Sample records for targeting genes involved

  1. Target mimics: an embedded layer of microRNA-involved gene regulatory networks in plants.

    PubMed

    Meng, Yijun; Shao, Chaogang; Wang, Huizhong; Jin, Yongfeng

    2012-05-21

    MicroRNAs (miRNAs) play an essential role in gene regulation in plants. At the same time, the expression of miRNA genes is also tightly controlled. Recently, a novel mechanism called "target mimicry" was discovered, providing another layer for modulating miRNA activities. However, except for the artificial target mimics manipulated for functional studies on certain miRNA genes, only one example, IPS1 (Induced by Phosphate Starvation 1)-miR399 was experimentally confirmed in planta. To date, few analyses for comprehensive identification of natural target mimics have been performed in plants. Thus, limited evidences are available to provide detailed information for interrogating the questionable issue whether target mimicry was widespread in planta, and implicated in certain biological processes. In this study, genome-wide computational prediction of endogenous miRNA mimics was performed in Arabidopsis and rice, and dozens of target mimics were identified. In contrast to a recent report, the densities of target mimic sites were found to be much higher within the untranslated regions (UTRs) when compared to those within the coding sequences (CDSs) in both plants. Some novel sequence characteristics were observed for the miRNAs that were potentially regulated by the target mimics. GO (Gene Ontology) term enrichment analysis revealed some functional insights into the predicted mimics. After degradome sequencing data-based identification of miRNA targets, the regulatory networks constituted by target mimics, miRNAs and their downstream targets were constructed, and some intriguing subnetworks were further exploited. These results together suggest that target mimicry may be widely implicated in regulating miRNA activities in planta, and we hope this study could expand the current understanding of miRNA-involved regulatory networks.

  2. Sulfadiazine resistance in Toxoplasma gondii: no involvement of overexpression or polymorphisms in genes of therapeutic targets and ABC transporters

    PubMed Central

    Doliwa, Christelle; Escotte-Binet, Sandie; Aubert, Dominique; Sauvage, Virginie; Velard, Frédéric; Schmid, Aline; Villena, Isabelle

    2013-01-01

    Several treatment failures have been reported for the treatment of toxoplasmic encephalitis, chorioretinitis, and congenital toxoplasmosis. Recently we found three Toxoplasma gondii strains naturally resistant to sulfadiazine and we developed in vitro two sulfadiazine resistant strains, RH-RSDZ and ME-49-RSDZ, by gradual pressure. In Plasmodium, common mechanisms of drug resistance involve, among others, mutations and/or amplification within genes encoding the therapeutic targets dhps and dhfr and/or the ABC transporter genes family. To identify genotypic and/or phenotypic markers of resistance in T. gondii, we sequenced and analyzed the expression levels of therapeutic targets dhps and dhfr, three ABC genes, two Pgp, TgABC.B1 and TgABC.B2, and one MRP, TgABC.C1, on sensitive strains compared to sulfadiazine resistant strains. Neither polymorphism nor overexpression was identified. Contrary to Plasmodium, in which mutations and/or overexpression within gene targets and ABC transporters are involved in antimalarial resistance, T. gondii sulfadiazine resistance is not related to these toxoplasmic genes studied. PMID:23707894

  3. Hindsight regulates photoreceptor axon targeting through transcriptional control of jitterbug/Filamin and multiple genes involved in axon guidance in Drosophila.

    PubMed

    Oliva, Carlos; Molina-Fernandez, Claudia; Maureira, Miguel; Candia, Noemi; López, Estefanía; Hassan, Bassem; Aerts, Stein; Cánovas, José; Olguín, Patricio; Sierralta, Jimena

    2015-09-01

    During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015. © 2015 Wiley Periodicals, Inc.

  4. Prediction of novel target genes and pathways involved in bevacizumab-resistant colorectal cancer

    PubMed Central

    Makondi, Precious Takondwa; Lee, Chia-Hwa; Huang, Chien-Yu; Chu, Chi-Ming; Chang, Yu-Jia

    2018-01-01

    Bevacizumab combined with cytotoxic chemotherapy is the backbone of metastatic colorectal cancer (mCRC) therapy; however, its treatment efficacy is hampered by therapeutic resistance. Therefore, understanding the mechanisms underlying bevacizumab resistance is crucial to increasing the therapeutic efficacy of bevacizumab. The Gene Expression Omnibus (GEO) database (dataset, GSE86525) was used to identify the key genes and pathways involved in bevacizumab-resistant mCRC. The GEO2R web tool was used to identify differentially expressed genes (DEGs). Functional and pathway enrichment analyses of the DEGs were performed using the Database for Annotation, Visualization, and Integrated Discovery(DAVID). Protein–protein interaction (PPI) networks were established using the Search Tool for the Retrieval of Interacting Genes/Proteins database(STRING) and visualized using Cytoscape software. A total of 124 DEGs were obtained, 57 of which upregulated and 67 were downregulated. PPI network analysis showed that seven upregulated genes and nine downregulated genes exhibited high PPI degrees. In the functional enrichment, the DEGs were mainly enriched in negative regulation of phosphate metabolic process and positive regulation of cell cycle process gene ontologies (GOs); the enriched pathways were the phosphoinositide 3-kinase-serine/threonine kinase signaling pathway, bladder cancer, and microRNAs in cancer. Cyclin-dependent kinase inhibitor 1A(CDKN1A), toll-like receptor 4 (TLR4), CD19 molecule (CD19), breast cancer 1, early onset (BRCA1), platelet-derived growth factor subunit A (PDGFA), and matrix metallopeptidase 1 (MMP1) were the DEGs involved in the pathways and the PPIs. The clinical validation of the DEGs in mCRC (TNM clinical stages 3 and 4) revealed that high PDGFA expression levels were associated with poor overall survival, whereas high BRCA1 and MMP1 expression levels were associated with favorable progress free survival(PFS). The identified genes and pathways

  5. New TFII-I family target genes involved in embryonic development.

    PubMed

    Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg

    2009-09-04

    Two members of the TFII-I family transcription factor genes, GTF2I and GTF2IRD1, are the prime candidates responsible for the craniofacial and cognitive abnormalities of Williams syndrome patients. We have previously generated mouse lines with targeted disruption of Gtf2i and Gtf2ird1. Microarray analysis revealed significant changes in the expression profile of mutant embryos. Here we described three unknown genes that were dramatically down-regulated in mutants. The 2410018M08Rik/Scand3 gene encodes a protein of unknown function with CHCH and hATC domains. Scand3 is down-regulated during mouse embryonic stem cell (ES) differentiation. 4933436H12Rik is a testis-specific gene, which encodes a protein with no known domains. It is expressed in mouse ES cells. 1110008P08Rik/Kbtbd7 encodes an adapter protein with BTB/POZ, BACK, and Kelch motifs, previously shown to recruit substrates to the enzymatic complexes of the histone modifying or E3 ubiquitin ligase activities. Based on its expression pattern Kbtbd7 may have a specific role in brain development and function. All three genes possess well-conserved TFII-I-binding consensus sites within proximal promoters. Therefore our analysis suggests that these genes can be direct targets of TFII-I proteins and their impaired expression, as a result of the GTF2I and GTF2IRD1 haploinsufficiency, could contribute to the etiology of Williams syndrome.

  6. The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.

    PubMed

    Warnatz, Hans-Jörg; Schmidt, Dominic; Manke, Thomas; Piccini, Ilaria; Sultan, Marc; Borodina, Tatiana; Balzereit, Daniela; Wruck, Wasco; Soldatov, Alexey; Vingron, Martin; Lehrach, Hans; Yaspo, Marie-Laure

    2011-07-01

    The regulation of gene expression in response to environmental signals and metabolic imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAF recognition elements, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we combined chromatin immunoprecipitation sequencing analysis of BACH1 target genes in HEK 293 cells with knockdown of BACH1 using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays. The 59 BACH1 target genes identified by chromatin immunoprecipitation sequencing were found highly enriched in genes showing expression changes after BACH1 knockdown, demonstrating the impact of BACH1 repression on transcription. In addition to known and new BACH1 targets involved in heme degradation (HMOX1, FTL, FTH1, ME1, and SLC48A1) and redox regulation (GCLC, GCLM, and SLC7A11), we also discovered BACH1 target genes affecting cell cycle and apoptosis pathways (ITPR2, CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, and MAFG) as well as subcellular transport processes (CLSTN1, PSAP, MAPT, and vault RNA). The newly identified impact of BACH1 on genes involved in neurodegenerative processes and proliferation provides an interesting basis for future dissection of BACH1-mediated gene repression in neurodegeneration and virus-induced cancerogenesis.

  7. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  8. Targeted gene flow for conservation.

    PubMed

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens. © 2015 Society for Conservation Biology.

  9. Progress in gene targeting and gene therapy for retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, G.J.; Humphries, M.M.; Erven, A.

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectorsmore » for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.« less

  10. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    PubMed

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Duplicate Maize Wrinkled1 Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis1[C][W

    PubMed Central

    Pouvreau, Benjamin; Baud, Sébastien; Vernoud, Vanessa; Morin, Valérie; Py, Cyrille; Gendrot, Ghislaine; Pichon, Jean-Philippe; Rouster, Jacques; Paul, Wyatt; Rogowsky, Peter M.

    2011-01-01

    WRINKLED1 (WRI1), a key regulator of seed oil biosynthesis in Arabidopsis (Arabidopsis thaliana), was duplicated during the genome amplification of the cereal ancestor genome 90 million years ago. Both maize (Zea mays) coorthologs ZmWri1a and ZmWri1b show a strong transcriptional induction during the early filling stage of the embryo and complement the reduced fatty acid content of Arabidopsis wri1-4 seeds, suggesting conservation of molecular function. Overexpression of ZmWri1a not only increases the fatty acid content of the mature maize grain but also the content of certain amino acids, of several compounds involved in amino acid biosynthesis, and of two intermediates of the tricarboxylic acid cycle. Transcriptomic experiments identified 18 putative target genes of this transcription factor, 12 of which contain in their upstream regions an AW box, the cis-element bound by AtWRI1. In addition to functions related to late glycolysis and fatty acid biosynthesis in plastids, the target genes also have functions related to coenzyme A biosynthesis in mitochondria and the production of glycerol backbones for triacylglycerol biosynthesis in the cytoplasm. Interestingly, the higher seed oil content in ZmWri1a overexpression lines is not accompanied by a reduction in starch, thus opening possibilities for the use of the transgenic maize lines in breeding programs. PMID:21474435

  12. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius.

    PubMed

    Weyda, István; Yang, Lei; Vang, Jesper; Ahring, Birgitte K; Lübeck, Mette; Lübeck, Peter S

    2017-04-01

    In recent years, versatile genetic tools have been developed and applied to a number of filamentous fungi of industrial importance. However, the existing techniques have limitations when it comes to achieve the desired genetic modifications, especially for efficient gene targeting. In this study, we used Aspergillus carbonarius as a host strain due to its potential as a cell factory, and compared three gene targeting techniques by disrupting the ayg1 gene involved in the biosynthesis of conidial pigment in A. carbonarius. The absence of the ayg1 gene leads to phenotypic change in conidia color, which facilitated the analysis on the gene targeting frequency. The examined transformation techniques included Agrobacterium-mediated transformation (AMT) and protoplast-mediated transformation (PMT). Furthermore, the PMT for the disruption of the ayg1 gene was carried out with bipartite gene targeting fragments and the recently adapted CRISPR-Cas9 system. All three techniques were successful in generating Δayg1 mutants, but showed different efficiencies. The most efficient method for gene targeting was AMT, but further it was shown to be dependent on the choice of Agrobacterium strain. However, there are different advantages and disadvantages of all three gene targeting methods which are discussed, in order to facilitate future approaches for fungal strain improvements. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. STAT3 or USF2 Contributes to HIF Target Gene Specificity

    PubMed Central

    Pawlus, Matthew R.; Wang, Liyi; Murakami, Aya; Dai, Guanhai; Hu, Cheng-Jun

    2013-01-01

    The HIF1- and HIF2-mediated transcriptional responses play critical roles in solid tumor progression. Despite significant similarities, including their binding to promoters of both HIF1 and HIF2 target genes, HIF1 and HIF2 proteins activate unique subsets of target genes under hypoxia. The mechanism for HIF target gene specificity has remained unclear. Using siRNA or inhibitor, we previously reported that STAT3 or USF2 is specifically required for activation of endogenous HIF1 or HIF2 target genes. In this study, using reporter gene assays and chromatin immuno-precipitation, we find that STAT3 or USF2 exhibits specific binding to the promoters of HIF1 or HIF2 target genes respectively even when over-expressed. Functionally, HIF1α interacts with STAT3 to activate HIF1 target gene promoters in a HIF1α HLH/PAS and N-TAD dependent manner while HIF2α interacts with USF2 to activate HIF2 target gene promoters in a HIF2α N-TAD dependent manner. Physically, HIF1α HLH and PAS domains are required for its interaction with STAT3 while both N- and C-TADs of HIF2α are involved in physical interaction with USF2. Importantly, addition of functional USF2 binding sites into a HIF1 target gene promoter increases the basal activity of the promoter as well as its response to HIF2+USF2 activation while replacing HIF binding site with HBS from a HIF2 target gene does not change the specificity of the reporter gene. Importantly, RNA Pol II on HIF1 or HIF2 target genes is primarily associated with HIF1α or HIF2α in a STAT3 or USF2 dependent manner. Thus, we demonstrate here for the first time that HIF target gene specificity is achieved by HIF transcription partners that are required for HIF target gene activation, exhibit specific binding to the promoters of HIF1 or HIF2 target genes and selectively interact with HIF1α or HIF2α protein. PMID:23991099

  14. Identification of Homeotic Target Genes in Drosophila Melanogaster Including Nervy, a Proto-Oncogene Homologue

    PubMed Central

    Feinstein, P. G.; Kornfeld, K.; Hogness, D. S.; Mann, R. S.

    1995-01-01

    In Drosophila, the specific morphological characteristics of each segment are determined by the homeotic genes that regulate the expression of downstream target genes. We used a subtractive hybridization procedure to isolate activated target genes of the homeotic gene Ultrabithorax (Ubx). In addition, we constructed a set of mutant genotypes that measures the regulatory contribution of individual homeotic genes to a complex target gene expression pattern. Using these mutants, we demonstrate that homeotic genes can regulate target gene expression at the start of gastrulation, suggesting a previously unknown role for the homeotic genes at this early stage. We also show that, in abdominal segments, the levels of expression for two target genes increase in response to high levels of Ubx, demonstrating that the normal down-regulation of Ubx in these segments is functional. Finally, the DNA sequence of cDNAs for one of these genes predicts a protein that is similar to a human proto-oncogene involved in acute myeloid leukemias. These results illustrate potentially general rules about the homeotic control of target gene expression and suggest that subtractive hybridization can be used to isolate interesting homeotic target genes. PMID:7498738

  15. MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect.

    PubMed

    Chai, Hui; Yan, Zhaoyuan; Huang, Ke; Jiang, Yuanqing; Zhang, Lin

    2018-02-01

    This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.

  16. About miRNAs, miRNA seeds, target genes and target pathways.

    PubMed

    Kehl, Tim; Backes, Christina; Kern, Fabian; Fehlmann, Tobias; Ludwig, Nicole; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas

    2017-12-05

    miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).

  17. Targeted gene flow and rapid adaptation in an endangered marsupial.

    PubMed

    Kelly, Ella; Phillips, Ben L

    2018-06-13

    Targeted gene flow is an emerging conservation strategy. It involves translocating individuals with favorable genes to areas where they will have a conservation benefit. The applications for targeted gene flow are wide-ranging, but include pre-adapting natives to the arrival of invasive species. The endangered carnivorous marsupial, the northern quoll, has declined rapidly since the introduction of the cane toad, which fatally poisons quolls that attack them. There are, however, a few remaining toad-invaded quoll populations in which the quolls survive because they know not to eat cane toads. It is this "toad-smart" behavior that we hope to promote through targeted gene flow. For targeted gene flow to be feasible, however, toad-smarts must have a genetic basis. To assess this, we used a common garden experiment and found offspring from toad-exposed populations were substantially less likely to eat toads than those with toad-naïve parents. Hybrid offspring showed similar responses to quolls with two toad-exposed parents, indicating the trait may be dominant. Together, these results suggest a heritable trait and rapid adaptive response in small number of toad-impacted populations. Although questions remain about outbreeding depression, our results are encouraging for targeted gene flow: suggesting it should be possible to introduce toad-smart behavior into soon to be impacted quoll populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines.

    PubMed

    Gulec, Cagri; Coban, Neslihan; Ozsait-Selcuk, Bilge; Sirma-Ekmekci, Sema; Yildirim, Ozlem; Erginel-Unaltuna, Nihan

    2017-04-01

    ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Identification of apoptosis-related PLZF target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Maria Victoria; Yelo, Estefania; Gimeno, Lourdes

    2007-07-27

    The PLZF gene encodes a BTB/POZ-zinc finger-type transcription factor, involved in physiological development, proliferation, differentiation, and apoptosis. In this paper, we investigate proliferation, survival, and gene expression regulation in stable clones from the human haematopoietic K562, DG75, and Jurkat cell lines with inducible expression of PLZF. In Jurkat cells, but not in K562 and DG75 cells, PLZF induced growth suppression and apoptosis in a cell density-dependent manner. Deletion of the BTB/POZ domain of PLZF abrogated growth suppression and apoptosis. PLZF was expressed with a nuclear speckled pattern distinctively in the full-length PLZF-expressing Jurkat clones, suggesting that the nuclear speckled localizationmore » is required for PLZF-induced apoptosis. By microarray analysis, we identified that the apoptosis-inducer TP53INP1, ID1, and ID3 genes were upregulated, and the apoptosis-inhibitor TERT gene was downregulated. The identification of apoptosis-related PLZF target genes may have biological and clinical relevance in cancer typified by altered PLZF expression.« less

  20. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  1. Targeted gene insertion for molecular medicine.

    PubMed

    Voigt, Katrin; Izsvák, Zsuzsanna; Ivics, Zoltán

    2008-11-01

    Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.

  2. Analysis of Genes Involved in Body Weight Regulation by Targeted Re-Sequencing.

    PubMed

    Volckmar, Anna-Lena; Han, Chung Ting; Pütter, Carolin; Haas, Stefan; Vogel, Carla I G; Knoll, Nadja; Struve, Christoph; Göbel, Maria; Haas, Katharina; Herrfurth, Nikolas; Jarick, Ivonne; Grallert, Harald; Schürmann, Annette; Al-Hasani, Hadi; Hebebrand, Johannes; Sauer, Sascha; Hinney, Anke

    2016-01-01

    Genes involved in body weight regulation that were previously investigated in genome-wide association studies (GWAS) and in animal models were target-enriched followed by massive parallel next generation sequencing. We enriched and re-sequenced continuous genomic regions comprising FTO, MC4R, TMEM18, SDCCAG8, TKNS, MSRA and TBC1D1 in a screening sample of 196 extremely obese children and adolescents with age and sex specific body mass index (BMI) ≥ 99th percentile and 176 lean adults (BMI ≤ 15th percentile). 22 variants were confirmed by Sanger sequencing. Genotyping was performed in up to 705 independent obesity trios (extremely obese child and both parents), 243 extremely obese cases and 261 lean adults. We detected 20 different non-synonymous variants, one frame shift and one nonsense mutation in the 7 continuous genomic regions in study groups of different weight extremes. For SNP Arg695Cys (rs58983546) in TBC1D1 we detected nominal association with obesity (pTDT = 0.03 in 705 trios). Eleven of the variants were rare, thus were only detected heterozygously in up to ten individual(s) of the complete screening sample of 372 individuals. Two of them (in FTO and MSRA) were found in lean individuals, nine in extremely obese. In silico analyses of the 11 variants did not reveal functional implications for the mutations. Concordant with our hypothesis we detected a rare variant that potentially leads to loss of FTO function in a lean individual. For TBC1D1, in contrary to our hypothesis, the loss of function variant (Arg443Stop) was found in an obese individual. Functional in vitro studies are warranted.

  3. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells.

    PubMed

    Byrne, Susan M; Ortiz, Luis; Mali, Prashant; Aach, John; Church, George M

    2015-02-18

    Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient 'knock-in' targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    PubMed

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  5. Molecular basis of Williams-Beuren syndrome: TFII-I regulated targets involved in craniofacial development.

    PubMed

    Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg

    2011-01-01

    The aim of this study is to identify gene targets of TFII-I transcription factors involved in craniofacial development. Recent findings in individuals with Williams-Beuren syndrome who show facial dysmorphism and cognitive defects have pointed to TFII-I genes (GTF2I and GTF2IRD1) as the prime candidates responsible for these clinical features. However, TFII-I proteins are multifunctional transcriptional factors regulating a number of genes during development, and how their haploinsufficiency leads to the Williams-Beuren syndrome phenotype is currently unknown. Here we report the identification of three genes with a well-established relevance to craniofacial development as direct TFII-I targets. These genes, craniofacial development protein 1 (Cfdp1), Sec23 homolog A (Sec23a), and nuclear receptor binding SET domain protein 1 (Nsd1), contain consensus TFII-I binding sites in their proximal promoters; the chromatin immunoprecipitation analysis showed that TFII-I transcription factors are recruited to these sites in vivo. The results suggest that transcriptional regulation of these genes by TFII-I proteins could provide a possible genotype-phenotype link in Williams-Beuren syndrome.

  6. Candidate gene markers involved in San Daniele ham quality.

    PubMed

    Renaville, B; Piasentier, E; Fan, B; Vitale, M; Prandi, A; Rothschild, M F

    2010-07-01

    San Daniele dry-cured hams (also known as prosciutto) are produced in the Northeastern region of Italy. This high value product requires high quality fresh meat to avoid processing problems. The Sterol Regulatory Element Binding Protein-1 (SREBF1) is a transcription factor involved in the regulation of fatty acid synthesis in muscle and adipose tissues. The SREBF1 gene, its regulating genes SCAP and MBTPS1, and one of its target genes, SCD, were investigated for associations with several meat quality traits of San Daniele hams. Significant associations of some gene markers were found with carcass weight, lean percentage, backfat thickness, ham green weight, ham fat cover thickness, shear force (WBSF), salting losses and instrumental colour of both lean and fat. These findings provide initial evidences that SNPs in SREBF1, SCAP, MBTPS1 and SCD are associated with San Daniele ham quality and may be considered as markers for selective breeding programs. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases1[W][OA

    PubMed Central

    Curtin, Shaun J.; Zhang, Feng; Sander, Jeffry D.; Haun, William J.; Starker, Colby; Baltes, Nicholas J.; Reyon, Deepak; Dahlborg, Elizabeth J.; Goodwin, Mathew J.; Coffman, Andrew P.; Dobbs, Drena; Joung, J. Keith; Voytas, Daniel F.; Stupar, Robert M.

    2011-01-01

    We performed targeted mutagenesis of a transgene and nine endogenous soybean (Glycine max) genes using zinc-finger nucleases (ZFNs). A suite of ZFNs were engineered by the recently described context-dependent assembly platform—a rapid, open-source method for generating zinc-finger arrays. Specific ZFNs targeting DICER-LIKE (DCL) genes and other genes involved in RNA silencing were cloned into a vector under an estrogen-inducible promoter. A hairy-root transformation system was employed to investigate the efficiency of ZFN mutagenesis at each target locus. Transgenic roots exhibited somatic mutations localized at the ZFN target sites for seven out of nine targeted genes. We next introduced a ZFN into soybean via whole-plant transformation and generated independent mutations in the paralogous genes DCL4a and DCL4b. The dcl4b mutation showed efficient heritable transmission of the ZFN-induced mutation in the subsequent generation. These findings indicate that ZFN-based mutagenesis provides an efficient method for making mutations in duplicate genes that are otherwise difficult to study due to redundancy. We also developed a publicly accessible Web-based tool to identify sites suitable for engineering context-dependent assembly ZFNs in the soybean genome. PMID:21464476

  8. Mining, identification and function analysis of microRNAs and target genes in peanut (Arachis hypogaea L.).

    PubMed

    Zhang, Tingting; Hu, Shuhao; Yan, Caixia; Li, Chunjuan; Zhao, Xiaobo; Wan, Shubo; Shan, Shihua

    2017-02-01

    In the present investigation, a total of 60 conserved peanut (Arachis hypogaea L.) microRNA (miRNA) sequences, belonging to 16 families, were identified using bioinformatics methods. There were 392 target gene sequences, identified from 58 miRNAs with Target-align software and BLASTx analyses. Gene Ontology (GO) functional analysis suggested that these target genes were involved in mediating peanut growth and development, signal transduction and stress resistance. There were 55 miRNA sequences, verified employing a poly (A) tailing test, with a success rate of up to 91.67%. Twenty peanut target gene sequences were randomly selected, and the 5' rapid amplification of the cDNA ends (5'-RACE) method were used to validate the cleavage sites of these target genes. Of these, 14 (70%) peanut miRNA targets were verified by means of gel electrophoresis, cloning and sequencing. Furthermore, functional analysis and homologous sequence retrieval were conducted for target gene sequences, and 26 target genes were chosen as the objects for stress resistance experimental study. Real-time fluorescence quantitative PCR (qRT-PCR) technology was applied to measure the expression level of resistance-associated miRNAs and their target genes in peanut exposed to Aspergillus flavus (A. flavus) infection and drought stress, respectively. In consequence, 5 groups of miRNAs & targets were found accorded with the mode of miRNA negatively controlling the expression of target genes. This study, preliminarily determined the biological functions of some resistance-associated miRNAs and their target genes in peanut. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Contextualizing the Genes Altered in Bladder Neoplasms in Pediatric andTeen Patients Allows Identifying Two Main Classes of Biological ProcessesInvolved and New Potential Therapeutic Targets

    PubMed Central

    Porrello, A.; Piergentili, R. b

    2016-01-01

    Research on bladder neoplasms in pediatric and teen patients (BNPTP) has described 21 genes, which are variously involved in this disease and are mostly responsible for deregulated cell proliferation. However, due to the limited number of publications on this subject, it is still unclear what type of relationships there are among these genes and which are the chances that, while having different molecular functions, they i) act as downstream effector genes of well-known pro- or anti- proliferative stimuli and/or interplay with biochemical pathways having oncological relevance or ii) are specific and, possibly, early biomarkers of these pathologies. A Gene Ontology (GO)-based analysis showed that these 21 genes are involved in biological processes, which can be split into two main classes: cell regulation-based and differentiation/development-based. In order to understand the involvement/overlapping with main cancer-related pathways, we performed a meta-analysis dependent on the 189 oncogenic signatures of the Molecular Signatures Database (OSMSD) curated by the Broad Institute. We generated a binary matrix with 53 gene signatures having at least one hit; this analysis i) suggests that some genes of the original list show inconsistencies and might need to be experimentally re- assessed or evaluated as biomarkers (in particular, ACTA2) and ii) allows hypothesizing that important (proto)oncogenes (E2F3, ERBB2/HER2, CCND1, WNT1, and YAP1) and (putative) tumor suppressors (BRCA1, RBBP8/CTIP, and RB1-RBL2/p130) may participate in the onset of this disease or worsen the observed phenotype, thus expanding the list of possible molecular targets for the treatment of BNPTP. PMID:27013923

  10. Evolving phage vectors for cell targeted gene delivery.

    PubMed

    Larocca, David; Burg, Michael A; Jensen-Pergakes, Kristen; Ravey, Edward Prenn; Gonzalez, Ana Maria; Baird, Andrew

    2002-03-01

    We adapted filamentous phage vectors for targeted gene delivery to mammalian cells by inserting a mammalian reporter gene expression cassette (GFP) into the vector backbone and fusing the pIII coat protein to a cell targeting ligand (i.e. FGF2, EGF). Like transfection with animal viral vectors, targeted phage gene delivery is concentration, time, and ligand dependent. Importantly, targeted phage particles are specific for the appropriate target cell surface receptor. Phage have distinct advantages over existing gene therapy vectors because they are simple, economical to produce at high titer, have no intrinsic tropism for mammalian cells, and are relatively simple to genetically modify and evolve. Initially transduction by targeted phage particles was low resulting in foreign gene expression in 1-2% of transfected cells. We increased transduction efficiency by modifying both the transfection protocol and vector design. For example, we stabilized the display of the targeting ligand to create multivalent phagemid-based vectors with transduction efficiencies of up to 45% in certain cell lines when combined with genotoxic treatment. Taken together, these studies establish that the efficiency of phage-mediated gene transfer can be significantly improved through genetic modification. We are currently evolving phage vectors with enhanced cell targeting, increased stability, reduced immunogenicity and other properties suitable for gene therapy.

  11. Targeting gene therapy to cancer: a review.

    PubMed

    Dachs, G U; Dougherty, G J; Stratford, I J; Chaplin, D J

    1997-01-01

    In recent years the idea of using gene therapy as a modality in the treatment of diseases other than genetically inherited, monogenic disorders has taken root. This is particularly obvious in the field of oncology where currently more than 100 clinical trials have been approved worldwide. This report will summarize some of the exciting progress that has recently been made with respect to both targeting the delivery of potentially therapeutic genes to tumor sites and regulating their expression within the tumor microenvironment. In order to specifically target malignant cells while at the same time sparing normal tissue, cancer gene therapy will need to combine highly selective gene delivery with highly specific gene expression, specific gene product activity, and, possibly, specific drug activation. Although the efficient delivery of DNA to tumor sites remains a formidable task, progress has been made in recent years using both viral (retrovirus, adenovirus, adeno-associated virus) and nonviral (liposomes, gene gun, injection) methods. In this report emphasis will be placed on targeted rather than high-efficiency delivery, although those would need to be combined in the future for effective therapy. To date delivery has been targeted to tumor-specific and tissue-specific antigens, such as epithelial growth factor receptor, c-kit receptor, and folate receptor, and these will be described in some detail. To increase specificity and safety of gene therapy further, the expression of the therapeutic gene needs to be tightly controlled within the target tissue. Targeted gene expression has been analyzed using tissue-specific promoters (breast-, prostate-, and melanoma-specific promoters) and disease-specific promoters (carcinoembryonic antigen, HER-2/neu, Myc-Max response elements, DF3/MUC). Alternatively, expression could be regulated externally with the use of radiation-induced promoters or tetracycline-responsive elements. Another novel possibility that will be

  12. Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

    PubMed Central

    Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.

    2003-01-01

    Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889

  13. Folic-Acid-Targeted Self-Assembling Supramolecular Carrier for Gene Delivery.

    PubMed

    Liao, Rongqiang; Yi, Shouhui; Liu, Manshuo; Jin, Wenling; Yang, Bo

    2015-07-27

    A targeting gene carrier for cancer-specific delivery was successfully developed through a "multilayer bricks-mortar" strategy. The gene carrier was composed of adamantane-functionalized folic acid (FA-AD), an adamantane-functionalized poly(ethylene glycol) derivative (PEG-AD), and β-cyclodextrin-grafted low-molecular-weight branched polyethylenimine (PEI-CD). Carriers produced by two different self-assembly schemes, involving either precomplexation of the PEI-CD with the FA-AD and PEG-AD before pDNA condensation (Method A) or pDNA condensation with the PEI-CD prior to addition of the FA-AD and PEG-AD to engage host-guest complexation (Method B) were investigated for their ability to compact pDNA into nanoparticles. Cell viability studies show that the material produced by the Method A assembly scheme has lower cytotoxicity than branched PEI 25 kDa (PEI-25KD) and that the transfection efficiency is maintained. These findings suggest that the gene carrier, based on multivalent host-guest interactions, could be an effective, targeted, and low-toxicity carrier for delivering nucleic acid to target cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways.

    PubMed

    Singh, Noopur; Sharma, Ashok

    Turmeric has been used as a therapeutic herb over centuries in traditional medicinal systems due to the presence of several secondary metabolite compounds. microRNAs are known to regulate gene expression at the post-transcriptional level by transcriptional cleavage or translation repression. miRNAs have been demonstrated to play an active role in secondary metabolism regulation. The present work was focused on the identification of the miRNAs involved in the regulation of secondary metabolite and development process of turmeric. Eighteen miRNA families were identified for turmeric. Sixteen miRNA families were observed to regulate 238 target transcripts. LncRNAs targets of the putative miRNA candidates were also predicted. Our results indicated their role in binding, reproduction, stress, and other developmental processes. Gene annotation and pathway analysis illustrated the biological function of the targets regulated by the putative miRNAs. The miRNA-mediated gene regulatory network also revealed co-regulated targets that were regulated by two or more miRNA families. miR156 and miR5015 were observed to be involved in rhizome development. miR5021 showed regulation for terpenoid backbone biosynthesis and isoquinoline alkaloid biosynthesis pathways. The flavonoid biosynthesis pathway was observed to be regulated by miR2919. The analysis revealed the probable involvement of three miRNAs (miR1168.2, miR156b and miR1858) in curcumin biosynthesis. Other miRNAs were found to be involved in the growth and developmental process of turmeric. Phylogenetic analysis of selective miRNAs was also performed. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  15. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  16. Gene targeting in mosquito cells: a demonstration of 'knockout' technology in extrachromosomal gene arrays

    PubMed Central

    Eggleston, Paul; Zhao, Yuguang

    2001-01-01

    Background Gene targeting would offer a number of advantages over current transposon-based strategies for insect transformation. These include freedom from both position effects associated with quasi-random integration and concerns over transgene instability mediated by endogenous transposases, independence from phylogenetic restrictions on transposon mobility and the ability to generate gene knockouts. Results We describe here our initial investigations of gene targeting in the mosquito. The target site was a hygromycin resistance gene, stably maintained as part of an extrachromosomal array. Using a promoter-trap strategy to enrich for targeted events, a neomycin resistance gene was integrated into the target site. This resulted in knockout of hygromycin resistance concurrent with the expression of high levels of neomycin resistance from the resident promoter. PCR amplification of the targeted site generated a product that was specific to the targeted cell line and consistent with precise integration of the neomycin resistance gene into the 5' end of the hygromycin resistance gene. Sequencing of the PCR product and Southern analysis of cellular DNA subsequently confirmed this molecular structure. Conclusions These experiments provide the first demonstration of gene targeting in mosquito tissue and show that mosquito cells possess the necessary machinery to bring about precise integration of exogenous sequences through homologous recombination. Further development of these procedures and their extension to chromosomally located targets hold much promise for the exploitation of gene targeting in a wide range of medically and economically important insect species. PMID:11513755

  17. The Mechanism of Gene Targeting in Human Somatic Cells

    PubMed Central

    Kan, Yinan; Ruis, Brian; Lin, Sherry; Hendrickson, Eric A.

    2014-01-01

    Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells. PMID:24699519

  18. Simple Monitoring of Gene Targeting Efficiency in Human Somatic Cell Lines Using the PIGA Gene

    PubMed Central

    Karnan, Sivasundaram; Konishi, Yuko; Ota, Akinobu; Takahashi, Miyuki; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2012-01-01

    Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines. PMID:23056640

  19. Transcriptome profiling of the Plutella xylostella (Lepidoptera: Plutellidae) ovary reveals genes involved in oogenesis.

    PubMed

    Peng, Lu; Wang, Lei; Yang, Yi-Fan; Zou, Ming-Min; He, Wei-Yi; Wang, Yue; Wang, Qing; Vasseur, Liette; You, Min-Sheng

    2017-12-30

    As a specialized organ, the insect ovary performs valuable functions by ensuring fecundity and population survival. Oogenesis is the complex physiological process resulting in the production of mature eggs, which are involved in epigenetic programming, germ cell behavior, cell cycle regulation, etc. Identification of the genes involved in ovary development and oogenesis is critical to better understand the reproductive biology and screening for the potential molecular targets in Plutella xylostella, a worldwide destructive pest of economically major crops. Based on transcriptome sequencing, a total of 7.88Gb clean nucleotides was obtained, with 19,934 genes and 1861 new transcripts being identified. Expression profiling indicated that 61.7% of the genes were expressed (FPKM≥1) in the P. xylostella ovary. GO annotation showed that the pathways of multicellular organism reproduction and multicellular organism reproduction process, as well as gamete generation and chorion were significantly enriched. Processes that were most likely relevant to reproduction included the spliceosome, ubiquitin mediated proteolysis, endocytosis, PI3K-Akt signaling pathway, insulin signaling pathway, cAMP signaling pathway, and focal adhesion were identified in the top 20 'highly represented' KEGG pathways. Functional genes involved in oogenesis were further analyzed and validated by qRT-PCR to show their potential predominant roles in P. xylostella reproduction. Our newly developed P. xylostella ovary transcriptome provides an overview of the gene expression profiling in this specialized tissue and the functional gene network closely related to the ovary development and oogenesis. This is the first genome-wide transcriptome dataset of P. xylostella ovary that includes a subset of functionally activated genes. This global approach will be the basis for further studies on molecular mechanisms of P. xylostella reproduction aimed at screening potential molecular targets for integrated pest

  20. Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weighill, Deborah; Jones, Piet; Shah, Manesh

    Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for

  1. Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery

    DOE PAGES

    Weighill, Deborah; Jones, Piet; Shah, Manesh; ...

    2018-05-11

    Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for

  2. Gene therapy to target ER stress in brain diseases.

    PubMed

    Valenzuela, Vicente; Martínez, Gabriela; Duran-Aniotz, Claudia; Hetz, Claudio

    2016-10-01

    Gene therapy based on the use of Adeno-associated viruses (AAVs) is emerging as a safe and stable strategy to target molecular pathways involved in a variety of brain diseases. Endoplasmic reticulum (ER) stress is proposed as a transversal feature of most animal models and clinical samples from patients affected with neurodegenerative diseases. Manipulation of the unfolded protein response (UPR), a major homeostatic reaction under ER stress conditions, had proved beneficial in diverse models of neurodegeneration. Although increasing number of drugs are available to target ER stress, the use of small molecules to treat chronic brain diseases is challenging because of poor blood brain barrier permeability and undesirable side effects due to the role of the UPR in the physiology of peripheral organs. Gene therapy is currently considered a possible future alternative to circumvent these problems by the delivery of therapeutic agents to selective regions and cell types of the nervous system. Here we discuss current efforts to design gene therapy strategies to alleviate ER stress on a disease context. This article is part of a Special Issue entitled SI:ER stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. CINCINNATA in Antirrhinum majus directly modulates genes involved in cytokinin and auxin signaling.

    PubMed

    Das Gupta, Mainak; Aggarwal, Pooja; Nath, Utpal

    2014-12-01

    Mutations in the CINCINNATA (CIN) gene in Antirrhinum majus and its orthologs in Arabidopsis result in crinkly leaves as a result of excess growth towards the leaf margin. CIN homologs code for TCP (TEOSINTE-BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 AND 2) transcription factors and are expressed in a broad zone in a growing leaf distal to the proliferation zone where they accelerate cell maturation. Although a few TCP targets are known, the functional basis of CIN-mediated leaf morphogenesis remains unclear. We compared the global transcription profiles of wild-type and the cin mutant of A. majus to identify the targets of CIN. We cloned and studied the direct targets using RNA in situ hybridization, DNA-protein interaction, chromatin immunoprecipitation and reporter gene analysis. Many of the genes involved in the auxin and cytokinin signaling pathways showed altered expression in the cin mutant. Further, we showed that CIN binds to genomic regions and directly promotes the transcription of a cytokinin receptor homolog HISTIDINE KINASE 4 (AmHK4) and an IAA3/SHY2 (INDOLE-3-ACETIC ACID INDUCIBLE 3/SHORT HYPOCOTYL 2) homolog in A. majus. Our results suggest that CIN limits excess cell proliferation and maintains the flatness of the leaf surface by directly modulating the hormone pathways involved in patterning cell proliferation and differentiation during leaf growth. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Peroxisome Proliferator-Activated Receptor Subtype- and Cell-Type-Specific Activation of Genomic Target Genes upon Adenoviral Transgene Delivery

    PubMed Central

    Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G.; Mandrup, Susanne

    2006-01-01

    Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARγ2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARγ2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (α, γ, and β/δ), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci. PMID:16847324

  5. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    PubMed Central

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration. PMID:25606974

  6. Bacteriophage-derived vectors for targeted cancer gene therapy.

    PubMed

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-19

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration.

  7. Novel β-catenin target genes identified in thalamic neurons encode modulators of neuronal excitability

    PubMed Central

    2012-01-01

    Background LEF1/TCF transcription factors and their activator β-catenin are effectors of the canonical Wnt pathway. Although Wnt/β-catenin signaling has been implicated in neurodegenerative and psychiatric disorders, its possible role in the adult brain remains enigmatic. To address this issue, we sought to identify the genetic program activated by β-catenin in neurons. We recently showed that β-catenin accumulates specifically in thalamic neurons where it activates Cacna1g gene expression. In the present study, we combined bioinformatics and experimental approaches to find new β-catenin targets in the adult thalamus. Results We first selected the genes with at least two conserved LEF/TCF motifs within the regulatory elements. The resulting list of 428 putative LEF1/TCF targets was significantly enriched in known Wnt targets, validating our approach. Functional annotation of the presumed targets also revealed a group of 41 genes, heretofore not associated with Wnt pathway activity, that encode proteins involved in neuronal signal transmission. Using custom polymerase chain reaction arrays, we profiled the expression of these genes in the rat forebrain. We found that nine of the analyzed genes were highly expressed in the thalamus compared with the cortex and hippocampus. Removal of nuclear β-catenin from thalamic neurons in vitro by introducing its negative regulator Axin2 reduced the expression of six of the nine genes. Immunoprecipitation of chromatin from the brain tissues confirmed the interaction between β-catenin and some of the predicted LEF1/TCF motifs. The results of these experiments validated four genes as authentic and direct targets of β-catenin: Gabra3 for the receptor of GABA neurotransmitter, Calb2 for the Ca2+-binding protein calretinin, and the Cacna1g and Kcna6 genes for voltage-gated ion channels. Two other genes from the latter cluster, Cacna2d2 and Kcnh8, appeared to be regulated by β-catenin, although the binding of β-catenin to the

  8. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    PubMed Central

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  9. A Morpholino-based screen to identify novel genes involved in craniofacial morphogenesis

    PubMed Central

    Melvin, Vida Senkus; Feng, Weiguo; Hernandez-Lagunas, Laura; Artinger, Kristin Bruk; Williams, Trevor

    2014-01-01

    BACKGROUND The regulatory mechanisms underpinning facial development are conserved between diverse species. Therefore, results from model systems provide insight into the genetic causes of human craniofacial defects. Previously, we generated a comprehensive dataset examining gene expression during development and fusion of the mouse facial prominences. Here, we used this resource to identify genes that have dynamic expression patterns in the facial prominences, but for which only limited information exists concerning developmental function. RESULTS This set of ~80 genes was used for a high throughput functional analysis in the zebrafish system using Morpholino gene knockdown technology. This screen revealed three classes of cranial cartilage phenotypes depending upon whether knockdown of the gene affected the neurocranium, viscerocranium, or both. The targeted genes that produced consistent phenotypes encoded proteins linked to transcription (meis1, meis2a, tshz2, vgll4l), signaling (pkdcc, vlk, macc1, wu:fb16h09), and extracellular matrix function (smoc2). The majority of these phenotypes were not altered by reduction of p53 levels, demonstrating that both p53 dependent and independent mechanisms were involved in the craniofacial abnormalities. CONCLUSIONS This Morpholino-based screen highlights new genes involved in development of the zebrafish craniofacial skeleton with wider relevance to formation of the face in other species, particularly mouse and human. PMID:23559552

  10. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  11. Changes in gene expression in PBMCs profiles of PPARα target genes in obese and non-obese individuals during fasting.

    PubMed

    Felicidade, Ingrid; Marcarini, Juliana Cristina; Carreira, Clísia Mara; Amarante, Marla Karine; Afman, Lydia A; Mantovani, Mário Sérgio; Ribeiro, Lúcia Regina

    2015-01-01

    The prevalence of obesity has risen dramatically and the World Health Organization estimates that 700 million people will be obese worldwide by 2015. Approximately, 50% of the Brazilian population above 20 years of age is overweight, and 16% is obese. This study aimed to evaluate the differences in the expression of PPARα target genes in human peripheral blood mononuclear cells (PBMCs) and free fatty acids (FFA) in obese and non-obese individuals after 24 h of fasting. We first presented evidence that Brazilian people exhibit expression changes in PPARα target genes in PBMCs under fasting conditions. Q-PCR was utilized to assess the mRNA expression levels of target genes. In both groups, the FFA concentrations increased significantly after 24 h of fasting. The basal FFA mean concentration was two-fold higher in the obese group compared with the non-obese group. After fasting, all genes evaluated in this study showed increased expression levels compared with basal expression in both groups. However, our results reveal no differences in gene expression between the obese and non-obese, more studies are necessary to precisely delineate the associated mechanisms, particularly those that include groups with different degrees of obesity and patients with diabetes mellitus type 2 because the expression of the main genes that are involved in β-oxidation and glucose level maintenance are affected by these factors. © 2014 S. Karger AG, Basel.

  12. Protein targeting in the analysis of learning and memory: a potential alternative to gene targeting.

    PubMed

    Gerlai, R; Williams, S P; Cairns, B; Van Bruggen, N; Moran, P; Shih, A; Caras, I; Sauer, H; Phillips, H S; Winslow, J W

    1998-11-01

    Gene targeting using homologous recombination in embryonic stem (ES) cells offers unprecedented precision with which one may manipulate single genes and investigate the in vivo effects of defined mutations in the mouse. Geneticists argue that this technique abrogates the lack of highly specific pharmacological tools in the study of brain function and behavior. However, by now it has become clear that gene targeting has some limitations too. One problem is spatial and temporal specificity of the generated mutation, which may appear in multiple brain regions or even in other organs and may also be present throughout development, giving rise to complex, secondary phenotypical alterations. This may be a disadvantage in the functional analysis of a number of genes associated with learning and memory processes. For example, several proteins, including neurotrophins--cell-adhesion molecules--and protein kinases, that play a significant developmental role have recently been suggested to be also involved in neural and behavioral plasticity. Knocking out genes of such proteins may lead to developmental alterations or even embryonic lethality in the mouse, making it difficult to study their function in neural plasticity, learning, and memory. Therefore, alternative strategies to gene targeting may be needed. Here, we suggest a potentially useful in vivo strategy based on systemic application of immunoadhesins, genetically engineered fusion proteins possessing the Fc portion of the human IgG molecule and, for example, a binding domain of a receptor of interest. These proteins are stable in vivo and exhibit high binding specificity and affinity for the endogenous ligand of the receptor, but lack the ability to signal. Thus, if delivered to the brain, immunoadhesins may specifically block signalling of the receptor of interest. Using osmotic minipumps, the protein can be infused in a localized region of the brain for a specified period of time (days or weeks). Thus, the location

  13. Generation of novel resistance genes using mutation and targeted gene editing.

    PubMed

    Gal-On, Amit; Fuchs, Marc; Gray, Stewart

    2017-10-01

    Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a 'dream technology' to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by disrupting host susceptibility genes, or by increasing the expression of viral resistance genes. However, precise targets must be identified and their roles understood to minimize potential negative effects on the plant. Nonetheless, the opportunities for genome editing are expanding, as are the technologies to generate effective and broad-spectrum resistance against plant viruses. Here we provide insights into recent progress related to gene targets and gene editing technologies. Published by Elsevier B.V.

  14. Core Promoter Functions in the Regulation of Gene Expression of Drosophila Dorsal Target Genes*

    PubMed Central

    Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar

    2014-01-01

    Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes. PMID:24634215

  15. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation.

    PubMed

    Moreno, Ana M; Fu, Xin; Zhu, Jie; Katrekar, Dhruva; Shih, Yu-Ru V; Marlett, John; Cabotaje, Jessica; Tat, Jasmine; Naughton, John; Lisowski, Leszek; Varghese, Shyni; Zhang, Kang; Mali, Prashant

    2018-04-25

    Development of efficacious in vivo delivery platforms for CRISPR-Cas9-based epigenome engineering will be critical to enable the ability to target human diseases without permanent modification of the genome. Toward this, we utilized split-Cas9 systems to develop a modular adeno-associated viral (AAV) vector platform for CRISPR-Cas9 delivery to enable the full spectrum of targeted in situ gene regulation functionalities, demonstrating robust transcriptional repression (up to 80%) and activation (up to 6-fold) of target genes in cell culture and mice. We also applied our platform for targeted in vivo gene-repression-mediated gene therapy for retinitis pigmentosa. Specifically, we engineered targeted repression of Nrl, a master regulator of rod photoreceptor determination, and demonstrated Nrl knockdown mediates in situ reprogramming of rod cells into cone-like cells that are resistant to retinitis pigmentosa-specific mutations, with concomitant prevention of secondary cone loss. Furthermore, we benchmarked our results from Nrl knockdown with those from in vivo Nrl knockout via gene editing. Taken together, our AAV-CRISPR-Cas9 platform for in vivo epigenome engineering enables a robust approach to target disease in a genomically scarless and potentially reversible manner. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  16. Regulation of p53 Target Gene Expression by Peptidylarginine Deiminase 4 ▿ †

    PubMed Central

    Li, Pingxin; Yao, Hongjie; Zhang, Zhiqiang; Li, Ming; Luo, Yuan; Thompson, Paul R.; Gilmour, David S.; Wang, Yanming

    2008-01-01

    Histone Arg methylation has been correlated with transcriptional activation of p53 target genes. However, whether this modification is reversed to repress the expression of p53 target genes is unclear. Here, we report that peptidylarginine deiminase 4, a histone citrullination enzyme, is involved in the repression of p53 target genes. Inhibition or depletion of PAD4 elevated the expression of a subset of p53 target genes, including p21/CIP1/WAF1, leading to cell cycle arrest and apoptosis. Moreover, the induction of p21, cell cycle arrest, and apoptosis by PAD4 depletion is p53 dependent. Protein-protein interaction studies showed an interaction between p53 and PAD4. Chromatin immunoprecipitation assays showed that PAD4 is recruited to the p21 promoter in a p53-dependent manner. RNA polymerase II (Pol II) activities and the association of PAD4 are dynamically regulated at the p21 promoter during UV irradiation. Paused RNA Pol II and high levels of PAD4 were detected before UV treatment. At early time points after UV treatment, an increase of histone Arg methylation and a decrease of citrullination were correlated with a transient activation of p21. At later times after UV irradiation, a loss of RNA Pol II and an increase of PAD4 were detected at the p21 promoter. The dynamics of RNA Pol II activities after UV treatment were further corroborated by permanganate footprinting. Together, these results suggest a role of PAD4 in the regulation of p53 target gene expression. PMID:18505818

  17. Problem-Solving Test: Targeted Gene Disruption

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Mutational inactivation of a specific gene is the most powerful technique to analyze the biological function of the gene. This approach has been used for a long time in viruses, bacteria, yeast, and fruit fly, but looked quite hopeless in more complex organisms. Targeted inactivation of specific genes (also known as knock-out mutation) in mice is…

  18. Apolipoprotein gene involved in lipid metabolism

    DOEpatents

    Rubin, Edward [Berkeley, CA; Pennacchio, Len A [Sebastopol, CA

    2007-07-03

    Methods and materials for studying the effects of a newly identified human gene, APOAV, and the corresponding mouse gene apoAV. The sequences of the genes are given, and transgenic animals which either contain the gene or have the endogenous gene knocked out are described. In addition, single nucleotide polymorphisms (SNPs) in the gene are described and characterized. It is demonstrated that certain SNPs are associated with diseases involving lipids and triglycerides and other metabolic diseases. These SNPs may be used alone or with SNPs from other genes to study individual risk factors. Methods for intervention in lipid diseases, including the screening of drugs to treat lipid-related or diabetic diseases are also disclosed.

  19. Specific c-Jun target genes in malignant melanoma.

    PubMed

    Schummer, Patrick; Kuphal, Silke; Vardimon, Lily; Bosserhoff, Anja K; Kappelmann, Melanie

    2016-05-03

    A fundamental event in the development and progression of malignant melanoma is the de-regulation of cancer-relevant transcription factors. We recently showed that c-Jun is a main regulator of melanoma progression and, thus, is the most important member of the AP-1 transcription factor family in this disease. Surprisingly, no cancer-related specific c-Jun target genes in melanoma were described in the literature, so far. Therefore, we focused on pre-existing ChIP-Seq data (Encyclopedia of DNA Elements) of 3 different non-melanoma cell lines to screen direct c-Jun target genes. Here, a specific c-Jun antibody to immunoprecipitate the associated promoter DNA was used. Consequently, we identified 44 direct c-Jun targets and a detailed analysis of 6 selected genes confirmed their deregulation in malignant melanoma. The identified genes were differentially regulated comparing 4 melanoma cell lines and normal human melanocytes and we confirmed their c-Jun dependency. Direct interaction between c-Jun and the promoter/enhancer regions of the identified genes was confirmed by us via ChIP experiments. Interestingly, we revealed that the direct regulation of target gene expression via c-Jun can be independent of the existence of the classical AP-1 (5´-TGA(C/G)TCA-3´) consensus sequence allowing for the subsequent down- or up-regulation of the expression of these cancer-relevant genes. In summary, the results of this study indicate that c-Jun plays a crucial role in the development and progression of malignant melanoma via direct regulation of cancer-relevant target genes and that inhibition of direct c-Jun targets through inhibition of c-Jun is a potential novel therapeutic option for treatment of malignant melanoma.

  20. THE INVOLVEMENT OF HUMAN MONOGENIC CARDIOMYOPATHY GENES IN EXPERIMENTAL POLYGENIC CARDIAC HYPERTROPHY.

    PubMed

    Prestes, Priscilla R; Marques, Francine Z; Lopez-Campos, Guillermo; Lewandowski, Paul; Delbridge, Lea M D; Charchar, Fadi J; Harrap, Stephen B

    2018-05-18

    Hypertrophic cardiomyopathy thickens heart muscles reducing functionality and increasing risk of cardiac disease and morbidity. Genetic factors are involved, but their contribution is poorly understood. We used the hypertrophic heart rat (HHR), a unique normotensive polygenic model of cardiac hypertrophy and heart failure to investigate the role of genes associated with monogenic human cardiomyopathy. We selected 42 genes involved in monogenic human cardiomyopathies to study: 1) DNA variants, by sequencing the whole-genome of 13-week old HHR and age-matched normal heart rat (NHR), its genetic control strain; 2) mRNA expression, by targeted RNA-sequencing in left ventricles of HHR and NHR at five ages (2-days old, 4-, 13-, 33- and 50-weeks old) compared to human idiopathic dilated data; and 3) microRNA expression, with rat microRNA microarrays in left ventricles of 2-days old HHR and age-matched NHR. We also investigated experimentally validated microRNA-mRNA interactions. Whole-genome sequencing revealed unique variants mostly located in non-coding regions of HHR and NHR. We found 29 genes differentially expressed in at least one age. Genes encoding desmoglein 2 (Dsg2) and transthyretin (Ttr) were significantly differentially expressed at all ages in the HHR, but only Ttr was also differentially expressed in human idiopathic cardiomyopathy. Lastly, only two microRNAs differentially expressed in the HHR were present in our comparison of validated microRNA-mRNA interactions. These two microRNAs interact with five of the genes studied. Our study shows that genes involved in monogenic forms of human cardiomyopathies may also influence polygenic forms of the disease.

  1. ARNetMiT R Package: association rules based gene co-expression networks of miRNA targets.

    PubMed

    Özgür Cingiz, M; Biricik, G; Diri, B

    2017-03-31

    miRNAs are key regulators that bind to target genes to suppress their gene expression level. The relations between miRNA-target genes enable users to derive co-expressed genes that may be involved in similar biological processes and functions in cells. We hypothesize that target genes of miRNAs are co-expressed, when they are regulated by multiple miRNAs. With the usage of these co-expressed genes, we can theoretically construct co-expression networks (GCNs) related to 152 diseases. In this study, we introduce ARNetMiT that utilize a hash based association rule algorithm in a novel way to infer the GCNs on miRNA-target genes data. We also present R package of ARNetMiT, which infers and visualizes GCNs of diseases that are selected by users. Our approach assumes miRNAs as transactions and target genes as their items. Support and confidence values are used to prune association rules on miRNA-target genes data to construct support based GCNs (sGCNs) along with support and confidence based GCNs (scGCNs). We use overlap analysis and the topological features for the performance analysis of GCNs. We also infer GCNs with popular GNI algorithms for comparison with the GCNs of ARNetMiT. Overlap analysis results show that ARNetMiT outperforms the compared GNI algorithms. We see that using high confidence values in scGCNs increase the ratio of the overlapped gene-gene interactions between the compared methods. According to the evaluation of the topological features of ARNetMiT based GCNs, the degrees of nodes have power-law distribution. The hub genes discovered by ARNetMiT based GCNs are consistent with the literature.

  2. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance

    PubMed Central

    2013-01-01

    Background Understanding the function of a particular gene under various stresses is important for engineering plants for broad-spectrum stress tolerance. Although virus-induced gene silencing (VIGS) has been used to characterize genes involved in abiotic stress tolerance, currently available gene silencing and stress imposition methodology at the whole plant level is not suitable for high-throughput functional analyses of genes. This demands a robust and reliable methodology for characterizing genes involved in abiotic and multi-stress tolerance. Results Our methodology employs VIGS-based gene silencing in leaf disks combined with simple stress imposition and effect quantification methodologies for easy and faster characterization of genes involved in abiotic and multi-stress tolerance. By subjecting leaf disks from gene-silenced plants to various abiotic stresses and inoculating silenced plants with various pathogens, we show the involvement of several genes for multi-stress tolerance. In addition, we demonstrate that VIGS can be used to characterize genes involved in thermotolerance. Our results also showed the functional relevance of NtEDS1 in abiotic stress, NbRBX1 and NbCTR1 in oxidative stress; NtRAR1 and NtNPR1 in salinity stress; NbSOS1 and NbHSP101 in biotic stress; and NtEDS1, NbETR1, NbWRKY2 and NbMYC2 in thermotolerance. Conclusions In addition to widening the application of VIGS, we developed a robust, easy and high-throughput methodology for functional characterization of genes involved in multi-stress tolerance. PMID:24289810

  3. The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rascle, Anne; Neumann, Tanja; Raschta, Anne-Sarah

    2009-01-01

    LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-{kappa}B target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-{kappa}B activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-{kappa}B activity by TNF-{alpha} synergizes induction of NF-{kappa}B target genes by LMX1B. Chromatin immunoprecipitation demonstratedmore » that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized {kappa}B site, and that LMX1B recruitment correlates with increased NF-{kappa}B DNA association. IL-6 promoter-reporter assays showed that the {kappa}B site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-{kappa}B target genes is affected in the kidney of Lmx1b{sup -/-} knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-{kappa}B target genes in cooperation with nuclear p50/p65 NF-{kappa}B.« less

  4. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression

    PubMed Central

    Abruzzi, Katharine Compton; Rodriguez, Joseph; Menet, Jerome S.; Desrochers, Jennifer; Zadina, Abigail; Luo, Weifei; Tkachev, Sasha; Rosbash, Michael

    2011-01-01

    CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP–chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK partner protein CYCLE (CYC) is on most of these sites. The CLK/CYC heterodimer is joined 4–6 h later by the transcriptional repressor PERIOD (PER), indicating that the majority of CLK targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. CLK has specific targets in different tissues, implying that important CLK partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation. PMID:22085964

  5. New target genes in endometrial tumors show a role for the estrogen-receptor pathway in microsatellite-unstable cancers.

    PubMed

    Ferreira, Ana M; Tuominen, Iina; Sousa, Sónia; Gerbens, Frans; van Dijk-Bos, Krista; Osinga, Jan; Kooi, Krista A; Sanjabi, Bahram; Esendam, Chris; Oliveira, Carla; Terpstra, Peter; Hardonk, Menno; van der Sluis, Tineke; Zazula, Monika; Stachura, Jerzy; van der Zee, Ate G; Hollema, Harry; Sijmons, Rolf H; Aaltonen, Lauri A; Seruca, Raquel; Hofstra, Robert M W; Westers, Helga

    2014-12-01

    Microsatellite instability (MSI) in tumors results in an accumulation of mutations in (target) genes. Previous studies suggest that the profile of target genes differs according to tumor type. This paper describes the first genome-wide search for target genes for mismatch repair-deficient endometrial cancers. Genes expressed in normal endometrium containing coding repeats were analyzed for mutations in tumors. We identified 44 possible genes of which seven are highly mutated (>15%). Some candidates were also found mutated in colorectal and gastric tumors. The most frequently mutated gene, NRIP1 encoding nuclear receptor-interacting protein 1, was silenced in an endometrial tumor cell line and expression microarray experiments were performed. Silencing of NRIP1 was associated with differences in the expression of several genes in the estrogen-receptor network. Furthermore, an enrichment of genes related to cell cycle (regulation) and replication was observed. We present a new profile of target genes, some of them tissue specific, whereas others seem to play a more general role in MSI tumors. The high-mutation frequency combined with the expression data suggest, for the first time, an involvement of NRIP1 in endometrial cancer development. © 2014 WILEY PERIODICALS, INC.

  6. A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus).

    PubMed

    Chapman, Mark A; Pashley, Catherine H; Wenzler, Jessica; Hvala, John; Tang, Shunxue; Knapp, Steven J; Burke, John M

    2008-11-01

    Genomic scans for selection are a useful tool for identifying genes underlying phenotypic transitions. In this article, we describe the results of a genome scan designed to identify candidates for genes targeted by selection during the evolution of cultivated sunflower. This work involved screening 492 loci derived from ESTs on a large panel of wild, primitive (i.e., landrace), and improved sunflower (Helianthus annuus) lines. This sampling strategy allowed us to identify candidates for selectively important genes and investigate the likely timing of selection. Thirty-six genes showed evidence of selection during either domestication or improvement based on multiple criteria, and a sequence-based test of selection on a subset of these loci confirmed this result. In view of what is known about the structure of linkage disequilibrium across the sunflower genome, these genes are themselves likely to have been targeted by selection, rather than being merely linked to the actual targets. While the selection candidates showed a broad range of putative functions, they were enriched for genes involved in amino acid synthesis and protein catabolism. Given that a similar pattern has been detected in maize (Zea mays), this finding suggests that selection on amino acid composition may be a general feature of the evolution of crop plants. In terms of genomic locations, the selection candidates were significantly clustered near quantitative trait loci (QTL) that contribute to phenotypic differences between wild and cultivated sunflower, and specific instances of QTL colocalization provide some clues as to the roles that these genes may have played during sunflower evolution.

  7. Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees

    PubMed Central

    Biergans, Stephanie D.; Giovanni Galizia, C.; Reinhard, Judith; Claudianos, Charles

    2015-01-01

    DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee. PMID:26531238

  8. Enteropeptidase: A Gene Associated with a Starvation Human Phenotype and a Novel Target for Obesity Treatment

    PubMed Central

    Braud, Sandrine; Ciufolini, Marco A.; Harosh, Itzik

    2012-01-01

    Background Obesity research focuses essentially on gene targets associated with the obese phenotype. None of these targets have yet provided a viable drug therapy. Focusing instead on genes that are involved in energy absorption and that are associated with a “human starvation phenotype”, we have identified enteropeptidase (EP), a gene associated with congenital enteropeptidase deficiency, as a novel target for obesity treatment. The advantages of this target are that the gene is expressed exclusively in the brush border of the intestine; it is peripheral and not redundant. Methodology/Principal Findings Potent and selective EP inhibitors were designed around a boroarginine or borolysine motif. Oral administration of these compounds to mice restricted the bioavailability of dietary energy, and in a long-term treatment it significantly diminished the rate of increase in body weight, despite ad libitum food intake. No adverse reactions of the type seen with lipase inhibitors, such as diarrhea or steatorrhea, were observed. This validates EP as a novel, druggable target for obesity treatment. Conclusions In vivo testing of novel boroarginine or borolysine-based EP inhibitors validates a novel approach to the treatment of obesity. PMID:23185382

  9. Multi-targeted priming for genome-wide gene expression assays.

    PubMed

    Adomas, Aleksandra B; Lopez-Giraldez, Francesc; Clark, Travis A; Wang, Zheng; Townsend, Jeffrey P

    2010-08-17

    Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and precise assay of the transcribed sequences within the genome.

  10. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems.

    PubMed

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-02-23

    Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.

  11. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan

    PubMed Central

    Lopez-Moya, Federico; Kowbel, David; Nueda, Ma José; Palma-Guerrero, Javier; Glass, N. Louise; Lopez-Llorca, Luis Vicente

    2016-01-01

    Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed, NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement and NCU04537 a MFS monosaccharide transporter related with assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca2+ in presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as antifungal. PMID:26694141

  12. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection.

    PubMed

    Ignatieva, Elena V; Igoshin, Alexander V; Yudin, Nikolay S

    2017-12-28

    Tick-borne encephalitis is caused by the neurotropic, positive-sense RNA virus, tick-borne encephalitis virus (TBEV). TBEV infection can lead to a variety of clinical manifestations ranging from slight fever to severe neurological illness. Very little is known about genetic factors predisposing to severe forms of disease caused by TBEV. The aims of the study were to compile a catalog of human genes involved in response to TBEV infection and to rank genes from the catalog based on the number of neighbors in the network of pairwise interactions involving these genes and TBEV RNA or proteins. Based on manual review and curation of scientific publications a catalog comprising 140 human genes involved in response to TBEV infection was developed. To provide access to data on all genes, the TBEVhostDB web resource ( http://icg.nsc.ru/TBEVHostDB/ ) was created. We reconstructed a network formed by pairwise interactions between TBEV virion itself, viral RNA and viral proteins and 140 genes/proteins from TBEVHostDB. Genes were ranked according to the number of interactions in the network. Two genes/proteins (CCR5 and IFNAR1) that had maximal number of interactions were revealed. It was found that the subnetworks formed by CCR5 and IFNAR1 and their neighbors were a fragments of two key pathways functioning during the course of tick-borne encephalitis: (1) the attenuation of interferon-I signaling pathway by the TBEV NS5 protein that targeted peptidase D; (2) proinflammation and tissue damage pathway triggered by chemokine receptor CCR5 interacting with CD4, CCL3, CCL4, CCL2. Among nine genes associated with severe forms of TBEV infection, three genes/proteins (CCR5, IL10, ARID1B) were found to have protein-protein interactions within the network, and two genes/proteins (IFNL3 and the IL10, that was just mentioned) were up- or down-regulated in response to TBEV infection. Based on this finding, potential mechanisms for participation of CCR5, IL10, ARID1B, and IFNL3 in the host

  13. BLISTER Regulates Polycomb-Target Genes, Represses Stress-Regulated Genes and Promotes Stress Responses in Arabidopsis thaliana.

    PubMed

    Kleinmanns, Julia A; Schatlowski, Nicole; Heckmann, David; Schubert, Daniel

    2017-01-01

    HIGHLIGHTS The PRC2 interacting protein BLISTER likely acts downstream of PRC2 to silence Polycomb target genes and is a key regulator of specific stress responses in Arabidopsis . Polycomb group (PcG) proteins are key epigenetic regulators of development. The highly conserved Polycomb repressive complex 2 (PRC2) represses thousands of target genes by trimethylating H3K27 (H3K27me3). Plant specific PcG components and functions are largely unknown, however, we previously identified the plant-specific protein BLISTER (BLI) as a PRC2 interactor. BLI regulates PcG target genes and promotes cold stress resistance. To further understand the function of BLI , we analyzed the transcriptional profile of bli-1 mutants. Approximately 40% of the up-regulated genes in bli are PcG target genes, however, bli-1 mutants did not show changes in H3K27me3 levels at all tested genes, indicating that BLI regulates PcG target genes downstream of or in parallel to PRC2. Interestingly, a significant number of BLI regulated H3K27me3 target genes is regulated by the stress hormone absciscic acid (ABA). We further reveal an overrepresentation of genes responding to abiotic stresses such as drought, high salinity, or heat stress among the up-regulated genes in bli mutants. Consistently, bli mutants showed reduced desiccation stress tolerance. We conclude that the PRC2 associated protein BLI is a key regulator of stress-responsive genes in Arabidopsis : it represses ABA-responsive PcG target genes, likely downstream of PRC2, and promotes resistance to several stresses such as cold and drought.

  14. Mechanisms of double-strand-break repair during gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929

  15. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target.

    PubMed

    Ulrich, Julia; Dao, Van Anh; Majumdar, Upalparna; Schmitt-Engel, Christian; Schwirz, Jonas; Schultheis, Dorothea; Ströhlein, Nadi; Troelenberg, Nicole; Grossmann, Daniela; Richter, Tobias; Dönitz, Jürgen; Gerischer, Lizzy; Leboulle, Gérard; Vilcinskas, Andreas; Stanke, Mario; Bucher, Gregor

    2015-09-03

    Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.

  16. The human RHOX gene cluster: target genes and functional analysis of gene variants in infertile men.

    PubMed

    Borgmann, Jennifer; Tüttelmann, Frank; Dworniczak, Bernd; Röpke, Albrecht; Song, Hye-Won; Kliesch, Sabine; Wilkinson, Miles F; Laurentino, Sandra; Gromoll, Jörg

    2016-11-15

    The X-linked reproductive homeobox (RHOX) gene cluster encodes transcription factors preferentially expressed in reproductive tissues. This gene cluster has important roles in male fertility based on phenotypic defects of Rhox-mutant mice and the finding that aberrant RHOX promoter methylation is strongly associated with abnormal human sperm parameters. However, little is known about the molecular mechanism of RHOX function in humans. Using gene expression profiling, we identified genes regulated by members of the human RHOX gene cluster. Some genes were uniquely regulated by RHOXF1 or RHOXF2/2B, while others were regulated by both of these transcription factors. Several of these regulated genes encode proteins involved in processes relevant to spermatogenesis; e.g. stress protection and cell survival. One of the target genes of RHOXF2/2B is RHOXF1, suggesting cross-regulation to enhance transcriptional responses. The potential role of RHOX in human infertility was addressed by sequencing all RHOX exons in a group of 250 patients with severe oligozoospermia. This revealed two mutations in RHOXF1 (c.515G > A and c.522C > T) and four in RHOXF2/2B (-73C > G, c.202G > A, c.411C > T and c.679G > A), of which only one (c.202G > A) was found in a control group of men with normal sperm concentration. Functional analysis demonstrated that c.202G > A and c.679G > A significantly impaired the ability of RHOXF2/2B to regulate downstream genes. Molecular modelling suggested that these mutations alter RHOXF2/F2B protein conformation. By combining clinical data with in vitro functional analysis, we demonstrate how the X-linked RHOX gene cluster may function in normal human spermatogenesis and we provide evidence that it is impaired in human male fertility.

  17. microRNAs and Their Targets in Apple (Malus domestica cv. "Fuji") Involved in Response to Infection of Pathogen Valsa mali.

    PubMed

    Feng, Hao; Xu, Ming; Zheng, Xiang; Zhu, Tongyi; Gao, Xiaoning; Huang, Lili

    2017-01-01

    miRNAs are important regulators involving in plant-pathogen interactions. However, their roles in apple tree response to Valsa canker pathogen ( Valsa mali, Vm ) infection were poorly understood. In this study, we constructed two miRNA libraries using the twig bark tissues of apple tree ( Malus domestica Borkh. cv. "Fuji") inoculated with Vm (IVm) and PDA medium (control, BMd). Among all detected miRNAs, 23 miRNAs were specifically isolated from BMd and 39 miRNAs were specifically isolated from IVm. Meanwhile, the expression of 294 miRNAs decreased; and another 172 miRNAs showed an increased expression trend in IVm compared with that in BMd. Furthermore, two degradome sequencing libraries were also constructed to identify the target genes of these miRNAs. In total, 353 differentially expressed miRNAs between IVm and BMd were detected to be able to target 1,077 unigenes with 2,251 cleavage sites. Based on GO and KEGG analysis, these genes were found to be mainly related to transcription regulation and signal transduction. In addition, we selected 17 miRNAs and 22 corresponding target genes to screen the expression profiles when apple twigs were infected by Vm . The expression trends of most miRNAs/target genes were consist with the results of deep sequencing. Many of them may involve in the apple twig- Vm interaction by inducing/reducing their expression. What's more, miRNAs and their target genes regulate the apple twig- Vm interaction by forming many complicated regulation networks rather than one to one model. It is worth that a conserved miRNAs mdm-miR482b, which was down regulated in IVm compared with BMd, has 14 potential target genes, most of which are disease resistance related genes. This indicates that mdm-miR482b may play important roles in apple twig response to Vm . More important, the feedback regulation of sRNA pathway in apple twig is also very complex, and play critical role in the interaction between apple twig and Vm based on the results of

  18. Genotoxic chemical carcinogens target inducible genes in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, J.W.; McCaffrey, J.; Caron, R.M.

    1994-12-31

    Our laboratory is interested in whether carcinogen-induced DNA damage is distributed nonrandomly in the genome - that is, {open_quotes}targeted{close_quotes} to specific genes or gene regions in vivo. As an indirect measure of whether targeting occurs at the gene level, we have examined whether carcinogens differentially alter the expression of individual genes. We have compared the effects of model genotoxic carcinogens that principally induce either strand breaks, simple alkylations, bulky lesions, or DNA cross-links on the expression of several constitutive and inducible genes in a simple in vivo system, the chick embryo. Each agent was examined for its effects on genemore » expression over a 24 hour period corresponding to the period of maximal DNA damage and repair induced by each compound. The doses used in these studies represented the maximum doses that caused no overt toxicity over a 96 hour period but that induced significant levels of DNA damage. Our results demonstrate that inducible genes are targeted by chemical carcinogens. We hypothesize that such effects may be a result of DNA damage specifically altering DNA-protein interactions within the promoters of inducible genes.« less

  19. Fetal exposure to teratogens: evidence of genes involved in autism.

    PubMed

    Dufour-Rainfray, Diane; Vourc'h, Patrick; Tourlet, Sébastien; Guilloteau, Denis; Chalon, Sylvie; Andres, Christian R

    2011-04-01

    Environmental challenges during the prenatal period can result in behavioral abnormalities and cognitive deficits that appear later in life such as autism. Prenatal exposure to valproic acid, ethanol, thalidomide and misoprostol has been shown to be associated with an increased incidence of autism. In addition, rodents exposed in utero to some of these drugs show autism-like abnormalities, including brain changes and lifelong behavior dysfunction. Our aim is to summarize current understanding of the relationship between in utero exposure to these drugs and autism in humans and in autism-like animal model phenotypes. It also highlights the importance of these models to understanding the neurobiology of autism, particularly in the identification of susceptibility genes. These drugs are able to modulate the expression of many genes involved in processes such as proliferation, apoptosis, neuronal differentiation and migration, synaptogenesis and synaptic activity. It seems essential to focus research on genes expressed during early neurodevelopment which may be the target of mutations or affected by drugs such as those included in this review. Copyright © 2011. Published by Elsevier Ltd.

  20. Polymorphisms in miRNA genes and their involvement in autoimmune diseases susceptibility.

    PubMed

    Latini, Andrea; Ciccacci, Cinzia; Novelli, Giuseppe; Borgiani, Paola

    2017-08-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate the expression of multiple protein-encoding genes at the post-transcriptional level. MicroRNAs are involved in different pathways, such as cellular proliferation and differentiation, signal transduction and inflammation, and play crucial roles in the development of several diseases, such as cancer, diabetes, and cardiovascular diseases. They have recently been recognized to play a role also in the pathogenesis of autoimmune diseases. Although the majority of studies are focused on miRNA expression profiles investigation, a growing number of studies have been investigating the role of polymorphisms in miRNA genes in the autoimmune diseases development. Indeed, polymorphisms affecting the miRNA genes can modify the set of targets they regulate or the maturation efficiency. This review is aimed to give an overview about the available studies that have investigated the association of miRNA gene polymorphisms with the susceptibility to various autoimmune diseases and to their clinical phenotypes.

  1. Identification of transcription coactivator OCA-B-dependent genes involved in antigen-dependent B cell differentiation by cDNA array analyses.

    PubMed

    Kim, Unkyu; Siegel, Rachael; Ren, Xiaodi; Gunther, Cary S; Gaasterland, Terry; Roeder, Robert G

    2003-07-22

    The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.

  2. GTSE1: a novel TEAD4-E2F1 target gene involved in cell protrusions formation in triple-negative breast cancer cell models

    PubMed Central

    Stelitano, Debora; Leticia, Yamila Peche; Dalla, Emiliano; Monte, Martin; Piazza, Silvano; Schneider, Claudio

    2017-01-01

    GTSE1 over-expression has been reported as a potential marker for metastasis in various types of malignancies, including breast cancer. Despite this, the transcriptional regulation of this protein and the causes of its misregulation in tumors remain largely unknown. The aims of this work were to elucidate how GTSE1 is regulated at the transcriptional level and to clarify the mechanism underlying GTSE1-dependent cell functions in triple-negative breast cancer (TNBC). Here, we identified GTSE1 as a novel target gene of the TEAD4 transcription factor, highlighting a role for the YAP and TAZ coactivators in the transcriptional regulation of GTSE1. Moreover, we found that TEAD4 controls the formation of cell protrusions required for cell migration through GTSE1, unveiling a relevant effector role for this protein in the TEAD-dependent cellular functions and confirming TEAD4 role in promoting invasion and metastasis in breast cancer. Finally, we highlighted a role for the pRb-E2F1 pathway in the control of GTSE1 transcription and observed that treatment with drugs targeting the pRb-E2F1 or YAP/TAZ-TEAD pathways dramatically downregulated the expression levels of GTSE1 and of other genes involved in the formation of metastasis, suggesting their potential use in the treatment of TNBC. PMID:28978043

  3. Genes involved in prostate cancer progression determine MRI visibility

    PubMed Central

    Li, Ping; You, Sungyong; Nguyen, Christopher; Wang, Yanping; Kim, Jayoung; Sirohi, Deepika; Ziembiec, Asha; Luthringer, Daniel; Lin, Shih-Chieh; Daskivich, Timothy; Wu, Jonathan; Freeman, Michael R; Saouaf, Rola; Li, Debiao; Kim, Hyung L.

    2018-01-01

    MRI is used to image prostate cancer and target tumors for biopsy or therapeutic ablation. The objective was to understand the biology of tumors not visible on MRI that may go undiagnosed and untreated. Methods: Prostate cancers visible or invisible on multiparametric MRI were macrodissected and examined by RNAseq. Differentially expressed genes (DEGs) based on MRI visibility status were cross-referenced with publicly available gene expression databases to identify genes associated with disease progression. Genes with potential roles in determining MRI visibility and disease progression were knocked down in murine prostate cancer xenografts, and imaged by MRI. Results: RNAseq identified 1,654 DEGs based on MRI visibility status. Comparison of DEGs based on MRI visibility and tumor characteristics revealed that Gleason score (dissimilarity test, p<0.0001) and tumor size (dissimilarity test, p<0.039) did not completely determine MRI visibility. Genes in previously reported prognostic signatures significantly correlated with MRI visibility suggesting that MRI visibility was prognostic. Cross-referencing DEGs with external datasets identified four genes (PHYHD1, CENPF, ALDH2, GDF15) that predict MRI visibility, progression free survival and metastatic deposits. Genetic modification of a human prostate cancer cell line to induce miR-101 and suppress CENPF decreased cell migration and invasion. As prostate cancer xenografts in mice, these cells had decreased visibility on diffusion weighted MRI and decreased perfusion, which correlated with immunostaining showing decreased cell density and proliferation. Conclusions: Genes involved in prostate cancer prognosis and metastasis determine MRI visibility, indicating that MRI visibility has prognostic significance. MRI visibility was associated with genetic features linked to poor prognosis. PMID:29556354

  4. Cftr gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR).

    PubMed

    Sangiuolo, Federica; Scaldaferri, Maria Lucia; Filareto, Antonio; Spitalieri, Paola; Guerra, Lorenzo; Favia, Maria; Caroppo, Rosa; Mango, Ruggiero; Bruscia, Emanuela; Gruenert, Dieter C; Casavola, Valeria; De Felici, Massimo; Novelli, Giuseppe

    2008-01-01

    Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.

  5. An animal model for Norrie disease (ND): gene targeting of the mouse ND gene.

    PubMed

    Berger, W; van de Pol, D; Bächner, D; Oerlemans, F; Winkens, H; Hameister, H; Wieringa, B; Hendriks, W; Ropers, H H

    1996-01-01

    In order to elucidate the cellular and molecular processes which are involved in Norrie disease (ND), we have used gene targeting technology to generate ND mutant mice. The murine homologue of the ND gene was cloned and shown to encode a polypeptide that shares 94% of the amino acid sequence with its human counterpart. RNA in situ hybridization revealed expression in retina, brain and the olfactory bulb and epithelium of 2 week old mice. Hemizygous mice carrying a replacement mutation in exon 2 of the ND gene developed retrolental structures in the vitreous body and showed an overall disorganization of the retinal ganglion cell layer. The outer plexiform layer disappears occasionally, resulting in a juxtaposed inner and outer nuclear layer. At the same regions, the outer segments of the photoreceptor cell layer are no longer present. These ocular findings are consistent with observations in ND patients and the generated mouse line provides a faithful model for study of early pathogenic events in this severe X-linked recessive neurological disorder.

  6. Screening for microsatellite instability target genes in colorectal cancers

    PubMed Central

    Vilkki, S; Launonen, V; Karhu, A; Sistonen, P; Vastrik, I; Aaltonen, L

    2002-01-01

    Background: Defects in the DNA repair system lead to genetic instability because replication errors are not corrected. This type of genetic instability is a key event in the malignant progression of HNPCC and a subset of sporadic colon cancers and mutation rates are particularly high at short repetitive sequences. Somatic deletions of coding mononucleotide repeats have been detected, for example, in the TGFßRII and BAX genes, and recently many novel target genes for microsatellite instability (MSI) have been proposed. Novel target genes are likely to be discovered in the future. More data should be created on background mutation rates in MSI tumours to evaluate mutation rates observed in the candidate target genes. Methods: Mutation rates in 14 neutral intronic repeats were evaluated in MSI tumours. Bioinformatic searches combined with keywords related to cancer and tumour suppressor or CRC related gene homology were used to find new candidate MSI target genes. By comparison of mutation frequencies observed in intronic mononucleotide repeats versus exonic coding repeats of potential MSI target genes, the significance of the exonic mutations was estimated. Results: As expected, the length of an intronic mononucleotide repeat correlated positively with the number of slippages for both G/C and A/T repeats (p=0.0020 and p=0.0012, respectively). BRCA1, CtBP1, and Rb1 associated CtIP and other candidates were found in a bioinformatic search combined with keywords related to cancer. Sequencing showed a significantly increased mutation rate in the exonic A9 repeat of CtIP (25/109=22.9%) as compared with similar intronic repeats (p≤0.001). Conclusions: We propose a new candidate MSI target gene CtIP to be evaluated in further studies. PMID:12414815

  7. Meganucleases and Other Tools for Targeted Genome Engineering: Perspectives and Challenges for Gene Therapy

    PubMed Central

    Silva, George; Poirot, Laurent; Galetto, Roman; Smith, Julianne; Montoya, Guillermo; Duchateau, Philippe; Pâques, Frédéric

    2011-01-01

    The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus–based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential. PMID:21182466

  8. Genome-wide STAT3 binding analysis after histone deacetylase inhibition reveals novel target genes in dendritic cells

    PubMed Central

    Sun, Yaping; Iyer, Matthew; McEachin, Richard; Zhao, Meng; Wu, Yi-Mi; Cao, Xuhong; Oravecz-Wilson, Katherine; Zajac, Cynthia; Mathewson, Nathan; Wu, Shin-Rong Julia; Rossi, Corinne; Toubai, Tomomi; Qin, Zhaohui S.; Chinnaiya, Arul M.; Reddy, Pavan

    2016-01-01

    STAT3 is a master transcriptional regulator that plays an important role in the induction of both immune activation and immune tolerance in dendritic cells (DCs). The transcriptional targets of STAT3 in promoting DC activation are becoming increasingly understood; however, the mechanisms underpinning its role in causing DC suppression remain largely unknown. To determine the functional gene targets of STAT3, we compared the genome-wide binding of STAT3 using ChIP-seq coupled with gene expression microarrays to determine STAT3-dependent gene regulation in DCs after histone deacetylase (HDAC) inhibition. HDAC inhibition boosted the ability of STAT3 to bind to distinct DNA targets and regulate gene expression. Among the top 500 STAT3 binding sites, the frequency of canonical motifs was significantly higher than that of non-canonical motifs. Functional analysis revealed that after treatment with an HDAC inhibitor, the upregulated STAT3 target genes were those that were primarily the negative regulators of pro-inflammatory cytokines and those in the IL-10 signaling pathway. The downregulated STAT3-dependent targets were those involved in immune effector processes and antigen processing/presentation. The expression and functional relevance of these genes were validated. Specifically, functional studies confirmed that the upregulation of IL-10Ra by STAT3 contributed to the suppressive function of DCs following HDAC inhibition. PMID:27866206

  9. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

    PubMed

    Ramirez-Córdova, Jesús; Drnevich, Jenny; Madrigal-Pulido, Jaime Alberto; Arrizon, Javier; Allen, Kirk; Martínez-Velázquez, Moisés; Alvarez-Maya, Ikuri

    2012-08-01

    During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.

  10. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation.

    PubMed

    Miki, Daisuke; Zhang, Wenxin; Zeng, Wenjie; Feng, Zhengyan; Zhu, Jian-Kang

    2018-05-17

    Homologous recombination-based gene targeting is a powerful tool for precise genome modification and has been widely used in organisms ranging from yeast to higher organisms such as Drosophila and mouse. However, gene targeting in higher plants, including the most widely used model plant Arabidopsis thaliana, remains challenging. Here we report a sequential transformation method for gene targeting in Arabidopsis. We find that parental lines expressing the bacterial endonuclease Cas9 from the egg cell- and early embryo-specific DD45 gene promoter can improve the frequency of single-guide RNA-targeted gene knock-ins and sequence replacements via homologous recombination at several endogenous sites in the Arabidopsis genome. These heritable gene targeting can be identified by regular PCR. Our approach enables routine and fine manipulation of the Arabidopsis genome.

  11. Identification of Direct Target Genes Using Joint Sequence and Expression Likelihood with Application to DAF-16

    PubMed Central

    Yu, Ron X.; Liu, Jie; True, Nick; Wang, Wei

    2008-01-01

    A major challenge in the post-genome era is to reconstruct regulatory networks from the biological knowledge accumulated up to date. The development of tools for identifying direct target genes of transcription factors (TFs) is critical to this endeavor. Given a set of microarray experiments, a probabilistic model called TRANSMODIS has been developed which can infer the direct targets of a TF by integrating sequence motif, gene expression and ChIP-chip data. The performance of TRANSMODIS was first validated on a set of transcription factor perturbation experiments (TFPEs) involving Pho4p, a well studied TF in Saccharomyces cerevisiae. TRANSMODIS removed elements of arbitrariness in manual target gene selection process and produced results that concur with one's intuition. TRANSMODIS was further validated on a genome-wide scale by comparing it with two other methods in Saccharomyces cerevisiae. The usefulness of TRANSMODIS was then demonstrated by applying it to the identification of direct targets of DAF-16, a critical TF regulating ageing in Caenorhabditis elegans. We found that 189 genes were tightly regulated by DAF-16. In addition, DAF-16 has differential preference for motifs when acting as an activator or repressor, which awaits experimental verification. TRANSMODIS is computationally efficient and robust, making it a useful probabilistic framework for finding immediate targets. PMID:18350157

  12. Identification of neuronal target genes for CCAAT/Enhancer Binding Proteins

    PubMed Central

    Kfoury, N.; Kapatos, G.

    2009-01-01

    CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPβ target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPβ binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPβ to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPα, β and δ. Analysis of the hippocampal transcriptome of C/EBPβ knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain. PMID:19103292

  13. Targeted gene therapy and cell reprogramming in Fanconi anemia

    PubMed Central

    Rio, Paula; Baños, Rocio; Lombardo, Angelo; Quintana-Bustamante, Oscar; Alvarez, Lara; Garate, Zita; Genovese, Pietro; Almarza, Elena; Valeri, Antonio; Díez, Begoña; Navarro, Susana; Torres, Yaima; Trujillo, Juan P; Murillas, Rodolfo; Segovia, Jose C; Samper, Enrique; Surralles, Jordi; Gregory, Philip D; Holmes, Michael C; Naldini, Luigi; Bueren, Juan A

    2014-01-01

    Gene targeting is progressively becoming a realistic therapeutic alternative in clinics. It is unknown, however, whether this technology will be suitable for the treatment of DNA repair deficiency syndromes such as Fanconi anemia (FA), with defects in homology-directed DNA repair. In this study, we used zinc finger nucleases and integrase-defective lentiviral vectors to demonstrate for the first time that FANCA can be efficiently and specifically targeted into the AAVS1 safe harbor locus in fibroblasts from FA-A patients. Strikingly, up to 40% of FA fibroblasts showed gene targeting 42 days after gene editing. Given the low number of hematopoietic precursors in the bone marrow of FA patients, gene-edited FA fibroblasts were then reprogrammed and re-differentiated toward the hematopoietic lineage. Analyses of gene-edited FA-iPSCs confirmed the specific integration of FANCA in the AAVS1 locus in all tested clones. Moreover, the hematopoietic differentiation of these iPSCs efficiently generated disease-free hematopoietic progenitors. Taken together, our results demonstrate for the first time the feasibility of correcting the phenotype of a DNA repair deficiency syndrome using gene-targeting and cell reprogramming strategies. PMID:24859981

  14. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Moya, Federico; Kowbel, David; Nueda, Ma Jose

    Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. In this paper, we have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding amore » class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca 2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca 2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Finally, our results are of paramount importance for developing chitosan as an antifungal.« less

  15. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan

    DOE PAGES

    Lopez-Moya, Federico; Kowbel, David; Nueda, Ma Jose; ...

    2015-12-01

    Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. In this paper, we have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding amore » class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca 2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca 2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Finally, our results are of paramount importance for developing chitosan as an antifungal.« less

  16. Clinical Applications Involving CNS Gene Transfer

    PubMed Central

    Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.

    2015-01-01

    Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921

  17. microRNAs and Their Targets in Apple (Malus domestica cv. “Fuji”) Involved in Response to Infection of Pathogen Valsa mali

    PubMed Central

    Feng, Hao; Xu, Ming; Zheng, Xiang; Zhu, Tongyi; Gao, Xiaoning; Huang, Lili

    2017-01-01

    miRNAs are important regulators involving in plant-pathogen interactions. However, their roles in apple tree response to Valsa canker pathogen (Valsa mali, Vm) infection were poorly understood. In this study, we constructed two miRNA libraries using the twig bark tissues of apple tree (Malus domestica Borkh. cv. “Fuji”) inoculated with Vm (IVm) and PDA medium (control, BMd). Among all detected miRNAs, 23 miRNAs were specifically isolated from BMd and 39 miRNAs were specifically isolated from IVm. Meanwhile, the expression of 294 miRNAs decreased; and another 172 miRNAs showed an increased expression trend in IVm compared with that in BMd. Furthermore, two degradome sequencing libraries were also constructed to identify the target genes of these miRNAs. In total, 353 differentially expressed miRNAs between IVm and BMd were detected to be able to target 1,077 unigenes with 2,251 cleavage sites. Based on GO and KEGG analysis, these genes were found to be mainly related to transcription regulation and signal transduction. In addition, we selected 17 miRNAs and 22 corresponding target genes to screen the expression profiles when apple twigs were infected by Vm. The expression trends of most miRNAs/target genes were consist with the results of deep sequencing. Many of them may involve in the apple twig-Vm interaction by inducing/reducing their expression. What's more, miRNAs and their target genes regulate the apple twig-Vm interaction by forming many complicated regulation networks rather than one to one model. It is worth that a conserved miRNAs mdm-miR482b, which was down regulated in IVm compared with BMd, has 14 potential target genes, most of which are disease resistance related genes. This indicates that mdm-miR482b may play important roles in apple twig response to Vm. More important, the feedback regulation of sRNA pathway in apple twig is also very complex, and play critical role in the interaction between apple twig and Vm based on the results of

  18. The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin.

    PubMed

    Brown, David A; Di Cerbo, Vincenzo; Feldmann, Angelika; Ahn, Jaewoo; Ito, Shinsuke; Blackledge, Neil P; Nakayama, Manabu; McClellan, Michael; Dimitrova, Emilia; Turberfield, Anne H; Long, Hannah K; King, Hamish W; Kriaucionis, Skirmantas; Schermelleh, Lothar; Kutateladze, Tatiana G; Koseki, Haruhiko; Klose, Robert J

    2017-09-05

    Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3). CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

    PubMed

    Weber, David; Heisig, Julia; Kneitz, Susanne; Wolf, Elmar; Eilers, Martin; Gessler, Manfred

    2015-02-01

    Hey bHLH transcription factors are critical effectors of Notch signaling. During mammalian heart development they are expressed in atrial and ventricular cardiomyocytes and in the developing endocardium. Hey knockout mice suffer from lethal cardiac defects, such as ventricular septum defects, valve defects and cardiomyopathy. Despite this functional relevance, little is known about the regulation of downstream targets in relevant cell types. The objective of this study was to elucidate the regulatory mechanisms by which Hey proteins affect gene expression in a cell type specific manner. We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey proteins generally correlates with the extent of Hey-binding to target promoters, Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These also lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4. Ectopic Nkx2-5 overexpression in ESC blocks Hey-mediated repression of these genes. Thus, Hey proteins mechanistically repress target genes via Hdac recruitment and histone deacetylation. In CM Hey-repression is counteracted by cardiac activators, which recruit histone acetylases and prevent Hey mediated deacetylation and subsequent repression for a subset of genes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Identification of Novel Pax8 Targets in FRTL-5 Thyroid Cells by Gene Silencing and Expression Microarray Analysis

    PubMed Central

    Di Palma, Tina; Conti, Anna; de Cristofaro, Tiziana; Scala, Serena; Nitsch, Lucio; Zannini, Mariastella

    2011-01-01

    Background The differentiation program of thyroid follicular cells (TFCs), by far the most abundant cell population of the thyroid gland, relies on the interplay between sequence-specific transcription factors and transcriptional coregulators with the basal transcriptional machinery of the cell. However, the molecular mechanisms leading to the fully differentiated thyrocyte are still the object of intense study. The transcription factor Pax8, a member of the Paired-box gene family, has been demonstrated to be a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well-characterized with respect to its role in regulating genes involved in thyroid differentiation, genomics approaches aiming at the identification of additional Pax8 targets are lacking and the biological pathways controlled by this transcription factor are largely unknown. Methodology/Principal Findings To identify unique downstream targets of Pax8, we investigated the genome-wide effect of Pax8 silencing comparing the transcriptome of silenced versus normal differentiated FRTL-5 thyroid cells. In total, 2815 genes were found modulated 72 h after Pax8 RNAi, induced or repressed. Genes previously reported to be regulated by Pax8 in FRTL-5 cells were confirmed. In addition, novel targets genes involved in functional processes such as DNA replication, anion transport, kinase activity, apoptosis and cellular processes were newly identified. Transcriptome analysis highlighted that Pax8 is a key molecule for thyroid morphogenesis and differentiation. Conclusions/Significance This is the first large-scale study aimed at the identification of new genes regulated by Pax8, a master regulator of thyroid development and differentiation. The biological pathways and target genes controlled by Pax8 will have considerable importance to understand thyroid disease progression as well as to set up novel therapeutic strategies. PMID:21966443

  1. [A mini-review of targeting gene-virotherapy of cancer].

    PubMed

    Liu, Xin-Yuan; Gu, Jin-Fa

    2006-10-01

    New progress has been made on the project "targeting gene-virotherapy of cancer" proposed by us, which is "targeting dual gene-virotherapy of cancer". By the use of two genes, all the xenograft tumors in nude mice could be completely eliminated. The researches have been published in international journals, such as Hepatology and Cancer Research (a highlight paper). In this study, a further superior strategy--"double targeting virus-dual gene therapy" was introduced. This strategy was specialized by the use of tumor specific promoter to control the tumor specific suppressor gene, such as alpha-fetoprotein (AFP), which controls hepatoma specific suppressor gene LFIRE or HCCS1. In addition, a second tumor specific promoter, such as hTERT or survivin was used to control E1A or E1B in the construct, as hTERT-E1A-AFP-E1B-HCCS1 or LFIRE, a double tumor specific promoter controlling hepatoma specific LFIRE or HCCS1 gene. By the combined use of this construct with a very strong antitumor construct, such as hTERT-E1A-AFP-E1B-IL-24, a strategy with both excellent tumor killing effect and excellent safety with very little damage to normal cells was obtained. Therefore, double targeting virus-dual gene therapy might be one of the most potential strategies for cancer treatment. Furthermore, a new type of interferon was also introduced, which might be an ideal antitumor drug.

  2. Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation.

    PubMed

    Filatov, Victor; Dowdle, John; Smirnoff, Nicholas; Ford-Lloyd, Brian; Newbury, H John; Macnair, Mark R

    2006-09-01

    One of the challenges of comparative genomics is to identify specific genetic changes associated with the evolution of a novel adaptation or trait. We need to be able to disassociate the genes involved with a particular character from all the other genetic changes that take place as lineages diverge. Here we show that by comparing the transcriptional profile of segregating families with that of parent species differing in a novel trait, it is possible to narrow down substantially the list of potential target genes. In addition, by assuming synteny with a related model organism for which the complete genome sequence is available, it is possible to use the cosegregation of markers differing in transcription level to identify regions of the genome which probably contain quantitative trait loci (QTLs) for the character. This novel combination of genomics and classical genetics provides a very powerful tool to identify candidate genes. We use this methodology to investigate zinc hyperaccumulation in Arabidopsis halleri, the sister species to the model plant, Arabidopsis thaliana. We compare the transcriptional profile of A. halleri with that of its sister nonaccumulator species, Arabidopsis petraea, and between accumulator and nonaccumulator F(3)s derived from the cross between the two species. We identify eight genes which consistently show greater expression in accumulator phenotypes in both roots and shoots, including two metal transporter genes (NRAMP3 and ZIP6), and cytoplasmic aconitase, a gene involved in iron homeostasis in mammals. We also show that there appear to be two QTLs for zinc accumulation, on chromosomes 3 and 7.

  3. Towards β-globin gene-targeting with integrase-defective lentiviral vectors.

    PubMed

    Inanlou, Davoud Nouri; Yakhchali, Bagher; Khanahmad, Hossein; Gardaneh, Mossa; Movassagh, Hesam; Cohan, Reza Ahangari; Ardestani, Mehdi Shafiee; Mahdian, Reza; Zeinali, Sirous

    2010-11-01

    We have developed an integrase-defective lentiviral (LV) vector in combination with a gene-targeting approach for gene therapy of β-thalassemia. The β-globin gene-targeting construct has two homologous stems including sequence upstream and downstream of the β-globin gene, a β-globin gene positioned between hygromycin and neomycin resistant genes and a herpes simplex virus type 1 thymidine kinase (HSVtk) suicide gene. Utilization of integrase-defective LV as a vector for the β-globin gene increased the number of selected clones relative to non-viral methods. This method represents an important step toward the ultimate goal of a clinical gene therapy for β-thalassemia.

  4. Targeted gene therapy and cell reprogramming in Fanconi anemia.

    PubMed

    Rio, Paula; Baños, Rocio; Lombardo, Angelo; Quintana-Bustamante, Oscar; Alvarez, Lara; Garate, Zita; Genovese, Pietro; Almarza, Elena; Valeri, Antonio; Díez, Begoña; Navarro, Susana; Torres, Yaima; Trujillo, Juan P; Murillas, Rodolfo; Segovia, Jose C; Samper, Enrique; Surralles, Jordi; Gregory, Philip D; Holmes, Michael C; Naldini, Luigi; Bueren, Juan A

    2014-06-01

    Gene targeting is progressively becoming a realistic therapeutic alternative in clinics. It is unknown, however, whether this technology will be suitable for the treatment of DNA repair deficiency syndromes such as Fanconi anemia (FA), with defects in homology-directed DNA repair. In this study, we used zinc finger nucleases and integrase-defective lentiviral vectors to demonstrate for the first time that FANCA can be efficiently and specifically targeted into the AAVS1 safe harbor locus in fibroblasts from FA-A patients. Strikingly, up to 40% of FA fibroblasts showed gene targeting 42 days after gene editing. Given the low number of hematopoietic precursors in the bone marrow of FA patients, gene-edited FA fibroblasts were then reprogrammed and re-differentiated toward the hematopoietic lineage. Analyses of gene-edited FA-iPSCs confirmed the specific integration of FANCA in the AAVS1 locus in all tested clones. Moreover, the hematopoietic differentiation of these iPSCs efficiently generated disease-free hematopoietic progenitors. Taken together, our results demonstrate for the first time the feasibility of correcting the phenotype of a DNA repair deficiency syndrome using gene-targeting and cell reprogramming strategies. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Gene-carried hepatoma targeting complex induced high gene transfection efficiency with low toxicity and significant antitumor activity.

    PubMed

    Zhao, Qing-Qing; Hu, Yu-Lan; Zhou, Yang; Li, Ni; Han, Min; Tang, Gu-Ping; Qiu, Feng; Tabata, Yasuhiko; Gao, Jian-Qing

    2012-01-01

    The success of gene transfection is largely dependent on the development of a vehicle or vector that can efficiently deliver a gene to cells with minimal toxicity. A liver cancer-targeted specific peptide (FQHPSF sequence) was successfully synthesized and linked with chitosan-linked polyethylenimine (CP) to form a new targeted gene delivery vector called CPT (CP/peptide). The structure of CPT was confirmed by (1)H nuclear magnetic resonance spectroscopy and ultraviolet spectrophotometry. The particle size of CPT/ DNA complexes was measured using laser diffraction spectrometry and the cytotoxicity of the copolymer was evaluated by methylthiazol tetrazolium method. The transfection efficiency evaluation of the CP copolymer was performed using luciferase activity assay. Cellular internalization of the CP/DNA complex was observed under confocal laser scanning microscopy. The targeting specificity of the polymer coupled to peptide was measured by competitive inhibition transfection study. The liver targeting specificity of the CPT copolymer in vivo was demonstrated by combining the copolymer with a therapeutic gene, interleukin-12, and assessed by its abilities in suppressing the growth of ascites tumor in mouse model. The results showed that the liver cancer-targeted specific peptide was successfully synthesized and linked with CP to form a new targeted gene delivery vector called CPT. The composition of CPT was confirmed and the vector showed low cytotoxicity and strong targeting specificity to liver tumors in vitro. The in vivo study results showed that interleukin-12 delivered by the new gene vector CPT/DNA significantly enhanced the antitumor effect on ascites tumor-bearing imprinting control region mice as compared with polyethylenimine (25 kDa), CP, and other controls, which further demonstrate the targeting specificity of the new synthesized polymer. The synthesized CPT copolymer was proven to be an effective liver cancer-targeted vector for therapeutic gene

  6. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    PubMed Central

    Wang, Bin; Zhou, Jiangfeng

    2003-01-01

    The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined. PMID:14614774

  7. Stimulation of autophagy by the p53 target gene Sestrin2.

    PubMed

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  8. Real-time imaging of Huntingtin aggregates diverting target search and gene transcription

    PubMed Central

    Li, Li; Liu, Hui; Dong, Peng; Li, Dong; Legant, Wesley R; Grimm, Jonathan B; Lavis, Luke D; Betzig, Eric; Tjian, Robert; Liu, Zhe

    2016-01-01

    The presumptive altered dynamics of transient molecular interactions in vivo contributing to neurodegenerative diseases have remained elusive. Here, using single-molecule localization microscopy, we show that disease-inducing Huntingtin (mHtt) protein fragments display three distinct dynamic states in living cells – 1) fast diffusion, 2) dynamic clustering and 3) stable aggregation. Large, stable aggregates of mHtt exclude chromatin and form 'sticky' decoy traps that impede target search processes of key regulators involved in neurological disorders. Functional domain mapping based on super-resolution imaging reveals an unexpected role of aromatic amino acids in promoting protein-mHtt aggregate interactions. Genome-wide expression analysis and numerical simulation experiments suggest mHtt aggregates reduce transcription factor target site sampling frequency and impair critical gene expression programs in striatal neurons. Together, our results provide insights into how mHtt dynamically forms aggregates and disrupts the finely-balanced gene control mechanisms in neuronal cells. DOI: http://dx.doi.org/10.7554/eLife.17056.001 PMID:27484239

  9. Regulation, overexpression, and target gene identification of Potato Homeobox 15 (POTH15) – a class-I KNOX gene in potato

    PubMed Central

    Mahajan, Ameya S.; Kondhare, Kirtikumar R.; Rajabhoj, Mohit P.; Kumar, Amit; Ghate, Tejashree; Ravindran, Nevedha; Habib, Farhat; Siddappa, Sundaresha; Banerjee, Anjan K.

    2016-01-01

    Potato Homeobox 15 (POTH15) is a KNOX-I (Knotted1-like homeobox) family gene in potato that is orthologous to Shoot Meristemless (STM) in Arabidopsis. Despite numerous reports on KNOX genes from different species, studies in potato are limited. Here, we describe photoperiodic regulation of POTH15, its overexpression phenotype, and identification of its potential targets in potato (Solanum tuberosum ssp. andigena). qRT-PCR analysis showed a higher abundance of POTH15 mRNA in shoot tips and stolons under tuber-inducing short-day conditions. POTH15 promoter activity was detected in apical and axillary meristems, stolon tips, tuber eyes, and meristems of tuber sprouts, indicating its role in meristem maintenance and leaf development. POTH15 overexpression altered multiple morphological traits including leaf and stem development, leaflet number, and number of nodes and branches. In particular, the rachis of the leaf was completely reduced and leaves appeared as a bouquet of leaflets. Comparative transcriptomic analysis of 35S::GUS and two POTH15 overexpression lines identified more than 6000 differentially expressed genes, including 2014 common genes between the two overexpression lines. Functional analysis of these genes revealed their involvement in responses to hormones, biotic/abiotic stresses, transcription regulation, and signal transduction. qRT-PCR of selected candidate target genes validated their differential expression in both overexpression lines. Out of 200 randomly chosen POTH15 targets, 173 were found to have at least one tandem TGAC core motif, characteristic of KNOX interaction, within 3.0kb in the upstream sequence of the transcription start site. Overall, this study provides insights to the role of POTH15 in controlling diverse developmental processes in potato. PMID:27217546

  10. Cancer gene therapy with targeted adenoviruses.

    PubMed

    Bachtarzi, Houria; Stevenson, Mark; Fisher, Kerry

    2008-11-01

    Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.

  11. Differential Sensitivity of Target Genes to Translational Repression by miR-17~92

    PubMed Central

    Jin, Hyun Yong; Oda, Hiroyo; Chen, Pengda; Kang, Seung Goo; Valentine, Elizabeth; Liao, Lujian; Zhang, Yaoyang; Gonzalez-Martin, Alicia; Shepherd, Jovan; Head, Steven R.; Kim, Pyeung-Hyeun; Fu, Guo; Liu, Wen-Hsien; Han, Jiahuai

    2017-01-01

    MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genes. PMID:28241004

  12. Systematic Identification, Characterization and Target Gene Analysis of microRNAs Involved in Osteoarthritis Subchondral Bone Pathogenesis.

    PubMed

    Prasadam, Indira; Batra, Jyotsna; Perry, Samuel; Gu, Wenyi; Crawford, Ross; Xiao, Yin

    2016-07-01

    This study aimed to identify the microRNAs associated with sclerotic status of subchondral bone in the pathogenesis of osteoarthritis (OA). Total RNA was extracted from non-sclerotic and sclerotic OA subchondral bone from patients undergoing knee replacement surgeries. miRCURY™ LNA miRNA chip and qRT-PCR were used to profile and validate differential microRNA expression. In addition, we further confirmed profiles of altered miRNAs in an OA rat meniscectomy animal model and their putative targets of the miRNAs were predicted using ingenuity (IPA) software. Finally, five short-listed miRNAs were reactivated by transient in vitro overexpression (miRNA mimics) in subchondral bone osteoblasts and their phenotypes were assessed. Functional screening identified 30 differentiated miRNAs in sclerotic subchondral bone compared to non-sclerotic bone of OA patients. Data integration resulted in confirmation of the eight miRNAs, with aberrant expression in independent human OA bone sample set. In silico analysis (IPA) identified 732 mRNA transcripts as putative targets of the eight altered miRNAs, of which twenty genes were validated to be differentially expressed in sclerotic compared to non-sclerotic bone samples. Out of eight dysregulated miRNA's, five of them showed consistent time-dependent downregulation in a rat OA model. Furthermore, synthetic miR-199a-3p, miR-199a-5p, miR-590-5p, and miR-211-5p mimics rescued the abnormal osteoarthritic subchondral bone osteoblast gene expression and mineralization. We have identified four novel miRNAs that play important roles in subchondral bone pathogenesis in OA. Additional studies are required to develop these miRNAs into therapeutic modalities for OA.

  13. Targeted gene deletion of miRNAs in mice by TALEN system.

    PubMed

    Takada, Shuji; Sato, Tempei; Ito, Yoshiaki; Yamashita, Satoshi; Kato, Tomoko; Kawasumi, Miyuri; Kanai-Azuma, Masami; Igarashi, Arisa; Kato, Tomomi; Tamano, Moe; Asahara, Hiroshi

    2013-01-01

    Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A) tail worked better than that of with poly(A) tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.

  14. Use of a nonhomologous end joining deficient strain (Deltaku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis.

    PubMed

    Haarmann, Thomas; Lorenz, Nicole; Tudzynski, Paul

    2008-01-01

    The ergot fungus Claviceps purpurea uses mainly the nonhomologous-end-joining (NHEJ) system for integration of exogenous DNA, leading to a low frequency of homologous integration (1-2%). To improve gene targeting efficiency we deleted the C. purpurea ku70 gene in two different strains: the pathogenic strain 20.1 and the apathogenic, ergot alkaloid producing strain P1. The mutants were not impaired in vegetative and pathogenic development nor alkaloid production. Gene targeting efficiency was significantly increased (50-60%) in the Deltaku70 mutants. The P1 Deltaku70 strain (producing ergotamine and ergocryptine) was used for targeted deletion of lpsA1, one of the two trimodular NRPS genes present in the alkaloid gene cluster, encoding D-lysergyl peptide synthetases involved in formation of the tripeptide moiety of ergopeptines. Mutants lacking the lpsA1 gene were shown to be incapable of producing ergotamine but were still able to produce ergocryptine, proving that LpsA1 is involved in ergotamine biosynthesis.

  15. Gene duplication in the major insecticide target site, Rdl, in Drosophila melanogaster

    PubMed Central

    Remnant, Emily J.; Good, Robert T.; Schmidt, Joshua M.; Lumb, Christopher; Robin, Charles; Daborn, Phillip J.; Batterham, Philip

    2013-01-01

    The Resistance to Dieldrin gene, Rdl, encodes a GABA-gated chloride channel subunit that is targeted by cyclodiene and phenylpyrazole insecticides. The gene was first characterized in Drosophila melanogaster by genetic mapping of resistance to the cyclodiene dieldrin. The 4,000-fold resistance observed was due to a single amino acid replacement, Ala301 to Ser. The equivalent change was subsequently identified in Rdl orthologs of a large range of resistant insect species. Here, we report identification of a duplication at the Rdl locus in D. melanogaster. The 113-kb duplication contains one WT copy of Rdl and a second copy with two point mutations: an Ala301 to Ser resistance mutation and Met360 to Ile replacement. Individuals with this duplication exhibit intermediate dieldrin resistance compared with single copy Ser301 homozygotes, reduced temperature sensitivity, and altered RNA editing associated with the resistant allele. Ectopic recombination between Roo transposable elements is involved in generating this genomic rearrangement. The duplication phenotypes were confirmed by construction of a transgenic, artificial duplication integrating the 55.7-kb Rdl locus with a Ser301 change into an Ala301 background. Gene duplications can contribute significantly to the evolution of insecticide resistance, most commonly by increasing the amount of gene product produced. Here however, duplication of the Rdl target site creates permanent heterozygosity, providing unique potential for adaptive mutations to accrue in one copy, without abolishing the endogenous role of an essential gene. PMID:23959864

  16. RNA-guided genome editing for target gene mutations in wheat.

    PubMed

    Upadhyay, Santosh Kumar; Kumar, Jitesh; Alok, Anshu; Tuli, Rakesh

    2013-12-09

    The clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system has been used as an efficient tool for genome editing. We report the application of CRISPR-Cas-mediated genome editing to wheat (Triticum aestivum), the most important food crop plant with a very large and complex genome. The mutations were targeted in the inositol oxygenase (inox) and phytoene desaturase (pds) genes using cell suspension culture of wheat and in the pds gene in leaves of Nicotiana benthamiana. The expression of chimeric guide RNAs (cgRNA) targeting single and multiple sites resulted in indel mutations in all the tested samples. The expression of Cas9 or sgRNA alone did not cause any mutation. The expression of duplex cgRNA with Cas9 targeting two sites in the same gene resulted in deletion of DNA fragment between the targeted sequences. Multiplexing the cgRNA could target two genes at one time. Target specificity analysis of cgRNA showed that mismatches at the 3' end of the target site abolished the cleavage activity completely. The mismatches at the 5' end reduced cleavage, suggesting that the off target effects can be abolished in vivo by selecting target sites with unique sequences at 3' end. This approach provides a powerful method for genome engineering in plants.

  17. Ccdc3: A New P63 Target Involved in Regulation Of Liver Lipid Metabolism.

    PubMed

    Liao, Wenjuan; Liu, Hongbing; Zhang, Yiwei; Jung, Ji Hoon; Chen, Jiaxiang; Su, Xiaohua; Kim, Yeong C; Flores, Elsa R; Wang, San Ming; Czarny-Ratajczak, Malwina; Li, Wen; Zeng, Shelya X; Lu, Hua

    2017-08-21

    TAp63, a member of the p53 family, has been shown to regulate energy metabolism. Here, we report coiled coil domain-containing 3 (CCDC3) as a new TAp63 target. TAp63, but not ΔNp63, p53 or p73, upregulates CCDC3 expression by directly binding to its enhancer region. The CCDC3 expression is markedly reduced in TAp63-null mouse embryonic fibroblasts and brown adipose tissues and by tumor necrosis factor alpha that reduces p63 transcriptional activity, but induced by metformin, an anti-diabetic drug that activates p63. Also, the expression of CCDC3 is positively correlated with TAp63 levels, but conversely with ΔNp63 levels, during adipocyte differentiation. Interestingly, CCDC3, as a secreted protein, targets liver cancer cells and increases long chain polyunsaturated fatty acids, but decreases ceramide in the cells. CCDC3 alleviates glucose intolerance, insulin resistance and steatosis formation in transgenic CCDC3 mice on high-fat diet (HFD) by reducing the expression of hepatic PPARγ and its target gene CIDEA as well as other genes involved in de novo lipogenesis. Similar results are reproduced by hepatic expression of ectopic CCDC3 in mice on HFD. Altogether, these results demonstrate that CCDC3 modulates liver lipid metabolism by inhibiting liver de novo lipogenesis as a downstream player of the p63 network.

  18. Synthesis of galactosyl compounds for targeted gene delivery.

    PubMed

    Ren, T; Zhang, G; Liu, D

    2001-11-01

    Cell-specific DNA delivery offers a great potential for targeted gene therapy. Toward this end, we have synthesized a series of compounds carrying galactose residues as a targeting ligand for asialoglycoprotein receptors of hepatocytes and primary amine groups as a functional domain for DNA binding. Biological activity of these galactosyl compounds in DNA delivery was evaluated in HepG2 and BL-6 cells and compared with respect to the number of galactose residues as well as primary amine groups in each molecule. Transfection experiments using a firefly luciferase gene as a reporter revealed that compounds with multivalent binding properties were more active in DNA delivery. An optimal transfection activity in HepG2 cells requires seven primary amine groups and a minimum of two galactose residues in each molecule. The transfection activity of compounds carrying multi-galactose residues can be inhibited by asialofetuin, a natural substrate for asialoglycoprotein receptors of hepatocytes, suggesting that gene transfer by these galactosyl compounds is asialoglycoprotein receptor-mediated. These results provide direct evidence in support of our new strategy for the use of small and synthetic compounds for cell specific and targeted gene delivery.

  19. Genomic identification of direct target genes of LEAFY

    PubMed Central

    William, Dilusha A.; Su, Yanhui; Smith, Michael R.; Lu, Meina; Baldwin, Don A.; Wagner, Doris

    2004-01-01

    The switch from vegetative to reproductive development in plants necessitates a switch in the developmental program of the descendents of the stem cells in the shoot apical meristem. Genetic and molecular investigations have demonstrated that the plant-specific transcription factor and meristem identity regulator LEAFY (LFY) controls this developmental transition by inducing expression of a second transcription factor, APETALA1, and by regulating the expression of additional, as yet unknown, genes. Here we show that the additional LFY targets include the APETALA1-related factor, CAULI-FLOWER, as well as three transcription factors and two putative signal transduction pathway components. These genes are up-regulated by LFY even when protein synthesis is inhibited and, hence, appear to be direct targets of LFY. Supporting this conclusion, cis-regulatory regions upstream of these genes are bound by LFY in vivo. The newly identified LFY targets likely initiate the transcriptional changes that are required for the switch from vegetative to reproductive development in Arabidopsis. PMID:14736918

  20. Identification of HMX1 target genes: A predictive promoter model approach

    PubMed Central

    Boulling, Arnaud; Wicht, Linda

    2013-01-01

    Purpose A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway’s function, we sought to identify the target genes. Methods We developed a predictive promoter model (PPM) approach using a comparative transcriptomic analysis in the retina at P15 of a mouse model lacking functional Hmx1 (dmbo mouse) and its respective wild-type. This PPM was based on the hypothesis that HMX1 binding site (HMX1-BS) clusters should be more represented in promoters of HMX1 target genes. The most differentially expressed genes in the microarray experiment that contained HMX1-BS clusters were used to generate the PPM, which was then statistically validated. Finally, we developed two genome-wide target prediction methods: one that focused on conserving PPM features in human and mouse and one that was based on the co-occurrence of HMX1-BS pairs fitting the PPM, in human or in mouse, independently. Results The PPM construction revealed that sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) (Sgcg), teashirt zinc finger homeobox 2 (Tshz2), and solute carrier family 6 (neurotransmitter transporter, glycine) (Slc6a9) genes represented Hmx1 targets in the mouse retina at P15. Moreover, the genome-wide target prediction revealed that mouse genes belonging to the retinal axon guidance pathway were targeted by Hmx1. Expression of these three genes was experimentally validated using a quantitative reverse transcription PCR approach. The inhibitory activity of Hmx1 on Sgcg, as well as protein tyrosine phosphatase, receptor type, O (Ptpro) and Sema3f, two targets identified by the PPM, were validated with luciferase assay. Conclusions Gene expression analysis between wild-type and dmbo mice allowed us to develop a PPM

  1. Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants.

    PubMed

    Luo, Ming; Gilbert, Brian; Ayliffe, Michael

    2016-07-01

    Mutagenesis continues to play an essential role for understanding plant gene function and, in some instances, provides an opportunity for plant improvement. The development of gene editing technologies such as TALENs and zinc fingers has revolutionised the targeted mutation specificity that can now be achieved. The CRISPR/Cas9 system is the most recent addition to gene editing technologies and arguably the simplest requiring only two components; a small guide RNA molecule (sgRNA) and Cas9 endonuclease protein which complex to recognise and cleave a specific 20 bp target site present in a genome. Target specificity is determined by complementary base pairing between the sgRNA and target site sequence enabling highly specific, targeted mutation to be readily engineered. Upon target site cleavage, error-prone endogenous repair mechanisms produce small insertion/deletions at the target site usually resulting in loss of gene function. CRISPR/Cas9 gene editing has been rapidly adopted in plants and successfully undertaken in numerous species including major crop species. Its applications are not restricted to mutagenesis and target site cleavage can be exploited to promote sequence insertion or replacement by recombination. The multiple applications of this technology in plants are described.

  2. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.

    PubMed

    Yin, Xiaojia; Biswal, Akshaya K; Dionora, Jacqueline; Perdigon, Kristel M; Balahadia, Christian P; Mazumdar, Shamik; Chater, Caspar; Lin, Hsiang-Chun; Coe, Robert A; Kretzschmar, Tobias; Gray, Julie E; Quick, Paul W; Bandyopadhyay, Anindya

    2017-05-01

    CRISPR-Cas9/Cpf1 system with its unique gene targeting efficiency, could be an important tool for functional study of early developmental genes through the generation of successful knockout plants. The introduction and utilization of systems biology approaches have identified several genes that are involved in early development of a plant and with such knowledge a robust tool is required for the functional validation of putative candidate genes thus obtained. The development of the CRISPR-Cas9/Cpf1 genome editing system has provided a convenient tool for creating loss of function mutants for genes of interest. The present study utilized CRISPR/Cas9 and CRISPR-Cpf1 technology to knock out an early developmental gene EPFL9 (Epidermal Patterning Factor like-9, a positive regulator of stomatal development in Arabidopsis) orthologue in rice. Germ-line mutants that were generated showed edits that were carried forward into the T2 generation when Cas9-free homozygous mutants were obtained. The homozygous mutant plants showed more than an eightfold reduction in stomatal density on the abaxial leaf surface of the edited rice plants. Potential off-target analysis showed no significant off-target effects. This study also utilized the CRISPR-LbCpf1 (Lachnospiracae bacterium Cpf1) to target the same OsEPFL9 gene to test the activity of this class-2 CRISPR system in rice and found that Cpf1 is also capable of genome editing and edits get transmitted through generations with similar phenotypic changes seen with CRISPR-Cas9. This study demonstrates the application of CRISPR-Cas9/Cpf1 to precisely target genomic locations and develop transgene-free homozygous heritable gene edits and confirms that the loss of function analysis of the candidate genes emerging from different systems biology based approaches, could be performed, and therefore, this system adds value in the validation of gene function studies.

  3. Identification of genes and gene clusters involved in mycotoxin synthesis

    USDA-ARS?s Scientific Manuscript database

    Research methods to identify and characterize genes involved in mycotoxin biosynthetic pathways have evolved considerably over the years. Before whole genome sequences were available (e.g. pre-genomics), work focused primarily on chemistry, biosynthetic mutant strains and molecular analysis of sing...

  4. A Meta-Analysis: Identification of Common Mir-145 Target Genes that have Similar Behavior in Different GEO Datasets.

    PubMed

    Pashaei, Elnaz; Guzel, Esra; Ozgurses, Mete Emir; Demirel, Goksun; Aydin, Nizamettin; Ozen, Mustafa

    MicroRNAs, which are small regulatory RNAs, post-transcriptionally regulate gene expression by binding 3'-UTR of their mRNA targets. Their deregulation has been shown to cause increased proliferation, migration, invasion, and apoptosis. miR-145, an important tumor supressor microRNA, has shown to be downregulated in many cancer types and has crucial roles in tumor initiation, progression, metastasis, invasion, recurrence, and chemo-radioresistance. Our aim is to investigate potential common target genes of miR-145, and to help understanding the underlying molecular pathways of tumor pathogenesis in association with those common target genes. Eight published microarray datasets, where targets of mir-145 were investigated in cell lines upon mir-145 over expression, were included into this study for meta-analysis. Inter group variabilities were assessed by box-plot analysis. Microarray datasets were analyzed using GEOquery package in Bioconducter 3.2 with R version 3.2.2 and two-way Hierarchical Clustering was used for gene expression data analysis. Meta-analysis of different GEO datasets showed that UNG, FUCA2, DERA, GMFB, TF, and SNX2 were commonly downregulated genes, whereas MYL9 and TAGLN were found to be commonly upregulated upon mir-145 over expression in prostate, breast, esophageal, bladder cancer, and head and neck squamous cell carcinoma. Biological process, molecular function, and pathway analysis of these potential targets of mir-145 through functional enrichments in PPI network demonstrated that those genes are significantly involved in telomere maintenance, DNA binding and repair mechanisms. As a conclusion, our results indicated that mir-145, through targeting its common potential targets, may significantly contribute to tumor pathogenesis in distinct cancer types and might serve as an important target for cancer therapy.

  5. Hypoxia regulates alternative splicing of HIF and non-HIF target genes.

    PubMed

    Sena, Johnny A; Wang, Liyi; Heasley, Lynn E; Hu, Cheng-Jun

    2014-09-01

    Hypoxia is a common characteristic of many solid tumors. The hypoxic microenvironment stabilizes hypoxia-inducible transcription factor 1α (HIF1α) and 2α (HIF2α/EPAS1) to activate gene transcription, which promotes tumor cell survival. The majority of human genes are alternatively spliced, producing RNA isoforms that code for functionally distinct proteins. Thus, an effective hypoxia response requires increased HIF target gene expression as well as proper RNA splicing of these HIF-dependent transcripts. However, it is unclear if and how hypoxia regulates RNA splicing of HIF targets. This study determined the effects of hypoxia on alternative splicing (AS) of HIF and non-HIF target genes in hepatocellular carcinoma cells and characterized the role of HIF in regulating AS of HIF-induced genes. The results indicate that hypoxia generally promotes exon inclusion for hypoxia-induced, but reduces exon inclusion for hypoxia-reduced genes. Mechanistically, HIF activity, but not hypoxia per se is found to be necessary and sufficient to increase exon inclusion of several HIF targets, including pyruvate dehydrogenase kinase 1 (PDK1). PDK1 splicing reporters confirm that transcriptional activation by HIF is sufficient to increase exon inclusion of PDK1 splicing reporter. In contrast, transcriptional activation of a PDK1 minigene by other transcription factors in the absence of endogenous HIF target gene activation fails to alter PDK1 RNA splicing. This study demonstrates a novel function of HIF in regulating RNA splicing of HIF target genes. ©2014 American Association for Cancer Research.

  6. Overexpression of genes involved in miRNA biogenesis in medullary thyroid carcinomas with RET mutation.

    PubMed

    Puppin, Cinzia; Durante, Cosimo; Sponziello, Marialuisa; Verrienti, Antonella; Pecce, Valeria; Lavarone, Elisa; Baldan, Federica; Campese, Antonio Francesco; Boichard, Amelie; Lacroix, Ludovic; Russo, Diego; Filetti, Sebastiano; Damante, Giuseppe

    2014-11-01

    Abnormal expression of non-coding micro RNA (miRNA) has been described in medullary thyroid carcinoma (MTC). Expression of genes encoding factors involved in miRNA biogenesis results often deregulated in human cancer and correlates with aggressive clinical behavior. In this study, expression of four genes involved in miRNA biogenesis (DICER, DROSHA, DCGR8, and XPO5) was investigated in 54 specimens of MTC. Among them, 33 and 13 harbored RET and RAS mutations, respectively. DICER, DGCR8, and XPO5 mRNA levels were significantly overexpressed in MTC harboring RET mutations, in particular, in the presence of RET634 mutation. When MTCs with RET and RAS mutations were compared, only DGCR8 displayed a significant difference, while MTCs with RAS mutations did not show significant differences with respect to non-mutated tumors. We then attempted to correlate expression of miRNA biogenesis genes with tumor aggressiveness. According to the TNM status, MTCs were divided in two groups and compared (N0 M0 vs. N1 and/or M1): for all four genes no significant difference was detected. Cell line experiments, in which expression of a RET mutation is silenced by siRNA, suggest the existence of a causal relationship between RET mutation and overexpression of DICER, DGCR8, and XPO5 genes. These findings demonstrate that RET- but not RAS-driven tumorigenic alterations include abnormalities in the expression of some important genes involved in miRNA biogenesis that could represent new potential markers for targeted therapies in the treatment of RET-mutated MTCs aimed to restore the normal miRNA expression profile.

  7. Multifunctional Nucleus-targeting Nanoparticles with Ultra-high Gene Transfection Efficiency for In Vivo Gene Therapy

    PubMed Central

    Li, Ling; Li, Xia; Wu, Yuzhe; Song, Linjiang; Yang, Xi; He, Tao; Wang, Ning; Yang, Suleixin; Zeng, Yan; Wu, Qinjie; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

    2017-01-01

    Cancer stem cell-like cells (CSCL) are responsible for tumor recurrence associated with conventional therapy (e.g. surgery, radiation, and chemotherapy). Here, we developed a novel multifunctional nucleus-targeting nanoparticle-based gene delivery system which is capable of targeting and eradicating CSCL. These nanoparticles can facilitate efficient endosomal escape and spontaneously penetrate into nucleus without additional nuclear localization signal. They also induced extremely high gene transfection efficiency (>95%) even in culture medium containing 30% serum, which significantly surpassed that of some commercial transfection reagents, such as Lipofectamine 2000 and Lipofectamine 3000 etc. Especially, when loaded with the TRAIL gene, this system mediated remarkable depletion of CSCL. Upon systemic administration, the nanoparticles accumulated in tumor sites while sparing the non-cancer tissues and significantly inhibited the growth of tumors with no evident systemic toxicity. Taken together, our results suggest that these novel multifunctional, nucleus-targeting nanoparticles are a very promising in vivo gene delivery system capable of targeting CSCL and represent a new treatment candidate for improving the survival of cancer patients. PMID:28529641

  8. Research Resource: Global Identification of Estrogen Receptor β Target Genes in Triple Negative Breast Cancer Cells

    PubMed Central

    Shanle, Erin K.; Zhao, Zibo; Hawse, John; Wisinski, Kari; Keles, Sunduz; Yuan, Ming

    2013-01-01

    Breast cancers that are negative for estrogen receptor α (ERα), progesterone receptor, and human epidermal growth factor receptor 2 are known as triple-negative breast cancers (TNBC). TNBCs are associated with an overall poor prognosis because they lack expression of therapeutic targets like ERα and are biologically more aggressive. A second estrogen receptor, ERβ, has been found to be expressed in 50% to 90% of ERα-negative breast cancers, and ERβ expression in TNBCs has been shown to correlate with improved disease-free survival and good prognosis. To elucidate the role of ERβ in regulating gene expression and cell proliferation in TNBC cells, the TNBC cell line MDA-MB-468 was engineered with inducible expression of full-length ERβ. In culture, ERβ expression inhibited cell growth by inducing a G1 cell cycle arrest, which was further enhanced by 17β-estradiol treatment. In xenografts, ERβ expression also inhibited tumor formation and growth, and 17β-estradiol treatment resulted in rapid tumor regression. Furthermore, genomic RNA sequencing identified both ligand-dependent and -independent ERβ target genes, some of which were also regulated by ERβ in other TNBC cell lines and correlated with ERβ expression in a cohort of TNBCs from the Cancer Genome Atlas Network. ERβ target genes were enriched in genes that regulate cell death and survival, cell movement, cell development, and growth and proliferation, as well as genes involved in the Wnt/β-catenin and the G1/S cell cycle phase checkpoint pathways. In addition to confirming the anti-proliferative effects of ERβ in TNBC cells, these data provide a comprehensive resource of ERβ target genes and suggest that ERβ may be targeted with ligands that can stimulate its growth inhibitory effects. PMID:23979844

  9. A heterotypic bystander effect for tumor cell killing after adeno-associated virus/phage-mediated, vascular-targeted suicide gene transfer.

    PubMed

    Trepel, Martin; Stoneham, Charlotte A; Eleftherohorinou, Hariklia; Mazarakis, Nicholas D; Pasqualini, Renata; Arap, Wadih; Hajitou, Amin

    2009-08-01

    Suicide gene transfer is the most commonly used cytotoxic approach in cancer gene therapy; however, a successful suicide gene therapy depends on the generation of efficient targeted systemic gene delivery vectors. We recently reported that selective systemic delivery of suicide genes such as herpes simplex virus thymidine kinase (HSVtk) to tumor endothelial cells through a novel targeted adeno-associated virus/phage vector leads to suppression of tumor growth. This marked effect has been postulated to result primarily from the death of cancer cells by hypoxia following the targeted disruption of tumor blood vessels. Here, we investigated whether an additional mechanism of action is involved. We show that there is a heterotypic "bystander" effect between endothelial cells expressing the HSVtk suicide gene and tumor cells. Treatment of cocultures of HSVtk-transduced endothelial cells and non-HSVtk-transduced tumor cells with ganciclovir results in the death of both endothelial and tumor cells. Blocking of this effect by 18alpha-glycyrrhetinic acid indicates that gap junctions between endothelial and tumor cells are largely responsible for this phenomenon. Moreover, the observed bystander killing is mediated by connexins 43 and 26, which are expressed in endothelial and tumor cell types. Finally, this heterotypic bystander effect is accompanied by a suppression of tumor growth in vivo that is independent of primary gene transfer into host-derived tumor vascular endothelium. These findings add an alternative nonmutually exclusive and potentially synergistic cytotoxic mechanism to cancer gene therapy based on targeted adeno-associated virus/phage and further support the promising role of nonmalignant tumor stromal cells as therapeutic targets.

  10. Lmx1b-targeted cis-regulatory modules involved in limb dorsalization.

    PubMed

    Haro, Endika; Watson, Billy A; Feenstra, Jennifer M; Tegeler, Luke; Pira, Charmaine U; Mohan, Subburaman; Oberg, Kerby C

    2017-06-01

    Lmx1b is a homeodomain transcription factor responsible for limb dorsalization. Despite striking double-ventral (loss-of-function) and double-dorsal (gain-of-function) limb phenotypes, no direct gene targets in the limb have been confirmed. To determine direct targets, we performed a chromatin immunoprecipitation against Lmx1b in mouse limbs at embryonic day 12.5 followed by next-generation sequencing (ChIP-seq). Nearly 84% ( n =617) of the Lmx1b-bound genomic intervals (LBIs) identified overlap with chromatin regulatory marks indicative of potential cis -regulatory modules (PCRMs). In addition, 73 LBIs mapped to CRMs that are known to be active during limb development. We compared Lmx1b-bound PCRMs with genes regulated by Lmx1b and found 292 PCRMs within 1 Mb of 254 Lmx1b-regulated genes. Gene ontological analysis suggests that Lmx1b targets extracellular matrix production, bone/joint formation, axonal guidance, vascular development, cell proliferation and cell movement. We validated the functional activity of a PCRM associated with joint-related Gdf5 that provides a mechanism for Lmx1b-mediated joint modification and a PCRM associated with Lmx1b that suggests a role in autoregulation. This is the first report to describe genome-wide Lmx1b binding during limb development, directly linking Lmx1b to targets that accomplish limb dorsalization. © 2017. Published by The Company of Biologists Ltd.

  11. Extraordinary Sequence Divergence at Tsga8, an X-linked Gene Involved in Mouse Spermiogenesis

    PubMed Central

    Good, Jeffrey M.; Vanderpool, Dan; Smith, Kimberly L.; Nachman, Michael W.

    2011-01-01

    The X chromosome plays an important role in both adaptive evolution and speciation. We used a molecular evolutionary screen of X-linked genes potentially involved in reproductive isolation in mice to identify putative targets of recurrent positive selection. We then sequenced five very rapidly evolving genes within and between several closely related species of mice in the genus Mus. All five genes were involved in male reproduction and four of the genes showed evidence of recurrent positive selection. The most remarkable evolutionary patterns were found at Testis-specific gene a8 (Tsga8), a spermatogenesis-specific gene expressed during postmeiotic chromatin condensation and nuclear transformation. Tsga8 was characterized by extremely high levels of insertion–deletion variation of an alanine-rich repetitive motif in natural populations of Mus domesticus and M. musculus, differing in length from the reference mouse genome by up to 89 amino acids (27% of the total protein length). This population-level variation was coupled with striking divergence in protein sequence and length between closely related mouse species. Although no clear orthologs had previously been described for Tsga8 in other mammalian species, we have identified a highly divergent hypothetical gene on the rat X chromosome that shares clear orthology with the 5′ and 3′ ends of Tsga8. Further inspection of this ortholog verified that it is expressed in rat testis and shares remarkable similarity with mouse Tsga8 across several general features of the protein sequence despite no conservation of nucleotide sequence across over 60% of the rat-coding domain. Overall, Tsga8 appears to be one of the most rapidly evolving genes to have been described in rodents. We discuss the potential evolutionary causes and functional implications of this extraordinary divergence and the possible contribution of Tsga8 and the other four genes we examined to reproductive isolation in mice. PMID:21186189

  12. Selective Inhibition of Histone Deacetylation in Melanoma Increases Targeted Gene Delivery by a Bacteriophage Viral Vector.

    PubMed

    Campbell, Samuel; Suwan, Keittisak; Waramit, Sajee; Aboagye, Eric Ofori; Hajitou, Amin

    2018-04-21

    The previously developed adeno-associated virus/phage (AAVP) vector, a hybrid between M13 bacteriophage (phage) viruses that infect bacteria only and human Adeno-Associated Virus (AAV), is a promising tool in targeted gene therapy against cancer. AAVP can be administered systemically and made tissue specific through the use of ligand-directed targeting. Cancer cells and tumor-associated blood vessels overexpress the α ν integrin receptors, which are involved in tumor angiogenesis and tumor invasion. AAVP is targeted to these integrins via a double cyclic RGD4C ligand displayed on the phage capsid. Nevertheless, there remain significant host-defense hurdles to the use of AAVP in targeted gene delivery and subsequently in gene therapy. We previously reported that histone deacetylation in cancer constitutes a barrier to AAVP. Herein, to improve AAVP-mediated gene delivery to cancer cells, we combined the vector with selective adjuvant chemicals that inhibit specific histone deacetylases (HDAC). We examined the effects of the HDAC inhibitor C1A that mainly targets HDAC6 and compared this to sodium butyrate, a pan-HDAC inhibitor with broad spectrum HDAC inhibition. We tested the effects on melanoma, known for HDAC6 up-regulation, and compared this side by side with a normal human kidney HEK293 cell line. Varying concentrations were tested to determine cytotoxic levels as well as effects on AAVP gene delivery. We report that the HDAC inhibitor C1A increased AAVP-mediated transgene expression by up to ~9-fold. These findings indicate that selective HDAC inhibition is a promising adjuvant treatment for increasing the therapeutic value of AAVP.

  13. Identification of key target genes and pathways in laryngeal carcinoma

    PubMed Central

    Liu, Feng; Du, Jintao; Liu, Jun; Wen, Bei

    2016-01-01

    The purpose of the present study was to screen the key genes associated with laryngeal carcinoma and to investigate the molecular mechanism of laryngeal carcinoma progression. The gene expression profile of GSE10935 [Gene Expression Omnibus (GEO) accession number], including 12 specimens from laryngeal papillomas and 12 specimens from normal laryngeal epithelia controls, was downloaded from the GEO database. Differentially expressed genes (DEGs) were screened in laryngeal papillomas compared with normal controls using Limma package in R language, followed by Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. Furthermore, the protein-protein interaction (PPI) network of DEGs was constructed using Cytoscape software and modules were analyzed using MCODE plugin from the PPI network. Furthermore, significant biological pathway regions (sub-pathway) were identified by using iSubpathwayMiner analysis. A total of 67 DEGs were identified, including 27 up-regulated genes and 40 down-regulated genes and they were involved in different GO terms and pathways. PPI network analysis revealed that Ras association (RalGDS/AF-6) domain family member 1 (RASSF1) was a hub protein. The sub-pathway analysis identified 9 significantly enriched sub-pathways, including glycolysis/gluconeogenesis and nitrogen metabolism. Genes such as phosphoglycerate kinase 1 (PGK1), carbonic anhydrase II (CA2), and carbonic anhydrase XII (CA12) whose node degrees were >10 were identified in the disease risk sub-pathway. Genes in the sub-pathway, such as RASSF1, PGK1, CA2 and CA12 were presumed to serve critical roles in laryngeal carcinoma. The present study identified DEGs and their sub-pathways in the disease, which may serve as potential targets for treatment of laryngeal carcinoma. PMID:27446427

  14. Massive expression of germ cell-specific genes is a hallmark of cancer and a potential target for novel treatment development.

    PubMed

    Bruggeman, Jan Willem; Koster, Jan; Lodder, Paul; Repping, Sjoerd; Hamer, Geert

    2018-06-15

    Cancer cells have been found to frequently express genes that are normally restricted to the testis, often referred to as cancer/testis (CT) antigens or genes. Because germ cell-specific antigens are not recognized as "self" by the innate immune system, CT-genes have previously been suggested as ideal candidate targets for cancer therapy. The use of CT-genes in cancer therapy has thus far been unsuccessful, most likely because their identification has relied on gene expression in whole testis, including the testicular somatic cells, precluding the detection of true germ cell-specific genes. By comparing the transcriptomes of micro-dissected germ cell subtypes, representing the main developmental stages of human spermatogenesis, with the publicly accessible transcriptomes of 2617 samples from 49 different healthy somatic tissues and 9232 samples from 33 tumor types, we here discover hundreds of true germ cell-specific cancer expressed genes. Strikingly, we found these germ cell cancer genes (GC-genes) to be widely expressed in all analyzed tumors. Many GC-genes appeared to be involved in processes that are likely to actively promote tumor viability, proliferation and metastasis. Targeting these true GC-genes thus has the potential to inhibit tumor growth with infertility being the only possible side effect. Moreover, we identified a subset of GC-genes that are not expressed in spermatogonial stem cells. Targeting of this GC-gene subset is predicted to only lead to temporary infertility, as untargeted spermatogonial stem cells can recover spermatogenesis after treatment. Our GC-gene dataset enables improved understanding of tumor biology and provides multiple novel targets for cancer treatment.

  15. Genes involved in convergent evolution of eusociality in bees

    PubMed Central

    Woodard, S. Hollis; Fischman, Brielle J.; Venkat, Aarti; Hudson, Matt E.; Varala, Kranthi; Cameron, Sydney A.; Clark, Andrew G.; Robinson, Gene E.

    2011-01-01

    Eusociality has arisen independently at least 11 times in insects. Despite this convergence, there are striking differences among eusocial lifestyles, ranging from species living in small colonies with overt conflict over reproduction to species in which colonies contain hundreds of thousands of highly specialized sterile workers produced by one or a few queens. Although the evolution of eusociality has been intensively studied, the genetic changes involved in the evolution of eusociality are relatively unknown. We examined patterns of molecular evolution across three independent origins of eusociality by sequencing transcriptomes of nine socially diverse bee species and combining these data with genome sequence from the honey bee Apis mellifera to generate orthologous sequence alignments for 3,647 genes. We found a shared set of 212 genes with a molecular signature of accelerated evolution across all eusocial lineages studied, as well as unique sets of 173 and 218 genes with a signature of accelerated evolution specific to either highly or primitively eusocial lineages, respectively. These results demonstrate that convergent evolution can involve a mosaic pattern of molecular changes in both shared and lineage-specific sets of genes. Genes involved in signal transduction, gland development, and carbohydrate metabolism are among the most prominent rapidly evolving genes in eusocial lineages. These findings provide a starting point for linking specific genetic changes to the evolution of eusociality. PMID:21482769

  16. A comparative study of disease genes and drug targets in the human protein interactome

    PubMed Central

    2015-01-01

    Background Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. Results In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. Conclusions The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing. PMID:25861037

  17. A comparative study of disease genes and drug targets in the human protein interactome.

    PubMed

    Sun, Jingchun; Zhu, Kevin; Zheng, W; Xu, Hua

    2015-01-01

    Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing.

  18. Genomewide Analysis of Aryl Hydrocarbon Receptor Binding Targets Reveals an Extensive Array of Gene Clusters that Control Morphogenetic and Developmental Programs

    PubMed Central

    Sartor, Maureen A.; Schnekenburger, Michael; Marlowe, Jennifer L.; Reichard, John F.; Wang, Ying; Fan, Yunxia; Ma, Ci; Karyala, Saikumar; Halbleib, Danielle; Liu, Xiangdong; Medvedovic, Mario; Puga, Alvaro

    2009-01-01

    Background The vertebrate aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular responses to environmental polycyclic and halogenated compounds. The naive receptor is believed to reside in an inactive cytosolic complex that translocates to the nucleus and induces transcription of xenobiotic detoxification genes after activation by ligand. Objectives We conducted an integrative genomewide analysis of AHR gene targets in mouse hepatoma cells and determined whether AHR regulatory functions may take place in the absence of an exogenous ligand. Methods The network of AHR-binding targets in the mouse genome was mapped through a multipronged approach involving chromatin immunoprecipitation/chip and global gene expression signatures. The findings were integrated into a prior functional knowledge base from Gene Ontology, interaction networks, Kyoto Encyclopedia of Genes and Genomes pathways, sequence motif analysis, and literature molecular concepts. Results We found the naive receptor in unstimulated cells bound to an extensive array of gene clusters with functions in regulation of gene expression, differentiation, and pattern specification, connecting multiple morphogenetic and developmental programs. Activation by the ligand displaced the receptor from some of these targets toward sites in the promoters of xenobiotic metabolism genes. Conclusions The vertebrate AHR appears to possess unsuspected regulatory functions that may be potential targets of environmental injury. PMID:19654925

  19. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems

    PubMed Central

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-01-01

    Fe3O4 nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe3O4 NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe3O4 NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe3O4 NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe3O4 NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe3O4 NPs targeting drug/gene delivery systems. PMID:29473914

  20. Eukaryotic gene regulation by targeted chromatin re-modeling at dispersed, middle-repetitive sequence elements.

    PubMed

    Hodgetts, Ross

    2004-12-01

    RNA interference might have evolved to minimize the deleterious impact of transposable elements and viruses on eukaryotic genomes, because mutations in genes within the RNAi pathway cause mobilization of transposons in nematodes and flies. Although the first examples of RNAi involved post-transcriptional gene silencing, recently the pathway has been shown to act at the transcriptional level. It does so by establishing a chromatin configuration on the target DNA that has many of the hallmarks of heterochromatin, thus preventing its transcription. Members of dispersed, repeated sequence families appear to have been utilized by the RNAi machinery to regulate nearby genes in yeast. The unusual genomic distribution of three repeated element families in the chicken, fruit-fly and nematode genomes prompts speculation that some of these repeats have been co-opted to control gene expression, either locally or over extended chromosomal domains.

  1. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  2. A Genome-Wide Identification of the WRKY Family Genes and a Survey of Potential WRKY Target Genes in Dendrobium officinale.

    PubMed

    He, Chunmei; Teixeira da Silva, Jaime A; Tan, Jianwen; Zhang, Jianxia; Pan, Xiaoping; Li, Mingzhi; Luo, Jianping; Duan, Jun

    2017-08-23

    The WRKY family, one of the largest families of transcription factors, plays important roles in the regulation of various biological processes, including growth, development and stress responses in plants. In the present study, 63 DoWRKY genes were identified from the Dendrobium officinale genome. These were classified into groups I, II, III and a non-group, each with 14, 28, 10 and 11 members, respectively. ABA-responsive, sulfur-responsive and low temperature-responsive elements were identified in the 1-k upstream regulatory region of DoWRKY genes. Subsequently, the expression of the 63 DoWRKY genes under cold stress was assessed, and the expression profiles of a large number of these genes were regulated by low temperature in roots and stems. To further understand the regulatory mechanism of DoWRKY genes in biological processes, potential WRKY target genes were investigated. Among them, most stress-related genes contained multiple W-box elements in their promoters. In addition, the genes involved in polysaccharide synthesis and hydrolysis contained W-box elements in their 1-k upstream regulatory regions, suggesting that DoWRKY genes may play a role in polysaccharide metabolism. These results provide a basis for investigating the function of WRKY genes and help to understand the downstream regulation network in plants within the Orchidaceae.

  3. A targeted resequencing gene panel for focal epilepsy.

    PubMed

    Hildebrand, Michael S; Myers, Candace T; Carvill, Gemma L; Regan, Brigid M; Damiano, John A; Mullen, Saul A; Newton, Mark R; Nair, Umesh; Gazina, Elena V; Milligan, Carol J; Reid, Christopher A; Petrou, Steven; Scheffer, Ingrid E; Berkovic, Samuel F; Mefford, Heather C

    2016-04-26

    We report development of a targeted resequencing gene panel for focal epilepsy, the most prevalent phenotypic group of the epilepsies. The targeted resequencing gene panel was designed using molecular inversion probe (MIP) capture technology and sequenced using massively parallel Illumina sequencing. We demonstrated proof of principle that mutations can be detected in 4 previously genotyped focal epilepsy cases. We searched for both germline and somatic mutations in 251 patients with unsolved sporadic or familial focal epilepsy and identified 11 novel or very rare missense variants in 5 different genes: CHRNA4, GRIN2B, KCNT1, PCDH19, and SCN1A. Of these, 2 were predicted to be pathogenic or likely pathogenic, explaining ∼0.8% of the cohort, and 8 were of uncertain significance based on available data. We have developed and validated a targeted resequencing panel for focal epilepsies, the most important clinical class of epilepsies, accounting for about 60% of all cases. Our application of MIP technology is an innovative approach that will be advantageous in the clinical setting because it is highly sensitive, efficient, and cost-effective for screening large patient cohorts. Our findings indicate that mutations in known genes likely explain only a small proportion of focal epilepsy cases. This is not surprising given the established clinical and genetic heterogeneity of these disorders and underscores the importance of further gene discovery studies in this complex syndrome. © 2016 American Academy of Neurology.

  4. Identification of the Transcriptional Targets of FOXP2, a Gene Linked to Speech and Language, in Developing Human Brain

    PubMed Central

    Spiteri, Elizabeth ; Konopka, Genevieve ; Coppola, Giovanni ; Bomar, Jamee ; Oldham, Michael ; Ou, Jing ; Vernes, Sonja C. ; Fisher, Simon E. ; Ren, Bing ; Geschwind, Daniel H. 

    2007-01-01

    Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to explore the development of human language and speech. Here, we define FOXP2 targets in human basal ganglia (BG) and inferior frontal cortex (IFC) by use of chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and validate the functional regulation of targets in vitro. ChIP-chip identified 285 FOXP2 targets in fetal human brain; statistically significant overlap of targets in BG and IFC indicates a core set of 34 transcriptional targets of FOXP2. We identified targets specific to IFC or BG that were not observed in lung, suggesting important regional and tissue differences in FOXP2 activity. Many target genes are known to play critical roles in specific aspects of central nervous system patterning or development, such as neurite outgrowth, as well as plasticity. Subsets of the FOXP2 transcriptional targets are either under positive selection in humans or differentially expressed between human and chimpanzee brain. This is the first ChIP-chip study to use human brain tissue, making the FOXP2-target genes identified in these studies important to understanding the pathways regulating speech and language in the developing human brain. These data provide the first insight into the functional network of genes directly regulated by FOXP2 in human brain and by evolutionary comparisons, highlighting genes likely to be involved in the development of human higher-order cognitive processes. PMID:17999357

  5. A system for the measurement of gene targeting efficiency in human cell lines using an antibiotic resistance-GFP fusion gene.

    PubMed

    Konishi, Yuko; Karnan, Sivasundaram; Takahashi, Miyuki; Ota, Akinobu; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2012-09-01

    Gene targeting in a broad range of human somatic cell lines has been hampered by inefficient homologous recombination. To improve this technology and facilitate its widespread application, it is critical to first have a robust and efficient research system for measuring gene targeting efficiency. Here, using a fusion gene consisting of hygromycin B phosphotransferase and 3'-truncated enhanced GFP (HygR-5' EGFP) as a reporter gene, we created a molecular system monitoring the ratio of homologous to random integration (H/R ratio) of targeting vectors into the genome. Cell clones transduced with a reporter vector containing HygR-5' EGFP were efficiently established from two human somatic cell lines. Established HygR-5' EGFP reporter clones retained their capacity to monitor gene targeting efficiency for a longer duration than a conventional reporter system using an unfused 5' EGFP gene. With the HygR-5' EGFP reporter system, we reproduced previous findings of gene targeting frequency being up-regulated by the use of an adeno-associated viral (AAV) backbone, a promoter-trap system, or a longer homology arm in a targeting vector, suggesting that this system accurately monitors H/R ratio. Thus, our HygR-5' EGFP reporter system will assist in the development of an efficient AAV-based gene targeting technology.

  6. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets.

    PubMed

    Weß, Ludger; Schnieders, Frank

    2017-12-01

    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  7. In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma

    PubMed Central

    Zinati, Zahra; Shamloo-Dashtpagerdi, Roohollah; Behpouri, Ali

    2016-01-01

    As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characterization of miRNAs along with the corresponding target genes in C. sativus might expand our perspectives on the roles of miRNAs in carotenoid/apocarotenoid biosynthetic pathway. A computational analysis was used to identify miRNAs and their targets using EST (Expressed Sequence Tag) library from mature saffron stigmas. Then, a gene co- expression network was constructed to identify genes which are potentially involved in carotenoid/apocarotenoid biosynthetic pathways. EST analysis led to the identification of two putative miRNAs (miR414 and miR837-5p) along with the corresponding stem- looped precursors. To our knowledge, this is the first report on miR414 and miR837-5p in C. sativus. Co-expression network analysis indicated that miR414 and miR837-5p may play roles in C. sativus metabolic pathways and led to identification of candidate genes including six transcription factors and one protein kinase probably involved in carotenoid/apocarotenoid biosynthetic pathway. Presence of transcription factors, miRNAs and protein kinase in the network indicated multiple layers of regulation in saffron stigma. The candidate genes from this study may help unraveling regulatory networks underlying the carotenoid/apocarotenoid biosynthesis in saffron and designing metabolic engineering for enhanced secondary metabolites. PMID:28261627

  8. Targeted gene panels and microbiota analysis provide insight into the effects of effects of alternative production diet formulations on channel catfish nutritional physiology

    USDA-ARS?s Scientific Manuscript database

    The present research evaluated targeted gene panels and microbiota analysis to provide greater insight into the effects of alternatively-sourced dietary ingredients on production indices, gut health, changes in the gut microbiota and genes involved in the regulation of appetite, growth, metabolism, ...

  9. An investigation of obesity susceptibility genes in Northern Han Chinese by targeted resequencing.

    PubMed

    Wu, Yili; Wang, Weijing; Jiang, Wenjie; Yao, Jie; Zhang, Dongfeng

    2017-02-01

    Our earlier genome-wide linkage study of body mass index (BMI) showed strong signals from 7q36.3 and 8q21.13. This case-control study set to investigate 2 genomic regions which may harbor variants contributed to development of obesity.We employed targeted resequencing technology to detect single nucleotide polymorphisms (SNPs) in 7q36.3 and 8q21.13 from 16 individuals with obesity. These were compared with 504 East Asians in the 1000 Genomes Project as a reference panel. Linkage disequilibrium (LD) block analysis was performed for the significant SNPs located near the same gene. Genes involved in statistically significant loci were then subject to gene set enrichment analysis (GSEA).The 16 individuals aged between 30 and 60 years with BMI = 33.25 ± 2.22 kg/m. A total of 12,131 genetic variants across all of samples were found. After correcting for multiple testing, 65 SNPs from 25 nearest genes (INSIG1, FABP5, PTPRN2, VIPR2, WDR60, SHH, UBE3C, LMBR1, PAG1, IMPA1, CHMP4, SNX16, BLACE, EN2, CNPY1, LOC100506302, RBM33, LOC389602, LOC285889, LINC01006, NOM1, DNAJB6, LOC101927914, ESYT2, LINC00689) were associated with obesity at significant level q-value ≤ 0.05. LD block analysis showed there were 10 pairs of loci with D' ≥ 0.8 and r ≥ 0.8. GSEA further identified 2 major related gene sets, involving lipid raft and lipid metabolic process, with FDR values <0.12 and <0.4, respectively.Our data are the first documentation of genetic variants in 7q36.3 and 8q21.13 associated with obesity using target capture sequencing and Northern Han Chinese samples. Additional replication and functional studies are merited to validate our findings.

  10. Predicting essential genes for identifying potential drug targets in Aspergillus fumigatus.

    PubMed

    Lu, Yao; Deng, Jingyuan; Rhodes, Judith C; Lu, Hui; Lu, Long Jason

    2014-06-01

    Aspergillus fumigatus (Af) is a ubiquitous and opportunistic pathogen capable of causing acute, invasive pulmonary disease in susceptible hosts. Despite current therapeutic options, mortality associated with invasive Af infections remains unacceptably high, increasing 357% since 1980. Therefore, there is an urgent need for the development of novel therapeutic strategies, including more efficacious drugs acting on new targets. Thus, as noted in a recent review, "the identification of essential genes in fungi represents a crucial step in the development of new antifungal drugs". Expanding the target space by rapidly identifying new essential genes has thus been described as "the most important task of genomics-based target validation". In previous research, we were the first to show that essential gene annotation can be reliably transferred between distantly related four Prokaryotic species. In this study, we extend our machine learning approach to the much more complex Eukaryotic fungal species. A compendium of essential genes is predicted in Af by transferring known essential gene annotations from another filamentous fungus Neurospora crassa. This approach predicts essential genes by integrating diverse types of intrinsic and context-dependent genomic features encoded in microbial genomes. The predicted essential datasets contained 1674 genes. We validated our results by comparing our predictions with known essential genes in Af, comparing our predictions with those predicted by homology mapping, and conducting conditional expressed alleles. We applied several layers of filters and selected a set of potential drug targets from the predicted essential genes. Finally, we have conducted wet lab knockout experiments to verify our predictions, which further validates the accuracy and wide applicability of the machine learning approach. The approach presented here significantly extended our ability to predict essential genes beyond orthologs and made it possible to

  11. Seamless Genome Editing in Rice via Gene Targeting and Precise Marker Elimination.

    PubMed

    Nishizawa-Yokoi, Ayako; Saika, Hiroaki; Toki, Seiichi

    2016-01-01

    Positive-negative selection using hygromycin phosphotransferase (hpt) and diphtheria toxin A-fragment (DT-A) as positive and negative selection markers, respectively, allows enrichment of cells harboring target genes modified via gene targeting (GT). We have developed a successful GT system employing positive-negative selection and subsequent precise marker excision via the piggyBac transposon derived from the cabbage looper moth to introduce desired modifications into target genes in the rice genome. This approach could be applied to the precision genome editing of almost all endogenous genes throughout the genome, at least in rice.

  12. Chemopreventive agents alters global gene expression pattern: predicting their mode of action and targets.

    PubMed

    Narayanan, Bhagavathi A

    2006-12-01

    Chemoprevention has the potential to be a major component of colon, breast, prostate and lung cancer control. Epidemiological, experimental, and clinical studies provide evidence that antioxidants, anti-inflammatory agents, n-3 polyunsaturated fatty acids and several other phytochemicals possess unique modes of action against cancer growth. However, the mode of action of several of these agents at the gene transcription level is not completely understood. Completion of the human genome sequence and the advent of DNA microarrays using cDNAs enhanced the detection and identification of hundreds of differentially expressed genes in response to anticancer drugs or chemopreventive agents. In this review, we are presenting an extensive analysis of the key findings from studies using potential chemopreventive agents on global gene expression patterns, which lead to the identification of cancer drug targets. The summary of the study reports discussed in this review explains the extent of gene alterations mediated by more than 20 compounds including antioxidants, fatty acids, NSAIDs, phytochemicals, retinoids, selenium, vitamins, aromatase inhibitor, lovastatin, oltipraz, salvicine, and zinc. The findings from these studies further reveal the utility of DNA microarray in characterizing and quantifying the differentially expressed genes that are possibly reprogrammed by the above agents against colon, breast, prostate, lung, liver, pancreatic and other cancer types. Phenolic antioxidant resveratrol found in berries and grapes inhibits the formation of prostate tumors by acting on the regulatory genes such as p53 while activating a cascade of genes involved in cell cycle and apoptosis including p300, Apaf-1, cdk inhibitor p21, p57 (KIP2), p53 induced Pig 7, Pig 8, Pig 10, cyclin D, DNA fragmentation factor 45. The group of genes significantly altered by selenium includes cyclin D1, cdk5, cdk4, cdk2, cdc25A and GADD 153. Vitamine D shows impact on p21(Waf1/Cip1) p27 cyclin B

  13. IRF8 Governs Expression of Genes Involved in Innate and Adaptive Immunity in Human and Mouse Germinal Center B Cells

    PubMed Central

    Morse, Herbert C.

    2011-01-01

    IRF8 (Interferon Regulatory Factor 8) is a transcription factor expressed throughout B cell differentiation except for mature plasma cells. Previous studies showed it is part of the transcriptional network governing B cell specification and commitment in the bone marrow, regulates the distribution of mature B cells into the splenic follicular and marginal zone compartments, and is expressed at highest levels in germinal center (GC) B cells. Here, we investigated the transcriptional programs and signaling pathways affected by IRF8 in human and mouse GC B cells as defined by ChIP-chip analyses and transcriptional profiling. We show that IRF8 binds a large number of genes by targeting two distinct motifs, half of which are also targeted by PU.1. Over 70% of the binding sites localized to proximal and distal promoter regions with ∼25% being intragenic. There was significant enrichment among targeted genes for those involved in innate and adaptive immunity with over 30% previously defined as interferon stimulated genes. We also showed that IRF8 target genes contributes to multiple aspects of the biology of mature B cells including critical components of the molecular crosstalk among GC B cells, T follicular helper cells, and follicular dendritic cells. PMID:22096565

  14. Targeted systemic gene therapy and molecular imaging of cancer contribution of the vascular-targeted AAVP vector.

    PubMed

    Hajitou, Amin

    2010-01-01

    Gene therapy and molecular-genetic imaging have faced a major problem: the lack of an efficient systemic gene delivery vector. Unquestionably, eukaryotic viruses have been the vectors of choice for gene delivery to mammalian cells; however, they have had limited success in systemic gene therapy. This is mainly due to undesired uptake by the liver and reticuloendothelial system, broad tropism for mammalian cells causing toxicity, and their immunogenicity. On the other hand, prokaryotic viruses such as bacteriophage (phage) have no tropism for mammalian cells, but can be engineered to deliver genes to these cells. However, phage-based vectors have inherently been considered poor vectors for mammalian cells. We have reported a new generation of vascular-targeted systemic hybrid prokaryotic-eukaryotic vectors as chimeras between an adeno-associated virus (AAV) and targeted bacteriophage (termed AAV/phage; AAVP). In this hybrid vector, the targeted bacteriophage serves as a shuttle to deliver the AAV transgene cassette inserted in an intergenomic region of the phage DNA genome. As a proof of concept, we assessed the in vivo efficacy of vector in animal models of cancer by displaying on the phage capsid the cyclic Arg-Gly-Asp (RGD-4C) ligand that binds to alphav integrin receptors specifically expressed on the angiogenic blood vessels of tumors. The ligand-directed vector was able to specifically deliver imaging and therapeutic transgenes to tumors in mice, rats, and dogs while sparing the normal organs. This chapter reviews some gene transfer strategies and the potential of the vascular-targeted AAVP vector for enhancing the effectiveness of existing systemic gene delivery and genetic-imaging technologies. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. STAT3 Target Genes Relevant to Human Cancers

    PubMed Central

    Carpenter, Richard L.; Lo, Hui-Wen

    2014-01-01

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers. PMID:24743777

  16. Identification and characterization of microRNAs and their target genes from Nile tilapia (Oreochromis niloticus).

    PubMed

    Huang, Yong; Ma, Xiu Ying; Yang, You Bing; Ren, Hong Tao; Sun, Xi Hong; Wang, Li Rui

    MicroRNAs (miRNAs) are a class of small single-stranded, endogenous 21-22 nt non-coding RNAs that regulate their target mRNA levels by causing either inactivation or degradation of the mRNAs. In recent years, miRNA genes have been identified from mammals, insects, worms, plants, and viruses. In this research, bioinformatics approaches were used to predict potential miRNAs and their targets in Nile tilapia from the expressed sequence tag (EST) and genomic survey sequence (GSS) database, respectively, based on the conservation of miRNAs in many animal species. A total of 19 potential miRNAs were detected following a range of strict filtering criteria. To test the validity of the bioinformatics method, seven predicted Nile tilapia miRNA genes were selected for further biological validation, and their mature miRNA transcripts were successfully detected by stem-loop RT-PCR experiments. Using these potential miRNAs, we found 56 potential targets in this species. Most of the target mRNAs appear to be involved in development, metabolism, signal transduction, transcription regulation and stress responses. Overall, our findings will provide an important foundation for further research on miRNAs function in the Nile tilapia.

  17. A Sympathetic Neuron Autonomous Role for Egr3-Mediated Gene Regulation in Dendrite Morphogenesis and Target Tissue Innervation

    PubMed Central

    Quach, David H.; Oliveira-Fernandes, Michelle; Gruner, Katherine A.; Tourtellotte, Warren G.

    2013-01-01

    Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons. PMID:23467373

  18. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng

    2014-08-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.

  19. Interventions That Target Criminogenic Needs for Justice-Involved Persons With Serious Mental Illnesses: A Targeted Service Delivery Approach.

    PubMed

    Wilson, Amy Blank; Farkas, Kathleen; Bonfine, Natalie; Duda-Banwar, Janelle

    2018-05-01

    This research describes the development of a targeted service delivery approach that tailors the delivery of interventions that target criminogenic needs to the specific learning and treatment needs of justice-involved people with serious mental illnesses (SMIs). This targeted service delivery approach includes five service delivery strategies: repetition and summarizing, amplification, active coaching, low-demand practice, and maximizing participation. Examples of how to apply each strategy in session are provided, as well as recommendations on when to use each strategy during the delivery of interventions that target criminogenic needs. This targeted service delivery approach makes an important contribution to the development of interventions for justice-involved people with SMI by increasing the chances that people with SMI can participate fully in and benefit from these interventions that target criminogenic needs. These developments come at a critical time in the field as the next generation of services for justice-involved people with SMI are being developed.

  20. Genes involved in Beauveria bassiana infection to Galleria mellonella.

    PubMed

    Chen, Anhui; Wang, Yulong; Shao, Ying; Zhou, Qiumei; Chen, Shanglong; Wu, Yonghua; Chen, Hongwei; Liu, Enqi

    2018-05-01

    The ascomycete fungus Beauveria bassiana is a natural pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. Many genes involved in fungal insecticide infection have been identified but few have been further explored. In this study, we constructed three transcriptomes of B. bassiana at 24, 48 and 72 h post infection of insect pests (BbI) or control (BbC). There were 3148, 3613 and 4922 genes differentially expressed at 24, 48 and 72 h post BbI/BbC infection, respectively. A large number of genes and pathways involved in infection were identified. To further analyze those genes, expression patterns across different infection stages (0, 12, 24, 36, 48, 60, 72 and 84 h) were studied using quantitative RT-PCR. This analysis showed that the infection-related genes could be divided into four patterns: highly expressed throughout the whole infection process (thioredoxin 1); highly expressed during early stages of infection but lowly expressed after the insect death (adhesin protein Mad1); lowly expressed during early infection but highly expressed after insect death (cation transporter, OpS13); or lowly expressed across the entire infection process (catalase protein). The data provide novel insights into the insect-pathogen interaction and help to uncover the molecular mechanisms involved in fungal infection of insect pests.

  1. Identification of novel target genes involved in Indian Fanconi anemia patients using microarray.

    PubMed

    Shyamsunder, Pavithra; Ganesh, Kripa S; Vidyasekar, Prasanna; Mohan, Sheila; Verma, Rama Shanker

    2013-12-01

    Fanconi anemia (FA) is a genetic disorder characterized by progressive bone marrow failure and a predisposition to cancers. Mutations have been documented in 15 FA genes that participate in the FA-BRCA DNA repair pathway, a fundamental pathway in the development of the disease and the presentation of its characteristic symptoms. Certain symptoms such as oxygen sensitivity, hematological abnormalities and impaired immunity suggest that FA proteins could participate in or independently control other pathways as well. In this study, we identified 9 DNA repair genes that were down regulated in a genome wide analysis of 6 Indian Fanconi anemia patients. Functional clustering of a total of 233 dysregulated genes identified key biological processes that included regulation of transcription, DNA repair, cell cycle and chromosomal organization. Microarray data revealed the down regulation of ATXN3, ARID4A and ETS-1, which were validated by RTPCR in a subsequent sample set of 9 Indian FA patients. Here we report for the first time a gene expression profile of Fanconi anemia patients from the Indian population and a pool of genes that might aid in the acquisition and progression of the FA phenotype. © 2013 Elsevier B.V. All rights reserved.

  2. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer

    NASA Astrophysics Data System (ADS)

    Kos, Petra; Lächelt, Ulrich; Herrmann, Annika; Mickler, Frauke Martina; Döblinger, Markus; He, Dongsheng; Krhač Levačić, Ana; Morys, Stephan; Bräuchle, Christoph; Wagner, Ernst

    2015-03-01

    Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor.Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing

  3. Neurobiology of autism gene products: towards pathogenesis and drug targets.

    PubMed

    Kleijer, Kristel T E; Schmeisser, Michael J; Krueger, Dilja D; Boeckers, Tobias M; Scheiffele, Peter; Bourgeron, Thomas; Brose, Nils; Burbach, J Peter H

    2014-03-01

    The genetic heterogeneity of autism spectrum disorders (ASDs) is enormous, and the neurobiology of proteins encoded by genes associated with ASD is very diverse. Revealing the mechanisms on which different neurobiological pathways in ASD pathogenesis converge may lead to the identification of drug targets. The main objective is firstly to outline the main molecular networks and neuronal mechanisms in which ASD gene products participate and secondly to answer the question how these converge. Finally, we aim to pinpoint drug targets within these mechanisms. Literature review of the neurobiological properties of ASD gene products with a special focus on the developmental consequences of genetic defects and the possibility to reverse these by genetic or pharmacological interventions. The regulation of activity-dependent protein synthesis appears central in the pathogenesis of ASD. Through sequential consequences for axodendritic function, neuronal disabilities arise expressed as behavioral abnormalities and autistic symptoms in ASD patients. Several known ASD gene products have their effect on this central process by affecting protein synthesis intrinsically, e.g., through enhancing the mammalian target of rapamycin (mTOR) signal transduction pathway or through impairing synaptic function in general. These are interrelated processes and can be targeted by compounds from various directions: inhibition of protein synthesis through Lovastatin, mTOR inhibition using rapamycin, or mGluR-related modulation of synaptic activity. ASD gene products may all feed into a central process of translational control that is important for adequate glutamatergic regulation of dendritic properties. This process can be modulated by available compounds but may also be targeted by yet unexplored routes.

  4. Single molecule targeted sequencing for cancer gene mutation detection.

    PubMed

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W; He, Jiankui

    2016-05-19

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis.

  5. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.

    PubMed

    Li, Jun; Meng, Xiangbing; Zong, Yuan; Chen, Kunling; Zhang, Huawei; Liu, Jinxing; Li, Jiayang; Gao, Caixia

    2016-09-12

    Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants(1), but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants.

  6. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA

    PubMed Central

    Hansen, Thomas B; Wiklund, Erik D; Bramsen, Jesper B; Villadsen, Sune B; Statham, Aaron L; Clark, Susan J; Kjems, Jørgen

    2011-01-01

    MicroRNAs (miRNAs) are ∼22 nt non-coding RNAs that typically bind to the 3′ UTR of target mRNAs in the cytoplasm, resulting in mRNA destabilization and translational repression. Here, we report that miRNAs can also regulate gene expression by targeting non-coding antisense transcripts in human cells. Specifically, we show that miR-671 directs cleavage of a circular antisense transcript of the Cerebellar Degeneration-Related protein 1 (CDR1) locus in an Ago2-slicer-dependent manner. The resulting downregulation of circular antisense has a concomitant decrease in CDR1 mRNA levels, independently of heterochromatin formation. This study provides the first evidence for non-coding antisense transcripts as functional miRNA targets, and a novel regulatory mechanism involving a positive correlation between mRNA and antisense circular RNA levels. PMID:21964070

  7. Production of Prnp-/- goats by gene targeting in adult fibroblasts.

    PubMed

    Zhu, Caihong; Li, Bei; Yu, Guohua; Chen, Jianquan; Yu, Huiqing; Chen, Juan; Xu, Xujun; Wu, Youbing; Zhang, Aimin; Cheng, Guoxiang

    2009-04-01

    Homozygous mice devoid of functional Prnp are resistant to scrapie and prion propagation, but heterozygous mice for Prnp disruption still suffer from prion disease and prion deposition. We have previously generated heterozygous cloned goats with one allele of Prnp functional disruption. To obtain goats with both alleles of Prnp be disrupted which would be resistant to scrapie completely, a second-round gene targeting was applied to disrupt the wild type allele of Prnp in the heterozygous goats. By second-round gene targeting, we successfully disrupted the wild type allele of Prnp in primary Prnp (+/-) goat skin fibroblasts and obtained a Prnp (-/-) cell line without Prnp expression. This is the first report on successful targeting modification in primary adult somatic cells of animals. These cells were used as nuclear donors for somatic cell cloning to produce Prnp (-/-) goats. A total of 57 morulae or blastocytes developed from the reconstructed embryos were transferred to 31 recipients, which produced 7 pregnancies at day 35. At 73 days of gestation, we obtained one cloned fetus with Prnp (-/-) genotype. Our research not only indicated that multiple genetic modifications could be accomplished by multi-round gene targeting in primary somatic cells, but also provided strong evidence that gene targeting in adult cells other than fetal cells could be applied to introduce precise genetic modifications in animals without destroying the embryos.

  8. RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome.

    PubMed

    Cui, Julia Yue; Klaassen, Curtis D

    2016-09-01

    The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are well-known xenobiotic-sensing nuclear receptors with overlapping functions. However, there lacks a quantitative characterization to distinguish between the PXR and CAR target genes and signaling pathways in the liver. The present study performed a transcriptomic comparison of the PXR- and CAR-targets using RNA-Seq in livers of adult wild-type mice that were treated with the prototypical PXR ligand PCN (200mg/kg, i.p. once daily for 4days in corn oil) or the prototypical CAR ligand TCPOBOP (3mg/kg, i.p., once daily for 4days in corn oil). At the given doses, TCPOBOP differentially regulated many more genes (2125) than PCN (212), and 147 of the same genes were differentially regulated by both chemicals. As expected, the top pathways differentially regulated by both PCN and TCPOBOP were involved in xenobiotic metabolism, and they also up-regulated genes involved in retinoid metabolism, but down-regulated genes involved in inflammation and iron homeostasis. Regarding unique pathways, PXR activation appeared to overlap with the aryl hydrocarbon receptor signaling, whereas CAR activation appeared to overlap with the farnesoid X receptor signaling, acute-phase response, and mitochondrial dysfunction. The mRNAs of differentially regulated drug-processing genes (DPGs) partitioned into three patterns, namely TCPOBOP-induced, PCN-induced, as well as TCPOBOP-suppressed gene clusters. The cumulative mRNAs of the differentially regulated DPGs, phase-I and -II enzymes, as well as efflux transporters were all up-regulated by both PCN and TCPOBOPOP, whereas the cumulative mRNAs of the uptake transporters were down-regulated only by TCPOBOP. The absolute mRNA abundance in control and receptor-activated conditions was examined in each DPG category to predict the contribution of specific DPG genes in the PXR/CAR-mediated pharmacokinetic responses. The preferable differential regulation by TCPOBOP in the

  9. Multiple Neuropeptide-Coding Genes Involved in Planarian Pharynx Extension.

    PubMed

    Shimoyama, Seira; Inoue, Takeshi; Kashima, Makoto; Agata, Kiyokazu

    2016-06-01

    Planarian feeding behavior involves three steps: moving toward food, extending the pharynx from their planarian's ventral side after arriving at the food, and ingesting the food through the pharynx. Although pharynx extension is a remarkable behavior, it remains unknown what neuronal cell types are involved in its regulation. To identify neurons involved in regulating pharynx extension, we quantitatively analyzed pharynx extension and sought to identify these neurons by RNA interference (RNAi) and in situ hybridization. This assay, when performed using planarians with amputation of various body parts, clearly showed that the head portion is indispensable for inducing pharynx extension. We thus tested the effects of knockdown of brain neurons such as serotonergic, GABAergic, and dopaminergic neurons by RNAi, but did not observe any effects on pharynx extension behavior. However, animals with RNAi of the Prohormone Convertase 2 (PC2, a neuropeptide processing enzyme) gene did not perform the pharynx extension behavior, suggesting the possible involvement of neuropeptide(s in the regulation of pharynx extension. We screened 24 neuropeptide-coding genes, analyzed their functions by RNAi using the pharynx extension assay system, and identified at least five neuropeptide genes involved in pharynx extension. These was expressed in different cells or neurons, and some of them were expressed in the brain, suggesting complex regulation of planarian feeding behavior by the nervous system.

  10. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.

    PubMed

    Le, Duc-Hau; Verbeke, Lieven; Son, Le Hoang; Chu, Dinh-Toi; Pham, Van-Huy

    2017-11-14

    MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in disease phenotypes. Although such homogeneous networks can predict potential disease-associated miRNAs, they do not consider the roles of the target genes of the miRNAs. Here, we introduce a novel method based on a heterogeneous network that not only considers miRNAs but also the corresponding target genes in the network model. Instead of constructing homogeneous miRNA networks, we built heterogeneous miRNA networks consisting of both miRNAs and their target genes, using databases of known miRNA-target gene interactions. In addition, as recent studies demonstrated reciprocal regulatory relations between miRNAs and their target genes, we considered these heterogeneous miRNA networks to be undirected, assuming mutual miRNA-target interactions. Next, we introduced a novel method (RWRMTN) operating on these mutual heterogeneous miRNA networks to rank candidate disease-related miRNAs using a random walk with restart (RWR) based algorithm. Using both known disease-associated miRNAs and their target genes as seed nodes, the method can identify additional miRNAs involved in the disease phenotype. Experiments indicated that RWRMTN outperformed two existing state-of-the-art methods: RWRMDA, a network-based method that also uses a RWR on homogeneous (rather than heterogeneous) miRNA networks, and RLSMDA, a machine learning-based method. Interestingly, we could relate this performance gain to the emergence of "disease modules" in the heterogeneous miRNA networks used as input for the algorithm. Moreover, we could demonstrate that RWRMTN is stable

  11. Identification of STAT target genes in adipocytes

    PubMed Central

    Zhao, Peng; Stephens, Jacqueline M.

    2013-01-01

    Adipocytes play important roles in lipid storage, energy homeostasis and whole body insulin sensitivity. Studies in the last two decades have identified the hormones and cytokines that activate specific STATs in adipocytes in vitro and in vivo. Five of the seven STAT family members are expressed in adipocyte (STATs 1, 3, 5A, 5B and 6). Many transcription factors, including STATs, have been shown to play an important role in adipose tissue development and function. This review will summarize the importance of adipocytes, indicate the cytokines and hormones that utilize the JAK-STAT signaling pathway in fat cells and focus on the identification of STAT target genes in mature adipocytes. To date, specific target genes have been identified for STATs, 1, 5A and 5B, but not for STATs 3 and 6. PMID:24058802

  12. Bioinformatics approaches to predict target genes from transcription factor binding data.

    PubMed

    Essebier, Alexandra; Lamprecht, Marnie; Piper, Michael; Bodén, Mikael

    2017-12-01

    Transcription factors regulate gene expression and play an essential role in development by maintaining proliferative states, driving cellular differentiation and determining cell fate. Transcription factors are capable of regulating multiple genes over potentially long distances making target gene identification challenging. Currently available experimental approaches to detect distal interactions have multiple weaknesses that have motivated the development of computational approaches. Although an improvement over experimental approaches, existing computational approaches are still limited in their application, with different weaknesses depending on the approach. Here, we review computational approaches with a focus on data dependency, cell type specificity and usability. With the aim of identifying transcription factor target genes, we apply available approaches to typical transcription factor experimental datasets. We show that approaches are not always capable of annotating all transcription factor binding sites; binding sites should be treated disparately; and a combination of approaches can increase the biological relevance of the set of genes identified as targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana.

    PubMed

    Zhang, Weixiong; Ruan, Jianhua; Ho, Tuan-Hua David; You, Youngsook; Yu, Taotao; Quatrano, Ralph S

    2005-07-15

    A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.

  14. Xander: employing a novel method for efficient gene-targeted metagenomic assembly

    DOE PAGES

    Wang, Qiong; Fish, Jordan A.; Gilman, Mariah; ...

    2015-08-05

    Here, metagenomics can provide important insight into microbial communities. However, assembling metagenomic datasets has proven to be computationally challenging. Current methods often assemble only fragmented partial genes. We present a novel method for targeting assembly of specific protein-coding genes. This method combines a de Bruijn graph, as used in standard assembly approaches, and a protein profile hidden Markov model (HMM) for the gene of interest, as used in standard annotation approaches. These are used to create a novel combined weighted assembly graph. Xander performs both assembly and annotation concomitantly using information incorporated in this graph. We demonstrate the utility ofmore » this approach by assembling contigs for one phylogenetic marker gene and for two functional marker genes, first on Human Microbiome Project (HMP)-defined community Illumina data and then on 21 rhizosphere soil metagenomic datasets from three different crops totaling over 800 Gbp of unassembled data. We compared our method to a recently published bulk metagenome assembly method and a recently published gene-targeted assembler and found our method produced more, longer, and higher quality gene sequences. In conclusion, xander combines gene assignment with the rapid assembly of full-length or near full-length functional genes from metagenomic data without requiring bulk assembly or post-processing to find genes of interest. HMMs used for assembly can be tailored to the targeted genes, allowing flexibility to improve annotation over generic annotation pipelines.« less

  15. Xander: employing a novel method for efficient gene-targeted metagenomic assembly.

    PubMed

    Wang, Qiong; Fish, Jordan A; Gilman, Mariah; Sun, Yanni; Brown, C Titus; Tiedje, James M; Cole, James R

    2015-01-01

    Metagenomics can provide important insight into microbial communities. However, assembling metagenomic datasets has proven to be computationally challenging. Current methods often assemble only fragmented partial genes. We present a novel method for targeting assembly of specific protein-coding genes. This method combines a de Bruijn graph, as used in standard assembly approaches, and a protein profile hidden Markov model (HMM) for the gene of interest, as used in standard annotation approaches. These are used to create a novel combined weighted assembly graph. Xander performs both assembly and annotation concomitantly using information incorporated in this graph. We demonstrate the utility of this approach by assembling contigs for one phylogenetic marker gene and for two functional marker genes, first on Human Microbiome Project (HMP)-defined community Illumina data and then on 21 rhizosphere soil metagenomic datasets from three different crops totaling over 800 Gbp of unassembled data. We compared our method to a recently published bulk metagenome assembly method and a recently published gene-targeted assembler and found our method produced more, longer, and higher quality gene sequences. Xander combines gene assignment with the rapid assembly of full-length or near full-length functional genes from metagenomic data without requiring bulk assembly or post-processing to find genes of interest. HMMs used for assembly can be tailored to the targeted genes, allowing flexibility to improve annotation over generic annotation pipelines. This method is implemented as open source software and is available at https://github.com/rdpstaff/Xander_assembler.

  16. Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests.

    PubMed

    Knorr, Eileen; Fishilevich, Elane; Tenbusch, Linda; Frey, Meghan L F; Rangasamy, Murugesan; Billion, Andre; Worden, Sarah E; Gandra, Premchand; Arora, Kanika; Lo, Wendy; Schulenberg, Greg; Valverde-Garcia, Pablo; Vilcinskas, Andreas; Narva, Kenneth E

    2018-02-01

    RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T 0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests.

  17. Abundance of genes involved in mercury methylation in oceanic environments

    NASA Astrophysics Data System (ADS)

    Palumbo, A. V.; Podar, M.; Gilmour, C. C.; Brandt, C. C.; Brown, S. D.; Crable, B. R.; Weighill, D.; Jacobson, D. A.; Somenahally, A. C.; Elias, D. A.

    2016-02-01

    The distribution and diversity of genes involved in mercury methylation in oceanic environments is of interest in determining the source of mercury in ocean environments and may have predictive value for mercury methylation rates. The highly conserved hgcAB genes involved in mercury methylation provide an avenue for evaluating the genetic potential for mercury methylation. The genes are sporadically present in a few diverse groups of bacteria and Archaea including Deltaproteobacteria, Firmicutes and Archaea and of over 7000 sequenced species they are only present in about 100 genomes. Examination of sequence data from methylators and non-methylators indicates that these genes are associated with other genes involved in metal transformations and transport. We examined hgcAB presence in over 3500 microbial metagenomes (from all environments) and found the hgcAB genes were present in anaerobic oceanic environments but not in aerobic layers of the open ocean. The genes were common in sediments from marine, coastal and estuarine sources as well as polluted environments. The genes were rare, found in 7 of 138 samples, in metagenomes from the pelagic water column including profiles though the oxygen minimum zone. Other oxic and sub-oxic coastal waters also demonstrated a lack of hgcAB genes including the OMZ in the Eastern North Pacific Ocean. There were some unique hgcA like unique sequences found in metagenomes from depth in the Pacific and Southern Atlantic Ocean. Coastal "dead zone" waters may be important sources of MeHg as the hgcAB genes were abundant in the anoxic waters of a stratified fjord. The genes were absent in microbiomes from vertebrates but were in invertebrate microbiomes However, oceanic species were underrepresented in these samples. Climate change could provide an additional flux of MeHg to the oceans as we found the most abundant representation of hgcAB genes in arctic permafrost. Thus warming could increase flux of methyl mercury to arctic waters.

  18. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands.

    PubMed

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-02-08

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription-activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock.

  19. Mining genes involved in insecticide resistance of Liposcelis bostrychophila Badonnel by transcriptome and expression profile analysis.

    PubMed

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids.

  20. Mining Genes Involved in Insecticide Resistance of Liposcelis bostrychophila Badonnel by Transcriptome and Expression Profile Analysis

    PubMed Central

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Background Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. Methodology and Principal Findings In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. Conclusion The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids. PMID:24278202

  1. Bioinformatic prediction of leader genes in human periodontitis.

    PubMed

    Covani, Ugo; Marconcini, Simone; Giacomelli, Luca; Sivozhelevov, Victor; Barone, Antonio; Nicolini, Claudio

    2008-10-01

    Genes involved in different biologic processes form complex interaction networks. However, only a few have a high number of interactions with the other genes in the network. In previous bioinformatics and experimental studies concerning the T lymphocyte cell cycle, these genes were identified and termed "leader genes." In this work, genes involved in human periodontitis were tentatively identified and ranked according to their number of interactions to obtain a preliminary, broader view of molecular mechanisms of periodontitis and plan targeted experimentation. Genes were identified with interrelated queries of several databases. The interactions among these genes were mapped and given a significance score. The weighted number of links (weighted sum of scores for every interaction in which the given gene is involved) was calculated for each gene. Genes were clustered according to this parameter. The genes in the highest cluster were termed leader genes. Sixty-one genes involved or potentially involved in periodontitis were identified. Only five were identified as leader genes, whereas 12 others were ranked in an immediately lower cluster. For 10 of 17 genes there is evidence of involvement in periodontitis; seven new genes that are potentially involved in this disease were identified. The involvement in periodontitis has been completely established for only two leader genes. We applied a validated bioinformatics algorithm to increase our knowledge of molecular mechanisms of periodontitis. Even with the limitations of this ab initio analysis, this theoretical study can suggest ad hoc experimentation targeted on significant genes and, therefore, simpler than mass-scale molecular genomics. Moreover, the identification of leader genes might suggest new potential risk factors and therapeutic targets.

  2. Comparative genomics identification of a novel set of temporally regulated hedgehog target genes in the retina.

    PubMed

    McNeill, Brian; Perez-Iratxeta, Carol; Mazerolle, Chantal; Furimsky, Marosh; Mishina, Yuji; Andrade-Navarro, Miguel A; Wallace, Valerie A

    2012-03-01

    The hedgehog (Hh) signaling pathway is involved in numerous developmental and adult processes with many links to cancer. In vertebrates, the activity of the Hh pathway is mediated primarily through three Gli transcription factors (Gli1, 2 and 3) that can serve as transcriptional activators or repressors. The identification of Gli target genes is essential for the understanding of the Hh-mediated processes. We used a comparative genomics approach using the mouse and human genomes to identify 390 genes that contained conserved Gli binding sites. RT-qPCR validation of 46 target genes in E14.5 and P0.5 retinal explants revealed that Hh pathway activation resulted in the modulation of 30 of these targets, 25 of which demonstrated a temporal regulation. Further validation revealed that the expression of Bok, FoxA1, Sox8 and Wnt7a was dependent upon Sonic Hh (Shh) signaling in the retina and their regulation is under positive and negative controls by Gli2 and Gli3, respectively. We also show using chromatin immunoprecipitation that Gli2 binds to the Sox8 promoter, suggesting that Sox8 is an Hh-dependent direct target of Gli2. Finally, we demonstrate that the Hh pathway also modulates the expression of Sox9 and Sox10, which together with Sox8 make up the SoxE group. Previously, it has been shown that Hh and SoxE group genes promote Müller glial cell development in the retina. Our data are consistent with the possibility for a role of SoxE group genes downstream of Hh signaling on Müller cell development. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  3. Self-focusing therapeutic gene delivery with intelligent gene vector swarms: intra-swarm signalling through receptor transgene expression in targeted cells.

    PubMed

    Tolmachov, Oleg E

    2015-01-01

    Gene delivery in vivo that is tightly focused on the intended target cells is essential to maximize the benefits of gene therapy and to reduce unwanted side-effects. Cell surface markers are immediately available for probing by therapeutic gene vectors and are often used to direct gene transfer with these vectors to specific target cell populations. However, it is not unusual for the choice of available extra-cellular markers to be too scarce to provide a reliable definition of the desired therapeutically relevant set of target cells. Therefore, interrogation of intra-cellular determinants of cell-specificity, such as tissue-specific transcription factors, can be vital in order to provide detailed cell-guiding information to gene vector particles. An important improvement in cell-specific gene delivery can be achieved through auto-buildup in vector homing efficiency using intelligent 'self-focusing' of swarms of vector particles on target cells. Vector self-focusing was previously suggested to rely on the release of diffusible chemo-attractants after a successful target-specific hit by 'scout' vector particles. I hypothesize that intelligent self-focusing behaviour of swarms of cell-targeted therapeutic gene vectors can be accomplished without the employment of difficult-to-use diffusible chemo-attractants, instead relying on the intra-swarm signalling through cells expressing a non-diffusible extra-cellular receptor for the gene vectors. In the proposed model, cell-guiding information is gathered by the 'scout' gene vector particles, which: (1) attach to a variety of cells via a weakly binding (low affinity) receptor; (2) successfully facilitate gene transfer into these cells; (3) query intra-cellular determinants of cell-specificity with their transgene expression control elements and (4) direct the cell-specific biosynthesis of a vector-encoded strongly binding (high affinity) cell-surface receptor. Free members of the vector swarm loaded with therapeutic cargo

  4. New gene targets for glucagon-like peptide-1 during embryonic development and in undifferentiated pluripotent cells.

    PubMed

    Sanz, Carmen; Blázquez, Enrique

    2011-09-01

    In humans, glucagon-like peptide (GLP-1) functions during adult life as an incretin hormone with anorexigenic and antidiabetogenic properties. Also, the therapeutic potential of GLP-1 in preventing the adipocyte hyperplasia associated with obesity and in bolstering the maintenance of human mesenchymal stem cell (hMSC) stores by promoting the proliferation and cytoprotection of hMSC seems to be relevant. Since these observations suggest a role for GLP-1 during developmental processes, the aim of the present work was to characterize GLP-1 in early development as well as its gene targets in mouse embryonic stem (mES) cells. Mouse embryos E6, E8, and E10.5 and pluripotent mES were used for the inmunodetection of GLP-1 and GLP-1 receptor. Quantitative real-time PCR was used to determine the expression levels of GLP-1R in several tissues from E12.5 mouse embryos. Additionally, GLP-1 gene targets were studied in mES by multiple gene expression analyses. GLP-1 and its receptors were identified in mES and during embryonic development. In pluripotent mES, GLP-1 modified the expression of endodermal, ectodermal, and mesodermal gene markers as well as sonic hedgehog, noggin, members of the fibroblast and hepatic growth factor families, and others involved in pancreatic development. Additionally, GLP-1 promoted the expression of the antiapoptotic gene bcl2 and at the same time reduced proapoptotic caspase genes. Our results indicate that apart from the effects and therapeutic benefits of GLP-1 in adulthood, it may have additional gene targets in mES cells during embryonic life. Furthermore, the pathophysiological implications of GLP-1 imbalance in adulthood may have a counterpart during development.

  5. EBF factors drive expression of multiple classes of target genes governing neuronal development.

    PubMed

    Green, Yangsook S; Vetter, Monica L

    2011-04-30

    Early B cell factor (EBF) family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.

  6. Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics.

    PubMed

    Keshri, Jitendra; Mishra, Avinash; Jha, Bhavanath

    2013-03-30

    Population indices of bacteria and archaea were investigated from saline-alkaline soil and a possible microbe-environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline-alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. New Molecular Bridge between RelA/p65 and NF-κB Target Genes via Histone Acetyltransferase TIP60 Cofactor*

    PubMed Central

    Kim, Jung-Woong; Jang, Sang-Min; Kim, Chul-Hong; An, Joo-Hee; Kang, Eun-Jin; Choi, Kyung-Hee

    2012-01-01

    The nuclear factor-κB (NF-κB) family is involved in the expressions of numerous genes, in development, apoptosis, inflammatory responses, and oncogenesis. In this study we identified four NF-κB target genes that are modulated by TIP60. We also found that TIP60 interacts with the NF-κB RelA/p65 subunit and increases its transcriptional activity through protein-protein interaction. Although TIP60 binds with RelA/p65 using its histone acetyltransferase domain, TIP60 does not directly acetylate RelA/p65. However, TIP60 maintained acetylated Lys-310 RelA/p65 levels in the TNF-α-dependent NF-κB signaling pathway. In chromatin immunoprecipitation assay, TIP60 was primarily recruited to the IL-6, IL-8, C-IAP1, and XIAP promoters in TNF-α stimulation followed by acetylation of histones H3 and H4. Chromatin remodeling by TIP60 involved the sequential recruitment of acetyl-Lys-310 RelA/p65 to its target gene promoters. Furthermore, we showed that up-regulated TIP60 expression was correlated with acetyl-Lys-310 RelA/p65 expressions in hepatocarcinoma tissues. Taken together these results suggest that TIP60 is involved in the NF-κB pathway through protein interaction with RelA/p65 and that it modulates the transcriptional activity of RelA/p65 in NF-κB-dependent gene expression. PMID:22249179

  8. Regulatory network analysis of Epstein-Barr virus identifies functional modules and hub genes involved in infectious mononucleosis.

    PubMed

    Poorebrahim, Mansour; Salarian, Ali; Najafi, Saeideh; Abazari, Mohammad Foad; Aleagha, Maryam Nouri; Dadras, Mohammad Nasr; Jazayeri, Seyed Mohammad; Ataei, Atousa; Poortahmasebi, Vahdat

    2017-05-01

    Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis (IM) and establishes lifetime infection associated with a variety of cancers and autoimmune diseases. The aim of this study was to develop an integrative gene regulatory network (GRN) approach and overlying gene expression data to identify the representative subnetworks for IM and EBV latent infection (LI). After identifying differentially expressed genes (DEGs) in both IM and LI gene expression profiles, functional annotations were applied using gene ontology (GO) and BiNGO tools, and construction of GRNs, topological analysis and identification of modules were carried out using several plugins of Cytoscape. In parallel, a human-EBV GRN was generated using the Hu-Vir database for further analyses. Our analysis revealed that the majority of DEGs in both IM and LI were involved in cell-cycle and DNA repair processes. However, these genes showed a significant negative correlation in the IM and LI states. Furthermore, cyclin-dependent kinase 2 (CDK2) - a hub gene with the highest centrality score - appeared to be the key player in cell cycle regulation in IM disease. The most significant functional modules in the IM and LI states were involved in the regulation of the cell cycle and apoptosis, respectively. Human-EBV network analysis revealed several direct targets of EBV proteins during IM disease. Our study provides an important first report on the response to IM/LI EBV infection in humans. An important aspect of our data was the upregulation of genes associated with cell cycle progression and proliferation.

  9. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Huang, S; Zhao, XF

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs tomore » target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.« less

  10. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing.

    PubMed

    Amabile, Angelo; Migliara, Alessandro; Capasso, Paola; Biffi, Mauro; Cittaro, Davide; Naldini, Luigi; Lombardo, Angelo

    2016-09-22

    Gene silencing is instrumental to interrogate gene function and holds promise for therapeutic applications. Here, we repurpose the endogenous retroviruses' silencing machinery of embryonic stem cells to stably silence three highly expressed genes in somatic cells by epigenetics. This was achieved by transiently expressing combinations of engineered transcriptional repressors that bind to and synergize at the target locus to instruct repressive histone marks and de novo DNA methylation, thus ensuring long-term memory of the repressive epigenetic state. Silencing was highly specific, as shown by genome-wide analyses, sharply confined to the targeted locus without spreading to nearby genes, resistant to activation induced by cytokine stimulation, and relieved only by targeted DNA demethylation. We demonstrate the portability of this technology by multiplex gene silencing, adopting different DNA binding platforms and interrogating thousands of genomic loci in different cell types, including primary T lymphocytes. Targeted epigenome editing might have broad application in research and medicine. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Virus-induced gene silencing (VIGS)-mediated functional characterization of two genes involved in lignocellulosic secondary cell wall formation.

    PubMed

    Pandey, Shashank K; Nookaraju, Akula; Fujino, Takeshi; Pattathil, Sivakumar; Joshi, Chandrashekhar P

    2016-11-01

    Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.

  12. CCDB: a curated database of genes involved in cervix cancer.

    PubMed

    Agarwal, Subhash M; Raghav, Dhwani; Singh, Harinder; Raghava, G P S

    2011-01-01

    The Cervical Cancer gene DataBase (CCDB, http://crdd.osdd.net/raghava/ccdb) is a manually curated catalog of experimentally validated genes that are thought, or are known to be involved in the different stages of cervical carcinogenesis. In spite of the large women population that is presently affected from this malignancy still at present, no database exists that catalogs information on genes associated with cervical cancer. Therefore, we have compiled 537 genes in CCDB that are linked with cervical cancer causation processes such as methylation, gene amplification, mutation, polymorphism and change in expression level, as evident from published literature. Each record contains details related to gene like architecture (exon-intron structure), location, function, sequences (mRNA/CDS/protein), ontology, interacting partners, homology to other eukaryotic genomes, structure and links to other public databases, thus augmenting CCDB with external data. Also, manually curated literature references have been provided to support the inclusion of the gene in the database and establish its association with cervix cancer. In addition, CCDB provides information on microRNA altered in cervical cancer as well as search facility for querying, several browse options and an online tool for sequence similarity search, thereby providing researchers with easy access to the latest information on genes involved in cervix cancer.

  13. Identification of genes involved in the biology of atypical teratoid/rhabdoid tumours using Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Jeibmann, Astrid; Eikmeier, Kristin; Linge, Anna; Kool, Marcel; Koos, Björn; Schulz, Jacqueline; Albrecht, Stefanie; Bartelheim, Kerstin; Frühwald, Michael C.; Pfister, Stefan M.; Paulus, Werner; Hasselblatt, Martin

    2014-06-01

    Atypical teratoid/rhabdoid tumours (AT/RT) are malignant brain tumours. Unlike most other human brain tumours, AT/RT are characterized by inactivation of one single gene, SMARCB1. SMARCB1 is a member of the evolutionarily conserved SWI/SNF chromatin remodelling complex, which has an important role in the control of cell differentiation and proliferation. Little is known, however, about the pathways involved in the oncogenic effects of SMARCB1 inactivation, which might also represent targets for treatment. Here we report a comprehensive genetic screen in the fruit fly that revealed several genes not yet associated with loss of snr1, the Drosophila homologue of SMARCB1. We confirm the functional role of identified genes (including merlin, kibra and expanded, known to regulate hippo signalling pathway activity) in human rhabdoid tumour cell lines and AT/RT tumour samples. These results demonstrate that fly models can be employed for the identification of clinically relevant pathways in human cancer.

  14. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements

    PubMed Central

    Mumbach, Maxwell R; Satpathy, Ansuman T; Boyle, Evan A; Dai, Chao; Gowen, Benjamin G; Cho, Seung Woo; Nguyen, Michelle L; Rubin, Adam J; Granja, Jeffrey M; Kazane, Katelynn R; Wei, Yuning; Nguyen, Trieu; Greenside, Peyton G; Corces, M Ryan; Tycko, Josh; Simeonov, Dimitre R; Suliman, Nabeela; Li, Rui; Xu, Jin; Flynn, Ryan A; Kundaje, Anshul; Khavari, Paul A; Marson, Alexander; Corn, Jacob E; Quertermous, Thomas; Greenleaf, William J; Chang, Howard Y

    2018-01-01

    The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer–promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases. PMID:28945252

  15. A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast

    DTIC Science & Technology

    2004-05-01

    AD Award Number: DAMD17-03-1-0232 TITLE: A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast PRINCIPAL INVESTIGATOR...Approach to Identify Novel Breast DAMD17-03-1-0232 Cancer Gene Targets in Yeast 6. A UTHOR(S) Craig Bennett, Ph.D. 7. PERFORMING ORGANIZA TION NAME(S...Unlimited 13. ABSTRACT (Maximum 200 Words) We are using the yeast Saccharomyces cerevisiae to identify new cancer gene targets that interact with the

  16. On revealing the gene targets of Ebola virus microRNAs involved in the human skin microbiome.

    PubMed

    Hsu, Pei-Chun; Chiou, Bin-Hao; Huang, Chun-Ming

    2018-01-01

    Ebola virus, a negative-sense single-stranded RNA virus, causes severe viral hemorrhagic fever and has a high mortality rate. Histopathological and immunopathological analyses of Ebola virus have revealed that histopathological changes in skin tissue are associated with various degrees of endothelial cell swelling and necrosis. The interactions of microbes within or on a host are a crucial for the skin immune shield. The discovery of microRNAs (miRNAs) in Ebola virus implies that immune escape, endothelial cell rupture, and tissue dissolution during Ebola virus infection are a result of the effects of Ebola virus miRNAs. Keratinocytes obtained from normal skin can attach and spread through expression of the thrombospondin family of proteins, playing a role in initiation of cell-mediated immune responses in the skin. Several miRNAs have been shown to bind the 3' untranslated region of thrombospondin mRNA, thereby controlling its stability and translational activity. In this study, we discovered short RNA sequences that may act as miRNAs from Propionibacterium acnes using a practical workflow of bioinformatics methods. Subsequently, we deciphered the common target gene. These RNA sequences tended to bind to the same thrombospondin protein, THSD4, emphasizing the potential importance of the synergistic binding of miRNAs from Ebola virus, Propionibacterium acnes , and humans to the target. These results provide important insights into the molecular mechanisms of thrombospondin proteins and miRNAs in Ebola virus infection.

  17. Tuning Gene Activity by Inducible and Targeted Regulation of Gene Expression in Minimal Bacterial Cells.

    PubMed

    Mariscal, Ana M; Kakizawa, Shigeyuki; Hsu, Jonathan Y; Tanaka, Kazuki; González-González, Luis; Broto, Alicia; Querol, Enrique; Lluch-Senar, Maria; Piñero-Lambea, Carlos; Sun, Lijie; Weyman, Philip D; Wise, Kim S; Merryman, Chuck; Tse, Gavin; Moore, Adam J; Hutchison, Clyde A; Smith, Hamilton O; Tomita, Masaru; Venter, J Craig; Glass, John I; Piñol, Jaume; Suzuki, Yo

    2018-05-22

    Functional genomics studies in minimal mycoplasma cells enable unobstructed access to some of the most fundamental processes in biology. Conventional transposon bombardment and gene knockout approaches often fail to reveal functions of genes that are essential for viability, where lethality precludes phenotypic characterization. Conditional inactivation of genes is effective for characterizing functions central to cell growth and division, but tools are limited for this purpose in mycoplasmas. Here we demonstrate systems for inducible repression of gene expression based on clustered regularly interspaced short palindromic repeats-mediated interference (CRISPRi) in Mycoplasma pneumoniae and synthetic Mycoplasma mycoides, two organisms with reduced genomes actively used in systems biology studies. In the synthetic cell, we also demonstrate inducible gene expression for the first time. Time-course data suggest rapid kinetics and reversible engagement of CRISPRi. Targeting of six selected endogenous genes with this system results in lowered transcript levels or reduced growth rates that agree with lack or shortage of data in previous transposon bombardment studies, and now produces actual cells to analyze. The ksgA gene encodes a methylase that modifies 16S rRNA, rendering it vulnerable to inhibition by the antibiotic kasugamycin. Targeting the ksgA gene with CRISPRi removes the lethal effect of kasugamycin and enables cell growth, thereby establishing specific and effective gene modulation with our system. The facile methods for conditional gene activation and inactivation in mycoplasmas open the door to systematic dissection of genetic programs at the core of cellular life.

  18. Identification and consequences of miRNA-target interactions--beyond repression of gene expression.

    PubMed

    Hausser, Jean; Zavolan, Mihaela

    2014-09-01

    Comparative genomics analyses and high-throughput experimental studies indicate that a microRNA (miRNA) binds to hundreds of sites across the transcriptome. Although the knockout of components of the miRNA biogenesis pathway has profound phenotypic consequences, most predicted miRNA targets undergo small changes at the mRNA and protein levels when the expression of the miRNA is perturbed. Alternatively, miRNAs can establish thresholds in and increase the coherence of the expression of their target genes, as well as reduce the cell-to-cell variability in target gene expression. Here, we review the recent progress in identifying miRNA targets and the emerging paradigms of how miRNAs shape the dynamics of target gene expression.

  19. Gene Therapy Targeting Glaucoma: Where Are We?

    PubMed Central

    Liu, Xuyang; Rasmussen, Carol A.; Gabelt, B’Ann T.; Brandt, Curtis R.; Kaufman, Paul L.

    2010-01-01

    In a chronic disease such as glaucoma, a therapy that provides a long lasting local effect, with minimal systemic side effects, while circumventing the issue of patient compliance, is very attractive. The field of gene therapy is growing rapidly and ocular applications are expanding. Our understanding of the molecular pathogenesis of glaucoma is leading to greater specificity in ocular tissue targeting. Improvements in gene delivery techniques, refinement of vector construction methods, and development of better animal models combine to bring this potential therapy closer to reality. PMID:19539835

  20. The low-abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer.

    PubMed

    Bizama, Carolina; Benavente, Felipe; Salvatierra, Edgardo; Gutiérrez-Moraga, Ana; Espinoza, Jaime A; Fernández, Elmer A; Roa, Iván; Mazzolini, Guillermo; Sagredo, Eduardo A; Gidekel, Manuel; Podhajcer, Osvaldo L

    2014-02-15

    Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer. © 2013 UICC.

  1. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells.

    PubMed

    Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi

    2017-03-21

    This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon

  2. Targeted sequencing-based analyses of candidate gene variants in ulcerative colitis-associated colorectal neoplasia.

    PubMed

    Chakrabarty, Sanjiban; Varghese, Vinay Koshy; Sahu, Pranoy; Jayaram, Pradyumna; Shivakumar, Bhadravathi M; Pai, Cannanore Ganesh; Satyamoorthy, Kapaettu

    2017-06-27

    Long-standing ulcerative colitis (UC) leading to colorectal cancer (CRC) is one of the most serious and life-threatening consequences acknowledged globally. Ulcerative colitis-associated colorectal carcinogenesis showed distinct molecular alterations when compared with sporadic colorectal carcinoma. Targeted sequencing of 409 genes in tissue samples of 18 long-standing UC subjects at high risk of colorectal carcinoma (UCHR) was performed to identify somatic driver mutations, which may be involved in the molecular changes during the transformation of non-dysplastic mucosa to high-grade dysplasia. Findings from the study are also compared with previously published genome wide and exome sequencing data in inflammatory bowel disease-associated and sporadic colorectal carcinoma. Next-generation sequencing analysis identified 1107 mutations in 275 genes in UCHR subjects. In addition to TP53 (17%) and KRAS (22%) mutations, recurrent mutations in APC (33%), ACVR2A (61%), ARID1A (44%), RAF1 (39%) and MTOR (61%) were observed in UCHR subjects. In addition, APC, FGFR3, FGFR2 and PIK3CA driver mutations were identified in UCHR subjects. Recurrent mutations in ARID1A (44%), SMARCA4 (17%), MLL2 (44%), MLL3 (67%), SETD2 (17%) and TET2 (50%) genes involved in histone modification and chromatin remodelling were identified in UCHR subjects. Our study identifies new oncogenic driver mutations which may be involved in the transition of non-dysplastic cells to dysplastic phenotype in the subjects with long-standing UC with high risk of progression into colorectal neoplasia.

  3. Targeted Gene Deletion in Cordyceps militaris Using the Split-Marker Approach.

    PubMed

    Lou, HaiWei; Ye, ZhiWei; Yun, Fan; Lin, JunFang; Guo, LiQiong; Chen, BaiXiong; Mu, ZhiXian

    2018-05-01

    The macrofungus Cordyceps militaris contains many kinds of bioactive ingredients that are regulated by functional genes, but the functions of many genes in C. militaris are still unknown. In this study, to improve the frequency of homologous integration, a genetic transformation system based on a split-marker approach was developed for the first time in C. militaris to knock out a gene encoding a terpenoid synthase (Tns). The linear and split-marker deletion cassettes were constructed and introduced into C. militaris protoplasts by PEG-mediated transformation. The transformation of split-marker fragments resulted in a higher efficiency of targeted gene disruption than the transformation of linear deletion cassettes did. The color phenotype of the Tns gene deletion mutants was different from that of wild-type C. militaris. Moreover, a PEG-mediated protoplast transformation system was established, and stable genetic transformants were obtained. This method of targeted gene deletion represents an important tool for investigating the role of C. militaris genes.

  4. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors

    PubMed Central

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-01-01

    Purpose The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer (PCa) tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in PCa cells. The junction of theTMPRSS2 and ERG derived portions of the fusion mRNA constitutes a cancer specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low toxicity treatment for PCa. Experimental Design We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (Type III or Type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of PCa cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. Results The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Conclusions Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with PCa. PMID:23052253

  5. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors.

    PubMed

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-12-15

    The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in prostate cancer cells. The junction of theTMPRSS2- and ERG-derived portions of the fusion mRNA constitutes a cancer-specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low-toxicity treatment for prostate cancer. We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (type III or type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of prostate cancer cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with prostate cancer. ©2012 AACR.

  6. Multifaceted Targeting of the Chromatin Mediates Gonadotropin-Releasing Hormone Effects on Gene Expression in the Gonadotrope.

    PubMed

    Melamed, Philippa; Haj, Majd; Yosefzon, Yahav; Rudnizky, Sergei; Wijeweera, Andrea; Pnueli, Lilach; Kaplan, Ariel

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) stimulates the expression of multiple genes in the pituitary gonadotropes, most notably to induce synthesis of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), but also to ensure the appropriate functioning of these cells at the center of the mammalian reproductive endocrine axis. Aside from the activation of gene-specific transcription factors, GnRH stimulates through its membrane-bound receptor, alterations in the chromatin that facilitate transcription of its target genes. These include changes in the histone and DNA modifications, nucleosome positioning, and chromatin packaging at the regulatory regions of each gene. The requirements for each of these events vary according to the DNA sequence which determines the basal chromatin packaging at the regulatory regions. Despite considerable progress in this field in recent years, we are only beginning to understand some of the complexities involved in the role and regulation of this chromatin structure, including new modifications, extensive cross talk, histone variants, and the actions of distal enhancers and non-coding RNAs. This short review aims to integrate the latest findings on GnRH-induced alterations in the chromatin of its target genes, which indicate multiple and diverse actions. Understanding these processes is illuminating not only in the context of the activation of these hormones during the reproductive life span but may also reveal how aberrant epigenetic regulation of these genes leads to sub-fertility.

  7. Multifaceted Targeting of the Chromatin Mediates Gonadotropin-Releasing Hormone Effects on Gene Expression in the Gonadotrope

    PubMed Central

    Melamed, Philippa; Haj, Majd; Yosefzon, Yahav; Rudnizky, Sergei; Wijeweera, Andrea; Pnueli, Lilach; Kaplan, Ariel

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) stimulates the expression of multiple genes in the pituitary gonadotropes, most notably to induce synthesis of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), but also to ensure the appropriate functioning of these cells at the center of the mammalian reproductive endocrine axis. Aside from the activation of gene-specific transcription factors, GnRH stimulates through its membrane-bound receptor, alterations in the chromatin that facilitate transcription of its target genes. These include changes in the histone and DNA modifications, nucleosome positioning, and chromatin packaging at the regulatory regions of each gene. The requirements for each of these events vary according to the DNA sequence which determines the basal chromatin packaging at the regulatory regions. Despite considerable progress in this field in recent years, we are only beginning to understand some of the complexities involved in the role and regulation of this chromatin structure, including new modifications, extensive cross talk, histone variants, and the actions of distal enhancers and non-coding RNAs. This short review aims to integrate the latest findings on GnRH-induced alterations in the chromatin of its target genes, which indicate multiple and diverse actions. Understanding these processes is illuminating not only in the context of the activation of these hormones during the reproductive life span but may also reveal how aberrant epigenetic regulation of these genes leads to sub-fertility. PMID:29535683

  8. MicroRNA profiling reveals dysregulated microRNAs and their target gene regulatory networks in cemento-ossifying fibroma.

    PubMed

    Pereira, Thaís Dos Santos Fontes; Brito, João Artur Ricieri; Guimarães, André Luiz Sena; Gomes, Carolina Cavaliéri; de Lacerda, Júlio Cesar Tanos; de Castro, Wagner Henriques; Coimbra, Roney Santos; Diniz, Marina Gonçalves; Gomez, Ricardo Santiago

    2018-01-01

    Cemento-ossifying fibroma (COF) is a benign fibro-osseous neoplasm of uncertain pathogenesis, and its treatment results in morbidity. MicroRNAs (miRNA) are small non-coding RNAs that regulate gene expression and may represent therapeutic targets. The purpose of the study was to generate a comprehensive miRNA profile of COF compared to normal bone. Additionally, the most relevant pathways and target genes of differentially expressed miRNA were investigated by in silico analysis. Nine COF and ten normal bone samples were included in the study. miRNA profiling was carried out by using TaqMan® OpenArray® Human microRNA panel containing 754 validated human miRNAs. We identified the most relevant miRNAs target genes through the leader gene approach, using STRING and Cytoscape software. Pathways enrichment analysis was performed using DIANA-miRPath. Eleven miRNAs were downregulated (hsa-miR-95-3p, hsa-miR-141-3p, hsa-miR-205-5p, hsa-miR-223-3p, hsa-miR-31-5p, hsa-miR-944, hsa-miR-200b-3p, hsa-miR-135b-5p, hsa-miR-31-3p, hsa-miR-223-5p and hsa-miR-200c-3p), and five were upregulated (hsa-miR-181a-5p, hsa-miR-181c-5p, hsa-miR-149-5p, hsa-miR-138-5p and hsa-miR-199a-3p) in COF compared to normal bone. Eighteen common target genes were predicted, and the leader genes approach identified the following genes involved in human COF: EZH2, XIAP, MET and TGFBR1. According to the biology of bone and COF, the most relevant KEGG pathways revealed by enrichment analysis were proteoglycans in cancer, miRNAs in cancer, pathways in cancer, p53-, PI3K-Akt-, FoxO- and TGF-beta signalling pathways, which were previously found to be differentially regulated in bone neoplasms, odontogenic tumours and osteogenesis. miRNA dysregulation occurs in COF, and EZH2, XIAP, MET and TGFBR1 are potential targets for functional analysis validation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Combining gene expression and genetic analyses to identify candidate genes involved in cold responses in pea.

    PubMed

    Legrand, Sylvain; Marque, Gilles; Blassiau, Christelle; Bluteau, Aurélie; Canoy, Anne-Sophie; Fontaine, Véronique; Jaminon, Odile; Bahrman, Nasser; Mautord, Julie; Morin, Julie; Petit, Aurélie; Baranger, Alain; Rivière, Nathalie; Wilmer, Jeroen; Delbreil, Bruno; Lejeune-Hénaut, Isabelle

    2013-09-01

    Cold stress affects plant growth and development. In order to better understand the responses to cold (chilling or freezing tolerance), we used two contrasted pea lines. Following a chilling period, the Champagne line becomes tolerant to frost whereas the Terese line remains sensitive. Four suppression subtractive hybridisation libraries were obtained using mRNAs isolated from pea genotypes Champagne and Terese. Using quantitative polymerase chain reaction (qPCR) performed on 159 genes, 43 and 54 genes were identified as differentially expressed at the initial time point and during the time course study, respectively. Molecular markers were developed from the differentially expressed genes and were genotyped on a population of 164 RILs derived from a cross between Champagne and Terese. We identified 5 candidate genes colocalizing with 3 different frost damage quantitative trait loci (QTL) intervals and a protein quantity locus (PQL) rich region previously reported. This investigation revealed the role of constitutive differences between both genotypes in the cold responses, in particular with genes related to glycine degradation pathway that could confer to Champagne a better frost tolerance. We showed that freezing tolerance involves a decrease of expression of genes related to photosynthesis and the expression of a gene involved in the production of cysteine and methionine that could act as cryoprotectant molecules. Although it remains to be confirmed, this study could also reveal the involvement of the jasmonate pathway in the cold responses, since we observed that two genes related to this pathway were mapped in a frost damage QTL interval and in a PQL rich region interval, respectively. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer.

    PubMed

    Theodorou, Vassiliki; Kimm, Melanie A; Boer, Mandy; Wessels, Lodewyk; Theelen, Wendy; Jonkers, Jos; Hilkens, John

    2007-06-01

    We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.

  11. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei.

    PubMed

    He, Ronglin; Ma, Lijuan; Li, Chen; Jia, Wendi; Li, Demao; Zhang, Dongyuan; Chen, Shulin

    2014-12-01

    Fungi grow over a relatively wide pH range and adapt to extracellular pH through a genetic regulatory system mediated by a key component PacC, which is a pH transcription regulator. The cellulase production of the filamentous fungi Trichoderma reesei is sensitive to ambient pH. To investigate the connection between cellulase expression regulation and ambient pH, an ortholog of Aspergillus nidulans pacC, Trpac1, was identified and functionally characterized using a target gene deletion strategy. Deleting Trpac1 dramatically increased the cellulase production and the transcription levels of the major cellulase genes at neutral pH, which suggested Trpac1 is involved in the regulation of cellulase production. It was further observed that the expression levels of transcription factors xyr1 and ace2 also increased in the ΔTrpac1 mutant at neutral pH. In addition, the ΔTrpac1 mutant exhibited conidiation defects under neutral and alkaline pH. These results implied that Trpac1 in involved in growth and development process and cellulase gene expression in T. reesei. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Genome-wide Analyses of the Structural Gene Families Involved in the Legume-specific 5-Deoxyisoflavonoid Biosynthesis of Lotus japonicus

    PubMed Central

    Shimada, Norimoto; Sato, Shusei; Akashi, Tomoyoshi; Nakamura, Yasukazu; Tabata, Satoshi; Ayabe, Shin-ichi; Aoki, Toshio

    2007-01-01

    Abstract A model legume Lotus japonicus (Regel) K. Larsen is one of the subjects of genome sequencing and functional genomics programs. In the course of targeted approaches to the legume genomics, we analyzed the genes encoding enzymes involved in the biosynthesis of the legume-specific 5-deoxyisoflavonoid of L. japonicus, which produces isoflavan phytoalexins on elicitor treatment. The paralogous biosynthetic genes were assigned as comprehensively as possible by biochemical experiments, similarity searches, comparison of the gene structures, and phylogenetic analyses. Among the 10 biosynthetic genes investigated, six comprise multigene families, and in many cases they form gene clusters in the chromosomes. Semi-quantitative reverse transcriptase–PCR analyses showed coordinate up-regulation of most of the genes during phytoalexin induction and complex accumulation patterns of the transcripts in different organs. Some paralogous genes exhibited similar expression specificities, suggesting their genetic redundancy. The molecular evolution of the biosynthetic genes is discussed. The results presented here provide reliable annotations of the genes and genetic markers for comparative and functional genomics of leguminous plants. PMID:17452423

  13. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jing; Shen, Chengwu; Wang, Lin

    2014-09-26

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have beenmore » shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4.« less

  14. Axotomy-induced target disconnection promotes an additional death mechanism involved in motoneuron degeneration in ALS transgenic mice

    PubMed Central

    Haulcomb, Melissa M.; Mesnard, Nichole A.; Batka, Richard J.; Alexander, Thomas D.; Sanders, Virginia M.; Jones, Kathryn J.

    2014-01-01

    The target disconnection theory of amyotrophic lateral sclerosis (ALS) pathogenesis suggests disease onset is initiated by a peripheral pathological event resulting in neuromuscular junction loss and motoneuron (MN) degeneration. Pre-symptomatic mSOD1G93A mouse facial MN (FMN) are more susceptible to axotomy-induced cell death than wild-type (WT) FMN, which suggests additional CNS pathology. We have previously determined that the mSOD1 molecular response to facial nerve axotomy is phenotypically regenerative and indistinguishable from WT, whereas the surrounding microenvironment shows significant dysregulation in the mSOD1 facial nucleus. To elucidate the mechanisms underlying the enhanced mSOD1 FMN loss after axotomy, we superimposed the facial nerve axotomy model on pre-symptomatic mSOD1 mice and investigated gene expression for death receptor pathways after target disconnection by axotomy vs. disease progression. We determined that the TNFR1 death receptor pathway is involved in axotomy-induced FMN death in WT, and partially responsible for the mSOD1 FMN death. In contrast, an inherent mSOD1 CNS pathology resulted in a suppressed glial reaction and an upregulation in the Fas death pathway after target disconnection. We propose that the dysregulated mSOD1 glia fail to provide support to injured MN, leading to Fas-induced FMN death. Finally, we demonstrated that during disease progression, the mSOD1 facial nucleus displays target disconnection-induced gene expression changes that mirror those induced by axotomy. This validates the use of axotomy as an investigative tool in understanding the role of peripheral target disconnection in the pathogenesis of ALS. PMID:24424947

  15. Development-related expression patterns of protein-coding and miRNA genes involved in porcine muscle growth.

    PubMed

    Wang, F J; Jin, L; Guo, Y Q; Liu, R; He, M N; Li, M Z; Li, X W

    2014-11-27

    Muscle growth and development is associated with remarkable changes in protein-coding and microRNA (miRNA) gene expression. To determine the expression patterns of genes and miRNAs related to muscle growth and development, we measured the expression levels of 25 protein-coding and 16 miRNA genes in skeletal and cardiac muscles throughout 5 developmental stages by quantitative reverse transcription-polymerase chain reaction. The Short Time-Series Expression Miner (STEM) software clustering results showed that growth-related genes were downregulated at all developmental stages in both the psoas major and longissimus dorsi muscles, indicating their involvement in early developmental stages. Furthermore, genes related to muscle atrophy, such as forkhead box 1 and muscle ring finger, showed unregulated expression with increasing age, suggesting a decrease in protein synthesis during the later stages of skeletal muscle development. We found that development of the cardiac muscle was a complex process in which growth-related genes were highly expressed during embryonic development, but they did not show uniform postnatal expression patterns. Moreover, the expression level of miR-499, which enhances the expression of the β-myosin heavy chain, was significantly different in the psoas major and longissimus dorsi muscles, suggesting the involvement of miR-499 in the determination of skeletal muscle fiber types. We also performed correlation analyses of messenger RNA and miRNA expression. We found negative relationships between miR-486 and forkhead box 1, and miR-133a and serum response factor at all developmental stages, suggesting that forkhead box 1 and serum response factor are potential targets of miR-486 and miR-133a, respectively.

  16. Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application

    PubMed Central

    Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia

    2009-01-01

    Background microRNAs (miRNAs) are single-stranded RNA molecules of about 20–23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. Results GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. Conclusion GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA. PMID:19534746

  17. Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application.

    PubMed

    Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia

    2009-06-16

    microRNAs (miRNAs) are single-stranded RNA molecules of about 20-23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA.

  18. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    PubMed

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function. © 2013 Elsevier B.V. All rights reserved.

  19. Normal Collagen and Bone Production by Gene-targeted Human Osteogenesis Imperfecta iPSCs

    PubMed Central

    Deyle, David R; Khan, Iram F; Ren, Gaoying; Wang, Pei-Rong; Kho, Jordan; Schwarze, Ulrike; Russell, David W

    2012-01-01

    Osteogenesis imperfecta (OI) is caused by dominant mutations in the type I collagen genes. In principle, the skeletal abnormalities of OI could be treated by transplantation of patient-specific, bone-forming cells that no longer express the mutant gene. Here, we develop this approach by isolating mesenchymal cells from OI patients, inactivating their mutant collagen genes by adeno-associated virus (AAV)-mediated gene targeting, and deriving induced pluripotent stem cells (iPSCs) that were expanded and differentiated into mesenchymal stem cells (iMSCs). Gene-targeted iMSCs produced normal collagen and formed bone in vivo, but were less senescent and proliferated more than bone-derived MSCs. To generate iPSCs that would be more appropriate for clinical use, the reprogramming and selectable marker transgenes were removed by Cre recombinase. These results demonstrate that the combination of gene targeting and iPSC derivation can be used to produce potentially therapeutic cells from patients with genetic disease. PMID:22031238

  20. The past and presence of gene targeting: from chemicals and DNA via proteins to RNA.

    PubMed

    Geel, T M; Ruiters, M H J; Cool, R H; Halby, L; Voshart, D C; Andrade Ruiz, L; Niezen-Koning, K E; Arimondo, P B; Rots, M G

    2018-06-05

    The ability to target DNA specifically at any given position within the genome allows many intriguing possibilities and has inspired scientists for decades. Early gene-targeting efforts exploited chemicals or DNA oligonucleotides to interfere with the DNA at a given location in order to inactivate a gene or to correct mutations. We here describe an example towards correcting a genetic mutation underlying Pompe's disease using a nucleotide-fused nuclease (TFO-MunI). In addition to the promise of gene correction, scientists soon realized that genes could be inactivated or even re-activated without inducing potentially harmful DNA damage by targeting transcriptional modulators to a particular gene. However, it proved difficult to fuse protein effector domains to the first generation of programmable DNA-binding agents. The engineering of gene-targeting proteins (zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs)) circumvented this problem. The disadvantage of protein-based gene targeting is that a fusion protein needs to be engineered for every locus. The recent introduction of CRISPR/Cas offers a flexible approach to target a (fusion) protein to the locus of interest using cheap designer RNA molecules. Many research groups now exploit this platform and the first human clinical trials have been initiated: CRISPR/Cas has kicked off a new era of gene targeting and is revolutionizing biomedical sciences.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'. © 2018 The Author(s).

  1. Expression of anaesthetic and analgesic drug target genes in excised breast tumour tissue: Association with clinical disease recurrence or metastasis.

    PubMed

    Connolly, C; Madden, S F; Buggy, D J; Gallagher, H C

    2017-01-01

    Retrospective analyses suggest anaesthetic-analgesics technique during cancer surgery may affect recurrence/metastasis. This could involve direct effects of anaesthetic-analgesic drugs on cancer cells. While μ-opioid receptor over-expression in lung tumours is associated with greater metastasis, other anaesthetic-analgesic receptor targets in cancer recurrence/metastasis remain unexplored. Therefore, we evaluated the association between genetic expression of anaesthetic-analgesic receptor targets and recurrence/metastasis, using a repository of breast cancer gene expression and matching clinical data. A list of 23 genes encoding for the most prominent anaesthetic-analgesic receptor targets was compiled. This was processed through BreastMark- an algorithm integrating gene expression data from ~17,000 samples and clinical data from >4,500 breast cancer samples. Gene expression data was dichotomized using disease-free survival (survival without recurrence) and distant disease-free survival (survival without metastasis) as end points. Hazard ratios were calculated by Cox-regression analysis. Enrichment for prognostic markers was determined by randomly choosing 23-member gene lists from all available genes, calculating how often >5 significant markers were observed and adjusting p-values for multiple testing. This was repeated 10,000 times and an empirical p-value calculated. Of 23 selected genes, 9 were significantly associated with altered rates of metastasis and 4 with recurrence on univariate analysis. Adjusting for multiple testing, 5 of these 9 genes remained significantly associated with metastasis, non with recurrence. This ratio of genes (5/23) was not significantly enriched for markers of metastasis (p = 0.07). Several anaesthetic-analgesic receptor genes were associated with metastatic spread in breast cancer. Overall there was no significant enrichment in prognostic markers of metastasis, although a trend was observed.

  2. TFII-I regulates target genes in the PI-3K and TGF-β signaling pathways through a novel DNA binding motif.

    PubMed

    Segura-Puimedon, Maria; Borralleras, Cristina; Pérez-Jurado, Luis A; Campuzano, Victoria

    2013-09-25

    General transcription factor (TFII-I) is a multi-functional protein involved in the transcriptional regulation of critical developmental genes, encoded by the GTF2I gene located on chromosome 7q11.23. Haploinsufficiency at GTF2I has been shown to play a major role in the neurodevelopmental features of Williams-Beuren syndrome (WBS). Identification of genes regulated by TFII-I is thus critical to detect molecular determinants of WBS as well as to identify potential new targets for specific pharmacological interventions, which are currently absent. We performed a microarray screening for transcriptional targets of TFII-I in cortex and embryonic cells from Gtf2i mutant and wild-type mice. Candidate genes with altered expression were verified using real-time PCR. A novel motif shared by deregulated genes was found and chromatin immunoprecipitation assays in embryonic fibroblasts were used to document in vitro TFII-I binding to this motif in the promoter regions of deregulated genes. Interestingly, the PI3K and TGFβ signaling pathways were over-represented among TFII-I-modulated genes. In this study we have found a highly conserved DNA element, common to a set of genes regulated by TFII-I, and identified and validated novel in vivo neuronal targets of this protein affecting the PI3K and TGFβ signaling pathways. Overall, our data further contribute to unravel the complexity and variability of the different genetic programs orchestrated by TFII-I. © 2013 Elsevier B.V. All rights reserved.

  3. MGDB: a comprehensive database of genes involved in melanoma.

    PubMed

    Zhang, Di; Zhu, Rongrong; Zhang, Hanqian; Zheng, Chun-Hou; Xia, Junfeng

    2015-01-01

    The Melanoma Gene Database (MGDB) is a manually curated catalog of molecular genetic data relating to genes involved in melanoma. The main purpose of this database is to establish a network of melanoma related genes and to facilitate the mechanistic study of melanoma tumorigenesis. The entries describing the relationships between melanoma and genes in the current release were manually extracted from PubMed abstracts, which contains cumulative to date 527 human melanoma genes (422 protein-coding and 105 non-coding genes). Each melanoma gene was annotated in seven different aspects (General Information, Expression, Methylation, Mutation, Interaction, Pathway and Drug). In addition, manually curated literature references have also been provided to support the inclusion of the gene in MGDB and establish its association with melanoma. MGDB has a user-friendly web interface with multiple browse and search functions. We hoped MGDB will enrich our knowledge about melanoma genetics and serve as a useful complement to the existing public resources. Database URL: http://bioinfo.ahu.edu.cn:8080/Melanoma/index.jsp. © The Author(s) 2015. Published by Oxford University Press.

  4. Mechanisms involved in the transport of mercuric ions in target tissues

    PubMed Central

    Bridges, Christy C.; Zalups, Rudolfs K.

    2016-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290

  5. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis.

    PubMed

    Rai, Amit; Nakaya, Taiki; Shimizu, Yohei; Rai, Megha; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami

    2018-05-29

    Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale , consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale . Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization. Georg Thieme Verlag KG Stuttgart · New York.

  6. Transcriptome Analysis in Prenatal IGF1-Deficient Mice Identifies Molecular Pathways and Target Genes Involved in Distal Lung Differentiation

    PubMed Central

    Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García

    2013-01-01

    development in mice. Results revealed novel target genes and gene networks mediators of IGF1 action on pulmonary cellular proliferation, differentiation, adhesion and immunity, and on vascular and distal epithelium maturation during prenatal lung development. PMID:24391734

  7. Targeted Antiangiogenesis Gene Therapy Using Targeted Cationic Microbubbles Conjugated with CD105 Antibody Compared with Untargeted Cationic and Neutral Microbubbles

    PubMed Central

    Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong

    2015-01-01

    Objective This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). Methods CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. Results CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×108 microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble

  8. Targeted antiangiogenesis gene therapy using targeted cationic microbubbles conjugated with CD105 antibody compared with untargeted cationic and neutral microbubbles.

    PubMed

    Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong

    2015-01-01

    This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×10(8) microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble destruction (UTMD

  9. Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, Kazuo; Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya

    2013-03-22

    Highlights: ► We tried to identify targets of synovial sarcoma (SS)-associated SYT–SSX fusion gene. ► We established pluripotent stem cell (PSC) lines with inducible SYT–SSX gene. ► SYT–SSX responsive genes were identified by the induction of SYT–SSX in PSC. ► SS-related genes were selected from database by in silico analyses. ► 51 genes were finally identified among SS-related genes as targets of SYT–SSX in PSC. -- Abstract: Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT–SSX. Although precise function of SYT–SSX remains to be investigated, accumulating evidences suggestmore » its role in gene regulation via epigenetic mechanisms, and the product of SYT–SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT–SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT–SSX2 gene. SYT–SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24 h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24 h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT–SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT–SSX, respectively. Association of these genes with SYT–SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were

  10. Construction and applications of exon-trapping gene-targeting vectors with a novel strategy for negative selection.

    PubMed

    Saito, Shinta; Ura, Kiyoe; Kodama, Miho; Adachi, Noritaka

    2015-06-30

    Targeted gene modification by homologous recombination provides a powerful tool for studying gene function in cells and animals. In higher eukaryotes, non-homologous integration of targeting vectors occurs several orders of magnitude more frequently than does targeted integration, making the gene-targeting technology highly inefficient. For this reason, negative-selection strategies have been employed to reduce the number of drug-resistant clones associated with non-homologous vector integration, particularly when artificial nucleases to introduce a DNA break at the target site are unavailable or undesirable. As such, an exon-trap strategy using a promoterless drug-resistance marker gene provides an effective way to counterselect non-homologous integrants. However, constructing exon-trapping targeting vectors has been a time-consuming and complicated process. By virtue of highly efficient att-mediated recombination, we successfully developed a simple and rapid method to construct plasmid-based vectors that allow for exon-trapping gene targeting. These exon-trap vectors were useful in obtaining correctly targeted clones in mouse embryonic stem cells and human HT1080 cells. Most importantly, with the use of a conditionally cytotoxic gene, we further developed a novel strategy for negative selection, thereby enhancing the efficiency of counterselection for non-homologous integration of exon-trap vectors. Our methods will greatly facilitate exon-trapping gene-targeting technologies in mammalian cells, particularly when combined with the novel negative selection strategy.

  11. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias.

    PubMed

    Falini, Brunangelo; Nicoletti, Ildo; Bolli, Niccolò; Martelli, Maria Paola; Liso, Arcangelo; Gorello, Paolo; Mandelli, Franco; Mecucci, Cristina; Martelli, Massimo Fabrizio

    2007-04-01

    Nucleophosmin (NPM) is a ubiquitously expressed nucleolar phoshoprotein which shuttles continuously between the nucleus and cytoplasm. Many findings have revealed a complex scenario of NPM functions and interactions, pointing to proliferative and growth-suppressive roles of this molecule. The gene NPM1 that encodes for nucleophosmin (NPM1) is translocated or mutated in various lymphomas and leukemias, forming fusion proteins (NPM-ALK, NPM-RARalpha, NPM-MLF1) or NPM mutant products. Here, we review the structure and functions of NPM, as well as the biological, clinical and pathological features of human hematologic malignancies with NPM1 gene alterations. NPM-ALK indentifies a new category of T/Null lymphomas with distinctive molecular and clinico-pathological features, that is going to be included as a novel disease entity (ALK+ anaplastic large cell lymphoma) in the new WHO classification of lymphoid neoplasms. NPM1 mutations occur specifically in about 30% of adult de novo AML and cause aberrant cytoplasmic expression of NPM (hence the term NPMc+ AML). NPMc+ AML associates with normal karyotpe, and shows wide morphological spectrum, multilineage involvement, a unique gene expression signature, a high frequency of FLT3-internal tandem duplications, and distinctive clinical and prognostic features. The availability of specific antibodies and molecular techniques for the detection of NPM1 gene alterations has an enormous impact in the biological study diagnosis, prognostic stratification, and monitoring of minimal residual disease of various lymphomas and leukemias. The discovery of NPM1 gene alterations also represents the rationale basis for development of molecular targeted drugs.

  12. Targeted gene disruption in Koji mold Aspergillus oryzae.

    PubMed

    Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2011-01-01

    Filamentous fungi have received attentions as hosts for heterologous protein production because of their high secretion capability and eukaryotic post-translational modifications. One of the safest hosts for heterologous protein production is Koji mold Aspergillus oryzae since it has been used in the production of Japanese fermented foods for over 1,000 years. The production levels of proteins from higher eukaryotes are much lower than those of homologous (fungal) proteins. Bottlenecks in the heterologous protein production are suggested to be proteolytic degradation of the produced protein in the medium and the secretory pathway. For construction of excellent host strains, many genes causing the bottlenecks should be disrupted rapidly and efficiently. We developed a marker recycling system with the highly efficient gene-targeting background in A. oryzae. By employing this technique, we performed multiple gene disruption of the ten protease genes. The decuple protease gene disruptant showed fourfold production level of a heterologous protein compared with the wild-type strain.

  13. Retinoschisislike alterations in the mouse eye caused by gene targeting of the Norrie disease gene.

    PubMed

    Ruether, K; van de Pol, D; Jaissle, G; Berger, W; Tornow, R P; Zrenner, E

    1997-03-01

    To investigate the retinal function and morphology of mice carrying a replacement mutation in exon 2 of the Norrie disease gene. Recently, Norrie disease mutant mice have been generated using gene targeting technology. The mutation removes the 56 N-terminal amino acids of the Norrie gene product. Ganzfeld electroretinograms (ERGs) were obtained in five animals hemizygous or homozygous for the mutant gene and in three female animals heterozygous for the mutant gene. As controls, three males carrying the wild-type gene were examined. Electroretinogram testing included rod a- and b-wave V-log I functions, oscillatory potentials, and cone responses. The fundus morphology has been visualized by scanning laser ophthalmoscopy. Rod and cone ERG responses and fundus morphology were not significantly different among female heterozygotes and wild-type mice. In contrast, the hemizygous mice displayed a severe loss of ERG b-wave, leading to a negatively shaped scotopic ERG and a marked reduction of oscillatory potentials. The a-wave was normal at low intensities, and only with brighter flashes was there a moderate amplitude loss. Cone amplitudes were barely recordable in the gene-targeted males. Ophthalmoscopy revealed snowflakelike vitreal changes, retinoschisis, and pigment epithelium irregularities in hemizygotes and homozygotes, but no changes in female heterozygotes. The negatively shaped scotopic ERG in male mice with a Norrie disease gene mutation probably was caused by retinoschisis. Pigment epithelial changes and degenerations of the outer retina are relatively mild. These findings may be a clue to the embryonal retinoschisislike pathogenesis of Norrie disease in humans or it may indicate a different expression of the Norrie disease gene defect in mice compared to that in humans.

  14. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking.

    PubMed

    Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M

    1998-04-01

    Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.

  15. GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response.

    PubMed

    Zaag, Rim; Tamby, Jean Philippe; Guichard, Cécile; Tariq, Zakia; Rigaill, Guillem; Delannoy, Etienne; Renou, Jean-Pierre; Balzergue, Sandrine; Mary-Huard, Tristan; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Brunaud, Véronique

    2015-01-01

    CATdb (http://urgv.evry.inra.fr/CATdb) is a database providing a public access to a large collection of transcriptomic data, mainly for Arabidopsis but also for other plants. This resource has the rare advantage to contain several thousands of microarray experiments obtained with the same technical protocol and analyzed by the same statistical pipelines. In this paper, we present GEM2Net, a new module of CATdb that takes advantage of this homogeneous dataset to mine co-expression units and decipher Arabidopsis gene functions. GEM2Net explores 387 stress conditions organized into 18 biotic and abiotic stress categories. For each one, a model-based clustering is applied on expression differences to identify clusters of co-expressed genes. To characterize functions associated with these clusters, various resources are analyzed and integrated: Gene Ontology, subcellular localization of proteins, Hormone Families, Transcription Factor Families and a refined stress-related gene list associated to publications. Exploiting protein-protein interactions and transcription factors-targets interactions enables to display gene networks. GEM2Net presents the analysis of the 18 stress categories, in which 17,264 genes are involved and organized within 681 co-expression clusters. The meta-data analyses were stored and organized to compose a dynamic Web resource. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons

    PubMed Central

    Jacobs, Frank M. J.; van der Linden, Annemarie J. A.; Wang, Yuhui; von Oerthel, Lars; Sul, Hei Sook; Burbach, J. Peter H.; Smidt, Marten P.

    2009-01-01

    The orphan nuclear receptor Nurr1 is essential for the development of meso-diencephalic dopamine (mdDA) neurons and is required, together with the homeobox transcription factor Pitx3, for the expression of genes involved in dopamine metabolism. In order to elucidate the molecular mechanisms that underlie the neuronal deficits in Nurr1-/- mice, we performed combined gene expression microarrays and ChIP-on-chip analysis and thereby identified Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in vivo. In line with the previously described cooperativity between Nurr1 and Pitx3, we show that the expression of Ptpru and Klhl1 in mdDA neurons is also dependent on Pitx3. Furthermore, we demonstrate that Nurr1 interacts with the Ptpru promoter directly and requires Pitx3 for full expression of Ptpru in mdDA neurons. By contrast, the expression of Dlk1 is maintained in Pitx3-/- embryos and is even expanded into the rostral part of the mdDA area, suggesting a unique position of Dlk1 in the Nurr1 and Pitx3 transcriptional cascades. Expression analysis in Dlk1-/- embryos reveals that Dlk1 is required to prevent premature expression of Dat in mdDA neuronal precursors as part of the multifaceted process of mdDA neuronal differentiation driven by Nurr1 and Pitx3. Taken together, the involvement of Nurr1 and Pitx3 in the expression of novel target genes involved in important neuronal processes such as neuronal patterning, axon outgrowth and terminal differentiation, opens up new avenues to study the properties of mdDA neurons during development and in neuronal pathology as observed in Parkinson's disease. PMID:19515692

  17. Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells.

    PubMed

    Byrne, Susan M; Church, George M

    2015-01-01

    CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.

  18. Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy

    PubMed Central

    Javan, Bita; Shahbazi, Majid

    2017-01-01

    Transcriptional targeting is the best approach for specific gene therapy. Hypoxia is a common feature of the tumour microenvironment. Therefore, targeting gene expression in hypoxic cells by placing transgene under the control of a hypoxia-responsive promoter can be a good strategy for cancer-specific gene therapy. The hypoxia-inducible gene expression system has been investigated more in suicide gene therapy and it can also be of great help in knocking down cancer gene therapy with siRNAs. However, this system needs to be optimised to have maximum efficacy with minimum side effects in normal tissues. The combination of tissue-/tumour-specific promoters with HRE core sequences has been found to enhance the specificity and efficacy of this system. In this review, hypoxia-inducible gene expression system as well as gene therapy strategies targeting tumour hypoxia will be discussed. This review will also focus on hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation systems developed for cancer-specific gene therapy. PMID:28798809

  19. Identification of rare genetic variants in Italian patients with dementia by targeted gene sequencing.

    PubMed

    Bartoletti-Stella, Anna; Baiardi, Simone; Stanzani-Maserati, Michelangelo; Piras, Silvia; Caffarra, Paolo; Raggi, Alberto; Pantieri, Roberta; Baldassari, Sara; Caporali, Leonardo; Abu-Rumeileh, Samir; Linarello, Simona; Liguori, Rocco; Parchi, Piero; Capellari, Sabina

    2018-06-01

    Genetics is intricately involved in the etiology of neurodegenerative dementias. The incidence of monogenic dementia among all neurodegenerative forms is unknown due to the lack of systematic studies and of patient/clinician access to extensive diagnostic procedures. In this study, we conducted targeted sequencing in 246 clinically heterogeneous patients, mainly with early-onset and/or familial neurodegenerative dementia, using a custom-designed next-generation sequencing panel covering 27 genes known to harbor mutations that can cause different types of dementia, in addition to the detection of C9orf72 repeat expansions. Forty-nine patients (19.9%) carried known pathogenic or novel, likely pathogenic, variants, involving both common (presenilin 1, presenilin 2, C9orf72, and granulin) and rare (optineurin, serpin family I member 1 and protein kinase cyclic adenosine monophosphate (cAMP)-dependent type I regulatory subunit beta) dementia-associated genes. Our results support the use of an extended next-generation sequencing panels as a quick, accurate, and cost-effective method for diagnosis in clinical practice. This approach could have a significant impact on the proportion of tested patients, especially among those with an early disease onset. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation

    PubMed Central

    Qian, Jiang; Esumi, Noriko; Chen, Yangjian; Wang, Qingliang; Chowers, Itay; Zack, Donald J.

    2005-01-01

    Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX. PMID:15967807

  1. Bioinformatics Analysis Reveals Genes Involved in the Pathogenesis of Ameloblastoma and Keratocystic Odontogenic Tumor.

    PubMed

    Santos, Eliane Macedo Sobrinho; Santos, Hércules Otacílio; Dos Santos Dias, Ivoneth; Santos, Sérgio Henrique; Batista de Paula, Alfredo Maurício; Feltenberger, John David; Sena Guimarães, André Luiz; Farias, Lucyana Conceição

    2016-01-01

    Pathogenesis of odontogenic tumors is not well known. It is important to identify genetic deregulations and molecular alterations. This study aimed to investigate, through bioinformatic analysis, the possible genes involved in the pathogenesis of ameloblastoma (AM) and keratocystic odontogenic tumor (KCOT). Genes involved in the pathogenesis of AM and KCOT were identified in GeneCards. Gene list was expanded, and the gene interactions network was mapped using the STRING software. "Weighted number of links" (WNL) was calculated to identify "leader genes" (highest WNL). Genes were ranked by K-means method and Kruskal-Wallis test was used (P<0.001). Total interactions score (TIS) was also calculated using all interaction data generated by the STRING database, in order to achieve global connectivity for each gene. The topological and ontological analyses were performed using Cytoscape software and BinGO plugin. Literature review data was used to corroborate the bioinformatics data. CDK1 was identified as leader gene for AM. In KCOT group, results show PCNA and TP53 . Both tumors exhibit a power law behavior. Our topological analysis suggested leader genes possibly important in the pathogenesis of AM and KCOT, by clustering coefficient calculated for both odontogenic tumors (0.028 for AM, zero for KCOT). The results obtained in the scatter diagram suggest an important relationship of these genes with the molecular processes involved in AM and KCOT. Ontological analysis for both AM and KCOT demonstrated different mechanisms. Bioinformatics analyzes were confirmed through literature review. These results may suggest the involvement of promising genes for a better understanding of the pathogenesis of AM and KCOT.

  2. Genes involved in androgen biosynthesis and the male phenotype.

    PubMed

    Waterman, M R; Keeney, D S

    1992-01-01

    A series of enzymatic steps in the testis lead to the conversion of cholesterol to the male sex steroid hormones, testosterone and 5 alpha-dihydrotestosterone. Mutations in any one of these steps are presumed to alter or block the development of the male phenotype. Most of the genes encoding the enzymes involved in this pathway have now been cloned, and mutations within the coding regions of these genes do, in fact, block development of the male phenotype.

  3. Ultrasound-Mediated Vascular Gene Transfection by Cavitation of Endothelial-Targeted Cationic Microbubbles

    PubMed Central

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K.; Champaneri, Shivam A.; Taylor, Sarah; Davidson, Brian P.; Zhao, Yan; Klibanov, Alexander L.; Kuliszewski, Michael A.; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R.

    2013-01-01

    OBJECTIVES Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. BACKGROUND Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. METHODS Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)–stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. RESULTS Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm2). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1–targeted microbubbles and by ultrasound molecular imaging of P-selectin–targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin–targeted microbubbles but was associated with

  4. Genes and Gut Bacteria Involved in Luminal Butyrate Reduction Caused by Diet and Loperamide.

    PubMed

    Hwang, Nakwon; Eom, Taekil; Gupta, Sachin K; Jeong, Seong-Yeop; Jeong, Do-Youn; Kim, Yong Sung; Lee, Ji-Hoon; Sadowsky, Michael J; Unno, Tatsuya

    2017-11-28

    Unbalanced dietary habits and gut dysmotility are causative factors in metabolic and functional gut disorders, including obesity, diabetes, and constipation. Reduction in luminal butyrate synthesis is known to be associated with gut dysbioses, and studies have suggested that restoring butyrate formation in the colon may improve gut health. In contrast, shifts in different types of gut microbiota may inhibit luminal butyrate synthesis, requiring different treatments to restore colonic bacterial butyrate synthesis. We investigated the influence of high-fat diets (HFD) and low-fiber diets (LFD), and loperamide (LPM) administration, on key bacteria and genes involved in reduction of butyrate synthesis in mice. MiSeq-based microbiota analysis and HiSeq-based differential gene analysis indicated that different types of bacteria and genes were involved in butyrate metabolism in each treatment. Dietary modulation depleted butyrate kinase and phosphate butyryl transferase by decreasing members of the Bacteroidales and Parabacteroides . The HFD also depleted genes involved in succinate synthesis by decreasing Lactobacillus . The LFD and LPM treatments depleted genes involved in crotonoyl-CoA synthesis by decreasing Roseburia and Oscilllibacter . Taken together, our results suggest that different types of bacteria and genes were involved in gut dysbiosis, and that selected treatments may be needed depending on the cause of gut dysfunction.

  5. Engineering liposomal nanoparticles for targeted gene therapy.

    PubMed

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  6. CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection.

    PubMed

    Kim, Heon Seok; Lee, Kyungjin; Bae, Sangsu; Park, Jeongbin; Lee, Chong-Kyo; Kim, Meehyein; Kim, Eunji; Kim, Minju; Kim, Seokjoong; Kim, Chonsaeng; Kim, Jin-Soo

    2017-06-23

    Several groups have used genome-wide libraries of lentiviruses encoding small guide RNAs (sgRNAs) for genetic screens. In most cases, sgRNA expression cassettes are integrated into cells by using lentiviruses, and target genes are statistically estimated by the readout of sgRNA sequences after targeted sequencing. We present a new virus-free method for human gene knockout screens using a genome-wide library of CRISPR/Cas9 sgRNAs based on plasmids and target gene identification via whole-genome sequencing (WGS) confirmation of authentic mutations rather than statistical estimation through targeted amplicon sequencing. We used 30,840 pairs of individually synthesized oligonucleotides to construct the genome-scale sgRNA library, collectively targeting 10,280 human genes ( i.e. three sgRNAs per gene). These plasmid libraries were co-transfected with a Cas9-expression plasmid into human cells, which were then treated with cytotoxic drugs or viruses. Only cells lacking key factors essential for cytotoxic drug metabolism or viral infection were able to survive. Genomic DNA isolated from cells that survived these challenges was subjected to WGS to directly identify CRISPR/Cas9-mediated causal mutations essential for cell survival. With this approach, we were able to identify known and novel genes essential for viral infection in human cells. We propose that genome-wide sgRNA screens based on plasmids coupled with WGS are powerful tools for forward genetics studies and drug target discovery. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The transcriptional repressor DREAM is involved in thyroid gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Andrea, Barbara; Di Palma, Tina; Mascia, Anna

    2005-04-15

    Downstream regulatory element antagonistic modulator (DREAM) was originally identified in neuroendocrine cells as a calcium-binding protein that specifically binds to downstream regulatory elements (DRE) on DNA, and represses transcription of its target genes. To explore the possibility that DREAM may regulate the endocrine activity of the thyroid gland, we analyzed its mRNA expression in undifferentiated and differentiated thyroid cells. We demonstrated that DREAM is expressed in the normal thyroid tissue as well as in differentiated thyroid cells in culture while it is absent in FRT poorly differentiated cells. In the present work, we also show that DREAM specifically binds tomore » DRE sites identified in the 5' untranslated region (UTR) of the thyroid-specific transcription factors Pax8 and TTF-2/FoxE1 in a calcium-dependent manner. By gel retardation assays we demonstrated that thapsigargin treatment increases the binding of DREAM to the DRE sequences present in Pax8 and TTF-2/Foxe1 5' UTRs, and this correlates with a significant reduction of the expression of these genes. Interestingly, in poorly differentiated thyroid cells overexpression of exogenous DREAM strongly inhibits Pax8 expression. Moreover, we provide evidence that a mutated form of DREAM unable to bind Ca{sup 2+} interferes with thyroid cell proliferation. Therefore, we propose that in thyroid cells DREAM is a mediator of the calcium-signaling pathway and it is involved in the regulation of thyroid cell function.« less

  8. Drug2Gene: an exhaustive resource to explore effectively the drug-target relation network.

    PubMed

    Roider, Helge G; Pavlova, Nadia; Kirov, Ivaylo; Slavov, Stoyan; Slavov, Todor; Uzunov, Zlatyo; Weiss, Bertram

    2014-03-11

    Information about drug-target relations is at the heart of drug discovery. There are now dozens of databases providing drug-target interaction data with varying scope, and focus. Therefore, and due to the large chemical space, the overlap of the different data sets is surprisingly small. As searching through these sources manually is cumbersome, time-consuming and error-prone, integrating all the data is highly desirable. Despite a few attempts, integration has been hampered by the diversity of descriptions of compounds, and by the fact that the reported activity values, coming from different data sets, are not always directly comparable due to usage of different metrics or data formats. We have built Drug2Gene, a knowledge base, which combines the compound/drug-gene/protein information from 19 publicly available databases. A key feature is our rigorous unification and standardization process which makes the data truly comparable on a large scale, allowing for the first time effective data mining in such a large knowledge corpus. As of version 3.2, Drug2Gene contains 4,372,290 unified relations between compounds and their targets most of which include reported bioactivity data. We extend this set with putative (i.e. homology-inferred) relations where sufficient sequence homology between proteins suggests they may bind to similar compounds. Drug2Gene provides powerful search functionalities, very flexible export procedures, and a user-friendly web interface. Drug2Gene v3.2 has become a mature and comprehensive knowledge base providing unified, standardized drug-target related information gathered from publicly available data sources. It can be used to integrate proprietary data sets with publicly available data sets. Its main goal is to be a 'one-stop shop' to identify tool compounds targeting a given gene product or for finding all known targets of a drug. Drug2Gene with its integrated data set of public compound-target relations is freely accessible without

  9. Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo

    PubMed Central

    Uprety, Bhawana; Sen, Rwik

    2015-01-01

    NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribosomal protein genes, such as RPS5, RPL2B, and RPS11B, for TFIID recruitment to initiate transcription, and the recruitment of NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in a Δeaf1 strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promoters of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in targeting the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4 plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiation in vivo. Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions. PMID:26100014

  10. Contraceptive Vaccines Targeting Factors Involved in Establishment of Pregnancy

    PubMed Central

    Lemons, Angela R.; Naz, Rajesh K.

    2011-01-01

    Problem Current methods of contraception lack specificity and are accompanied with serious side effects. A more specific method of contraception is needed. Contraceptive vaccines can provide most, if not all, the desired characteristics of an ideal contraceptive. Approach This article reviews several factors involved in the establishment of pregnancy, focusing on those that are essential for successful implantation. Factors that are both essential and pregnancy-specific can provide potential targets for contraception. Conclusion Using database search, 76 factors (cytokines/chemokines/growth factors/others) were identified that are involved in various steps of the establishment of pregnancy. Among these factors, three, namely chorionic gonadotropin (CG), leukemia inhibitory factor (LIF), and preimplantation factor (PIF), are found to be unique and exciting molecules. Human CG is a well-known pregnancy-specific protein that has undergone phase I and phase II clinical trials, in women, as a contraceptive vaccine with encouraging results. LIF and PIF are pregnancy-specific and essential for successful implantation. These molecules are intriguing and may provide viable targets for immunocontraception. A multiepitope vaccine combining factors/antigens involved in various steps of the fertilization cascade and pregnancy establishment, may provide a highly immunogenic and efficacious modality for contraception in humans. PMID:21481058

  11. Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.

    PubMed

    Gao, Difeng; Smith, Spencer; Spagnuolo, Michael; Rodriguez, Gabriel; Blenner, Mark

    2018-05-29

    CRISPR-Cas9 technology has been successfully applied in Yarrowia lipolytica for targeted genomic editing including gene disruption and integration; however, disruptions by existing methods typically result from small frameshift mutations caused by indels within the coding region, which usually resulted in unnatural protein. In this study, a dual cleavage strategy directed by paired sgRNAs is developed for gene knockout. This method allows fast and robust gene excision, demonstrated on six genes of interest. The targeted regions for excision vary in length from 0.3 kb up to 3.5 kb and contain both non-coding and coding regions. The majority of the gene excisions are repaired by perfect nonhomologous end-joining without indel. Based on this dual cleavage system, two targeted markerless integration methods are developed by providing repair templates. While both strategies are effective, homology mediated end joining (HMEJ) based method are twice as efficient as homology recombination (HR) based method. In both cases, dual cleavage leads to similar or improved gene integration efficiencies compared to gene excision without integration. This dual cleavage strategy will be useful for not only generating more predictable and robust gene knockout, but also for efficient targeted markerless integration, and simultaneous knockout and integration in Y. lipolytica. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes.

    PubMed

    Lee, Wonsik; Do, Truc; Zhang, Ge; Kahne, Daniel; Meredith, Timothy C; Walker, Suzanne

    2018-06-08

    Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.

  13. Improved methods of AAV-mediated gene targeting for human cell lines using ribosome-skipping 2A peptide

    PubMed Central

    Karnan, Sivasundaram; Ota, Akinobu; Konishi, Yuko; Wahiduzzaman, Md; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2016-01-01

    The adeno-associated virus (AAV)-based targeting vector has been one of the tools commonly used for genome modification in human cell lines. It allows for relatively efficient gene targeting associated with 1–4-log higher ratios of homologous-to-random integration of targeting vectors (H/R ratios) than plasmid-based targeting vectors, without actively introducing DNA double-strand breaks. In this study, we sought to improve the efficiency of AAV-mediated gene targeting by introducing a 2A-based promoter-trap system into targeting constructs. We generated three distinct AAV-based targeting vectors carrying 2A for promoter trapping, each targeting a GFP-based reporter module incorporated into the genome, PIGA exon 6 or PIGA intron 5. The absolute gene targeting efficiencies and H/R ratios attained using these vectors were assessed in multiple human cell lines and compared with those attained using targeting vectors carrying internal ribosome entry site (IRES) for promoter trapping. We found that the use of 2A for promoter trapping increased absolute gene targeting efficiencies by 3.4–28-fold and H/R ratios by 2–5-fold compared to values obtained with IRES. In CRISPR-Cas9-assisted gene targeting using plasmid-based targeting vectors, the use of 2A did not enhance the H/R ratios but did upregulate the absolute gene targeting efficiencies compared to the use of IRES. PMID:26657635

  14. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    PubMed

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  15. Identification of the TFII-I family target genes in the vertebrate genome.

    PubMed

    Chimge, Nyam-Osor; Makeyev, Aleksandr V; Ruddle, Frank H; Bayarsaihan, Dashzeveg

    2008-07-01

    GTF2I and GTF2IRD1 encode members of the TFII-I transcription factor family and are prime candidates in the Williams syndrome, a complex neurodevelopmental disorder. Our previous expression microarray studies implicated TFII-I proteins in the regulation of a number of genes critical in various aspects of cell physiology. Here, we combined bioinformatics and microarray results to identify TFII-I downstream targets in the vertebrate genome. These results were validated by chromatin immunoprecipitation and siRNA analysis. The collected evidence revealed the complexity of TFII-I-mediated processes that involve distinct regulatory networks. Altogether, these results lead to a better understanding of specific molecular events, some of which may be responsible for the Williams syndrome phenotype.

  16. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    DOEpatents

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  17. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes.

    PubMed

    Brown, Jacqueline; Bothma, Hannelie; Veale, Robin; Willem, Pascale

    2011-06-28

    To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis. We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software. We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 (CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21(C-MYC, FAM84B), 11q22.1-q22.3 (BIRC2, BIRC3), 5p15.2 (CTNND2), 3q11.2-q12.2 (MINA) and 18p11.32 (TYMS, YES1). The significant deletions included 1p31.2-p31.1 (CTH, GADD45α, DIRAS3), 2q22.1 (LRP1B), 3p12.1-p14.2 (FHIT), 4q22.1-q32.1 (CASP6, SMAD1), 8p23.2-q11.1 (BNIP3L) and 18q21.1-q21.2 (SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC. The finding that a significant number of genes that were amplified (FGF3, FGF4, FGF19, CCND1 and C-MYC) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines.

  18. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes

    PubMed Central

    Brown, Jacqueline; Bothma, Hannelie; Veale, Robin; Willem, Pascale

    2011-01-01

    AIM: To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis. METHODS: We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software. RESULTS: We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 (CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21(C-MYC, FAM84B), 11q22.1-q22.3 (BIRC2, BIRC3), 5p15.2 (CTNND2), 3q11.2-q12.2 (MINA) and 18p11.32 (TYMS, YES1). The significant deletions included 1p31.2-p31.1 (CTH, GADD45α, DIRAS3), 2q22.1 (LRP1B), 3p12.1-p14.2 (FHIT), 4q22.1-q32.1 (CASP6, SMAD1), 8p23.2-q11.1 (BNIP3L) and 18q21.1-q21.2 (SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC. CONCLUSION: The finding that a significant number of genes that were amplified (FGF3, FGF4, FGF19, CCND1 and C-MYC) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines. PMID:21734802

  19. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos

    PubMed Central

    Ochiai, Hiroshi; Sakamoto, Naoaki; Fujita, Kazumasa; Nishikawa, Masatoshi; Suzuki, Ken-ichi; Matsuura, Shinya; Miyamoto, Tatsuo; Sakuma, Tetsushi; Shibata, Tatsuo; Yamamoto, Takashi

    2012-01-01

    To understand complex biological systems, such as the development of multicellular organisms, it is important to characterize the gene expression dynamics. However, there is currently no universal technique for targeted insertion of reporter genes and quantitative imaging in multicellular model systems. Recently, genome editing using zinc-finger nucleases (ZFNs) has been reported in several models. ZFNs consist of a zinc-finger DNA-binding array with the nuclease domain of the restriction enzyme FokI and facilitate targeted transgene insertion. In this study, we successfully inserted a GFP reporter cassette into the HpEts1 gene locus of the sea urchin, Hemicentrotus pulcherrimus. We achieved this insertion by injecting eggs with a pair of ZFNs for HpEts1 with a targeting donor construct that contained ∼1-kb homology arms and a 2A-histone H2B–GFP cassette. We increased the efficiency of the ZFN-mediated targeted transgene insertion by in situ linearization of the targeting donor construct and cointroduction of an mRNA for a dominant-negative form of HpLig4, which encodes the H. pulcherrimus homolog of DNA ligase IV required for error-prone nonhomologous end joining. We measured the fluorescence intensity of GFP at the single-cell level in living embryos during development and found that there was variation in HpEts1 expression among the primary mesenchyme cells. These findings demonstrate the feasibility of ZFN-mediated targeted transgene insertion to enable quantification of the expression levels of endogenous genes during development in living sea urchin embryos. PMID:22711830

  20. Applications of Gene Targeting Technology to Mental Retardation and Developmental Disability Research

    ERIC Educational Resources Information Center

    Pimenta, Aurea F.; Levitt, Pat

    2005-01-01

    The human and mouse genome projects elucidated the sequence and position map of innumerous genes expressed in the central nervous system (CNS), advancing our ability to manipulate these sequences and create models to investigate regulation of gene expression and function. In this article, we reviewed gene targeting methodologies with emphasis on…

  1. Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci.

    PubMed

    Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan; Hazelett, Dennis; Anton-Culver, Hoda; Bandera, Elisa V; Beckmann, Matthias W; Berchuck, Andrew; Bogdanova, Natalia; Brinton, Louise; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Dansonka-Mieszkowska, Agnieszka; Doherty, Jennifer Anne; Dörk, Thilo; Dürst, Matthias; Eccles, Diana; Fasching, Peter A; Flanagan, James; Gentry-Maharaj, Aleksandra; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Gronwald, Jacek; Heitz, Florian; Hildebrandt, Michelle A T; Høgdall, Estrid; Høgdall, Claus K; Huntsman, David G; Jensen, Allan; Karlan, Beth Y; Kelemen, Linda E; Kiemeney, Lambertus A; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Levine, Douglas A; Li, Qiyuan; Lissowska, Jolanta; Lu, Karen H; Lubiński, Jan; Massuger, Leon F A G; McGuire, Valerie; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Monteiro, Alvaro N; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Permuth, Jennifer B; Phelan, Catherine; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rossing, Mary Anne; Salvesen, Helga B; Schildkraut, Joellen M; Sellers, Thomas A; Sherman, Mark; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa; Terry, Kathryn L; Tworoger, Shelley S; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P; Lawrenson, Kate

    2017-02-14

    Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors (TFs) critical to somatic tumorigenesis. All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery), and combined (9627 cases/30 845 controls; including additional individuals). The PAX8-target gene set was ranked 1/615 in the discovery (P GSEA <0.001; FDR=0.21), 7/615 in the replication (P GSEA =0.004; FDR=0.37), and 1/615 in the combined (P GSEA <0.001; FDR=0.21) studies. Adding other genes reported to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P<10 -5 (including six with P<5 × 10 -8 ). The pathway was also associated with differential gene expression after shRNA-mediated silencing of PAX8 in HeyA8 (P GSEA =0.025) and IGROV1 (P GSEA =0.004) SOC cells and several PAX8 targets near SOC risk loci demonstrated in vitro transcriptomic perturbation. Putative PAX8 target genes are enriched for common SOC risk variants. This finding from our agnostic evaluation is of particular interest given that PAX8 is well-established as a specific marker for the cell of origin of SOC.

  2. Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci

    PubMed Central

    Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan; Hazelett, Dennis; Anton-Culver, Hoda; Bandera, Elisa V; Beckmann, Matthias W; Berchuck, Andrew; Bogdanova, Natalia; Brinton, Louise; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Dansonka-Mieszkowska, Agnieszka; Doherty, Jennifer Anne; Dörk, Thilo; Dürst, Matthias; Eccles, Diana; Fasching, Peter A; Flanagan, James; Gentry-Maharaj, Aleksandra; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Gronwald, Jacek; Heitz, Florian; Hildebrandt, Michelle A T; Høgdall, Estrid; Høgdall, Claus K; Huntsman, David G; Jensen, Allan; Karlan, Beth Y; Kelemen, Linda E; Kiemeney, Lambertus A; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Levine, Douglas A; Li, Qiyuan; Lissowska, Jolanta; Lu, Karen H; Lubiński, Jan; Massuger, Leon F A G; McGuire, Valerie; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Monteiro, Alvaro N; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Permuth, Jennifer B; Phelan, Catherine; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rossing, Mary Anne; Salvesen, Helga B; Schildkraut, Joellen M; Sellers, Thomas A; Sherman, Mark; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa; Terry, Kathryn L; Tworoger, Shelley S; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P; Lawrenson, Kate

    2017-01-01

    Background: Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors (TFs) critical to somatic tumorigenesis. Methods: All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery), and combined (9627 cases/30 845 controls; including additional individuals). Results: The PAX8-target gene set was ranked 1/615 in the discovery (PGSEA<0.001; FDR=0.21), 7/615 in the replication (PGSEA=0.004; FDR=0.37), and 1/615 in the combined (PGSEA<0.001; FDR=0.21) studies. Adding other genes reported to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P<10−5 (including six with P<5 × 10−8). The pathway was also associated with differential gene expression after shRNA-mediated silencing of PAX8 in HeyA8 (PGSEA=0.025) and IGROV1 (PGSEA=0.004) SOC cells and several PAX8 targets near SOC risk loci demonstrated in vitro transcriptomic perturbation. Conclusions: Putative PAX8 target genes are enriched for common SOC risk variants. This finding from our agnostic evaluation is of particular interest given that PAX8 is well-established as a specific marker for the cell of origin of SOC. PMID:28103614

  3. Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells.

    PubMed

    Swathy, Babu; Banerjee, Moinak

    2017-01-01

    Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission

  4. Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells

    PubMed Central

    Swathy, Babu

    2017-01-01

    Introduction Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. Methods SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Results Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes

  5. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5.

    PubMed

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.

  6. Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism

    PubMed Central

    van Dongen, Stijn; Haluck-Kangas, Ashley; Sarshad, Aishe A; Bartom, Elizabeth T; Kim, Kwang-Youn A; Scholtens, Denise M; Hafner, Markus; Zhao, Jonathan C; Murmann, Andrea E

    2017-01-01

    Over 80% of multiple-tested siRNAs and shRNAs targeting CD95 or CD95 ligand (CD95L) induce a form of cell death characterized by simultaneous activation of multiple cell death pathways preferentially killing transformed and cancer stem cells. We now show these si/shRNAs kill cancer cells through canonical RNAi by targeting the 3’UTR of critical survival genes in a unique form of off-target effect we call DISE (death induced by survival gene elimination). Drosha and Dicer-deficient cells, devoid of most miRNAs, are hypersensitive to DISE, suggesting cellular miRNAs protect cells from this form of cell death. By testing 4666 shRNAs derived from the CD95 and CD95L mRNA sequences and an unrelated control gene, Venus, we have identified many toxic sequences - most of them located in the open reading frame of CD95L. We propose that specific toxic RNAi-active sequences present in the genome can kill cancer cells. PMID:29063830

  7. Prediction of target genes for miR-140-5p in pulmonary arterial hypertension using bioinformatics methods.

    PubMed

    Li, Fangwei; Shi, Wenhua; Wan, Yixin; Wang, Qingting; Feng, Wei; Yan, Xin; Wang, Jian; Chai, Limin; Zhang, Qianqian; Li, Manxiang

    2017-12-01

    The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF-miRNA-mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro .

  8. Blood-Derived Smooth Muscle Cells as a Target for Gene Delivery

    PubMed Central

    Yang, Zhe; Shao, Hongwei; Tan, Yaohong; Eton, Darwin; Yu, Hong

    2008-01-01

    Objective To examine the feasibility of using blood-derived smooth muscle cells (BD-SMCs) as a target for to deliver therapeutic proteins. Materials and Methods Mononuclear cells (MNC) were isolated from peripheral blood. The outgrowth colonies from MNC culture were differentiated into BD-SMCs in media containing platelet-derived growth factor BB. Phenotypic characterization of BD-SMCs was assessed by immunocytochemistry. Cell proliferation, gene transfer efficiency with a retroviral vector, apoptosis, and the biological activity of the transduced gene product from the BD-SMCs were evaluated in vitro and in vivo in comparison with vascular derived SMC (VSMCs). Results BD-SMCs stained positive for SMC markers. No significant difference was observed between BD-SMCs and VSMCs in cell proliferation, migration, adhesiveness, and gene transfer efficiency. After BD-SMCs were transduced with a retroviral vector carrying the secreted alkaline phosphatase gene (SEAP), 174 ± 50 μg biologically active SEAP was produced per 106 cells over 24 hrs. After injecting 5×106 cells expressing SEAP intravenously into rabbits, SEAP concentration increased significantly in the circulation from 0.14 ± 0.04 μg/ml to 2.34 ± 0.16 μg/ml 3 days after cell injection (P<0.01, n=3). Circulating levels of SEAP decreased to 1.76 μg /ml one week later and remained at this level up to 8 weeks, then declined to pre-cell injection level at 12 weeks. VSMC in vivo gene expression data were equivalent. Conclusion BD-SMCs have similar characteristics to mature VSMCs, and can be used as a novel target for gene transfer to deliver a therapeutic protein. Clinical relevance Cell-based therapy strategies offer the potential to correct a wide spectrum of inherited and acquired human diseases. Translation to a clinical trial will require a detailed pre-clinical study to understand the characteristics of the isolated cells. BD-SMC are practical and effective targets for ex vivo genetic engineering. They are

  9. Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles.

    PubMed

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K; Champaneri, Shivam A; Taylor, Sarah; Davidson, Brian P; Zhao, Yan; Klibanov, Alexander L; Kuliszewski, Michael A; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R

    2012-12-01

    Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)-stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm(2)). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1-targeted microbubbles and by ultrasound molecular imaging of P-selectin-targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin-targeted microbubbles but was associated with vascular rupture and hemorrhage. At 0.6 MPa

  10. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae.

    PubMed

    Vandenbosch, Davy; De Canck, Evelien; Dhondt, Inne; Rigole, Petra; Nelis, Hans J; Coenye, Tom

    2013-12-01

    Infections related to fungal biofilms are difficult to treat due to the reduced susceptibility of sessile cells to most antifungal agents. Previous research has shown that 1-10% of sessile Candida cells survive treatment with high doses of miconazole (a fungicidal imidazole). The aim of this study was to identify genes involved in fungal biofilm formation and to unravel the mechanisms of resistance of these biofilms to miconazole. To this end, a screening of a Saccharomyces cerevisiae deletion mutant bank was carried out. Our results revealed that genes involved in peroxisomal transport and the biogenesis of the respiratory chain complex IV play an essential role in biofilm formation. On the other hand, genes involved in transcription and peroxisomal and mitochondrial organization seem to highly influence the susceptibility to miconazole of yeast biofilms. Additionally, our data confirm previous findings on genes involved in biofilm formation and in general stress responses. Our data suggest the involvement of peroxisomes in biofilm formation and miconazole resistance in fungal biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Enzymes involved in plastid-targeted phosphatidic acid synthesis are essential for Plasmodium yoelii liver stage development

    PubMed Central

    Lindner, Scott E.; Sartain, Mark J.; Hayes, Kiera; Harupa, Anke; Moritz, Robert L.; Kappe, Stefan H. I.; Vaughan, Ashley M.

    2014-01-01

    SUMMARY Malaria parasites scavenge nutrients from their host but also harbor enzymatic pathways for de novo macromolecule synthesis. One such pathway is apicoplast-targeted type II fatty acid synthesis, which is essential for late liver stage development in rodent malaria. It is likely that fatty acids synthesized in the apicoplast are ultimately incorporated into membrane phospholipids necessary for exoerythrocytic merozoite formation. We hypothesized that these synthesized fatty acids are being utilized for apicoplast-targeted phosphatidic acid synthesis, the phospholipid precursor. Phosphatidic acid is typically synthesized in a three-step reaction utilizing three enzymes: glycerol 3-phosphate dehydrogenase, glycerol 3-phosphate acyltransferase and lysophosphatidic acid acyltransferase. The Plasmodium genome is predicted to harbor genes for both apicoplast- and cytosol/endoplasmic reticulum-targeted phosphatidic synthesis. Our research shows that apicoplast-targeted P. yoelii glycerol 3-phosphate dehydrogenase and glycerol 3-phosphate acyltransferase are expressed only during liver stage development and deletion of the encoding genes resulted in late liver stage growth arrest and lack of merozoite differentiation. However, the predicted apicoplast-targeted lysophosphatidic acid acyltransferase gene was refractory to deletion and was expressed solely in the endoplasmic reticulum throughout the parasite lifecycle. Our results suggest that P. yoelii has an incomplete apicoplast-targeted phosphatidic acid synthesis pathway that is essential for liver stage maturation. PMID:24330260

  12. Integrated computational biology analysis to evaluate target genes for chronic myelogenous leukemia.

    PubMed

    Zheng, Yu; Wang, Yu-Ping; Cao, Hongbao; Chen, Qiusheng; Zhang, Xi

    2018-06-05

    Although hundreds of genes have been linked to chronic myelogenous leukemia (CML), many of the results lack reproducibility. In the present study, data across multiple modalities were integrated to evaluate 579 CML candidate genes, including literature‑based CML‑gene relation data, Gene Expression Omnibus RNA expression data and pathway‑based gene‑gene interaction data. The expression data included samples from 76 patients with CML and 73 healthy controls. For each target gene, four metrics were proposed and tested with case/control classification. The effectiveness of the four metrics presented was demonstrated by the high classification accuracy (94.63%; P<2x10‑4). Cross metric analysis suggested nine top candidate genes for CML: Epidermal growth factor receptor, tumor protein p53, catenin β 1, janus kinase 2, tumor necrosis factor, abelson murine leukemia viral oncogene homolog 1, vascular endothelial growth factor A, B‑cell lymphoma 2 and proto‑oncogene tyrosine‑protein kinase. In addition, 145 CML candidate pathways enriched with 485 out of 579 genes were identified (P<8.2x10‑11; q=0.005). In conclusion, weighted genetic networks generated using computational biology may be complementary to biological experiments for the evaluation of known or novel CML target genes.

  13. Polymorphisms in MicroRNA Genes And Genes Involving in NMDAR Signaling and Schizophrenia: A Case-Control Study in Chinese Han Population.

    PubMed

    Zhang, Yanxia; Fan, Mei; Wang, Qingzhong; He, Guang; Fu, Yingmei; Li, Huafang; Yu, Shunying

    2015-08-10

    Disturbances in glutamate signaling caused by disruption of N-methyl-D-aspartate-type glutamate receptor (NMDAR) have been implicated in schizophrenia. Findings suggested that miR-219, miR-132 and miR-107 could involve in NMDAR signaling by influencing the expression of pathway genes or the signaling transmission and single nucleotide polymorphisms (SNPs) within miRNA genes or miRNA target sites could result in their functional changes. Therefore, we hypothesized that SNPs in miRNAs and/or their target sites were associated with schizophrenia. 3 SNPs in hsa-pri-miR-219/132/107 and 6 SNPs in 3'UTRs of GRIN2A/2B/3A and CAMK2G were selected and genotyped in a case-control study of 1041 schizophrenia cases and 953 healthy controls in Chinese Han population. In the present study, GRIN2B rs890 showed significant associations with schizophrenia. Further functional analyses showed that the rs890 variant C allele led to significantly lower luciferase activity, compared with the A allele. MDR analysis showed that a 4-locus model including rs107822, rs2306327, rs890 and rs12342026 was the best model. These findings suggest that GRIN2B may be associated with schizophrenia and interaction effects of the polymorphisms in hsa-miR-219, CAKM2G, GRIN2B and GRIN3A may confer susceptibility to schizophrenia in the Chinese Han population.

  14. Target genes discovery through copy number alteration analysis in human hepatocellular carcinoma.

    PubMed

    Gu, De-Leung; Chen, Yen-Hsieh; Shih, Jou-Ho; Lin, Chi-Hung; Jou, Yuh-Shan; Chen, Chian-Feng

    2013-12-21

    High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.

  15. Identification of highly effective target genes for RNAi-mediated control of emerald ash borer, Agrilus planipennis.

    PubMed

    Rodrigues, Thais B; Duan, Jian J; Palli, Subba R; Rieske, Lynne K

    2018-03-22

    Recent study has shown that RNA interference (RNAi) is efficient in emerald ash borer (EAB), Agrilus planipennis, and that ingestion of double-stranded RNA (dsRNA) targeting specific genes causes gene silencing and mortality in neonates. Here, we report on the identification of highly effective target genes for RNAi-mediated control of EAB. We screened 13 candidate genes in neonate larvae and selected the most effective target genes for further investigation, including their effect on EAB adults and on a non-target organism, Tribolium castaneum. The two most efficient target genes selected, hsp (heat shock 70-kDa protein cognate 3) and shi (shibire), caused up to 90% mortality of larvae and adults. In EAB eggs, larvae, and adults, the hsp is expressed at higher levels when compared to that of shi. Ingestion of dsHSP and dsSHI caused mortality in both neonate larvae and adults. Administration of a mixture of both dsRNAs worked better than either dsRNA by itself. In contrast, injection of EAB.dsHSP and EAB.dsSHI did not cause mortality in T. castaneum. Thus, the two genes identified cause high mortality in the EAB with no apparent phenotype effects in a non-target organism, the red flour beetle, and could be used in RNAi-mediated control of this invasive pest.

  16. Advances in plant gene-targeted and functional markers: a review

    PubMed Central

    2013-01-01

    Public genomic databases have provided new directions for molecular marker development and initiated a shift in the types of PCR-based techniques commonly used in plant science. Alongside commonly used arbitrarily amplified DNA markers, other methods have been developed. Targeted fingerprinting marker techniques are based on the well-established practices of arbitrarily amplified DNA methods, but employ novel methodological innovations such as the incorporation of gene or promoter elements in the primers. These markers provide good reproducibility and increased resolution by the concurrent incidence of dominant and co-dominant bands. Despite their promising features, these semi-random markers suffer from possible problems of collision and non-homology analogous to those found with randomly generated fingerprints. Transposable elements, present in abundance in plant genomes, may also be used to generate fingerprints. These markers provide increased genomic coverage by utilizing specific targeted sites and produce bands that mostly seem to be homologous. The biggest drawback with most of these techniques is that prior genomic information about retrotransposons is needed for primer design, prohibiting universal applications. Another class of recently developed methods exploits length polymorphism present in arrays of multi-copy gene families such as cytochrome P450 and β-tubulin genes to provide cross-species amplification and transferability. A specific class of marker makes use of common features of plant resistance genes to generate bands linked to a given phenotype, or to reveal genetic diversity. Conserved DNA-based strategies have limited genome coverage and may fail to reveal genetic diversity, while resistance genes may be under specific evolutionary selection. Markers may also be generated from functional and/or transcribed regions of the genome using different gene-targeting approaches coupled with the use of RNA information. Such techniques have the

  17. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures.

    PubMed

    Hayes, Michael L; Giang, Karolyn; Mulligan, R Michael

    2012-05-14

    Pentatricopeptide repeat (PPR) proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82) and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3' UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative selection even in the absence of an editing site target

  18. Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology.

    PubMed

    Moon, Jiyun M; Aronoff, David M; Capra, John A; Abbot, Patrick; Rokas, Antonis

    2018-03-28

    Sialic acids are nine carbon sugars ubiquitously found on the surfaces of vertebrate cells and are involved in various immune response-related processes. In humans, at least 58 genes spanning diverse functions, from biosynthesis and activation to recycling and degradation, are involved in sialic acid biology. Because of their role in immunity, sialic acid biology genes have been hypothesized to exhibit elevated rates of evolutionary change. Consistent with this hypothesis, several genes involved in sialic acid biology have experienced higher rates of non-synonymous substitutions in the human lineage than their counterparts in other great apes, perhaps in response to ancient pathogens that infected hominins millions of years ago (paleopathogens). To test whether sialic acid biology genes have also experienced more recent positive selection during the evolution of the modern human lineage, reflecting adaptation to contemporary cosmopolitan or geographically-restricted pathogens, we examined whether their protein-coding regions showed evidence of recent hard and soft selective sweeps. This examination involved the calculation of four measures that quantify changes in allele frequency spectra, extent of population differentiation, and haplotype homozygosity caused by recent hard and soft selective sweeps for 55 sialic acid biology genes using publicly available whole genome sequencing data from 1,668 humans from three ethnic groups. To disentangle evidence for selection from confounding demographic effects, we compared the observed patterns in sialic acid biology genes to simulated sequences of the same length under a model of neutral evolution that takes into account human demographic history. We found that the patterns of genetic variation of most sialic acid biology genes did not significantly deviate from neutral expectations and were not significantly different among genes belonging to different functional categories. Those few sialic acid biology genes that

  19. Engineering nucleases for gene targeting: safety and regulatory considerations.

    PubMed

    Pauwels, Katia; Podevin, Nancy; Breyer, Didier; Carroll, Dana; Herman, Philippe

    2014-01-25

    Nuclease-based gene targeting (NBGT) represents a significant breakthrough in targeted genome editing since it is applicable from single-celled protozoa to human, including several species of economic importance. Along with the fast progress in NBGT and the increasing availability of customized nucleases, more data are available about off-target effects associated with the use of this approach. We discuss how NBGT may offer a new perspective for genetic modification, we address some aspects crucial for a safety improvement of the corresponding techniques and we also briefly relate the use of NBGT applications and products to the regulatory oversight. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. PLGA/polymeric liposome for targeted drug and gene co-delivery.

    PubMed

    Wang, Hanjie; Zhao, Peiqi; Su, Wenya; Wang, Sheng; Liao, Zhenyu; Niu, Ruifang; Chang, Jin

    2010-11-01

    Chemotherapy is one of the most effective approaches to treat cancers in the clinic, but the problems, such as multidrug resistance (MDR), low bioavailability and toxicity, severely constrain the further application of chemotherapy. Our group recently reported that cationic PLGA/folate coated PEGlated polymeric liposome core-shell nanoparticles (PLGA/FPL NPs). It was self-assembled from a hydrophobic PLGA core and a hydrophilic folate coated PEGlated lipid shell for targeting co-delivery of drug and gene. Hydrophobic drugs can be incorporated into the core and the cationic shell of the drug-loaded nanoparticles can be used to bind DNA. The drug-loaded PLGA/FPL NPs/DNA complexes offer advantages to overcome these problems mentioned above, such as co-delivery of drugs and DNA to improving the chemosensitivity of cancer cells at a gene level, and targeting delivery of drug to the cancer tissue that enhance the bioavailability and reduce the toxicity. The experiment showed that nanoparticles have core-shell structure with nanosize, sustained drug release profile and good DNA-binding ability. Importantly, the core-shell nanoparticles achieve the possibility of co-delivering drugs and genes to the same cells with high gene transfection and drug delivery efficiency. Our data suggest that the PLGA/FPL NPs may be a useful drug and gene co-delivery system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Adeno-associated virus–targeted disruption of the CFTR gene in cloned ferrets

    PubMed Central

    Sun, Xingshen; Yan, Ziying; Yi, Yaling; Li, Ziyi; Lei, Diana; Rogers, Christopher S.; Chen, Juan; Zhang, Yulong; Welsh, Michael J.; Leno, Gregory H.; Engelhardt, John F.

    2008-01-01

    Somatic cell gene targeting combined with nuclear transfer cloning presents tremendous potential for the creation of new, large-animal models of human diseases. Mouse disease models often fail to reproduce human phenotypes, underscoring the need for the generation and study of alternative disease models. Mice deficient for CFTR have been poor models for cystic fibrosis (CF), lacking many aspects of human CF lung disease. In this study, we describe the production of a CFTR gene–deficient model in the domestic ferret using recombinant adeno-associated virus–mediated gene targeting in fibroblasts, followed by nuclear transfer cloning. As part of this approach, we developed a somatic cell rejuvenation protocol using serial nuclear transfer to produce live CFTR-deficient clones from senescent gene-targeted fibroblasts. We transferred 472 reconstructed embryos into 11 recipient jills and obtained 8 healthy male ferret clones heterozygous for a disruption in exon 10 of the CFTR gene. To our knowledge, this study represents the first description of genetically engineered ferrets and describes an approach that may be of substantial utility in modeling not only CF, but also other genetic diseases. PMID:18324338

  2. Genus Beta Human Papillomavirus E6 Proteins Vary in Their Effects on the Transactivation of p53 Target Genes

    PubMed Central

    White, Elizabeth A.; Walther, Johanna; Javanbakht, Hassan

    2014-01-01

    ABSTRACT The genus beta human papillomaviruses (beta HPVs) cause cutaneous lesions and are thought to be involved in the initiation of some nonmelanoma skin cancers (NMSCs), particularly in patients with the genetic disorder epidermodysplasia verruciformis (EV). We have previously reported that at least two of the genus beta HPV E6 proteins bind to and/or increase the steady-state levels of p53 in squamous epithelial cells. This is in contrast to a well-characterized ability of the E6 proteins of cancer-associated HPVs of genus alpha HPV, which inactivate p53 by targeting its ubiquitin-mediated proteolysis. In this study, we have investigated the ability of genus beta E6 proteins from eight different HPV types to block the transactivation of p53 target genes following DNA damage. We find that the E6 proteins from diverse beta HPV species and types vary in their capacity to block the induction of MDM2, p21, and proapoptotic genes after genotoxic stress. We conclude that some genus beta HPV E6 proteins inhibit at least some p53 target genes, although perhaps not by the same mechanism or to the same degree as the high-risk genus alpha HPV E6 proteins. IMPORTANCE This study addresses the ability of various human papillomavirus E6 proteins to block the activation of p53-responsive cellular genes following DNA damage in human keratinocytes, the normal host cell for HPVs. The E6 proteins encoded by the high-risk, cancer-associated HPV types of genus alpha HPV have a well-established activity to target p53 degradation and thereby inhibit the response to DNA damage. In this study, we have investigated the ability of genus beta HPV E6 proteins from eight different HPV types to block the ability of p53 to transactivate downstream genes following DNA damage. We find that some, but not all, genus beta HPV E6 proteins can block the transactivation of some p53 target genes. This differential response to DNA damage furthers the understanding of cutaneous HPV biology and may help

  3. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture

    PubMed Central

    González-Plaza, Juan J.; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F.; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R.; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R.

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species. PMID:26973682

  4. Combined serial analysis of gene expression and transcription factor binding site prediction identifies novel-candidate-target genes of Nr2e1 in neocortex development.

    PubMed

    Schmouth, Jean-François; Arenillas, David; Corso-Díaz, Ximena; Xie, Yuan-Yun; Bohacec, Slavita; Banks, Kathleen G; Bonaguro, Russell J; Wong, Siaw H; Jones, Steven J M; Marra, Marco A; Simpson, Elizabeth M; Wasserman, Wyeth W

    2015-07-24

    Nr2e1 (nuclear receptor subfamily 2, group e, member 1) encodes a transcription factor important in neocortex development. Previous work has shown that nuclear receptors can have hundreds of target genes, and bind more than 300 co-interacting proteins. However, recognition of the critical role of Nr2e1 in neural stem cells and neocortex development is relatively recent, thus the molecular mechanisms involved for this nuclear receptor are only beginning to be understood. Serial analysis of gene expression (SAGE), has given researchers both qualitative and quantitative information pertaining to biological processes. Thus, in this work, six LongSAGE mouse libraries were generated from laser microdissected tissue samples of dorsal VZ/SVZ (ventricular zone and subventricular zone) from the telencephalon of wild-type (Wt) and Nr2e1-null embryos at the critical development ages E13.5, E15.5, and E17.5. We then used a novel approach, implementing multiple computational methods followed by biological validation to further our understanding of Nr2e1 in neocortex development. In this work, we have generated a list of 1279 genes that are differentially expressed in response to altered Nr2e1 expression during in vivo neocortex development. We have refined this list to 64 candidate direct-targets of NR2E1. Our data suggested distinct roles for Nr2e1 during different neocortex developmental stages. Most importantly, our results suggest a possible novel pathway by which Nr2e1 regulates neurogenesis, which includes Lhx2 as one of the candidate direct-target genes, and SOX9 as a co-interactor. In conclusion, we have provided new candidate interacting partners and numerous well-developed testable hypotheses for understanding the pathways by which Nr2e1 functions to regulate neocortex development.

  5. [Discovery of the target genes inhibited by formic acid in Candida shehatae].

    PubMed

    Cai, Peng; Xiong, Xujie; Xu, Yong; Yong, Qiang; Zhu, Junjun; Shiyuan, Yu

    2014-01-04

    At transcriptional level, the inhibitory effects of formic acid was investigated on Candida shehatae, a model yeast strain capable of fermenting xylose to ethanol. Thereby, the target genes were regulated by formic acid and the transcript profiles were discovered. On the basis of the transcriptome data of C. shehatae metabolizing glucose and xylose, the genes responsible for ethanol fermentation were chosen as candidates by the combined method of yeast metabolic pathway analysis and manual gene BLAST search. These candidates were then quantitatively detected by RQ-PCR technique to find the regulating genes under gradient doses of formic acid. By quantitative analysis of 42 candidate genes, we finally identified 10 and 5 genes as markedly down-regulated and up-regulated targets by formic acid, respectively. With regard to gene transcripts regulated by formic acid in C. shehatae, the markedly down-regulated genes ranking declines as follows: xylitol dehydrogenase (XYL2), acetyl-CoA synthetase (ACS), ribose-5-phosphate isomerase (RKI), transaldolase (TAL), phosphogluconate dehydrogenase (GND1), transketolase (TKL), glucose-6-phosphate dehydrogenase (ZWF1), xylose reductase (XYL1), pyruvate dehydrogenase (PDH) and pyruvate decarboxylase (PDC); and a declining rank for up-regulated gens as follows: fructose-bisphosphate aldolase (ALD), glucokinase (GLK), malate dehydrogenase (MDH), 6-phosphofructokinase (PFK) and alcohol dehydrogenase (ADH).

  6. Potential Impact of miR-137 and Its Targets in Schizophrenia

    PubMed Central

    Wright, Carrie; Turner, Jessica A.; Calhoun, Vince D.; Perrone-Bizzozero, Nora

    2013-01-01

    The significant impact of microRNAs (miRNAs) on disease pathology is becoming increasingly evident. These small non-coding RNAs have the ability to post-transcriptionally silence the expression of thousands of genes. Therefore, dysregulation of even a single miRNA could confer a large polygenic effect. Schizophrenia is a genetically complex illness thought to involve multiple genes each contributing a small risk. Large genome-wide association studies identified miR-137, a miRNA shown to be involved in neuronal maturation, as one of the top risk genes. To assess the potential mechanism of impact of miR-137 in this disorder and identify its targets, we used a combination of literature searches, ingenuity pathway analysis (IPA), and freely accessible bioinformatics resources. Using TargetScan and the schizophrenia gene resource (SZGR) database, we found that in addition to CSMD1, C10orf26, CACNA1C, TCF4, and ZNF804A, five schizophrenia risk genes whose transcripts are also validated miR-137 targets, there are other schizophrenia-associated genes that may be targets of miR-137, including ERBB4, GABRA1, GRIN2A, GRM5, GSK3B, NRG2, and HTR2C. IPA analyses of all the potential targets identified several nervous system (NS) functions as the top canonical pathways including synaptic long-term potentiation, a process implicated in learning and memory mechanisms and recently shown to be altered in patients with schizophrenia. Among the subset of targets involved in NS development and function, the top scoring pathways were ephrin receptor signaling and axonal guidance, processes that are critical for proper circuitry formation and were shown to be disrupted in schizophrenia. These results suggest that miR-137 may indeed play a substantial role in the genetic etiology of schizophrenia by regulating networks involved in neural development and brain function. PMID:23637704

  7. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation.

    PubMed

    Borges, Vítor; Gomes, João Paulo

    2015-06-01

    Lymphogranuloma venereum (LGV) is a human sexually transmitted disease caused by the obligate intracellular bacterium Chlamydia trachomatis (serovars L1-L3). LGV clinical manifestations range from severe ulcerative proctitis (anorectal syndrome), primarily caused by the epidemic L2b strains, to painful inguinal lymphadenopathy (the typical LGV bubonic form). Besides potential host-related factors, the differential disease severity and tissue tropism among LGV strains is likely a function of the genetic backbone of the strains. We aimed to characterize the genetic variability among LGV strains as strain- or serovar-specific mutations may underlie phenotypic signatures, and to investigate the mutational events that occurred throughout the pathoadaptation of the epidemic L2b lineage. By analyzing 20 previously published genomes from L1, L2, L2b and L3 strains and two new genomes from L2b strains, we detected 1497 variant sites and about 100 indels, affecting 453 genes and 144 intergenic regions, with 34 genes displaying a clear overrepresentation of nonsynonymous mutations. Effectors and/or type III secretion substrates (almost all of those described in the literature) and inclusion membrane proteins showed amino acid changes that were about fivefold more frequent than silent changes. More than 120 variant sites occurred in plasmid-regulated virulence genes, and 66% yielded amino acid changes. The identified serovar-specific variant sites revealed that the L2b-specific mutations are likely associated with higher fitness and pointed out potential targets for future highly discriminatory diagnostic/typing tests. By evaluating the evolutionary pathway beyond the L2b clonal radiation, we observed that 90.2% of the intra-L2b variant sites occurring in coding regions involve nonsynonymous mutations, where CT456/tarp has been the main target. Considering the progress on C. trachomatis genetic manipulation, this study may constitute an important contribution for prioritizing

  8. Mycobacterium tuberculosis Rv1152 is a Novel GntR Family Transcriptional Regulator Involved in Intrinsic Vancomycin Resistance and is a Potential Vancomycin Adjuvant Target

    PubMed Central

    Zeng, Jie; Deng, Wanyan; Yang, Wenmin; Luo, Hongping; Duan, Xiangke; Xie, Longxiang; Li, Ping; Wang, Rui; Fu, Tiwei; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2016-01-01

    Novel factors involved in Mycobacteria antibiotics resistance are crucial for better targets to combat the ever-increasing drug resistant strains. Mycobacterium tuberculosis Rv1152, a novel GntR family transcriptional regulator and a promising vancomycin adjuvant target, was firstly characterized in our study. Overexpression of Rv1152 in Mycobacterium smegmatis decreased bacterial susceptibility to vancomycin. Moreover, a deficiency in MSMEG_5174, an Rv1152 homolog made M. smegmatis more sensitive to vancomycin, which was reverted by complementing the MSMEG_5174 deficiency with Rv1152 of M. tuberculosis. Rv1152 negatively regulated four vancomycin responsive genes, namely genes encoding the ribosome binding protein Hsp, small unit of sulfate adenylyltransferase CysD, L-lysine-epsilon aminotransferase Lat, and protease HtpX. Taken together, Rv1152 controls the expression of genes required for the susceptibility to vancomycin. This is the first report that links the GntR family transcriptional factor with vancomycin susceptibility. Inhibitors of Rv1152 might be ideal vancomycin adjuvants for controlling multi-drug resistant Mycobacterial infections. PMID:27349953

  9. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.

    PubMed

    Seuter, Sabine; Pehkonen, Petri; Heikkinen, Sami; Carlberg, Carsten

    2013-12-01

    The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin. At 165 of them 1α,25(OH)2D3 strongly increases chromatin accessibility and has at further 217 sites weaker effects. Interestingly, VDR binding sites in 1α,25(OH)2D3-responsive chromatin regions are far more often composed of direct repeats with 3 intervening nucleotides (DR3s) than those in ligand insensitive regions. DR3-containing VDR sites are enriched in the neighborhood of genes that are involved in controling cellular growth, while non-DR3 VDR binding is often found close to genes related to immunity. At the example of six early VDR target genes we show that the slope of their 1α,25(OH)2D3-induced transcription correlates with the basal chromatin accessibility of their major VDR binding regions. However, the chromatin loci controlling these genes are indistinguishable in their VDR association kinetics. Taken together, ligand responsive chromatin loci represent dynamically regulated contact points of VDR with the genome, from where it controls early 1α,25(OH)2D3 target genes. © 2013.

  10. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    PubMed Central

    Rogers, Matthew B; Patron, Nicola J; Keeling, Patrick J

    2007-01-01

    Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA) are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes) of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group. PMID:17584924

  11. A Convenient Cas9-based Conditional Knockout Strategy for Simultaneously Targeting Multiple Genes in Mouse.

    PubMed

    Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S

    2017-03-31

    The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.

  12. Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes.

    PubMed

    Kruse, Rikke; Vienberg, Sara G; Vind, Birgitte F; Andersen, Birgitte; Højlund, Kurt

    2017-10-01

    Pharmacological doses of FGF21 improve glucose tolerance, lipid metabolism and energy expenditure in rodents. Induced expression and secretion of FGF21 from muscle may increase browning of white adipose tissue (WAT) in a myokine-like manner. Recent studies have reported that insulin and exercise increase FGF21 in plasma. Obesity and type 2 diabetes are potentially FGF21-resistant states, but to what extent FGF21 responses to insulin and exercise training are preserved, and whether FGF21, its receptors and target genes are altered, remains to be established. The effects of insulin during euglycaemic-hyperinsulinaemic clamps and 10 week endurance training on serum FGF21 were examined in individuals with type 2 diabetes and in glucose tolerant overweight/obese and lean individuals. Gene expression of FGF21, its receptors and target genes in muscle and WAT biopsies was evaluated by quantitative real-time PCR (qPCR). Insulin increased serum and muscle FGF21 independent of overweight/obesity or type 2 diabetes, and there were no effects associated with exercise training. The insulin-induced increases in serum FGF21 and muscle FGF21 expression correlated tightly (p < 0.001). In WAT, overweight/obesity with and without type 2 diabetes led to reduced expression of KLB, but increased FGFR1c expression. However, the expression of most FGF21 target genes was unaltered except for reduced CIDEA expression in individuals with type 2 diabetes. Insulin-induced expression of muscle FGF21 correlates strongly with a rise in serum FGF21, and this response appears intact in overweight/obesity and type 2 diabetes. FGF21 resistance may involve reduced KLB expression in WAT. However, increased FGFR1c expression or other mechanisms seem to ensure adequate expression of most FGF21 target genes in WAT.

  13. [Progress in application of targeting viral vector regulated by microRNA in gene therapy: a review].

    PubMed

    Zhang, Guohai; Wang, Qizhao; Zhang, Jinghong; Xu, Ruian

    2010-06-01

    A safe and effective targeting viral vector is the key factor for successful clinical gene therapy. microRNA, a class of small, single-stranded endogenous RNAs, act as post-transcriptional regulators of gene expression. The discovery of these kind regulatory elements provides a new approach to regulate gene expression more accurately. In this review, we elucidated the principle of microRNA in regulation of targeting viral vector. The applications of microRNA in the fields of elimination contamination from replication competent virus, reduction of transgene-specific immunity, promotion of cancer-targeted gene therapy and development of live attenuated vaccines were also discussed.

  14. Enzymes involved in plastid-targeted phosphatidic acid synthesis are essential for Plasmodium yoelii liver-stage development.

    PubMed

    Lindner, Scott E; Sartain, Mark J; Hayes, Kiera; Harupa, Anke; Moritz, Robert L; Kappe, Stefan H I; Vaughan, Ashley M

    2014-02-01

    Malaria parasites scavenge nutrients from their host but also harbour enzymatic pathways for de novo macromolecule synthesis. One such pathway is apicoplast-targeted type II fatty acid synthesis, which is essential for late liver-stage development in rodent malaria. It is likely that fatty acids synthesized in the apicoplast are ultimately incorporated into membrane phospholipids necessary for exoerythrocytic merozoite formation. We hypothesized that these synthesized fatty acids are being utilized for apicoplast-targeted phosphatidic acid synthesis, the phospholipid precursor. Phosphatidic acid is typically synthesized in a three-step reaction utilizing three enzymes: glycerol 3-phosphate dehydrogenase, glycerol 3-phosphate acyltransferase and lysophosphatidic acid acyltransferase. The Plasmodium genome is predicted to harbour genes for both apicoplast- and cytosol/endoplasmic reticulum-targeted phosphatidic acid synthesis. Our research shows that apicoplast-targeted Plasmodium yoelii glycerol 3-phosphate dehydrogenase and glycerol 3-phosphate acyltransferase are expressed only during liver-stage development and deletion of the encoding genes resulted in late liver-stage growth arrest and lack of merozoite differentiation. However, the predicted apicoplast-targeted lysophosphatidic acid acyltransferase gene was refractory to deletion and was expressed solely in the endoplasmic reticulum throughout the parasite life cycle. Our results suggest that P. yoelii has an incomplete apicoplast-targeted phosphatidic acid synthesis pathway that is essential for liver-stage maturation. © 2013 John Wiley & Sons Ltd.

  15. Therapeutic gene targeting approaches for the treatment of dyslipidemias and atherosclerosis.

    PubMed

    Mäkinen, Petri I; Ylä-Herttuala, Seppo

    2013-04-01

    Despite improved therapies, cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Therefore, new therapeutic approaches are still needed. In the gene therapy field, RNA interference (RNAi) and regulation of microRNAs (miRNAs) have gained a lot of attention in addition to traditional overexpression based strategies. Here, recent findings in therapeutic gene silencing and modulation of small RNA expression related to atherogenesis and dyslipidemia are summarized. Novel gene therapy approaches for the treatment of hyperlipidemia have been addressed. Antisense oligonucleotide and RNAi-based therapies against apolipoprotein B100 and proprotein convertase subtilisin/kexin type 9 have shown already efficacy in preclinical and clinical trials. In addition, several miRNAs dysregulated in atherosclerotic lesions and regulating cholesterol homeostasis have been found, which may represent novel targets for future therapies. New therapies for lowering lipid levels are now being tested in clinical trials, and both antisense oligonucleotide and RNAi-based therapies have shown promising results in lowering cholesterol levels. However, the modulation of inflammatory component in atherosclerosis by gene therapy and targeting of the effects to plaques are still difficult challenges.

  16. An Assessment of Database-Validated microRNA Target Genes in Normal Colonic Mucosa: Implications for Pathway Analysis.

    PubMed

    Slattery, Martha L; Herrick, Jennifer S; Stevens, John R; Wolff, Roger K; Mullany, Lila E

    2017-01-01

    Determination of functional pathways regulated by microRNAs (miRNAs), while an essential step in developing therapeutics, is challenging. Some miRNAs have been studied extensively; others have limited information. In this study, we focus on 254 miRNAs previously identified as being associated with colorectal cancer and their database-identified validated target genes. We use RNA-Seq data to evaluate messenger RNA (mRNA) expression for 157 subjects who also had miRNA expression data. In the replication phase of the study, we replicated associations between 254 miRNAs associated with colorectal cancer and mRNA expression of database-identified target genes in normal colonic mucosa. In the discovery phase of the study, we evaluated expression of 18 miR-NAs (those with 20 or fewer database-identified target genes along with miR-21-5p, miR-215-5p, and miR-124-3p which have more than 500 database-identified target genes) with expression of 17 434 mRNAs to identify new targets in colon tissue. Seed region matches between miRNA and newly identified targeted mRNA were used to help determine direct miRNA-mRNA associations. From the replication of the 121 miRNAs that had at least 1 database-identified target gene using mRNA expression methods, 97.9% were expressed in normal colonic mucosa. Of the 8622 target miRNA-mRNA associations identified in the database, 2658 (30.2%) were associated with gene expression in normal colonic mucosa after adjusting for multiple comparisons. Of the 133 miRNAs with database-identified target genes by non-mRNA expression methods, 97.2% were expressed in normal colonic mucosa. After adjustment for multiple comparisons, 2416 miRNA-mRNA associations remained significant (19.8%). Results from the discovery phase based on detailed examination of 18 miRNAs identified more than 80 000 miRNA-mRNA associations that had not previously linked to the miRNA. Of these miRNA-mRNA associations, 15.6% and 14.8% had seed matches for CRCh38 and CRCh37

  17. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.

    PubMed

    Zhang, Hui; Zhang, Jinshan; Wei, Pengliang; Zhang, Botao; Gou, Feng; Feng, Zhengyan; Mao, Yanfei; Yang, Lan; Zhang, Heng; Xu, Nanfei; Zhu, Jian-Kang

    2014-08-01

    The CRISPR/Cas9 system has been demonstrated to efficiently induce targeted gene editing in a variety of organisms including plants. Recent work showed that CRISPR/Cas9-induced gene mutations in Arabidopsis were mostly somatic mutations in the early generation, although some mutations could be stably inherited in later generations. However, it remains unclear whether this system will work similarly in crops such as rice. In this study, we tested in two rice subspecies 11 target genes for their amenability to CRISPR/Cas9-induced editing and determined the patterns, specificity and heritability of the gene modifications. Analysis of the genotypes and frequency of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in rice, with target genes edited in nearly half of the transformed embryogenic cells before their first cell division. Homozygotes of edited target genes were readily found in T0 plants. The gene mutations were passed to the next generation (T1) following classic Mendelian law, without any detectable new mutation or reversion. Even with extensive searches including whole genome resequencing, we could not find any evidence of large-scale off-targeting in rice for any of the many targets tested in this study. By specifically sequencing the putative off-target sites of a large number of T0 plants, low-frequency mutations were found in only one off-target site where the sequence had 1-bp difference from the intended target. Overall, the data in this study point to the CRISPR/Cas9 system being a powerful tool in crop genome engineering. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Deletion of a target gene in Indica rice via CRISPR/Cas9.

    PubMed

    Wang, Ying; Geng, Lizhao; Yuan, Menglong; Wei, Juan; Jin, Chen; Li, Min; Yu, Kun; Zhang, Ya; Jin, Huaibing; Wang, Eric; Chai, Zhijian; Fu, Xiangdong; Li, Xianggan

    2017-08-01

    Using CRISPR/Cas9, we successfully deleted large fragments of the yield-related gene DENSE AND ERECT PANICLE1 in Indica rice at relatively high frequency and generated gain-of-function dep1 mutants. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a rapidly developing technology used to produce gene-specific modifications in both mammalian and plant systems. Most CRISPR-induced modifications in plants reported to date have been small insertions or deletions. Few large target gene deletions have thus far been reported, especially for Indica rice. In this study, we designed multiple CRISPR sgRNAs and successfully deleted DNA fragments in the gene DENSE AND ERECT PANICLE1 (DEP1) in the elite Indica rice line IR58025B. We achieved deletion frequencies of up to 21% for a 430 bp target and 9% for a 10 kb target among T0 events. Constructs with four sgRNAs did not generate higher full-length deletion frequencies than constructs with two sgRNAs. The multiple mutagenesis frequency reached 93% for four targets, and the homozygous mutation frequency reached 21% at the T0 stage. Important yield-related trait characteristics, such as dense and erect panicles and reduced plant height, were observed in dep1 homozygous T0 mutant plants produced by CRISPR/Cas9. Therefore, we successfully obtained deletions in DEP1 in the Indica background using the CRISPR/Cas9 editing tool at relatively high frequency.

  19. In silico prediction of novel therapeutic targets using gene-disease association data.

    PubMed

    Ferrero, Enrico; Dunham, Ian; Sanseau, Philippe

    2017-08-29

    Target identification and validation is a pressing challenge in the pharmaceutical industry, with many of the programmes that fail for efficacy reasons showing poor association between the drug target and the disease. Computational prediction of successful targets could have a considerable impact on attrition rates in the drug discovery pipeline by significantly reducing the initial search space. Here, we explore whether gene-disease association data from the Open Targets platform is sufficient to predict therapeutic targets that are actively being pursued by pharmaceutical companies or are already on the market. To test our hypothesis, we train four different classifiers (a random forest, a support vector machine, a neural network and a gradient boosting machine) on partially labelled data and evaluate their performance using nested cross-validation and testing on an independent set. We then select the best performing model and use it to make predictions on more than 15,000 genes. Finally, we validate our predictions by mining the scientific literature for proposed therapeutic targets. We observe that the data types with the best predictive power are animal models showing a disease-relevant phenotype, differential expression in diseased tissue and genetic association with the disease under investigation. On a test set, the neural network classifier achieves over 71% accuracy with an AUC of 0.76 when predicting therapeutic targets in a semi-supervised learning setting. We use this model to gain insights into current and failed programmes and to predict 1431 novel targets, of which a highly significant proportion has been independently proposed in the literature. Our in silico approach shows that data linking genes and diseases is sufficient to predict novel therapeutic targets effectively and confirms that this type of evidence is essential for formulating or strengthening hypotheses in the target discovery process. Ultimately, more rapid and automated target

  20. New inter-correlated genes targeted by diatom-derived polyunsaturated aldehydes in the sea urchin Paracentrotus lividus.

    PubMed

    Ruocco, Nadia; Maria Fedele, Anna; Costantini, Susan; Romano, Giovanna; Ianora, Adrianna; Costantini, Maria

    2017-08-01

    The marine environment is continually subjected to the action of stressors (including natural toxins), which represent a constant danger for benthic communities. In the present work using network analysis we identified ten genes on the basis of associated functions (FOXA, FoxG, GFI-1, nodal, JNK, OneCut/Hnf6, TAK1, tcf4, TCF7, VEGF) in the sea urchin Paracentrotus lividus, having key roles in different processes, such as embryonic development and asymmetry, cell fate specification, cell differentiation and morphogenesis, and skeletogenesis. These genes are correlated with three HUB genes, Foxo, Jun and HIF1A. Real Time qPCR revealed that during sea urchin embryonic development the expression levels of these genes were modulated by three diatom-derived polyunsaturated aldehydes (PUAs), decadienal, heptadienal and octadienal. Our findings show how changes in gene expression levels may be used as an early indicator of stressful conditions in the marine environment. The identification of key genes and the molecular pathways in which they are involved represents a fundamental tool in understanding how marine organisms try to afford protection against toxicants, to avoid deleterious consequences and irreversible damages. The genes identified in this work as targets for PUAs can be considered as possible biomarkers to detect exposure to different environmental pollutants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Involvement of Retinoblastoma Protein and HBP1 in Histone H10 Gene Expression

    PubMed Central

    Lemercier, Claudie; Duncliffe, Kym; Boibessot, Isabelle; Zhang, Hui; Verdel, André; Angelov, Dimitar; Khochbin, Saadi

    2000-01-01

    The histone H10-encoding gene is expressed in vertebrates in differentiating cells during the arrest of proliferation. In the H10 promoter, a specific regulatory element, which we named the H4 box, exhibits features which implicate a role in mediating H10 gene expression in response to both differentiation and cell cycle control signals. For instance, within the linker histone gene family, the H4 box is found only in the promoters of differentiation-associated subtypes, suggesting that it is specifically involved in differentiation-dependent expression of these genes. In addition, an element nearly identical to the H4 box is conserved in the promoters of histone H4-encoding genes and is known to be involved in their cell cycle-dependent expression. The transcription factors interacting with the H10 H4 box were therefore expected to link differentiation-dependent expression of H10 to the cell cycle control machinery. The aim of this work was to identify such transcription factors and to obtain information concerning the regulatory pathway involved. Interestingly, our cloning strategy led to the isolation of a retinoblastoma protein (RB) partner known as HBP1. HBP1, a high-mobility group box transcription factor, interacted specifically with the H10 H4 box and moreover was expressed in a differentiation-dependent manner. We also showed that the HBP1-encoding gene is able to produce different forms of HBP1. Finally, we demonstrated that both HBP1 and RB were involved in the activation of H10 gene expression. We therefore propose that HBP1 mediates a link between the cell cycle control machinery and cell differentiation signals. Through modulating the expression of specific chromatin-associated proteins such as histone H10, HBP1 plays a vital role in chromatin remodeling events during the arrest of cell proliferation in differentiating cells. PMID:10958660

  2. Identification of thyroid hormone receptor binding sites and target genes using ChIP-on-chip in developing mouse cerebellum.

    PubMed

    Dong, Hongyan; Yauk, Carole L; Rowan-Carroll, Andrea; You, Seo-Hee; Zoeller, R Thomas; Lambert, Iain; Wade, Michael G

    2009-01-01

    Thyroid hormone (TH) is critical to normal brain development, but the mechanisms operating in this process are poorly understood. We used chromatin immunoprecipitation to enrich regions of DNA bound to thyroid receptor beta (TRbeta) of mouse cerebellum sampled on post natal day 15. Enriched target was hybridized to promoter microarrays (ChIP-on-chip) spanning -8 kb to +2 kb of the transcription start site (TSS) of 5000 genes. We identified 91 genes with TR binding sites. Roughly half of the sites were located in introns, while 30% were located within 1 kb upstream (5') of the TSS. Of these genes, 83 with known function included genes involved in apoptosis, neurodevelopment, metabolism and signal transduction. Two genes, MBP and CD44, are known to contain TREs, providing validation of the system. This is the first report of TR binding for 81 of these genes. ChIP-on-chip results were confirmed for 10 of the 13 binding fragments using ChIP-PCR. The expression of 4 novel TH target genes was found to be correlated with TH levels in hyper/hypothyroid animals providing further support for TR binding. A TRbeta binding site upstream of the coding region of myelin associated glycoprotein was demonstrated to be TH-responsive using a luciferase expression system. Motif searches did not identify any classic binding elements, indicating that not all TR binding sites conform to variations of the classic form. These findings provide mechanistic insight into impaired neurodevelopment resulting from TH deficiency and a rich bioinformatics resource for developing a better understanding of TR binding.

  3. Identification and Characterization of Genes Involved in Benzylisoquinoline Alkaloid Biosynthesis in Coptis Species

    PubMed Central

    He, Si-Mei; Liang, Yan-Li; Cong, Kun; Chen, Geng; Zhao, Xiu; Zhao, Qi-Ming; Zhang, Jia-Jin; Wang, Xiao; Dong, Yang; Yang, Jian-Li; Zhang, Guang-Hui; Qian, Zhi-Long; Fan, Wei; Yang, Sheng-Chao

    2018-01-01

    The dried rhizomes of Coptis chinensis have been extensively used in heat clearing, dampness drying, fire draining, and detoxification by virtue of their major bioactive components, benzylisoquinoline alkaloids (BIAs). However, C. teeta and C. chinensis are occasionally interchanged, and current understanding of the molecular basis of BIA biosynthesis in these two species is limited. Here, berberine, coptisine, jatrorrhizine, and palmatine were detected in two species, and showed the highest contents in the roots, while epiberberine were found only in C. chinensis. Comprehensive transcriptome analysis of the roots and leaves of C. teeta and C. chinensis, respectively, identified 53 and 52 unigenes encoding enzymes potentially involved in BIA biosynthesis. By integrating probable biosynthetic pathways for BIAs, the jatrorrhizine biosynthesis ill-informed previously was further characterized. Two genes encoding norcoclaurine/norlaudanosoline 6-O-methyltransferases (Cc6OMT1 and Cc6OMT2) and one gene encoding norcoclaurine-7OMT (Ct7OMT) catalyzed enzymatically O-methylate (S)-norcoclaurine at C6 that yield (S)-coclaurine, along with a smaller amount of O-methylation occurred at C7, thereby forming its isomer (isococlaurine). In addition, scoulerine 9-OMT (CtSOMT) was determined to show strict substrate specificity, targeting (S)-scoulerine to yield (S)-tetrahydrocolumbamine. Taken together, the integration of the transcriptome and enzyme activity assays further provides new insight into molecular mechanisms underlying BIA biosynthesis in plants and identifies candidate genes for the study of synthetic biology in microorganisms. PMID:29915609

  4. Screening key candidate genes and pathways involved in insulinoma by microarray analysis.

    PubMed

    Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin

    2018-06-01

    Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.

  5. Prediction of effective RNA interference targets and pathway-related genes in lepidopteran insects by RNA sequencing analysis.

    PubMed

    Guan, Ruo-Bing; Li, Hai-Chao; Miao, Xue-Xia

    2018-06-01

    When using RNA interference (RNAi) to study gene functions in Lepidoptera insects, we discovered that some genes could not be suppressed; instead, their expression levels could be up-regulated by double-stranded RNA (dsRNA). To predict which genes could be easily silenced, we treated the Asian corn borer (Ostrinia furnacalis) with dsGFP (green fluorescent protein) and dsMLP (muscle lim protein). A transcriptome sequence analysis was conducted using the cDNAs 6 h after treatment with dsRNA. The results indicated that 160 genes were up-regulated and 44 genes were down-regulated by the two dsRNAs. Then, 50 co-up-regulated, 25 co-down-regulated and 43 unaffected genes were selected to determine their RNAi responses. All the 25 down-regulated genes were knocked down by their corresponding dsRNA. However, several of the up-regulated and unaffected genes were up-regulated when treated with their corresponding dsRNAs instead of being knocked down. The genes up-regulated by the dsGFP treatment may be involved in insect immune responses or the RNAi pathway. When the immune-related genes were excluded, only seven genes were induced by dsGFP, including ago-2 and dicer-2. These results not only provide a reference for efficient RNAi target predications, but also provide some potential RNAi pathway-related genes for further study. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  6. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    EPA Science Inventory

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  7. Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism

    PubMed Central

    Sapkota, Yadav; Steinthorsdottir, Valgerdur; Morris, Andrew P.; Fassbender, Amelie; Rahmioglu, Nilufer; De Vivo, Immaculata; Buring, Julie E.; Zhang, Futao; Edwards, Todd L.; Jones, Sarah; O, Dorien; Peterse, Daniëlle; Rexrode, Kathryn M.; Ridker, Paul M.; Schork, Andrew J.; MacGregor, Stuart; Martin, Nicholas G.; Becker, Christian M.; Adachi, Sosuke; Yoshihara, Kosuke; Enomoto, Takayuki; Takahashi, Atsushi; Kamatani, Yoichiro; Matsuda, Koichi; Kubo, Michiaki; Thorleifsson, Gudmar; Geirsson, Reynir T.; Thorsteinsdottir, Unnur; Wallace, Leanne M.; Werge, Thomas M.; Thompson, Wesley K.; Yang, Jian; Velez Edwards, Digna R.; Nyegaard, Mette; Low, Siew-Kee; Zondervan, Krina T.; Missmer, Stacey A.; D'Hooghe, Thomas; Montgomery, Grant W.; Chasman, Daniel I.; Stefansson, Kari; Tung, Joyce Y.; Nyholt, Dale R.

    2017-01-01

    Endometriosis is a heritable hormone-dependent gynecological disorder, associated with severe pelvic pain and reduced fertility; however, its molecular mechanisms remain largely unknown. Here we perform a meta-analysis of 11 genome-wide association case-control data sets, totalling 17,045 endometriosis cases and 191,596 controls. In addition to replicating previously reported loci, we identify five novel loci significantly associated with endometriosis risk (P<5 × 10−8), implicating genes involved in sex steroid hormone pathways (FN1, CCDC170, ESR1, SYNE1 and FSHB). Conditional analysis identified five secondary association signals, including two at the ESR1 locus, resulting in 19 independent single nucleotide polymorphisms (SNPs) robustly associated with endometriosis, which together explain up to 5.19% of variance in endometriosis. These results highlight novel variants in or near specific genes with important roles in sex steroid hormone signalling and function, and offer unique opportunities for more targeted functional research efforts. PMID:28537267

  8. TCDD dysregulation of 13 AHR-target genes in rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, John D., E-mail: john.watson@oicr.on.ca; Prokopec, Stephenie D., E-mail: stephenie.prokopec@oicr.on.ca; Smith, Ashley B., E-mail: ashleyblaines@gmail.com

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluatedmore » doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic m

  9. In silico identification and characterization of conserved miRNAs and their target genes in sweet potato (Ipomoea batatas L.) Expressed Sequence Tags (ESTs)

    PubMed Central

    Dehury, Budheswar; Panda, Debashis; Sahu, Jagajjit; Sahu, Mousumi; Sarma, Kishore; Barooah, Madhumita; Sen, Priyabrata; Modi, Mahendra Kumar

    2013-01-01

    The endogenous small non-coding micro RNAs (miRNAs), which are typically ~21–24 nt nucleotides, play a crucial role in regulating the intrinsic normal growth of cells and development of the plants as well as in maintaining the integrity of genomes. These small non-coding RNAs function as the universal specificity factors in post-transcriptional gene silencing. Discovering miRNAs, identifying their targets, and further inferring miRNA functions is a routine process to understand normal biological processes of miRNAs and their roles in the development of plants. Comparative genomics based approach using expressed sequence tags (EST) and genome survey sequences (GSS) offer a cost-effective platform for identification and characterization of miRNAs and their target genes in plants. Despite the fact that sweet potato (Ipomoea batatas L.) is an important staple food source for poor small farmers throughout the world, the role of miRNA in various developmental processes remains largely unknown. In this paper, we report the computational identification of miRNAs and their target genes in sweet potato from their ESTs. Using comparative genomics-based approach, 8 potential miRNA candidates belonging to miR168, miR2911, and miR156 families were identified from 23 406 ESTs in sweet potato. A total of 42 target genes were predicted and their probable functions were illustrated. Most of the newly identified miRNAs target transcription factors as well as genes involved in plant growth and development, signal transduction, metabolism, defense, and stress response. The identification of miRNAs and their targets is expected to accelerate the pace of miRNA discovery, leading to an improved understanding of the role of miRNA in development and physiology of sweet potato, as well as stress response. PMID:24067297

  10. Featured Article: Transcriptional landscape analysis identifies differently expressed genes involved in follicle-stimulating hormone induced postmenopausal osteoporosis.

    PubMed

    Maasalu, Katre; Laius, Ott; Zhytnik, Lidiia; Kõks, Sulev; Prans, Ele; Reimann, Ene; Märtson, Aare

    2017-01-01

    Osteoporosis is a disorder associated with bone tissue reorganization, bone mass, and mineral density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of postmenopausal women with and without osteoporosis, with the aim of finding different gene expressions and thus targets for future osteoporosis biomarker studies. Our study consisted of transcriptome analysis of whole blood serum from 12 elderly female osteoporotic patients and 12 non-osteoporotic elderly female controls. The transcriptome analysis was performed with RNA sequencing technology. For data analysis, the edgeR package of R Bioconductor was used. Two hundred and fourteen genes were expressed differently in osteoporotic compared with non-osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false discovery rate of less than 1.47 × 10 -4 among osteoporotic patients. The expression of 10 genes were up-regulated and 10 down-regulated. Further statistical analysis identified a potential osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. Functional ingenuity pathway analysis identified the strongest candidate genes with regard to potential involvement in a follicle-stimulating hormone activated network of increased osteoclast activity and hypogonadal bone loss. The differentially expressed genes identified in this study may contribute to future research of postmenopausal osteoporosis blood biomarkers.

  11. ETS target genes: Identification of Egr1 as a target by RNA differential display and whole genome PCR techniques

    PubMed Central

    Robinson, Lois; Panayiotakis, Alexandra; Papas, Takis S.; Kola, Ismail; Seth, Arun

    1997-01-01

    ETS transcription factors play important roles in hematopoiesis, angiogenesis, and organogenesis during murine development. The ETS genes also have a role in neoplasia, for example in Ewing’s sarcomas and retrovirally induced cancers. The ETS genes encode transcription factors that bind to specific DNA sequences and activate transcription of various cellular and viral genes. To isolate novel ETS target genes, we used two approaches. In the first approach, we isolated genes by the RNA differential display technique. Previously, we have shown that the overexpression of ETS1 and ETS2 genes effects transformation of NIH 3T3 cells and specific transformants produce high levels of the ETS proteins. To isolate ETS1 and ETS2 responsive genes in these transformed cells, we prepared RNA from ETS1, ETS2 transformants, and normal NIH 3T3 cell lines and converted it into cDNA. This cDNA was amplified by PCR and displayed on sequencing gels. The differentially displayed bands were subcloned into plasmid vectors. By Northern blot analysis, several clones showed differential patterns of mRNA expression in the NIH 3T3-, ETS1-, and ETS2-expressing cell lines. Sixteen clones were analyzed by DNA sequence analysis, and 13 of them appeared to be unique because their DNA sequences did not match with any of the known genes present in the gene bank. Three known genes were found to be identical to the CArG box binding factor, phospholipase A2-activating protein, and early growth response 1 (Egr1) genes. In the second approach, to isolate ETS target promoters directly, we performed ETS1 binding with MboI-cleaved genomic DNA in the presence of a specific mAb followed by whole genome PCR. The immune complex-bound ETS binding sites containing DNA fragments were amplified and subcloned into pBluescript and subjected to DNA sequence and computer analysis. We found that, of a large number of clones isolated, 43 represented unique sequences not previously identified. Three clones turned out to

  12. Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv.

    PubMed Central

    Xu, L.; Tang, W. H.; Huang, C. C.; Alexander, W.; Xiang, L. M.; Pirollo, K. F.; Rait, A.; Chang, E. H.

    2001-01-01

    BACKGROUND: A long-standing goal in genetic therapy for cancer is a systemic gene delivery system that selectively targets tumor cells, including metastases. Here we describe a novel cationic immunolipoplex system that shows high in vivo gene transfer efficiency and anti- tumor efficacy when used for systemic p53 gene therapy of cancer. MATERIALS AND METHODS: A cationic immunolipoplex incorporating a biosynthetically lipid-tagged, anti-transferrin receptor single-chain antibody (TfRscFv), was designed to target tumor cells both in vitro and in vivo. A human breast cancer metastasis model was employed to evaluate the in vivo efficacy of systemically administered, TfRscFv-immunolipoplex-mediated, p53 gene therapy in combination with docetaxel. RESULTS: The TfRscFv-targeting cationic immunolipoplex had a size of 60-100 nm, showed enhanced tumor cell binding, and improved targeted gene delivery and transfection efficiencies, both in vitro and in vivo. The p53 tumor suppressor gene was not only systemically delivered by the immunolipoplex to human tumor xenografts in nude mice but also functionally expressed. In the nude mouse breast cancer metastasis model, the combination of the p53 gene delivered by the systemic administration of the TfRscFv-immunolipoplex and docetaxel resulted in significantly improved efficacy with prolonged survival. CONCLUSIONS: This is the first report using scFv-targeting immunolipoplexes for systemic gene therapy. The TfRscFv has a number of advantages over the transferrin (Tf) molecule itself: (1) scFv has a much smaller size than Tf producing a smaller immunolipoplex giving better penetration into solid tumors; (2) unlike Tf, the scFv is a recombinant protein, not a blood product; (3) large scale production and strict quality control of the recombinant scFv, as well as scFv-immunolipoplex, are feasible. The sensitization of tumors to chemotherapy by this tumor-targeted and efficient p53 gene delivery method could lower the effective dose of

  13. Oligopeptide complex for targeted non-viral gene delivery to adipocytes

    NASA Astrophysics Data System (ADS)

    Won, Young-Wook; Adhikary, Partho Protim; Lim, Kwang Suk; Kim, Hyung Jin; Kim, Jang Kyoung; Kim, Yong-Hee

    2014-12-01

    Commercial anti-obesity drugs acting in the gastrointestinal tract or the central nervous system have been shown to have limited efficacy and severe side effects. Anti-obesity drug development is thus focusing on targeting adipocytes that store excess fat. Here, we show that an adipocyte-targeting fusion-oligopeptide gene carrier consisting of an adipocyte-targeting sequence and 9-arginine (ATS-9R) selectively transfects mature adipocytes by binding to prohibitin. Injection of ATS-9R into obese mice confirmed specific binding of ATS-9R to fat vasculature, internalization and gene expression in adipocytes. We also constructed a short-hairpin RNA (shRNA) for silencing fatty-acid-binding protein 4 (shFABP4), a key lipid chaperone in fatty-acid uptake and lipid storage in adipocytes. Treatment of obese mice with ATS-9R/shFABP4 led to metabolic recovery and body-weight reduction (>20%). The ATS-9R/shFABP4 oligopeptide complex could prove to be a safe therapeutic approach to regress and treat obesity as well as obesity-induced metabolic syndromes.

  14. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum.

    PubMed

    Khang, Chang Hyun; Park, Sook-Young; Lee, Yong-Hwan; Kang, Seogchan

    2005-06-01

    Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the desired mutant. We developed an efficient method of gene replacement and evaluated factors affecting the efficiency of this method using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum. This method is based on Agrobacterium tumefaciens-mediated transformation with a mutant allele of the target gene flanked by the herpes simplex virus thymidine kinase (HSVtk) gene as a conditional negative selection marker against ectopic transformants. The HSVtk gene product converts 5-fluoro-2'-deoxyuridine to a compound toxic to diverse fungi. Because ectopic transformants express HSVtk, while gene replacement mutants lack HSVtk, growing transformants on a medium amended with 5-fluoro-2'-deoxyuridine facilitates the identification of targeted mutants by counter-selecting against ectopic transformants. In addition to M. grisea and F. oxysporum, the method and associated vectors are likely to be applicable to manipulating genes in a broad spectrum of fungi, thus potentially serving as an efficient, universal functional genomic tool for harnessing the growing body of fungal genome sequence data to study fungal biology.

  15. Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction.

    PubMed

    Araújo, Welington Luiz; Santos, Daiene Souza; Dini-Andreote, Francisco; Salgueiro-Londoño, Jennifer Katherine; Camargo-Neves, Aline Aparecida; Andreote, Fernando Dini; Dourado, Manuella Nóbrega

    2015-10-01

    The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in

  16. Integrative analysis of RUNX1 downstream pathways and target genes

    PubMed Central

    Michaud, Joëlle; Simpson, Ken M; Escher, Robert; Buchet-Poyau, Karine; Beissbarth, Tim; Carmichael, Catherine; Ritchie, Matthew E; Schütz, Frédéric; Cannon, Ping; Liu, Marjorie; Shen, Xiaofeng; Ito, Yoshiaki; Raskind, Wendy H; Horwitz, Marshall S; Osato, Motomi; Turner, David R; Speed, Terence P; Kavallaris, Maria; Smyth, Gordon K; Scott, Hamish S

    2008-01-01

    Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFβ, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both

  17. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma.

    PubMed

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-04-01

    Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.

  18. Investigation of miR-136-5p key target genes and pathways in lung squamous cell cancer based on TCGA database and bioinformatics analysis.

    PubMed

    Xie, Zu-Cheng; Li, Tian-Tian; Gan, Bin-Liang; Gao, Xiang; Gao, Li; Chen, Gang; Hu, Xiao-Hua

    2018-05-01

    Lung squamous cell cancer (LUSC) is a common but challenging malignancy. It is important to illuminate the molecular mechanism of LUSC. Thus, we aim to explore the molecular mechanism of miR-136-5p in relation to LUSC. We used the Cancer Genome Atlas (TCGA) database to investigate the expression of miR-136-5p in relation to LUSC. Then, we identified the possible miR-136-5p target genes through intersection of the predicted miR-136-5p target genes and LUSC upregulated genes from TCGA. Bioinformatics analysis was performed to determine the key miR-136-5p targets and pathways associated with LUSC. Finally, the expression of hub genes, correlation between miR-136-5p and hub genes, and expected significance of hub genes were evaluated via the TCGA and Genotype-Tissue Expression (GTEx) project. MiR-136-5p was significantly downregulated in LUSC patients. Glucuronidation, glucuronosyltransferase, and the retinoic acid metabolic process were the most enriched metabolic interactions in LUSC patients. Ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism were identified as crucial pathways. Seven hub genes (UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A10, SRD5A1, and ADH7) were found to be upregulated, and UGT1A1, UGT1A3, UGT1A6, UGT1A7, and ADH7 were negatively correlated with miR-136-5p. UGT1A7 and ADH7 were the most significantly involved miR-136-5p target genes, and high expression of these genes was correlated with better overall survival and disease-free survival of LUSC patients. Downregulated miR-136-5p may target UGT1A7 and ADH7 and participate in ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism. High expression of UGT1A7 and ADH7 may indicate better prognosis of LUSC patients. Copyright © 2018. Published by Elsevier GmbH.

  19. Immunotherapy Targets Common Cancer Mutation

    Cancer.gov

    In a study of an immune therapy for colorectal cancer that involved a single patient, researchers identified a method for targeting the cancer-causing protein produced by a mutant form of the KRAS gene.

  20. Driver genes in non-small cell lung cancer: Characteristics, detection methods, and targeted therapies

    PubMed Central

    He, Bing; Zhang, Hu-Qin

    2017-01-01

    Lung cancer is one of the most common causes of cancer-related death in the world. The large number of lung cancer cases is non-small cell lung cancer (NSCLC), which approximately accounting for 75% of lung cancer. Over the past years, our comprehensive knowledge about the molecular biology of NSCLC has been rapidly enriching, which has promoted the discovery of driver genes in NSCLC and directed FDA-approved targeted therapies. Of course, the targeted therapies based on driver genes provide a more exact option for advanced non-small cell lung cancer, improving the survival rate of patients. Now, we will review the landscape of driver genes in NSCLC including the characteristics, detection methods, the application of target therapy and challenges. PMID:28915704

  1. Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens.

    PubMed

    Sakakibara, Keiko; Nishiyama, Tomoaki; Sumikawa, Naomi; Kofuji, Rumiko; Murata, Takashi; Hasebe, Mitsuyasu

    2003-10-01

    Differentiation of epidermal cells is important for plants because they are in direct contact with the environment. Rhizoids are multicellular filaments that develop from the epidermis in a wide range of plants, including pteridophytes, bryophytes, and green algae; they have similar functions to root hairs in vascular plants in that they support the plant body and are involved in water and nutrient absorption. In this study, we examined mechanisms underlying rhizoid development in the moss, Physcomitrella patens, which is the only land plant in which high-frequency gene targeting is possible. We found that rhizoid development can be split into two processes: determination and differentiation. Two types of rhizoids with distinct developmental patterns (basal and mid-stem rhizoids) were recognized. The development of basal rhizoids from epidermal cells was induced by exogenous auxin, while that of mid-stem rhizoids required an unknown factor in addition to exogenous auxin. Once an epidermal cell had acquired a rhizoid initial cell fate, expression of the homeodomain-leucine zipper I gene Pphb7 was induced. Analysis of Pphb7 disruptant lines showed that Pphb7 affects the induction of pigmentation and the increase in the number and size of chloroplasts, but not the position or number of rhizoids. This is the first report on the involvement of a homeodomain-leucine zipper I gene in epidermal cell differentiation.

  2. Quantification of differential gene expression by multiplexed targeted resequencing of cDNA

    PubMed Central

    Arts, Peer; van der Raadt, Jori; van Gestel, Sebastianus H.C.; Steehouwer, Marloes; Shendure, Jay; Hoischen, Alexander; Albers, Cornelis A.

    2017-01-01

    Whole-transcriptome or RNA sequencing (RNA-Seq) is a powerful and versatile tool for functional analysis of different types of RNA molecules, but sample reagent and sequencing cost can be prohibitive for hypothesis-driven studies where the aim is to quantify differential expression of a limited number of genes. Here we present an approach for quantification of differential mRNA expression by targeted resequencing of complementary DNA using single-molecule molecular inversion probes (cDNA-smMIPs) that enable highly multiplexed resequencing of cDNA target regions of ∼100 nucleotides and counting of individual molecules. We show that accurate estimates of differential expression can be obtained from molecule counts for hundreds of smMIPs per reaction and that smMIPs are also suitable for quantification of relative gene expression and allele-specific expression. Compared with low-coverage RNA-Seq and a hybridization-based targeted RNA-Seq method, cDNA-smMIPs are a cost-effective high-throughput tool for hypothesis-driven expression analysis in large numbers of genes (10 to 500) and samples (hundreds to thousands). PMID:28474677

  3. Huntington's Disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database

    PubMed Central

    2012-01-01

    Background Huntington’s disease (HD) is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. Methods To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. Results Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling), but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling). For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are associated with HD, at http

  4. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hormone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes

    PubMed Central

    Wen, Gaiping; Eder, Klaus

    2017-01-01

    Endoplasmic reticulum (ER) stress is characterized by the accumulation of misfolded proteins due to an impairment of ER quality control pathways leading to the activation of a defense system, called unfolded protein response (UPR). While thyrocytes are supposed to be highly susceptible to environmental conditions that cause ER stress due to the synthesis of large amounts of secretory proteins required for thyroid hormone synthesis, systematic investigations on the effect of ER stress on expression of key genes of thyroid hormone synthesis and their transcriptional regulators are lacking. Since the aim of the ER stress-induced UPR is to restore ER homeostasis and to facilitate cell survival through transient shutdown of ribosomal protein translation, we hypothesized that the expression of genes involved in thyroid hormone synthesis and their transcriptional regulators, all of which are not essential for cell survival, are down-regulated in thyrocytes during ER stress, while sterol regulatory element-binding proteins (SREBPs) are activated during ER stress in thyrocytes. Treatment of FRTL-5 thyrocytes with the ER stress inducer tunicamycin (TM) dose-dependently increased the mRNA and/or protein levels of known UPR target genes, stimulated phosphorylation of the ER stress sensor protein kinase RNA-like ER kinase (PERK) and of the PERK target protein eukaryotic initiation factor 2α (eIF2α) and caused splicing of the ER stress-sensitive transcription factor X-box binding protein (XBP-1) (P < 0.05). The mRNA levels and/or protein levels of genes involved in thyroid hormone synthesis, sodium/iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), their transcriptional regulators and thyrotropin (TSH) receptor and the uptake of Na125I were reduced at the highest concentration of TM tested (0.1 μg/mL; P < 0.05). Proteolytic activation of the SREBP-1c pathway was not observed in FRTL-5 cells treated with TM, whereas TM reduced proteolytic activation of

  5. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hormone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes.

    PubMed

    Wen, Gaiping; Ringseis, Robert; Eder, Klaus

    2017-01-01

    Endoplasmic reticulum (ER) stress is characterized by the accumulation of misfolded proteins due to an impairment of ER quality control pathways leading to the activation of a defense system, called unfolded protein response (UPR). While thyrocytes are supposed to be highly susceptible to environmental conditions that cause ER stress due to the synthesis of large amounts of secretory proteins required for thyroid hormone synthesis, systematic investigations on the effect of ER stress on expression of key genes of thyroid hormone synthesis and their transcriptional regulators are lacking. Since the aim of the ER stress-induced UPR is to restore ER homeostasis and to facilitate cell survival through transient shutdown of ribosomal protein translation, we hypothesized that the expression of genes involved in thyroid hormone synthesis and their transcriptional regulators, all of which are not essential for cell survival, are down-regulated in thyrocytes during ER stress, while sterol regulatory element-binding proteins (SREBPs) are activated during ER stress in thyrocytes. Treatment of FRTL-5 thyrocytes with the ER stress inducer tunicamycin (TM) dose-dependently increased the mRNA and/or protein levels of known UPR target genes, stimulated phosphorylation of the ER stress sensor protein kinase RNA-like ER kinase (PERK) and of the PERK target protein eukaryotic initiation factor 2α (eIF2α) and caused splicing of the ER stress-sensitive transcription factor X-box binding protein (XBP-1) (P < 0.05). The mRNA levels and/or protein levels of genes involved in thyroid hormone synthesis, sodium/iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), their transcriptional regulators and thyrotropin (TSH) receptor and the uptake of Na125I were reduced at the highest concentration of TM tested (0.1 μg/mL; P < 0.05). Proteolytic activation of the SREBP-1c pathway was not observed in FRTL-5 cells treated with TM, whereas TM reduced proteolytic activation of

  6. Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes.

    PubMed

    Marui, Junichiro; Yoshimi, Akira; Hagiwara, Daisuke; Fujii-Watanabe, Yoshimi; Oda, Ken; Koike, Hideaki; Tamano, Koichi; Ishii, Tomoko; Sano, Motoaki; Machida, Masayuki; Abe, Keietsu

    2010-08-01

    Demand for novel antifungal drugs for medical and agricultural uses has been increasing because of the diversity of pathogenic fungi and the emergence of drug-resistant strains. Genomic resources for various living species, including pathogenic fungi, can be utilized to develop novel and effective antifungal compounds. We used Aspergillus oryzae as a model to construct a reporter system for exploring novel antifungal compounds and their target genes. The comprehensive gene expression analysis showed that the actin-encoding actB gene was transcriptionally highly induced by benomyl treatment. We therefore used the actB gene to construct a novel reporter system for monitoring responses to cytoskeletal stress in A. oryzae by introducing the actB promoter::EGFP fusion gene. Distinct fluorescence was observed in the reporter strain with minimum background noise in response to not only benomyl but also compounds inhibiting lipid metabolism that is closely related to cell membrane integrity. The fluorescent responses indicated that the reporter strain can be used to screen for lead compounds affecting fungal microtubule and cell membrane integrity, both of which are attractive antifungal targets. Furthermore, the reporter strain was shown to be technically applicable for identifying novel target genes of antifungal drugs triggering perturbation of fungal microtubules or membrane integrity.

  7. [Identification of Clonorchis sinensis metacercariae based on PCR targeting ribosomal DNA ITS regions and COX1 gene].

    PubMed

    Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Yang, Yi-Chao; Li, Hong-Mei; Chen, Ying-Dan; Zhou, Xiao-Nong

    2014-06-01

    To identify Clonorchis sinensis metacercariae using PCR targeting ribosomal DNA ITS region and COX1 gene. Pseudorasbora parva were collected from Hengxian County of Guangxi at the end of May 2013. Single metacercaria of C. sinensis and other trematodes were separated from muscle tissue of P. parva by digestion method. Primers targeting ribosomal DNA ITS region and COX1 gene of C. sinensis were designed for PCR and the universal primers were used as control. The sensitivity and specificity of the PCR detection were analyzed. C. sinensis metacercariae at different stages were identified by PCR. DNA from single C. sinensis metacercaria was detected by PCR targeting ribosomal DNA ITS region and COX1 gene. The specific amplicans have sizes of 437/549, 156/249 and 195/166 bp, respectively. The ratio of the two positive numbers in PCR with universal primers and specific primers targeting C. sinensis ribosomal DNA ITS1 and ITS2 regions was 0.905 and 0.952, respectively. The target gene fragments were amplified by PCR using COX1 gene-specific primers. The PCR with specific primers did not show any non-specific amplification. However, the PCR with universal primers targeting ribosomal DNA ITS regions performed serious non-specific amplification. C. sinensis metacercariae at different stages are identified by morphological observation and PCR method. Species-specific primers targeting ribosomal DNA ITS region show higher sensitivity and specificity than the universal primers. PCR targeting COX1 gene shows similar sensitivity and specificity to PCR with specific primers targeting ribosomal DNA ITS regions.

  8. ESTs Analysis Reveals Putative Genes Involved in Symbiotic Seed Germination in Dendrobium officinale

    PubMed Central

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobium officinale (Orchidaceae) is one of the world’s most endangered plants with great medicinal value. In nature, D . officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D . officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e-5). Based on sequence similarity with known proteins, 579 differentially expressed genes in D . officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D . officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D . officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids. PMID:23967335

  9. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale.

    PubMed

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobiumofficinale (Orchidaceae) is one of the world's most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e(-5)). Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.

  10. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria.

    PubMed

    Coutinho, Eduarda; Batista, Cátia; Sousa, Fani; Queiroz, João; Costa, Diana

    2017-03-06

    Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.

  11. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    PubMed

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  12. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress.

    PubMed

    Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan

    2014-10-01

    The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxtail millet (Setaria italica). The transcript level of SiARDP increased not only after drought, high salt, and low temperature stresses, but also after an ABA treatment in foxtail millet seedlings. Two ABA-responsive elements (ABRE1: ACGTGTC; ABRE2: ACGTGGC) exist in the promoter of SiARDP. Further analyses showed that two ABA-responsive element binding (AREB)-type transcription factors, SiAREB1 and SiAREB2, could physically bind to the ABRE core element in vitro and in vivo. The constitutive expression of SiARDP in Arabidopsis thaliana enhanced drought and salt tolerance during seed germination and seedling development, and overexpression of SiARDP in foxtail millet improved drought tolerance. The expression levels of target genes of SiARDP were upregulated in transgenic Arabidopsis and foxtail millet. These results reveal that SiARDP, one of the target genes of SiAREB, is involved in ABA-dependent signal pathways and plays a critical role in the abiotic stress response in plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Smoking and alcoholism target genes associated with plasticity and glutamate transmission in the human ventral tegmental area.

    PubMed

    Flatscher-Bader, T; Zuvela, N; Landis, N; Wilce, P A

    2008-01-01

    Drugs of abuse including nicotine and alcohol elicit their effect by stimulating the mesocorticolimbic dopaminergic system. There is a high incidence of nicotine dependence in alcoholics. To date only limited data is available on the molecular mechanism underlying the action of alcohol and nicotine in the human brain. This study utilized gene expression screening to identify genes sensitive to chronic alcohol abuse within the ventral tegmental area (VTA) of the human brain. Alcohol-responsive genes encoded proteins primarily involved in structural plasticity and neurotransmitter transport and release. In particular, genes involved with brain-derived neurotrophic factor signalling and glutamatergic transmission were found to be affected. The possibility that glutamate transport was a target of chronic alcohol and/or tobacco abuse was further investigated in an extended case set by measurement of mRNA and protein expression. Expression levels of vesicular glutamate transporters SLC17A6 and SLC17A7 were robustly induced by smoking, an effect that was reduced by alcohol co-exposure. Glutamatergic transmission is vital for the control of the VTA and may also be critical to the weighting of novelty and importance of a stimulus, an essential output of this brain region. We conclude that enduring plasticity within the VTA may be a major molecular mechanism for the maintenance of smoking addiction and that alcohol, nicotine and co-abuse have distinct impacts on glutamatergic transmission with important implications for the control of this core mesolimbic structure.

  14. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia

    PubMed Central

    Kojima, Kenji K.

    2015-01-01

    Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an “archaeal” RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes. PMID:26556480

  15. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy

    PubMed Central

    2011-01-01

    Background DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery. Results We have observed that (1) the Tol2 transposase (but not piggyBac) is highly sensitive to molecular engineering; (2) the piggyBac donor with only the 40 bp 3'-and 67 bp 5'-terminal repeat domain is sufficient for effective transposition; and (3) a small amount of piggyBac transposases results in robust transposition suggesting the piggyBac transpospase is highly active. Performing genome-wide target profiling on data sets obtained by retrieving chromosomal targeting sequences from individual clones, we have identified several piggyBac and Tol2 hotspots and observed that (4) piggyBac and Tol2 display a clear difference in targeting preferences in the human genome. Finally, we have observed that (5) only sites with a particular sequence context can be targeted by either piggyBac or Tol2. Conclusions The non-overlapping targeting preference of piggyBac and Tol2 makes them complementary research tools for manipulating mammalian genomes. PiggyBac is the most promising transposon-based vector system for achieving site-specific targeting of therapeutic genes due to the flexibility of its transposase for being molecularly engineered. Insights from this study will provide a basis for engineering piggyBac transposases to achieve site-specific therapeutic gene targeting. PMID:21447194

  16. Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farhat, Amani; National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3; Buick, Julie K.

    We previously demonstrated that in ovo exposure to the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) decreased plasma thyroxine levels, reduced growth parameters, and decreased gallbladder size in chicken embryos. In the current study DNA microarrays were used to evaluate global mRNA expression in liver tissue of male chicken embryos that exhibited the above mentioned effects. Injected doses were dimethyl sulfoxide vehicle control, 7.6 or 45 μg TDCPP/g egg. TDCPP caused significant changes in the expression of five genes at the low dose and 47 genes at the high dose (False Discovery Rate p ≤ 0.1, fold change ≥ 1.5). The genemore » expression analysis suggested a compromised immune function, a state of cholestatic liver/biliary fibrosis, and disrupted lipid and steroid metabolism. Circulating bile acid levels were elevated, which is an indication of liver dysfunction, and plasma cholesterol levels were reduced; however, hepatic bile acid and cholesterol levels were unaltered. Interactome analyses identified apolipoprotein E, hepatocyte nuclear factor 4 alpha, and peroxisome proliferator-activated receptor alpha as key regulatory molecules involved in the effects of TDCPP. Our results demonstrate a targeted effect of TDCPP toxicity on lipid metabolism, including cholesterol, that helps explain the aforementioned phenotypic effects, as chicken embryos are highly dependent on yolk lipids for growth and maintenance throughout development. Finally, our results are in concordance with the literature that describes TDCPP as a cancer-causing agent, since the majority of dysregulated genes were involved in cancer pathways. - Highlights: • TDCPP dysregulates genes involved in immune function and lipid metabolism. • A targeted effect of TDCPP toxicity on cholesterol metabolism is apparent. • A state of cholestatic liver fibrosis is suggested by the expression profile. • Elevated plasma bile acids suggest that TDCPP causes liver dysfunction.« less

  17. Gene targeting and cloning in pigs using fetal liver derived cells.

    PubMed

    Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph

    2011-12-01

    Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. [Regulation of the β-globin gene family expression, useful in the search for new therapeutic targets for hemoglobinopathies].

    PubMed

    Scheps, Karen G; Varela, Viviana

    Different hemoglobin isoforms are expressed during the embryonic, fetal and postnatal stages. They are formed by combination of polypeptide chains synthesized from the α- and β-globin gene clusters. Based on the fact that the presence of high hemoglobin F levels is beneficial in both sickle cell disease and severe thalassemic syndromes, a revision of the regulation of the β-globin cluster expression is proposed, especially regarding the genes encoding the y-globin chains (HBG1 and HBG2). In this review we describe the current knowledge about transcription factors and epigenetic regulators involved in the switches of the β-globin cluster. It is expected that the consolidation of knowledge in this field will allow finding new therapeutic targets for the treatment of hemoglobinopathies.

  19. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9.

    PubMed

    Honda, Arata; Hirose, Michiko; Sankai, Tadashi; Yasmin, Lubna; Yuzawa, Kazuaki; Honsho, Kimiko; Izu, Haruna; Iguchi, Atsushi; Ikawa, Masahito; Ogura, Atsuo

    2015-01-01

    Targeted genome editing of nonrodent mammalian species has provided the potential for highly accurate interventions into gene function in humans and the generation of useful animal models of human diseases. Here we show successful clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas)-mediated gene targeting via circular plasmid injection in rabbits. The rabbit tyrosinase gene (TYR) was effectively disrupted, and we confirmed germline transmission by pronuclear injection of a circular plasmid expressing humanized Cas9 (hCas9) and single-guide RNA. Direct injection into pronuclear stage zygotes was possible following an in vitro validation assay. Neither off-target mutagenesis nor hCas9 transgenesis was detected in any of the genetically targeted pups and embryos examined. Gene targeting with this rapid and simplified strategy will help accelerate the development of translational research using other nonrodent mammalian species.

  20. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9

    PubMed Central

    Honda, Arata; Hirose, Michiko; Sankai, Tadashi; Yasmin, Lubna; Yuzawa, Kazuaki; Honsho, Kimiko; Izu, Haruna; Iguchi, Atsushi; Ikawa, Masahito; Ogura, Atsuo

    2014-01-01

    Targeted genome editing of nonrodent mammalian species has provided the potential for highly accurate interventions into gene function in humans and the generation of useful animal models of human diseases. Here we show successful clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas)-mediated gene targeting via circular plasmid injection in rabbits. The rabbit tyrosinase gene (TYR) was effectively disrupted, and we confirmed germline transmission by pronuclear injection of a circular plasmid expressing humanized Cas9 (hCas9) and single-guide RNA. Direct injection into pronuclear stage zygotes was possible following an in vitro validation assay. Neither off-target mutagenesis nor hCas9 transgenesis was detected in any of the genetically targeted pups and embryos examined. Gene targeting with this rapid and simplified strategy will help accelerate the development of translational research using other nonrodent mammalian species. PMID:25195632

  1. [Construction and expression of the targeting super-antigen EGF-SEA fusion gene].

    PubMed

    Xie, Yang; Peng, Shaoping; Liao, Zhiying; Liu, Jiafeng; Liu, Xuemei; Chen, Weifeng

    2014-05-01

    To construct expression vector for the SEA-EGF fusion gene. Clone the SEA gene and the EGF gene segment with PCR and RT-PCR independently, and connect this two genes by the bridge PCR. Insert the fusion gene EGF-SEA into the expression vector PET-44. Induced the secretion of the fusion protein SEA-EGF by the antileptic. The gene fragment encoding EGF and SEA mature peptide was successfully cloned. The fusion gene EGF-SEA was successfully constructed and was inserted into expression vector. The new recombinant expression vector for fusion gene EGF-SEA is specific for head and neck cancer, laid the foundation for the further study of fusion protein SEA-EGF targeting immune therapy in head and neck tumors.

  2. Selection and Validation of Reference Genes for qRT-PCR Expression Analysis of Candidate Genes Involved in Olfactory Communication in the Butterfly Bicyclus anynana

    PubMed Central

    Arun, Alok; Baumlé, Véronique; Amelot, Gaël; Nieberding, Caroline M.

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression

  3. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    PubMed

    Arun, Alok; Baumlé, Véronique; Amelot, Gaël; Nieberding, Caroline M

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression

  4. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma

    PubMed Central

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P.; Al-Hendy, Ayman

    2016-01-01

    Background: Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. Study design: An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Materials and methods: Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. Results: In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Conclusion: Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. PMID:26884457

  5. The genetic regulatory network centered on Pto-Wuschela and its targets involved in wood formation revealed by association studies.

    PubMed

    Yang, Xiaohui; Wei, Zunzheng; Du, Qingzhang; Chen, Jinhui; Wang, Qingshi; Quan, Mingyang; Song, Yuepeng; Xie, Jianbo; Zhang, Deqiang

    2015-11-09

    Transcription factors (TFs) regulate gene expression and can strongly affect phenotypes. However, few studies have examined TF variants and TF interactions with their targets in plants. Here, we used genetic association in 435 unrelated individuals of Populus tomentosa to explore the variants in Pto-Wuschela and its targets to decipher the genetic regulatory network of Pto-Wuschela. Our bioinformatics and co-expression analysis identified 53 genes with the motif TCACGTGA as putative targets of Pto-Wuschela. Single-marker association analysis showed that Pto-Wuschela was associated with wood properties, which is in agreement with the observation that it has higher expression in stem vascular tissues in Populus. Also, SNPs in the 53 targets were associated with growth or wood properties under additive or dominance effects, suggesting these genes and Pto-Wuschela may act in the same genetic pathways that affect variation in these quantitative traits. Epistasis analysis indicated that 75.5% of these genes directly or indirectly interacted Pto-Wuschela, revealing the coordinated genetic regulatory network formed by Pto-Wuschela and its targets. Thus, our study provides an alternative method for dissection of the interactions between a TF and its targets, which will strength our understanding of the regulatory roles of TFs in complex traits in plants.

  6. HisB as novel selection marker for gene targeting approaches in Aspergillus niger.

    PubMed

    Fiedler, Markus R M; Gensheimer, Tarek; Kubisch, Christin; Meyer, Vera

    2017-03-08

    For Aspergillus niger, a broad set of auxotrophic and dominant resistance markers is available. However, only few offer targeted modification of a gene of interest into or at a genomic locus of choice, which hampers functional genomics studies. We thus aimed to extend the available set by generating a histidine auxotrophic strain with a characterized hisB locus for targeted gene integration and deletion in A. niger. A histidine-auxotrophic strain was established via disruption of the A. niger hisB gene by using the counterselectable pyrG marker. After curing, a hisB - , pyrG - strain was obtained, which served as recipient strain for further studies. We show here that both hisB orthologs from A. nidulans and A. niger can be used to reestablish histidine prototrophy in this recipient strain. Whereas the hisB gene from A. nidulans was suitable for efficient gene targeting at different loci in A. niger, the hisB gene from A. niger allowed efficient integration of a Tet-on driven luciferase reporter construct at the endogenous non-functional hisB locus. Subsequent analysis of the luciferase activity revealed that the hisB locus is tight under non-inducing conditions and allows even higher luciferase expression levels compared to the pyrG integration locus. Taken together, we provide here an alternative selection marker for A. niger, hisB, which allows efficient homologous integration rates as well as high expression levels which compare favorably to the well-established pyrG selection marker.

  7. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement

    PubMed Central

    Prasad, Megana K; Geoffroy, Véronique; Vicaire, Serge; Jost, Bernard; Dumas, Michael; Le Gras, Stéphanie; Switala, Marzena; Gasse, Barbara; Laugel-Haushalter, Virginie; Paschaki, Marie; Leheup, Bruno; Droz, Dominique; Dalstein, Amelie; Loing, Adeline; Grollemund, Bruno; Muller-Bolla, Michèle; Lopez-Cazaux, Séréna; Minoux, Maryline; Jung, Sophie; Obry, Frédéric; Vogt, Vincent; Davideau, Jean-Luc; Davit-Beal, Tiphaine; Kaiser, Anne-Sophie; Moog, Ute; Richard, Béatrice; Morrier, Jean-Jacques; Duprez, Jean-Pierre; Odent, Sylvie; Bailleul-Forestier, Isabelle; Rousset, Monique Marie; Merametdijan, Laure; Toutain, Annick; Joseph, Clara; Giuliano, Fabienne; Dahlet, Jean-Christophe; Courval, Aymeric; El Alloussi, Mustapha; Laouina, Samir; Soskin, Sylvie; Guffon, Nathalie; Dieux, Anne; Doray, Bérénice; Feierabend, Stephanie; Ginglinger, Emmanuelle; Fournier, Benjamin; de la Dure Molla, Muriel; Alembik, Yves; Tardieu, Corinne; Clauss, François; Berdal, Ariane; Stoetzel, Corinne; Manière, Marie Cécile; Dollfus, Hélène; Bloch-Zupan, Agnès

    2016-01-01

    Background Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. Methods We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. Results We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. Conclusions We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. Trial registration numbers NCT01746121 and NCT02397824. PMID:26502894

  8. Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina

    NASA Astrophysics Data System (ADS)

    Mancuso, Katherine; Hendrickson, Anita E.; Connor, Thomas B., Jr.; Mauck, Matthew C.; Kinsella, James J.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen

    2007-05-01

    Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy of photoreceptor-based diseases. Previous studies have demonstrated that rAAV serotypes 2 and 5 can transduce both rod and cone photoreceptors in rodents and dogs, and it can target rods, but not cones in primates. Here we report that using a human cone-specific enhancer and promoter to regulate expression of a green fluorescent protein (GFP) reporter gene in an rAAV-5 vector successfully targeted expression of the reporter gene to primate cones, and the time course of GFP expression was able to be monitored in a living animal using the RetCam II digital imaging system.

  9. Polymorphisms of genes involved in polycyclic aromatic hydrocarbons’ biotransformation and atherosclerosis

    PubMed Central

    Marinković, Natalija; Pašalić, Daria; Potočki, Slavica

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most prevalent environmental pollutants and result from the incomplete combustion of hydrocarbons (coal and gasoline, fossil fuel combustion, byproducts of industrial processing, natural emission, cigarette smoking, etc.). The first phase of xenobiotic biotransformation in the PAH metabolism includes activities of cytochrome P450 from the CYP1 family and microsomal epoxide hydrolase. The products of this biotransformation are reactive oxygen species that are transformed in the second phase through the formation of conjugates with glutathione, glucuronate or sulphates. PAH exposure may lead to PAH-DNA adduct formation or induce an inflammatory atherosclerotic plaque phenotype. Several genetic polymorphisms of genes encoded for enzymes involved in PAH biotransformation have been proven to lead to the development of diseases. Enzyme CYP P450 1A1, which is encoded by the CYP1A1 gene, is vital in the monooxygenation of lipofilic substrates, while GSTM1 and GSTT1 are the most abundant isophorms that conjugate and neutralize oxygen products. Some single nucleotide polymorphisms of the CYP1A1 gene as well as the deletion polymorphisms of GSTT1 and GSTM1 may alter the final specific cellular inflammatory respond. Occupational exposure or conditions from the living environment can contribute to the production of PAH metabolites with adverse effects on human health. The aim of this study was to obtain data on biotransformation and atherosclerosis, as well as data on the gene polymorphisms involved in biotransformation, in order to better study gene expression and further elucidate the interaction between genes and the environment. PMID:24266295

  10. Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Kohei; Fujiki, Katsunori; Shirahige, Katsuhiko

    Highlights: • We define a target gene of MR as that with MR-binding to the adjacent region of DNA. • We use ChIP-seq analysis in combination with microarray. • We, for the first time, explore the genome-wide binding profile of MR. • We reveal 5 genes as the direct target genes of MR in the renal epithelial cell-line. - Abstract: Background and objective: Mineralocorticoid receptor (MR) is a member of nuclear receptor family proteins and contributes to fluid homeostasis in the kidney. Although aldosterone-MR pathway induces several gene expressions in the kidney, it is often unclear whether the gene expressionsmore » are accompanied by direct regulations of MR through its binding to the regulatory region of each gene. The purpose of this study is to identify the direct target genes of MR in a murine distal convoluted tubular epithelial cell-line (mDCT). Methods: We analyzed the DNA samples of mDCT cells overexpressing 3xFLAG-hMR after treatment with 10{sup −7} M aldosterone for 1 h by chromatin immunoprecipitation with deep-sequence (ChIP-seq) and mRNA of the cell-line with treatment of 10{sup −7} M aldosterone for 3 h by microarray. Results: 3xFLAG-hMR overexpressed in mDCT cells accumulated in the nucleus in response to 10{sup −9} M aldosterone. Twenty-five genes were indicated as the candidate target genes of MR by ChIP-seq and microarray analyses. Five genes, Sgk1, Fkbp5, Rasl12, Tns1 and Tsc22d3 (Gilz), were validated as the direct target genes of MR by quantitative RT-qPCR and ChIP-qPCR. MR binding regions adjacent to Ctgf and Serpine1 were also validated. Conclusions: We, for the first time, captured the genome-wide distribution of MR in mDCT cells and, furthermore, identified five MR target genes in the cell-line. These results will contribute to further studies on the mechanisms of kidney diseases.« less

  11. MADS-box genes in maize: Frequent targets of selection during domestication

    USDA-ARS?s Scientific Manuscript database

    MADS-box genes encode transcription factors that are key regulators of plant inflorescence and flower development. We examined DNA sequence variation in 32 maize MADS-box genes and 32 random loci from the maize genome and investigated their involvement in maize domestication and improvement. Using n...

  12. Efficient and Heritable Gene Targeting in Tilapia by CRISPR/Cas9

    PubMed Central

    Li, Minghui; Yang, Huihui; Zhao, Jiue; Fang, Lingling; Shi, Hongjuan; Li, Mengru; Sun, Yunlv; Zhang, Xianbo; Jiang, Dongneng; Zhou, Linyan; Wang, Deshou

    2014-01-01

    Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nanos2, nanos3, dmrt1, and foxl2, with efficiencies as high as 95%. In addition, mutations in dmrt1 and foxl2 induced by CRISPR/Cas9 were efficiently transmitted through the germline to F1. Obvious phenotypes were observed in the G0 generation after mutation of germ cell or somatic cell-specific genes. For example, loss of Nanos2 and Nanos3 in XY and XX fish resulted in germ cell-deficient gonads as demonstrated by GFP labeling and Vasa staining, respectively, while masculinization of somatic cells in both XY and XX gonads was demonstrated by Dmrt1 and Cyp11b2 immunohistochemistry and by up-regulation of serum androgen levels. Our data demonstrate that targeted, heritable gene editing can be achieved in tilapia, providing a convenient and effective approach for generating loss-of-function mutants. Furthermore, our study shows the utility of the CRISPR/Cas9 system for genetic engineering in non-model species like tilapia and potentially in many other teleost species. PMID:24709635

  13. [Expression of miR-21 and Its Acat1, Armcx1, and Pten Target Genes in Liver of Female Rats Treated with DDT and Benzo[a]pyrene].

    PubMed

    Chanyshev, M D; Ushakov, D S; Gulyaeva, L F

    2017-01-01

    MiR-21 is the most studied cancer-promoting oncomiR, which target numerous tumor suppressor genes associated with proliferation, apoptosis, and invasion. Here we have studied the synthesis of miR-21 and quantified the mRNA and protein levels for miR-21 potential target genes, i.e., Acat1, Armcx1, and Pten, in the livers of female Wistar rats after their treatment with either 1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) or benzo[a]pyrene (BP). The most important finding appears to be the significant decrease in the miR-21 level the day after treatment with DDT with subsequent rebound. These changes are accompanied by an increase and subsequent drop in the levels of mRNAs and proteins of the Acat1, Armcx1, and Pten genes. These observations indicate the involvement of miR-21 in the posttranscriptional regulation of the Acat1, Armcx1, and Pten genes in response to xenobiotics. We hypothesize that the toxic effects of xenobiotics may be indirect and may manifest by inducing epigenetic changes, particularly through the regulation of miRNAs and their target genes.

  14. Re-Factoring Glycolytic Genes for Targeted Engineering of Catabolism in Gram-Negative Bacteria.

    PubMed

    Sánchez-Pascuala, Alberto; Nikel, Pablo I; de Lorenzo, Víctor

    2018-01-01

    The Embden-Meyerhof-Parnas (EMP) pathway is widely accepted to be the biochemical standard of glucose catabolism. The well-characterized glycolytic route of Escherichia coli, based on the EMP catabolism, is an example of an intricate pathway in terms of genomic organization of the genes involved and patterns of gene expression and regulation. This intrinsic genetic and metabolic complexity renders it difficult to engineer glycolytic activities and transfer them onto other microbial cell factories, thus limiting the biotechnological potential of bacterial hosts that lack the route. Taking into account the potential applications of such a portable tool for targeted pathway engineering, in the present protocol we describe how the genes encoding all the enzymes of the linear EMP route have been individually recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals, and synthesized de novo following a standard (i.e., GlucoBrick) that facilitates their grouping in the form of functional modules that can be combined at the user's will. This novel genetic tool allows for the à la carte implementation or boosting of EMP pathway activities into different Gram-negative bacteria. The potential of the GlucoBrick platform is further illustrated by engineering novel glycolytic activities in the most representative members of the Pseudomonas genus (Pseudomonas putida and Pseudomonas aeruginosa).

  15. Identification of new developmentally regulated genes involved in Streptomyces coelicolor sporulation.

    PubMed

    Salerno, Paola; Persson, Jessica; Bucca, Giselda; Laing, Emma; Ausmees, Nora; Smith, Colin P; Flärdh, Klas

    2013-12-05

    The sporulation of aerial hyphae of Streptomyces coelicolor is a complex developmental process. Only a limited number of the genes involved in this intriguing morphological differentiation programme are known, including some key regulatory genes. The aim of this study was to expand our knowledge of the gene repertoire involved in S. coelicolor sporulation. We report a DNA microarray-based investigation of developmentally controlled gene expression in S. coelicolor. By comparing global transcription patterns of the wild-type parent and two mutants lacking key regulators of aerial hyphal sporulation, we found a total of 114 genes that had significantly different expression in at least one of the two mutants compared to the wild-type during sporulation. A whiA mutant showed the largest effects on gene expression, while only a few genes were specifically affected by whiH mutation. Seven new sporulation loci were investigated in more detail with respect to expression patterns and mutant phenotypes. These included SCO7449-7451 that affect spore pigment biogenesis; SCO1773-1774 that encode an L-alanine dehydrogenase and a regulator-like protein and are required for maturation of spores; SCO3857 that encodes a protein highly similar to a nosiheptide resistance regulator and affects spore maturation; and four additional loci (SCO4421, SCO4157, SCO0934, SCO1195) that show developmental regulation but no overt mutant phenotype. Furthermore, we describe a new promoter-probe vector that takes advantage of the red fluorescent protein mCherry as a reporter of cell type-specific promoter activity. Aerial hyphal sporulation in S. coelicolor is a technically challenging process for global transcriptomic investigations since it occurs only as a small fraction of the colony biomass and is not highly synchronized. Here we show that by comparing a wild-type to mutants lacking regulators that are specifically affecting processes in aerial hypha, it is possible to identify previously

  16. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5☆

    PubMed Central

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)–deficient (Nrf2−⧸−) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2−⧸− mouse livers were lower than that in wild-type mouse livers. Nrf2−⧸− mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression. PMID:24494203

  17. Microarray and differential display identify genes involved in jasmonate-dependent anther development.

    PubMed

    Mandaokar, Ajin; Kumar, V Dinesh; Amway, Matt; Browse, John

    2003-07-01

    Jasmonate (JA) is a signaling compound essential for anther development and pollen fertility in Arabidopsis. Mutations that block the pathway of JA synthesis result into male sterility. To understand the processes of anther and pollen maturation, we used microarray and differential display approaches to compare gene expression pattern in anthers of wild-type Arabidopsis and the male-sterile mutant, opr3. Microarray experiment revealed 25 genes that were up-regulated more than 1.8-fold in wild-type anthers as compared to mutant anthers. Experiments based on differential display identified 13 additional genes up-regulated in wild-type anthers compared to opr3 for a total of 38 differentially expressed genes. Searches of the Arabidopsis and non-redundant databases disclosed known or likely functions for 28 of the 38 genes identified, while 10 genes encode proteins of unknown function. Northern blot analysis of eight representative clones as probes confirmed low expression in opr3 anthers compared with wild-type anthers. JA responsiveness of these same genes was also investigated by northern blot analysis of anther RNA isolated from wild-type and opr3 plants, In these experiments, four genes were induced in opr3 anthers within 0.5-1 h of JA treatment while the remaining genes were up-regulated only 1-8 h after JA application. None of these genes was induced by JA in anthers of the coil mutant that is deficient in JA responsiveness. The four early-induced genes in opr3 encode lipoxygenase, a putative bHLH transcription factor, epithiospecifier protein and an unknown protein. We propose that these and other early components may be involved in JA signaling and in the initiation of developmental processes. The four late genes encode an extensin-like protein, a peptide transporter and two unknown proteins, which may represent components required later in anther and pollen maturation. Transcript profiling has provided a successful approach to identify genes involved in

  18. The Esg Gene Is Involved in Nicotine Sensitivity in Drosophila melanogaster

    PubMed Central

    Reyes-Taboada, José Luis; Covarrubias, Alejandra A; Narvaez-Padilla, Verónica; Reynaud, Enrique

    2015-01-01

    In humans, there is a strong correlation between sensitivity to substances of abuse and addiction risk. This differential tolerance to drugs has a strong genetic component. The identification of human genetic factors that alter drug tolerance has been a difficult task. For this reason and taking advantage of the fact that Drosophila responds similarly to humans to many drugs, and that genetically it has a high degree of homology (sharing at least 70% of genes known to be involved in human genetic diseases), we looked for genes in Drosophila that altered their nicotine sensitivity. We developed an instantaneous nicotine vaporization technique that exposed flies in a reproducible way. The amount of nicotine sufficient to “knock out” half of control flies for 30 minutes was determined and this parameter was defined as Half Recovery Time (HRT). Two fly lines, L4 and L70, whose HRT was significantly longer than control´s were identified. The L4 insertion is a loss of function allele of the transcriptional factor escargot (esg), whereas L70 insertion causes miss-expression of the microRNA cluster miR-310-311-312-313 (miR-310c). In this work, we demonstrate that esg loss of function induces nicotine sensitivity possibly by altering development of sensory organs and neurons in the medial section of the thoracoabdominal ganglion. The ectopic expression of the miR-310c also induces nicotine sensitivity by lowering Esg levels thus disrupting sensory organs and possibly to the modulation of other miR-310c targets. PMID:26222315

  19. The Esg Gene Is Involved in Nicotine Sensitivity in Drosophila melanogaster.

    PubMed

    Sanchez-Díaz, Iván; Rosales-Bravo, Fernando; Reyes-Taboada, José Luis; Covarrubias, Alejandra A; Narvaez-Padilla, Verónica; Reynaud, Enrique

    2015-01-01

    In humans, there is a strong correlation between sensitivity to substances of abuse and addiction risk. This differential tolerance to drugs has a strong genetic component. The identification of human genetic factors that alter drug tolerance has been a difficult task. For this reason and taking advantage of the fact that Drosophila responds similarly to humans to many drugs, and that genetically it has a high degree of homology (sharing at least 70% of genes known to be involved in human genetic diseases), we looked for genes in Drosophila that altered their nicotine sensitivity. We developed an instantaneous nicotine vaporization technique that exposed flies in a reproducible way. The amount of nicotine sufficient to "knock out" half of control flies for 30 minutes was determined and this parameter was defined as Half Recovery Time (HRT). Two fly lines, L4 and L70, whose HRT was significantly longer than control´s were identified. The L4 insertion is a loss of function allele of the transcriptional factor escargot (esg), whereas L70 insertion causes miss-expression of the microRNA cluster miR-310-311-312-313 (miR-310c). In this work, we demonstrate that esg loss of function induces nicotine sensitivity possibly by altering development of sensory organs and neurons in the medial section of the thoracoabdominal ganglion. The ectopic expression of the miR-310c also induces nicotine sensitivity by lowering Esg levels thus disrupting sensory organs and possibly to the modulation of other miR-310c targets.

  20. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals.

    PubMed

    Qi, Jingjing; Yu, Yong; Akilli Öztürk, Özlem; Holland, Jane D; Besser, Daniel; Fritzmann, Johannes; Wulf-Goldenberg, Annika; Eckert, Klaus; Fichtner, Iduna; Birchmeier, Walter

    2016-10-01

    We have previously identified a 115-gene signature that characterises the metastatic potential of human primary colon cancers. The signature included the canonical Wnt target gene BAMBI, which promoted experimental metastasis in mice. Here, we identified three new direct Wnt target genes from the signature, and studied their functions in epithelial-mesenchymal transition (EMT), cell migration and experimental metastasis. We examined experimental liver metastases following injection of selected tumour cells into spleens of NOD/SCID mice. Molecular and cellular techniques were used to identify direct transcription target genes of Wnt/β-catenin signals. Microarray analyses and experiments that interfered with cell migration through inhibitors were performed to characterise downstream signalling systems. Three new genes from the colorectal cancer (CRC) metastasis signature, BOP1, CKS2 and NFIL3, were identified as direct transcription targets of β-catenin/TCF4. Overexpression and knocking down of these genes in CRC cells promoted and inhibited, respectively, experimental metastasis in mice, EMT and cell motility in culture. Cell migration was repressed by interfering with distinct signalling systems through inhibitors of PI3K, JNK, p38 mitogen-activated protein kinase and/or mTOR. Gene expression profiling identified a series of migration-promoting genes, which were induced by BOP1, CKS2 and NFIL3, and could be repressed by inhibitors that are specific to these pathways. We identified new direct Wnt/β-catenin target genes, BOP1, CKS2 and NFIL3, which induced EMT, cell migration and experimental metastasis of CRC cells. These genes crosstalk with different downstream signalling systems, and activate migration-promoting genes. These pathways and downstream genes may serve as therapeutic targets in the treatment of CRC metastasis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    PubMed

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Application of an Efficient Gene Targeting System Linking Secondary Metabolites to their Biosynthetic Genes in Aspergillus terreus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Chun-Jun; Knox, Benjamin P.; Sanchez, James F.

    2013-07-19

    Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillusterreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP related melanin synthetase was also identified in this species.

  3. In Vivo Bio-distribution and Efficient Tumor Targeting of Gelatin/Silica Nanoparticles for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Zhao, Xueqin; Wang, Jun; Tao, SiJie; Ye, Ting; Kong, Xiangdong; Ren, Lei

    2016-04-01

    The non-viral gene delivery system is an attractive alternative to cancer therapy. The clinical success of non-viral gene delivery is hampered by transfection efficiency and tumor targeting, which can be individually overcome by addition of functional modules such as cell penetration or targeting. Here, we first engineered the multifunctional gelatin/silica (GS) nanovectors with separately controllable modules, including tumor-targeting aptamer AGRO100, membrane-destabilizing peptide HA2, and polyethylene glycol (PEG), and then studied their bio-distribution and in vivo transfection efficiencies by contrast resonance imaging (CRI). The results suggest that the sizes and zeta potentials of multifunctional gelatin/silica nanovectors were 203-217 nm and 2-8 mV, respectively. Functional GS-PEG nanoparticles mainly accumulated in the liver and tumor, with the lowest uptake by the heart and brain. Moreover, the synergistic effects of tumor-targeting aptamer AGRO100 and fusogenic peptide HA2 promoted the efficient cellular internalization in the tumor site. More importantly, the combined use of AGRO100 and PEG enhanced tumor gene expression specificity and effectively reduced toxicity in reticuloendothelial system (RES) organs after intravenous injection. Additionally, low accumulation of GS-PEG was observed in the heart tissues with high gene expression levels, which could provide opportunities for non-invasive gene therapy.

  4. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy.

    PubMed

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-16

    Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.

  5. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy

    PubMed Central

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-01

    Currently, a new gene editing tool—the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system—is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy. PMID:29337866

  6. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Qiu, Shuqing; Rollins, Meaghen; Datla, Raju; Gupta, Vidya S; Kadoo, Narendra Y

    2013-04-01

    MicroRNAs (miRNAs) are small (20-24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.) genome using a computational approach. The precursor miRNAs varied in length; while most of the mature miRNAs were 21 nucleotide long, intergenic and showed conserved signatures of RNA polymerase II transcripts in their upstream regions. Promoter region analysis of the flax miRNA genes indicated prevalence of MYB transcription factor binding sites. Four miRNA gene clusters containing members of three phylogenetic groups were identified. Further, 142 target genes were predicted for these miRNAs and most of these represent transcriptional regulators. The miRNA encoding genes were expressed in diverse tissues as determined by digital expression analysis as well as real-time PCR. The expression of fourteen miRNAs and nine target genes was independently validated using the quantitative reverse transcription PCR (qRT-PCR). This study suggests that a large number of conserved plant miRNAs are also found in flax and these may play important roles in growth and development of flax.

  7. Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes

    PubMed Central

    Liu, Cuilian; Zhang, Song; Wang, Qizhi; Zhang, Xiaobo

    2017-01-01

    Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1′s roles in tumorigenesis of gastric and breast cancers. PMID:28159933

  8. Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes.

    PubMed

    Liu, Cuilian; Zhang, Song; Wang, Qizhi; Zhang, Xiaobo

    2017-06-27

    Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1's roles in tumorigenesis of gastric and breast cancers.

  9. Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.

    PubMed

    Vad-Nielsen, Johan; Lin, Lin; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun

    2016-11-01

    The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.

  10. A Novel PCR Assay for Listeria welshimeri Targeting Transcriptional Regulator Gene lwe1801

    USDA-ARS?s Scientific Manuscript database

    Transcriptional regulator genes encode a group of specialized molecules that play essential roles in microbial responses to changing external conditions. These genes have been shown to possess species or group specificity and are useful as detection targets for diagnostic application. The present st...

  11. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    PubMed

    Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H

    2016-09-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  12. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system.

    PubMed

    Katoh, Yohei; Michisaka, Saki; Nozaki, Shohei; Funabashi, Teruki; Hirano, Tomoaki; Takei, Ryota; Nakayama, Kazuhisa

    2017-04-01

    The CRISPR/Cas9 system has revolutionized genome editing in virtually all organisms. Although the CRISPR/Cas9 system enables the targeted cleavage of genomic DNA, its use for gene knock-in remains challenging because levels of homologous recombination activity vary among various cells. In contrast, the efficiency of homology-independent DNA repair is relatively high in most cell types. Therefore the use of a homology-independent repair mechanism is a possible alternative for efficient genome editing. Here we constructed a donor knock-in vector optimized for the CRISPR/Cas9 system and developed a practical system that enables efficient disruption of target genes by exploiting homology-independent repair. Using this practical knock-in system, we successfully disrupted genes encoding proteins involved in ciliary protein trafficking, including IFT88 and IFT20, in hTERT-RPE1 cells, which have low homologous recombination activity. The most critical concern using the CRISPR/Cas9 system is off-target cleavage. To reduce the off-target cleavage frequency and increase the versatility of our knock-in system, we constructed a universal donor vector and an expression vector containing Cas9 with enhanced specificity and tandem sgRNA expression cassettes. We demonstrated that the second version of our system has improved usability. © 2017 Katoh et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Comparative transcriptomic analysis of key genes involved in flavonoid biosynthetic pathway and identification of a flavonol synthase from Artemisia annua L.

    PubMed

    Liu, S; Liu, L; Tang, Y; Xiong, S; Long, J; Liu, Z; Tian, N

    2017-07-01

    The regulatory mechanism of flavonoids, which synergise anti-malarial and anti-cancer compounds in Artemisia annua, is still unclear. In this study, an anthocyanidin-accumulating mutant callus was induced from A. annua and comparative transcriptomic analysis of wild-type and mutant calli performed, based on the next-generation Illumina/Solexa sequencing platform and de novo assembly. A total of 82,393 unigenes were obtained and 34,764 unigenes were annotated in the public database. Among these, 87 unigenes were assigned to 14 structural genes involved in the flavonoid biosynthetic pathway and 37 unigenes were assigned to 17 structural genes related to metabolism of flavonoids. More than 30 unigenes were assigned to regulatory genes, including R2R3-MYB, bHLH and WD40, which might regulate flavonoid biosynthesis. A further 29 unigenes encoding flavonoid biosynthetic enzymes or transcription factors were up-regulated in the mutant, while 19 unigenes were down-regulated, compared with the wild type. Expression levels of nine genes involved in the flavonoid pathway were compared using semi-quantitative RT-PCR, and results were consistent with comparative transcriptomic analysis. Finally, a putative flavonol synthase gene (AaFLS1) was identified from enzyme assay in vitro and in vivo through heterogeneous expression, and confirmed comparative transcriptomic analysis of wild-type and mutant callus. The present work has provided important target genes for the regulation of flavonoid biosynthesis in A. annua. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Late Multiple Organ Surge in Interferon-Regulated Target Genes Characterizes Staphylococcal Enterotoxin B Lethality

    PubMed Central

    Ferreyra, Gabriela A.; Elinoff, Jason M.; Demirkale, Cumhur Y.; Starost, Matthew F.; Buckley, Marilyn; Munson, Peter J.; Krakauer, Teresa; Danner, Robert L.

    2014-01-01

    Background Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB) challenge was investigated in six tissues. Results The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC), spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN)/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN)-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. Conclusion Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes. PMID:24551153

  15. Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L

    PubMed Central

    Nigam, Deepti; Sawant, Samir V

    2013-01-01

    Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725

  16. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes

    PubMed Central

    Herbold, Craig W.; Pelikan, Claus; Kuzyk, Orest; Hausmann, Bela; Angel, Roey; Berry, David; Loy, Alexander

    2015-01-01

    High throughput sequencing of phylogenetic and functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we introduce a highly adaptable and economical PCR approach to barcoding and pooling libraries of numerous target genes. In this approach, we replace gene- and sequencing platform-specific fusion primers with general, interchangeable barcoding primers, enabling nearly limitless customized barcode-primer combinations. Compared to barcoding with long fusion primers, our multiple-target gene approach is more economical because it overall requires lower number of primers and is based on short primers with generally lower synthesis and purification costs. To highlight our approach, we pooled over 900 different small-subunit rRNA and functional gene amplicon libraries obtained from various environmental or host-associated microbial community samples into a single, paired-end Illumina MiSeq run. Although the amplicon regions ranged in size from approximately 290 to 720 bp, we found no significant systematic sequencing bias related to amplicon length or gene target. Our results indicate that this flexible multiplexing approach produces large, diverse, and high quality sets of amplicon sequence data for modern studies in microbial ecology. PMID:26236305

  17. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays.

    PubMed

    Steemers, F J; Ferguson, J A; Walt, D R

    2000-01-01

    We have developed a randomly ordered fiber-optic gene array for rapid, parallel detection of unlabeled DNA targets with surface immobilized molecular beacons (MB) that undergo a conformational change accompanied by a fluorescence change in the presence of a complementary DNA target. Microarrays are prepared by randomly distributing MB-functionalized 3-microm diameter microspheres in an array of wells etched in a 500-microm diameter optical imaging fiber. Using several MBs, each designed to recognize a different target, we demonstrate the selective detection of genomic cystic fibrosis related targets. Positional registration and fluorescence response monitoring of the microspheres was performed using an optical encoding scheme and an imaging fluorescence microscope system.

  18. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury.

    PubMed

    Lopes, Cátia D F; Gonçalves, Nádia P; Gomes, Carla P; Saraiva, Maria J; Pêgo, Ana P

    2017-03-01

    Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the brain-derived neurotrophic factor (BDNF) in a peripheral nerve injury model. The TMCSH-HC/BDNF nanoparticle treatment promoted the release and significant expression of BDNF in neural tissues, which resulted in an enhanced functional recovery after injury as compared to control treatments (vehicle and non-targeted nanoparticles), associated with an improvement in key pro-regenerative events, namely, the increased expression of neurofilament and growth-associated protein GAP-43 in the injured nerves. Moreover, the targeted nanoparticle treatment was correlated with a significantly higher density of myelinated axons in the distal stump of injured nerves, as well as with preservation of unmyelinated axon density as compared with controls and a protective role in injury-denervated muscles, preventing them from denervation. These results highlight the potential of TMCSH-HC nanoparticles as non-viral gene carriers to deliver therapeutic genes into the peripheral neurons and thus, pave the way for their use as an effective therapeutic intervention for peripheral neuropathies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An epigenetic antimalarial resistance mechanism involving parasite genes linked to nutrient uptake.

    PubMed

    Sharma, Paresh; Wollenberg, Kurt; Sellers, Morgan; Zainabadi, Kayvan; Galinsky, Kevin; Moss, Eli; Nguitragool, Wang; Neafsey, Daniel; Desai, Sanjay A

    2013-07-05

    Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs.

  20. Amplified Genes in Breast Cancer: Molecular Targets for Investigation and Therapy

    DTIC Science & Technology

    1999-09-01

    checkpoints (Hartwell and Kastan, 1994). Mutations in genes involved in these transactions occur commonly during cancer progression and can greatly ele...induction of micronuclei as a measure of genotoxicity. A report of the U.S. Environmental Protection Agency Gene - Tox Program. Mutat . Res. 123:61-118...evidence for mutations at different loci in the HGPRT gene . J. Cell. Physiol. 85:307-320. 6 Capecchi, M.R., Hughes, S.H. and Wahl, G.M. (1975) Yeast

  1. Systematic transcriptome-wide analysis of mRNA-miRNA interactions reveals the involvement of miR-142-5p and its target (FOXO3) in skeletal muscle growth in chickens.

    PubMed

    Li, Zhenhui; Abdalla, Bahareldin Ali; Zheng, Ming; He, Xiaomei; Cai, Bolin; Han, Peigong; Ouyang, Hongjia; Chen, Biao; Nie, Qinghua; Zhang, Xiquan

    2018-02-01

    The goal of this study was to perform a systematic transcriptome-wide analysis of mRNA-miRNA interactions and to identify candidates involved in the interplay between miRNAs and mRNAs that regulate chicken muscle growth. We used our previously published mRNA (GSE72424) and miRNA (GSE62971) deep sequencing data from two-tailed samples [i.e., the highest (h) and lowest (l) body weights] of Recessive White Rock (WRR) and Xinghua (XH) chickens to conduct integrative analyses of the miRNA-mRNA interactions involved in chicken skeletal muscle growth. A total of 162, 15, 173, and 27 miRNA-mRNA pairs with negatively correlated expression patterns were identified in miRNA-mRNA networks constructed on the basis of the WRR h vs. XH h , WRR h vs. WRR l , WRR l vs. XH l , and XH h vs. XH l comparisons, respectively. Ingenuity Pathway Analysis revealed that gene networks identified for the WRR h vs. XH h contrast were associated with developmental disorders. Importantly, the WRR h vs. XH h contrast miRNA-mRNA network was enriched in IGF-1 signaling pathway genes, including FOXO3. A dual-luciferase reporter assay showed that FOXO3 was a target of miR-142-5p. Furthermore, miR-142-5p overexpression significantly decreased FOXO3 mRNA levels and promoted the expression of growth-related genes. These data demonstrated that miR-142-5p targets FOXO3 and promotes growth-related gene expression and regulates skeletal muscle growth in chicken. Comprehensive analysis facilitated the identification of miRNAs and target genes that might contribute to the regulation of skeletal muscle development. Our results provide new clues for understanding the molecular basis of chicken growth.

  2. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus)

    PubMed Central

    Yang, Yongchao; Wang, Yongqi; Mo, Yanling; Zhang, Ruimin; Zhang, Yong; Ma, Jianxiang; Wei, Chunhua

    2018-01-01

    Despite identification of WRKY family genes in numerous plant species, a little is known about WRKY genes in watermelon, one of the most economically important fruit crops around the world. Here, we identified a total of 63 putative WRKY genes in watermelon and classified them into three major groups (I-III) and five subgroups (IIa-IIe) in group II. The structure analysis indicated that ClWRKYs with different WRKY domains or motifs may play different roles by regulating respective target genes. The expressions of ClWRKYs in different tissues indicate that they are involved in various tissue growth and development. Furthermore, the diverse responses of ClWRKYs to drought, salt, or cold stress suggest that they positively or negatively affect plant tolerance to various abiotic stresses. In addition, the altered expression patterns of ClWRKYs in response to phytohormones such as, ABA, SA, MeJA, and ETH, imply the occurrence of complex cross-talks between ClWRKYs and plant hormone signals in regulating plant physiological and biological processes. Taken together, our findings provide valuable clues to further explore the function and regulatory mechanisms of ClWRKY genes in watermelon growth, development, and adaption to environmental stresses. PMID:29338040

  3. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus).

    PubMed

    Yang, Xiaozhen; Li, Hao; Yang, Yongchao; Wang, Yongqi; Mo, Yanling; Zhang, Ruimin; Zhang, Yong; Ma, Jianxiang; Wei, Chunhua; Zhang, Xian

    2018-01-01

    Despite identification of WRKY family genes in numerous plant species, a little is known about WRKY genes in watermelon, one of the most economically important fruit crops around the world. Here, we identified a total of 63 putative WRKY genes in watermelon and classified them into three major groups (I-III) and five subgroups (IIa-IIe) in group II. The structure analysis indicated that ClWRKYs with different WRKY domains or motifs may play different roles by regulating respective target genes. The expressions of ClWRKYs in different tissues indicate that they are involved in various tissue growth and development. Furthermore, the diverse responses of ClWRKYs to drought, salt, or cold stress suggest that they positively or negatively affect plant tolerance to various abiotic stresses. In addition, the altered expression patterns of ClWRKYs in response to phytohormones such as, ABA, SA, MeJA, and ETH, imply the occurrence of complex cross-talks between ClWRKYs and plant hormone signals in regulating plant physiological and biological processes. Taken together, our findings provide valuable clues to further explore the function and regulatory mechanisms of ClWRKY genes in watermelon growth, development, and adaption to environmental stresses.

  4. sugE: A gene involved in tributyltin (TBT) resistance of Aeromonas molluscorum Av27.

    PubMed

    Cruz, Andreia; Micaelo, Nuno; Félix, Vitor; Song, Jun-Young; Kitamura, Shin-Ichi; Suzuki, Satoru; Mendo, Sónia

    2013-01-01

    The mechanism of bacterial resistance to tributyltin (TBT) is still unclear. The results herein presented contribute to clarify that mechanism in the TBT-resistant bacterium Aeromonas molluscorum Av27. We have identified and cloned a new gene that is involved in TBT resistance in this strain. The gene is highly homologous (84%) to the Aeromonas hydrophila-sugE gene belonging to the small multidrug resistance gene family (SMR), which includes genes involved in the transport of lipophilic drugs. In Av27, expression of the Av27-sugE was observed at the early logarithmic growth phase in the presence of a high TBT concentration (500 μM), thus suggesting the contribution of this gene for TBT resistance. E. coli cells transformed with Av27-sugE become resistant to ethidium bromide (EtBr), chloramphenicol (CP) and tetracycline (TE), besides TBT. According to the Moriguchi logP (miLogP) values, EtBr, CP and TE have similar properties and are substrates for the sugE-efflux system. Despite the different miLogP of TBT, E. coli cells transformed with Av27-sugE become resistant to this compound. So it seems that TBT is also a substrate for the SugE protein. The modelling studies performed also support this hypothesis. The data herein presented clearly indicate that sugE is involved in TBT resistance of this bacterium.

  5. Electrostatically assembled dendrimer complex with a high-affinity protein binder for targeted gene delivery.

    PubMed

    Kim, Jong-Won; Lee, Joong-Jae; Choi, Joon Sig; Kim, Hak-Sung

    2018-06-10

    Although a variety of non-viral gene delivery systems have been developed, they still suffer from low efficiency and specificity. Herein, we present the assembly of a dendrimer complex comprising a DNA cargo and a targeting moiety as a new format for targeted gene delivery. A PAMAM dendrimer modified with histidine and arginine (HR-dendrimer) was used to enhance the endosomal escape and transfection efficiency. An EGFR-specific repebody, composed of leucine-rich repeat (LRR) modules, was employed as a targeting moiety. A polyanionic peptide was genetically fused to the repebody, followed by incubation with an HR-dendrimer and a DNA cargo to assemble the dendrimer complex through an electrostatic interaction. The resulting dendrimer complex was shown to deliver a DNA cargo with high efficiency in a receptor-specific manner. An analysis using a confocal microscope confirmed the internalization of the dendrimer complex and subsequent dissociation of a DNA cargo from the complex. The present approach can be broadly used in a targeted gene delivery in many areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Targeted gene delivery in the cricket brain, using in vivo electroporation.

    PubMed

    Matsumoto, Chihiro Sato; Shidara, Hisashi; Matsuda, Koji; Nakamura, Taro; Mito, Taro; Matsumoto, Yukihisa; Oka, Kotaro; Ogawa, Hiroto

    2013-12-01

    The cricket (Gryllus bimaculatus) is a hemimetabolous insect that is emerging as a model organism for the study of neural and molecular mechanisms of behavioral traits. However, research strategies have been limited by a lack of genetic manipulation techniques that target the nervous system of the cricket. The development of a new method for efficient gene delivery into cricket brains, using in vivo electroporation, is described here. Plasmid DNA, which contained an enhanced green fluorescent protein (eGFP) gene, under the control of a G. bimaculatus actin (Gb'-act) promoter, was injected into adult cricket brains. Injection was followed by electroporation at a sufficient voltage. Expression of eGFP was observed within the brain tissue. Localized gene expression, targeted to specific regions of the brain, was also achieved using a combination of local DNA injection and fine arrangement of the electroporation electrodes. Further studies using this technique will lead to a better understanding of the neural and molecular mechanisms that underlie cricket behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Involvement of Sp1 in butyric acid-induced HIV-1 gene expression.

    PubMed

    Imai, Kenichi; Okamoto, Takashi; Ochiai, Kuniyasu

    2015-01-01

    The ability of human immunodeficiency virus-1(HIV-1) to establish latent infection and its re-activation is considered critical for progression of HIV-1 infection. We previously reported that a bacterial metabolite butyric acid, acting as a potent inhibitor of histone deacetylases (HDACs), could lead to induction of HIV-1 transcription; however, the molecular mechanism remains unclear. The aim of this study was to investigate the effect of butyric acid on HIV-1 gene expression. Butyric acid-mediated HIV-1 gene expression was determined by luciferase assay and Chromatin immunoprecipitation assay. Western blot analysis and ELISA were used for the detection of HIV-1. We found that Sp1 binding sites within the HIV-1 promoter are primarily involved in butyric acid-mediated HIV-1 activation. In fact, Sp1 knockdown by small interfering RNA and the Sp1 inhibitor mithramycin A abolished the effect of butyric acid. We also observed that cAMP response element-binding-binding protein (CBP) was required for butyric acid-induced HIV-1 activation. These results suggest that butyric acid stimulates HIV-1 promoter through inhibition of the Sp1-associated HDAC activity and recruitment of CBP to the HIV-1 LTR. Our findings suggest that Sp1 should be considered as one of therapeutic targets in anti-viral therapy against HIV-1 infection aggravated by butyric acid-producing bacteria. © 2015 S. Karger AG, Basel.

  8. Transcriptome Sequencing of Codonopsis pilosula and Identification of Candidate Genes Involved in Polysaccharide Biosynthesis

    PubMed Central

    Gao, Jian Ping; Wang, Dong; Cao, Ling Ya; Sun, Hai Feng

    2015-01-01

    Background Codonopsis pilosula (Franch.) Nannf. is one of the most widely used medicinal plants. Although chemical and pharmacological studies have shown that codonopsis polysaccharides (CPPs) are bioactive compounds and that their composition is variable, their biosynthetic pathways remain largely unknown. Next-generation sequencing is an efficient and high-throughput technique that allows the identification of candidate genes involved in secondary metabolism. Principal Findings To identify the components involved in CPP biosynthesis, a transcriptome library, prepared using root and other tissues, was assembled with the help of Illumina sequencing. A total of 9.2 Gb of clean nucleotides was obtained comprising 91,175,044 clean reads, 102,125 contigs, and 45,511 unigenes. After aligning the sequences to the public protein databases, 76.1% of the unigenes were annotated. Among these annotated unigenes, 26,189 were assigned to Gene Ontology categories, 11,415 to Clusters of Orthologous Groups, and 18,848 to Kyoto Encyclopedia of Genes and Genomes pathways. Analysis of abundance of transcripts in the library showed that genes, including those encoding metallothionein, aquaporin, and cysteine protease that are related to stress responses, were in the top list. Among genes involved in the biosynthesis of CPP, those responsible for the synthesis of UDP-L-arabinose and UDP-xylose were highly expressed. Significance To our knowledge, this is the first study to provide a public transcriptome dataset prepared from C. pilosula and an outline of the biosynthetic pathway of polysaccharides in a medicinal plant. Identified candidate genes involved in CPP biosynthesis provide understanding of the biosynthesis and regulation of CPP at the molecular level. PMID:25719364

  9. Examination of Global Methylation and Targeted Imprinted Genes in Prader-Willi Syndrome.

    PubMed

    Manzardo, A M; Butler, M G

    2016-01-01

    Methylation changes observed in Prader-Willi syndrome (PWS) may impact global methylation as well as regional methylation status of imprinted genes on chromosome 15 (in cis) or other imprinted obesity-related genes on other chromosomes (in trans) leading to differential effects on gene expression impacting obesity phenotype unique to (PWS). Characterize the global methylation profiles and methylation status for select imprinted genes associated with obesity phenotype in a well-characterized imprinted, obesity-related syndrome (PWS) relative to a cohort of obese and non-obese individuals. Global methylation was assayed using two methodologies: 1) enriched LINE-1 repeat sequences by EpigenDx and 2) ELISA-based immunoassay method sensitive to genomic 5-methylcytosine by Epigentek. Target gene methylation patterns at selected candidate obesity gene loci were determined using methylation-specific PCR. Study participants were recruited as part of an ongoing research program on obesity-related genomics and Prader-Willi syndrome. Individuals with non-syndromic obesity (N=26), leanness (N=26) and PWS (N=39). A detailed characterization of the imprinting status of select target genes within the critical PWS 15q11-q13 genomic region showed enhanced cis but not trans methylation of imprinted genes. No significant differences in global methylation were found between non-syndromic obese, PWS or non-obese controls. None. Percentage methylation and the methylation index. The methylation abnormality in PWS due to errors of genomic imprinting effects both upstream and downstream effectors in the 15q11-q13 region showing enhanced cis but not trans methylation of imprinted genes. Obesity in our subject cohorts did not appear to impact global methylation levels using the described methodology.

  10. Zooplankton community analysis in the Changjiang River estuary by single-gene-targeted metagenomics

    NASA Astrophysics Data System (ADS)

    Cheng, Fangping; Wang, Minxiao; Li, Chaolun; Sun, Song

    2014-07-01

    DNA barcoding provides accurate identification of zooplankton species through all life stages. Single-gene-targeted metagenomic analysis based on DNA barcode databases can facilitate longterm monitoring of zooplankton communities. With the help of the available zooplankton databases, the zooplankton community of the Changjiang (Yangtze) River estuary was studied using a single-gene-targeted metagenomic method to estimate the species richness of this community. A total of 856 mitochondrial cytochrome oxidase subunit 1 (cox1) gene sequences were determined. The environmental barcodes were clustered into 70 molecular operational taxonomic units (MOTUs). Forty-two MOTUs matched barcoded marine organisms with more than 90% similarity and were assigned to either the species (similarity>96%) or genus level (similarity<96%). Sibling species could also be distinguished. Many species that were overlooked by morphological methods were identified by molecular methods, especially gelatinous zooplankton and merozooplankton that were likely sampled at different life history phases. Zooplankton community structures differed significantly among all of the samples. The MOTU spatial distributions were influenced by the ecological habits of the corresponding species. In conclusion, single-gene-targeted metagenomic analysis is a useful tool for zooplankton studies, with which specimens from all life history stages can be identified quickly and effectively with a comprehensive database.

  11. Systems Pharmacology-Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes.

    PubMed

    Fang, J; Cai, C; Wang, Q; Lin, P; Zhao, Z; Cheng, F

    2017-03-01

    Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration-approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  12. Expression of microRNA-26b and identification of its target gene EphA2 in pituitary tissues in Yanbian cattle

    PubMed Central

    YUAN, BAO; YU, WANG-YANG; DAI, LI-SHENG; GAO, YAN; DING, YU; YU, XIAN-FENG; CHEN, JIAN; ZHANG, JIA-BAO

    2015-01-01

    microRNAs (miRNAs/miRs) are a class of single-stranded non-coding RNA molecules of 19–24 nucleotides (nt) in length. They are widely expressed in animals, plants, bacteria and viruses. Via specific mRNA complementary pairing of target genes, miRNAs are able to regulate the expression of mRNA levels or inhibit protein translation following transcription. miRNA expression has a time- and space specificity, and it is involved in cell proliferation and differentiation, apoptosis, development, tumor metastasis occurrence and other biological processes. miR-26b is an miRNA of 22 nt and is important in the regulation of cellular processes. With the advancement of molecular biology techniques in recent years, there have been extensive investigations into miR-26b. Numerous studies have observed that miR-26b is involved in early embryonic development, cell proliferation regulation, pituitary hormone secretion and other physiological activities. miRNAs are associated with the function of propagation. The present study used reverse transcription quantitative polymerase chain reaction to detect the relative expression levels of miR-26b in the pituitary tissue of Yanbian cattle at different developmental stages. The 2−ΔΔCt method was used to calculate the relative gene expression levels. The miRNA target gene database TargetScan and RNA22 were used for prediction of the miR-26b target gene and selective recognition was also performed. The results demonstrated that miR-26b is expressed in the pituitary tissues of Yanbian cattle at 6 and 24 months of age. The relative expression levels of miR-26b in the pituitary tissues of 24-month-old Yanbian cattle were 2.41 times that of those in the six-month-old Yanbian cattle, demonstrating significant differences in the relative expression (P<0.01). The relative expression of the candidate target genes, EphA2 and miR-26b, exhibited the opposite expression pattern. The relative expression levels in the pituitary tissues of six

  13. Expression of microRNA‑26b and identification of its target gene EphA2 in pituitary tissues in Yanbian cattle.

    PubMed

    Yuan, Bao; Yu, Wang-Yang; Dai, Li-Sheng; Gao, Yan; Ding, Yu; Yu, Xian-Feng; Chen, Jian; Zhang, Jia-Bao

    2015-10-01

    microRNAs (miRNAs/miRs) are a class of single‑stranded non‑coding RNA molecules of 19‑24 nucleotides (nt) in length. They are widely expressed in animals, plants, bacteria and viruses. Via specific mRNA complementary pairing of target genes, miRNAs are able to regulate the expression of mRNA levels or inhibit protein translation following transcription. miRNA expression has a time‑ and space specificity, and it is involved in cell proliferation and differentiation, apoptosis, development, tumor metastasis occurrence and other biological processes. miR‑26b is an miRNA of 22 nt and is important in the regulation of cellular processes. With the advancement of molecular biology techniques in recent years, there have been extensive investigations into miR‑26b. Numerous studies have observed that miR‑26b is involved in early embryonic development, cell proliferation regulation, pituitary hormone secretion and other physiological activities. miRNAs are associated with the function of propagation. The present study used reverse transcription quantitative polymerase chain reaction to detect the relative expression levels of miR‑26b in the pituitary tissue of Yanbian cattle at different developmental stages. The 2‑∆∆Ct method was used to calculate the relative gene expression levels. The miRNA target gene database TargetScan and RNA22 were used for prediction of the miR‑26b target gene and selective recognition was also performed. The results demonstrated that miR‑26b is expressed in the pituitary tissues of Yanbian cattle at 6 and 24 months of age. The relative expression levels of miR‑26b in the pituitary tissues of 24‑month‑old Yanbian cattle were 2.41 times that of those in the six‑month‑old Yanbian cattle, demonstrating significant differences in the relative expression (P<0.01). The relative expression of the candidate target genes, EphA2 and miR‑26b, exhibited the opposite expression pattern. The relative expression levels in the

  14. Genes involved in host-parasite interactions can be revealed by their correlated expression.

    PubMed

    Reid, Adam James; Berriman, Matthew

    2013-02-01

    Molecular interactions between a parasite and its host are key to the ability of the parasite to enter the host and persist. Our understanding of the genes and proteins involved in these interactions is limited. To better understand these processes it would be advantageous to have a range of methods to predict pairs of genes involved in such interactions. Correlated gene expression profiles can be used to identify molecular interactions within a species. Here we have extended the concept to different species, showing that genes with correlated expression are more likely to encode proteins, which directly or indirectly participate in host-parasite interaction. We go on to examine our predictions of molecular interactions between the malaria parasite and both its mammalian host and insect vector. Our approach could be applied to study any interaction between species, for example, between a host and its parasites or pathogens, but also symbiotic and commensal pairings.

  15. Identification of MicroRNAs and Target Genes in the Fruit and Shoot Tip of Lycium chinense: A Traditional Chinese Medicinal Plant

    PubMed Central

    Khaldun, A. B. M.; Huang, Wenjun; Liao, Sihong; Lv, Haiyan; Wang, Ying

    2015-01-01

    Although Lycium chinense (goji berry) is an important traditional Chinese medicinal plant, little genome information is available for this plant, particularly at the small-RNA level. Recent findings indicate that the evolutionary role of miRNAs is very important for a better understanding of gene regulation in different plant species. To elucidate small RNAs and their potential target genes in fruit and shoot tissues, high-throughput RNA sequencing technology was used followed by qRT-PCR and RLM 5’-RACE experiments. A total of 60 conserved miRNAs belonging to 31 families and 30 putative novel miRNAs were identified. A total of 62 significantly differentially expressed miRNAs were identified, of which 15 (14 known and 1 novel) were shoot-specific, and 12 (7 known and 5 novel) were fruit-specific. Additionally, 28 differentially expressed miRNAs were recorded as up-regulated in fruit tissues. The predicted potential targets were involved in a wide range of metabolic and regulatory pathways. GO (Gene Ontology) enrichment analysis and the KEGG (Kyoto Encyclopedia of Genes and Genomes) database revealed that “metabolic pathways” is the most significant pathway with respect to the rich factor and gene numbers. Moreover, five miRNAs were related to fruit maturation, lycopene biosynthesis and signaling pathways, which might be important for the further study of fruit molecular biology. This study is the first, to detect known and novel miRNAs, and their potential targets, of L. chinense. The data and findings that are presented here might be a good source for the functional genomic study of medicinal plants and for understanding the links among diversified biological pathways. PMID:25587984

  16. Phylogenetic analysis of genes involved in mycosporine-like amino acid biosynthesis in symbiotic dinoflagellates.

    PubMed

    Rosic, Nedeljka N

    2012-04-01

    Mycosporine-like amino acids (MAAs) are multifunctional secondary metabolites involved in photoprotection in many marine organisms. As well as having broad ultraviolet (UV) absorption spectra (310-362 nm), these biological sunscreens are also involved in the prevention of oxidative stress. More than 20 different MAAs have been discovered so far, characterized by distinctive chemical structures and a broad ecological distribution. Additionally, UV-screening MAA metabolites have been investigated and used in biotechnology and cosmetics. The biosynthesis of MAAs has been suggested to occur via either the shikimate or pentose phosphate pathways. Despite their wide distribution in marine and freshwater species and also the commercial application in cosmetic products, there are still a number of uncertainties regarding the genetic, biochemical, and evolutionary origin of MAAs. Here, using a transcriptome-mining approach, we identify the gene counterparts from the shikimate or pentose phosphate pathway involved in MAA biosynthesis within the sequences of the reef-building coral symbiotic dinoflagellates (genus Symbiodinium). We also report the highly similar sequences of genes from the proposed MAA biosynthetic pathway involved in the metabolism of 4-deoxygadusol (direct MAA precursor) in various Symbiodinium strains confirming their algal origin and conserved nature. Finally, we reveal the separate identity of two O-methyltransferase genes, possibly involved in MAA biosynthesis, as well as nonribosomal peptide synthetase and adenosine triphosphate grasp homologs in symbiotic dinoflagellates. This study provides a biochemical and phylogenetic overview of the genes from the proposed MAA biosynthetic pathway with a focus on coral endosymbionts.

  17. A Rapid CRISPR/Cas-based Mutagenesis Assay in Zebrafish for Identification of Genes Involved in Thyroid Morphogenesis and Function.

    PubMed

    Trubiroha, A; Gillotay, P; Giusti, N; Gacquer, D; Libert, F; Lefort, A; Haerlingen, B; De Deken, X; Opitz, R; Costagliola, S

    2018-04-04

    The foregut endoderm gives rise to several organs including liver, pancreas, lung and thyroid with important roles in human physiology. Understanding which genes and signalling pathways regulate their development is crucial for understanding developmental disorders as well as diseases in adulthood. We exploited unique advantages of the zebrafish model to develop a rapid and scalable CRISPR/Cas-based mutagenesis strategy aiming at the identification of genes involved in morphogenesis and function of the thyroid. Core elements of the mutagenesis assay comprise bi-allelic gene invalidation in somatic mutants, a non-invasive monitoring of thyroid development in live transgenic fish, complementary analyses of thyroid function in fixed specimens and quantitative analyses of mutagenesis efficiency by Illumina sequencing of individual fish. We successfully validated our mutagenesis-phenotyping strategy in experiments targeting genes with known functions in early thyroid morphogenesis (pax2a, nkx2.4b) and thyroid functional differentiation (duox, duoxa, tshr). We also demonstrate that duox and duoxa crispants phenocopy thyroid phenotypes previously observed in human patients with bi-allelic DUOX2 and DUOXA2 mutations. The proposed combination of efficient mutagenesis protocols, rapid non-invasive phenotyping and sensitive genotyping holds great potential to systematically characterize the function of larger candidate gene panels during thyroid development and is applicable to other organs and tissues.

  18. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    PubMed Central

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  19. Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development.

    PubMed

    Jackson, Belinda M; Abete-Luzi, Patricia; Krause, Michael W; Eisenmann, David M

    2014-04-16

    The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.

  20. Identification of potential target genes and related regulatory transcription factors in spontaneous hairline fracture induced by hypervitaminosis A.

    PubMed

    Peng, Chuangang; Yang, Qi; Wei, Bo; Liu, Yong; Li, Yuxiang; Gu, Dawei; Yin, Guochao; Wang, Bo; Xu, Dehui; Zhang, Xuebing; Kong, Daliang

    2017-07-01

    The aim was to research the molecular changes of bone cells induced by excessive dose of vitamin A, and analyze molecular mechanism underlying spontaneous fracture. The gene expression profile of GSE29859, including 4 cortical bone marrow samples with excessive doses of Vitamin A and 4 control cortical bone marrow samples, was obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DGEs) between cortical bone marrow samples and control samples were screened out and pathway enrichment analysis was undertaken. Based on the MSigDB database, the potential regulatory transcription factors (TFs) were identified. A total of 373 DEGs including 342 up- and 31 down-regulated genes were identified. These DEGs were significantly enriched in pathways of protein processing in endoplasmic reticulum, ubiquitin mediated proteolysis and glycerophospholipid metabolism. Finally, the most significant regulatory TFs were obtained, including E2F Transcription Factor 1 (E2F1), GA Binding Protein Transcription Factor (GABP), Nuclear Factor, Erythroid 2-Like 2 (NRF2) and ELK1, Member of ETS Oncogene Family (ELK1). Key TFs including E2F1, GABP, NRF2 and ELK1 and their targets genes such as Ube2d3, Uba1, Phb2 and Tomm22 may play potential key roles in spontaneous fracture induced by hypervitaminosis A. The pathways of protein processing in endoplasmic reticulum, ubiquitin mediated proteolysis and glycerophospholipid metabolism may be key mechanisms involved in spontaneous fracture induced by hypervitaminosis A. Our findings will provide new insights for the target selection in clinical application to prevent spontaneous fracture induced by hypervitaminosis A. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Phage-mediated Delivery of Targeted sRNA Constructs to Knock Down Gene Expression in E. coli.

    PubMed

    Bernheim, Aude G; Libis, Vincent K; Lindner, Ariel B; Wintermute, Edwin H

    2016-03-20

    RNA-mediated knockdowns are widely used to control gene expression. This versatile family of techniques makes use of short RNA (sRNA) that can be synthesized with any sequence and designed to complement any gene targeted for silencing. Because sRNA constructs can be introduced to many cell types directly or using a variety of vectors, gene expression can be repressed in living cells without laborious genetic modification. The most common RNA knockdown technology, RNA interference (RNAi), makes use of the endogenous RNA-induced silencing complex (RISC) to mediate sequence recognition and cleavage of the target mRNA. Applications of this technique are therefore limited to RISC-expressing organisms, primarily eukaryotes. Recently, a new generation of RNA biotechnologists have developed alternative mechanisms for controlling gene expression through RNA, and so made possible RNA-mediated gene knockdowns in bacteria. Here we describe a method for silencing gene expression in E. coli that functionally resembles RNAi. In this system a synthetic phagemid is designed to express sRNA, which may designed to target any sequence. The expression construct is delivered to a population of E. coli cells with non-lytic M13 phage, after which it is able to stably replicate as a plasmid. Antisense recognition and silencing of the target mRNA is mediated by the Hfq protein, endogenous to E. coli. This protocol includes methods for designing the antisense sRNA, constructing the phagemid vector, packaging the phagemid into M13 bacteriophage, preparing a live cell population for infection, and performing the infection itself. The fluorescent protein mKate2 and the antibiotic resistance gene chloramphenicol acetyltransferase (CAT) are targeted to generate representative data and to quantify knockdown effectiveness.

  2. A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets

    PubMed Central

    Zhang, Zhonghui; Wu, Elise; Qian, Zhijian; Wu, Wen-Shu

    2014-01-01

    Stable and efficient knockdown of multiple gene targets is highly desirable for dissection of molecular pathways. Because it allows sequence-specific DNA binding, transcription activator-like effector (TALE) offers a new genetic perturbation technique that allows for gene-specific repression. Here, we constructed a multicolor lentiviral TALE-Kruppel-associated box (KRAB) expression vector platform that enables knockdown of multiple gene targets. This platform is fully compatible with the Golden Gate TALEN and TAL Effector Kit 2.0, a widely used and efficient method for TALE assembly. We showed that this multicolor TALE-KRAB vector system when combined together with bone marrow transplantation could quickly knock down c-kit and PU.1 genes in hematopoietic stem and progenitor cells of recipient mice. Furthermore, our data demonstrated that this platform simultaneously knocked down both c-Kit and PU.1 genes in the same primary cell populations. Together, our results suggest that this multicolor TALE-KRAB vector platform is a promising and versatile tool for knockdown of multiple gene targets and could greatly facilitate dissection of molecular pathways. PMID:25475013

  3. A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets.

    PubMed

    Zhang, Zhonghui; Wu, Elise; Qian, Zhijian; Wu, Wen-Shu

    2014-12-05

    Stable and efficient knockdown of multiple gene targets is highly desirable for dissection of molecular pathways. Because it allows sequence-specific DNA binding, transcription activator-like effector (TALE) offers a new genetic perturbation technique that allows for gene-specific repression. Here, we constructed a multicolor lentiviral TALE-Kruppel-associated box (KRAB) expression vector platform that enables knockdown of multiple gene targets. This platform is fully compatible with the Golden Gate TALEN and TAL Effector Kit 2.0, a widely used and efficient method for TALE assembly. We showed that this multicolor TALE-KRAB vector system when combined together with bone marrow transplantation could quickly knock down c-kit and PU.1 genes in hematopoietic stem and progenitor cells of recipient mice. Furthermore, our data demonstrated that this platform simultaneously knocked down both c-Kit and PU.1 genes in the same primary cell populations. Together, our results suggest that this multicolor TALE-KRAB vector platform is a promising and versatile tool for knockdown of multiple gene targets and could greatly facilitate dissection of molecular pathways.

  4. Transcription profiling provides insights into gene pathways involved in horn and scurs development in cattle

    PubMed Central

    2010-01-01

    Background Two types of horns are evident in cattle - fixed horns attached to the skull and a variation called scurs, which refers to small loosely attached horns. Cattle lacking horns are referred to as polled. Although both the Poll and Scurs loci have been mapped to BTA1 and 19 respectively, the underlying genetic basis of these phenotypes is unknown, and so far, no candidate genes regulating these developmental processes have been described. This study is the first reported attempt at transcript profiling to identify genes and pathways contributing to horn and scurs development in Brahman cattle, relative to polled counterparts. Results Expression patterns in polled, horned and scurs tissues were obtained using the Agilent 44 k bovine array. The most notable feature when comparing transcriptional profiles of developing horn tissues against polled was the down regulation of genes coding for elements of the cadherin junction as well as those involved in epidermal development. We hypothesize this as a key event involved in keratinocyte migration and subsequent horn development. In the polled-scurs comparison, the most prevalent differentially expressed transcripts code for genes involved in extracellular matrix remodelling, which were up regulated in scurs tissues relative to polled. Conclusion For this first time we describe networks of genes involved in horn and scurs development. Interestingly, we did not observe differential expression in any of the genes present on the fine mapped region of BTA1 known to contain the Poll locus. PMID:20537189

  5. Capturing the target genes of BldD in Saccharopolyspora erythraea using improved genomic SELEX method.

    PubMed

    Wu, Hang; Mao, Yongrong; Chen, Meng; Pan, Hui; Huang, Xunduan; Ren, Min; Wu, Hao; Li, Jiali; Xu, Zhongdong; Yuan, Hualing; Geng, Ming; Weaver, David T; Zhang, Lixin; Zhang, Buchang

    2015-03-01

    BldD (SACE_2077), a key developmental regulator in actinomycetes, is the first identified transcriptional factor in Saccharopolyspora erythraea positively regulating erythromycin production and morphological differentiation. Although the BldD of S. erythraea binds to the promoters of erythromycin biosynthetic genes, the interaction affinities are relatively low, implying the existence of its other target genes in S. erythraea. Through the genomic systematic evolution of ligands by exponential enrichment (SELEX) method that we herein improved, four DNA sequences of S. erythraea A226, corresponding to the promoter regions of SACE_0306 (beta-galactosidase), SACE_0811 (50S ribosomal protein L25), SACE_3410 (fumarylacetoacetate hydrolase), and SACE_6014 (aldehyde dehydrogenase), were captured with all three BldD concentrations of 0.5, 1, and 2 μM, while the previously identified intergenic regions of eryBIV-eryAI and ermE-eryCI plus the promoter region of SACE_7115, the amfC homolog for aerial mycelium formation, could be captured only when the BldD's concentration reached 2 μM. Electrophoretic mobility shift assay (EMSA) analysis indicated that BldD specifically bound to above seven DNA sequences, and quantitative real-time PCR (qRT-PCR) assay showed that the transcriptional levels of the abovementioned target genes decreased when bldD was disrupted in A226. Furthermore, SACE_7115 and SACE_0306 in A226 were individually inactivated, showing that SACE_7115 was predominantly involved in aerial mycelium formation, while SACE_0306 mainly controlled erythromycin production. This study provides valuable information for better understanding of the pleiotropic regulator BldD in S. erythraea, and the improved method may be useful for uncovering regulatory networks of other transcriptional factors.

  6. Microarray‑based bioinformatics analysis of the prospective target gene network of key miRNAs influenced by long non‑coding RNA PVT1 in HCC.

    PubMed

    Zhang, Yu; Mo, Wei-Jia; Wang, Xiao; Zhang, Tong-Tong; Qin, Yuan; Wang, Han-Lin; Chen, Gang; Wei, Dan-Ming; Dang, Yi-Wu

    2018-05-02

    The long non‑coding RNA (lncRNA) PVT1 plays vital roles in the tumorigenesis and development of various types of cancer. However, the potential expression profiling, functions and pathways of PVT1 in HCC remain unknown. PVT1 was knocked down in SMMC‑7721 cells, and a miRNA microarray analysis was performed to detect the differentially expressed miRNAs. Twelve target prediction algorithms were used to predict the underlying targets of these differentially expressed miRNAs. Bioinformatics analysis was performed to explore the underlying functions, pathways and networks of the targeted genes. Furthermore, the relationship between PVT1 and the clinical parameters in HCC was confirmed based on the original data in the TCGA database. Among the differentially expressed miRNAs, the top two upregulated and downregulated miRNAs were selected for further analysis based on the false discovery rate (FDR), fold‑change (FC) and P‑values. Based on the TCGA database, PVT1 was obviously highly expressed in HCC, and a statistically higher PVT1 expression was found for sex (male), ethnicity (Asian) and pathological grade (G3+G4) compared to the control groups (P<0.05). Furthermore, Gene Ontology (GO) analysis revealed that the target genes were involved in complex cellular pathways, such as the macromolecule biosynthetic process, compound metabolic process, and transcription. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the MAPK and Wnt signaling pathways may be correlated with the regulation of the four candidate miRNAs. The results therefore provide significant information on the differentially expressed miRNAs associated with PVT1 in HCC, and we hypothesized that PVT1 may play vital roles in HCC by regulating different miRNAs or target gene expression (particularly MAPK8) via the MAPK or Wnt signaling pathways. Thus, further investigation of the molecular mechanism of PVT1 in HCC is needed.

  7. Evolution of Genes Involved in Gamete Interaction: Evidence for Positive Selection, Duplications and Losses in Vertebrates

    PubMed Central

    Callebaut, Isabelle; Laurin, Michel; Pascal, Géraldine; Poupon, Anne; Goudet, Ghylène; Monget, Philippe

    2012-01-01

    Genes encoding proteins involved in sperm-egg interaction and fertilization exhibit a particularly fast evolution and may participate in prezygotic species isolation [1], [2]. Some of them (ZP3, ADAM1, ADAM2, ACR and CD9) have individually been shown to evolve under positive selection [3], [4], suggesting a role of positive Darwinian selection on sperm-egg interaction. However, the genes involved in this biological function have not been systematically and exhaustively studied with an evolutionary perspective, in particular across vertebrates with internal and external fertilization. Here we show that 33 genes among the 69 that have been experimentally shown to be involved in fertilization in at least one taxon in vertebrates are under positive selection. Moreover, we identified 17 pseudogenes and 39 genes that have at least one duplicate in one species. For 15 genes, we found neither positive selection, nor gene copies or pseudogenes. Genes of teleosts, especially genes involved in sperm-oolemma fusion, appear to be more frequently under positive selection than genes of birds and eutherians. In contrast, pseudogenization, gene loss and gene gain are more frequent in eutherians. Thus, each of the 19 studied vertebrate species exhibits a unique signature characterized by gene gain and loss, as well as position of amino acids under positive selection. Reflecting these clade-specific signatures, teleosts and eutherian mammals are recovered as clades in a parsimony analysis. Interestingly the same analysis places Xenopus apart from teleosts, with which it shares the primitive external fertilization, and locates it along with amniotes (which share internal fertilization), suggesting that external or internal environmental conditions of germ cell interaction may not be the unique factors that drive the evolution of fertilization genes. Our work should improve our understanding of the fertilization process and on the establishment of reproductive barriers, for example by

  8. Differentiation and injury-repair signals modulate the interaction of E2F and pRB proteins with novel target genes in keratinocytes.

    PubMed

    Chang, Wing Y; Andrews, Joseph; Carter, David E; Dagnino, Lina

    2006-08-01

    E2F transcription factors are central to epidermal morphogenesis and regeneration after injury. The precise nature of E2F target genes involved in epidermal formation and repair has yet to be determined. Identification of these genes is essential to understand how E2F proteins regulate fundamental aspects of epidermal homeostasis and transformation. We have conducted a genome-wide screen using CpG island microarray analysis to identify novel promoters bound by E2F3 and E2F5 in human keratinocytes. We further characterized several of these genes, and determined that multiple E2F and retinoblastoma (pRb) family proteins associate with them in exponentially proliferating cells. We also assessed the effect on E2F and pRb binding to those genes in response to differentiation induced by bone morphogenetic protein-6 (BMP-6), or to activation of repair mechanisms induced by transforming growth factor-beta (TGF-beta). These studies demonstrate promoter- and cytokine-specific changes in binding profiles of E2F and/or pRb family proteins. For example, E2F1, 3, 4 and p107 were recruited to the N-myc promoter in cells treated with BMP-6, whereas E2F1, 3, 4, 5, p107 and p130 were bound to this promoter in the presence of TGF-beta. Functionally, these different interactions resulted in transcriptional repression by BMP-6 and TGF-beta of the N-myc gene, via mechanisms that involved E2F binding to the promoter and association with pRb-family proteins. Thus, multiple combinations of E2F and pRb family proteins may associate with and transcriptionally regulate a given target promoter in response to differentiation and injury-repair stimuli in epidermal keratinocytes.

  9. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes.

    PubMed

    Horie, Takahiro; Ono, Koh; Nishi, Hitoo; Iwanaga, Yoshitaka; Nagao, Kazuya; Kinoshita, Minako; Kuwabara, Yasuhide; Takanabe, Rieko; Hasegawa, Koji; Kita, Toru; Kimura, Takeshi

    2009-11-13

    GLUT4 shows decreased levels in failing human adult hearts. We speculated that GLUT4 expression in cardiac muscle may be fine-tuned by microRNAs. Forced expression of miR-133 decreased GLUT4 expression and reduced insulin-mediated glucose uptake in cardiomyocytes. A computational miRNA target prediction algorithm showed that KLF15 is one of the targets of miR-133. It was confirmed that over-expression of miR-133 reduced the protein level of KLF15, which reduced the level of the downstream target GLUT4. Cardiac myocytes infected with lenti-decoy, in which the 3'UTR with tandem sequences complementary to miR-133 was linked to the luciferase reporter gene, had decreased miR-133 levels and increased levels of GLUT4. The expression levels of KLF15 and GLUT4 were decreased at the left ventricular hypertrophy and congestive heart failure stage in a rat model. The present results indicated that miR-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiomyocytes.

  10. Development of a Recombinant Multifunctional Biomacromolecule for Targeted Gene Transfer to Prostate Cancer Cells.

    PubMed

    Hatefi, Arash; Karjoo, Zahra; Nomani, Alireza

    2017-09-11

    The objective of this study was to genetically engineer a fully functional single chain fusion peptide composed of motifs from diverse biological and synthetic origins that can perform multiple tasks including DNA condensation, cell targeting, cell transfection, particle shielding from immune system and effective gene transfer to prostate tumors. To achieve the objective, a single chain biomacromolecule (vector) consisted of four repeatative units of histone H2A peptide, fusogenic peptide GALA, short elastin-like peptide, and PC-3 cell targeting peptide was designed. To examine the functionality of each motif in the vector sequence, it was characterized in terms of size and zeta potential by Zetasizer, PC-3 cell targeting and transfection by flowcytometry, IgG induction by immunogenicity assay, and PC-3 tumor transfection by quantitative live animal imaging. Overall, the results of this study showed the possibility of using genetic engineering techniques to program various functionalities into one single chain vector and create a multifunctional nonimmunogenic biomacromolecule for targeted gene transfer to prostate cancer cells. This proof-of-concept study is a significant step forward toward creating a library of vectors for targeted gene transfer to any cancer cell type at both in vitro and in vivo levels.

  11. Is Mutation Random or Targeted?: No Evidence for Hypermutability in Snail Toxin Genes.

    PubMed

    Roy, Scott W

    2016-10-01

    Ever since Luria and Delbruck, the notion that mutation is random with respect to fitness has been foundational to modern biology. However, various studies have claimed striking exceptions to this rule. One influential case involves toxin-encoding genes in snails of the genus Conus, termed conotoxins, a large gene family that undergoes rapid diversification of their protein-coding sequences by positive selection. Previous reconstructions of the sequence evolution of conotoxin genes claimed striking patterns: (1) elevated synonymous change, interpreted as being due to targeted "hypermutation" in this region; (2) elevated transversion-to-transition ratios, interpreted as reflective of the particular mechanism of hypermutation; and (3) much lower rates of synonymous change in the codons encoding several highly conserved cysteine residues, interpreted as strong position-specific codon bias. This work has spawned a variety of studies on the potential mechanisms of hypermutation and on causes for cysteine codon bias, and has inspired hypermutation hypotheses for various other fast-evolving genes. Here, I show that all three findings are likely to be artifacts of statistical reconstruction. First, by simulating nonsynonymous change I show that high rates of dN can lead to overestimation of dS. Second, I show that there is no evidence for any of these three patterns in comparisons of closely related conotoxin sequences, suggesting that the reported findings are due to breakdown of statistical methods at high levels of sequence divergence. The current findings suggest that mutation and codon bias in conotoxin genes may not be atypical, and that random mutation and selection can explain the evolution of even these exceptional loci. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Captured metagenomics: large-scale targeting of genes based on ‘sequence capture’ reveals functional diversity in soils

    PubMed Central

    Manoharan, Lokeshwaran; Kushwaha, Sandeep K.; Hedlund, Katarina; Ahrén, Dag

    2015-01-01

    Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to large amount of sequencing that is required. In this study, we have applied a captured metagenomics technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale targeting of functional genes, coding for enzymes related to organic matter degradation, was applied to two agricultural soil communities through captured metagenomics. Captured metagenomics uses custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of interest in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured metagenomes were highly enriched with targeted genes while maintaining their target diversity and their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured metagenomes were highly enriched with genes related to organic matter degradation; at least five times more than similar, publicly available soil WMG projects. This target enrichment technique also preserves the functional representation of the soils, thereby facilitating comparative metagenomics projects. Here, we present the first study that applies the captured metagenomics approach in large scale, and this novel method allows deep investigations of central ecosystem processes by studying functional gene abundances. PMID:26490729

  13. A systems approach to identifying correlated gene targets for the loss of colour pigmentation in plants

    PubMed Central

    2011-01-01

    Background The numerous diverse metabolic pathways by which plant compounds can be produced make it difficult to predict how colour pigmentation is lost for different tissues and plants. This study employs mathematical and in silico methods to identify correlated gene targets for the loss of colour pigmentation in plants from a whole cell perspective based on the full metabolic network of Arabidopsis. This involves extracting a self-contained flavonoid subnetwork from the AraCyc database and calculating feasible metabolic routes or elementary modes (EMs) for it. Those EMs leading to anthocyanin compounds are taken to constitute the anthocyanin biosynthetic pathway (ABP) and their interplay with the rest of the EMs is used to study the minimal cut sets (MCSs), which are different combinations of reactions to block for eliminating colour pigmentation. By relating the reactions to their corresponding genes, the MCSs are used to explore the phenotypic roles of the ABP genes, their relevance to the ABP and the impact their eliminations would have on other processes in the cell. Results Simulation and prediction results of the effect of different MCSs for eliminating colour pigmentation correspond with existing experimental observations. Two examples are: i) two MCSs which require the simultaneous suppression of genes DFR and ANS to eliminate colour pigmentation, correspond to observational results of the same genes being co-regulated for eliminating floral pigmentation in Aquilegia and; ii) the impact of another MCS requiring CHS suppression, corresponds to findings where the suppression of the early gene CHS eliminated nearly all flavonoids but did not affect the production of volatile benzenoids responsible for floral scent. Conclusions From the various MCSs identified for eliminating colour pigmentation, several correlate to existing experimental observations, indicating that different MCSs are suitable for different plants, different cells, and different conditions

  14. Transcriptome analysis of genes and gene networks involved in aggressive behavior in mouse and zebrafish.

    PubMed

    Malki, Karim; Du Rietz, Ebba; Crusio, Wim E; Pain, Oliver; Paya-Cano, Jose; Karadaghi, Rezhaw L; Sluyter, Frans; de Boer, Sietse F; Sandnabba, Kenneth; Schalkwyk, Leonard C; Asherson, Philip; Tosto, Maria Grazia

    2016-09-01

    Despite moderate heritability estimates, the molecular architecture of aggressive behavior remains poorly characterized. This study compared gene expression profiles from a genetic mouse model of aggression with zebrafish, an animal model traditionally used to study aggression. A meta-analytic, cross-species approach was used to identify genomic variants associated with aggressive behavior. The Rankprod algorithm was used to evaluated mRNA differences from prefrontal cortex tissues of three sets of mouse lines (N = 18) selectively bred for low and high aggressive behavior (SAL/LAL, TA/TNA, and NC900/NC100). The same approach was used to evaluate mRNA differences in zebrafish (N = 12) exposed to aggressive or non-aggressive social encounters. Results were compared to uncover genes consistently implicated in aggression across both studies. Seventy-six genes were differentially expressed (PFP < 0.05) in aggressive compared to non-aggressive mice. Seventy genes were differentially expressed in zebrafish exposed to a fight encounter compared to isolated zebrafish. Seven genes (Fos, Dusp1, Hdac4, Ier2, Bdnf, Btg2, and Nr4a1) were differentially expressed across both species 5 of which belonging to a gene-network centred on the c-Fos gene hub. Network analysis revealed an association with the MAPK signaling cascade. In human studies HDAC4 haploinsufficiency is a key genetic mechanism associated with brachydactyly mental retardation syndrome (BDMR), which is associated with aggressive behaviors. Moreover, the HDAC4 receptor is a drug target for valproic acid, which is being employed as an effective pharmacological treatment for aggressive behavior in geriatric, psychiatric, and brain-injury patients. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Deletion and Gene Expression Analyses Define the Paxilline Biosynthetic Gene Cluster in Penicillium paxilli

    PubMed Central

    Scott, Barry; Young, Carolyn A.; Saikia, Sanjay; McMillan, Lisa K.; Monahan, Brendon J.; Koulman, Albert; Astin, Jonathan; Eaton, Carla J.; Bryant, Andrea; Wrenn, Ruth E.; Finch, Sarah C.; Tapper, Brian A.; Parker, Emily J.; Jameson, Geoffrey B.

    2013-01-01

    The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse). This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis. PMID:23949005

  16. Small Changes in Gene Expression of Targeted Osmoregulatory Genes When Exposing Marine and Freshwater Threespine Stickleback (Gasterosteus aculeatus) to Abrupt Salinity Transfers

    PubMed Central

    Taugbøl, Annette; Arntsen, Tina; Østbye, Kjartan; Vøllestad, Leif Asbjørn

    2014-01-01

    Salinity is one of the key factors that affects metabolism, survival and distribution of fish species, as all fish osmoregulate and euryhaline fish maintain osmotic differences between their extracellular fluid and either freshwater or seawater. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations in both marine and freshwater environments, where the physiological and genomic basis for salinity tolerance adaptation is not fully understood. Therefore, our main objective in this study was to investigate gene expression of three targeted osmoregulatory genes (Na+/K+-ATPase (ATPA13), cystic fibrosis transmembrane regulator (CFTR) and a voltage gated potassium channel gene (KCNH4) and one stress related heat shock protein gene (HSP70)) in gill tissue from marine and freshwater populations when exposed to non-native salinity for periods ranging from five minutes to three weeks. Overall, the targeted genes showed highly plastic expression profiles, in addition the expression of ATP1A3 was slightly higher in saltwater adapted fish and KCNH4 and HSP70 had slightly higher expression in freshwater. As no pronounced changes were observed in the expression profiles of the targeted genes, this indicates that the osmoregulatory apparatuses of both the marine and landlocked freshwater stickleback population have not been environmentally canalized, but are able to respond plastically to abrupt salinity challenges. PMID:25265477

  17. Small changes in gene expression of targeted osmoregulatory genes when exposing marine and freshwater threespine stickleback (Gasterosteus aculeatus) to abrupt salinity transfers.

    PubMed

    Taugbøl, Annette; Arntsen, Tina; Ostbye, Kjartan; Vøllestad, Leif Asbjørn

    2014-01-01

    Salinity is one of the key factors that affects metabolism, survival and distribution of fish species, as all fish osmoregulate and euryhaline fish maintain osmotic differences between their extracellular fluid and either freshwater or seawater. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations in both marine and freshwater environments, where the physiological and genomic basis for salinity tolerance adaptation is not fully understood. Therefore, our main objective in this study was to investigate gene expression of three targeted osmoregulatory genes (Na+/K+-ATPase (ATPA13), cystic fibrosis transmembrane regulator (CFTR) and a voltage gated potassium channel gene (KCNH4) and one stress related heat shock protein gene (HSP70)) in gill tissue from marine and freshwater populations when exposed to non-native salinity for periods ranging from five minutes to three weeks. Overall, the targeted genes showed highly plastic expression profiles, in addition the expression of ATP1A3 was slightly higher in saltwater adapted fish and KCNH4 and HSP70 had slightly higher expression in freshwater. As no pronounced changes were observed in the expression profiles of the targeted genes, this indicates that the osmoregulatory apparatuses of both the marine and landlocked freshwater stickleback population have not been environmentally canalized, but are able to respond plastically to abrupt salinity challenges.

  18. Targeted next-generation sequencing reveals that a compound heterozygous mutation in phosphodiesterase 6a gene leads to retinitis pigmentosa in a Chinese family.

    PubMed

    Zhang, Shanshan; Li, Jie; Li, Shujin; Yang, Yeming; Yang, Mu; Yang, Zhenglin; Zhu, Xianjun; Zhang, Lin

    2018-04-25

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 70 causative genes identified to date. However, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing mutations are yet to be identified. The purpose of this study is to identify the causative mutations of a Chinese RP family. Targeted next-generation sequencing (NGS) for a total of 163 genes which involved in inherited retinal disorders were used to screen the possible causative mutations. Sanger sequencing was used to verify the mutations. As results, we identified two heterozygous mutations: a splicing site mutation c.1407 + 1G>C and a nonsense mutation c. 1957C>T (p.R653X) in phosphodiesterase 6A (PDE6A) gene in the RP patient. These two mutations are inherited from his father and mother, respectively. Furthermore, these mutations are unique in our in-house database and are rare in human genome databases, implicating that these two mutations are pathological. By using targeted NGS method, we identified a compound heterozygous mutation in PDE6A gene that is associated with RP in a Chinese family.

  19. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes.

    PubMed

    Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C

    2009-02-01

    Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.

  20. MicroRNA-424/503 cluster members regulate bovine granulosa cell proliferation and cell cycle progression by targeting SMAD7 gene through activin signalling pathway.

    PubMed

    Pande, Hari Om; Tesfaye, Dawit; Hoelker, Michael; Gebremedhn, Samuel; Held, Eva; Neuhoff, Christiane; Tholen, Ernst; Schellander, Karl; Wondim, Dessie Salilew

    2018-05-01

    The granulosa cells are indispensable for follicular development and its function is orchestrated by several genes, which in turn posttranscriptionally regulated by microRNAs (miRNA). In our previous study, the miRRNA-424/503 cluster was found to be highly abundant in bovine granulosa cells (bGCs) of preovulatory dominant follicle compared to subordinate counterpart at day 19 of the bovine estrous cycle. Other study also indicated the involvement of miR-424/503 cluster in tumour cell resistance to apoptosis suggesting this miRNA cluster may involve in cell survival. However, the role of miR-424/503 cluster in granulosa cell function remains elusive Therefore, this study aimed to investigate the role of miRNA-424/503 cluster in bGCs function using microRNA gain- and loss-of-function approaches. The role of miR-424/503 cluster members in granulosa cell function was investigated by overexpressing or inhibiting its activity in vitro cultured granulosa cells using miR-424/503 mimic or inhibitor, respectively. Luciferase reporter assay showed that SMAD7 and ACVR2A are the direct targets of the miRNA-424/503 cluster members. In line with this, overexpression of miRNA-424/503 cluster members using its mimic and inhibition of its activity by its inhibitor reduced and increased, respectively the expression of SMAD7 and ACVR2A. Furthermore, flow cytometric analysis indicated that overexpression of miRNA-424/503 cluster members enhanced bGCs proliferation by promoting G1- to S- phase cell cycle transition. Modulation of miRNA-424/503 cluster members tended to increase phosphorylation of SMAD2/3 in the Activin signalling pathway. Moreover, sequence specific knockdown of SMAD7, the target gene of miRNA-424/503 cluster members, using small interfering RNA also revealed similar phenotypic and molecular alterations observed when miRNA-424/503 cluster members were overexpressed. Similarly, to get more insight about the role of miRNA-424/503 cluster members in activin signalling

  1. Barriers to Liposomal Gene Delivery: from Application Site to the Target.

    PubMed

    Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R

    2016-01-01

    Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review.

  2. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery

    PubMed Central

    Kesharwani, Prashant; Iyer, Arun K.

    2015-01-01

    Advances in the application of nanotechnology in medicine have given rise to multifunctional smart nanocarriers that can be engineered with tunable physicochemical characteristics to deliver one or more therapeutic agent(s) safely and selectively to cancer cells, including intracellular organelle-specific targeting. Dendrimers having properties resembling biomolecules, with well-defined 3D nanopolymeric architectures, are emerging as a highly attractive class of drug and gene delivery vector. The presence of numerous peripheral functional groups on hyperbranched dendrimers affords efficient conjugation of targeting ligands and biomarkers that can recognize and bind to receptors overexpressed on cancer cells for tumor-cell-specific delivery. The present review compiles the recent advances in dendrimer-mediated drug and gene delivery to tumors by passive and active targeting principles with illustrative examples. PMID:25555748

  3. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    PubMed Central

    Lavagnino, Nicolás; Serra, François; Arbiza, Leonardo; Dopazo, Hernán; Hasson, Esteban

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent burst of whole genome sequences and the development of powerful statistical tools to analyze genomic data and test evolutionary and functional hypotheses of olfactory genes in the six species of the Drosophila melanogaster species group for which whole genome sequences are available. Our study reveals widespread purifying selection and limited incidence of positive selection on olfactory genes. We show that the pace of evolution of olfactory genes is mostly independent of the life cycle stage, and of the number of life cycle stages, in which they participate in olfaction. However, we detected a relationship between evolutionary rates and the position that the gene products occupy in the olfactory system, genes occupying central positions tend to be more constrained than peripheral genes. Finally, we demonstrate that specialization to one host does not seem to be associated with bursts of adaptive evolution in olfactory genes in D. sechellia and D. erecta, the two specialists species analyzed, but rather different lineages have idiosyncratic evolutionary histories in which both historical and ecological factors have been involved. PMID:22346339

  4. Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter.

    PubMed

    Su, Zhao-Zhong; Sarkar, Devanand; Emdad, Luni; Duigou, Gregory J; Young, Charles S H; Ware, Joy; Randolph, Aaron; Valerie, Kristoffer; Fisher, Paul B

    2005-01-25

    One impediment to effective cancer-specific gene therapy is the rarity of regulatory sequences targeting gene expression selectively in tumor cells. Although many tissue-specific promoters are recognized, few cancer-selective gene promoters are available. Progression-elevated gene-3 (PEG-3) is a rodent gene identified by subtraction hybridization that displays elevated expression as a function of transformation by diversely acting oncogenes, DNA damage, and cancer cell progression. The promoter of PEG-3, PEG-Prom, displays robust expression in a broad spectrum of human cancer cell lines with marginal expression in normal cellular counterparts. Whereas GFP expression, when under the control of a CMV promoter, is detected in both normal and cancer cells, when GFP is expressed under the control of the PEG-Prom, cancer-selective expression is evident. Mutational analysis identifies the AP-1 and PEA-3 transcription factors as primary mediators of selective, cancer-specific expression of the PEG-Prom. Synthesis of apoptosis-inducing genes, under the control of the CMV promoter, inhibits the growth of both normal and cancer cells, whereas PEG-Prom-mediated expression of these genes kills only cancer cells and spares normal cells. The efficacy of the PEG-Prom as part of a cancer gene therapeutic regimen is further documented by in vivo experiments in which PEG-Prom-controlled expression of an apoptosis-inducing gene completely inhibited prostate cancer xenograft growth in nude mice. These compelling observations indicate that the PEG-Prom, with its cancer-specific expression, provides a means of selectively delivering genes to cancer cells, thereby providing a crucial component in developing effective cancer gene therapies.

  5. Examination of Global Methylation and Targeted Imprinted Genes in Prader-Willi Syndrome

    PubMed Central

    Manzardo, AM; Butler, MG

    2016-01-01

    Context Methylation changes observed in Prader-Willi syndrome (PWS) may impact global methylation as well as regional methylation status of imprinted genes on chromosome 15 (in cis) or other imprinted obesity-related genes on other chromosomes (in trans) leading to differential effects on gene expression impacting obesity phenotype unique to (PWS). Objective Characterize the global methylation profiles and methylation status for select imprinted genes associated with obesity phenotype in a well-characterized imprinted, obesity-related syndrome (PWS) relative to a cohort of obese and non-obese individuals. Design Global methylation was assayed using two methodologies: 1) enriched LINE-1 repeat sequences by EpigenDx and 2) ELISA-based immunoassay method sensitive to genomic 5-methylcytosine by Epigentek. Target gene methylation patterns at selected candidate obesity gene loci were determined using methylation-specific PCR. Setting Study participants were recruited as part of an ongoing research program on obesity-related genomics and Prader-Willi syndrome. Participants Individuals with non-syndromic obesity (N=26), leanness (N=26) and PWS (N=39). Results A detailed characterization of the imprinting status of select target genes within the critical PWS 15q11-q13 genomic region showed enhanced cis but not trans methylation of imprinted genes. No significant differences in global methylation were found between non-syndromic obese, PWS or non-obese controls. Intervention None. Main outcome measures Percentage methylation and the methylation index. Conclusion The methylation abnormality in PWS due to errors of genomic imprinting effects both upstream and downstream effectors in the 15q11-q13 region showing enhanced cis but not trans methylation of imprinted genes. Obesity in our subject cohorts did not appear to impact global methylation levels using the described methodology. PMID:28111641

  6. High-Throughput Analysis of Promoter Occupancy Reveals Direct Neural Targets of FOXP2, a Gene Mutated in Speech and Language Disorders

    PubMed Central

    Vernes, Sonja C. ; Spiteri, Elizabeth ; Nicod, Jérôme ; Groszer, Matthias ; Taylor, Jennifer M. ; Davies, Kay E. ; Geschwind, Daniel H. ; Fisher, Simon E. 

    2007-01-01

    We previously discovered that mutations of the human FOXP2 gene cause a monogenic communication disorder, primarily characterized by difficulties in learning to make coordinated sequences of articulatory gestures that underlie speech. Affected people have deficits in expressive and receptive linguistic processing and display structural and/or functional abnormalities in cortical and subcortical brain regions. FOXP2 provides a unique window into neural processes involved in speech and language. In particular, its role as a transcription factor gene offers powerful functional genomic routes for dissecting critical neurogenetic mechanisms. Here, we employ chromatin immunoprecipitation coupled with promoter microarrays (ChIP-chip) to successfully identify genomic sites that are directly bound by FOXP2 protein in native chromatin of human neuron-like cells. We focus on a subset of downstream targets identified by this approach, showing that altered FOXP2 levels yield significant changes in expression in our cell-based models and that FOXP2 binds in a specific manner to consensus sites within the relevant promoters. Moreover, we demonstrate significant quantitative differences in target expression in embryonic brains of mutant mice, mediated by specific in vivo Foxp2-chromatin interactions. This work represents the first identification and in vivo verification of neural targets regulated by FOXP2. Our data indicate that FOXP2 has dual functionality, acting to either repress or activate gene expression at occupied promoters. The identified targets suggest roles in modulating synaptic plasticity, neurodevelopment, neurotransmission, and axon guidance and represent novel entry points into in vivo pathways that may be disturbed in speech and language disorders. PMID:17999362

  7. New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion.

    PubMed

    Margue, Christiane; Philippidou, Demetra; Reinsbach, Susanne E; Schmitt, Martina; Behrmann, Iris; Kreis, Stephanie

    2013-01-01

    The non-coding microRNAs (miRNA) have tissue- and disease-specific expression patterns. They down-regulate target mRNAs, which likely impacts on most fundamental cellular processes. Differential expression patterns of miRNAs are currently being exploited for identification of biomarkers for early disease diagnosis, prediction of progression for melanoma and other cancers and as promising drug targets, since they can easily be inhibited or replaced in a given cellular context. Before successfully manipulating miRNAs in clinical settings, their precise expression levels, endogenous functions and thus their target genes have to be determined. MiR-211, a melanocyte lineage-specific small non-coding miRNA, is located in an intron of TRPM1, a target gene of the microphtalmia-associated transcription factor (MITF). By transcriptionally up-regulating TRPM1, MITF, which is critical for both melanocyte differentiation and survival and for melanoma progression, indirectly drives the expression of miR-211. Expression of this miRNA is often reduced in melanoma samples. Here, we investigated functional roles of miR-211 by identifying and studying new target genes. We show that MITF-correlated miR-211 expression levels are mostly but not always reduced in a panel of 11 melanoma cell lines and in primary and metastatic melanoma compared to normal melanocytes and nevi, respectively. MiR-211 itself only marginally impacted on cell invasion and migration, while perturbation of some new miR-211 target genes, such as AP1S2, SOX11, IGFBP5, and SERINC3 significantly increased invasion. These results and the variable expression levels of miR-211 raise serious doubts on the value of miR-211 as a melanoma tumor-suppressing miRNA and/or as a biomarker for melanoma.

  8. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum) Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene.

    PubMed

    Thyssen, Gregory N; Fang, David D; Zeng, Linghe; Song, Xianliang; Delhom, Christopher D; Condon, Tracy L; Li, Ping; Kim, Hee Jin

    2016-06-01

    Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes. Copyright © 2016 Thyssen et al.

  9. An Evolutionary Genomic Approach to Identify Genes Involved in Human Birth Timing

    PubMed Central

    Orabona, Guilherme; Morgan, Thomas; Haataja, Ritva; Hallman, Mikko; Puttonen, Hilkka; Menon, Ramkumar; Kuczynski, Edward; Norwitz, Errol; Snegovskikh, Victoria; Palotie, Aarno; Fellman, Vineta; DeFranco, Emily A.; Chaudhari, Bimal P.; McGregor, Tracy L.; McElroy, Jude J.; Oetjens, Matthew T.; Teramo, Kari; Borecki, Ingrid; Fay, Justin; Muglia, Louis

    2011-01-01

    Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened >8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition. PMID:21533219

  10. Transcription factor target site search and gene regulation in a background of unspecific binding sites.

    PubMed

    Hettich, J; Gebhardt, J C M

    2018-06-02

    Response time and transcription level are vital parameters of gene regulation. They depend on how fast transcription factors (TFs) find and how efficient they occupy their specific target sites. It is well known that target site search is accelerated by TF binding to and sliding along unspecific DNA and that unspecific associations alter the occupation frequency of a gene. However, whether target site search time and occupation frequency can be optimized simultaneously is mostly unclear. We developed a transparent and intuitively accessible state-based formalism to calculate search times to target sites on and occupation frequencies of promoters of arbitrary state structure. Our formalism is based on dissociation rate constants experimentally accessible in live cell experiments. To demonstrate our approach, we consider promoters activated by a single TF, by two coactivators or in the presence of a competitive inhibitor. We find that target site search time and promoter occupancy differentially vary with the unspecific dissociation rate constant. Both parameters can be harmonized by adjusting the specific dissociation rate constant of the TF. However, while measured DNA residence times of various eukaryotic TFs correspond to a fast search time, the occupation frequencies of target sites are generally low. Cells might tolerate low target site occupancies as they enable timely gene regulation in response to a changing environment. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulatedmore » in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.« less

  12. Visualization and Analysis of MiRNA-Targets Interactions Networks.

    PubMed

    León, Luis E; Calligaris, Sebastián D

    2017-01-01

    MicroRNAs are a class of small, noncoding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the target mRNAs, mainly leading to down-regulation or repression of the target genes. MicroRNAs are involved in diverse regulatory pathways in normal and pathological conditions. In this context, it is highly important to identify the targets of specific microRNA in order to understand the mechanism of its regulation and consequently its involvement in disease. However, the microRNA target identification is experimentally laborious and time-consuming. The in silico prediction of microRNA targets is an extremely useful approach because you can identify potential mRNA targets, reduce the number of possibilities and then, validate a few microRNA-mRNA interactions in an in vitro experimental model. In this chapter, we describe, in a simple way, bioinformatics guidelines to use miRWalk database and Cytoscape software for analyzing microRNA-mRNA interactions through their visualization as a network.

  13. Genetic Dissection of Nutritional Copper Signaling in Chlamydomonas Distinguishes Regulatory and Target Genes

    PubMed Central

    Eriksson, Mats; Moseley, Jeffrey L.; Tottey, Stephen; del Campo, Jose A.; Quinn, Jeanette; Kim, Youngbae; Merchant, Sabeeha

    2004-01-01

    A genetic screen for Chlamydomonas reinhardtii mutants with copper-dependent growth or nonphotosynthetic phenotypes revealed three loci, COPPER RESPONSE REGULATOR 1 (CRR1), COPPER RESPONSE DEFECT 1 (CRD1), and COPPER RESPONSE DEFECT 2 (CRD2), distinguished as regulatory or target genes on the basis of phenotype. CRR1 was shown previously to be required for transcriptional activation of target genes like CYC6, CPX1, and CRD1, encoding, respectively, cytochrome c6 (which is a heme-containing substitute for copper-containing plastocyanin), coproporphyrinogen III oxidase, and Mg-protoporphyrin IX monomethylester cyclase. We show here that CRR1 is required also for normal accumulation of copper proteins like plastocyanin and ferroxidase in copper-replete medium and for apoplastocyanin degradation in copper-deficient medium, indicating that a single pathway controls nutritional copper homeostasis at multiple levels. CRR1 is linked to the SUPPRESSOR OF PCY1-AC208 13 (SOP13) locus, which corresponds to a gain-of-function mutation resulting in copper-independent expression of CYC6. CRR1 is required also for hypoxic growth, pointing to a physiologically meaningful regulatory connection between copper deficiency and hypoxia. The growth phenotype of crr1 strains results primarily from secondary iron deficiency owing to reduced ferroxidase abundance, suggesting a role for CRR1 in copper distribution to a multicopper ferroxidase involved in iron assimilation. Mutations at the CRD2 locus also result in copper-conditional iron deficiency, which is consistent with a function for CRD2 in a pathway for copper delivery to the ferroxidase. Taken together, the observations argue for a specialized copper-deficiency adaptation for iron uptake in Chlamydomonas. PMID:15514054

  14. CRISPR-mediated HDAC2 disruption identifies two distinct classes of target genes in human cells.

    PubMed

    Somanath, Priyanka; Herndon Klein, Rachel; Knoepfler, Paul S

    2017-01-01

    The transcriptional functions of the class I histone deacetylases (HDACs) HDAC1 and HDAC2 are mainly viewed as both repressive and redundant based on murine knockout studies, but they may have additional independent roles and their physiological functions in human cells are not as clearly defined. To address the individual epigenomic functions of HDAC2, here we utilized CRISPR-Cas9 to disrupt HDAC2 in human cells. We find that while HDAC2 null cells exhibited signs of cross-regulation between HDAC1 and HDAC2, specific epigenomic phenotypes were still apparent using RNA-seq and ChIP assays. We identified specific targets of HDAC2 repression, and defined a novel class of genes that are actively expressed in a partially HDAC2-dependent manner. While HDAC2 was required for the recruitment of HDAC1 to repressed HDAC2-gene targets, HDAC2 was dispensable for HDAC1 binding to HDAC2-activated targets, supporting the notion of distinct classes of targets. Both active and repressed classes of gene targets demonstrated enhanced histone acetylation and methylation in HDAC2-null cells. Binding of the HDAC1/2-associated SIN3A corepressor was altered at most HDAC2-targets, but without a clear pattern. Overall, our study defines two classes of HDAC2 targets in human cells, with a dependence of HDAC1 on HDAC2 at one class of targets, and distinguishes unique functions for HDAC2.

  15. The prospect of gene therapy for prostate cancer: update on theory and status.

    PubMed

    Koeneman, K S; Hsieh, J T

    2001-09-01

    Molecularly based novel therapeutic agents are needed to address the problem of locally recurrent, or metastatic, advanced hormone-refractory prostate cancer. Recent basic science advances in mechanisms of gene expression, vector delivery, and targeting have rendered clinically relevant gene therapy to the prostatic fossa and distant sites feasible in the near future. Current research and clinical investigative efforts involving methods for more effective vector delivery and targeting, with enhanced gene expression to selected (specific) sites, are reviewed. These areas of research involve tissue-specific promoters, transgene exploration, vector design and delivery, and selective vector targeting. The 'vectorology' involved mainly addresses selective tissue homing with ligands, mechanisms of innate immune system evasion for durable transgene expression, and the possibility of repeat administration.

  16. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery

    PubMed Central

    Zhou, Jiangbing; Liu, Jie; Cheng, Christopher J.; Patel, Toral R.; Weller, Caroline E.; Piepmeier, Joseph M.; Jiang, Zhaozhong; Saltzman, W. Mark

    2014-01-01

    Many synthetic polycationic vectors for non-viral gene delivery show high efficiency in vitro, but their usually excessive charge density makes them toxic for in vivo applications. Here we describe the synthesis of a series of high molecular weight terpolymers with low charge density, and show that they exhibit efficient gene delivery, some surpassing the efficiency of the commercial transfection reagents Polyethylenimine and Lipofectamine 2000. The terpolymers were synthesized via enzyme-catalyzed copolymerization of lactone with dialkyl diester and amino diol, and their hydrophobicity adjusted by varying the lactone content and by selecting a lactone comonomer of specific ring size. Targeted delivery of the pro-apoptotic TRAIL gene to tumour xenografts by one of the terpolymers results in significant inhibition of tumour growth, with minimal toxicity both in vitro and in vivo. Our findings suggest that the gene delivery ability of the terpolymers stems from their high molecular weight and increased hydrophobicity, which compensates for their low charge density. PMID:22138789

  17. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacentmore » to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.« less

  18. Desensitization and Incomplete Recovery of Hepatic Target Genes After Chronic Thyroid Hormone Treatment and Withdrawal in Male Adult Mice

    PubMed Central

    Ohba, Kenji; Singh, Brijesh Kumar; Sinha, Rohit Anthony; Lesmana, Ronny; Liao, Xiao-Hui; Ghosh, Sujoy; Refetoff, Samuel

    2016-01-01

    Clinical symptoms may vary and not necessarily reflect serum thyroid hormone (TH) levels during acute and chronic hyperthyroidism as well as recovery from hyperthyroidism. We thus examined changes in hepatic gene expression and serum TH/TSH levels in adult male mice treated either with a single T3 (20 μg per 100 g body weight) injection (acute T3) or daily injections for 14 days (chronic T3) followed by 10 days of withdrawal. Gene expression arrays from livers harvested at these time points showed that among positively-regulated target genes, 320 were stimulated acutely and 429 chronically by T3. Surprisingly, only 69 of 680 genes (10.1%) were induced during both periods, suggesting desensitization of the majority of acutely stimulated target genes. About 90% of positively regulated target genes returned to baseline expression levels after 10 days of withdrawal; however, 67 of 680 (9.9%) did not return to baseline despite normalization of serum TH/TSH levels. Similar findings also were observed for negatively regulated target genes. Chromatin immunoprecipitation analysis of representative positively regulated target genes suggested that acetylation of H3K9/K14 was associated with acute stimulation, whereas trimethylation of H3K4 was associated with chronic stimulation. In an in vivo model of chronic intrahepatic hyperthyroidism since birth, adult male monocarboxylate transporter-8 knockout mice also demonstrated desensitization of most acutely stimulated target genes that were examined. In summary, we have identified transcriptional desensitization and incomplete recovery of gene expression during chronic hyperthyroidism and recovery. Our findings may be a potential reason for discordance between clinical symptoms and serum TH levels observed in these conditions. PMID:26866609

  19. Heterogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic(9;20)(p11~13;q11) show recurrent involvement of genes at 20q11.21

    PubMed Central

    An, Qian; Wright, Sarah L.; Moorman, Anthony V.; Parker, Helen; Griffiths, Mike; Ross, Fiona M.; Davies, Teresa; Harrison, Christine J.; Strefford, Jon C.

    2009-01-01

    The dic(9;20)(p11~13;q11) is a recurrent chromosomal abnormality in patients with acute lymphoblastic leukemia. Although it results in loss of material from 9p and 20q, the molecular targets on both chromosomes have not been fully elucidated. From an initial cohort of 58 with acute lymphoblastic leukemia patients with this translocation, breakpoint mapping with fluorescence in situ hybridization on 26 of them revealed breakpoint heterogeneity of both chromosomes. PAX5 has been proposed to be the target gene on 9p, while for 20q, FISH analysis implicated the involvement of the ASXL1 gene, either by a breakpoint within (n=4) or centromeric (deletion, n=12) of the gene. Molecular copy-number counting, long-distance inverse PCR and direct sequence analysis identified six dic(9;20) breakpoint sequences. In addition to the three previously reported: PAX5-ASXL1, PAX5-C20ORF112 and PAX5-KIF3B; we identified three new ones in this study: sequences 3’ of PAX5 disrupting ASXL1, and ZCCHC7 disrupted by sequences 3’ of FRG1B and LOC1499503. This study provides insight into the breakpoint complexity underlying dicentric chromosomal formation in acute lymphoblastic leukemia and highlights putative target gene loci. PMID:19586940

  20. Heterogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic(9;20)(p11-13;q11) show recurrent involvement of genes at 20q11.21.

    PubMed

    An, Qian; Wright, Sarah L; Moorman, Anthony V; Parker, Helen; Griffiths, Mike; Ross, Fiona M; Davies, Teresa; Harrison, Christine J; Strefford, Jon C

    2009-08-01

    The dic(9;20)(p11-13;q11) is a recurrent chromosomal abnormality in patients with acute lymphoblastic leukemia. Although it results in loss of material from 9p and 20q, the molecular targets on both chromosomes have not been fully elucidated. From an initial cohort of 58 with acute lymphoblastic leukemia patients with this translocation, breakpoint mapping with fluorescence in situ hybridization on 26 of them revealed breakpoint heterogeneity of both chromosomes. PAX5 has been proposed to be the target gene on 9p, while for 20q, FISH analysis implicated the involvement of the ASXL1 gene, either by a breakpoint within (n=4) or centromeric (deletion, n=12) of the gene. Molecular copy-number counting, long-distance inverse PCR and direct sequence analysis identified six dic(9;20) breakpoint sequences. In addition to the three previously reported: PAX5-ASXL1, PAX5-C20ORF112 and PAX5-KIF3B; we identified three new ones in this study: sequences 3' of PAX5 disrupting ASXL1, and ZCCHC7 disrupted by sequences 3' of FRG1B and LOC1499503. This study provides insight into the breakpoint complexity underlying dicentric chromosomal formation in acute lymphoblastic leukemia and highlights putative target gene loci.

  1. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting.

    PubMed

    Aguirre, Andrew J; Meyers, Robin M; Weir, Barbara A; Vazquez, Francisca; Zhang, Cheng-Zhong; Ben-David, Uri; Cook, April; Ha, Gavin; Harrington, William F; Doshi, Mihir B; Kost-Alimova, Maria; Gill, Stanley; Xu, Han; Ali, Levi D; Jiang, Guozhi; Pantel, Sasha; Lee, Yenarae; Goodale, Amy; Cherniack, Andrew D; Oh, Coyin; Kryukov, Gregory; Cowley, Glenn S; Garraway, Levi A; Stegmaier, Kimberly; Roberts, Charles W; Golub, Todd R; Meyerson, Matthew; Root, David E; Tsherniak, Aviad; Hahn, William C

    2016-08-01

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914-29. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Munoz et al., p. 900This article is highlighted in the In This Issue feature, p. 803. 2016 American Association for Cancer Research.

  2. Confirmation of RAX gene involvement in human anophthalmia

    PubMed Central

    Lequeux, L.; Rio, Marlène; Vigouroux, Armelle; Titeux, Matthias; Etchevers, Heather; Malecaze, François; Chassaing, Nicolas; Calvas, Patrick

    2008-01-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. Mutations in several genes have been involved in syndromic and non-syndromic anophthalmia. Previously, RAX recessive mutations were implicated in a single patient with right anophthalmia and left microphthalmia and sclerocornea. Here, we report the findings of novel compound heterozygous RAX mutations in a child with bilateral anophthalmia. Both mutations are located in exon 3. c.664delT is a frameshifting deletion predicted to introduce a premature stop codon (p.Ser222ArgfsX62), and c.909 C>G is a nonsense mutation with similar consequences (p.Tyr303X). This is the second report of a patient with anophthalmia caused by RAX mutations. These findings confirm that RAX plays a major role in the early stages of eye development and is involved in human anophthalmia. PMID:18783408

  3. Confirmation of RAX gene involvement in human anophthalmia.

    PubMed

    Lequeux, L; Rio, M; Vigouroux, A; Titeux, M; Etchevers, H; Malecaze, F; Chassaing, N; Calvas, P

    2008-10-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. Mutations in several genes have been involved in syndromic and non-syndromic anophthalmia. Previously, RAX recessive mutations were implicated in a single patient with right anophthalmia, left microphthalmia and sclerocornea. In this study, we report the findings of novel compound heterozygous RAX mutations in a child with bilateral anophthalmia. Both mutations are located in exon 3. c.664delT is a frameshifting deletion predicted to introduce a premature stop codon (p.Ser222ArgfsX62), and c.909C>G is a nonsense mutation with similar consequences (p.Tyr303X). This is the second report of a patient with anophthalmia caused by RAX mutations. These findings confirm that RAX plays a major role in the early stages of eye development and is involved in human anophthalmia.

  4. Genes Involved in Anaerobic Metabolism of Phenol in the Bacterium Thauera aromatica

    PubMed Central

    Breinig, Sabine; Schiltz, Emile; Fuchs, Georg

    2000-01-01

    Genes involved in the anaerobic metabolism of phenol in the denitrifying bacterium Thauera aromatica have been studied. The first two committed steps in this metabolism appear to be phosphorylation of phenol to phenylphosphate by an unknown phosphoryl donor (“phenylphosphate synthase”) and subsequent carboxylation of phenylphosphate to 4-hydroxybenzoate under release of phosphate (“phenylphosphate carboxylase”). Both enzyme activities are strictly phenol induced. Two-dimensional gel electrophoresis allowed identification of several phenol-induced proteins. Based on N-terminal and internal amino acid sequences of such proteins, degenerate oligonucleotides were designed to identify the corresponding genes. A chromosomal DNA segment of about 14 kbp was sequenced which contained 10 genes transcribed in the same direction. These are organized in two adjacent gene clusters and include the genes coding for five identified phenol-induced proteins. Comparison with sequences in the databases revealed the following similarities: the gene products of two open reading frames (ORFs) are each similar to either the central part and N-terminal part of phosphoenolpyruvate synthases. We propose that these ORFs are components of the phenylphosphate synthase system. Three ORFs showed similarity to the ubiD gene product, 3-octaprenyl-4-hydroxybenzoate carboxy lyase; UbiD catalyzes the decarboxylation of a 4-hydroxybenzoate analogue in ubiquinone biosynthesis. Another ORF was similar to the ubiX gene product, an isoenzyme of UbiD. We propose that (some of) these four proteins are involved in the carboxylation of phenylphosphate. A 700-bp PCR product derived from one of these ORFs cross-hybridized with DNA from different Thauera and Azoarcus strains, even from those which have not been reported to grow with phenol. One ORF showed similarity to the mutT gene product, and three ORFs showed no strong similarities to sequences in the databases. Upstream of the first gene cluster, an

  5. An Unsolved Mystery: The Target-Recognizing RNA Species of MicroRNA Genes

    PubMed Central

    Chen, Chang-Zheng

    2013-01-01

    MicroRNAs (miRNAs) are an abundant class of endogenous ~ 21-nucleotide (nt) RNAs. These small RNAs are produced from long primary miRNA transcripts — pri-miRNAs — through sequential endonucleolytic maturation steps that yield precursor miRNA (pre-miRNA) intermediates and then the mature miRNAs. The mature miRNAs are loaded into the RNA-induced silencing complexes (RISC), and guide RISC to target mRNAs for cleavage and/or translational repression. This paradigm, which represents one of major discoveries of modern molecular biology, is built on the assumption that mature miRNAs are the only species produced from miRNA genes that recognize targets. This assumption has guided the miRNA field for more than a decade and has led to our current understanding of the mechanisms of target recognition and repression by miRNAs. Although progress has been made, fundamental questions remain unanswered with regard to the principles of target recognition and mechanisms of repression. Here I raise questions about the assumption that mature miRNAs are the only target-recognizing species produced from miRNA genes and discuss the consequences of working under an incomplete or incorrect assumption. Moreover, I present evolution-based and experimental evidence that support the roles of pri-/pre-miRNAs in target recognition and repression. Finally, I propose a conceptual framework that integrates the functions of pri-/pre-miRNAs and mature miRNAs in target recognition and repression. The integrated framework opens experimental enquiry and permits interpretation of fundamental problems that have so far been precluded. PMID:23685275

  6. Massively Parallel Sequencing of Patients with Intellectual Disability, Congenital Anomalies and/or Autism Spectrum Disorders with a Targeted Gene Panel

    PubMed Central

    Brett, Maggie; McPherson, John; Zang, Zhi Jiang; Lai, Angeline; Tan, Ee-Shien; Ng, Ivy; Ong, Lai-Choo; Cham, Breana; Tan, Patrick; Rozen, Steve; Tan, Ene-Choo

    2014-01-01

    Developmental delay and/or intellectual disability (DD/ID) affects 1–3% of all children. At least half of these are thought to have a genetic etiology. Recent studies have shown that massively parallel sequencing (MPS) using a targeted gene panel is particularly suited for diagnostic testing for genetically heterogeneous conditions. We report on our experiences with using massively parallel sequencing of a targeted gene panel of 355 genes for investigating the genetic etiology of eight patients with a wide range of phenotypes including DD/ID, congenital anomalies and/or autism spectrum disorder. Targeted sequence enrichment was performed using the Agilent SureSelect Target Enrichment Kit and sequenced on the Illumina HiSeq2000 using paired-end reads. For all eight patients, 81–84% of the targeted regions achieved read depths of at least 20×, with average read depths overlapping targets ranging from 322× to 798×. Causative variants were successfully identified in two of the eight patients: a nonsense mutation in the ATRX gene and a canonical splice site mutation in the L1CAM gene. In a third patient, a canonical splice site variant in the USP9X gene could likely explain all or some of her clinical phenotypes. These results confirm the value of targeted MPS for investigating DD/ID in children for diagnostic purposes. However, targeted gene MPS was less likely to provide a genetic diagnosis for children whose phenotype includes autism. PMID:24690944

  7. Systematical analysis of cutaneous squamous cell carcinoma network of microRNAs, transcription factors, and target and host genes.

    PubMed

    Wang, Ning; Xu, Zhi-Wen; Wang, Kun-Hao

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules found in multicellular eukaryotes which are implicated in development of cancer, including cutaneous squamous cell carcinoma (cSCC). Expression is controlled by transcription factors (TFs) that bind to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to messenger RNA. Interactions result in biological signal control networks. Molecular components involved in cSCC were here assembled at abnormally expressed, related and global levels. Networks at these three levels were constructed with corresponding biological factors in term of interactions between miRNAs and target genes, TFs and miRNAs, and host genes and miRNAs. Up/down regulation or mutation of the factors were considered in the context of the regulation and significant patterns were extracted. Participants of the networks were evaluated based on their expression and regulation of other factors. Sub-networks with two core TFs, TP53 and EIF2C2, as the centers are identified. These share self-adapt feedback regulation in which a mutual restraint exists. Up or down regulation of certain genes and miRNAs are discussed. Some, for example the expression of MMP13, were in line with expectation while others, including FGFR3, need further investigation of their unexpected behavior. The present research suggests that dozens of components, miRNAs, TFs, target genes and host genes included, unite as networks through their regulation to function systematically in human cSCC. Networks built under the currently available sources provide critical signal controlling pathways and frequent patterns. Inappropriate controlling signal flow from abnormal expression of key TFs may push the system into an incontrollable situation and therefore contributes to cSCC development.

  8. Tumor targeting of gene expression through metal-coordinated conjugation with dextran.

    PubMed

    Hosseinkhani, Hossein; Aoyama, Teruyoshi; Ogawa, Osamu; Tabata, Yasuhiko

    2003-03-07

    Tumor targeting of plasmid DNA was achieved through the conjugation of dextran derivatives with chelate residues based on metal coordination. Diethylenetriamine pentaacetic acid (DTPA), spermidine (Sd), and spermine (Sm) were chemically introduced to the hydroxyl groups of dextran to obtain dextran-DTPA, dextran-Sd and dextran-Sm derivatives. Conjugation of the dextran derivative by Zn(2+) coordination decreased the apparent size of the plasmid DNA, depending on the derivative type. The negative zeta potential of plasmid DNA became almost 0 mV after Zn(2+)-coordinated conjugation with dextran-Sm. When the dextran derivative-plasmid DNA conjugates with Zn(2+) coordination were intravenously injected subcutaneously into mice bearing Meth-AR-1 fibrosarcoma, the dextran-Sm-plasmid DNA conjugate significantly enhanced the level of gene expression in the tumor, in contrast to the conjugate of other dextran derivatives and free plasmid DNA. The enhanced gene expression produced by the Zn(2+)-coordinated dextran-Sm-plasmid DNA conjugate was specific to the tumor, whereas a simple mixture of dextran-Sm and plasmid DNA was not effective. The level of gene expression depended on the percentage of chelate residues introduced, the mixing weight ratio of the plasmid DNA/Sm residue used for conjugate preparation, and the plasmid DNA dose. A fluorescent microscopic study revealed that localization of plasmid DNA in the tumor tissue was observed only after injection of the dextran-Sm-plasmid DNA conjugate with Zn(2+) coordination. In addition, the gene expression induced by the conjugate lasted for more than 10 days after the injection. We conclude that Zn(2+)-coordinated dextran-Sm conjugation is a promising way to enable plasmid DNA to target the tumor in gene expression as well as to prolong the duration of gene expression.

  9. The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42.

    PubMed

    González-Sánchez, Antonio; Cubillas, Ciro A; Miranda, Fabiola; Dávalos, Araceli; García-de Los Santos, Alejandro

    2017-12-27

    Copper (Cu) is an essential micronutrient for all aerobic forms of life. Its oxidation states (Cu + /Cu 2+ ) make this metal an important cofactor of enzymes catalyzing redox reactions in essential biological processes. In gram-negative bacteria, Cu uptake is an unexplored component of a finely regulated trafficking network, mediated by protein-protein interactions that deliver Cu to target proteins and efflux surplus metal to avoid toxicity. Rhizobium etliCFN42 is a facultative symbiotic diazotroph that must ensure its appropriate Cu supply for living either free in the soil or as an intracellular symbiont of leguminous plants. In crop fields, rhizobia have to contend with copper-based fungicides. A detailed deletion analysis of the pRet42e (505 kb) plasmid from an R. etli mutant with enhanced CuCl 2 tolerance led us to the identification of the ropAe gene, predicted to encode an outer membrane protein (OMP) with a β-barrel channel structure that may be involved in Cu transport. In support of this hypothesis, the functional characterization of ropAe revealed that: (I) gene disruption increased copper tolerance of the mutant, and its complementation with the wild-type gene restored its wild-type copper sensitivity; (II) the ropAe gene maintains a low basal transcription level in copper overload, but is upregulated when copper is scarce; (III) disruption of ropAe in an actP (copA) mutant background, defective in copper efflux, partially reduced its copper sensitivity phenotype. Finally, BLASTP comparisons and a maximum likelihood phylogenetic analysis highlight the diversification of four RopA paralogs in members of the Rhizobiaceae family. Orthologs of RopAe are highly conserved in the Rhizobiales order, poorly conserved in other alpha proteobacteria and phylogenetically unrelated to characterized porins involved in Cu or Mn uptake. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Fox (forkhead) genes are involved in the dorso-ventral patterning of the Xenopus mesoderm.

    PubMed

    El-Hodiri, H; Bhatia-Dey, N; Kenyon, K; Ault, K; Dirksen, M; Jamrich, M

    2001-01-01

    Fox (forkhead/winged helix) genes encode a family of transcription factors that are involved in embryonic pattern formation, regulation of tissue specific gene expression and tumorigenesis. Several of them are transcribed during Xenopus embryogenesis and are important for the patterning of ectoderm, mesoderm and endoderm. We have isolated three forkhead genes that are activated during gastrulation and play an important role in the dorso-ventral patterning of the mesoderm. XFKH1 (FoxA4b), the first vertebrate forkhead gene to be implicated in embryonic pattern formation, is expressed in the Spemann-Mangold organizer region and later in the embryonic notochord. XFKH7, the Xenopus orthologue of the murine Mfh1(Foxc2), is expressed in the presomitic mesoderm, but not in the notochord or lateral plate mesoderm. Finally, XFD-13'(FoxF1b)1 is expressed in the lateral plate mesoderm, but not in the notochord or presomitic mesoderm. Expression pattern and functional experiments indicate that these three forkhead genes are involved in the dorso-ventral patterning of the mesoderm.

  11. Methylation of miRNA genes and oncogenesis.

    PubMed

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  12. Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting.

    PubMed

    Langston, Lance D; Symington, Lorraine S

    2005-06-15

    Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.

  13. The Receptor Tyrosine Kinase EphA2 Is a Direct Target Gene of Hypermethylated in Cancer 1 (HIC1)*

    PubMed Central

    Foveau, Bénédicte; Boulay, Gaylor; Pinte, Sébastien; Van Rechem, Capucine; Rood, Brian R.; Leprince, Dominique

    2012-01-01

    The tumor suppressor gene hypermethylated in cancer 1 (HIC1), which encodes a transcriptional repressor, is epigenetically silenced in many human tumors. Here, we show that ectopic expression of HIC1 in the highly malignant MDA-MB-231 breast cancer cell line severely impairs cell proliferation, migration, and invasion in vitro. In parallel, infection of breast cancer cell lines with a retrovirus expressing HIC1 also induces decreased mRNA and protein expression of the tyrosine kinase receptor EphA2. Moreover, chromatin immunoprecipitation (ChIP) and sequential ChIP experiments demonstrate that endogenous HIC1 proteins are bound, together with the MTA1 corepressor, to the EphA2 promoter in WI38 cells. Taken together, our results identify EphA2 as a new direct target gene of HIC1. Finally, we observe that inactivation of endogenous HIC1 through RNA interference in normal breast epithelial cells results in the up-regulation of EphA2 and is correlated with increased cellular migration. To conclude, our results involve the tumor suppressor HIC1 in the transcriptional regulation of the tyrosine kinase receptor EphA2, whose ligand ephrin-A1 is also a HIC1 target gene. Thus, loss of the regulation of this Eph pathway through HIC1 epigenetic silencing could be an important mechanism in the pathogenesis of epithelial cancers. PMID:22184117

  14. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets.

    PubMed

    Shin, John J; Aftab, Qurratulain; Austin, Pamela; McQueen, Jennifer A; Poon, Tak; Li, Shu Chen; Young, Barry P; Roskelley, Calvin D; Loewen, Christopher J R

    2016-09-01

    A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C-COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial respiratory chain

  15. Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach.

    PubMed

    Zhang, C H; Zhang, B B; Ma, R J; Yu, M L; Guo, S L; Guo, L

    2015-10-30

    MicroRNA166 (miR166) is known to have highly conserved targets that encode proteins of the class III homeodomain-leucine zipper (HD-ZIP III) family, in a broad range of plant species. To further understand the relationship between HD-ZIP III genes and miR166, four HD-ZIP III family genes (PpHB14, PpHB15, PpHB8, and PpREV) were isolated from peach (Prunus persica) tissue and characterized. Spatio-temporal expression profiles of the genes were analyzed. Genes of the peach HD-ZIP III family were predicted to encode five conserved domains. Deduced amino acid sequences and tertiary structures of the four peach HD-ZIP III genes were highly conserved, with corresponding genes in Arabidopsis thaliana. The expression level of four targets displayed the opposite trend to that of miR166 throughout fruit development, with the exception of PpHB14 from 35 to 55 days after full bloom (DAFB). This finding indicates that miR166 may negatively regulate its four targets throughout fruit development. As for leaf and phloem, the same trend in expression level was observed between four targets and miR166 from 75 to 105 DAFB. However, the opposite trend was observed for the transcript level between four targets and miR166 from 35 to 55 DAFB. miRNA166 may negatively regulate four targets in some but not all developmental stages for a given tissue. The four genes studied were observed to have, exactly or generally, the same change tendency as individual tissue development, a finding that suggests genes of the HD-ZIP III family in peach may have complementary or cooperative functions in various tissues.

  16. Epigenetic regulation of the expression of genes involved in steroid hormone biosynthesis and action

    PubMed Central

    Martinez-Arguelles, Daniel B.; Papadopoulos, Vassilios

    2010-01-01

    Steroid hormones participate in organ development, reproduction, body homeostasis, and stress responses. The steroid machinery is expressed in a development- and tissue-specific manner, with the expression of these factors being tightly regulated by an array of transcription factors (TFs). Epigenetics provides an additional layer of gene regulation through DNA methylation and histone tail modifications. Evidence of epigenetic regulation of key steroidogenic enzymes is increasing, though this does not seem to be a predominant regulatory pathway. Steroid hormones exert their action in target tissues through steroid nuclear receptors belonging to the NR3A and NR3C families. Nuclear receptor expression levels and post-translational modifications regulate their function and dictate their sensitivity to steroid ligands. Nuclear receptors and TFs are more likely to be epigenetically regulated than proteins involved in steroidogenesis and have secondary impact on the expression of these steroidogenic enzymes. Here we review evidence for epigenetic regulation of enzymes, transcription factors, and nuclear receptors related to steroid biogenesis and action. PMID:20156469

  17. Occupational styrene exposure induces stress-responsive genes involved in cytoprotective and cytotoxic activities.

    PubMed

    Strafella, Elisabetta; Bracci, Massimo; Staffolani, Sara; Manzella, Nicola; Giantomasi, Daniele; Valentino, Matteo; Amati, Monica; Tomasetti, Marco; Santarelli, Lory

    2013-01-01

    The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure.

  18. Occupational Styrene Exposure Induces Stress-Responsive Genes Involved in Cytoprotective and Cytotoxic Activities

    PubMed Central

    Strafella, Elisabetta; Bracci, Massimo; Staffolani, Sara; Manzella, Nicola; Giantomasi, Daniele; Valentino, Matteo; Amati, Monica; Tomasetti, Marco; Santarelli, Lory

    2013-01-01

    Objective The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Methods Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Results Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. Conclusion The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure. PMID:24086524

  19. Interleukin-5 regulates genes involved in B-cell terminal maturation.

    PubMed

    Horikawa, Keisuke; Takatsu, Kiyoshi

    2006-08-01

    Interleukin (IL)-5 induces CD38-activated splenic B cells to differentiate into immunoglobulin M-secreting cells and undergo micro to gamma 1 class switch recombination (CSR) at the DNA level, resulting in immunoglobulin G1 (IgG1) production. Interestingly, IL-4, a well-known IgG1-inducing factor does not induce immunoglobulin production or micro to gamma 1 CSR in CD38-activated B cells. In the present study, we implemented complementary DNA microarrays to investigate the contribution of IL-5-induced gene expression in CD38-stimulated B cells to immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR. IL-5 and IL-4 stimulation of CD38-activated B cells induced the expression of 418 and 289 genes, respectively, that consisted of several clusters. Surprisingly, IL-5-inducible 78 genes were redundantly regulated by IL-4. IL-5 and IL-4 also suppressed the gene expression of 319 and 325 genes, respectively, 97 of which were overlapped. Genes critically regulated by IL-5 include immunoglobulin-related genes such as J chain and immunoglobulinkappa, and genes involved in B-cell maturation such as BCL6, activation-induced cytidine deaminase (Aid) and B lymphocyte-induced maturation protein-1 (Blimp-1) and tend to be induced slowly after IL-5 stimulation. Intriguingly, among genes, the retroviral induction of Blimp-1 and Aid in CD38-activated B cells could induce IL-4-dependent maturation to Syndecan-1+ antibody-secreting cells and micro to gamma 1 CSR, respectively, in CD38-activated B cells. Taken together, preferential Aid and Blimp-1 expression plays a critical role in IL-5-induced immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR in CD38-activated B cells.

  20. Microarray analysis identified Puccinia striiformis f. sp. tritici genes involved in infection and sporulation.

    USDA-ARS?s Scientific Manuscript database

    Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, one of the most important diseases of wheat worldwide. To identify Pst genes involved in infection and sporulation, a custom oligonucleotide Genechip was made using sequences of 442 genes selected from Pst cDNA libraries. Microarray analy...

  1. Wounding induces expression of genes involved in tuber closing layer and wound-periderm development

    USDA-ARS?s Scientific Manuscript database

    Little is known about the coordinate induction of genes that may be involved in important wound-healing events. In this study, wound-healing events were determined together with wound-induced expression profiles of selected cell cycle, cell wall protein, and pectin methyl esterase genes using tuber...

  2. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila.

    PubMed Central

    Weill, Mylène; Fort, Philippe; Berthomieu, Arnaud; Dubois, Marie Pierre; Pasteur, Nicole; Raymond, Michel

    2002-01-01

    Acetylcholinesterase (AChE) is the target of two major insecticide families, organophosphates (OPs) and carbamates. AChE insensitivity is a frequent resistance mechanism in insects and responsible mutations in the ace gene were identified in two Diptera, Drosophila melanogaster and Musca domestica. However, for other insects, the ace gene cloned by homology with Drosophila does not code for the insensitive AChE in resistant individuals, indicating the existence of a second ace locus. We identified two AChE loci in the genome of Anopheles gambiae, one (ace-1) being a new locus and the other (ace-2) being homologous to the gene previously described in Drosophila. The gene ace-1 has no obvious homologue in the Drosophila genome and was found in 15 mosquito species investigated. In An. gambiae, ace-1 and ace-2 display 53% similarity at the amino acid level and an overall phylogeny indicates that they probably diverged before the differentiation of insects. Thus, both genes are likely to be present in the majority of insects and the absence of ace-1 in Drosophila is probably due to a secondary loss. In one mosquito (Culex pipiens), ace-1 was found to be tightly linked with insecticide resistance and probably encodes the AChE OP target. These results have important implications for the design of new insecticides, as the target AChE is thus encoded by distinct genes in different insect groups, even within the Diptera: ace-2 in at least the Drosophilidae and Muscidae and ace-1 in at least the Culicidae. Evolutionary scenarios leading to such a peculiar situation are discussed. PMID:12396499

  3. Sequence-defined cMET/HGFR-targeted Polymers as Gene Delivery Vehicles for the Theranostic Sodium Iodide Symporter (NIS) Gene

    PubMed Central

    Urnauer, Sarah; Morys, Stephan; Krhac Levacic, Ana; Müller, Andrea M; Schug, Christina; Schmohl, Kathrin A; Schwenk, Nathalie; Zach, Christian; Carlsen, Janette; Bartenstein, Peter; Wagner, Ernst; Spitzweg, Christine

    2016-01-01

    The sodium iodide symporter (NIS) as well-characterized theranostic gene represents an outstanding tool to target different cancer types allowing noninvasive imaging of functional NIS expression and therapeutic radioiodide application. Based on its overexpression on the surface of most cancer types, the cMET/hepatocyte growth factor receptor serves as ideal target for tumor-selective gene delivery. Sequence-defined polymers as nonviral gene delivery vehicles comprising polyethylene glycol (PEG) and cationic (oligoethanoamino) amide cores coupled with a cMET-binding peptide (cMBP2) were complexed with NIS-DNA and tested for receptor-specificity, transduction efficiency, and therapeutic efficacy in hepatocellular cancer cells HuH7. In vitro iodide uptake studies demonstrated high transduction efficiency and cMET-specificity of NIS-encoding polyplexes (cMBP2-PEG-Stp/NIS) compared to polyplexes without targeting ligand (Ala-PEG-Stp/NIS) and without coding DNA (cMBP2-PEG-Stp/Antisense-NIS). Tumor recruitment and vector biodistribution were investigated in vivo in a subcutaneous xenograft mouse model showing high tumor-selective iodide accumulation in cMBP2-PEG-Stp/NIS-treated mice (6.6 ± 1.6% ID/g 123I, biological half-life 3 hours) by 123I-scintigraphy. Therapy studies with three cycles of polyplexes and 131I application resulted in significant delay in tumor growth and prolonged survival. These data demonstrate the enormous potential of cMET-targeted sequence-defined polymers combined with the unique theranostic function of NIS allowing for optimized transfection efficiency while eliminating toxicity. PMID:27157666

  4. Strategy of Cancer Targeting Gene-Viro-Therapy (CTGVT) a trend in both cancer gene therapy and cancer virotherapy.

    PubMed

    Liu, Xin-Yuan; Li, Hua-Guang; Zhang, Kang-Jian; Gu, Jin-Fa

    2012-07-01

    Cancer Targeting Gene-Viro-Therapy (CTGVT) and Gene Armed Oncolytic Virus Therapy (GAOVT) both are identical by inserting an antitumor gene into an oncolytic virus. This approach has gradually become a hot topic in cancer therapy, because that CTGVT (GAOVT) has much higher antitumor than that of either gene therapy alone or oncolytic virotherapy alone. We proposed the CTGVT strategy in 1999-2001, insisted it as a long term systematic approach to be examined over 10 years and have published 68 SCI papers some in good Journals. The CD gene armed oncolytic adenovirus therapy (GAOVT) for cancer treatment with potent antitumor effect was also named in our laboratory in 2003. Several modifications to CTGVT will be carried out by our group and will be introduced briefly in this paper. Most importantly, the modifications of CTGVT usually resulted in complete eradication of xenograft tumors in nude mice. In future best antitumor drugs may emerge from the modified CTGVT strategy and not from either gene therapy or virotherapy alone.

  5. Global Variation of Human Papillomavirus Genotypes and Selected Genes Involved in Cervical Malignancies.

    PubMed

    Husain, R S Akram; Ramakrishnan, V

    2015-01-01

    Carcinoma of the cervix is ranked second among the top 5 cancers affecting women globally. Parallel to other cancers, it is also a complex disease involving numerous factors such as human papillomavirus (HPV) infection followed by the activity of oncogenes and environmental factors. The incidence rate of the disease remains high in developing countries due to lack of awareness, followed by mass screening programs, various socioeconomic issues, and low usage of preventive vaccines. Over the past 3 decades, extensive research has taken place in cervical malignancy to elucidate the role of host genes in the pathogenesis of the disease, yet it remains one of the most prevalent diseases. It is imperative that recent genome-wide techniques be used to determine whether carcinogenesis of oncogenes is associated with cervical cancer at the molecular level and to translate that knowledge into developing diagnostic and therapeutic tools. The aim of this study was to discuss HPV predominance with their genotype distribution worldwide, and in India, as well as to discuss the newly identified oncogenes related to cervical cancer in current scenario. Using data from various databases and robust technologies, oncogenes associated with cervical malignancies were identified and are explained in concise manner. Due to the advent of recent technologies, new candidate genes are explored and can be used as precise biomarkers for screening and developing drug targets. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment.

    PubMed

    Parker, Brittany C; Zhang, Wei

    2013-11-01

    Studies over the past decades have uncovered fusion genes, a class of oncogenes that provide immense diagnostic and therapeutic advantages because of their tumor-specific expression. Originally associated with hemotologic cancers, fusion genes have recently been discovered in a wide array of solid tumors, including sarcomas, carcinomas, and tumors of the central nervous system. Fusion genes are attractive as both therapeutic targets and diagnostic tools due to their inherent expression in tumor tissue alone. Therefore, the discovery and elucidation of fusion genes in various cancer types may provide more effective therapies in the future for cancer patients.

  7. Reconstructing directed gene regulatory network by only gene expression data.

    PubMed

    Zhang, Lu; Feng, Xi Kang; Ng, Yen Kaow; Li, Shuai Cheng

    2016-08-18

    Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues. In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are

  8. Target gene analyses of 39 amelogenesis imperfecta kindreds

    PubMed Central

    Chan, Hui-Chen; Estrella, Ninna M. R. P.; Milkovich, Rachel N.; Kim, Jung-Wook; Simmer, James P.; Hu, Jan C-C.

    2012-01-01

    Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred. PMID:22243262

  9. Diversity of Two-Domain Laccase-Like Multicopper Oxidase Genes in Streptomyces spp.: Identification of Genes Potentially Involved in Extracellular Activities and Lignocellulose Degradation during Composting of Agricultural Waste

    PubMed Central

    Lu, Lunhui; Zhang, Jiachao; Chen, Anwei; Chen, Ming; Jiang, Min; Yuan, Yujie; Wu, Haipeng; Lai, Mingyong; He, Yibin

    2014-01-01

    Traditional three-domain fungal and bacterial laccases have been extensively studied for their significance in various biotechnological applications. Growing molecular evidence points to a wide occurrence of more recently recognized two-domain laccase-like multicopper oxidase (LMCO) genes in Streptomyces spp. However, the current knowledge about their ecological role and distribution in natural or artificial ecosystems is insufficient. The aim of this study was to investigate the diversity and composition of Streptomyces two-domain LMCO genes in agricultural waste composting, which will contribute to the understanding of the ecological function of Streptomyces two-domain LMCOs with potential extracellular activity and ligninolytic capacity. A new specific PCR primer pair was designed to target the two conserved copper binding regions of Streptomyces two-domain LMCO genes. The obtained sequences mainly clustered with Streptomyces coelicolor, Streptomyces violaceusniger, and Streptomyces griseus. Gene libraries retrieved from six composting samples revealed high diversity and a rapid succession of Streptomyces two-domain LMCO genes during composting. The obtained sequence types cluster in 8 distinct clades, most of which are homologous with Streptomyces two-domain LMCO genes, but the sequences of clades III and VIII do not match with any reference sequence of known streptomycetes. Both lignocellulose degradation rates and phenol oxidase activity at pH 8.0 in the composting process were found to be positively associated with the abundance of Streptomyces two-domain LMCO genes. These observations provide important clues that Streptomyces two-domain LMCOs are potentially involved in bacterial extracellular phenol oxidase activities and lignocellulose breakdown during agricultural waste composting. PMID:24657870

  10. Identification of genes involved in reproduction and lipid pathway metabolism in wild and domesticated shrimps.

    PubMed

    Rotllant, Guiomar; Wade, Nicholas M; Arnold, Stuart J; Coman, Gregory J; Preston, Nigel P; Glencross, Brett D

    2015-08-01

    The aims of this study were to identify genes involved in reproduction and lipid pathway metabolism in Penaeus monodon and correlate their expression with reproductive performance. Samples of the hepatopancreas and ovaries were obtained from a previous study of the reproductive performance of wild and domesticated P. monodon broodstock. Total mRNA from the domesticated broodstock was used to create two next generation sequencing cDNA libraries enabling the identification of 11 orthologs of key genes in reproductive and nutritional metabolic pathways in P. monodon. These were identified from the library of de novo assembled contigs, including the description of 6 newly identified genes. Quantitative RT-PCR of these genes in the hepatopancreas prior to spawning showed that the domesticated mature females significantly showed higher expression of the Pm Elovl4, Pm COX and Pm SUMO genes. The ovaries of domesticated females had a significantly decreased expression of the Pm Elovl4 genes. In the ovaries of newly spawned females, a significant correlation was observed between hepatosomatic index and the expression of Pm FABP and also between total lipid content and the expression of Pm CYP4. Although not significant, the highest levels of correlation were found between relative fecundity and Pm CRP and Pm CYP4 expression, and between hatching rate and Pm Nvd and Pm RXR expression. This study reports the discovery of genes involved in lipid synthesis, steroid biosynthesis and reproduction in P. monodon. These results indicate that genes encoding enzymes involved in lipid metabolism pathways might be potential biomarkers to assess reproductive performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes

    PubMed Central

    Balasubramaniyan, Natarajan; Ananthanarayanan, Meena

    2012-01-01

    The farnesoid X receptor (FXR) is a ligand (bile acid)-dependent nuclear receptor that regulates target genes involved in every aspect of bile acid homeostasis. Upon binding of ligand, FXR recruits an array of coactivators and associated proteins, some of which have intrinsic enzymatic activity that modify histones or even components of the transcriptional complex. In this study, we show chromatin occupancy by the Set7/9 methyltransferase at the FXR response element (FXRE) and direct methylation of FXR in vivo and in vitro at lysine 206. siRNA depletion of Set7/9 in the Huh-7 liver cell line decreased endogenous mRNAs of the FXR target genes, the short heterodimer partner (SHP) and bile salt export pump (BSEP). Mutation of the methylation site at K206 of FXR to an arginine prevented methylation by Set7/9. A pan-methyllysine antibody recognized the wild-type FXR but not the K206R mutant form. An electromobility shift assay showed that methylation by Set7/9 enhanced binding of FXR/retinoic X receptor-α to the FXRE. Interaction between hinge domain of FXR (containing K206) and Set7/9 was confirmed by coimmunoprecipitation, GST pull down, and mammalian two-hybrid experiments. Set7/9 overexpression in Huh-7 cells significantly enhanced transactivation of the SHP and BSEP promoters in a ligand-dependent fashion by wild-type FXR but not the K206R mutant FXR. A Set7/9 mutant deficient in methyltransferase activity was also not effective in increasing transactivation of the BSEP promoter. These studies demonstrate that posttranslational methylation of FXR by Set7/9 contributes to the transcriptional activation of FXR-target genes. PMID:22345554

  12. Biological effects of RNAi targeted inhibiting Tiam1 gene expression on cholangiocarcinoma cells.

    PubMed

    Cheng, Wei; Liu, Yaling; Zuo, Zhi; Yin, Xinmin; Jiang, Bo; Chen, Daojin; Peng, Chuang; Yang, Jianhui

    2015-01-01

    To investigate the characteristics of Tiam1 gene expression in human cholangiocarcinoma tissues and benign bile duct tissues, and to analyze the correlations between Tiam1 gene expression and the degree of tumor differentiation, invasive and metastatic abilities. To explore the effect of targeted inhibiting Tiam1 gene expression on proliferation and migration activity of human cholangiocarcinoma cells. Expression of Tiam1 in 83 cases of cholangiocarcinoma tissues and 25 cases of benign bile tissues was detected using immunohistochemistry. The clinical data of patients with cholangiocarcinoma were collected. The correlations between Tiam1 gene expression and the clinicopathologic features in patients with cholangiocarcinoma were analyzed. The human cholangiocarcinoma RBE cells were divided into 3 groups. Cells in experimental group and control group were respectively transfected with Tiam1 shRNA lentiviral vectors and negative shRNA lentiviral control vectors. Cells in blank group received no treatment. Real-time PCR endogenesis was used to verify Tiam1 gene expression. Cell cycle experiments and MTT assay were used to measure cell proliferation activity. Transwell test was used to detect cell migration activity. The negative rate Tiam1 protein expression in cholangiocarcinoma tissues was significantly higher than that in benign bile tissues (P<0.001). Tiam1 protein expression in cholangiocarcinoma tissues had correlations with cholangiocarcinoma differentiation degree, TNM stage and lymph node metastasis (P<0.05), and had no significant correlations with gender, age and distant metastasis (P>0.05). Real-time PCR detection indicated that Tiam1 expression of experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that Tiam1 shRNA was effective on Tiam1 gene silencing in RBE cells. Cell cycle experiment showed that the percentage of S phase in cell cycle in experimental group was lower than that in control group

  13. Biological effects of RNAi targeted inhibiting Tiam1 gene expression on cholangiocarcinoma cells

    PubMed Central

    Cheng, Wei; Liu, Yaling; Zuo, Zhi; Yin, Xinmin; Jiang, Bo; Chen, Daojin; Peng, Chuang; Yang, Jianhui

    2015-01-01

    Objective: To investigate the characteristics of Tiam1 gene expression in human cholangiocarcinoma tissues and benign bile duct tissues, and to analyze the correlations between Tiam1 gene expression and the degree of tumor differentiation, invasive and metastatic abilities. To explore the effect of targeted inhibiting Tiam1 gene expression on proliferation and migration activity of human cholangiocarcinoma cells. Methods: Expression of Tiam1 in 83 cases of cholangiocarcinoma tissues and 25 cases of benign bile tissues was detected using immunohistochemistry. The clinical data of patients with cholangiocarcinoma were collected. The correlations between Tiam1 gene expression and the clinicopathologic features in patients with cholangiocarcinoma were analyzed. The human cholangiocarcinoma RBE cells were divided into 3 groups. Cells in experimental group and control group were respectively transfected with Tiam1 shRNA lentiviral vectors and negative shRNA lentiviral control vectors. Cells in blank group received no treatment. Real-time PCR endogenesis was used to verify Tiam1 gene expression. Cell cycle experiments and MTT assay were used to measure cell proliferation activity. Transwell test was used to detect cell migration activity. Results: The negative rate Tiam1 protein expression in cholangiocarcinoma tissues was significantly higher than that in benign bile tissues (P<0.001). Tiam1 protein expression in cholangiocarcinoma tissues had correlations with cholangiocarcinoma differentiation degree, TNM stage and lymph node metastasis (P<0.05), and had no significant correlations with gender, age and distant metastasis (P>0.05). Real-time PCR detection indicated that Tiam1 expression of experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that Tiam1 shRNA was effective on Tiam1 gene silencing in RBE cells. Cell cycle experiment showed that the percentage of S phase in cell cycle in experimental group was lower

  14. RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways

    PubMed Central

    Jiang, Lulu; Hindmarch, Charles C. T.; Rogers, Mark; Campbell, Colin; Waterfall, Christy; Coghill, Jane; Mathieson, Peter W.; Welsh, Gavin I.

    2016-01-01

    Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or ‘podocytes’, the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes. PMID:27774996

  15. A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community

    PubMed Central

    2013-01-01

    Background Butyrate, which is produced by the human microbiome, is essential for a well-functioning colon. Bacteria that produce butyrate are phylogenetically diverse, which hinders their accurate detection based on conventional phylogenetic markers. As a result, reliable information on this important bacterial group is often lacking in microbiome research. Results In this study we describe a gene-targeted approach for 454 pyrotag sequencing and quantitative polymerase chain reaction for the final genes in the two primary bacterial butyrate synthesis pathways, butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (buk). We monitored the establishment and early succession of butyrate-producing communities in four patients with ulcerative colitis who underwent a colectomy with ileal pouch anal anastomosis and compared it with three control samples from healthy colons. All patients established an abundant butyrate-producing community (approximately 5% to 26% of the total community) in the pouch within the 2-month study, but patterns were distinctive among individuals. Only one patient harbored a community profile similar to the healthy controls, in which there was a predominance of but genes that are similar to reference genes from Acidaminococcus sp., Eubacterium sp., Faecalibacterium prausnitzii and Roseburia sp., and an almost complete absence of buk genes. Two patients were greatly enriched in buk genes similar to those of Clostridium butyricum and C. perfringens, whereas a fourth patient displayed abundant communities containing both genes. Most butyrate producers identified in previous studies were detected and the general patterns of taxa found were supported by 16S rRNA gene pyrotag analysis, but the gene-targeted approach provided more detail about the potential butyrate-producing members of the community. Conclusions The presented approach provides quantitative and genotypic insights into butyrate-producing communities and facilitates a more specific

  16. Dissecting microRNA dysregulation in age-related macular degeneration: new targets for eye gene therapy.

    PubMed

    Askou, Anne Louise; Alsing, Sidsel; Holmgaard, Andreas; Bek, Toke; Corydon, Thomas J

    2018-02-01

    MicroRNAs (miRNAs) are key regulators of gene expression in humans. Overexpression or depletion of individual miRNAs is associated with human disease. Current knowledge suggests that the retina is influenced by miRNAs and that dysregulation of miRNAs as well as alterations in components of the miRNA biogenesis machinery are involved in retinal diseases, including age-related macular degeneration (AMD). Furthermore, recent studies have indicated that the vitreous has a specific panel of circulating miRNAs and that this panel varies according to the specific pathological stress experienced by the retinal cells. MicroRNA (miRNA) profiling indicates subtype-specific miRNA profiles for late-stage AMD highlighting the importance of proper miRNA regulation in AMD. This review will describe the function of important miRNAs involved in inflammation, oxidative stress and pathological neovascularization, the key molecular mechanisms leading to AMD, and focus on dysregulated miRNAs as potential therapeutic targets in AMD. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. HIV-derived vectors for gene therapy targeting dendritic cells.

    PubMed

    Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.

  18. A Pepper MSRB2 Gene Confers Drought Tolerance in Rice through the Protection of Chloroplast-Targeted Genes

    PubMed Central

    Chae, Songhwa; Lee, Tae-Ho; Hwang, Duk-Ju; Oh, Sung-Dug; Park, Jong-Sug; Song, Dae-Geun; Pan, Cheol-Ho; Choi, Doil; Kim, Yul-Ho; Nahm, Baek Hie; Kim, Yeon-Ki

    2014-01-01

    Background The perturbation of the steady state of reactive oxygen species (ROS) due to biotic and abiotic stresses in a plant could lead to protein denaturation through the modification of amino acid residues, including the oxidation of methionine residues. Methionine sulfoxide reductases (MSRs) catalyze the reduction of methionine sulfoxide back to the methionine residue. To assess the role of this enzyme, we generated transgenic rice using a pepper CaMSRB2 gene under the control of the rice Rab21 (responsive to ABA protein 21) promoter with/without a selection marker, the bar gene. Results A drought resistance test on transgenic plants showed that CaMSRB2 confers drought tolerance to rice, as evidenced by less oxidative stress symptoms and a strengthened PSII quantum yield under stress conditions, and increased survival rate and chlorophyll index after the re-watering. The results from immunoblotting using a methionine sulfoxide antibody and nano-LC-MS/MS spectrometry suggest that porphobilinogen deaminase (PBGD), which is involved in chlorophyll synthesis, is a putative target of CaMSRB2. The oxidized methionine content of PBGD expressed in E. coli increased in the presence of H2O2, and the Met-95 and Met-227 residues of PBGD were reduced by CaMSRB2 in the presence of dithiothreitol (DTT). An expression profiling analysis of the overexpression lines also suggested that photosystems are less severely affected by drought stress. Conclusions Our results indicate that CaMSRB2 might play an important functional role in chloroplasts for conferring drought stress tolerance in rice. PMID:24614245

  19. Editor’s Highlight: A Genome-wide Screening of Target Genes Against Silver Nanoparticles in Fission Yeast

    PubMed Central

    Lee, Sook-Jeong; Lee, Minho; Nam, Miyoung; Lee, Sol; Choi, Jian; Lee, Hye-Jin; Kim, Dong-Uk; Hoe, Kwang-Lae

    2018-01-01

    Abstract To identify target genes against silver nanoparticles (AgNPs), we screened a genome-wide gene deletion library of 4843 fission yeast heterozygous mutants covering 96% of all protein encoding genes. A total of 33 targets were identified by a microarray and subsequent individual confirmation. The target pattern of AgNPs was more similar to those of AgNO3 and H2O2, followed by Cd and As. The toxic effect of AgNPs on fission yeast was attributed to the intracellular uptake of AgNPs, followed by the subsequent release of Ag+, leading to the generation of reactive oxygen species (ROS). Next, we focused on the top 10 sensitive targets for further studies. As described previously, 7 nonessential targets were associated with detoxification of ROS, because their heterozygous mutants showed elevated ROS levels. Three novel essential targets were related to folate metabolism or cellular component organization, resulting in cell cycle arrest and no induction in the transcriptional level of antioxidant enzymes such as Sod1 and Gpx1 when 1 of the 2 copies was deleted. Intriguingly, met9 played a key role in combating AgNP-induced ROS generation via NADPH production and was also conserved in a human cell line. PMID:29294138

  20. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    PubMed

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  1. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3more » (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen

  2. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.

    PubMed

    Beller, Harry R; Goh, Ee-Been; Keasling, Jay D

    2010-02-01

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which

  3. Inactivation of ceramide synthase 2 catalytic activity in mice affects transcription of genes involved in lipid metabolism and cell division.

    PubMed

    Bickert, Andreas; Kern, Paul; van Uelft, Martina; Herresthal, Stefanie; Ulas, Thomas; Gutbrod, Katharina; Breiden, Bernadette; Degen, Joachim; Sandhoff, Konrad; Schultze, Joachim L; Dörmann, Peter; Hartmann, Dieter; Bauer, Reinhard; Willecke, Klaus

    2018-07-01

    The replacement of two consecutive histidine residues by alanine residues in the catalytic center of ceramide synthase 2 in a new transgenic mouse mutant (CerS2 H/A) leads to inactivation of catalytic activity and reduces protein level to 60% of the WT level. We show here by qRT-PCR and transcriptome analyses that several transcripts of genes involved in lipid metabolism and cell division are differentially regulated in livers of CerS2 H/A mice. Thus, very long chain ceramides produced by CerS2 are required for transcriptional regulation of target genes. The hepatocellular carcinomata previously described in old CerS2 KO mice were already present in 8-week-old CerS2 H/A animals and thus are caused by the loss of CerS2 catalytic activity already during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Noninvasive, targeted gene therapy for acute spinal cord injury using LIFU-mediated BDNF-loaded cationic nanobubble destruction.

    PubMed

    Song, Zhaojun; Ye, Yongjie; Zhang, Zhi; Shen, Jieliang; Hu, Zhenming; Wang, Zhigang; Zheng, Jiazhuang

    2018-02-12

    Various gene delivery systems have been widely studied for the acute spinal cord injury (SCI) treatment. In the present study, a novel type of brain-derived neurotrophic factor (BDNF)-loaded cationic nanobubbles (CNBs) conjugated with MAP-2 antibody (mAb MAP-2 /BDNF/CNBs) was prepared to provide low-intensity focused ultrasound (LIFU)-targeted gene therapy. In vitro experiments, the ultrasound-targeted tranfection to BDNF overexpressioin in neurons and efficiently inhibition neuronal apoptosis have been demonstrated, and the elaborately designed mAb MAP-2 /BDNF/CNBs can specifically target to the neurons. Furthermore, in a acute SCI rat model, LIFU-mediated mAb MAP-2 /BDNF/CNBs transfection significantly increased BDNF expression, attenuated histological injury, decreased neurons loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in SCI rats. LIFU-mediated mAb MAP-2 /BDNF/CNBs destruction significantly increase transfection efficiency of BDNF gene both in vitro and in vivo, and has a significant neuroprotective effect on the injured spinal cord. Therefore, the combination of LIFU irradiation and gene therapy through mAb MAP-2 /BDNF/CNBs can be considered as a novel non-invasive and targeted treatment for gene therapy of SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters

    PubMed Central

    Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong

    2015-01-01

    Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters. PMID:26714171

  6. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.

    PubMed

    Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong

    2015-12-01

    Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters.

  7. Knockdown of genes in the Toll pathway reveals new lethal RNA interference targets for insect pest control.

    PubMed

    Bingsohn, L; Knorr, E; Billion, A; Narva, K E; Vilcinskas, A

    2017-02-01

    RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies. © 2016 The Royal Entomological Society.

  8. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization

    PubMed Central

    Chavez-Dozal, Alba; Hogan, David; Gorman, Clayton; Quintanal-Villalonga, Alvaro; Nishiguchi, Michele K.

    2012-01-01

    Biofilms are increasingly recognized as the predominant form for survival in the environment for most bacteria. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica, involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. In the present investigation, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. Results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships. PMID:22486781

  9. Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter

    PubMed Central

    Chen, Hui; Kazemier, Hinke G; de Groote, Marloes L.; Ruiters, Marcel H. J.; Xu, Guo-Liang; Rots, Marianne G.

    2014-01-01

    Increasing evidence indicates that active DNA demethylation is involved in several processes in mammals, resulting in developmental stage-specificity and cell lineage-specificity. The recently discovered Ten-Eleven Translocation (TET) dioxygenases are accepted to be involved in DNA demethylation by initiating 5-mC oxidation. Aberrant DNA methylation profiles are associated with many diseases. For example in cancer, hypermethylation results in silencing of tumor suppressor genes. Such silenced genes can be re-expressed by epigenetic drugs, but this approach has genome-wide effects. In this study, fusions of designer DNA binding domains to TET dioxygenase family members (TET1, -2 or -3) were engineered to target epigenetically silenced genes (ICAM-1, EpCAM). The effects on targeted CpGs’ methylation and on expression levels of the target genes were assessed. The results indicated demethylation of targeted CpG sites in both promoters for targeted TET2 and to a lesser extent for TET1, but not for TET3. Interestingly, we observed re-activation of transcription of ICAM-1. Thus, our work suggests that we provided a mechanism to induce targeted DNA demethylation, which facilitates re-activation of expression of the target genes. Furthermore, this Epigenetic Editing approach is a powerful tool to investigate functions of epigenetic writers and erasers and to elucidate consequences of epigenetic marks. PMID:24194590

  10. [Orthopoxvirus genes for kelch-like proteins. III. Construction of mousepox (ectromelia) virus variants with targeted gene deletions].

    PubMed

    Kochneva, G V; Kolosova, I V; Lupan, T A; Sivolobova, G F; Iudin, P V; Grazhdantseva, A A; Riabchikova, E I; Kandrina, N Iu; Shchelkunov, S N

    2009-01-01

    Mousepox (ectromelia) virus genome contains four genes encoding for kelch-like proteins EVM018, EVM027, EVM150 and EVM167. A complete set of insertion plasmids was constructed to allow the production of recombinant ectromelia viruses with targeted deletions of one to four genes of kelch family both individually (single mutants) and in different combinations (double, triple and quadruple mutants). It was shown that deletion of any of the three genes EVMO18, EVM027 or EVM167 resulted in reduction of 50% lethal dose (LD50) by five and more orders in outbred white mice infected intraperitoneally. Deletion of mousepox kelch-gene EVM150 did not influence the virus virulence. Two or more kelch-genes deletion also resulted in high level of attenuation, which could evidently be due to the lack of three genes EVM167, EVM018 and/or EVM027 identified as virulence factors. The local inflammatory process on the model of intradermal injection of mouse ear pinnae (vasodilatation level, hyperemia, cutaneous edema, arterial thrombosis) was significantly more intensive for wild type virus and virulent mutant deltaEVM150 in comparison with avirulent mutant AEVM167.

  11. Retrovirus-mediated siRNA targeting TRPM7 gene induces apoptosis in RBL-2H3 cells.

    PubMed

    Ng, N-M; Jiang, S-P; Lv, Z-Q

    2012-09-01

    Calcium signaling is important for both normal physiologic processes and pathology of various diseases. Transient receptor potential melastatin 7 (TRPM7) gene has been reported to be a potential candidate for calcium influx. The present study aimed to investigate the possible role of TRPM7 channels in apoptosis in rat basophilic leukemia mast cell line (RBL-2H3), which is widely used in mast cell-associated studies. A recombinant retrovirus vector siRNA targeting rat TRPM7 gene was constructed and identified. Cellular survival was assessed by MTT. Cell apoptosis was evaluated by flow cytometry and TUNEL-FITC/Hoechst 33258 staining. The transfection efficiency by retrovirus vector was about 60%-70%. Transfection with TRPM7 siRNA significantly reduced TRPM7 expression both at mRNA and protein levels. Suppression of TRPM7 expression by siRNA led to significantly decreased cellular survival rates and increased apoptosis rates in RBL-2H3 cells. This study indicates that TRPM7 is involved in the apoptosis process in RBL-2H3 cells.

  12. Nrf2 target genes are induced under marginal selenium-deficiency

    PubMed Central

    Müller, Mike; Banning, Antje; Brigelius-Flohé, Regina

    2010-01-01

    A suboptimal selenium supply appears to prevail in Europe. The current study, therefore, was focused on the changes in gene expression under a suboptimal selenium intake. Previous microarray analyses in the colon of mice fed either a selenium-adequate or a moderately deficient diet revealed a change in genes of several pathways. Severe selenium-deficiency has been found previously to influence Nrf2-regulated genes of the adaptive response. Since the previous pathway analyses were done with a program not searching for Nrf2 target genes, respective genes were manually selected and confirmed by qPCR. qPCR revealed an induction of phase II (Nqo1, Gsts, Sult1b1 and Ugt1a6) and antioxidant enzymes (Hmox1, Mt2, Prdx1, Srxn1, Sod1 and Gclc) under the selenium-poor diet, which is considered to compensate for the loss of selenoproteins. The strongest effects were observed in the duodenum where preferentially genes for antioxidant enzymes were up-regulated. These also include the mRNA of the selenoproteins TrxR1 and GPx2 that would enable their immediate translation upon selenium refeeding. The down-regulation of Gsk3β in moderate selenium-deficiency observed in the previous paper provides a possible explanation for the activation of the Nrf2 pathway, because inhibition of GSK3β results in the nuclear accumulation of Nrf2. PMID:21189866

  13. Identification of putative candidate genes involved in cuticle formation in Prunus avium (sweet cherry) fruit

    PubMed Central

    Alkio, Merianne; Jonas, Uwe; Sprink, Thorben; van Nocker, Steven; Knoche, Moritz

    2012-01-01

    Background and Aims The cuticular membrane (CM) of Prunus avium (sweet cherry) and other fleshy fruit is under stress. Previous research indicates that the resultant strain promotes microscopic cuticular cracking. Microcracks impair the function of the CM as a barrier against pathogens and uncontrolled water loss/uptake. Stress and strain result from a cessation of CM deposition during early development, while the fruit surface continues to expand. The cessation of CM deposition, in turn, may be related to an early downregulation of CM-related genes. The aims of this study were to identify genes potentially involved in CM formation in sweet cherry fruit and to quantify their expression levels. Methods Fruit growth and CM deposition were quantified weekly from anthesis to maturity and rates of CM deposition were calculated. Sequences of genes expressed in the sweet cherry fruit skin (exocarp) were generated using high-throughput sequencing of cDNA and de novo assembly and analysed using bioinformatics tools. Relative mRNA levels of selected genes were quantified in the exocarp and fruit flesh (mesocarp) weekly using reverse transcriptase-quantitative real-time PCR and compared with the calculated CM deposition rate over time. Key Results The rate of CM deposition peaked at 93 (±5) μg per fruit d−1 about 19 d after anthesis. Based on sequence analyses, 18 genes were selected as potentially involved in CM formation. Selected sweet cherry genes shared up to 100 and 98 % similarity with the respective Prunus persica (peach) and Arabidopsis thaliana genes. Expression of 13 putative CM-related genes was restricted to the exocarp and correlated positively with the CM deposition rate. Conclusions The results support the view that the cessation of CM deposition during early sweet cherry fruit development is accounted for by a downregulation of genes involved in CM deposition. Genes that merit further investigation include PaWINA, PaWINB, PaLipase, PaLTPG1, PaATT1, Pa

  14. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system

    PubMed Central

    Wang, Xiaolong; Yu, Honghao; Lei, Anmin; Zhou, Jiankui; Zeng, Wenxian; Zhu, Haijing; Dong, Zhiming; Niu, Yiyuan; Shi, Bingbo; Cai, Bei; Liu, Jinwang; Huang, Shuai; Yan, Hailong; Zhao, Xiaoe; Zhou, Guangxian; He, Xiaoling; Chen, Xiaoxu; Yang, Yuxin; Jiang, Yu; Shi, Lei; Tian, Xiue; Wang, Yongjun; Ma, Baohua; Huang, Xingxu; Qu, Lei; Chen, Yulin

    2015-01-01

    Recent advances in the study of the CRISPR/Cas9 system have provided a precise and versatile approach for genome editing in various species. However, the applicability and efficiency of this method in large animal models, such as the goat, have not been extensively studied. Here, by co-injection of one-cell stage embryos with Cas9 mRNA and sgRNAs targeting two functional genes (MSTN and FGF5), we successfully produced gene-modified goats with either one or both genes disrupted. The targeting efficiency of MSTN and FGF5 in cultured primary fibroblasts was as high as 60%, while the efficiency of disrupting MSTN and FGF5 in 98 tested animals was 15% and 21% respectively, and 10% for double gene modifications. The on- and off-target mutations of the target genes in fibroblasts, as well as in somatic tissues and testis of founder and dead animals, were carefully analyzed. The results showed that simultaneous editing of several sites was achieved in large animals, demonstrating that the CRISPR/Cas9 system has the potential to become a robust and efficient gene engineering tool in farm animals, and therefore will be critically important and applicable for breeding. PMID:26354037

  15. Hapten-derivatized nanoparticle targeting and imaging of gene expression by multimodality imaging systems.

    PubMed

    Cheng, C-M; Chu, P-Y; Chuang, K-H; Roffler, S R; Kao, C-H; Tseng, W-L; Shiea, J; Chang, W-D; Su, Y-C; Chen, B-M; Wang, Y-M; Cheng, T-L

    2009-01-01

    Non-invasive gene monitoring is important for most gene therapy applications to ensure selective gene transfer to specific cells or tissues. We developed a non-invasive imaging system to assess the location and persistence of gene expression by anchoring an anti-dansyl (DNS) single-chain antibody (DNS receptor) on the cell surface to trap DNS-derivatized imaging probes. DNS hapten was covalently attached to cross-linked iron oxide (CLIO) to form a 39+/-0.5 nm DNS-CLIO nanoparticle imaging probe. DNS-CLIO specifically bound to DNS receptors but not to a control single-chain antibody receptor. DNS-CLIO (100 microM Fe) was non-toxic to both B16/DNS (DNS receptor positive) and B16/phOx (control receptor positive) cells. Magnetic resonance (MR) imaging could detect as few as 10% B16/DNS cells in a mixture in vitro. Importantly, DNS-CLIO specifically bound to a B16/DNS tumor, which markedly reduced signal intensity. Similar results were also shown with DNS quantum dots, which specifically targeted CT26/DNS cells but not control CT26/phOx cells both in vitro and in vivo. These results demonstrate that DNS nanoparticles can systemically monitor the expression of DNS receptor in vivo by feasible imaging systems. This targeting strategy may provide a valuable tool to estimate the efficacy and specificity of different gene delivery systems and optimize gene therapy protocols in the clinic.

  16. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

    PubMed Central

    2009-01-01

    Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated

  17. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome.

    PubMed

    Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg

    2009-08-06

    Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The

  18. The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites.

    PubMed

    Verma, Anju; Lee, Chris; Morriss, Stephanie; Odu, Fiona; Kenning, Charlotte; Rizzo, Nancy; Spollen, William G; Lin, Marriam; McRae, Amanda G; Givan, Scott A; Hewezi, Tarek; Hussey, Richard; Davis, Eric L; Baum, Thomas J; Mitchum, Melissa G

    2018-05-04

    Cyst nematodes deliver effector proteins into host cells to manipulate cellular processes and establish a metabolically hyperactive feeding site. The novel 30D08 effector protein is produced in the dorsal gland of parasitic juveniles, but its function has remained unknown. We demonstrate that expression of 30D08 contributes to nematode parasitism, the protein is packaged into secretory granules and it is targeted to the plant nucleus where it interacts with SMU2 (homolog of suppressor of mec-8 and unc-52 2), an auxiliary spliceosomal protein. We show that SMU2 is expressed in feeding sites and an smu2 mutant is less susceptible to nematode infection. In Arabidopsis expressing 30D08 under the SMU2 promoter, several genes were found to be alternatively spliced and the most abundant functional classes represented among differentially expressed genes were involved in RNA processing, transcription and binding, as well as in development, and hormone and secondary metabolism, representing key cellular processes known to be important for feeding site formation. In conclusion, we demonstrated that the 30D08 effector is secreted from the nematode and targeted to the plant nucleus where its interaction with a host auxiliary spliceosomal protein may alter the pre-mRNA splicing and expression of a subset of genes important for feeding site formation. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1+ pre–B ALL

    PubMed Central

    Aghajanirefah, Ali; McLaughlin, Jami; Cheng, Donghui; Geng, Huimin; Eggesbø, Linn M.; Smale, Stephen T.; Müschen, Markus

    2017-01-01

    Inactivation of the tumor suppressor gene encoding the transcriptional regulator Ikaros (IKZF1) is a hallmark of BCR-ABL1+ precursor B cell acute lymphoblastic leukemia (pre–B ALL). However, the mechanisms by which Ikaros functions as a tumor suppressor in pre–B ALL remain poorly understood. Here, we analyzed a mouse model of BCR-ABL1+ pre–B ALL together with a new model of inducible expression of wild-type Ikaros in IKZF1 mutant human BCR-ABL1+ pre–B ALL. We performed integrated genome-wide chromatin and expression analyses and identified Ikaros target genes in mouse and human BCR-ABL1+ pre–B ALL, revealing novel conserved gene pathways associated with Ikaros tumor suppressor function. Notably, genetic depletion of different Ikaros targets, including CTNND1 and the early hematopoietic cell surface marker CD34, resulted in reduced leukemic growth. Our results suggest that Ikaros mediates tumor suppressor function by enforcing proper developmental stage–specific expression of multiple genes through chromatin compaction at its target genes. PMID:28190001

  20. Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation.

    PubMed

    Selvarajan, Dharshini; Mohan, Chakravarthi; Dhandapani, Vignesh; Nerkar, Gauri; Jayanarayanan, Ashwin Narayan; Vadakkancherry Mohanan, Manoj; Murugan, Naveenarani; Kaur, Lovejot; Chennappa, Mahadevaiah; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Chinnaswamy, Appunu

    2018-04-01

    Sugarcane ( Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic