.5% ± 8.9% to 36.1% ± 7.1%) but only moderately decreased (from 55.7% ± 7.8% to 46.9% ± 9.4%) in the RA group (time × group, P < 0.001). After stenting, there was a higher rate of optimal stent expansion in the RACB group (71.7% in the RACB group, 54.5% in the RA group, and 15% in the POBA group, P < 0.001), and the final LDS was significantly diminished in the RACB group compared to the other two groups (6.0% ± 2.3%, 10.8% ± 3.3%, 12.7% ± 2.1%, P < 0.001). Moreover, an LDS ≤ 40% after plaque preparation (OR = 2.994, 95% CI: 1.297–6.911) was associated with optimal stent expansion, which also had a positive correlation with the appearance of a

  3. Astaxanthin Inhibits JAK/STAT-3 Signaling to Abrogate Cell Proliferation, Invasion and Angiogenesis in a Hamster Model of Oral Cancer

    PubMed Central

    Kowshik, J.; Baba, Abdul Basit; Giri, Hemant; Deepak Reddy, G.; Dixit, Madhulika; Nagini, Siddavaram

    2014-01-01

    Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumour progression is a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary astaxanthin on JAK-2/STAT-3 signaling in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by examining the mRNA and protein expression of JAK/STAT-3 and its target genes. Quantitative RT-PCR, immunoblotting and immunohistochemical analyses revealed that astaxanthin supplementation inhibits key events in JAK/STAT signaling especially STAT-3 phosphorylation and subsequent nuclear translocation of STAT-3. Furthermore, astaxanthin downregulated the expression of STAT-3 target genes involved in cell proliferation, invasion and angiogenesis, and reduced microvascular density, thereby preventing tumour progression. Molecular docking analysis confirmed inhibitory effects of astaxanthin on STAT signaling and angiogenesis. Cell culture experiments with the endothelial cell line ECV304 substantiated the role of astaxanthin in suppressing angiogenesis. Taken together, our data provide substantial evidence that dietary astaxanthin prevents the development and progression of HBP carcinomas through the inhibition of JAK-2/STAT-3 signaling and its downstream events. Thus, astaxanthin that functions as a potent inhibitor of tumour development and progression by targeting JAK/STAT signaling may be an ideal candidate for cancer chemoprevention. PMID:25296162

  4. Lumen and calcium characteristics within calcified coronary lesions. Comparison of computed tomography coronary angiography versus intravascular ultrasound.

    PubMed

    Noll, Dariusz; Kruk, Mariusz; Pręgowski, Jerzy; Kaczmarska, Edyta; Kryczka, Karolina; Pracoń, Radosław; Skwarek, Mirosław; Dzielińska, Zofia; Petryka, Joanna; Spiewak, Mateusz; Lubiszewska, Barbara; Norwa-Otto, Bożena; Opolski, Maksymilian; Witkowski, Adam; Demkow, Marcin; Rużyłło, Witold; Kępka, Cezary

    2013-01-01

    Computed tomography coronary angiography (CTCA) is a diagnostic method used for exclusion of coronary artery disease. However, lower accuracy of CTCA in assessment of calcified lesions is a significant factor impeding applicability of CTCA for assessment of coronary atherosclerosis. To provide insight into lumen and calcium characteristics assessed with CTCA, we compared these parameters to the reference of intravascular ultrasound (IVUS). Two hundred and fifty-two calcified lesions within 97 arteries of 60 patients (19 women, age 63 ±10 years) underwent assessment with both 2 × 64 slice CT (Somatom Definition, Siemens) and IVUS (s5, Volcano Corp.). Coronary lumen and calcium dimensions within calcified lesions were assessed with CTCA and compared to the reference measurements made with IVUS. On average CTCA underestimated mean lumen diameter (2.8 ±0.7 mm vs. 2.9 ±0.8 mm for IVUS), lumen area (6.4 ±3.4 mm(2) vs. 7.0 ±3.7 mm(2) for IVUS, p < 0.001) and total calcium arc (52 ±35° vs. 83 ±54°). However, analysis of tertiles of the examined parameters revealed that the mean lumen diameter, lumen area and calcium arc did not significantly differ between CTCA and IVUS within the smallest lumens (1(st) tertile of mean lumen diameter at 2.1 mm, and 1(st) tertile of lumen area at 3.7 mm(2)) and lowest calcium arc (mean of 40°). Although, on average, CTCA underestimates lumen diameter and area as well as calcium arc within calcified lesions, the differences are not significant within the smallest vessels and calcium arcs. The low diagnostic accuracy of CTCA within calcified lesions may be attributed to high variance and not to systematic error of measurements.

  5. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    NASA Astrophysics Data System (ADS)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  6. Ovarian angiogenesis in polycystic ovary syndrome.

    PubMed

    Di Pietro, Mariana; Pascuali, Natalia; Parborell, Fernanda; Abramovich, Dalhia

    2018-05-01

    Polycystic ovary syndrome (PCOS) is the most prevalent endocrine pathology among women in reproductive age. Its main symptoms are oligo or amenorrhea, hyperandrogenism and the presence of ovarian cysts. It is also associated with infertility, obesity and insulin resistance. Mainly due to its heterogeneity, PCOS treatments are directed to manage its symptoms and to prevent associated diseases. The correct formation and regression of blood vessels during each ovarian cycle is indispensable for proper follicular development, ovulation and corpus luteum formation. The importance of these processes opened a new and promising field: ovarian angiogenesis. Vascular alterations characterize numerous pathologies, either with increased, decreased or abnormal angiogenesis. In the last years, several anomalies of ovarian angiogenesis have been described in women with PCOS. Therefore, it has been suggested that these alterations may be associated with the decreased - or lack of - ovulation rates and for the formation of cysts in the PCOS ovaries. Restoration of a proper vessel formation in the ovaries may lead to improved follicular development and ovulation in these patients. In the present review, we attempt to summarize the alterations in ovarian angiogenesis that have been described in women with PCOS. We also discuss the therapeutic approaches aimed to correct these alterations and their beneficial effects on the treatment of infertility in PCOS. © 2018 Society for Reproduction and Fertility.

  7. The "Hoover" (vacuum cleaner) technique for calcifying tendonitis deposits excision and removal of the calcific debris.

    PubMed

    Ehud, Atoun; Ehud, Rath; Alexander, Van Tongel; Ali, Narvani; Giusseppe, Sforza; Ofer, Levy

    2012-07-01

    A new technical tip for the improvement of the arthroscopic treatment of symptomatic calcifying tendinitis is described. Arthroscopic excision of calcifying tendonitis may result with multiple minute calcific debris in the subacromial bursa, causing severe post operative pain due to chemical irritation of the bursa. We suggest the use of a bladeless shaver barrel as a "Hoover" (vacuum cleaner) for arthroscopic clearance of these miniature calcific debris from the subacromial space after resection of the major deposits. The use of this technique resulted in good clinical outcome with improved post operative pain.

  8. Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1alpha variant for local induction of angiogenesis.

    PubMed

    Trentin, Diana; Hall, Heike; Wechsler, Sandra; Hubbell, Jeffrey A

    2006-02-21

    Hypoxia-inducible factor (HIF) constitutes a target in therapeutic angiogenesis. HIF-1alpha functions as a sensor of hypoxia and induces expression of vascular endothelial growth factor (VEGF), which then induces angiogenesis. To explore the potential of HIF-1alpha gene therapy in stimulating wound healing, we delivered a gene encoding a stabilized form of HIF-1alpha, lacking the oxygen-sensitive degradation domain, namely HIF-1alpha deltaODD, by using a previously characterized peptide-based gene delivery vector in fibrin as a surgical matrix. The peptide vector consisted of multiple domains: (i) A cysteine-flanked lysine hexamer provided DNA interactions that were stable extracellularly but destabilized intracellularly after reduction of the formed disulfide bonds. This DNA-binding domain was fused to either (ii) a fibrin-binding peptide for entrapment within the matrix or (iii) a nuclear localization sequence for efficient nuclear targeting. The HIF-1alpha deltaODD gene was expressed and translocated to the nucleus under normoxic conditions, leading to up-regulation of vascular endothelial growth factor (VEGF)-A165 mRNA and protein levels in vitro. When the peptide-DNA nanoparticles entrapped in fibrin matrices were applied to full-thickness dermal wounds in the mouse (10 microg per wound in 30 microl of fibrin), angiogenesis was increased comparably strongly to that induced by VEGF-A165 protein (1.25 microg per wound in 30 microl of fibrin). However, the maturity of the vessels induced by HIF-1alpha deltaODD was significantly higher than that induced by VEGF-A165 protein, as shown by stabilization of the neovessels with smooth muscle. Nonviral, local administration of this potent angiogenesis-inducing gene by using this peptide vector represents a powerful approach in tissue engineering and therapeutic angiogenesis.

  9. Pro-metastatic activity of AGR2 interrupts angiogenesis target bevacizumab efficiency via direct interaction with VEGFA and activation of NF-κB pathway.

    PubMed

    Jia, Mengqi; Guo, Yanxia; Zhu, Deyu; Zhang, Nianzhao; Li, Lin; Jiang, Jin; Dong, Yiwen; Xu, Qingqing; Zhang, Xiulei; Wang, Meijuan; Yu, Haina; Wang, Fang; Tian, Keli; Zhang, Jinsan; Young, Charles Y F; Lou, Hongxiang; Yuan, Huiqing

    2018-05-01

    Anterior gradient 2 (AGR2), an endoplasmic reticulum (ER)-resident protein-disulfide isomerase (PDI), is associated with cancer development and malignant progression. Here, we show that high level of AGR2 promotes the aggressive phenotype of prostate cancer (PCa) mouse models developed by either patient-derived xenografts or surgical intra-prostate implantation of PCa cells, associated with enrichment of the blood vessel network in tumor tissues. Angiogenesis markers VEGFR2 and CD34, accompanied with the invasive marker Vimentin, were predominantly stained in metastatic liver tissues. Secreted AGR2 was defined to enhance VEGFR2 activity as evidenced by physical interaction of purified recombinant human AGR2 (rhAGR2) with rhVEGFA through the formation of a disulfide bond. Mutant or deleted thioredoxin motif in rhAGR2 was also unable to bind to rhVEGFA that led to the significant abolishment in the vessel formation, but partially affecting the aggressive process, implicating alternative mechanisms are required for AGR2-conferring metastasis. Cytosolic AGR2 contributed to cell metastasis ascribed to its stabilizing effect on p65 protein, which subsequently activated the NF-κB and facilitated epithelial to mesenchymal transition (EMT). Importantly, GSH and cabozantinib, but not bevacizumab, effectively blocked the pro-angiogenic effect of rhAGR2 in vitro and in vivo, providing evidence that secreted AGR2 acts as a predictive biomarker for selection of angiogenesis-targeting therapeutic drugs based on its levels in the circular system. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing

    PubMed Central

    Kolluru, Gopi Krishna; Bir, Shyamal C.; Kevil, Christopher G.

    2012-01-01

    Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes. PMID:22611498

  11. Effects of hypoxia and non-lethal shell damage on shell mechanical and geochemical properties of a calcifying polychaete

    NASA Astrophysics Data System (ADS)

    Leung, Jonathan Y. S.; Cheung, Napo K. M.

    2018-06-01

    Calcification is a vital biomineralization process where calcifying organisms construct their calcareous shells for protection. While this process is expected to deteriorate under hypoxia, which reduces the metabolic energy yielded by aerobic respiration, some calcifying organisms were shown to maintain normal shell growth. The underlying mechanism remains largely unknown, but may be related to changing shell mineralogical properties, whereby shell growth is sustained at the expense of shell quality. Thus, we examined whether such plastic response is exhibited to alleviate the impact of hypoxia on calcification by assessing the shell growth and shell properties of a calcifying polychaete in two contexts (life-threatening and unthreatened conditions). Although hypoxia substantially reduced respiration rate (i.e., less metabolic energy produced), shell growth was only slightly hindered without weakening mechanical strength under unthreatened conditions. Unexpectedly, hypoxia did not undermine defence response (i.e., enhanced shell growth and mechanical strength) under life-threatening conditions, which may be attributed to the changes in mineralogical properties (e.g., increased calcite / aragonite) to reduce the energy demand for calcification. While more soluble shells (e.g., increased Mg / Ca in calcite) were produced under hypoxia as the trade-off, our findings suggest that mineralogical plasticity could be fundamental for calcifying organisms to maintain calcification under metabolic stress conditions.

  12. H2-P, a honokiol derivative, exerts anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma.

    PubMed

    Wang, Ting; Chen, Wei; Wu, Jialin

    2018-04-01

    H2-P, a derivative of honokiol, was first synthesized in our laboratory. Compared with honokiol, H2-P has even high anti-tumor activity. In the present study, we evaluated the ability of H2-P to inhibit the survival rate in four gliomas cell lines. The result showed that H2-P could significantly inhibit proliferation of gliomas cells in a dose-dependent manner (IC50 U251  = 9.03, IC50 SHG-44  = 10.74, IC50 U78  = 19.87, and IC50 c6  = 22.56 nM). Furthermore, to determine the mechanism underlying the anti-gliomas effects of H2-P, six kinase activities was detected by Z'-LYTE™ system. The high-throughput screening shown that effect targets of H2-P were MEK and VEGFR2. We also studied the inhibition of H2-P vascular endothelial cells (EA.HY926). The data shown that H2-P could increase endothelial cells apoptosis rate, while inhibiting endothelial cell proliferation (IC50 EA.hy926  = 16.11 nM) and migration. Besides, we investigated anti-angiogenesis of H2-P in the rat thoracic aorta rings, chicken chorioallantoic membrane (CAM), and capillary tube formation models. H2-P showed strong inhibition of angiogenesis. Moreover, we found that H2-P also could reduce tumor volume in mice significantly (P < 0.01), and downregulate gene expression level of VEGFR2, MEK, and c-MYC in tumor. These data suggest that H2-P have an excellent anti-tumor activity by exerting anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma (GBM). © 2017 Wiley Periodicals, Inc.

  13. The mouse cornea micropocket angiogenesis assay.

    PubMed

    Rogers, Michael S; Birsner, Amy E; D'Amato, Robert J

    2007-01-01

    The mouse corneal micropocket angiogenesis assay uses the avascular cornea as a canvas to study angiogenesis in vivo. Through the use of standardized slow-release pellets, a predictable angiogenic response is generated over the course of 5 d and then quantified. Uniform slow-release pellets are prepared by mixing purified angiogenic growth factors such as basic fibroblast growth factor or vascular endothelial growth factor with sucralfate (a stabilizer) and Hydron (poly-HEMA (poly(2-hydroxyethyl methacrylate)) to allow slow release). This mixture is applied to a mesh that controls unit size and then allowed to harden. A micropocket is surgically created in the mouse cornea and a pellet implanted. Five days later, the area of the cornea overgrown by the angiogenic response is measured using a slit lamp. A skilled investigator can implant and grade 40 eyes in about 2.5 h. The results of the assay are used to assess the ability of potential therapeutic molecules or genetic differences to modulate angiogenesis in vivo.

  14. Association between Randall's Plaque and Calcifying Nanoparticles

    NASA Technical Reports Server (NTRS)

    Ciftcioglu, Neva; Vejdani, Kaveh; Lee, Olivia; Mathew, Grace; Aho, Katja M.; Kajander, Olavi; McKay, David S.; Jones, Jeff A.; Hayat, Matthew; Stoller, Marshall L.

    2007-01-01

    Randall's plaques, first described by Alexander Randall in the 1930s, are small subepithelial calcifications in the renal papillae (RP) that also extend deeply into the renal medulla. Despite the strong correlation between the presence of these plaques and the formation of renal stones, the precise origin and pathogenesis of Randall s plaque formation remain elusive. The discovery of calcifying nanoparticles (CNP) and their detection in many calcifying processes of human tissues has raised hypotheses about their possible involvement in renal stone formation. We collected RP and blood samples from 17 human patients who had undergone laparoscopic nephrectomy due to neoplasia. Homogenized RP tissues and serum samples were cultured for CNP. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis were performed on fixed RP samples. Immunohistochemical staining (IHS) was applied on the tissue samples using CNP-specific monoclonal antibody (mAb). Randall s plaques were visible on gross inspection in 11 out of 17 collected samples. Cultures of all serum samples and 13 tissue homogenates had CNP growth within 4 weeks. SEM revealed spherical apatite formations in 14 samples, with calcium and phosphate peaks detected by EDS analysis. IHS was positive in 9 out of 17 samples. A strong link was found between the presence of Randall s plaques and the detection of CNP, also referred to as nanobacteria. These results suggest new insights into the etiology of Randall's plaque formation, and will help us understand the pathogenesis of stone formation. Further studies on this topic may lead us to new approaches on early diagnosis and novel medical therapies of kidney stone formation.

  15. Galectin-3 in angiogenesis and metastasis

    PubMed Central

    Funasaka, Tatsuyoshi; Raz, Avraham; Nangia-Makker, Pratima

    2014-01-01

    Galectin-3 is a member of the family of β-galactoside-binding lectins characterized by evolutionarily conserved sequences defined by structural similarities in their carbohydrate-recognition domains. Galectin-3 is a unique, chimeric protein consisting of three distinct structural motifs: (i) a short NH2 terminal domain containing a serine phosphorylation site; (ii) a repetitive proline-rich collagen-α-like sequence cleavable by matrix metalloproteases; and (iii) a globular COOH-terminal domain containing a carbohydrate-binding motif and an NWGR anti-death motif. It is ubiquitously expressed and has diverse biological functions depending on its subcellular localization. Galectin-3 is mainly found in the cytoplasm, also seen in the nucleus and can be secreted by non-classical, secretory pathways. In general, secreted galectin-3 mediates cell migration, cell adhesion and cell–cell interactions through the binding with high affinity to galactose-containing glycoproteins on the cell surface. Cytoplasmic galectin-3 exhibits anti-apoptotic activity and regulates several signal transduction pathways, whereas nuclear galectin-3 has been associated with pre-mRNA splicing and gene expression. Its unique chimeric structure enables it to interact with a plethora of ligands and modulate diverse functions such as cell growth, adhesion, migration, invasion, angiogenesis, immune function, apoptosis and endocytosis emphasizing its significance in the process of tumor progression. In this review, we have focused on the role of galectin-3 in tumor metastasis with special emphasis on angiogenesis. PMID:25138305

  16. Multiscale Modeling of Cell Interaction in Angiogenesis: From the Micro- to Macro-scale

    NASA Astrophysics Data System (ADS)

    Pillay, Samara; Maini, Philip; Byrne, Helen

    Solid tumors require a supply of nutrients to grow in size. To this end, tumors induce the growth of new blood vessels from existing vasculature through the process of angiogenesis. In this work, we use a discrete agent-based approach to model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death processes. We use the transition probabilities associated with the discrete models to determine collective cell behavior, in terms of partial differential equations, using a Markov chain and master equation framework. We find that the cell-level dynamics gives rise to a migrating cell front in the form of a traveling wave on the macro-scale. The behavior of this front depends on the cell interactions that are included and the extent to which volume exclusion is taken into account in the discrete micro-scale model. We also find that well-established continuum models of angiogenesis cannot distinguish between certain types of cell behavior on the micro-scale. This may impact drug development strategies based on these models.

  17. Acquired Large Calcified Unruptured Sinus of Valsalva Aneurysm.

    PubMed

    Park, Sang-Hyun; Seol, Sang-Hoon; Seo, Guang-Won; Song, Pil-Sang; Kim, Dong-Kie; Kim, Ki-Hun; Kim, Doo-Il

    2015-11-01

    Acquired aneurysms of the sinus of Valsalva are rare. They are caused by infections such as tuberculosis, syphilis and endocarditis, as well as atherosclerosis and traumatic injury. They may be asymptomatic and incidentally discovered. We present a rare case of a large acquired calcified unruptured aneurysm of the right coronary sinus of Valsalva that was compressing the right ventricular outflow tract. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  18. Consensus guidelines for the use and interpretation of angiogenesis assays.

    PubMed

    Nowak-Sliwinska, Patrycja; Alitalo, Kari; Allen, Elizabeth; Anisimov, Andrey; Aplin, Alfred C; Auerbach, Robert; Augustin, Hellmut G; Bates, David O; van Beijnum, Judy R; Bender, R Hugh F; Bergers, Gabriele; Bikfalvi, Andreas; Bischoff, Joyce; Böck, Barbara C; Brooks, Peter C; Bussolino, Federico; Cakir, Bertan; Carmeliet, Peter; Castranova, Daniel; Cimpean, Anca M; Cleaver, Ondine; Coukos, George; Davis, George E; De Palma, Michele; Dimberg, Anna; Dings, Ruud P M; Djonov, Valentin; Dudley, Andrew C; Dufton, Neil P; Fendt, Sarah-Maria; Ferrara, Napoleone; Fruttiger, Marcus; Fukumura, Dai; Ghesquière, Bart; Gong, Yan; Griffin, Robert J; Harris, Adrian L; Hughes, Christopher C W; Hultgren, Nan W; Iruela-Arispe, M Luisa; Irving, Melita; Jain, Rakesh K; Kalluri, Raghu; Kalucka, Joanna; Kerbel, Robert S; Kitajewski, Jan; Klaassen, Ingeborg; Kleinmann, Hynda K; Koolwijk, Pieter; Kuczynski, Elisabeth; Kwak, Brenda R; Marien, Koen; Melero-Martin, Juan M; Munn, Lance L; Nicosia, Roberto F; Noel, Agnes; Nurro, Jussi; Olsson, Anna-Karin; Petrova, Tatiana V; Pietras, Kristian; Pili, Roberto; Pollard, Jeffrey W; Post, Mark J; Quax, Paul H A; Rabinovich, Gabriel A; Raica, Marius; Randi, Anna M; Ribatti, Domenico; Ruegg, Curzio; Schlingemann, Reinier O; Schulte-Merker, Stefan; Smith, Lois E H; Song, Jonathan W; Stacker, Steven A; Stalin, Jimmy; Stratman, Amber N; Van de Velde, Maureen; van Hinsbergh, Victor W M; Vermeulen, Peter B; Waltenberger, Johannes; Weinstein, Brant M; Xin, Hong; Yetkin-Arik, Bahar; Yla-Herttuala, Seppo; Yoder, Mervin C; Griffioen, Arjan W

    2018-05-15

    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.

  19. Age-dependent Impairment of HIF-1α̣Expression in Diabetic Mice: Correction with Electroporation-facilitated Gene Therapy Increases Wound Healing, Angiogenesis, and Circulating Angiogenic Cells

    PubMed Central

    Liu, Lixin; Marti, Guy P.; Wei, Xiaofei; Zhang, Xianjie; Zhang, Huafeng; Liu, Ye V.; Nastai, Manuel; Semenza, Gregg L.; Harmon, John W.

    2009-01-01

    Wound healing is impaired in elderly patients with diabetes mellitus. We hypothesized that age-dependent impairment of cutaneous wound healing in db/db diabetic mice: (a) would correlate with reduced expression of the transcription factor hypoxia-inducible factor 1α (HIF-1α) as well as its downstream target genes; and (b) could be overcome by HIF-1α replacement therapy. Wound closure, angiogenesis, and mRNA expression in excisional skin wounds were analyzed and circulating angiogenic cells were quantified in db/db mice that were untreated or received electroporation-facilitated HIF-1α gene therapy. HIF-1α mRNA levels in wound tissue were significantly reduced in older (4–6 months) as compared to younger (1.5–2 months) db/db mice. Expression of mRNAs encoding the angiogenic cytokines vascular endothelial growth factor (VEGF), angiopoietin 1 (ANGPT1), ANGPT2, platelet derived growth factor B (PDGF-B), and placental growth factor (PLGF) was also impaired in wounds of older db/db mice. Intradermal injection of plasmid gWIZ-CA5, which encodes a constitutively active form of HIF-1α, followed by electroporation, induced increased levels of HIF-1α mRNA at the injection site on day 3 and increased levels of VEGF, PLGF, PDGF-B, and ANGPT2 mRNA on day 7. Circulating angiogenic cells in peripheral blood increased 10-fold in mice treated with gWIZ-CA5. Wound closure was significantly accelerated in db/db mice treated with gWIZ-CA5 as compared to mice treated with empty vector. Thus, HIF-1α gene therapy corrects the age-dependent impairment of HIF-1α expression, angiogenic cytokine expression, and circulating angiogenic cells that contribute to the age-dependent impairment of wound healing in db/db mice. PMID:18506785

  20. The 15-LO-1/15-HETE system promotes angiogenesis by upregulating VEGF in ischemic brains.

    PubMed

    Chen, Li; Zhu, Yan-Mei; Li, Yu-Nong; Li, Peng-Yan; Wang, Di; Liu, Yu; Qu, You-Yang; Zhu, Da-Ling; Zhu, Yu-Lan

    2017-09-01

    Angiogenesis promotes neurobehavioral recovery after cerebral ischemic stroke. 15(S)-hydroxyeicosatetraenoic acid (15-HETE) is one of the major metabolites of arachidonic acid by 15-lipoxygenase (15-LO) and stimulates the production of vascular endothelial growth factor (VEGF), thus, inducing autocrine-mediated angiogenesis. The present study aimed to investigate the role of 15-LO/15-HETE system on VEGF expression and angiogenesis in brain ischemia. Rat cerebral arterial vascular endothelial cells were used to set up a cell injury model of oxygen-glucose deprivation and reoxygenation (OGD/R), mimicking a condition of brain ischemia. A mouse model of middle cerebral artery occlusion (MCAO) was established. Oxygen-glucose deprivation increased cellular expression of 15-LO-1 and VEGF. Transfection of 15-LO-1 siRNA depleted cells of 15-LO-1, and sequentially induced downregulation of VEGF expression; while, incubation of 15-HETE increased the expression of VEGF. Incubation of 15-HETE attenuated the reduction in cell viability induced by oxygen-glucose deprivation, and promoted cell migration, while transfection of 15-LO-1 siRNA showed an opposite effect. In animal experiments, the density of microvessels in hypoxic regions of brains was significantly increased after MCAO, while intracerebroventricular delivery of 15-LO-1 siRNA significantly reduced the density of microvessels, and downregulates VEGF expression. The results indicate that the 15-LO-1/15-HETE system promotes angiogenesis in ischemic brains by upregulation of VEGF, representing a potential target for improving neurobehavioral recovery after cerebral ischemic stroke.

  1. STAT3 Oligonucleotide Inhibits Tumor Angiogenesis in Preclinical Models of Squamous Cell Carcinoma

    PubMed Central

    Klein, Jonah D.; Sano, Daisuke; Sen, Malabika; Myers, Jeffrey N.; Grandis, Jennifer R.; Kim, Seungwon

    2014-01-01

    Purpose Signal transducer and activator of transcription 3 (STAT3) has shown to play a critical role in head and neck squamous cell carcinoma (HNSCC) and we have recently completed clinical trials of STAT3 decoy oligonucleotide in patients with recurrent or metastatic HNSCC. However, there is limited understanding of the role of STAT3 in modulating other aspects of tumorigenesis such as angiogenesis. In this study, we aimed to examine the effects of STAT3 decoy oligonucleotide on tumor angiogenesis. Experimental Design A STAT3 decoy oligonucleotide and small interfering RNA (siRNA) were used to inhibit STAT3 in endothelial cells in vitro and in vivo. The biochemical effects of STAT3 inhibition were examined in conjunction with the consequences on proliferation, migration, apoptotic staining, and tubule formation. Additionally, we assessed the effects of STAT3 inhibition on tumor angiogenesis using murine xenograft models. Results STAT3 decoy oligonucleotide decreased proliferation, induces apoptosis, decreased migration, and decreased tubule formation of endothelial cells in vitro. The STAT3 decoy oligonucleotide also inhibited tumor angiogenesis in murine tumor xenografts. Lastly, our data suggest that the antiangiogenic effects of STAT3 decoy oligonucleotide were mediatedthrough the inhibition of both STAT3 and STAT1. Conclusions The STAT3 decoy oligonucleotidewas found to be an effective antiangiogenic agent, which is likely to contribute to the overall antitumor effects of this agent in solid tumors.Taken together with the previously demonstrated antitumor activity of this agent, STAT3 decoy oligonucleotide represents a promising single agent approach to targeting both the tumor and vascular compartments in various malignancies. PMID:24404126

  2. Calcifying tendinitis of the shoulder: midterm results after arthroscopic treatment.

    PubMed

    Balke, Maurice; Bielefeld, Rebecca; Schmidt, Carolin; Dedy, Nicolas; Liem, Dennis

    2012-03-01

    Calcifying tendinitis is a common and painful disorder of the shoulder characterized by the presence of calcific deposits in the tendons of the rotator cuff. When nonoperative treatment over a prolonged period of time fails, surgical treatment should be considered. Midterm success rates are inconsistent, and the role of subacromial decompression is still unclear. Our hypotheses were that the rate of supraspinatus tears after arthroscopic treatment of calcifying tendinitis is comparable with that in the contralateral uninvolved shoulder and that subacromial decompression does not have beneficial effects compared with calcium removal alone. Case series; Level of evidence, 4. In 70 shoulders of 62 patients with a mean age of 54 years, arthroscopic removal of calcium deposits of the supraspinatus tendon was performed. In 44 shoulders, additional subacromial decompression was performed. After a mean follow-up of 6 years (range, 2-13 years), patients were clinically investigated, and function was statistically evaluated using Constant and American Shoulder and Elbow Surgeons (ASES) scores. Affected and contralateral shoulders were examined by ultrasound in 48 shoulders, and rotator cuff tears were documented. The mean Constant scores of the operated shoulders were significantly lower than those of the healthy shoulders (P < .001). The ASES scores significantly (P < .001) increased after surgery but were still lower than the ASES scores of the healthy shoulders (P < .001). Concerning the additional subacromial decompression, there were no significant differences in the overall ASES and Constant scores; the subitem "pain" was significantly better in the subacromial decompression group (P = .048). Ultrasound examination at last follow-up (48 shoulders) showed a partial supraspinatus tendon tear in 11 operated and 3 contralateral shoulders. Although the good clinical results after arthroscopic treatment of calcifying tendinitis of the shoulder persist midterm, the affected

  3. Spatial frequency dependence of target signature for infrared performance modeling

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd; Olson, Jeffrey

    2011-05-01

    The standard model used to describe the performance of infrared imagers is the U.S. Army imaging system target acquisition model, based on the targeting task performance metric. The model is characterized by the resolution and sensitivity of the sensor as well as the contrast and task difficulty of the target set. The contrast of the target is defined as a spatial average contrast. The model treats the contrast of the target set as spatially white, or constant, over the bandlimit of the sensor. Previous experiments have shown that this assumption is valid under normal conditions and typical target sets. However, outside of these conditions, the treatment of target signature can become the limiting factor affecting model performance accuracy. This paper examines target signature more carefully. The spatial frequency dependence of the standard U.S. Army RDECOM CERDEC Night Vision 12 and 8 tracked vehicle target sets is described. The results of human perception experiments are modeled and evaluated using both frequency dependent and independent target signature definitions. Finally the function of task difficulty and its relationship to a target set is discussed.

  4. MUC4-induced nuclear translocation of β-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer.

    PubMed

    Zhi, Xiaofei; Tao, Jinqiu; Xie, Kunling; Zhu, Yi; Li, Zheng; Tang, Jie; Wang, Weizhi; Xu, Hao; Zhang, Jingjing; Xu, Zekuan

    2014-04-28

    The membrane mucin MUC4 is aberrantly expressed in multiple cancers and is of clinical significance to diagnosis and prognosis in pancreatic cancer. However, the role of MUC4 in angiogenesis and the potential association among these malignant capabilities have not been explored. In this study, we investigated the collective signaling mechanisms associated with MUC4-induced growth, metastasis and angiogenesis in pancreatic cancer. Knockdown of MUC4 in two pancreatic cancer cell lines led to downregulation of lysosomal degradation of E-cadherin by Src kinase through downregulation of pFAK and pSrc pathway. The downregulation of lysosomal degradation of E-cadherin in turn induced the formation of E-cadherin/β-catenin complex and membrane translocation of β-catenin, resulting in the downregulation of Wnt/β-catenin signaling pathway. Thus, the Wnt/β-catenin target genes c-Myc, Cyclin D1, CD44 and VEGF were down-regulated and their malignant functions proliferation, metastasis and angiogenesis were reduced. Taken together, MUC4-induced nuclear translocation of β-catenin is a novel mechanism for growth, metastasis and angiogenesis of pancreatic cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. High-grade ovarian cancer secreting effective exosomes in tumor angiogenesis.

    PubMed

    Yi, Huan; Ye, Jun; Yang, Xiao-Mei; Zhang, Li-Wen; Zhang, Zhi-Gang; Chen, Ya-Ping

    2015-01-01

    Ovarian cancer, the most lethal gynecological cancer, related closely to tumor stage. High-grade ovarian cancer always results in a late diagnose and high recurrence, which reduce survival within five years. Until recently, curable therapy is still under research and anti-angiogenesis proves a promising way. Tumor-derived exosomes are essential in tumor migration and metastases such as angiogenesis is enhanced by exosomes. In our study, we have made comparison between high-grade and unlikely high-grade serous ovarian cancer cells on exosomal function of endothelial cells proliferation, migration and tube formation. Exosomes derived from high-grade ovarian cancer have a profound impact on angiogenesis with comparison to unlikely high-grade ovarian cancer. Proteomic profiles revealed some potential proteins involved in exosomal function of angiogenesis such as ATF2, MTA1, ROCK1/2 and so on. Therefore, exosomes plays an influential role in angiogenesis in ovarian serous cancer and also function more effectively in high-grade ovarian cancer cells.

  6. Zebrafish WNK Lysine Deficient Protein Kinase 1 (wnk1) Affects Angiogenesis Associated with VEGF Signaling

    PubMed Central

    Chen, Wen-Chuan; Kou, Fong-Ji; Lu, Jeng-Wei; Wang, Horng-Dar; Huang, Chou-Long; Yuh, Chiou-Hwa

    2014-01-01

    The WNK1 (WNK lysine deficient protein kinase 1) protein is a serine/threonine protein kinase with emerging roles in cancer. WNK1 causes hypertension and hyperkalemia when overexpressed and cardiovascular defects when ablated in mice. In this study, the role of Wnk1 in angiogenesis was explored using the zebrafish model. There are two zebrafish wnk1 isoforms, wnk1a and wnk1b, and both contain all the functional domains found in the human WNK1 protein. Both isoforms are expressed in the embryo at the initiation of angiogenesis and in the posterior cardinal vein (PCV), similar to fms-related tyrosine kinase 4 (flt4). Using morpholino antisense oligonucleotides against wnk1a and wnk1b, we observed that wnk1 morphants have defects in angiogenesis in the head and trunk, similar to flk1/vegfr2 morphants. Furthermore, both wnk1a and wnk1b mRNA can partially rescue the defects in vascular formation caused by flk1/vegfr2 knockdown. Mutation of the kinase domain or the Akt/PI3K phosphorylation site within wnk1 destroys this rescue capability. The rescue experiments provide evidence that wnk1 is a downstream target for Vegfr2 (vascular endothelial growth factor receptor-2) and Akt/PI3K signaling and thereby affects angiogenesis in zebrafish embryos. Furthermore, we found that knockdown of vascular endothelial growth factor receptor-2 (flk1/vegfr2) or vascular endothelial growth factor receptor-3 (flt4/vegfr3) results in a decrease in wnk1a expression, as assessed by in situ hybridization and q-RT-PCR analysis. Thus, the Vegf/Vegfr signaling pathway controls angiogenesis in zebrafish via Akt kinase-mediated phosphorylation and activation of Wnk1 as well as transcriptional regulation of wnk1 expression. PMID:25171174

  7. Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy

    PubMed Central

    Bhuvaneswari, Ramaswamy; Gan, Yik Y; Lucky, Sasidharan S; Chin, William WL; Ali, Seyed M; Soo, Khee C; Olivo, Malini

    2008-01-01

    Background Photodynamic therapy (PDT) involves the administration of a tumor-localizing photosensitizing drug, which is activated by light of specific wavelength in the presence of molecular oxygen thus generating reactive oxygen species that is toxic to the tumor cells. PDT selectively destroys photosensitized tissue leading to various cellular and molecular responses. The present study was designed to examine the angiogenic responses at short (0.5 h) and long (6 h) drug light interval (DLI) hypericin-PDT (HY-PDT) treatment at 24 h and 30 days post treatment in a human bladder carcinoma xenograft model. As short DLI targets tumor vasculature and longer DLI induces greater cellular damage, we hypothesized a differential effect of these treatments on the expression of angiogenic factors. Results Immunohistochemistry (IHC) results showed minimal CD31 stained endothelium at 24 h post short DLI PDT indicating extensive vascular damage. Angiogenic proteins such as vascular endothelial growth factor (VEGF), tumor necrosis growth factor-α (TNF-α), interferon-α (IFN-α) and basic fibroblast growth factor (bFGF) were expressed to a greater extent in cellular targeting long DLI PDT compared to vascular mediated short DLI PDT. Gene expression profiling for angiogenesis pathway demonstrated downregulation of adhesion molecules – cadherin 5, collagen alpha 1 and 3 at 24 h post treatment. Hepatocyte growth factor (HGF) and Ephrin-A3 (EFNA3) were upregulated in all treatment groups suggesting a possible activation of c-Met and Ephrin-Eph signaling pathways. Conclusion In conclusion, long DLI HY-PDT induces upregulation of angiogenic proteins. Differential expression of genes involved in the angiogenesis pathway was observed in the various groups treated with HY-PDT. PMID:18549507

  8. A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis.

    PubMed

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Li, Yi; Zhen, Yong-Su

    2017-05-01

    CD13 is a marker of angiogenic endothelial cells, and recently it is proved to be a biomarker of human liver cancer stem cells (CSCs). Herein, the therapeutic effects of NGR-LDP-AE, a fusion protein composed of CD13-targeting peptide NGR and antitumor antibiotic lidamycin, on human liver cancer and its mechanism were studied. Western blot and immunofluorescence assay demonstrated that CD13 (WM15 epitope) was expressed in both human liver cancer cell lines and vascular endothelial cells, while absent in normal liver cells. MTT assay showed that NGR-LDP-AE displayed potent cytotoxicity to cultured tumor cell lines with IC 50 values at low nanomolar level. NGR-LDP-AE inhibited tumorsphere formation of liver cancer cells, and the IC 50 values were much lower than that in MTT assay, indicating selectively killing of CSCs. In endothelial tube formation assay, NGR-LDP-AE at low cytotoxic dose significantly inhibited the formation of intact tube networks. Animal experiment demonstrated that NGR-LDP-AE inhibited the growth of human liver cancer xenograft. Immunohistochemical analysis showed that NGR-LDP-AE induced the down-regulation of CD13. In vitro experiment using cultured tumor cells also confirmed this result. NGR-LDP-AE activated both apoptotic and autophagic pathways in cultured tumor cells, while the induced autophagy protected cells from death. Conclusively, NGR-LDP-AE exerts its antitumor activity via killing liver CSCs and inhibiting angiogenesis. With one targeting motif, NGR-LDP-AE acts on both liver CSCs and angiogenic endothelial cells. It is a promising dual targeting fusion protein for liver cancer therapy, especially for advanced or relapsed cancers. © 2017 Wiley Periodicals, Inc.

  9. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants

    PubMed Central

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS−/−) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS−/− mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS−/− mice. In contrast, the iNOS−/− implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS−/− mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice. PMID:26106257

  10. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants.

    PubMed

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS(-/-)) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS(-/-) mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS(-/-) mice. In contrast, the iNOS(-/-) implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS(-/-) mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice.

  11. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn.

    PubMed

    Yang, Danlin; Giragossian, Craig; Castellano, Steven; Lasaro, Marcio; Xiao, Haiguang; Saraf, Himanshu; Hess Kenny, Cynthia; Rybina, Irina; Huang, Zhong-Fu; Ahlberg, Jennifer; Bigwarfe, Tammy; Myzithras, Maria; Waltz, Erica; Roberts, Simon; Kroe-Barrett, Rachel; Singh, Sanjaya

    2017-10-01

    Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.

  12. Inhibition of cell migration by focal adhesion kinase: Time-dependent difference in integrin-induced signaling between endothelial and hepatoblastoma cells.

    PubMed

    Yu, Hongchi; Gao, Min; Ma, Yunlong; Wang, Lijuan; Shen, Yang; Liu, Xiaoheng

    2018-05-01

    angiogenesis plays an important role in the development and progression of tumors, and it involves a series of signaling pathways contributing to the migration of endothelial cells for vascularization and to the invasion of cancer cells for secondary tumor formation. Among these pathways, the focal adhesion kinase (FAK) signaling cascade has been implicated in a variety of human cancers in connection with cell adhesion and migration events leading to tumor angiogenesis, metastasis and invasion. Therefore, the inhibition of FAK in endothelial and/or cancer cells is a potential target for anti‑angiogenic therapy. In the present study, a small‑molecule FAK inhibitor, 1,2,4,5-benzenetetramine tetrahydrochloride (Y15), was used to study the effects of FAK inhibition on the adhesion and migration behaviors of vascular endothelial cells (VECs) and human hepatoblastoma cells. Furthermore, the time-dependent differences in proteins associated with the integrin-mediated FAK/Rho GTPases signaling pathway within 2 h were examined. The results indicated that the inhibition of FAK significantly decreased the migration ability of VECs and human hepatoblastoma cells in a dose-dependent manner. Inhibition of FAK promoted cell detachment by decreasing the expression of focal adhesion components, and blocked cell motility by reducing the level of Rho GTPases. However, the expression of crucial proteins involved in integrin-induced signaling in two cell lines exhibited a time-dependent difference with increased duration of FAK inhibitor treatment, suggesting different mechanisms of FAK-mediated cell migration behavior. These results suggest that the mechanism underlying FAK-mediated adhesion and migration behavior differs among various cells, which is expected to provide evidence for future FAK therapy targeted against tumor angiogenesis.

  13. RAIN-Droplet: A Novel 3-D in vitro Angiogenesis Model

    PubMed Central

    Zeitlin, Benjamin D.; Dong, Zhihong; Nör, Jacques E.

    2012-01-01

    Angiogenesis is fundamentally required for the initialization, development and metastatic spread of cancer. A rapidly expanding number of new experimental, chemical modulators of endothelial cell function have been described for the therapeutic inhibition of angiogenesis in cancer. Despite this expansion there has been very limited parallel growth of in vitro angiogenesis models or experimental tools. Here we present the Responsive Angiogenic Implanted Network (RAIN)-Droplet model and novel angiogenesis assay using an endothelial cell culture model of microvascular endothelial cells encapsulated in a spontaneously self-assembling, toroidal hydrogel droplet uniquely yielding discrete, pre-formed, angiogenic networks that may be embedded in 3-D matrices. On embedding, radial growth of capillary-like sprouts and cell invasion was observed. The sprouts formed as both outgrowths from endothelial cells on the surface of the droplets but also, uniquely, from the pre-formed network structures within the droplet. We demonstrate proof-of-principle for the utility of the model showing significant inhibition of sprout formation (p<0.001) in the presence of bevacizumab, an anti-angiogenic antibody. Using the RAIN-Droplet assay we also demonstrate a novel dose dependent pro-angiogenic function for the characteristically anti-angiogenic multi-kinase inhibitor sorafenib. Exposure of endothelial cells in 3-D culture to low, non-lethal doses (<1 μM) of sorafenib after initiation of sprouting resulted in the formation of significantly (p<0.05) more endothelial sprouts compared to controls over a 48-hour period. Higher doses of sorafenib (5 μM) resulted in a significant (p<0.05) reduction of sprouting over the same time period. The RAIN-Droplet model is a highly versatile and simply constructed 3-D focal sprouting approach well suited for the study of vascular morphogenesis and for preclinical testing of drugs. Furthermore, the RAIN-Droplet model has facilitated the discovery of a

  14. Hyperforin, a bio-active compound of St. John's Wort, is a new inhibitor of angiogenesis targeting several key steps of the process.

    PubMed

    Martínez-Poveda, Beatriz; Quesada, Ana R; Medina, Miguel Angel

    2005-12-10

    Hyperforin, a phloroglucinol derivative found in St. John's wort related mainly to its antidepressant effects, has been reported recently to induce apoptosis in tumour cells and to inhibit cancer invasion and metastasis. We show that hyperforin inhibits angiogenesis in vitro in bovine aortic endothelial cells and in vivo in the chorioallantoic membrane assay. In a variety of experimental systems representing the sequential events of the angiogenic process, hyperforin treatment of endothelial cells resulted in strong inhibitory effects. Hyperforin inhibited the growth of endothelial cells in culture. Capillary tube formation on Matrigel was abrogated completely by addition of hypeforin at the low micromolar range. Hyperforin also exhibited a clear inhibitory effect on the invasive capabilities of endothelial cells. Zymographic assays showed that hyperforin treatment produced a complete inhibition of urokinase and a remarkable inhibition of matrix metalloproteinase 2. Our data indicates that hyperforin is a compound that interferes with key events in angiogenesis, confirming the recent and growing evidence about a potential role of this compound in cancer and metastasis inhibition and making it a promising drug for further evaluation in the treatment of angiogenesis-related pathologies. Copyright 2005 Wiley-Liss, Inc

  15. Preliminary Evaluation of Microbial Communities Isolated from the Calcifying Fluid of Oysters

    NASA Astrophysics Data System (ADS)

    Banker, R.

    2016-02-01

    The process of biomineralization is defined as the selective uptake of elements that are incorporated into a defined mineral structure under strict biological control. For bivalve molluscs, such as clams, oysters, and mussels, the mantle is the primary organ in control of shell deposition. Alternatively, remote calcification takes place when carbonate-precipitating microbes (e.g. sulfate reducers) colonize a shell-secreting organism and enhance the ability of the host to build shell material. The oyster syndrome is a term that describes bivalves that possess an unusual shell morphology characterized by exceptionally thick valves containing numerous chambers filled with chalky calcite. Although remote calcification via microbial metabolism has been proposed as a mechanism of chalky deposit formation in oysters, this hypothesis has not yet been rigorously investigated. Here I present data on the microbial communities found in the calcifying fluid of two oyster species; Crassostrea gigas and Ostrea lurida are examples of oysters that do and do not exhibit the oyster syndrome, respectively. Comparison of the microbiomes of these two morphological end members may provide insight into the role of microbes in the formation of chalky deposits. Results indicate that the microbial community in the surrounding water is the dominant source for bacterial taxa found in the calcifying fluid of both oyster species. Also, it appears as though C. gigas maintains a microbial community that is more similar to its ambient environment than O. lurida. These results demonstrate that the ambient aquatic environment has a guiding influence on the microbiome found in the calcifying fluid of bivalve molluscs. However, the magnitude of this effect varies among organisms, even those that are closely related.

  16. Net Loss of CaCO3 from a subtropical calcifying community due to seawater acidification: Mesocosm-scale experimental evidence

    USGS Publications Warehouse

    Andersson, A.J.; Kuffner, I.B.; MacKenzie, F.T.; Jokiel, P.L.; Rodgers, K.S.; Tan, A.

    2009-01-01

    Acidification of seawater owing to oceanic uptake of atmospheric CO 2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (N=3) incubated in continuous-flow mesocosms subject to future seawater conditions. The calcifying community was dominated by the coral Montipora capitata. Daily average community calcification or Net Ecosystem Calcification (NECC=CaCO3 production - dissolution) was positive at 3.3 mmol CaCO3 m-2 h-1 under ambient seawater pCO2 conditions as opposed to negative at -0.04 mmol CaCO3 m-2 h-1 under seawater conditions of double the ambient pCO2. These experimental results provide support for the conclusion that some net calcifying communities could become subject to net dissolution in response to anthropogenic ocean acidification within this century. Nevertheless, individual corals remained healthy, actively calcified (albeit slower than at present rates), and deposited significant amounts of CaCO3 under the prevailing experimental seawater conditions of elevated pCO2.

  17. Endothelial Antioxidant-1: A key mediator of Copper-dependent wound healing in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Archita; Sudhahar, Varadarajan; Chen, Gin -Fu

    Here, Copper (Cu), an essential nutrient, promotes wound healing, however, target of Cu action and underlying mechanisms remains elusive. Cu chaperone Antioxidant-1 (Atox1) in the cytosol supplies Cu to the secretory enzymes such as lysyl oxidase (LOX) while Atox1 in the nucleus functions as a Cu-dependent transcription factor. Using cutaneous wound healing model, here we show that Cu content (by X-ray Fluorescence Microscopy) and nuclear Atox1 are increased after wounding, and that wound healing with and without Cu treatment is impaired in Atox1 -/ - mice. Experiments using endothelial cell (EC)-specific Atox1 -/ - mice and gene transfer of nuclear-targetmore » Atox1 in Atox1 -/ - mice reveal that Atox1 in ECs as well as transcription factor function of Atox1 are required for wound healing. Mechanistically, Atox1 -/ - mice show reduced Atox1 target proteins such as p47phox NADPH oxidase and cyclin D1 as well as extracellular matrix Cu enzyme LOX activity in wound tissues. This in turn results in reducing O 2 - production in ECs, NFkB activity, cell proliferation and collagen formation, thereby inhibiting angiogenesis, macrophage recruitment and extracellular matrix maturation. Our findings suggest that Cu-dependent transcription factor/Cu chaperone Atox1 in ECs plays an essential role to sense Cu to accelerate wound angiogenesis and healing.« less

  18. Endothelial Antioxidant-1: A key mediator of Copper-dependent wound healing in vivo

    DOE PAGES

    Das, Archita; Sudhahar, Varadarajan; Chen, Gin -Fu; ...

    2016-09-26

    Here, Copper (Cu), an essential nutrient, promotes wound healing, however, target of Cu action and underlying mechanisms remains elusive. Cu chaperone Antioxidant-1 (Atox1) in the cytosol supplies Cu to the secretory enzymes such as lysyl oxidase (LOX) while Atox1 in the nucleus functions as a Cu-dependent transcription factor. Using cutaneous wound healing model, here we show that Cu content (by X-ray Fluorescence Microscopy) and nuclear Atox1 are increased after wounding, and that wound healing with and without Cu treatment is impaired in Atox1 -/ - mice. Experiments using endothelial cell (EC)-specific Atox1 -/ - mice and gene transfer of nuclear-targetmore » Atox1 in Atox1 -/ - mice reveal that Atox1 in ECs as well as transcription factor function of Atox1 are required for wound healing. Mechanistically, Atox1 -/ - mice show reduced Atox1 target proteins such as p47phox NADPH oxidase and cyclin D1 as well as extracellular matrix Cu enzyme LOX activity in wound tissues. This in turn results in reducing O 2 - production in ECs, NFkB activity, cell proliferation and collagen formation, thereby inhibiting angiogenesis, macrophage recruitment and extracellular matrix maturation. Our findings suggest that Cu-dependent transcription factor/Cu chaperone Atox1 in ECs plays an essential role to sense Cu to accelerate wound angiogenesis and healing.« less

  19. Endovascular Treatment of Severely Calcified Femoropopliteal Lesions Using the "Pave-and-Crack" Technique: Technical Description and 12-Month Results.

    PubMed

    Dias-Neto, Marina; Matschuck, Manuela; Bausback, Yvonne; Banning-Eichenseher, Ursula; Steiner, Sabine; Branzan, Daniela; Staab, Holger; Varcoe, Ramon L; Scheinert, Dierk; Schmidt, Andrej

    2018-06-01

    To report midterm results of the "pave-and-crack" technique to facilitate safe and effective scaffolding of heavily calcified femoropopliteal lesions in preparation for delivery of a Supera interwoven stent. Data were collected retrospectively on 67 consecutive patients (mean age 71±8 years; 54 men) treated with this technique between November 2011 and February 2017 at a single center. A third (22/64, 34%) of the patients had critical limb ischemia (CLI). Most lesions were TASC D (52/67, 78%), and the majority were occlusions (61/66, 92%). The mean lesion length was 26.9±11.2 cm. Nearly two-thirds (40/64, 62%) had grade 4 calcification (Peripheral Arterial Calcium Scoring System). To prepare for Supera stenting, the most heavily calcified segments of the lesion were predilated aggressively to obliterate recoil. A Viabahn stent-graft was then implanted to "pave" the lesion and protect from vessel rupture as aggressive predilation continued until the calcified plaque was "cracked" before lining the entire lesion with a Supera stent. Patency and target lesion revascularization (TLR) rates were estimated using the Kaplan-Meier method. Procedural success was achieved in 100% and technical success (residual stenosis <30%) in 98% (66/67). The mean cumulative stent lengths were 16±9 cm for the Viabahn and 23±12 cm for the Supera. Only 2 complications occurred (distal embolization and access-site pseudoaneurysm). Two CLI patients died within 30 days, and 3 patients (all claudicants) underwent a TLR. Patients were followed for a mean 19±18 months, during which another 2 CLI patients died and 1 patient had a major amputation. One-year primary and secondary patency estimates were 79% and 91%, respectively; freedom from TLR was 85%. Despite severe lesion calcification, patients experienced high technical success and a safe and durable therapy at midterm follow-up with the femoropopliteal "pave-and-crack" technique.

  20. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun

    2014-12-12

    Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identificationmore » and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.« less

  1. Chronic Arsenic Exposure and Angiogenesis in Human Bronchial Epithelial Cells via the ROS/miR-199a-5p/HIF-1α/COX-2 Pathway

    PubMed Central

    He, Jun; Wang, Min; Jiang, Yue; Chen, Qiudan; Xu, Shaohua; Xu, Qing; Jiang, Bing-Hua

    2014-01-01

    Background: Environmental and occupational exposure to arsenic is a major public health concern. Although it has been identified as a human carcinogen, the molecular mechanism underlying the arsenic-induced carcinogenesis is not well understood. Objectives: We aimed to determine the role and mechanisms of miRNAs in arsenic-induced tumor angiogenesis and tumor growth. Methods: We utilized an in vitro model in which human lung epithelial BEAS-2B cells were transformed through long-term exposure to arsenic. A human xenograft tumor model was established to assess tumor angiogenesis and tumor growth in vivo. Tube formation assay and chorioallantoic membranes assay were used to assess tumor angiogenesis. Results: We found that miR-199a-5p expression levels were more than 100-fold lower in arsenic-transformed cells than parental cells. Re-expression of miR-199a-5p impaired arsenic-induced angiogenesis and tumor growth through its direct targets HIF-1α and COX-2. We further showed that arsenic induced COX-2 expression through HIF-1 regulation at the transcriptional level. In addition, we demonstrated that reactive oxygen species are an upstream event of miR-199a-5p/ HIF-1α/COX-2 pathway in arsenic-induced carcinogenesis. Conclusion: The findings establish critical roles of miR-199a-5p and its downstream targets HIF-1/COX-2 in arsenic-induced tumor growth and angiogenesis. Citation: He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, Jiang BH, Liu LZ. 2014. Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 Pathway. Environ Health Perspect 122:255–261; http://dx.doi.org/10.1289/ehp.1307545 PMID:24413338

  2. Lectin-Like Oxidized LDL Receptor-1 Is an Enhancer of Tumor Angiogenesis in Human Prostate Cancer Cells

    PubMed Central

    González-Chavarría, Iván; Cerro, Rita P.; Parra, Natalie P.; Sandoval, Felipe A.; Zuñiga, Felipe A.; Omazábal, Valeska A.; Lamperti, Liliana I.; Jiménez, Silvana P.; Fernandez, Edelmira A.; Gutiérrez, Nicolas A.; Rodriguez, Federico S.; Onate, Sergio A.; Sánchez, Oliberto; Vera, Juan C.; Toledo, Jorge R.

    2014-01-01

    Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells. PMID:25170920

  3. Association Between Osteogenesis and Inflammation During the Progression of Calcified Plaque Evaluated by 18F-Fluoride and 18F-FDG.

    PubMed

    Li, Xiang; Heber, Daniel; Cal-Gonzalez, Jacobo; Karanikas, Georgios; Mayerhoefer, Marius E; Rasul, Sazan; Beitzke, Dietrich; Zhang, Xiaoli; Agis, Hermine; Mitterhauser, Markus; Wadsak, Wolfgang; Beyer, Thomas; Loewe, Christian; Hacker, Marcus

    2017-06-01

    18 F-FDG is the most widely validated PET tracer for the evaluation of atherosclerotic inflammation. Recently, 18 F-NaF has also been considered a potential novel biomarker of osteogenesis in atherosclerosis. We aimed to analyze the association between inflammation and osteogenesis at different stages of atherosclerosis, as well as the interrelationship between these 2 processes during disease progression. Methods: Thirty-four myeloma patients underwent 18 F-NaF and 18 F-FDG PET/CT examinations. Lesions were divided into 3 groups (noncalcified, mildly calcified, and severely calcified lesions) on the basis of calcium density as measured in Hounsfield units by CT. Tissue-to-background ratios were determined from PET for both tracers. The association between inflammation and osteogenesis during atherosclerosis progression was evaluated in 19 patients who had at least 2 examinations with both tracers. Results: There were significant correlations between the maximum tissue-to-background ratios of the 2 tracers (Spearman r = 0.5 [ P < 0.01]; Pearson r = 0.4 [ P < 0.01]) in the 221 lesions at baseline. The highest uptake of both tracers was observed in noncalcified lesions, but without any correlation between the tracers (Pearson r = 0.06; P = 0.76). Compared with noncalcified plaques, mildly calcified plaques showed concordant significantly lower accumulation, with good correlation between the tracers (Pearson r = 0.7; P < 0.01). In addition, enhanced osteogenesis-derived 18 F-NaF uptake and regressive inflammation-derived 18 F-FDG uptake were observed in severely calcified lesions (Pearson r = 0.4; P < 0.01). During follow-up, increased calcium density and increased mean 18 F-NaF uptake were observed, whereas mean 18 F-FDG uptake decreased. Most noncalcified (86%) and mildly calcified (81%) lesions and 47% of severely calcified lesions had concordant development of both vascular inflammation and osteogenesis. Conclusion: The combination of 18 F-NaF PET imaging and 18 F

  4. Silencing of VEGF inhibits human osteosarcoma angiogenesis and promotes cell apoptosis via VEGF/PI3K/AKT signaling pathway

    PubMed Central

    Peng, Ningning; Gao, Shuming; Guo, Xu; Wang, Guangya; Cheng, Cai; Li, Min; Liu, Kehun

    2016-01-01

    Background: Osteosarcoma is a kind of highly malignant tumor and the growth and metastasis is closely related to angiogenesis. Vascular endothelial growth factor (VEGF) is an important angiogenesis-promoting factor. In the current study, we investigated the effects of suppressed VEGF on osteosarcoma and its molecular mechanism provided for a basis by targeting angiogenesis. Material/Methods: We established bearing human osteosarcoma Wistar rats model by subcutaneous inoculation of human SaOS-2 cells and the adenovirus vector Ad-VEGF-siRNA was constructed for further study. We assessed the efficiency of VEGF silencing and its influence on SaOS-2 cells. The expression of mRNA and protein were detected by RT-PCR and western blotting, respectively. Intratumoral microvessel density (MVD), VEGF and CD31 were evaluated by immunohistochemistry. We detected the cell apoptotic rates by flow cytometry. Results: Our results indicated that Ad-VEGF-siRNA could effectively suppressed the expression of VEGF expression, inhibited the proliferation capability and promoted apoptosis of SaOS-2 cells in vitro. Silencing of VEGF expression also suppress osteosarcoma tumor growth and reduce osteosarcoma angiogenesis in the Wistar rats model in vivo. Furthermore, We found that phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) activation were considerably reduced while inhibition VEGF expression in SaOS-2 cells. Conclusion: Our data demonstrated that VEGF silencing could suppress cells proliferation, promote cells apoptosis and reduce osteosarcoma angiogenesis through inactivation of VEGF/PI3K/AKT signaling pathway. PMID:27158386

  5. Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis

    PubMed Central

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc −; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. PMID:24714627

  6. Impaired Expression of Uncoupling Protein 2 (UCP2) Causes Defective Post-ischemic Angiogenesis in Mice Deficient in AMP-activated Protein Kinase α Subunits

    PubMed Central

    Xu, Ming-Jiang; Song, Ping; Shirwany, Najeeb; Liang, Bin; Xing, Junjie; Viollet, Benoit; Wang, Xian; Zhu, Yi; Zou, Ming-Hui

    2011-01-01

    Objective The aim of the present study was to determine whether mitochondrial uncoupling protein (UCP)-2 is required for AMPK-dependent angiogenesis in ischemia in vivo. Methods and Results Angiogenesis was assayed by monitoring endothelial tube formation (a surrogate for angiogenesis) in human umbilical vein endothelial cells (HUVECs), isolated mouse aortic endothelial cells (MAECs), and pulmomary microvascular endothelial cells (PMECs), or in ischemic thigh adductor muscles from wild-type (WT) mice or mice deficient in either AMPKα1 or AMPKα2. AMPK inhibition with pharmacological inhibitor (compound C) or genetic means (transfection of AMPKα-specific siRNA) significantly lowered the tube formation in HUVECs. Consistently, compared with WT mice, tube formation in MAECs isolated from either AMPKα1−/− or AMPKα2−/− mice, which exhibited oxidative stress and reduced expression of UCP2, were significantly impaired. In addition, adenoviral overexpression of UCP2, but not adenoviruses encoding green florescence protein (GFP), normalized tube formation in MAECs from either AMPKα1−/− or AMPKα2−/− mice. Similarly, supplementation with sodium nitroprusside (SNP), a nitric oxide (NO) donor, restored tube formation. Furthermore, ischemia significantly increased angiogenesis, serine 1177 phosphorylation of endothelial NO synthase (eNOS), and UCP2 in ischemic thigh adductor muscles from WT mice, but not from either AMPKα1−/− or AMPKα2−/− mice. Conclusion We conclude that AMPK-dependent UCP2 expression in endothelial cells promotes angiogenesis in vivo. PMID:21597006

  7. Human plasminogen kringle 1-5 inhibits angiogenesis and induces thrombomodulin degradation in a protein kinase A-dependent manner.

    PubMed

    Cho, Chia-Fong; Chen, Po-Ku; Chang, Po-Chiao; Wu, Hau-Lin; Shi, Guey-Yueh

    2013-10-01

    Kringle 1-5 (K1-5), an endogenous proteolytic fragment of human plasminogen (Plg), is an angiostatin-related protein that inhibits angiogenesis. Many angiostatin-related proteins have been identified, but the detailed molecular mechanisms underlying their antiangiogenic effects remain unclear. Thrombomodulin (TM) is a transmembrane glycoprotein that plays a major role in the anticoagulation process in endothelial cells. Previously, we demonstrated that recombinant TM could interact with Plg to enhance Plg activation. In the present study, we investigated the interaction between TM and K1-5, and their functions in endothelial cells. We found that K1-5 colocalized with TM and directly interacted with TM through the TM lectin-like domain. After K1-5 interacted with TM, it induced TM internalization and degradation. In addition, the K1-5-induced TM internalization and degradation in proteasomes after ubiquitin modification were dependent on protein kinase A (PKA). Moreover, a PKA-specific inhibitor reversed the effects of K1-5 on cell migration and tube formation. Consistent with these findings, TM overexpression resulted in increased cell migration; moreover, K1-5 inhibited the increase of TM-mediated cell migration in a PKA-dependent manner. We determined that TM acts as a K1-5 receptor and that K1-5 induces TM internalization, ubiquitination, and degradation through the PKA pathway, by which K1-5 may inhibit endothelial cell migration and tube formation. © 2013. Published by Elsevier Ltd. All rights reserved.

  8. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content.

    PubMed

    Malghem, Jacques; Lecouvet, Frédéric E; François, Robert; Vande Berg, Bruno C; Duprez, Thierry; Cosnard, Guy; Maldague, Baudouin E

    2005-02-01

    To explain a cause of high signal intensity on T1-weighted MR images in calcified intervertebral disks associated with spinal fusion. Magnetic resonance and radiological examinations of 13 patients were reviewed, presenting one or several intervertebral disks showing a high signal intensity on T1-weighted MR images, associated both with the presence of calcifications in the disks and with peripheral fusion of the corresponding spinal segments. Fusion was due to ligament ossifications (n=8), ankylosing spondylitis (n=4), or posterior arthrodesis (n=1). Imaging files included X-rays and T1-weighted MR images in all cases, T2-weighted MR images in 12 cases, MR images with fat signal suppression in 7 cases, and a CT scan in 1 case. Histological study of a calcified disk from an anatomical specimen of an ankylosed lumbar spine resulting from ankylosing spondylitis was examined. The signal intensity of the disks was similar to that of the bone marrow or of perivertebral fat both on T1-weighted MR images and on all sequences, including those with fat signal suppression. In one of these disks, a strongly negative absorption coefficient was focally measured by CT scan, suggesting a fatty content. The histological examination of the ankylosed calcified disk revealed the presence of well-differentiated bone tissue and fatty marrow within the disk. The high signal intensity of some calcified intervertebral disks on T1-weighted MR images can result from the presence of fatty marrow, probably related to a disk ossification process in ankylosed spines.

  9. Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2 signalling axis.

    PubMed

    Dewangan, Jayant; Kaushik, Shweta; Rath, Srikanta Kumar; Balapure, Anil K

    2018-01-15

    Angiogenesis is a recognized hallmark of cancer which promotes cancer cell progression and metastasis. Inhibition of angiogenesis to attenuate cancer growth is becoming desirable strategy for breast cancer management. The present study is aimed to investigate the antiangiogenic efficacy of a novel selective estrogen receptor modulator Centchroman (CC) on human breast cancer cells. Effect of CC on cell viability was evaluated using Sulforhodamine B assay. Endothelial cell proliferation, wound healing, Boyden chamber cell invasion, tube formation and chorioallantoic membrane (CAM) assays were performed to assess the effect of CC on migration, invasion and angiogenesis. Apoptosis, reactive oxygen species generation, caspase-3/7 and intracellular calcium ion level were measured through flow cytometry. Expression levels of HIF-1α, VEGF, VEGFR2, AKT and ERK were assessed by western blot analysis. CC selectively induces apoptosis in human breast cancer cells without affecting non-tumorigenic breast epithelial cells MCF-10A. Moreover, it inhibits migratory, invasive and mammosphere forming potential of breast cancer. Furthermore, CC also inhibited VEGF-induced migration, invasion and tube formation of HUVECs in vitro. CC effectively inhibited neovasculature formation in chicken CAM. Western blot analysis demonstrated that CC inhibited expression of HIF-1α and its downstream target VEGF. Interestingly, CC also suppressed VEGFR2 phosphorylation and consequently attenuated AKT and ERK phosphorylation. Our findings suggest that CC downregulates VEGF-induced angiogenesis by modulating HIF-1α/VEGFR2 pathway and recommend it (CC) as a potential therapeutic drug for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Placental growth factor enhances angiogenesis in human intestinal microvascular endothelial cells via PI3K/Akt pathway: Potential implications of inflammation bowel disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yi, E-mail: mondayzy@126.com; Tu, Chuantao, E-mail: tu.chuantao@zs-hospital.sh.cn; Zhao, Yuan, E-mail: zhao.yuan@zs-hospital.sh.cn

    Background: Angiogenesis plays a major role in the pathogenesis of inflammatory bowel disease (IBD). Placental growth factor (PlGF) is a specific regulator of pathological angiogenesis and is upregulated in the sera of IBD patients. Therefore, the role of PlGF in IBD angiogenesis was investigated here using HIMECs. Methods: The expression of PlGF and its receptors in human intestinal microvascular endothelial cells (HIMECs) and inflamed mucosa of IBD patients were examined using quantitative PCR and western blot analysis and the role of PlGF in IBD HIMECs was further explored using small interfering RNA (siRNA). The induction of pro-inflammatory cytokine by PlGFmore » in HIMECs was confirmed by ELISA. The capacity of PlGF to induce angiogenesis in HIMECs was tested through proliferation, cell-migration, matrigel tubule-formation assays and its underlying signaling pathway were explored by western blot analysis of ERK1/2 and PI3K/Akt phosphorylation. Results: mRNA and protein expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. Inflamed mucosa of IBD patients also displayed higher expression of PIGF. The production of IL-6 and TNF-α in culture supernatant of HIMECs treated with exogenous recombinant human PlGF-1 (rhPlGF-1) were increased. Furthermore, rhPlGF-1 significantly induced HIMECs migration and tube formation in a dose-dependent manner and knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced these angiogenesis activities. PlGF induced PI3K/Akt phosphorylation in HIMECs and pretreatment of PlGF-stimulated HIMECs with PI3K inhibitor (LY294002) significantly inhibited the PlGF-induced cell migration and tube formation. Conclusion: Our results demonstrated the pro-inflammatory and angiogenic effects of PlGF on HIMECs in IBD through activation of PI3K/Akt signaling pathway. PlGF/PI3K/Akt signaling may serve as a potential therapeutic target for IBD. - Highlights: • Expression of PlGF and its receptor

  11. Luteolin Inhibits Human Prostate Tumor Growth by Suppressing Vascular Endothelial Growth Factor Receptor 2-Mediated Angiogenesis

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Budhraja, Amit; Wang, Xin; Ding, Songze; Wang, Lei; Hitron, Andrew; Lee, Jeong-Chae; Kim, Donghern; Divya, Sasidharan Padmaja; Chen, Gang; Zhang, Zhuo; Luo, Jia; Shi, Xianglin

    2012-01-01

    Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PMID:23300633

  12. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGES

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; ...

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  13. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  14. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  15. Preventing High Altitude Cerebral Edema in Rats with Repurposed Anti-Angiogenesis Pharmacotherapy.

    PubMed

    Tarshis, Samantha; Maltzahn, Joanne; Loomis, Zoe; Irwin, David C

    2016-12-01

    High altitude cerebral edema (HACE) is a fulminant, deadly, and yet still unpredictable brain disease. A new prophylactic treatment for HACE and its predecessor, acute mountain sickness (AMS), needs to be developed without the contraindications or adverse effect profiles of acetazolamide and dexamethasone. Since neovascularization signals are likely key contributors to HACE/AMS, our approach was to examine already existing anti-angiogenic drugs to inhibit potential initiating HACE pathway(s). This approach can also reveal crucial early steps in the frequently debated mechanism of HACE/AMS pathogenesis. We exposed four rat cohorts to hypobaric hypoxia and one to sea level (hyperbaric) conditions. The cohorts were treated with saline controls, an anti-angiogenesis drug (motesanib), a pro-angiogenesis drug (deferoxamine), or an intraperitoneal version of the established AMS prophylaxis drug, acetazolamide (benzolamide). Brain tissue was analyzed for cerebrovascular leak using the Evans Blue Dye (EVBD) protocol. We observed significantly increased EVBD in the altitude control and pro-angiogenesis (deferoxamine) cohorts, and significantly decreased EVBD in the anti-angiogenesis (motesanib), established treatment (benzolamide), and sea-level cohorts. Anti-angiogenesis-treated cohorts demonstrated less cerebrovascular extravasation than the altitude control and pro-angiogenesis treated rats, suggesting promise as an alternative prophylactic HACE/AMS treatment. The leak exacerbation with pro-angiogenesis treatment and improvement with anti-angiogenesis treatment support the hypothesis of early neovascularization signals provoking HACE. We demonstrate statistically significant evidence to guide further investigation for VEGF- and HIF-inhibitors as HACE/AMS prophylaxis, and as elucidators of still unknown HACE pathogenesis.Tarshis S, Maltzahn J, Loomis Z, Irwin DC. Preventing high altitude cerebral edema in rats with repurposed anti-angiogenesis pharmacotherapy. Aerosp Med

  16. The modern calcifying sponge Spheciospongia vesparium (Lamarck, 1815), Great Bahama Bank: Implications for ancient sponge mud-mounds

    NASA Astrophysics Data System (ADS)

    Neuweiler, Fritz; Burdige, David J.

    2005-04-01

    Modern calcified siliceous sponges from the Great Bahama Bank, living at water depth ranges of 2 to 5 m, have been proposed as likely analogues for calcified sponges in Upper Jurassic sponge "reefs" (e.g., southern Germany), or Lower Jurassic bioherms that consist of reddish, spiculiferous limestones (e.g., Broccatello Formation of the Southern Alps). Indeed, sponge-related calcification or siliceous sponge diagenesis, in general, is widely considered a key feature for the mechanisms of accretion and textural maturation in Phanerozoic sponge mounds or spiculiferous carbonate mud-mounds. Based on a revisit of the original sites on the Great Bahama Bank (NW of Andros Island) the biostratonomy of the calcifying sponge Spheciospongia vesparium (Lamarck, 1815) was explored using the patterns of fluorescent dissolved organic matter (FDOM) as revealed by the application of three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy. Geochemical sampling distinguished between FDOM that was extracted from sponge tissue and FDOM that was intimately associated with CaCO 3 (from particles due to sediment agglutination and authigenic CaCO 3), both obtained from the living sponge at the sediment surface and from the calcified sponge at the shallow subsurface (from 5 to 10 cm of depth). As expected, the sponge tissue shows highest intensities for protein-like fluorescence. However, from the surface to the subsurface, there is a loss of such relatively pristine fluorescent material in the range of 70%. Humic-like fluorescence that occurs associated with sponge tissue is relatively mature or aged, thus it most probably represents seawater FDOM taken up through active filter feeding. Relative to the sponge tissue material, the FDOM patterns associated with Ca-carbonates show much lower total fluorescence intensities, by up to two orders of magnitude. The agglutinated sedimentary carbonate particles from the surface (pellets, ooids, grapestones) exclusively show a

  17. DNA containing CpG motifs induces angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Klinman, Dennis M.; Gierynska, Malgorzata; Rouse, Barry T.

    2002-06-01

    New blood vessel formation in the cornea is an essential step in the pathogenesis of a blinding immunoinflammatory reaction caused by ocular infection with herpes simplex virus (HSV). By using a murine corneal micropocket assay, we found that HSV DNA (which contains a significant excess of potentially bioactive "CpG" motifs when compared with mammalian DNA) induces angiogenesis. Moreover, synthetic oligodeoxynucleotides containing CpG motifs attract inflammatory cells and stimulate the release of vascular endothelial growth factor (VEGF), which in turn triggers new blood vessel formation. In vitro, CpG DNA induces the J774A.1 murine macrophage cell line to produce VEGF. In vivo CpG-induced angiogenesis was blocked by the administration of anti-mVEGF Ab or the inclusion of "neutralizing" oligodeoxynucleotides that specifically oppose the stimulatory activity of CpG DNA. These findings establish that DNA containing bioactive CpG motifs induces angiogenesis, and suggest that CpG motifs in HSV DNA may contribute to the blinding lesions of stromal keratitis.

  18. Glycobiology of ocular angiogenesis

    PubMed Central

    Markowska, Anna I; Cao, Zhiyi; Panjwani, Noorjahan

    2014-01-01

    Ocular neovascularization can affect almost all the tissues of the eye: the cornea, the iris, the retina, and the choroid. Pathological neovascularization is the underlying cause of vision loss in common ocular conditions such as diabetic retinopathy, retinopathy of prematurity and age-related macular neovascularization. Glycosylation is the most common covalent posttranslational modification of proteins in mammalian cells. A growing body of evidence demonstrates that glycosylation influences the process of angiogenesis and impacts activation, proliferation, and migration of endothelial cells as well as the interaction of angiogenic endothelial cells with other cell types necessary to form blood vessels. Recent studies have provided evidence that members of the galectin class of β-galactoside-binding proteins modulate angiogenesis by novel carbohydrate-based recognition systems involving interactions between glycans of angiogenic cell surface receptors and galectins. This review discusses the significance of glycosylation and the role of galectins in the pathogenesis of ocular neovascularization. PMID:25108228

  19. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-01

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into

  20. The PPARδ ligand L-165041 inhibits VEGF-induced angiogenesis, but the antiangiogenic effect is not related to PPARδ.

    PubMed

    Park, Jin-Hee; Lee, Kuy-Sook; Lim, Hyun-Joung; Kim, Hanna; Kwak, Hyun-Jeong; Park, Hyun-Young

    2012-06-01

    Peroxisome proliferator-activated receptor (PPAR)δ is known to be expressed ubiquitously and involved in lipid and glucose metabolism. Recent studies have demonstrated that PPARδ is expressed in endothelial cells (ECs) and plays a potential role in endothelial survival and proliferation. Although PPARα and PPARγ are well recognized to play anti-inflammatory, antiproliferative, and antiangiogenic roles in ECs, the general effect of PPARδ on angiogenesis in ECs remains unclear. Thus, we investigated the effect of the PPARδ ligand L-165041 on vascular EC proliferation and angiogenesis in vitro as well as in vivo. Our data show that L-165041 inhibited VEGF-induced cell proliferation and migration in human umbilical vein ECs (HUVECs). L-165041 also inhibited angiogenesis in the Matrigel plug assay and aortic ring assay. Flow cytometric analysis indicated that L-165041 reduced the number of ECs in the S phase and the expression levels of cell cycle regulatory proteins such as cyclin A, cyclin E, CDK2, and CDK4; phosphorylation of the retinoblastoma protein was suppressed by pretreatment with L-165041. We confirmed whether these antiangiogenic effects of L-165041 were PPARδ-dependent using GW501516 and PPARδ siRNA. GW501516 treatment did not inhibit VEGF-induced angiogenesis, and transfection of PPARδ siRNA did not reverse this antiangiogenic effect of L-165041, suggesting that the antiangiogenic effect of L-165041 on ECs is PPARδ-independent. Together, these data indicate that the PPARδ ligand L-165041 inhibits VEGF-stimulated angiogenesis by suppressing the cell cycle progression independently of PPARδ. This study highlights the therapeutic potential of L-165041 in the treatment of many disorders related to pathological angiogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  1. Study on the tumor-induced angiogenesis using mathematical models.

    PubMed

    Suzuki, Takashi; Minerva, Dhisa; Nishiyama, Koichi; Koshikawa, Naohiko; Chaplain, Mark Andrew Joseph

    2018-01-01

    We studied angiogenesis using mathematical models describing the dynamics of tip cells. We reviewed the basic ideas of angiogenesis models and its numerical simulation technique to produce realistic computer graphics images of sprouting angiogenesis. We examined the classical model of Anderson-Chaplain using fundamental concepts of mass transport and chemical reaction with ECM degradation included. We then constructed two types of numerical schemes, model-faithful and model-driven ones, where new techniques of numerical simulation are introduced, such as transient probability, particle velocity, and Boolean variables. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA).

    PubMed

    Hannafon, Bethany N; Carpenter, Karla J; Berry, William L; Janknecht, Ralf; Dooley, William C; Ding, Wei-Qun

    2015-07-16

    Docosahexaenoic acid (DHA) is a natural compound with anticancer and anti-angiogenesis activity that is currently under investigation as both a preventative agent and an adjuvant to breast cancer therapy. However, the precise mechanisms of DHA's anticancer activities are unclear. It is understood that the intercommunication between cancer cells and their microenvironment is essential to tumor angiogenesis. Exosomes are extracellular vesicles that are important mediators of intercellular communication and play a role in promoting angiogenesis. However, very little is known about the contribution of breast cancer exosomes to tumor angiogenesis or whether exosomes can mediate DHA's anticancer action. Exosomes were collected from MCF7 and MDA-MB-231 breast cancer cells after treatment with DHA. We observed an increase in exosome secretion and exosome microRNA contents from the DHA-treated cells. The expression of 83 microRNAs in the MCF7 exosomes was altered by DHA (>2-fold). The most abundant exosome microRNAs (let-7a, miR-23b, miR-27a/b, miR-21, let-7, and miR-320b) are known to have anti-cancer and/or anti-angiogenic activity. These microRNAs were also increased by DHA treatment in the exosomes from other breast cancer lines (MDA-MB-231, ZR751 and BT20), but not in exosomes from normal breast cells (MCF10A). When DHA-treated MCF7 cells were co-cultured with or their exosomes were directly applied to endothelial cell cultures, we observed an increase in the expression of these microRNAs in the endothelial cells. Furthermore, overexpression of miR-23b and miR-320b in endothelial cells decreased the expression of their pro-angiogenic target genes (PLAU, AMOTL1, NRP1 and ETS2) and significantly inhibited tube formation by endothelial cells, suggesting that the microRNAs transferred by exosomes mediate DHA's anti-angiogenic action. These effects could be reversed by knockdown of the Rab GTPase, Rab27A, which controls exosome release. We conclude that DHA alters breast

  3. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1.

    PubMed

    Hulsurkar, M; Li, Z; Zhang, Y; Li, X; Zheng, D; Li, W

    2017-03-01

    Chronic behavioral stress and beta-adrenergic signaling have been shown to promote cancer progression, whose underlying mechanisms are largely unclear, especially the involvement of epigenetic regulation. Histone deacetylase-2 (HDAC2), an epigenetic regulator, is critical for stress-induced cardiac hypertrophy. It is unknown whether it is necessary for beta-adrenergic signaling-promoted cancer progression. Using xenograft models, we showed that chronic behavioral stress and beta-adrenergic signaling promote angiogenesis and prostate cancer progression. HDAC2 was induced by beta-adrenergic signaling in vitro and in mouse xenografts. We next uncovered that HDAC2 is a direct target of cAMP response element-binding protein (CREB) that is activated by beta-adrenergic signaling. Notably, HDAC2 is necessary for beta-adrenergic signaling to induce angiogenesis. We further demonstrated that, upon CREB activation, HDAC2 represses thrombospondin-1 (TSP1), a potent angiogenesis inhibitor, through epigenetic regulation. Together, these data establish a novel pathway that HDAC2 and TSP1 act downstream of CREB activation in beta-adrenergic signaling to promote cancer progression.

  4. DEspR roles in tumor vasculo-angiogenesis, invasiveness, CSC-survival and anoikis resistance: a 'common receptor coordinator' paradigm.

    PubMed

    Herrera, Victoria L; Decano, Julius L; Tan, Glaiza A; Moran, Ann M; Pasion, Khristine A; Matsubara, Yuichi; Ruiz-Opazo, Nelson

    2014-01-01

    A priori, a common receptor induced in tumor microvessels, cancer cells and cancer stem-like cells (CSCs) that is involved in tumor angiogenesis, invasiveness, and CSC anoikis resistance and survival, could underlie contemporaneous coordination of these events rather than assume stochasticity. Here we show that functional analysis of the dual endothelin1/VEGFsignal peptide receptor, DEspR, (formerly named Dear, Chr.4q31.2) supports the putative common receptor paradigm in pancreatic ductal adenocarcinoma (PDAC) and glioblastoma (GBM) selected for their invasiveness, CD133+CSCs, and polar angiogenic features. Unlike normal tissue, DEspR is detected in PDAC and GBM microvessels, tumor cells, and CSCs isolated from PDAC-Panc1 and GBM-U87 cells. DEspR-inhibition decreased angiogenesis, invasiveness, CSC-survival and anoikis resistance in vitro, and decreased Panc1-CSC and U87-CSC xenograft tumor growth, vasculo-angiogenesis and invasiveness in nude(nu/nu) rats, suggesting that DEspR activation would coordinate these tumor progression events. As an accessible, cell-surface 'common receptor coordinator', DEspR-inhibition defines a novel targeted-therapy paradigm for pancreatic cancer and glioblastoma.

  5. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    PubMed Central

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  6. Inhibition of angiogenesis by S-adenosylmethionine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahin, Mehmet, E-mail: msahin@akdeniz.edu.tr; Sahin, Emel; Guemueslue, Saadet

    2011-04-29

    Highlights: {yields} Effects of S-adenosylmethionine (SAM) were investigated in endothelial cells. {yields} Our results showed that SAM decreased proliferation of endothelial cells. {yields} SAM influentially inhibited the percentage of cell migration. {yields} SAM probably stopped migration as independent from its effects on proliferation. {yields} SAM was shown to suppress in vitro angiogenesis. -- Abstract: Metastasis is a leading cause of mortality and morbidity in cancer. One of the steps in metastasis process is the formation of new blood vessels. Aberrant DNA methylation patterns are common in cancer cells. In recent studies, S-adenosylmethionine (SAM), which is a DNA methylating agent, hasmore » been found to have inhibitory effects on some carcinoma cells in vivo and in vitro. In the present study, we have used SAM to investigate whether it is effective against angiogenesis in vitro. Our results have shown that SAM can reduce the formation and organization of capillary-like structures of endothelial cells in tumoral environment. Besides, we have found SAM can block endothelial cell proliferation and the migration of cells towards growth factors-rich media. In conclusion, our study suggests that SAM may be used against angiogenesis as a natural bio-product.« less

  7. Investigation of the Lack of Angiogenesis in the Formation of Lymph Node Metastases

    PubMed Central

    Jeong, Han-Sin; Jones, Dennis; Liao, Shan; Wattson, Daniel A.; Cui, Cheryl H.; Duda, Dan G.; Willett, Christopher G.; Jain, Rakesh K.

    2015-01-01

    targets of clinically approved angiogenesis inhibitors are not active during early cancer progression in the lymph node, suggesting that inhibitors of sprouting angiogenesis as a class will not be effective in treating lymph node metastases. PMID:26063793

  8. Effective removal of calcified deposits on microstructured titanium fixture surfaces of dental implants with erbium lasers.

    PubMed

    Takagi, Toru; Aoki, Akira; Ichinose, Shizuko; Taniguchi, Yoichi; Tachikawa, Noriko; Shinoki, Takeshi; Meinzer, Walter; Sculean, Anton; Izumi, Yuichi

    2018-03-13

    Recently, the occurrence of peri-implantitis has been increasing. However, a suitable method to debride the contaminated surface of titanium implants has not been established. The aim of this study was to investigate the morphological changes of the microstructured fixture surface after erbium laser irradiation, and to clarify the effects of the erbium lasers when used to remove calcified deposits from implant fixture surfaces. In experiment 1, sandblasted, large grit, acid etched surface implants were treated with Er:YAG laser or Er,Cr:YSGG laser at 30-60 mJ/pulse and 20 Hz with water spray. In experiments 2 and 3, the effects of erbium lasers used to remove calcified deposits (artificially prepared deposits on virgin implants and natural calculus on failed implants) were investigated and compared with mechanical debridement using either a titanium curette or cotton pellets. After the various debridement methods, all specimens were analyzed by stereomicroscopy (SM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Stereomicroscopy and SEM showed that erbium lasers with optimal irradiation parameters did not have an effect on titanium microstructures. Compared to mechanical debridement, erbium lasers were more capable of removing calcified deposits on the microstructured surface without surface alteration using a non-contact sweeping irradiation at 40 mJ/pulse (ED 14.2 J/cm 2 /pulse) and 20 Hz with water spray. These results indicate that Er:YAG and Er,Cr:YSGG lasers are more advantageous in removing calcified deposits on the microstructured surface of titanium implants without inducing damage, compared to mechanical therapy by cotton pellet or titanium curette. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Fluorescence imaging of angiogenesis in green fluorescent protein-expressing tumors

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Baranov, Eugene; Jiang, Ping; Li, Xiao-Ming; Wang, Jin W.; Li, Lingna; Yagi, Shigeo; Moossa, A. R.; Hoffman, Robert M.

    2002-05-01

    The development of therapeutics for the control of tumor angiogenesis requires a simple, reliable in vivo assay for tumor-induced vascularization. For this purpose, we have adapted the orthotopic implantation model of angiogenesis by using human and rodent tumors genetically tagged with Aequorea victoria green fluorescent protein (GFP) for grafting into nude mice. Genetically-fluorescent tumors can be readily imaged in vivo. The non-luminous induced capillaries are clearly visible against the bright tumor fluorescence examined either intravitally or by whole-body luminance in real time. Fluorescence shadowing replaces the laborious histological techniques for determining blood vessel density. High-level GFP-expressing tumor cell lines made it possible to acquire the high-resolution real-time fluorescent optical images of angiogenesis in both primary tumors and their metastatic lesions in various human and rodent tumor models by means of a light-based imaging system. Intravital images of angiogenesis onset and development were acquired and quantified from a GFP- expressing orthotopically-growing human prostate tumor over a 19-day period. Whole-body optical imaging visualized vessel density increasing linearly over a 20-week period in orthotopically-growing, GFP-expressing human breast tumor MDA-MB-435. Vessels in an orthotopically-growing GFP- expressing Lewis lung carcinoma tumor were visualized through the chest wall via a reversible skin flap. These clinically-relevant angiogenesis mouse models can be used for real-time in vivo evaluation of agents inhibiting or promoting tumor angiogenesis in physiological micro- environments.

  10. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in Angiogenesis: Isoform-Specific Effects

    PubMed Central

    Wang, Haibo; Hartnett, M. Elizabeth

    2017-01-01

    Angiogenesis is the formation of new blood vessels from preexisting ones and is implicated in physiologic vascular development, pathologic blood vessel growth, and vascular restoration. This is in contrast to vasculogenesis, which is de novo growth of vessels from vascular precursors, or from vascular repair that occurs when circulating endothelial progenitor cells home into an area and develop into blood vessels. The objective of this review is to discuss the isoform-specific role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in physiologic and pathologic angiogenesis and vascular repair, but will not specifically address vasculogenesis. As the major source of reactive oxygen species (ROS) in vascular endothelial cells (ECs), NOX has gained increasing attention in angiogenesis. Activation of NOX leads to events necessary for physiologic and pathologic angiogenesis, including EC migration, proliferation and tube formation. However, activation of different NOX isoforms has different effects in angiogenesis. Activation of NOX2 promotes pathologic angiogenesis and vascular inflammation, but may be beneficial in revascularization in the hindlimb ischemic model. In contrast, activation of NOX4 appears to promote physiologic angiogenesis mainly by protecting the vasculature during ischemia, hypoxia and inflammation and by restoring vascularization, except in models of oxygen-induced retinopathy and diabetes where NOX4 activation leads to pathologic angiogenesis. PMID:28587189

  11. Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1

    PubMed Central

    Veliceasa, Dorina; Bridgeman, Bryan B.; Fitchev, Philip; Cornwell, Mona L.; Crawford, Susan E.; Pelling, Jill C.; Volpert, Olga V.

    2014-01-01

    Plant flavonoid apigenin prevents and inhibits UVB-induced carcinogenesis in the skin and has strong anti-proliferative and anti-angiogenic properties. Here we identify mechanisms, by which apigenin controls these oncogenic events. We show that apigenin acts, at least in part, via endogenous angiogenesis inhibitor, thrombospondin-1 (TSP1). TSP1 expression by the epidermal keratinocytes is potently inhibited by UVB. It inhibits cutaneous angiogenesis and UVB-induced carcinogenesis. We show that apigenin restores TSP1 in epidermal keratinocytes subjected to UVB and normalizes proliferation and angiogenesis in UVB-exposed skin. Importantly, reconstituting TSP1 anti-angiogenic function in UVB-irradiated skin with a short bioactive peptide mimetic representing exclusively its anti-angiogenic domain reproduced the anti-proliferative and anti-angiogenic effects of apigenin. Cox-2 and HIF-1α are important mediators of angiogenesis. Both apigenin and TSP1 peptide mimetic attenuated their induction by UVB. Finally we identified the molecular mechanism, whereby apigenin did not affect TSP1 mRNA, but increased de novo protein synthesis. Knockdown studies implicated the RNA-binding protein HuR, which controls mRNA stability and translation. Apigenin increased HuR cytoplasmic localization and physical association with TSP1 mRNA causing de novo TSP1 synthesis. HuR cytoplasmic localization was, in turn, dependent on CHK2 kinase. Together, our data provide a new mechanism, by which apigenin controls UVB-induced carcinogenesis. PMID:25526033

  12. EZH2 Modulates Angiogenesis In Vitro and in a Mouse Model of Limb Ischemia

    PubMed Central

    Mitić, Tijana; Caporali, Andrea; Floris, Ilaria; Meloni, Marco; Marchetti, Micol; Urrutia, Raul; Angelini, Gianni D; Emanueli, Costanza

    2015-01-01

    Epigenetic mechanisms may regulate the expression of pro-angiogenic genes, thus affecting reparative angiogenesis in ischemic limbs. The enhancer of zest homolog-2 (EZH2) induces thtrimethylation of lysine 27 on histone H3 (H3K27me3), which represses gene transcription. We explored (i) if EZH2 expression is regulated by hypoxia and ischemia; (ii) the impact of EZH2 on the expression of two pro-angiogenic genes: eNOS and BDNF; (iii) the functional effect of EZH2 inhibition on cultured endothelial cells (ECs); (iv) the therapeutic potential of EZH2 inhibition in a mouse model of limb ischemia (LI). EZH2 expression was increased in cultured ECs exposed to hypoxia (control: normoxia) and in ECs extracted from mouse ischemic limb muscles (control: absence of ischemia). EZH2 increased the H3K27me3 abundance onto regulatory regions of eNOS and BDNF promoters. In vitro RNA silencing or pharmacological inhibition by 3-deazaneplanocin (DZNep) of EZH2 increased eNOS and BDNF mRNA and protein levels and enhanced functional capacities (migration, angiogenesis) of ECs under either normoxia or hypoxia. In mice with experimentally induced LI, DZNep increased angiogenesis in ischaemic muscles, the circulating levels of pro-angiogenic hematopoietic cells and blood flow recovery. Targeting EZH2 for inhibition may open new therapeutic avenues for patients with limb ischemia. PMID:25189741

  13. FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis

    PubMed Central

    Gong, Fei-Ran; Zhou, Binhua P.; Lian, Lian; Shen, Bairong; Chen, Kai; Duan, Weiming; Wu, Meng-Yao; Tao, Min; Li, Wei

    2016-01-01

    The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation. PMID:27323403

  14. Molecular Imaging of Tumor Angiogenesis and Therapeutic Effects with Dual Bioluminescence.

    PubMed

    Wang, Ran; Zhang, Kaiyue; Tao, Hongyan; Du, Wei; Wang, Di; Huang, Ziwei; Zhou, Manqian; Xu, Yang; Wang, Yuebing; Liu, Na; Wang, Hui; Li, Zongjin

    2017-01-01

    Angiogenesis is critical for the growth of tumor by supplying nutrients and oxygen that exacerbates the metastasis and progression of cancer. Noninvasive imaging of angiogenesis during the tumor therapeutic processes may provide novel opportunities for image-guided tumor management. Here, we want to develop a mouse animal model for assessing cancer progression and angiogenesis in the same individuals by molecular imaging. Breast cancer model was developed with mouse breast cancer cell line 4T1 carrying a reporter system encoding a triple fusion (TF) reporter gene consisting of renilla luciferase (Rluc), red fluorescent protein (RFP) and herpes simplex virus truncated thymidine kinase (HSV-ttk) in transgenic mice, which expressed firefly luciferase (Fluc) under the promoter of vascular endothelial growth factor receptor 2 (Vegfr2-luc). The mice were subsequently treated with ganciclovir (GCV) and the tumor angiogenesis was tracked by Fluc imaging and the growth status of tumor was monitored by imaging of Rluc simultaneously. Overall, this traceable breast cancer model can simultaneously image the tumor growth and angiogenesis in single individual, which may facilitate a better understanding the mechanisms of angiogenesis in the progression and regression of tumor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. The effect of hypodynamia on mineral and protein metabolism in calcified tissues of the maxillodental system (experimental radioisotope study)

    NASA Technical Reports Server (NTRS)

    Prokhonchukov, A. A.; Kovalenko, Y. A.; Kolesnik, A. G.; Kondratyev, Y. I.; Ilyushko, N. A.

    1980-01-01

    Mineral and protein metabolism was studied in experiments on 60 white rats, using P-32 and Ca-45 uptake in the mineral fractions, 2C-14-glycine in the protein fractions, and P-32 in both fractions of calcified tissues as indices over a 100 day period of experimental hypodynamia. Combined alterations in mineral and protein metabolism occurred in the calcified tissues of the experimental animals. The most pronounced changes were found in P-32 and 2C-14-glycine metabolism. In the incisors and femoral bones, these alterations occurred in two phases: P-32 and 2C-14-glycine uptake first increased, then decreased. Changes in Ca-45 metabolism were less pronounced, particularly in the initial period of the experiment. A marked reduction in P-32, Ca-45, and 2C-14-glycine uptake was found in various fractions of the calcified tissues on the 100th day of experimental hypodynamia.

  16. Automatic extraction of angiogenesis bioprocess from text

    PubMed Central

    Wang, Xinglong; McKendrick, Iain; Barrett, Ian; Dix, Ian; French, Tim; Tsujii, Jun'ichi; Ananiadou, Sophia

    2011-01-01

    Motivation: Understanding key biological processes (bioprocesses) and their relationships with constituent biological entities and pharmaceutical agents is crucial for drug design and discovery. One way to harvest such information is searching the literature. However, bioprocesses are difficult to capture because they may occur in text in a variety of textual expressions. Moreover, a bioprocess is often composed of a series of bioevents, where a bioevent denotes changes to one or a group of cells involved in the bioprocess. Such bioevents are often used to refer to bioprocesses in text, which current techniques, relying solely on specialized lexicons, struggle to find. Results: This article presents a range of methods for finding bioprocess terms and events. To facilitate the study, we built a gold standard corpus in which terms and events related to angiogenesis, a key biological process of the growth of new blood vessels, were annotated. Statistics of the annotated corpus revealed that over 36% of the text expressions that referred to angiogenesis appeared as events. The proposed methods respectively employed domain-specific vocabularies, a manually annotated corpus and unstructured domain-specific documents. Evaluation results showed that, while a supervised machine-learning model yielded the best precision, recall and F1 scores, the other methods achieved reasonable performance and less cost to develop. Availability: The angiogenesis vocabularies, gold standard corpus, annotation guidelines and software described in this article are available at http://text0.mib.man.ac.uk/~mbassxw2/angiogenesis/ Contact: xinglong.wang@gmail.com PMID:21821664

  17. Extracellular nonmitogenic angiogenesis factor and method of isolation thereof from wound fluid

    DOEpatents

    Banda, Michael J.; Werb, Zena; Knighton, David R.; Hunt, Thomas K.

    1985-01-01

    A nonmitogenic angiogenesis factor is isolated from wound fluid by dialysis to include materials in the molecular size range of 2,000 to 14,000, lyophilization, and chromatography. The nonmitogenic angiogenesis factor is identified by activity by corneal implant assay and by cell migration assay. The angiogenesis factor is also characterized by inactivity by mitogenesis assay.

  18. Extracellular nonmitogenic angiogenesis factor and method of isolation thereof from wound fluid

    DOEpatents

    Banda, M.J.; Werb, Z.; Knighton, D.R.; Hunt, T.K.

    1985-03-05

    A nonmitogenic angiogenesis factor is isolated from wound fluid by dialysis to include materials in the molecular size range of 2,000 to 14,000, lyophilization, and chromatography. The nonmitogenic angiogenesis factor is identified by activity by corneal implant assay and by cell migration assay. The angiogenesis factor is also characterized by inactivity by mitogenesis assay. 3 figs.

  19. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis.

    PubMed

    Tian, Sha-Sha; Jiang, Fu-Sheng; Zhang, Kun; Zhu, Xue-Xin; Jin, Bo; Lu, Jin-Jian; Ding, Zhi-Shan

    2014-01-01

    The total flavonoids (TFs) were isolated from the leaves of Carya cathayensis Sarg. (LCC), a well-known Chinese medicinal herb commercially cultivated in Tianmu Mountain district, a cross area of Zhejiang and Anhui provinces in China. Five flavonoids, i.e. cardamonin, pinostrobin chalcone (PC), wogonin, chrysin, and pinocembrin were the main components of the TFs. The TFs and these pure compounds suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis as detected in the mouse aortic ring assay, and cardamonin showed the best effect among them. To further elucidate the mechanisms for suppressing angiogenesis of these flavonoids, assays of VEGF-induced proliferation and migration in human umbilical vein endothelial cells (HUVECs) were performed. The TFs, cardamonin, pinocembrin, and chrysin obviously suppressed both VEGF-induced HUVEC proliferation and migration. However, PC and wogonin not only slightly inhibited VEGF-induced proliferation but also remarkably suppressed those of migration in HUVECs. Our further study showed that cardamonin decreased the phosphorylation of ERK and AKT induced by VEGF with a dose-dependent manner in HUVECs. Our findings indicate that the TFs and these pure flavonoids may become potential preventive and/or therapeutic agents against angiogenesis-related diseases. © 2013.

  20. EMMPRIN promotes angiogenesis, proliferation, invasion and resistance to sunitinib in renal cell carcinoma, and its level predicts patient outcome.

    PubMed

    Sato, Mototaka; Nakai, Yasutomo; Nakata, Wataru; Yoshida, Takahiro; Hatano, Koji; Kawashima, Atsunari; Fujita, Kazutoshi; Uemura, Motohide; Takayama, Hitoshi; Nonomura, Norio

    2013-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC) is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC. EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined. EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA) in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni). EMMPRIN-overexpressing RCC cells were resistant to sunitinib. Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC.

  1. EMMPRIN Promotes Angiogenesis, Proliferation, Invasion and Resistance to Sunitinib in Renal Cell Carcinoma, and Its Level Predicts Patient Outcome

    PubMed Central

    Sato, Mototaka; Nakai, Yasutomo; Nakata, Wataru; Yoshida, Takahiro; Hatano, Koji; Kawashima, Atsunari; Fujita, Kazutoshi; Uemura, Motohide; Takayama, Hitoshi; Nonomura, Norio

    2013-01-01

    Purpose Extracellular matrix metalloproteinase inducer (EMMPRIN) has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC) is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC. Experimental Design EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined. Results EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA) in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni). EMMPRIN-overexpressing RCC cells were resistant to sunitinib. Conclusion Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC. PMID:24073208

  2. Angiogenesis in tissue engineering: from concept to the vascularization of scaffold construct

    NASA Astrophysics Data System (ADS)

    Amirah Ishak, Siti; Pangestu Djuansjah, J. R.; Kadir, M. R. Abdul; Sukmana, Irza

    2014-06-01

    Angiogenesis, the formation of micro-vascular network from the preexisting vascular vessels, has been studied in the connection to the normal developmental process as well as numerous diseases. In tissue engineering research, angiogenesis is also essential to promote micro-vascular network inside engineered tissue constructs, mimicking a functional blood vessel in vivo. Micro-vascular network can be used to maintain adequate tissue oxygenation, nutrient transfer and waste removal. One of the problems faced by angiogenesis researchers is to find suitable in vitro assays and methods for assessing the effect of regulators on angiogenesis and micro-vessel formation. The assay would be reliable and repeatable with easily quantifiable with physiologically relevant. This review aims to highlights recent advanced and future challenges in developing and using an in vitro angiogenesis assay for the application on biomedical and tissue engineering research.

  3. δ11B as monitor of calcification site pH in divergent marine calcifying organisms

    NASA Astrophysics Data System (ADS)

    Sutton, Jill N.; Liu, Yi-Wei; Ries, Justin B.; Guillermic, Maxence; Ponzevera, Emmanuel; Eagle, Robert A.

    2018-03-01

    The boron isotope composition (δ11B) of marine biogenic carbonates has been predominantly studied as a proxy for monitoring past changes in seawater pH and carbonate chemistry. However, a number of assumptions regarding chemical kinetics and thermodynamic isotope exchange reactions are required to derive seawater pH from δ11B biogenic carbonates. It is also probable that δ11B of biogenic carbonate reflects seawater pH at the organism's site of calcification, which may or may not reflect seawater pH. Here, we report the development of methodology for measuring the δ11B of biogenic carbonate samples at the multi-collector inductively coupled mass spectrometry facility at Ifremer (Plouzané, France) and the evaluation of δ11BCaCO3 in a diverse range of marine calcifying organisms reared for 60 days in isothermal seawater (25 °C) equilibrated with an atmospheric pCO2 of ca. 409 µatm. Average δ11BCaCO3 composition for all species evaluated in this study range from 16.27 to 35.09 ‰, including, in decreasing order, coralline red alga Neogoniolithion sp. (35.89 ± 3.71 ‰), temperate coral Oculina arbuscula (24.12 ± 0.19 ‰), serpulid worm Hydroides crucigera (19.26 ± 0.16 ‰), tropical urchin Eucidaris tribuloides (18.71 ± 0.26 ‰), temperate urchin Arbacia punctulata (16.28 ± 0.86 ‰), and temperate oyster Crassostrea virginica (16.03 ‰). These results are discussed in the context of each species' proposed mechanism of biocalcification and other factors that could influence skeletal and shell δ11B, including calcifying site pH, the proposed direct incorporation of isotopically enriched boric acid (instead of borate) into biogenic calcium carbonate, and differences in shell/skeleton polymorph mineralogy. We conclude that the large inter-species variability in δ11BCaCO3 (ca. 20 ‰) and significant discrepancies between measured δ11BCaCO3 and δ11BCaCO3 expected from established relationships between abiogenic δ11BCaCO3 and seawater pH arise

  4. Prospects for detection of target-dependent annual modulation in direct dark matter searches

    DOE PAGES

    Nobile, Eugenio Del; Gelmini, Graciela B.; Witte, Samuel J.

    2016-02-03

    Earth's rotation about the Sun produces an annual modulation in the expected scattering rate at direct dark matter detection experiments. The annual modulation as a function of the recoil energy E R imparted by the dark matter particle to a target nucleus is expected to vary depending on the detector material. However, for most interactions a change of variables from E R to v min, the minimum speed a dark matter particle must have to impart a fixed E R to a target nucleus, produces an annual modulation independent of the target element. We recently showed that if the darkmore » matter-nucleus cross section contains a non-factorizable target and dark matter velocity dependence, the annual modulation as a function of v min can be target dependent. Here we examine more extensively the necessary conditions for target-dependent modulation, its observability in present-day experiments, and the extent to which putative signals could identify a dark matter-nucleus differential cross section with a non-factorizable dependence on the dark matter velocity.« less

  5. Apatinib Inhibits Angiogenesis Via Suppressing Akt/GSK3β/ANG Signaling Pathway in Anaplastic Thyroid Cancer.

    PubMed

    Jin, Zhijian; Cheng, Xi; Feng, Haoran; Kuang, Jie; Yang, Weiping; Peng, Chenghong; Shen, Baiyong; Qiu, Weihua

    2017-01-01

    Anaplastic thyroid carcinoma (ATC) is one of the most lethal human malignancies, and there is no efficient method to slow its process. Apatinib, a novel tyrosine kinase inhibitor (TKI), has been confirmed for its efficacy and safety in the treatment of advanced gastric carcinoma patients. However, the effects of Apatinib in ATC are still unknown. In this study, we explored the effects and mechanisms of Apatinib on tumor growth and angiogenesis in vitro and in vitro in ATC cells. Angiogenesis antibodies array was utilized to detect the expression of angiogenesis-related genes after Apatinib treatment in ATC cells. In addition, we used Akt activator, Akt inhibitor and GSK3β inhibitor to further study the mechanism for how Apatinib suppressed angiogenesis. Apatinib treatment could suppress the growth of ATC cells in a dose- and time-dependent manner via inducing apoptosis and blocking cell cycle progression at G0/G1 phase. Moreover, Apatinib treatment decreased the expression of angiogenin (ANG) and inhibited angiogenesis of ATC cells in vitro and in vitro. We further confirmed that recombinant human ANG (rhANG) significantly abrogated Apatinib-mediated anti-angiogenic ability in ATC cells. Additionally, Apatinib treatment decreased the level of p-Akt and p-GSK3β. Moreover, the Apatinib-mediated decrease of ANG and anti-angiogenic ability were partly reversed when an Akt activator, SC79, was administered. Furthermore, the anti-angiogenic ability of Apatinib can be enhanced in the presence of Akt inhibitor, and the inhibition of GSK3β attenuated the anti-angiogenic ability of Apatinib. Our results demonstrated that Apatinib treatment inhibited tumor growth, and Apatinib-induced suppression of Akt/GSK3β/ANG signaling pathway may play an important role in the inhibition of angiogenesis in ATC, supporting a potential therapeutic approach for using Apatinib in the treatment of ATC. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrion, Bita; Kong, Yen P.; Kaigler, Darnell

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes theirmore » failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. Highlights: • BMSCs stimulate angiogenesis, but the mechanisms remain unclear. • We silenced the expression of the α6 integrin subunit in BMSCs. • Silencing this receptor subunit significantly inhibited angiogenic sprouting. • Knocking down α6 integrin affected laminin and αSMA expression. • Silencing α6 integrin expression also reduced BMSC proliferation.« less

  7. MiR-578 and miR-573 as potential players in BRCA-related breast cancer angiogenesis

    PubMed Central

    Danza, Katia; Summa, Simona De; Pinto, Rosamaria; Pilato, Brunella; Palumbo, Orazio; Merla, Giuseppe; Simone, Gianni; Tommasi, Stefania

    2015-01-01

    The involvement of microRNA (miRNAs), a new class of small RNA molecules, in governing angiogenesis has been well described. Our aim was to investigate miRNA-mediated regulation of angiogenesis in a series of familial breast cancers stratified by BRCA1/2 mutational status in BRCA carriers and BRCA non-carriers (BRCAX). Affymetrix GeneChip miRNA Arrays were used to perform miRNA expression analysis on 43 formalin-fixed paraffin-embedded (FFPE) tumour tissue familial breast cancers (22 BRCA 1/2-related and 21 BRCAX). Pathway enrichment analysis was carried out with the DIANA miRPath v2.0 web-based computational tool, and the miRWalk database was used to identify target genes of deregulated miRNAs. An independent set of 8 BRCA 1/2-related and 11 BRCAX breast tumors was used for validation by Real-Time PCR. In vitro analysis on HEK293, MCF-7 and SUM149PT cells were performed to best-clarify miR-573 and miR-578 role. A set of 16 miRNAs differentially expressed between BRCA 1/2-related and BRCAX breast tumors emerged from the profile analysis. Among these, miR-578 and miR-573 were found to be down-regulated in BRCA 1/2-related breast cancer and associated to the Focal adhesion, Vascular Endothelial Growth Factor (VEGF) and Hypoxia Inducible Factor-1 (HIF-1) signaling pathways. Our data highlight the role of miR-578 and miR-573 in controlling BRCA 1/2-related angiogenesis by targeting key regulators of Focal adhesion, VEGF and HIF-1 signaling pathways. PMID:25333258

  8. New Scaffold for Angiogenesis Inhibitors Discovered by Targeted Chemical Transformations of Wondonin Natural Products.

    PubMed

    Yu, Shuai; Oh, Jedo; Li, Feng; Kwon, Yongseok; Cho, Hyunkyung; Shin, Jongheon; Lee, Sang Kook; Kim, Sanghee

    2017-10-12

    The structure of wondonin marine natural products was renovated to attain new drug-like scaffolds. Wondonins have novel antiangiogenic properties without overt cytotoxicity. However, the chemical instability and synthetic complexity of wondonins have hindered their development as a new type of antiangiogenesis agent. Using a structure-based bioisosterism, the benzodioxole moiety was changed to benzothiazole, and the imidazole moiety was replaced by 1,2,3-triazole. Our efforts resulted in a new scaffold with enhanced antiangiogenic activity and minimized cytotoxicity. One compound with this scaffold effectively inhibited hyaloid vessel formation in diabetic retinopathy mimic zebrafish model. The biological findings together suggested the potential of the scaffold as a lead structure for development of antiangiogenic drugs with novel functions and as a probe to elucidate new biological mechanisms associated with angiogenesis.

  9. Human basic fibroblast growth factor fused with Kringle4 peptide binds to a fibrin scaffold and enhances angiogenesis.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Sun, Wenjie; Gao, Yuan; Zhao, Yannan; Wang, Bin; Wang, Xia; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2009-05-01

    Appropriate three-dimensional (3D) scaffolds and signal molecules could accelerate tissue regeneration and wound repair. In this work, we targeted human basic fibroblast growth factor (bFGF), a potent angiogenic factor, to a fibrin scaffold to improve therapeutic angiogenesis. We fused bFGF to the Kringle4 domain (K4), a fibrin-binding peptide from human plasminogen, to endow bFGF with specific fibrin-binding ability. The recombinant K4bFGF bound specifically to the fibrin scaffold so that K4bFGF was delivered in a site-specific manner, and the fibrin scaffold provided 3D support for cell migration and proliferation. Subcutaneous implantation of the fibrin scaffolds bound with K4bFGF but not with bFGF induced neovascularization. Immunohistochemical analysis showed significantly more proliferation cells in the fibrin scaffolds incorporated with K4bFGF than in those with bFGF. Moreover, the regenerative tissues were integrated well with the fibrin scaffolds, suggesting its good biocompatibility. In summary, targeted delivery of K4bFGF could potentially improve therapeutic angiogenesis.

  10. Tumor necrosis is an important hallmark of aggressive endometrial cancer and associates with hypoxia, angiogenesis and inflammation responses

    PubMed Central

    Stefansson, Ingunn M.; Birkeland, Even; Bø, Trond Hellem; Øyan, Anne M.; Trovik, Jone; Kalland, Karl-Henning; Jonassen, Inge; Salvesen, Helga B.; Wik, Elisabeth; Akslen, Lars A.

    2015-01-01

    Aims Tumor necrosis is associated with aggressive features of endometrial cancer and poor prognosis. Here, we investigated gene expression patterns and potential treatment targets related to presence of tumor necrosis in primary endometrial cancer lesions. Methods and Results By DNA microarray analysis, expression of genes related to tumor necrosis reflected multiple tumor-microenvironment interactions like tissue hypoxia, angiogenesis and inflammation pathways. A tumor necrosis signature of 38 genes and a related patient cluster (Cluster I, 67% of the cases) were associated with features of aggressive tumors such as type II cancers, estrogen receptor negative tumors and vascular invasion. Further, the tumor necrosis signature was increased in tumor cells grown in hypoxic conditions in vitro. Multiple genes with increased expression are known to be activated by HIF1A and NF-kB. Conclusions Our findings indicate that the presence of tumor necrosis within primary tumors is associated with hypoxia, angiogenesis and inflammation responses. HIF1A, NF-kB and PI3K/mTOR might be potential treatment targets in aggressive endometrial cancers with presence of tumor necrosis. PMID:26485755

  11. Tumor necrosis is an important hallmark of aggressive endometrial cancer and associates with hypoxia, angiogenesis and inflammation responses.

    PubMed

    Bredholt, Geir; Mannelqvist, Monica; Stefansson, Ingunn M; Birkeland, Even; Bø, Trond Hellem; Øyan, Anne M; Trovik, Jone; Kalland, Karl-Henning; Jonassen, Inge; Salvesen, Helga B; Wik, Elisabeth; Akslen, Lars A

    2015-11-24

    Tumor necrosis is associated with aggressive features of endometrial cancer and poor prognosis. Here, we investigated gene expression patterns and potential treatment targets related to presence of tumor necrosis in primary endometrial cancer lesions. By DNA microarray analysis, expression of genes related to tumor necrosis reflected multiple tumor-microenvironment interactions like tissue hypoxia, angiogenesis and inflammation pathways. A tumor necrosis signature of 38 genes and a related patient cluster (Cluster I, 67% of the cases) were associated with features of aggressive tumors such as type II cancers, estrogen receptor negative tumors and vascular invasion. Further, the tumor necrosis signature was increased in tumor cells grown in hypoxic conditions in vitro. Multiple genes with increased expression are known to be activated by HIF1A and NF-kB. Our findings indicate that the presence of tumor necrosis within primary tumors is associated with hypoxia, angiogenesis and inflammation responses. HIF1A, NF-kB and PI3K/mTOR might be potential treatment targets in aggressive endometrial cancers with presence of tumor necrosis.

  12. Module-based multiscale simulation of angiogenesis in skeletal muscle

    PubMed Central

    2011-01-01

    Background Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. Results We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. Conclusions This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions. PMID:21463529

  13. Angiogenesis after sintered bone implantation in rat parietal bone.

    PubMed

    Ohtsubo, S; Matsuda, M; Takekawa, M

    2003-01-01

    We studied the effect of bone substitutes on revascularization and the restart of blood supply after sintered bone implantation in comparison with synthetic hydroxyapatite implantation and fresh autogenous bone transplantation (control) in rat parietal bones. Methods for the study included the microvascular corrosion cast method and immunohistochemical techniques were also used. The revascularization of the control group was the same as that for usual wound healing in the observations of the microvascular corrosion casts. The sintered bone implantation group was quite similar to that of the control group. In the synthetic hydroxyapatite group, immature newly-formed blood vessels existed even on the 21st day after implantation and the physiological process of angiogenesis was interrupted. Immunohistochemically, vascular endothelial growth factor (VEGF), which activates angiogenesis, appeared at the early stages of both the control group and the sintered bone implantation group. VEGF reduced parallel with the appearance of the transforming growth factor factor-beta-1 (TGF-beta-1), which obstructs angiogenesis, and the angiogenesis passed gradually into the mature stage. In the hydroxyapatite implantation group, TGF-beta-1 appeared at the early stage of the implants. The appearance of VEGF lagged and it existed around the pores of hydroxyapatite even on the 21st day of the implantation. Proliferation and wandering of endothelial cells continued without any maturing of the vessels. These findings suggest that the structure and the components of the implant material affect angiogenesis after implantation as well as new bone formation.

  14. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  15. Multiple tenting techniques improve dead space obliteration in the surgical treatment for patients with giant calcified chronic subdural hematoma.

    PubMed

    Juan, Wei-Sheng; Tai, Shih-Huang; Hung, Yu-Chang; Lee, E-Jian

    2012-04-01

    Calcified chronic subdural hematoma (CCSDH), or "armored brain," is a rare disease entity. The optimal surgical procedure for CCSDH has not been established because it is hard to obtain brain re-expansion after surgery. In particular, a large CCSDH is difficult to completely extirpate, and the residual rigid inner and outer membranes facilitates dead space retention and hematoma recurrence. We introduce the use a multiple suturing technique to tent the residual outer and inner membranes onto the dura matter so as to obliterate dead space after surgical treatment for CCSDH. Neuroimaging and surgical reports with illustrative images from two cases are shown. Two patients were admitted to our intensive care unit more than 10 years apart from their ventriculoperitoneal (V-P) shunt placements. The first patient presented with clinical signs of increased intracranial pressure. The second patient had a large CCSDH as a concomitant finding with ruptured aneurysmal subarachnoid hemorrhage. Computerized cranial tomography demonstrated large hematoma cavities with thick calcified inner membranes. After neurosurgical intervention by craniotomy and optimal resection of calcified membranes and muddy blood clot, we tented the residual calcified inner and outer membranes onto the dura matter by multiple sutures to reduce dead space accumulation. Postoperatively, the two patients had improved clinical symptoms along with much reduced hematoma cavity in imaging examinations. We reported an alternative technique using multiple tenting procedures to improve dead space obliteration after surgical treatment for patients with a large CCSDH presenting as a late complication after V-P shunting.

  16. Calcifying epithelial odontogenic tumor, a rare presentation in children: two case reports.

    PubMed

    Mohanty, Susant; Mohanty, Neeta; Routray, Samapika; Misra, Satya Ranjan; Vasudevan, Vijeev

    2014-01-01

    Calcifying epithelial odontogenic tumor (CEOT) is a rare and benign odontogenic neoplasm that affects the jaws. It is certainly an atypical instance to find this tumor in children. Here, we present two case reports of CEOT presenting in mandible of a 12- and 13-year-old female child, respectively. CEOT have been reported to show features of malignant transformation also.

  17. A rotational ablation tool for calcified atherosclerotic plaque removal.

    PubMed

    Kim, Min-Hyeng; Kim, Hyung-Jung; Kim, Nicholas N; Yoon, Hae-Sung; Ahn, Sung-Hoon

    2011-12-01

    Atherosclerosis is a major cardiovascular disease involving accumulations of lipids, white blood cells, and other materials on the inside of artery walls. Since the calcification found in the advanced stage of atherosclerosis dramatically enhances the mechanical properties of the plaque, restoring the original lumen of the artery remains a challenge. High-speed rotational atherectomy, when performed with an ablating grinder to remove the plaque, produces much better results in the treatment of calcified plaque compared to other methods. However, the high-speed rotation of the Rotablator commercial rotational atherectomy device produces microcavitation, which should be avoided because of the serious complications it can cause. This research involves the development of a high-speed rotational ablation tool that does not generate microcavitation. It relies on surface modification to achieve the required surface roughness. The surface roughness of the tool for differential cutting was designed based on lubrication theory, and the surface of the tool was modified using Nd:YAG laser beam engraving. Electron microscope images and profiles indicated that the engraved surface of the tool had approximately 1 μm of root mean square surface roughness. The ablation experiment was performed on hydroxyapatite/polylactide composite with an elastic modulus similar to that of calcified plaque. In addition, differential cutting was verified on silicone rubber with an elastic modulus similar to that of a normal artery. The tool performance and reliability were evaluated by measuring the ablation force exerted, the size of the debris generated during ablation, and through visual inspection of the silicone rubber surface.

  18. Tetrahydrocurcumin induces mesenchymal-epithelial transition and suppresses angiogenesis by targeting HIF-1α and autophagy in human osteosarcoma

    PubMed Central

    Zhang, Yan; Liu, Ying; Zou, Jilong; Yan, Lixin; Du, Wei; Zhang, Yafeng; Sun, Hanliang; Lu, Peng; Geng, Shuo; Gu, Rui; Zhang, Hongyue; Bi, Zhenggang

    2017-01-01

    Human osteosarcoma is considered a malignant tumor with poor prognosis that readily metastasizes. Tetrahydrocurcumin (THC) has been reported to have anti-tumor activity in numerous tumors. In addition, hypoxia-inducible factor-1α (HIF-1α) has been demonstrated to be associated with tumor metastasis by regulating epithelial-mesenchymal transition (EMT). However, the role of THC in osteosarcoma remains uncertain. Therefore, this study aimed to elucidate the potential mechanisms. We found that THC significantly reduced the growth of osteosarcoma cells and suppressed migration and invasion, as tested in a nude mouse lung metastasis model. Additionally, the mesenchymal-epithelial transition (MET) process was facilitated by THC. Mechanistically, our study showed that HIF-1α had a pivotal role in the anti-metastatic effect of THC. Importantly, HIF-1α expression was downregulated by THC by inhibiting Akt/mTOR and p38 MAPK pathways. Moreover, THC exhibited a remarkable inhibitory effect on HIF-1α expression and angiogenesis under hypoxic conditions. Furthermore, THC activated autophagy and induced MET and suppressed angiogenesis in a HIF-1α-related manner. Taken together, our findings suggest that THC suppresses metastasis and invasion and this may be associated with HIF-1α and autophagy, which would potentially provide therapeutic strategies for human osteosarcoma. PMID:29207631

  19. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification

    NASA Astrophysics Data System (ADS)

    Riebesell, Ulf; Bach, Lennart T.; Bellerby, Richard G. J.; Monsalve, J. Rafael Bermúdez; Boxhammer, Tim; Czerny, Jan; Larsen, Aud; Ludwig, Andrea; Schulz, Kai G.

    2017-01-01

    Coccolithophores--single-celled calcifying phytoplankton--are an important group of marine primary producers and the dominant builders of calcium carbonate globally. Coccolithophores form extensive blooms and increase the density and sinking speed of organic matter via calcium carbonate ballasting. Thereby, they play a key role in the marine carbon cycle. Coccolithophore physiological responses to experimental ocean acidification have ranged from moderate stimulation to substantial decline in growth and calcification rates, combined with enhanced malformation of their calcite platelets. Here we report on a mesocosm experiment conducted in a Norwegian fjord in which we exposed a natural plankton community to a wide range of CO2-induced ocean acidification, to test whether these physiological responses affect the ecological success of coccolithophore populations. Under high-CO2 treatments, Emiliania huxleyi, the most abundant and productive coccolithophore species, declined in population size during the pre-bloom period and lost the ability to form blooms. As a result, particle sinking velocities declined by up to 30% and sedimented organic matter was reduced by up to 25% relative to controls. There were also strong reductions in seawater concentrations of the climate-active compound dimethylsulfide in CO2-enriched mesocosms. We conclude that ocean acidification can lower calcifying phytoplankton productivity, potentially creating a positive feedback to the climate system.

  20. Bone Marrow-Derived Mesenchymal Stem Cells Enhance Angiogenesis via their α6β1 Integrin Receptor

    PubMed Central

    Carrion, Bita; Kong, Yen P.; Kaigler, Darnell; Putnam, Andrew J

    2013-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. PMID:24056178