Sample records for targeting low-energy ballistic

  1. Targeting Low-Energy Ballistic Lunar Transfers

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  2. A Survey of Ballistic Transfers to Low Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Peterson, Andrew

    2011-01-01

    A simple strategy is identified to generate ballistic transfers between the Earth and Moon, i.e., transfers that perform two maneuvers: a trans-lunar injection maneuver to depart the Earth and a Lunar Orbit Insertion maneuver to insert into orbit at the Moon. This strategy is used to survey the performance of numerous transfers between varying Earth parking orbits and varying low lunar target orbits. The transfers surveyed include short 3-6 day direct transfers, longer 3-4 month low energy transfers, and variants that include Earth phasing orbits and/or lunar flybys.

  3. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  4. Optimal ballistically captured Earth-Moon transfers

    NASA Astrophysics Data System (ADS)

    Ricord Griesemer, Paul; Ocampo, Cesar; Cooley, D. S.

    2012-07-01

    The optimality of a low-energy Earth-Moon transfer terminating in ballistic capture is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the problem is then modified to fix the time of transfer, allowing for optimal multi-impulse transfers. The tradeoff between transfer time and fuel cost is shown for Earth-Moon ballistic lunar capture transfers.

  5. Low-energy ballistic lunar transfers

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey S.

    A systematic method is developed that uses dynamical systems theory to model, analyze, and construct low-energy ballistic lunar transfers (BLTs). It has been found that low-energy BLTs may be produced by intersecting the stable manifold of an unstable Earth-Moon three-body orbit with the Earth. A spacecraft following such a trajectory is only required to perform a single maneuver, namely, the Trans-Lunar Injection maneuver, in order to complete the transfer. After the Trans-Lunar Injection maneuver, the spacecraft follows an entirely ballistic trajectory that asymptotically approaches and arrives at the target lunar three-body orbit. Because these orbit transfers require no orbit insertion maneuver at the three-body orbit, the transfers may be used to send spacecraft 25--40% more massive than spacecraft sent to the same orbits via conventional, direct transfers. From the targeted three-body orbits, the spacecraft may transfer to nearly any region within the Earth-Moon system, including any location on the surface of the Moon. The systematic methods developed in this research allow low-energy BLTs to be characterized by six parameters. It has been found that BLTs exist in families, where a family of BLTs consists of transfers whose parameters vary in a continuous fashion from one end of the family to the other. The families are easily identified and studied using a BLT State Space Map (BLT Map). The present research studies BLT Maps and has surveyed a wide variety of BLTs that exist in the observed families. It has been found that many types of BLTs may be constructed between 185-km low Earth parking orbits and lunar three-body orbits that require less than 3.27 km/s and fewer than 120 days of transfer time. Under certain conditions, BLTs may be constructed that require less than 3.2 km/s and fewer than 100 days of transfer time. It has been found that BLTs may implement LEO parking orbits with nearly any combination of altitude and inclination; they may depart from their LEO parking orbits nearly any day of each month; and they may target a variety of different classes of unstable Earth-Moon three-body orbits. Finally, studies are provided that address how low-energy transfers impact the design of spacecraft systems and how BLT Maps may be implemented as pragmatic tools in the design of practical lunar missions.

  6. Optimal Low Energy Earth-Moon Transfers

    NASA Technical Reports Server (NTRS)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  7. Room-temperature ballistic transport in III-nitride heterostructures.

    PubMed

    Matioli, Elison; Palacios, Tomás

    2015-02-11

    Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the short electron mean-free-path at RT requires nanoscale devices for which surface effects are a limitation in these materials. We explore the unique properties of wide band-gap III-nitride semiconductors to demonstrate RT ballistic devices. A theoretical model is proposed to corroborate experimentally their optical phonon energy of 92 meV, which is ∼4× larger than in other III-V semiconductors. This allows RT ballistic devices operating at larger voltages and currents. An additional model is described to determine experimentally a characteristic dimension for ballistic transport of 188 nm. Another remarkable property is their short carrier depletion at device sidewalls, down to 13 nm, which allows top-down nanofabrication of very narrow ballistic devices. These results open a wealth of new systems and basic transport studies possible at RT.

  8. Bio-inspired Armor Protective Material Systems for Ballistic Shock Mitigation

    DTIC Science & Technology

    2011-01-01

    Coupon testing a b s t r a c t Severe transient ballistic shocks from projectile impacts, mine blasts , or overhead artillery attacks can incapacitate an...past two decades [1]. A ballistic shock results from a significant amount of concentrated energy deposited from caliber projectile impacts, mine blasts ...LS- Dyna , has been predominately utilized to calculate the target shock responses including acceleration histo- ries, shock response spectra

  9. Automated generation and optimization of ballistic lunar capture transfer trajectories

    NASA Astrophysics Data System (ADS)

    Griesemer, Paul Ricord

    The successful completion of the Hiten mission in 1991 provided real-world validation of a class of trajectories defined as ballistic lunar capture transfers. This class of transfers is often considered for missions to the Moon and for tours of the moons of other planets. In this study, the dynamics of the three and four body problems are examined to better explain the mechanisms of low energy transfers in the Earth-Moon system, and to determine their optimality. Families of periodic orbits in the restricted Earth-Sun-spacecraft three body problem are shown to be generating families for low energy transfers between orbits of the Earth. The low energy orbit-to-orbit transfers are shown to require less fuel than optimal direct transfers between the same orbits in the Earth-Sun-spacecraft circular restricted three body problem. The low energy transfers are categorized based on their generating family and the number of flybys in the reference three body trajectory. The practical application of these generating families to spacecraft mission design is demonstrated through a robust nonlinear targeting algorithm for finding Sun-Earth-Moon-spacecraft four body transfers based on startup transfers indentified in the Earth-Sun three body problem. The local optimality of the transfers is examined through use of Lawden's primer vector theory, and new conditions of optimality for single-impulse-to-capture lunar transfers are established.

  10. Ballistic intercept missions to Comet Encke

    NASA Technical Reports Server (NTRS)

    Mumma, M. (Compiler)

    1975-01-01

    The optimum ballistic intercept of a spacecraft with the comet Encke is determined. The following factors are considered in the analysis: energy requirements, encounter conditions, targeting error, comet activity, spacecraft engineering requirements and restraints, communications, and scientific return of the mission. A baseline model is formulated which includes the basic elements necessary to estimate the scientific return for the different missions considered. Tradeoffs which have major impact on the cost and/or scientific return of a ballistic mission to comet Encke are identified and discussed. Recommendations are included.

  11. The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis)

    PubMed Central

    Hayashi, Marika; Feilich, Kara L.; Ellerby, David J.

    2009-01-01

    Explosive dehiscence ballistically disperses seeds in a number of plant species. During dehiscence, mechanical energy stored in specialized tissues is transferred to the seeds to increase their kinetic and potential energies. The resulting seed dispersal patterns have been investigated in some ballistic dispersers, but the mechanical performance of a launch mechanism of this type has not been measured. The properties of the energy storage tissue and the energy transfer efficiency of the launch mechanism were quantified in Impatiens capensis. In this species the valves forming the seed pod wall store mechanical energy. Their mass specific energy storage capacity (124 J kg−1) was comparable with that of elastin and spring steel. The energy storage capacity of the pod tissues was determined by their level of hydration, suggesting a role for turgor pressure in the energy storage mechanism. During dehiscence the valves coiled inwards, collapsing the pod and ejecting the seeds. Dehiscence took 4.2±0.4 ms (mean ±SEM, n=13). The estimated efficiency with which energy was transferred to the seeds was low (0.51±0.26%, mean ±SEM, n=13). The mean seed launch angle (17.4±5.2, mean ±SEM, n=45) fell within the range predicted by a ballistic model to maximize dispersal distance. Low ballistic dispersal efficiency or effectiveness may be characteristic of species that also utilize secondary seed dispersal mechanisms. PMID:19321647

  12. The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis).

    PubMed

    Hayashi, Marika; Feilich, Kara L; Ellerby, David J

    2009-01-01

    Explosive dehiscence ballistically disperses seeds in a number of plant species. During dehiscence, mechanical energy stored in specialized tissues is transferred to the seeds to increase their kinetic and potential energies. The resulting seed dispersal patterns have been investigated in some ballistic dispersers, but the mechanical performance of a launch mechanism of this type has not been measured. The properties of the energy storage tissue and the energy transfer efficiency of the launch mechanism were quantified in Impatiens capensis. In this species the valves forming the seed pod wall store mechanical energy. Their mass specific energy storage capacity (124 J kg(-1)) was comparable with that of elastin and spring steel. The energy storage capacity of the pod tissues was determined by their level of hydration, suggesting a role for turgor pressure in the energy storage mechanism. During dehiscence the valves coiled inwards, collapsing the pod and ejecting the seeds. Dehiscence took 4.2+/-0.4 ms (mean +/-SEM, n=13). The estimated efficiency with which energy was transferred to the seeds was low (0.51+/-0.26%, mean +/-SEM, n=13). The mean seed launch angle (17.4+/-5.2, mean +/-SEM, n=45) fell within the range predicted by a ballistic model to maximize dispersal distance. Low ballistic dispersal efficiency or effectiveness may be characteristic of species that also utilize secondary seed dispersal mechanisms.

  13. Characterizing the interaction among bullet, body armor, and human and surrogate targets.

    PubMed

    Shen, Weixin; Niu, Yuqing; Bykanova, Lucy; Laurence, Peter; Link, Norman

    2010-12-01

    This study used a combined experimental and modeling approach to characterize and quantify the interaction among bullet, body armor, and human surrogate targets during the 10-1000 μs range that is crucial to evaluating the protective effectiveness of body armor against blunt injuries. Ballistic tests incorporating high-speed flash X-ray measurements were performed to acquire the deformations of bullets and body armor samples placed against ballistic clay and gelatin targets with images taken between 10 μs and 1 ms of the initial impact. Finite element models (FEMs) of bullet, armor, and gelatin and clay targets were developed with material parameters selected to best fit model calculations to the test measurements. FEMs of bullet and armor interactions were then assembled with a FEM of a human torso and FEMs of clay and gelatin blocks in the shape of a human torso to examine the effects of target material and geometry on the interaction. Test and simulation results revealed three distinct loading phases during the interaction. In the first phase, the bullet was significantly slowed in about 60 μs as it transferred a major portion of its energy into the body armor. In the second phase, fibers inside the armor were pulled toward the point of impact and kept on absorbing energy until about 100 μs after the initial impact when energy absorption reached its peak. In the third phase, the deformation on the armor's back face continued to grow and energies inside both armor and targets redistributed through wave propagation. The results indicated that armor deformation and energy absorption in the second and third phases were significantly affected by the material properties (density and stiffness) and geometrical characteristics (curvature and gap at the armor-target interface) of the targets. Valid surrogate targets for testing the ballistic resistance of the armor need to account for these factors and produce the same armor deformation and energy absorption as on a human torso until at least about 100 μs (maximum armor energy absorption) or more preferably 300 μs (maximum armor deformation).

  14. Comparison of ballistic impact effects between biological tissue and gelatin.

    PubMed

    Jin, Yongxi; Mai, Ruimin; Wu, Cheng; Han, Ruiguo; Li, Bingcang

    2018-02-01

    Gelatin is commonly used in ballistic testing as substitute for biological tissue. Comparison of ballistic impact effects produced in the gelatin and living tissue is lacking. The work in this paper was aimed to compare the typical ballistic impact effects (penetration trajectory, energy transfer, temporary cavity) caused by 4.8mm steel ball penetrating the 60kg porcine hind limbs and 10wt% gelatin. The impact event in the biological tissue was recorded by high speed flash X-ray machine at different delay time, while the event in the gelatin continuously recorded by high speed video was compared to that in the biological tissue. The collected results clearly displayed that the ballistic impact effects in the muscle and gelatin were similar for the steel ball test; as for instance, the projectile trajectory in the two targets was basically similar, the process of energy transfer was highly coincident, and the expansion of temporary cavity followed the same pattern. This study fully demonstrated that choosing gelatin as muscle simulant was reasonable. However, the maximum temporary cavity diameter in the gelatin was a little larger than that in the muscle, and the expansion period of temporary cavity was longer in the gelatin. Additionally, the temporary cavity collapse process in the two targets followed different patterns, and the collapse period in the gelatin was two times as long as that in the muscle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Effect of Ballistic Impacts on the High Cycle Fatigue Properties of Ti-48Al-2Nb-2Cr (at.%)

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Austin, C. M.; Erdman, O.

    2000-01-01

    The ability of gamma - TiAl to withstand potential foreign and/or domestic object damage is a technical risk to the implementation of gamma - TiAl in low pressure turbine (LPT) blade applications. The overall purpose of the present study was to determine the influence of ballistic impact damage on the high cycle fatigue strength of gamma - TiAl simulated LPT blades. Impact and specimen variables included ballistic impact energy, projectile hardness, impact temperature, impact location, and leading edge thickness. The level of damage induced by the ballistic impacting was studied and quantified on both the impact (front) and backside of the specimens. Multiple linear regression was used to model the cracking and fatigue response as a function of the impact variables. Of the impact variables studied, impact energy had the largest influence on the response of gamma - TiAl to ballistic impacting. Backside crack length was the best predictor of remnant fatigue strength for low energy impacts (<0.74J) whereas Hertzian crack length (impact side damage) was the best predictor for higher energy impacts. The impacted gamma - TiAl samples displayed a classical mean stress dependence on the fatigue strength. For the fatigue design stresses of a 6th stage LPT blade in a GE90 engine, a Ti-48Al-2Nb-2Cr LPT blade would survive an impact of normal service conditions.

  16. Precession feature extraction of ballistic missile warhead with high velocity

    NASA Astrophysics Data System (ADS)

    Sun, Huixia

    2018-04-01

    This paper establishes the precession model of ballistic missile warhead, and derives the formulas of micro-Doppler frequency induced by the target with precession. In order to obtain micro-Doppler feature of ballistic missile warhead with precession, micro-Doppler bandwidth estimation algorithm, which avoids velocity compensation, is presented based on high-resolution time-frequency transform. The results of computer simulations confirm the effectiveness of the proposed method even with low signal-to-noise ratio.

  17. Low Energy Transfer to the Moon

    NASA Astrophysics Data System (ADS)

    Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D.

    In 1991, the Japanese Hiten mission used a low energy transfer with a ballistic capture at the Moon which required less Δ V than a standard Hohmann transfer. In this paper, we apply the dynamical systems techniques developed in our earlier work to reproduce systematically a Hiten-like mission. We approximate the Sun-Earth-Moon-spacecraft 4-body system as two 3-body systems. Using the invariant manifold structures of the Lagrange points of the 3-body systems, we are able to construct low energy transfer trajectories from the Earth which execute ballistic capture at the Moon. The techniques used in the design and construction of this trajectory may be applied in many situations.

  18. Study on Ballistic Absorbing Energy Character of High Performance Polyethylene Needle Felt

    NASA Astrophysics Data System (ADS)

    Kailiang, Zhu; Jianqiao, Fu

    2017-11-01

    The ballistic performance of polyethylene needle felt is tested and the failure morphology after test is also observed. The results showed that when the non-dimensionally non-stressed fibers in polyethylene needles are subjected to high-speed projectile, secondary movement such as stretching and twisting occurs first. This secondary movement is very full, it is the main way of ballistic absorbing energy of the polyethylene needle felt which can avoid the polyethylene fiber short-term rapid heating-up and destroyed. Analysis results show that under normal temperature and humidity conditions, the V50 of 6-layer forded polyethylene needle felt sample is 250m/s. At (450 ± 50) m/s speed range of the target missile, the mean value of the penetrative specific energy absorption for 3-layer forded polyethylene needle felt anti-1.1g simulated projectiles (tapered column) reaches 24.1J·m2/kg.

  19. Ballistic Missile Intercept from UCAV

    DTIC Science & Technology

    2011-12-01

    aerodynamic forces acting on the ballistic missile , generates a ballistic flight path of the ballistic missile target based on the model developed by...for use against ballistic missile targets) [14] Hutchins, R., ME4703 “ Missile Flight Analysis ” Course Notes, Spring 2005. [15] Stevens, B., and...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited BALLISTIC MISSILE

  20. Low energy trajectories to Mars via gravity assist from Venus to earth

    NASA Technical Reports Server (NTRS)

    Williams, S. N.; Longuski, J. M.

    1991-01-01

    The analytical determination of launch dates and proposed trajectories is reviewed with respect to the search for a low-energy trajectory to Mars with gravitational assist from Venus for the years 1995-2024. Both Ballistic and Venus-Earth gravity assist (VEGA) trajectories are calculated with an automated design tool by the authors (1990). The trajectories are modeled as conic sections from one gravitating body to the next, and gravity assist is considered to act impulsively. VEGA trajectories to Mars require similar launch energies for 6 years listed and have moderate arrival C3s, with the lowest C3 requirement in 2015. The flight time and arrival energies of the trajectories are found to be larger than those of ballistic trajectories, but the low-energy launch window makes them desirable for unmanned Mars missions, in particular.

  1. Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum

    NASA Astrophysics Data System (ADS)

    Lakatosh, B. V.; Abramenko, D. B.; Ivanov, V. V.; Medvedev, V. V.; Krivtsun, V. M.; Koshelev, K. N.; Yakunin, A. M.

    2018-01-01

    The recoil momentum transfer produced by irradiation of a flat tin (Sn) target with pulses of high-power CO2 laser with intensity ranging from 107 to 1010 W cm-2 has been studied. Momentum measurements were performed using a ballistic pendulum, capable of measuring momenta as small as 0.001 g · cm s-1 . It has been established that the recoil momentum monotonically increases with the laser energy and asymptotically reaches the power scaling law p ∼ Iα with α = 0.96 +/- 0.07 . Results are compared with previously published theoretical studies.

  2. Aerocapture Guidance Performance for the Neptune Orbiter

    NASA Technical Reports Server (NTRS)

    Masciarelli, James P.; Westhelle, Carlos H.; Graves, Claude A.

    2004-01-01

    A performance evaluation of the Hybrid Predictor corrector Aerocapture Scheme (HYPAS) guidance algorithm for aerocapture at Neptune is presented in this paper for a Mission to Neptune and the Neptune moon Triton'. This mission has several challenges not experienced in previous aerocapture guidance assessments. These challengers are a very high Neptune arrival speed, atmospheric exit into a high energy orbit about Neptune, and a very high ballistic coefficient that results in a low altitude acceleration capability when combined with the aeroshell LD. The evaluation includes a definition of the entry corridor, a comparison to the theoretical optimum performance, and guidance responses to variations in atmospheric density, aerodynamic coefficients and flight path angle for various vehicle configurations (ballistic numbers). The benefits of utilizing angle-of-attack modulation in addition to bank angle modulation to improve flight performance is also discussed. The results show that despite large sensitivities in apoapsis targeting, the algorithm performs within the allocated AV budget for the Neptune mission bank angle only modulation. The addition of angle-of-attack modulation with as little as 5 degrees of amplitude significantly improves the scatter in final orbit apoapsis. Although the angle-of-attack modulation complicates the vehicle design, the performance enhancement reduces aerocapture risk and reduces the propellant consumption needed to reach the high energy target orbit for a conventional propulsion system.

  3. System Requirements Analysis and Technological Support for the Ballistic Missile Defense System (BMDS) - FY07 Progress Report

    DTIC Science & Technology

    2007-07-01

    Systems , Boeing-led Airborne Laser Team Actively Tracks Airborne Target, Compensates for Atmospheric Turbulence and Fires Sur- rogate High-Energy Laser...7100 System Requirements Analysis and Technological Support for the Ballistic Missile Defense System (BMDS) FY07 Progress Report By...Office of Management and Budget , Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE July

  4. Characteristic extraction and matching algorithms of ballistic missile in near-space by hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Lu, Li; Sheng, Wen; Liu, Shihua; Zhang, Xianzhi

    2014-10-01

    The ballistic missile hyperspectral data of imaging spectrometer from the near-space platform are generated by numerical method. The characteristic of the ballistic missile hyperspectral data is extracted and matched based on two different kinds of algorithms, which called transverse counting and quantization coding, respectively. The simulation results show that two algorithms extract the characteristic of ballistic missile adequately and accurately. The algorithm based on the transverse counting has the low complexity and can be implemented easily compared to the algorithm based on the quantization coding does. The transverse counting algorithm also shows the good immunity to the disturbance signals and speed up the matching and recognition of subsequent targets.

  5. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    PubMed Central

    Machado, Brenda I.; Murr, Lawrence E.; Suro, Raquel M.; Gaytan, Sara M.; Ramirez, Diana A.; Garza, Kristine M.; Schuster, Brian E.

    2010-01-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified. PMID:20948926

  6. Characterization and cytotoxic assessment of ballistic aerosol particulates for tungsten alloy penetrators into steel target plates.

    PubMed

    Machado, Brenda I; Murr, Lawrence E; Suro, Raquel M; Gaytan, Sara M; Ramirez, Diana A; Garza, Kristine M; Schuster, Brian E

    2010-09-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified.

  7. Wound ballistic evaluation of the Taser® XREP ammunition.

    PubMed

    Kunz, Sebastian N; Adamec, Jiri; Zinka, Bettina; Münzel, Daniela; Noël, Peter B; Eichner, Simon; Manthei, Axel; Grove, Nico; Graw, M; Peschel, Oliver

    2013-01-01

    The Taser® eXtended Range Electronic Projectile (XREP®) is a wireless conducted electrical weapon (CEW) designed to incapacitate a person from a larger distance. The aim of this study was to analyze the ballistic injury potential of the XREP. Twenty rounds were fired from the Taser®X12 TM shotgun into ballistic soap covered with artificial skin and clothing at different shooting distances (1-25 m). One shot was fired at pig skin at a shooting distance of 10 m. The average projectile velocity was 67.0 m/s. The kinetic energy levels on impact varied from 28-52 J. Depending on the intermediate target, the projectiles penetrated up to 4.2 cm into the ballistic soap. On impact the nose assembly did not separate from the chassis, and no electrical activation was registered. Upon impact, a skin penetration of the XREP cannot be excluded. However, it is very unlikely at shooting distances of 10 m or more. Clothing and a high elasticity limit of the target body area can significantly reduce the penetration risk on impact.

  8. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.

    2016-06-15

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equationmore » can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.« less

  9. Ballistic parameters and trauma potential of pistol crossbows.

    PubMed

    Frank, Matthias; Schikorr, Wolfgang; Tesch, Ralf; Werner, Ronald; Hanisch, Steffen; Peters, Dieter; Ekkernkamp, Axel; Bockholdt, Britta; Seifert, Julia

    2013-07-01

    Hand-held pistol crossbows, which are smaller versions of conventional crossbows, have recently increased in popularity. Similar to conventional crossbows, life threatening injuries due to bolts discharged from pistol crossbows are reported in forensic and traumatological literature. While the ballistic background of conventional crossbows is comprehensively investigated, there are no investigations on the characteristic ballistic parameters (draw force, potential energy, recurve factor, kinetic energy, and efficiency) of pistol crossbows. Two hand-held pistol crossbows (Barnett Commando and Mini Cross Bow, rated draw force 362.9 N or 80 lbs) were tested. The maximum draw force was investigated using a dynamic tensile testing machine (TIRAtest 2705, TIRA GmbH). The potential energy was determined graphically by polynomial regression as area under the force-draw curve. External ballistic parameters of the bolts discharged from pistol crossbows were measured using a redundant ballistic speed measurement system (Dual-BMC 21a and Dual-LS 1000, Werner Mehl Kurzzeitmesstechnik). The average maximum draw force was 190.3 and 175.6 N for the Barnett and Mini Cross Bow, respectively. The corresponding total energy expended was 10.7 and 11 J, respectively. The recurve factor was calculated to be 0.705 and 1.044, respectively. Average bolt velocity was measured 43 up to 52 m/s. The efficiency was calculated up to 0.94. To conclude, this work provides the pending ballistic data on this special subgroup of crossbows which operate on a remarkable low kinetic energy level. Furthermore, it demonstrates that the nominal draw force pretended in the sales brochure is grossly exaggerated.

  10. Directed Energy Weapon System for Ballistic Missile Defense

    DTIC Science & Technology

    2009-02-15

    Scientific Assessment of High Power Free - Electron Laser Technology , “Introduction and Principle Findings,” available at: http://www.nap.edu/catalog...will lead to thermal blooming and will reduce the energy of light to the target. Scientific Assessment of High Power Free - Electron Laser Technology , pg

  11. Comparative microstructures and cytotoxicity assays for ballistic aerosols composed of micrometals and nanometals: respiratory health implications

    PubMed Central

    Machado, Brenda I; Suro, Raquel M; Garza, Kristine M; Murr, Lawrence E

    2011-01-01

    Aerosol particulates collected on filters from ballistic penetration and erosion events for W–Ni–Co and W–Ni–Fe kinetic energy rod projectiles penetrating steel target plates were observed to be highly cytotoxic to human epithelial A549 lung cells in culture after 48 hours of exposure. The aerosol consisted of micron-sized Fe particulates and nanoparticulate aggregates consisting of W, Ni or W, Co, and some Fe, characterized by scanning electron microscopy and transmission electron microscopy, and using energy-dispersive (X-ray) spectrometry for elemental analysis and mapping. Cytotoxic assays of manufactured micron-sized and nanosized metal particulates of W, Ni, Fe, and Co demonstrated that, consistent with many studies in the literature, only the nanoparticulate elements demonstrated measurable cytotoxicity. These results suggest the potential for very severe, short-term, human toxicity, in particular to the respiratory system on inhaling ballistic aerosols. PMID:21499416

  12. The effect of intermediate clothing targets on shotgun ballistics.

    PubMed

    Cail, Kenneth; Klatt, Edward

    2013-12-01

    The ballistic properties of shotgun shells are complex because of multiple projectiles fired simultaneously that interact and spread out to affect their energy relayed to a human target. Intermediate targets such as clothing can affect penetration into tissues. We studied the effect of common clothing fabrics as intermediate targets on penetration of shotgun shell pellets, using ordnance gelatin to simulate soft tissue and thin cowhide to simulate skin. A standard 12-gauge shotgun with modified choke was used with no. 8 shot ammunition. We found that protection afforded by fabrics to reduce penetration of shotgun pellets into tissues was greater at increasing distance from the muzzle beyond 40 yd (36.6 m). The thicker denim and cotton fabrics provided slightly greater protection than polyester. This study demonstrates that clothing modifies the potential wound patterns to victims of shotgun injuries.

  13. Ballistic Experiments with Titanium and Aluminum Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogolewski, R.; Morgan, B.R.

    1999-11-23

    During the course of the project we conducted two sets of fundamental experiments in penetration mechanics in the LLNL Terminal Ballistics Laboratory of the Physics Directorate. The first set of full-scale experiments was conducted with a 14.5mm air propelled launcher. The object of the experiments was to determine the ballistic limit speed of 6Al-4V-alloy titanium, low fineness ratio projectiles centrally impacting 2024-T3 alloy aluminum flat plates and the failure modes of the projectiles and the targets. The second set of one-third scale experiments was conducted with a 14.5mm powder launcher. The object of these experiments was to determine the ballisticmore » limit speed of 6Al-4V alloy titanium high fineness ratio projectiles centrally impacting 6Al-4V alloy titanium flat plates and the failure modes of the projectiles and the target. We employed radiography to observe a projectile just before and after interaction with a target plate. Early on, we employed a non-damaging ''soft-catch'' technique to capture projectiles after they perforated targets. Once we realized that a projectile was not damaged during interaction with a target, we used a 4-inch thick 6061-T6-alloy aluminum witness block with a 6.0-inch x 6.0-inch cross-section to measure projectile residual penetration. We have recorded and tabulated below projectile impact speed, projectile residual (post-impact) speed, projectile failure mode, target failure mode, and pertinent comments for the experiments. The ballistic techniques employed for the experiments are similar to those employed in an earlier study.« less

  14. Ballistic missile precession frequency extraction by spectrogram's texture

    NASA Astrophysics Data System (ADS)

    Wu, Longlong; Xu, Shiyou; Li, Gang; Chen, Zengping

    2013-10-01

    In order to extract precession frequency, an crucial parameter in ballistic target recognition, which reflected the kinematical characteristics as well as structural and mass distribution features, we developed a dynamic RCS signal model for a conical ballistic missile warhead, with a log-norm multiplicative noise, substituting the familiar additive noise, derived formulas of micro-Doppler induced by precession motion, and analyzed time-varying micro-Doppler features utilizing time-frequency transforms, extracted precession frequency by measuring the spectrogram's texture, verified them by computer simulation studies. Simulation demonstrates the excellent performance of the method proposed in extracting the precession frequency, especially in the case of low SNR.

  15. Monthly Variations of Low-Energy Ballistic Transfers to Lunar Halo Orbits

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2010-01-01

    The characteristics of low-energy transfers between the Earth and Moon vary from one month to the next largely due to the Earth's and Moon's non-circular, non-coplanar orbits in the solar system. This paper characterizes those monthly variations as it explores the trade space of low-energy lunar transfers across many months. Mission designers may use knowledge of these variations to swiftly design desirable low-energy lunar transfers in any given month.

  16. Ballistic missile precession frequency extraction based on the Viterbi & Kalman algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Longlong; Xie, Yongjie; Xu, Daping; Ren, Li

    2015-12-01

    Radar Micro-Doppler signatures are of great potential for target detection, classification and recognition. In the mid-course phase, warheads flying outside the atmosphere are usually accompanied by precession. Precession may induce additional frequency modulations on the returned radar signal, which can be regarded as a unique signature and provide additional information that is complementary to existing target recognition methods. The main purpose of this paper is to establish a more actual precession model of conical ballistic missile warhead and extract the precession parameters by utilizing Viterbi & Kalman algorithm, which improving the precession frequency estimation accuracy evidently , especially in low SNR.

  17. Detection technique of targets for missile defense system

    NASA Astrophysics Data System (ADS)

    Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong

    2009-11-01

    Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.

  18. Beamed Energy Propulsion by Means of Target Ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Benjamin A.

    2004-03-30

    This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded.

  19. Space-based infrared sensors of space target imaging effect analysis

    NASA Astrophysics Data System (ADS)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  20. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase

    PubMed Central

    Lu, Kelin; Zhou, Rui

    2016-01-01

    A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications. PMID:27537883

  1. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase.

    PubMed

    Lu, Kelin; Zhou, Rui

    2016-08-15

    A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications.

  2. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    PubMed

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  3. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    PubMed Central

    Randjbaran, Elias; Zahari, Rizal; Abdul Jalil, Nawal Aswan; Abang Abdul Majid, Dayang Laila

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers. PMID:24955400

  4. Ballistic parameters and trauma potential of direct-acting, powder-actuated fastening tools (nail guns).

    PubMed

    Frank, Matthias; Franke, Ernst; Schönekess, Holger C; Jorczyk, Jörn; Bockholdt, Britta; Ekkernkamp, Axel

    2012-03-01

    Since their introduction in the 1950s in the construction and building trade, powder-actuated fastening tools (nail guns) are of forensic and traumatological importance. There are countless reports on both accidental and intentional injuries and fatalities caused by these tools in medical literature. While the ballistic parameters of so-called low-velocity fastening tools, where the expanding gases act on a captive piston that drives the fastener into the material, are well known, ballistic parameters of "high-velocity" tools, which operate like a firearm and release the energy of the propellant directly on the fastener, are unknown. Therefore, it was the aim of this work to investigate external ballistic parameters of cal. 9 and 6-mm fastening bolts discharged from four different direct-acting nail guns (Type Ideal, Record Piccolo S, Rapid Hammer R300, Titan Type 1). Average muzzle velocity ranged from 400 to 580 m/s, while average kinetic energy of the projectiles ranged from 385 to 547 J. Mean energy density of the projectiles ranged from 9 to 18 J/mm(2). To conclude, this work demonstrates that the muzzle velocity of direct-acting high-velocity tools is approximately five times higher than the muzzle velocity of piston-type tools. Hence, the much-cited comparison to the ballistic parameters of a cal. 22 handgun might be understated and a comparison to the widespread and well-known cal. 9 mm Luger might be more appropriate.

  5. Room-temperature ballistic energy transport in molecules with repeating units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong

    2015-06-07

    In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport inmore » molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.« less

  6. A system structure for predictive relations in penetration mechanics

    NASA Astrophysics Data System (ADS)

    Korjack, Thomas A.

    1992-02-01

    The availability of a software system yielding quick numerical models to predict ballistic behavior is a requisite for any research laboratory engaged in material behavior. What is especially true about accessibility of rapid prototyping for terminal impaction is the enhancement of a system structure which will direct the specific material and impact situation towards a specific predictive model. This is of particular importance when the ranges of validity are at stake and the pertinent constraints associated with the impact are unknown. Hence, a compilation of semiempirical predictive penetration relations for various physical phenomena has been organized into a data structure for the purpose of developing a knowledge-based decision aided expert system to predict the terminal ballistic behavior of projectiles and targets. The ranges of validity and constraints of operation of each model were examined and cast into a decision tree structure to include target type, target material, projectile types, projectile materials, attack configuration, and performance or damage measures. This decision system implements many penetration relations, identifies formulas that match user-given conditions, and displays the predictive relation coincident with the match in addition to a numerical solution. The physical regimes under consideration encompass the hydrodynamic, transitional, and solid; the targets are either semi-infinite or plate, and the projectiles include kinetic and chemical energy. A preliminary databases has been constructed to allow further development of inductive and deductive reasoning techniques applied to ballistic situations involving terminal mechanics.

  7. Signatures of evanescent transport in ballistic suspended graphene-superconductor junctions

    PubMed Central

    Kumaravadivel, Piranavan; Du, Xu

    2016-01-01

    In Dirac materials, the low energy excitations behave like ultra-relativistic massless particles with linear energy dispersion. A particularly intriguing phenomenon arises with the intrinsic charge transport behavior at the Dirac point where the charge density approaches zero. In graphene, a 2-D Dirac fermion gas system, it was predicted that charge transport near the Dirac point is carried by evanescent modes, resulting in unconventional “pseudo-diffusive” charge transport even in the absence of disorder. In the past decade, experimental observation of this phenomenon remained challenging due to the presence of strong disorder in graphene devices which limits the accessibility of the low carrier density regime close enough to the Dirac point. Here we report transport measurements on ballistic suspended graphene-Niobium Josephson weak links that demonstrate a transition from ballistic to pseudo-diffusive like evanescent transport below a carrier density of ~1010 cm−2. Approaching the Dirac point, the sub-harmonic gap structures due to multiple Andreev reflections display a strong Fermi energy-dependence and become increasingly pronounced, while the normalized excess current through the superconductor-graphene interface decreases sharply. Our observations are in qualitative agreement with the long standing theoretical prediction for the emergence of evanescent transport mediated pseudo-diffusive transport in graphene. PMID:27080733

  8. Computational Methods for Probabilistic Target Tracking Problems

    DTIC Science & Technology

    2007-09-01

    he is working with the Aegis Ballistic Missile Defense System (ABMD) in the Command and Decision (C&D) section. He has recently been selected from a...employed by Progress Energy as an Auxillary Operator at the Brunswick Nuclear Plant, in Southport NC. He is studying to qualify as an NRC licensed nuclear

  9. Apparatus for Investigating Momentum and Energy Conservation With MBL and Video Analysis

    NASA Astrophysics Data System (ADS)

    George, Elizabeth; Vazquez-Abad, Jesus

    1998-04-01

    We describe the development and use of a laboratory setup that is appropriate for computer-aided student investigation of the principles of conservation of momentum and mechanical energy in collisions. The setup consists of two colliding carts on a low-friction track, with one of the carts (the target) attached to a spring, whose extension or compression takes the place of the pendulum's rise in the traditional ballistic pendulum apparatus. Position vs. time data for each cart are acquired either by using two motion sensors or by digitizing images obtained with a video camera. This setup allows students to examine the time history of momentum and mechanical energy during the entire collision process, rather than simply focusing on the before and after regions. We believe that this setup is suitable for helping students gain understanding as the processes involved are simple to follow visually, to manipulate, and to analyze.

  10. Allegany Ballistics Lab: sensor test target system

    NASA Astrophysics Data System (ADS)

    Eaton, Deran S.

    2011-06-01

    Leveraging the Naval Surface Warfare Center, Indian Head Division's historical experience in weapon simulation, Naval Sea Systems Command commissioned development of a remote-controlled, digitally programmable Sensor Test Target as part of a modern, outdoor hardware-in-the-loop test system for ordnance-related guidance, navigation and control systems. The overall Target system design invokes a sciences-based, "design of automated experiments" approach meant to close the logistical distance between sensor engineering and developmental T&E in outdoor conditions over useful real world distances. This enables operating modes that employ broad spectrum electromagnetic energy in many a desired combination, variably generated using a Jet Engine Simulator, a multispectral infrared emitter array, optically enhanced incandescent Flare Simulators, Emitter/Detector mounts, and an RF corner reflector kit. As assembled, the recently tested Sensor Test Target prototype being presented can capably provide a full array of useful RF and infrared target source simulations for RDT&E use with developmental and existing sensors. Certain Target technologies are patent pending, with potential spinoffs in aviation, metallurgy and biofuels processing, while others are variations on well-established technology. The Sensor Test Target System is planned for extended installation at Allegany Ballistics Laboratory (Rocket Center, WV).

  11. On the influence of particle morphology on the post-impact ballistic response of ceramic armour materials

    NASA Astrophysics Data System (ADS)

    Hameed, Amer; Appleby-Thomas, Gareth; Wood, David; Jaansalu, Kevin

    2015-06-01

    Recent studies have shown evidence that the ballistic-resistance of fragmented (comminuted) ceramics is independent of the original strength of the material. In particular, experimental investigations into the ballistic behaviour of such fragmented ceramics have indicated that this response is correlated to shattered ceramic morphology. This suggests that careful control of ceramic microstructure - and therefore failure paths - might provide a route to optimise post-impact ballistic performance, thereby enhancing multi-hit capability. In this study, building on previous in-house work, ballistic tests were conducted using pre-formed `fragmented-ceramic' analogues based around three morphologically differing (but chemically identical) alumina feedstock materials compacted into target `pucks. In an evolution of previous work, variation of target thickness provided additional insight into an apparent morphology-based contribution to ballistic response.

  12. Fluid mechanical scaling of impact craters in unconsolidated granular materials

    NASA Astrophysics Data System (ADS)

    Miranda, Colin S.; Dowling, David R.

    2015-11-01

    A single scaling law is proposed for the diameter of simple low- and high-speed impact craters in unconsolidated granular materials where spall is not apparent. The scaling law is based on the assumption that gravity- and shock-wave effects set crater size, and is formulated in terms of a dimensionless crater diameter, and an empirical combination of Froude and Mach numbers. The scaling law involves the kinetic energy and speed of the impactor, the acceleration of gravity, and the density and speed of sound in the target material. The size of the impactor enters the formulation but divides out of the final empirical result. The scaling law achieves a 98% correlation with available measurements from drop tests, ballistic tests, missile impacts, and centrifugally-enhanced gravity impacts for a variety of target materials (sand, alluvium, granulated sugar, and expanded perlite). The available measurements cover more than 10 orders of magnitude in impact energy. For subsonic and supersonic impacts, the crater diameter is found to scale with the 1/4- and 1/6-power, respectively, of the impactor kinetic energy with the exponent crossover occurring near a Mach number of unity. The final empirical formula provides insight into how impact energy partitioning depends on Mach number.

  13. Ballistics for the neurosurgeon.

    PubMed

    Jandial, Rahul; Reichwage, Brett; Levy, Michael; Duenas, Vincent; Sturdivan, Larry

    2008-02-01

    Craniocerebral injuries from ballistic projectiles are qualitatively different from injuries in unconfined soft tissue with similar impact. Penetrating and nonpenetrating ballistic injuries are influenced not only by the physical properties of the projectile, but also by its ballistics. Ballistics provides information on the motion of projectiles while in the gun barrel, the trajectory of the projectile in air, and the behavior of the projectile on reaching its target. This basic knowledge can be applied to better understand the ultimate craniocerebral consequences of ballistic head injuries.

  14. Conceptual design of a space-based O2 laser for defense

    NASA Astrophysics Data System (ADS)

    Takehisa, K.

    2016-10-01

    A new concept of a space-based-laser (SBL) defense system is proposed. It is based on a chemical oxygen laser (COL) which has been investigated to achieve its oscillation 1-3). A COL is suitable as a high energy laser (HEL) directed energy weapon (DEW) 4) because it could produce a giant pulse of 0.1 ms which can damage a target by a single shot without producing plasma during the propagation. However since the beam cannot propagate for a long distance due to the absorption in air, it should be used in space considering the capability of operation without electric power supply. Therefore a new SBL defense system using a COL is proposed in order to destroy a ballistic missile in its boost phase. It is based on an SBL at geostationary Earth orbit (GEO) with the altitude of 36,000 km. Since the beam needs to propagate for a long distance, the focused beam diameter is 8 m even if the initial beam diameter is 8 m. Therefore an 8 m-diameter focusing mirror, carried by a high altitude airship (HAA) flying at the altitude of more than 20 km, could be used to focus the beam at the target. Although such a large focusing mirror is necessary, the focused spot size can be <1 cm at 30 km away. Thus, much less than 100 kJ pulse can cause a fatal damage. Unlike a conventional SBL defense system based on SBLs and/or relay-mirror satellites in low Earth orbit (LEO), the new defense system needs only a single SBL and a single relay mirror HAA (RM HAA) to intercept a ballistic missile if the enemy is a small country since the HAA can always stay close to the enemy's missile site. Another concept of the defense system is also proposed, which is based on a COL equipped with anther HAA because a COL can be lightweight. These geostationary defense systems can also intercept a submarine-launched ballistic missile (SLBM) if the submarine's location is monitored.

  15. Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jianming; Liu, Lihua; Yu, Hua

    2015-12-01

    The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.

  16. Mesoscopic Free Path of Nonthermalized Photogenerated Carriers in a Ferroelectric Insulator.

    PubMed

    Gu, Zongquan; Imbrenda, Dominic; Bennett-Jackson, Andrew L; Falmbigl, Matthias; Podpirka, Adrian; Parker, Thomas C; Shreiber, Daniel; Ivill, Mathew P; Fridkin, Vladimir M; Spanier, Jonathan E

    2017-03-03

    We show how finite-size scaling of a bulk photovoltaic effect-generated electric field in epitaxial ferroelectric insulating BaTiO_{3}(001) films and a photo-Hall response involving the bulk photovoltaic current reveal a large room-temperature mean free path of photogenerated nonthermalized electrons. Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.

  17. Small fragment wounds: biophysics, pathophysiology and principles of management.

    PubMed

    Hill, P F; Edwards, D P; Bowyer, G W

    2001-02-01

    Military surgical doctrine has traditionally taught that all ballistic wounds should be formally managed by surgical intervention. There is now, however, both experimental and clinical evidence supporting the nonoperative treatment of selected small fragment wounds. Low energy-transfer wounds affecting the soft tissues, without neuro-vascular compromise and with stable fracture patterns, may be suitable for early antibiotic treatment. The management of ballistic wounds to the gastrointestinal tract requires surgical intervention but, advances in the treatment of these wounds, especially those involving the colon, may allow more effective treatment with a reduced morbidity.

  18. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    NASA Technical Reports Server (NTRS)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  19. Feature extraction of micro-motion frequency and the maximum wobble angle in a small range of missile warhead based on micro-Doppler effect

    NASA Astrophysics Data System (ADS)

    Li, M.; Jiang, Y. S.

    2014-11-01

    Micro-Doppler effect is induced by the micro-motion dynamics of the radar target itself or any structure on the target. In this paper, a simplified cone-shaped model for ballistic missile warhead with micro-nutation is established, followed by the theoretical formula of micro-nutation is derived. It is confirmed that the theoretical results are identical to simulation results by using short-time Fourier transform. Then we propose a new method for nutation period extraction via signature maximum energy fitting based on empirical mode decomposition and short-time Fourier transform. The maximum wobble angle is also extracted by distance approximate approach in a small range of wobble angle, which is combined with the maximum likelihood estimation. By the simulation studies, it is shown that these two feature extraction methods are both valid even with low signal-to-noise ratio.

  20. Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities 2026 to 2045

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Falck, Robert D.; McGuire, Melissa L.

    2010-01-01

    The purpose of this Mission Design Handbook is to provide trajectory designers and mission planners with graphical information about Earth to Mars ballistic trajectory opportunities for the years of 2026 through 2045. The plots, displayed on a departure date/arrival date mission space, show departure energy, right ascension and declination of the launch asymptote, and target planet hyperbolic arrival excess speed, V(sub infinity), for each launch opportunity. Provided in this study are two sets of contour plots for each launch opportunity. The first set of plots shows Earth to Mars ballistic trajectories without the addition of any deep space maneuvers. The second set of plots shows Earth to Mars transfer trajectories with the addition of deep space maneuvers, which further optimize the determined trajectories. The accompanying texts explains the trajectory characteristics, transfers using deep space maneuvers, mission assumptions and a summary of the minimum departure energy for each opportunity.

  1. Ballistics: a primer for the surgeon.

    PubMed

    Volgas, David A; Stannard, James P; Alonso, Jorge E

    2005-03-01

    The purpose of this paper is to review the literature on ballistics and to sort through the plethora of myth and popular opinion. The trauma surgeon is increasingly faced with gunshot wounds. Knowledge of ballistics is important to help in assessing the patterns of wounds that are seen. There are many factors that affect the flight of a bullet to its target. Many of these factors also affect the behaviour of the bullet after it strikes the target. It is primarily these factors that interest the surgeon.

  2. Trajectory Design for the Lunar Polar Hydrogen Mapper Mission

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Dunham, David W.

    2017-01-01

    The presented trajectory was designed for the Lunar Polar Hydrogen Mapper (LunaH-Map) 6U CubeSat, which was awarded a ride on NASAs Space Launch System (SLS) with Exploration Mission 1 (EM-1) via NASAs 2015 SIMPLEX proposal call. After deployment from EM-1s upper stage (which is planned to enter heliocentric space via a lunar flyby), the LunaH-Map CubeSat will alter its trajectory via its low-thrust ion engine to target a lunar flyby that yields a Sun-Earth-Moon weak stability boundary transfer to set up a ballistic lunar capture. Finally, the orbit energy is lowered to reach the required quasi-frozen science orbit with periselene above the lunar south pole.

  3. Lunar Cube Transfer Trajectory Options

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Dichman, Don; Clark, Pamela; Haapala, Amanda; Howell, Kathleen

    2014-01-01

    Contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these designs can be restricted by the selection of the Cubesat subsystem design such as propulsion or communication. Nonetheless, many trajectory options can be designed with have a wide range of transfer durations, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several design options including deployment into low Earth orbit (LEO), geostationary transfer orbits (GTO), and higher energy direct lunar transfer orbits. In addition to direct transfer options from these initial orbits, we also investigate the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory. In this article we examine several design options that meet the above limited deployment and subsystem drivers. We study ways that both impulsive and low-thrust Solar Electric Propulsion (SEP) engines can be used to place the Cubesat first into a highly eccentric Earth orbit, enter the Moon's Sphere of Influence, and finally achieve a highly eccentric lunar orbit. We show that such low-thrust transfers are feasible with a realistic micro-thruster model, assuming that the Cubesat can generate sufficient power for the SEP. Two examples are shown here: (1) A Cubestat injected by Exploration Mission 1 (EM-1) then employing low thrust; and (2) a CubSat deployed in a GTO, then employing impulsive maneuvers. For the EM-1 injected initial design, we increase the EM-1 targeted lunar flyby distance to reduce the energy of the lunar flyby to match that of a typical lMoon system heteroclinic manifold. Figure 1 presents an option that encompasses the similar dynamics as that of the ARTEMIS mission design. Low-thrust maneuvers are used along the manifold trajectory to raise perigee to that of a lunar orbit, adjust the timing with respect to the Moon, rotate the line of apsides, and target a ballistic lunar encounter. In this design a second flyby decreases the orbital energy with respect to the Moon, so that C3 -0.1 km2s2. Another design, shown in Figure 2 emanates from a GTO then uses impulsive maneuvers to phase onto a local Earth-Moon manifold, which then transfers the CubeSat to a lunar encounter.

  4. Damage tolerance of a composite sandwich with interleaved foam core

    NASA Astrophysics Data System (ADS)

    Ishai, Ori; Hiel, Clement

    A composite sandwich panel consisting of carbon fiber-reinforced plastic (CFRP) skins and a syntactic foam core was selected as an appropriate structural concept for the design of wind tunnel compressor blades. Interleaving of the core with tough interlayers was done to prevent core cracking and to improve damage tolerance of the sandwich. Simply supported sandwich beam specimens were subjected to low-velocity drop-weight impacts as well as high velocity ballistic impacts. The performance of the interleaved core sandwich panels was characterized by localized skin damage and minor cracking of the core. Residual compressive strength (RCS) of the skin, which was derived from flexural test, shows the expected trend of decreasing with increasing size of the damage, impact energy, and velocity. In the case of skin damage, RCS values of around 50 percent of the virgin interleaved reference were obtained at the upper impact energy range. Based on the similarity between low-velocity and ballistic-impact effects, it was concluded that impact energy is the main variable controlling damage and residual strength, where as velocity plays a minor role.

  5. Damage tolerance of a composite sandwich with interleaved foam core

    NASA Technical Reports Server (NTRS)

    Ishai, Ori; Hiel, Clement

    1992-01-01

    A composite sandwich panel consisting of carbon fiber-reinforced plastic (CFRP) skins and a syntactic foam core was selected as an appropriate structural concept for the design of wind tunnel compressor blades. Interleaving of the core with tough interlayers was done to prevent core cracking and to improve damage tolerance of the sandwich. Simply supported sandwich beam specimens were subjected to low-velocity drop-weight impacts as well as high velocity ballistic impacts. The performance of the interleaved core sandwich panels was characterized by localized skin damage and minor cracking of the core. Residual compressive strength (RCS) of the skin, which was derived from flexural test, shows the expected trend of decreasing with increasing size of the damage, impact energy, and velocity. In the case of skin damage, RCS values of around 50 percent of the virgin interleaved reference were obtained at the upper impact energy range. Based on the similarity between low-velocity and ballistic-impact effects, it was concluded that impact energy is the main variable controlling damage and residual strength, where as velocity plays a minor role.

  6. Principles of ballistics applicable to the treatment of gunshot wounds.

    PubMed

    Swan, K G; Swan, R C

    1991-04-01

    Ballistics is the science of the motion of a projectile through the barrel of a firearm (internal ballistics), during its subsequent flight (external ballistics), and during its final complicated motion after it strikes a target (terminal ballistics). Wound ballistics is a special case of terminal ballistics. Although wound ballistics is at best sets of approximations, its principles enter usefully into an evaluation of a gunshot wound and its treatment. A special consideration in these cases is their medicolegal aspects. At a minimum, the medical team receiving the patient should exert care not to destroy the clothing and in particular to cut around and not through bullet holes, to turn over to law enforcement officials any metallic foreign body recovered from the patient, and to describe precisely, or even to photograph, any entrance or exit wounds.

  7. Deterrence of ballistic missile systems and their effects on today's air operations

    NASA Astrophysics Data System (ADS)

    Durak, Hasan

    2015-05-01

    Lately, the effect-based approach has gained importance in executing air operations. Thus, it makes more successful in obtaining the desired results by breaking the enemy's determination in a short time. Air force is the first option to be chosen in order to defuse the strategic targets. However, the problems such as the defense of targets and country, radars, range…etc. becoming serious problems. At this level ballistic missiles emerge as a strategic weapon. Ultimate emerging technologies guided by the INS and GPS can also be embedded with multiple warheads and reinforced with conventional explosive, ballistic missiles are weapons that can destroy targets with precision. They have the advantage of high speed, being easily launched from every platform and not being easily detected by air defense systems contrary to other air platforms. While these are the advantages, there are also disadvantages of the ballistic missiles. The high cost, unavailability of nuclear, biological and chemical weapons, and its limited effect while using conventional explosives against destroying the fortified targets are the disadvantages. The features mentioned above should be considered as limitation to the impact of the ballistic missiles. The aim is to impose the requests on enemies without starting a war with all components and to ensure better implementation of the operation functions during the air operations. In this study, effects of ballistic missiles in the future on air battle theatre will be discussed in the beginning, during the process and at the end phase of air operations within the scope of an effect-based approach.

  8. Stability analyses of the mass abrasive projectile high-speed penetrating into a concrete target Part III: Terminal ballistic trajectory analyses

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.

    2015-08-01

    During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.

  9. Estimation of ballistic block landing energy during 2014 Mount Ontake eruption

    NASA Astrophysics Data System (ADS)

    Tsunematsu, Kae; Ishimine, Yasuhiro; Kaneko, Takayuki; Yoshimoto, Mitsuhiro; Fujii, Toshitsugu; Yamaoka, Koshun

    2016-05-01

    The 2014 Mount Ontake eruption started just before noon on September 27, 2014. It killed 58 people, and five are still missing (as of January 1, 2016). The casualties were mainly caused by the impact of ballistic blocks around the summit area. It is necessary to know the magnitude of the block velocity and energy to construct a hazard map of ballistic projectiles and design effective shelters and mountain huts. The ejection velocities of the ballistic projectiles were estimated by comparing the observed distribution of the ballistic impact craters on the ground with simulated distributions of landing positions under various sets of conditions. A three-dimensional numerical multiparticle ballistic model adapted to account for topographic effect was used to estimate the ejection angles. From these simulations, we have obtained an ejection angle of γ = 20° from vertical to horizontal and α = 20° from north to east. With these ejection angle conditions, the ejection speed was estimated to be between 145 and 185 m/s for a previously obtained range of drag coefficients of 0.62-1.01. The order of magnitude of the mean landing energy obtained using our numerical simulation was 104 J.

  10. Performance of lead-free versus lead-based hunting ammunition in ballistic soap.

    PubMed

    Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl

    2014-01-01

    Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape, and reproducibility, showing that similar terminal ballistic behavior can be achieved. Furthermore, the volumetric image processing allowed superior analysis compared to methods that involve cutting of the soap blocks.

  11. Performance of Lead-Free versus Lead-Based Hunting Ammunition in Ballistic Soap

    PubMed Central

    Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl

    2014-01-01

    Background Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. Methods We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. Results All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. Conclusion The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape, and reproducibility, showing that similar terminal ballistic behavior can be achieved. Furthermore, the volumetric image processing allowed superior analysis compared to methods that involve cutting of the soap blocks. PMID:25029572

  12. Liquid-phase deposition of thin Si films by ballistic electro-reduction

    NASA Astrophysics Data System (ADS)

    Ohta, T.; Gelloz, B.; Kojima, A.; Koshida, N.

    2013-01-01

    It is shown that the nanocryatalline silicon ballistic electron emitter operates in a SiCl4 solution without using any counter electrodes and that thin amorphous Si films are efficiently deposited on the emitting surface with no contaminations and by-products. Despite the large electrochemical window of the SiCl4 solution, electrons injected with sufficiently high energies preferentially reduce Si4+ ions at the interface. Using an emitter with patterned line emission windows, a Si-wires array can be formed in parallel. This low-temperature liquid-phase deposition technique provides an alternative clean process for power-effective fabrication of advanced thin Si film structures and devices.

  13. Simulation of impact ballistic of Cu-10wt%Sn frangible bullet using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hidayat, Mas Irfan P.; Widyastuti, Simaremare, Peniel

    2018-04-01

    Frangible bullet is designed to disintegrate upon impact against a hard target. Understanding the impact response and performance of frangible bullet is therefore of highly interest. In this paper, simulation of impact ballistic of Cu-IOwt%Sn frangible bullet using smoothed particle hydrodynamics (SPH) method is presented. The frangible bullet is impacted against a hard, cylindrical stainless steel target. Effect of variability of the frangible bullet material properties due to the variation of sintering temperature in its manufacturing process to the bullet frangibility factor (FF) is investigated numerically. In addition, the bullet kinetic energy during impact as well as its ricochet and fragmentation are also examined and simulated. Failure criterion based upon maximum strain is employed in the simulation. It is shown that the SPH simulation can produce good estimation for kinetic energy of bullet after impact, thus giving the FF prediction with respect to the variation of frangible bullet material properties. In comparison to explicit finite element (FE) simulation, in which only material/element deletion is shown, convenience in showing frangible bullet fragmentation is shown using the SPH simulation. As a result, the effect of sintering temperature to the way of the frangible bullet fragmented can be also observed clearly.

  14. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Danhong; Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106; Gumbs, Godfrey

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases andmore » then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.« less

  15. Subcaliber discarding sabot airgun projectiles.

    PubMed

    Frank, Matthias; Schönekeß, Holger; Herbst, Jörg; Staats, Hans-Georg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta

    2014-03-01

    Medical literature abounds with reports on injuries and fatalities caused by airgun projectiles. While round balls or diabolo pellets have been the standard projectiles for airguns for decades, today, there are a large number of different airgun projectiles available. A very uncommon--and until now unique--discarding sabot airgun projectile (Sussex Sabo Bullet) was introduced into the market in the 1980s. The projectile, available in 0.177 (4.5 mm) and 0.22 (5.5 mm) caliber, consists of a plastic sabot cup surrounding a subcaliber copper-coated lead projectile in typical bullet shape. Following the typical principle of a discarding sabot projectile, the lightweight sabot is supposed to quickly loose velocity and to fall to the ground downrange while the bullet continues on target. These sabot-loaded projectiles are of special forensic interest due to their non-traceability and ballistic parameters. Therefore, it is the aim of this work to investigate the ballistic performance of these sabot airgun projectiles by high-speed video analyses and by measurement of the kinetic parameters of the projectile parts by a transient recording system as well as observing their physical features after being fired. While the sabot principle worked properly in high-energy airguns (E > 17 J), separation of the core projectile from the sabot cup was also observed when discharged in low-energy airguns (E < 7.5 J). While the velocity of the discarded Sussex Sabo core projectile was very close to the velocity of a diabolo-type reference projectile (RWS Meisterkugel), energy density was up to 60 % higher. To conclude, this work is the first study to demonstrate the regular function of this uncommon type of airgun projectile.

  16. Physical Mechanisms of Soft Tissue Injury from Penetrating Ballistic Impact

    DTIC Science & Technology

    2012-11-30

    SUPPLEMENTARY NOTES 14. ABSTRACT Most civilian nonfatal gunshot injuries and murders involve handguns . Gunshot wounds are often classified as being due to...high-velocity or low-velocity projectiles, e.g. rifle or handgun rounds. However, this is a historical distinction, and there is overlap in energy...that can be delivered to tissue by modern rifle and handgun rounds. Also, the same diameter (caliber) bullet can have different impact energies

  17. Acoustic ranging of small arms fire using a single sensor node collocated with the target.

    PubMed

    Lo, Kam W; Ferguson, Brian G

    2015-06-01

    A ballistic model-based method, which builds upon previous work by Lo and Ferguson [J. Acoust. Soc. Am. 132, 2997-3017 (2012)], is described for ranging small arms fire using a single acoustic sensor node collocated with the target, without a priori knowledge of the muzzle speed and ballistic constant of the bullet except that they belong to a known two-dimensional parameter space. The method requires measurements of the differential time of arrival and differential angle of arrival of the muzzle blast and ballistic shock wave at the sensor node. Its performance is evaluated using both simulated and real data.

  18. Conventional Prompt Global Strike and Long Range Ballistic Missiles: Background and Issues

    DTIC Science & Technology

    2017-02-03

    Conventional Prompt Global Strike and Long-Range Ballistic Missiles: Background and Issues Amy F. Woolf Specialist in Nuclear Weapons Policy...February 3, 2017 Congressional Research Service 7-5700 www.crs.gov R41464 Conventional Prompt Global Strike and Long-Range Ballistic Missiles...Congressional Research Service Summary Conventional prompt global strike (CPGS) weapons would allow the United States to strike targets anywhere

  19. Ballistic tongue projection in a miniaturized salamander.

    PubMed

    Deban, Stephen M; Bloom, Segall V

    2018-05-20

    Miniaturization of body size is often accompanied by peculiarities in morphology that can have functional consequences. We examined the feeding behavior and morphology of the miniaturized plethodontid salamander Thorius, one of the smallest vertebrates, to determine if its performance and biomechanics differ from those of its larger relatives. High-speed imaging and dynamics analysis of feeding at a range of temperatures show that tongue projection in Thorius macdougalli is ballistic and achieves accelerations of up to 600 G with low thermal sensitivity, indicating that tongue projection is powered by an elastic-recoil mechanism. Preceding ballistic projection is an unusual preparatory phase of tongue protrusion, which, like tongue retraction, shows lower performance and higher thermal sensitivity that are indicative of movement being powered directly by muscle shortening. The variability of tongue-projection kinematics and dynamics is comparable to larger ballistic-tongued plethodontids and reveals that Thorius is capable of modulating its tongue movements in response to prey distance. Morphological examination revealed that T. macdougalli possesses a reduced number of myofibers in the tongue muscles, a large projector muscle mass relative to tongue mass, and an unusual folding of the tongue skeleton, compared with larger relatives. Nonetheless, T. macdougalli retains the elaborated collagen aponeuroses in the projector muscle that store elastic energy and a tongue skeleton that is free of direct myofiber insertion, two features that appear to be essential for ballistic tongue projection in salamanders. © 2018 Wiley Periodicals, Inc.

  20. Analysis of entry of additional energy to gunpowder in electrothermal chemical shot

    NASA Astrophysics Data System (ADS)

    Burkin, Viktor; Ishchenko, Alexandr; Kasimov, Vladimir; Samorokova, Nina; Sidorov, Aleksey

    2017-11-01

    In the article two series of ballistic experiments conducted according to the scheme of electrothermal chemical control of ballistic parameters of the shot at the Research Institute of Applied Mathematics and Mechanics of Tomsk State University (RIAMM TSU, Russia) are considered. The experimental part of the work is described. The analysis of the electro physical data of ballistic experiments is carried out. A methodical approach that allows to take into account the entry of an electric discharge plasma in a gunpowder in the mathematical model of internal ballistic processes in barrel systems is proposed and tested. Under the conditions of these experiments, the effects of various characteristics of the plasmatron on the nature of the energy entry are estimated.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karp, A.

    Belatedly, Western Nations are trying to staunch the flow of technology that has helped create a number of new ballistic missile forces in the Third World. Ballistic missiles already are being used in one Third World conflict. Since the end of February, Iran and Iraq have fired more than 100 short-range, inaccurate missiles at each other's cities, causing thousands of casualties. These events illustrate that ballistic missiles are becoming an ominous reality in the Third World. Indeed, 20 Third World countries, including Israel and Brazil, currently possess ballistic missiles or are striving to develop them. On one level, these missilesmore » - which are propelled by rockets into the upper atmosphere, travel in a ballistic trajectory, and are pulled by gravity to their targets - are for these nations a logical step in building up their military forces. While the missiles vary in range and accuracy, they can reach many targets in regional conflicts. Unlike manned aircraft, the do not require large, vulnerable bases. They are not as easily intercepted as slow bombers. And they are easier to develop because they are less sophisticated than modern cruise missiles such as the U.S. air-launched cruise missiles. In terms of global security, the most worrisome aspect of Third World ballistic missiles is their potential as nuclear weapons delivery systems.« less

  2. Wound ballistics of firearm-related injuries--part 2: mechanisms of skeletal injury and characteristics of maxillofacial ballistic trauma.

    PubMed

    Stefanopoulos, P K; Soupiou, O T; Pazarakiotis, V C; Filippakis, K

    2015-01-01

    Maxillofacial firearm-related injuries vary in extent and severity because of the characteristics and behaviour of the projectile(s), and the complexity of the anatomical structures involved, whereas the degree of tissue disruption is also affected by the distance of the shot. In low-energy injuries there is limited damage to the underlying skeleton, which usually dominates the clinical picture, dictating a more straightforward therapeutic approach. High-energy injuries are associated with extensive hard and soft tissue disruption, and are characterized by a surrounding zone of damaged tissue that is prone to progressive necrosis as a result of compromised blood supply and wound sepsis. Current treatment protocols for these injuries emphasize the importance of serial debridement for effective wound control while favouring early definitive reconstruction. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. A Tutorial on Electro-Optical/Infrared (EO/IR) Theory and Systems

    DTIC Science & Technology

    2013-01-01

    engine of a small UAV to an intercontinental ballistic missile (ICBM) launch. Comparison of the available energy at the sensor to the noise level...of the sensor provides the central metric of sensor performance, the noise equivalent irradiance or NEI. The problem of extracting the target from...effectiveness of imaging systems can be degraded by many factors, including limited contrast and luminance, the presence of noise , and blurring due to

  4. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites.

    PubMed

    Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding

    2018-07-01

    Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve surprisingly with "low-grade" matrix materials, and discontinuities (often regarded as "defects") may play an important role in energy dissipation. Counter-intuitive as it may seem, our work helps understanding the secrets of the outstanding dynamic properties of some biological materials, and inspire novel ideas for man-made composites. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. The Effect of Temperature and Nanoclay on the Low Velocity and Ballistic Behavior of Woven Glass-Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Patrin, Lauren

    The objective of this research was to study the effect of nanoclay and temperature on the behavior of woven glass-fabric reinforced epoxy composite under low velocity and ballistic impacts. The materials used in manufacturing the composite were S2 (6181) glass-fibers, epoxy resin (EPON 828), hardener (Epikure 3230), nanoclay and Heloxy 61 modifier. The nanoclay addition was 0%, 1%, 3% and 5% by weight, with respect to the resin. All specimens were manufactured at the City College facilities using vacuum infusion. Tensile tests were conducted to characterize the material and obtain the Young's modulus, ultimate stress, failure strain, Poisson's ratio, shear modulus and shear strength and their variation with nanoclay percentage and temperature. The tests were conducted at room temperature (21°C/70°F), -54°C (-65°F), -20°C (-4°F), 49°C (120°F) and 71°C (160°F). Next composite specimens with 0%, 1%, 3% and 5% nanoclay by weight, with respect to the resin, were subjected to low velocity impact at the previously specified temperatures to determine dynamic force, displacement and energy correlations. The extent of damage was studied using the ultrasound technique. Then ballistic tests were conducted on the nanoclay infused specimens at room temperature to obtain the ballistic limit (V50) and the damage behavior of the composite. The dynamic finite element analysis (FEA) software LS-DYNA was used to model and simulate the results of low velocity impact tests. Good agreement was obtained between experimental and numerical (FEA) results. Analytical analyses were undertaken to compare the results from the tensile experiments. The finite element analysis (FEA) allowed for further analytical comparison of the results. The FEA platform used was LS-DYNA due to its proficient dynamic and damage capabilities in composite materials. The FEA was used to model and simulate the low velocity impacts and compare the results to experiments.

  6. An Introduction to the Sources of Delivery Error for Direct-Fire Ballistic Projectiles

    DTIC Science & Technology

    2013-07-01

    Ballistic mismatch has also been used to quantify the difference in target impacts using different gun tubes ...the angle between the local “upwards” direction of the gun tube and the vertical direction as defined by gravity. Cant results from the gun tube ...Determining Optimal Tube Shape for Reduction of Jump Error for Tank Fleets Using Fleet Zero. Presented at the 20th International Symposium on Ballistics

  7. Perforation of thin aluminum alloy plates by blunt projectiles: An experimental and numerical investigation

    NASA Astrophysics Data System (ADS)

    Wei, G.; Zhang, W.

    2014-04-01

    Reducing the armor weight has become a research focus in terms of armored material. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thickness 7A04 aluminum alloy plates at a velocity of 90~170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. The validity of numerical simulations was verified by comparing with the experimental results. Detailed analysis of the failure modes and characters of the targets were carried out to reveal the target damage mechanism combined with the numerical simulation.

  8. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses.

    PubMed

    Huang, Stephanie; Huang, He

    2018-04-01

    Discrete, rapid (i.e., ballistic like) muscle activation patterns have been observed in ankle muscles (i.e., plantar flexors and dorsiflexors) of able-bodied individuals during voluntary posture control. This observation motivated us to investigate whether transtibial amputees are capable of generating such a ballistic-like activation pattern accurately using their residual ankle muscles in order to assess whether the volitional postural control of a powered ankle prosthesis using proportional myoelectric control via residual muscles could be feasible. In this paper, we asked ten transtibial amputees to generate ballistic-like activation patterns using their residual lateral gastrocnemius and residual tibialis anterior to control a computer cursor via proportional myoelectric control to hit targets positioned at 20% and 40% of maximum voluntary contraction of the corresponding residual muscle. During practice conditions, we asked amputees to hit a single target repeatedly. During testing conditions, we asked amputees to hit a random sequence of targets. We compared movement time to target and end-point accuracy. We also examined motor recruitment synchronization via time-frequency representations of residual muscle activation. The result showed that median end-point error ranged from -0.6% to 1% maximum voluntary contraction across subjects during practice, which was significantly lower compared to testing ( ). Average movement time for all amputees was 242 ms during practice and 272 ms during testing. Motor recruitment synchronization varied across subjects, and amputees with the highest synchronization achieved the fastest movement times. End-point accuracy was independent of movement time. Results suggest that it is feasible for transtibial amputees to generate ballistic control signals using their residual muscles. Future work on volitional control of powered power ankle prostheses might consider anticipatory postural control based on ballistic-like residual muscle activation patterns and direct continuous proportional myoelectric control.

  9. Optimized digital filtering techniques for radiation detection with HPGe detectors

    NASA Astrophysics Data System (ADS)

    Salathe, Marco; Kihm, Thomas

    2016-02-01

    This paper describes state-of-the-art digital filtering techniques that are part of GEANA, an automatic data analysis software used for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: a pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated with a 762 g Broad Energy Germanium (BEGe) detector, produced by Canberra, that measures γ-ray lines from radioactive sources in an energy range between 59.5 and 2614.5 keV. At 1332.5 keV, together with the ballistic deficit correction method, all filters produce a comparable energy resolution of 1.61 keV FWHM. This value is superior to those measured by the manufacturer and those found in publications with detectors of a similar design and mass. At 59.5 keV, the modified cusp filter without a ballistic deficit correction produced the best result, with an energy resolution of 0.46 keV. It is observed that the loss in resolution by using a constant shaping time over the entire energy range is small when using the ballistic deficit correction method.

  10. Deposition of thin Si and Ge films by ballistic hot electron reduction in a solution-dripping mode and its application to the growth of thin SiGe films

    NASA Astrophysics Data System (ADS)

    Suda, Ryutaro; Yagi, Mamiko; Kojima, Akira; Mentek, Romain; Mori, Nobuya; Shirakashi, Jun-ichi; Koshida, Nobuyoshi

    2015-04-01

    To enhance the usefulness of ballistic hot electron injection into solutions for depositing thin group-IV films, a dripping scheme is proposed. A very small amount of SiCl4 or GeCl4 solution was dripped onto the surface of a nanocrystalline Si (nc-Si) electron emitter, and then the emitter is driven without using any counter electrodes. It is shown that thin Si and Ge films are deposited onto the emitting surface. Spectroscopic surface and compositional analyses showed no extrinsic carbon contaminations in deposited thin films, in contrast to the results of a previous study using the dipping scheme. The availability of this technique for depositing thin SiGe films is also demonstrated using a mixture SiCl4+GeCl4 solution. Ballistic hot electrons injected into solutions with appropriate kinetic energies promote preferential reduction of target ions with no by-products leading to nuclei formation for the thin film growth. Specific advantageous features of this clean, room-temperature, and power-effective process is discussed in comparison with the conventional dry and wet processes.

  11. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    PubMed

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0 ) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  12. Microwave Semiconductor Research - Materials, Devices and Circuits and Gallium Arsenide Ballistic Electron Transistors.

    DTIC Science & Technology

    1985-04-01

    activation energies than previously possible. Electron traps and hole traps with energies less than 50 meV were observed for the first time in GaAs...developed in our laboratory to photoexcite electrons in a given energy range in the conduction band and then measure the relaxation of these carriers...limitations on the electron energy may be required. CURRENT AND FUTURE EFFORTS The possibility of ballistic electron transport in gallium arsenide has been

  13. Digital pulse processing for planar TlBr detectors, optimized for ballistic deficit and charge-trapping effect

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Hitomi, K.

    2012-05-01

    The energy resolution of thallium bromide (TlBr) detectors is significantly limited by charge-trapping effect and pulse ballistic deficit, caused by the slow charge collection time. A digital pulse processing algorithm has been developed aiming to compensate for charge-trapping effect, while minimizing pulse ballistic deficit. The algorithm is examined using a 1 mm thick TlBr detector and an excellent energy resolution of 3.37% at 662 keV is achieved at room temperature. The pulse processing algorithms are presented in recursive form, suitable for real-time implementations.

  14. Ballistics and anatomical modelling - A review.

    PubMed

    Humphrey, Caitlin; Kumaratilake, Jaliya

    2016-11-01

    Ballistics is the study of a projectiles motion and can be broken down into four stages: internal, intermediate, external and terminal ballistics. The study of the effects a projectile has on a living tissue is referred to as wound ballistics and falls within terminal ballistics. To understand the effects a projectile has on living tissues the mechanisms of wounding need to be understood. These include the permanent and temporary cavities, energy, yawing, tumbling and fragmenting. Much ballistics research has been conducted including using cadavers, animal models and simulants such as ballistics ordnance gelatine. Further research is being conducted into developing anatomical, 3D, experimental and computational models. However, these models need to accurately represent the human body and its heterogeneous nature which involves understanding the biomechanical properties of the different tissues and organs. Further research is needed to accurately represent the human tissues with simulants and is slowly being conducted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. On the design of fuzzified trajectory shaping guidance law.

    PubMed

    Lin, Chun-Liang; Lin, Yu-Ping; Chen, Kai-Ming

    2009-04-01

    Midcourse guidance is commonly designed to save as much energy as possible so that the missile's final speed can be maximized while entering the homing stage. For this purpose, a competitive guidance design should be able to generate an admissible flight trajectory as to bring the interceptor to a superior altitude for a favorable target engagement. In this paper, a new adaptive trajectory shaping guidance scheme based on the adaptive fuzzy inference system, which is capable of generating a variety of trajectories for efficient target interception, is presented. The guidance law is developed with the aim of saving the interceptor's energy conservation while improving performance robustness. Applications of the presented approach have included a variety of mission oriented guidance, such as cruise missile guidance, anti-ballistic missile guidance, etc.

  16. Signature analysis of ballistic missile warhead with micro-nutation in terahertz band

    NASA Astrophysics Data System (ADS)

    Li, Ming; Jiang, Yue-song

    2013-08-01

    In recent years, the micro-Doppler effect has been proposed as a new technique for signature analysis and extraction of radar targets. The ballistic missile is known as a typical radar target and has been paid many attentions for the complexities of its motions in current researches. The trajectory of a ballistic missile can be generally divided into three stages: boost phase, midcourse phase and terminal phase. The midcourse phase is the most important phase for radar target recognition and interception. In this stage, the warhead forms a typical micro-motion called micro-nutation which consists of three basic micro-motions: spinning, coning and wiggle. This paper addresses the issue of signature analysis of ballistic missile warhead in terahertz band via discussing the micro-Doppler effect. We establish a simplified model (cone-shaped) for the missile warhead followed by the micro-motion models including of spinning, coning and wiggle. Based on the basic formulas of these typical micro-motions, we first derive the theoretical formula of micro-nutation which is the main micro-motion of the missile warhead. Then, we calculate the micro-Doppler frequency in both X band and terahertz band via these micro-Doppler formulas. The simulations are given to show the superiority of our proposed method for the recognition and detection of radar micro targets in terahertz band.

  17. Deformations on Hole and Projectile Surfaces Caused By High Velocity Friction During Ballistic Impact

    NASA Astrophysics Data System (ADS)

    Karamış, M. B.

    2018-01-01

    In this study, the deformations caused by the ballistic impact on the MM composites and on projectile surfaces are examined. The hole section and grain deformation of unreinforced targets are also examined after impact. The relatively high complexity of impact problems is caused by the large number of intervening parameters like relative velocity of projectile and target, shape of colliding objects, relative stiffness and masses, time-dependent surface of contact, geometry and boundary conditions and material characteristics. The material used in this investigation are 2024 and 7075 aluminum alloys as matrix reinforced with SiC and Al2O3 particles. The matrix materials are extensively used in defense applications due to its favorable ballistic properties, moderate strength, high corrosion resistance and super plastic potential. Two different composites were produced; one by casting and the other by lamination. The ballistic tests of the composite targets were carried out according to NIJ Standard-0101.04, Temperature 21 °C, RH=65% with 7.62 mm projectiles. The bullet weight was 9.6 g and their muzzle velocities were in the range of 770-800 m/s. The projectiles consisted of a steel core, copper jacket and lead material. The composite targets were positioned 15 m from the rifle. The interaction between projectiles and the target hole created after impact were examined by light microscopy and photography. Different damage and failure mechanisms such as petalling, cracking, spalling, dishing, etc., were observed on the target body. On the other hand, dramatic wear and damages on the projectile surface were also observed. The targets were supported with Al-5083 backing blocks having 40 mm thickness.

  18. Comparison of impact results for several polymeric composites over a wide range of low impact velocities

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Portanova, M. A.; Masters, J. E.; Sankar, B. V.; Jackson, Wade C.

    1991-01-01

    Static indentation, falling weight, and ballistic impact tests were conducted in clamped plates made of AS4/3501-6 and IM7/8551-7 prepreg tape. The transversely isotropic plates were nominally 7-mm thick. Pendulum and ballistic tests were also conducted on simply supported plates braided with Celion 12000 fibers and 3501-6 epoxy. The 20 degree braided plates were about 5-mm thick. The impactors had spherical or hemispherical shapes with a 12.7 mm diameter. Residual compression strength and damage size were measured. For a given kinetic energy, damage size was least for IM7/8551-7 and greatest for the braided material. Strengths varied inversely with damage size. For a given damage size, strength loss as a fraction of original strength was least for the braided material and greatest for AS4/3501-6 and IM7/8551-7. Strength loss for IM7/8551-7 and AS4/3501-6 was nearly equal. No significant differences were noticed between damage sizes and residual compression strengths for the static indentation, falling weight, and ballistic tests of AS4/3501-6 and IM7/8551-7. For the braided material, sizes of damage were significantly less and compression strengths were significantly more for the falling weight tests than for the ballistic tests.

  19. Bringing in the Reinforcements

    NASA Technical Reports Server (NTRS)

    2004-01-01

    What do NASA and ballistics have in common? More than the average person may know. Everyday, millions of Americans drive in vehicles, cross over bridges, and fly in airplanes without knowing just how important NASA s role in studying ballistics is in making these actions viable and safe for them. At Glenn Research Center s Ballistic Impact Facility, NASA scientists and engineers study the dynamics of high-speed projectiles and their impact on targets to create materials and structures that are smarter, lighter, and stronger. By applying the science of ballistics to new developments, these researchers are taking major steps in preventing catastrophic events. The Ballistic Impact Facility s main features are a 40-foot-long gas gun that can launch projectiles at speeds over 1,000 miles per hour and highspeed cameras that can capture up to 250 million images per second.

  20. A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin Langhorst; Thomas M Lillo; Henry S Chu

    2014-05-01

    A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target andmore » its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.« less

  1. ["Piggyback" shot: ballistic parameters of two simultaneously discharged airgun pellets].

    PubMed

    Frank, Matthias; Schönekess, Holger C; Grossjohann, Rico; Ekkernkamp, Axel; Bockholdt, Britta

    2014-01-01

    Green and Good reported an uncommon case of homicide committed with an air rifle in 1982 (Am. J. Forensic Med. Pathol. 3: 361-365). The fatal wound was unusual in that two airgun pellets were loaded in so-called "piggyback" fashion into a single shot air rifle. Lack of further information on the ballistic characteristics of two airgun pellets as opposed to one conventionally loaded projectile led to this investigation. The mean kinetic energy (E) of the two pellets discharged in "piggyback" fashion was E = 3.6 J and E = 3.4 J, respectively. In comparison, average kinetic energy values of E = 12.5 J were calculated for conventionally discharged single diabolo pellets. Test shots into ballistic soap confirmed the findings of a single entrance wound as reported by Green and Good. While the ballistic background of pellets discharged in "piggyback" fashion could be clarified, the reason behind this mode of shooting remains unclear.

  2. Steering and collimating ballistic electrons with amphoteric refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, A.; Dragoman, D.; Iftimie, S.

    2012-07-15

    We show that amphoteric refraction of ballistic electrons, i.e., positive or negative refraction depending on the incidence angle, occurs at an interface between an isotropic and an anisotropic medium and can be employed to steer and collimate electron beams. The steering angle is determined by the materials' parameters, but the degree of collimation can be tuned in a significant range by changing the energy of ballistic electrons.

  3. Low velocity gunshot wounds result in significant contamination regardless of ballistic characteristics.

    PubMed

    Weinstein, Joseph; Putney, Emily; Egol, Kenneth

    2014-01-01

    Controversy exists among the orthopedic community regarding the treatment of gunshot injuries. No consistent treatment algorithm exists for treatment of low energy gunshot wound (GSW) trauma. The purpose of this study was to critically examine the wound contamination following low velocity GSW based upon bullet caliber and clothing fiber type found within the injury track. Four types of handguns were fired at ballistic gel from a 10-foot distance. Various clothing materials were applied (denim, cotton, polyester, and wool) circumferentially around the tissue agar in a loose manor. A total of 32 specimens were examined. Each caliber handgun was fired a minimum of 5 times into a gel. Regardless of bullet caliber there was gross contamination of the entire bullet track in 100% of specimens in all scenarios and for all fiber types. Furthermore, as would be expected, the degree of contamination appeared to increase as the size of the bullet increased. Low velocity GSWs result in significant contamination regardless of bullet caliber and jacket type. Based upon our results further investigation of low velocity GSW tracks is warranted. Further clinical investigation should focus on the degree to which debridement should be undertaken.

  4. Quantum transport in d-dimensional lattices

    DOE PAGES

    Manzano, Daniel; Chuang, Chern; Cao, Jianshu

    2016-04-28

    We show that both fermionic and bosonic uniform d-dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. Lastly, we then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour ofmore » uniform spin lattices is a consequence of the interaction between different excitations.« less

  5. Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments

    NASA Astrophysics Data System (ADS)

    Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.

    2017-09-01

    Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.

  6. Translation compensation and micro-Doppler extraction for precession ballistic targets with a wideband terahertz radar

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Deng, Bin; Wang, Hongqiang; Zhang, Ye; Qin, Yuliang

    2018-01-01

    Imaging, classification, and recognition techniques of ballistic targets in midcourse have always been the focus of research in the radar field for military applications. However, the high velocity translation of ballistic targets will subject range profile and Doppler to translation, slope, and fold, which are especially severe in the terahertz region. Therefore, a two-step translation compensation method based on envelope alignment is presented. The rough compensation is based on the traditional envelope alignment algorithm in inverse synthetic aperture radar imaging, and the fine compensation is supported by distance fitting. Then, a wideband imaging radar system with a carrier frequency of 0.32 THz is introduced, and an experiment on a precession missile model is carried out. After translation compensation with the method proposed in this paper, the range profile and the micro-Doppler distributions unaffected by translation are obtained, providing an important foundation for the high-resolution imaging and micro-Doppler extraction of the terahertz radar.

  7. Perforation of Thin Aluminum Alloy Plates by Blunt Projectiles - Experimental and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Wei, Gang; Zhang, Wei

    2013-06-01

    Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~ 170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. National Natural Science Foundation of China (No.: 11072072).

  8. Trajectory prediction for ballistic missiles based on boost-phase LOS measurements

    NASA Astrophysics Data System (ADS)

    Yeddanapudi, Murali; Bar-Shalom, Yaakov

    1997-10-01

    This paper addresses the problem of the estimation of the trajectory of a tactical ballistic missile using line of sight (LOS) measurements from one or more passive sensors (typically satellites). The major difficulties of this problem include: the estimation of the unknown time of launch, incorporation of (inaccurate) target thrust profiles to model the target dynamics during the boost phase and an overall ill-conditioning of the estimation problem due to poor observability of the target motion via the LOS measurements. We present a robust estimation procedure based on the Levenberg-Marquardt algorithm that provides both the target state estimate and error covariance taking into consideration the complications mentioned above. An important consideration in the defense against tactical ballistic missiles is the determination of the target position and error covariance at the acquisition range of a surveillance radar in the vicinity of the impact point. We present a systematic procedure to propagate the target state and covariance to a nominal time, when it is within the detection range of a surveillance radar to obtain a cueing volume. Mont Carlo simulation studies on typical single and two sensor scenarios indicate that the proposed algorithms are accurate in terms of the estimates and the estimator calculated covariances are consistent with the errors.

  9. Ballistic parameters of .177 (4.5 mm) caliber plastic-sleeved composite projectiles compared to conventional lead pellets.

    PubMed

    Frank, Matthias; Schönekeß, Holger; Jäger, Frank; Herbst, Jörg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta

    2013-11-01

    The capability of conventional air gun lead pellets (diabolo pellets) to cause severe injuries or fatalities even at low kinetic energy levels is well documented in medical literature. Modern composite hunting pellets, usually a metal core (made of steel, lead, zinc, or a zinc and aluminum alloy) encased in a plastic sleeve, are of special forensic and traumatological interest. These projectiles are advertised by the manufacturers to discharge at higher velocities than conventional air gun pellets, thus generating very high tissue-penetrating capabilities. Lack of experimental data on these uncommon air gun projectiles induced this work. Ballistic parameters of 12 different caliber .177 (4.5 mm) composite pellets, discharged from two spring-piston air guns (Weihrauch HW 35, Webley CUB) and three pneumatic air guns (Walther LGR, Walther LG400, Walther LP300), were investigated using a ballistic speed measurement system and compared to a conventional diabolo pellet (RWS Meisterkugel) as reference projectile. Although overall results were inconsistent, for some projectile-weapon combinations (particularly spring-piston air guns), a significant change of the kinetic energy (-53 up to +48 %) to the reference projectile was observed. The data provided in this work may serve as a basis for forensic investigation as well as traumatological diagnosis and treatment of injuries caused by these uncommon projectiles.

  10. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    NASA Astrophysics Data System (ADS)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  11. Imaging through atmospheric turbulence for laser based C-RAM systems: an analytical approach

    NASA Astrophysics Data System (ADS)

    Buske, Ivo; Riede, Wolfgang; Zoz, Jürgen

    2013-10-01

    High Energy Laser weapons (HEL) have unique attributes which distinguish them from limitations of kinetic energy weapons. HEL weapons engagement process typical starts with identifying the target and selecting the aim point on the target through a high magnification telescope. One scenario for such a HEL system is the countermeasure against rockets, artillery or mortar (RAM) objects to protect ships, camps or other infrastructure from terrorist attacks. For target identification and especially to resolve the aim point it is significant to ensure high resolution imaging of RAM objects. During the whole ballistic flight phase the knowledge about the expectable imaging quality is important to estimate and evaluate the countermeasure system performance. Hereby image quality is mainly influenced by unavoidable atmospheric turbulence. Analytical calculations have been taken to analyze and evaluate image quality parameters during an approaching RAM object. In general, Kolmogorov turbulence theory was implemented to determine atmospheric coherence length and isoplanatic angle. The image acquisition is distinguishing between long and short exposure times to characterize tip/tilt image shift and the impact of high order turbulence fluctuations. Two different observer positions are considered to show the influence of the selected sensor site. Furthermore two different turbulence strengths are investigated to point out the effect of climate or weather condition. It is well known that atmospheric turbulence degenerates image sharpness and creates blurred images. Investigations are done to estimate the effectiveness of simple tip/tilt systems or low order adaptive optics for laser based C-RAM systems.

  12. Spacecraft Re-Entry Impact Point Targeting Using Aerodynamic Drag

    NASA Technical Reports Server (NTRS)

    Omar, Sanny R.; Bevilacqua, Riccardo

    2017-01-01

    The ability to re-enter the atmosphere at a desired location is important for spacecraft containing components that may survive re-entry. While impact point targeting has traditionally been initiated through impulsive burns with chemical thrusters on large vehicles such as the Space Shuttle, and the Soyuz and Apollo capsules, many small spacecraft do not host thrusters and require an alternative means of impact point targeting to ensure that falling debris do not cause harm to persons or property. This paper discusses the use of solely aerodynamic drag force to perform this targeting. It is shown that by deploying and retracting a drag device to vary the ballistic coefficient of the spacecraft, any desired longitude and latitude on the ground can be targeted provided that the maneuvering begins early enough and the latitude is less than the inclination of the orbit. An analytical solution based on perturbations from a numerically propagated trajectory is developed to map the initial state and ballistic coefficient profile of a spacecraft to its impact point. This allows the ballistic coefficient profile necessary to reach a given target point to be rapidly calculated, making it feasible to generate the guidance for the decay trajectory onboard the spacecraft. The ability to target an impact point using aerodynamic drag will enhance the capabilities of small spacecraft and will enable larger space vehicles containing thrusters to save fuel by more effectively leveraging the available aerodynamic drag.

  13. Optimal control of the ballistic motion of Airy beams.

    PubMed

    Hu, Yi; Zhang, Peng; Lou, Cibo; Huang, Simon; Xu, Jingjun; Chen, Zhigang

    2010-07-01

    We demonstrate the projectile motion of two-dimensional truncated Airy beams in a general ballistic trajectory with controllable range and height. We show that the peak beam intensity can be delivered to any desired location along the trajectory as well as repositioned to a given target after displacement due to propagation through disordered or turbulent media.

  14. Joint Small Arms Technology Development Strategy for Joint Service Small Arms Science and Technology Investments

    DTIC Science & Technology

    2016-01-26

    Scope/Objectives Reiterating, this discussion is limited to small arms; those of .50 caliber and smaller plus low velocity and high 40mm...ballistic trajectory are included, plus abilities to engage targets in defilade such as by fragmentation effects for enemy located behind retaining walls...Electromagnetic Pulse (EMP) Weapons 3 2 Light Weight Small Arms / Light Weight Materials 2 2 Munition Guidance 2 2 Pain Beams 2 2 Barrel Coatings 1 1

  15. A Death Involving a Fired and Deflected Bullet: A Case Report from Lyon University Institute of Forensic Science, France.

    PubMed

    Maujean, Géraldine; Guinet, Tiphaine; Malicier, Daniel

    2016-01-01

    In case of gunshot deaths, atypical wounds can make the distinction between entrance and exit wounds harder. They may be due either to anatomical reasons or to diverse cogent ballistic arguments. The reported case pertains to a fatal hunting accident involving an expanded conical point bullet against the neck with both atypical entrance and exit wounds. Ballistic analyses including test firings allowed a better understanding of the external and internal findings. Upon premature impact with an intermediary target, the bullet experienced expansion in the formation of sharp brass petals responsible for a star-shaped entry wound. The trajectory of the deformed high energy projectile through the victim's body was then deviated by the cervical column, causing it to be tangential to the skin when exiting the body. The description of such atypical cases may benefit other experts and may assist in their investigation into similar cases. © 2015 American Academy of Forensic Sciences.

  16. Establishing a Ballistic Test Methodology for Documenting the Containment Capability of Small Gas Turbine Engine Compressors

    NASA Technical Reports Server (NTRS)

    Heady, Joel; Pereira, J. Michael; Ruggeri, Charles R.; Bobula, George A.

    2009-01-01

    A test methodology currently employed for large engines was extended to quantify the ballistic containment capability of a small turboshaft engine compressor case. The approach involved impacting the inside of a compressor case with a compressor blade. A gas gun propelled the blade into the case at energy levels representative of failed compressor blades. The test target was a full compressor case. The aft flange was rigidly attached to a test stand and the forward flange was attached to a main frame to provide accurate boundary conditions. A window machined in the case allowed the projectile to pass through and impact the case wall from the inside with the orientation, direction and speed that would occur in a blade-out event. High-peed, digital-video cameras provided accurate velocity and orientation data. Calibrated cameras and digital image correlation software generated full field displacement and strain information at the back side of the impact point.

  17. Model of ballistic targets' dynamics used for trajectory tracking algorithms

    NASA Astrophysics Data System (ADS)

    Okoń-FÄ fara, Marta; Kawalec, Adam; Witczak, Andrzej

    2017-04-01

    There are known only few ballistic object tracking algorithms. To develop such algorithms and to its further testing, it is necessary to implement possibly simple and reliable objects' dynamics model. The article presents the dynamics' model of a tactical ballistic missile (TBM) including the three stages of flight: the boost stage and two passive stages - the ascending one and the descending one. Additionally, the procedure of transformation from the local coordinate system to the polar-radar oriented and the global is presented. The prepared theoretical data may be used to determine the tracking algorithm parameters and to its further verification.

  18. Directed Energy Technology Working Group Report (IDA/OSD R&M (Institute for Defense Analyses/Office of the Secretary of Defense Reliability and Maintainability) Study).

    DTIC Science & Technology

    1983-08-01

    Missile (SLBM) Defense Scenario ............................................ B-1 C Space-Based Anti-Ballistic Missile ( ABM ) Defense Scenario...Ballistic Missile (SLBM) Defense Scenario, and at Strategic Space-Based Anti-Ballistic Missile ( ABM ) Defense Scenario. These case studies are provided...of flight. 3.5.3 Spaced-Based ABM Defense Scenario In this scenario, an orbiting battle station is operating as an element of GBMD System, and it is

  19. Natural Mallow Fiber-Reinforced Epoxy Composite for Ballistic Armor Against Class III-A Ammunition

    NASA Astrophysics Data System (ADS)

    Nascimento, Lucio Fabio Cassiano; Holanda, Luane Isquerdo Ferreira; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Lima, Édio Pereira

    2017-10-01

    Epoxy matrix composites reinforced with up to 30 vol pct of continuous and aligned natural mallow fibers were for the first time ballistic tested as personal armor against class III-A 9 mm FMJ ammunition. The ballistic efficiency of these composites was assessed by measuring the dissipated energy and residual velocity after the bullet perforation. The results were compared to those in similar tests of aramid fabric (Kevlar™) commonly used in vests for personal protections. Visual inspection and scanning electron microscopy analysis of impact-fractured samples revealed failure mechanisms associated with fiber pullout and rupture as well as epoxy cracking. As compared to Kevlar™, the mallow fiber composite displayed practically the same ballistic efficiency. However, there is a reduction in both weight and cost, which makes the mallow fiber composites a promising material for personal ballistic protection.

  20. Ballistic Deposition of Nanoclusters.

    NASA Astrophysics Data System (ADS)

    Ulbrandt, Jeffrey; Li, Yang; Headrick, Randall

    Nanoporous thin-films are an important class of materials, possessing a large surface area to volume ratio, with applications ranging from thermoelectric and photovoltaic materials to supercapacitors. In-Situ X-ray Reflectivity and Grazing Incidence Small Angle X-Ray Scattering (GISAXS) were used to monitor thin-films grown from Tungsten Silicide (WSi2) and Copper (Cu) nanoclusters. The nanoclusters ranged in size from 2 nm to 6 nm diameter and were made by high-pressure magnetron sputtering via plasma gas condensation (PGC). X-Ray Reflectivity (XRR) measurements of the films at various stages of growth reveal that the resulting films exhibit very low density, approaching 15% of bulk density. This is consistent with a simple off-lattice ballistic deposition model where particles stick at the point of first contact without further restructuring. DOE Office of Basic Energy Sciences under contract DE-FG02-07ER46380.

  1. Numerical Simulation of Ballistic Impact on Particulate Composite Target using Discrete Element Method: 1-D and 2-D Models

    NASA Astrophysics Data System (ADS)

    Nair, Rajesh P.; Lakshmana Rao, C.

    2014-01-01

    Ballistic impact (BI) is a study that deals with a projectile hitting a target and observing its effects in terms of deformation and fragmentation of the target. The Discrete Element Method (DEM) is a powerful numerical technique used to model solid and particulate media. Here, an attempt is made to simulate the BI process using DEM. 1-D DEM for BI is developed and depth of penetration (DOP) is obtained. The DOP is compared with results obtained from 2-D DEM. DEM results are found to match empirical results. Effects of strain rate sensitivity of the material response on DOP are also simulated.

  2. Perforation of Thin Aluminum Alloy Plates by Blunt Projectiles - Experimental and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Wei, Gang; Zhang, Wei; Xiao, Xinke; Guo, Zitao

    2011-06-01

    Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. Detailed computational results were provided to understand the deformation and failure mechanisms of the aluminum alloy plates.

  3. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes.

    PubMed

    Borzenets, I V; Amet, F; Ke, C T; Draelos, A W; Wei, M T; Seredinski, A; Watanabe, K; Taniguchi, T; Bomze, Y; Yamamoto, M; Tarucha, S; Finkelstein, G

    2016-12-02

    We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

  4. Civilian casualties of Iranian cities by ballistic missile attacks during the Iraq-Iran war (1980-1988).

    PubMed

    Khaji, Ali; Fallahdoost, Shoaodin; Soroush, Mohammad Reza

    2010-04-01

    To determine the nature and extent of Iranian casualties by ballistic missile attacks during the eight years of the Iraq-Iran war. The data collected about Iraqi missile strikes on Iranian cities included the following: date and time, number and type of missiles, cities targeted, and injuries and deaths resulting from impacts of missiles in civilian areas. The data were extracted from a database that was constructed by the army staff headquarters based on daily reports of Iranian army units during the war. Over a period of eight years (1980-1988), Iraqi army fired 533 ballistic missiles at Iranian territories. From those, 414 missiles (77.7%) landed on Iranian cities. The impacts of these missiles caused the deaths of 2,312 civilians and injured 11,625 others. Three types of ballistic missiles were used: FROG-7, Scud, and Al-Hussein (a modified version of the Scud missile). Twenty-seven cities in Iran were struck by Iraqi ballistic missiles. The highest mortalities from ballistic missiles were in Dezful and Tehran. Iraqi missile attacks continued for 90 months (2,748 days). Our results point to the necessity of investigating the psychological consequences of Iraqi ballistic missile attacks among survivors in 27 Iranian cities during the eight years of the Iraq-Iran war.

  5. Temperature dependence of ballistic mobility in a metamorphic InGaAs/InAlAs high electron mobility transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol

    We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable tomore » the carrier's mean free path in the channel.« less

  6. Direct determination of energy level alignment and charge transport at metal-Alq3 interfaces via ballistic-electron-emission spectroscopy.

    PubMed

    Jiang, J S; Pearson, J E; Bader, S D

    2011-04-15

    Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq(3) with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.

  7. Direct determination of energy level alignment and charge transport at metal/Alq{sub 3} interfaces via ballistic-electron-emission spectroscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J. S.; Pearson, J. E.; Bader, S. D.

    2011-04-15

    Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq{sub 3} with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.

  8. Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico)

    NASA Astrophysics Data System (ADS)

    Alatorre-Ibargüengoitia, Miguel A.; Delgado-Granados, Hugo; Dingwell, Donald B.

    2012-11-01

    During volcanic explosions, volcanic ballistic projectiles (VBP) are frequently ejected. These projectiles represent a threat to people, infrastructure, vegetation, and aircraft due to their high temperatures and impact velocities. In order to protect people adequately, it is necessary to delimit the projectiles' maximum range within well-defined explosion scenarios likely to occur in a particular volcano. In this study, a general methodology to delimit the hazard zones for VBP during volcanic eruptions is applied to Popocatépetl volcano. Three explosion scenarios with different intensities have been defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with VBP ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of VBP observed in the field. In the case of Vulcanian eruptions, the most common type of activity at Popocatépetl, the ballistic model was used in concert with an eruptive model to correlate ballistic range with initial pressure and gas content, parameters that can be estimated by monitoring techniques. The results are validated with field data and video observations of different Vulcanian eruptions at Popocatépetl. For each scenario, the ballistic model is used to calculate the maximum range of VBP under optimum "launching" conditions: ballistic diameter, ejection angle, topography, and wind velocity. Our results are presented in the form of a VBP hazard map with topographic profiles that depict the likely maximum ranges of VBP under explosion scenarios defined specifically for Popocatépetl volcano. The hazard zones shown on the map allow the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  9. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures

    NASA Astrophysics Data System (ADS)

    Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro

    2017-05-01

    Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale.

  10. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    PubMed

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures.

    PubMed

    Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro

    2017-05-18

    Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale.

  12. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures

    PubMed Central

    Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro

    2017-01-01

    Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale. PMID:28516909

  13. Augmenting reality in Direct View Optical (DVO) overlay applications

    NASA Astrophysics Data System (ADS)

    Hogan, Tim; Edwards, Tim

    2014-06-01

    The integration of overlay displays into rifle scopes can transform precision Direct View Optical (DVO) sights into intelligent interactive fire-control systems. Overlay displays can provide ballistic solutions within the sight for dramatically improved targeting, can fuse sensor video to extend targeting into nighttime or dirty battlefield conditions, and can overlay complex situational awareness information over the real-world scene. High brightness overlay solutions for dismounted soldier applications have previously been hindered by excessive power consumption, weight and bulk making them unsuitable for man-portable, battery powered applications. This paper describes the advancements and capabilities of a high brightness, ultra-low power text and graphics overlay display module developed specifically for integration into DVO weapon sight applications. Central to the overlay display module was the development of a new general purpose low power graphics controller and dual-path display driver electronics. The graphics controller interface is a simple 2-wire RS-232 serial interface compatible with existing weapon systems such as the IBEAM ballistic computer and the RULR and STORM laser rangefinders (LRF). The module features include multiple graphics layers, user configurable fonts and icons, and parameterized vector rendering, making it suitable for general purpose DVO overlay applications. The module is configured for graphics-only operation for daytime use and overlays graphics with video for nighttime applications. The miniature footprint and ultra-low power consumption of the module enables a new generation of intelligent DVO systems and has been implemented for resolutions from VGA to SXGA, in monochrome and color, and in graphics applications with and without sensor video.

  14. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2001-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  15. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2000-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  16. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    1999-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  17. Spectroscopic Imaging of Deep Tissue through Photoacoustic Detection of Molecular Vibration

    PubMed Central

    Wang, Pu; Rajian, Justin R.; Cheng, Ji-Xin

    2013-01-01

    The quantized vibration of chemical bonds provides a way of imaging target molecules in a complex tissue environment. Photoacoustic detection of harmonic vibrational transitions provides an approach to visualize tissue content beyond the ballistic photon regime. This method involves pulsed laser excitation of overtone transitions in target molecules inside a tissue. Fast relaxation of the vibrational energy into heat results in a local temperature rise on the order of mK and a subsequent generation of acoustic waves detectable with an ultrasonic transducer. In this perspective, we review recent advances that demonstrate the advantages of vibration-based photoacoustic imaging and illustrate its potential in diagnosing cardiovascular plaques. An outlook into future development of vibrational photoacoustic endoscopy and tomography is provided. PMID:24073304

  18. [Abdominal gunshot wounds. Ballistic data and practical management].

    PubMed

    Vicq, P; Jourdan, P; Chapuis, O; Baranger, B

    1996-01-01

    The mortality from abdominal gunshot wounds remains high, either in civilian or military cases. The severity factors of these wounds include bullet calibre and energy transfer of the missile. This paper studies some of the ballistics features of abdominal gunshot wounds. Practical guidelines are inferred concerning diagnosis and treatment of these wounds.

  19. Historical overview of wound ballistics research.

    PubMed

    Maiden, Nick

    2009-01-01

    Ballistics involves the study of the scientific properties of projectiles, their behavior and their terminal effects on biological tissues and other materials. Wound ballistics deals with the analysis of injuries caused by projectiles and the behavior of projectiles within human or other biological tissues. The nineteenth century witnessed the development of both of these areas with Kocher's hydrodynamic theory and the understanding of the significance of bullet deformation in causing tissue injury. The degree of traumatic disruption of tissues and organs was also related to direct energy transfer from projectiles. While subsequent research has concentrated on elucidating further mechanisms of injury, the exact cause of remote tissue damage from high energy projectiles is still the subject of ongoing research. Much of the contemporary literature regarding wound ballistics concentrates on the forensic aspects and their application for legal purposes, in particular the investigation of shooting scenes. There have been many advances in this area, particularly in relation to the identification of various types of gunshot wounds and how their appearance can be used to establish if a shooting was accidental, deliberate (homicidal) or self inflicted (suicidal).

  20. Diffusive and inelastic scattering in ballistic-electron-emission spectroscopy and ballistic-electron-emission microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E.Y.; Turner, B.R.; Schowalter, L.J.

    1993-07-01

    Ballistic-electron-emission microscopy (BEEM) of Au/Si(001) n type was done to study whether elastic scattering in the Au overlayer is dominant. It was found that there is no dependence of the BEEM current on the relative gradient of the Au surface with respect to the Si interface, and this demonstrates that significant elastic scattering must occur in the Au overlayer. Ballistic-electron-emission spectroscopy (BEES) was also done, and, rather than using the conventional direct-current BEES, alternating-current (ac) BEES was done on Au/Si and also on Au/PtSi/Si(001) n type. The technique of ac BEES was found to give linear threshold for the Schottkymore » barrier, and it also clearly showed the onset of electron-hole pair creation and other inelastic scattering events. The study of device quality PtSi in Au/PtSi/Si(001) yielded an attenuation length of 4 nm for electrons of energy 1 eV above the PtSi Fermi energy. 20 refs., 5 figs.« less

  1. Epitaxial Graphene: A New Material for Electronics

    NASA Astrophysics Data System (ADS)

    de Heer, Walt A.

    2007-10-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nano-electronics.

  2. Epitaxial graphene

    NASA Astrophysics Data System (ADS)

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gérard

    2007-07-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persist above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high-mobility epitaxial graphene. It appears that the effect is suppressed due to the absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low-dissipation high-speed nanoelectronics.

  3. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maassen, Jesse, E-mail: jmaassen@purdue.edu; Lundstrom, Mark

    2015-04-07

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) thatmore » phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions.« less

  4. The effect of alloying nickel with iron on the supersonic ballistic stage of high energy displacement cascades

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.

    2016-06-23

    Previous experimental and theoretical studies suggest that the production of extended defect structures by collision cascades is inhibited in equiatomic NiFe, in comparison to pure Ni. It is also known that the production of such extend defect structures results from the formation of subcascades by high-energy recoils and their subsequent interaction. A detailed analysis of the ballistics of 40 keV cascades in Ni and NiFe is performed to identify the formation of such subcascades and to assess their spatial distribution. It is found that subcascades in Ni and NiFe are created with nearly identical energies and distributed similarly in space.more » This suggests that the differences in production of extended defect structures is not related to processes taking place in the ballistic phase of the collision cascade. Lastly, these results can be generalized to other, more chemically complex, concentrated alloys where the elements have similar atomic numbers, such as many high-entropy alloys.« less

  5. The effect of alloying nickel with iron on the supersonic ballistic stage of high energy displacement cascades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.

    Previous experimental and theoretical studies suggest that the production of extended defect structures by collision cascades is inhibited in equiatomic NiFe, in comparison to pure Ni. It is also known that the production of such extend defect structures results from the formation of subcascades by high-energy recoils and their subsequent interaction. A detailed analysis of the ballistics of 40 keV cascades in Ni and NiFe is performed to identify the formation of such subcascades and to assess their spatial distribution. It is found that subcascades in Ni and NiFe are created with nearly identical energies and distributed similarly in space.more » This suggests that the differences in production of extended defect structures is not related to processes taking place in the ballistic phase of the collision cascade. Lastly, these results can be generalized to other, more chemically complex, concentrated alloys where the elements have similar atomic numbers, such as many high-entropy alloys.« less

  6. Electric and magnetic field modulated energy dispersion, conductivity and optical response in double quantum wire with spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-02-01

    We study the influence of electric field on the electronic energy band structure, zero-temperature ballistic conductivity and optical properties of double quantum wire. System described by double-well anharmonic confinement potential is exposed to a perpendicular magnetic field and Rashba and Dresselhaus spin-orbit interactions. Numerical results show up that the combined effects of internal and external agents cause the formation of crossing, anticrossing, camel-back/anomaly structures and the lateral, downward/upward shifts in the energy dispersion. The anomalies in the energy subbands give rise to the oscillation patterns in the ballistic conductance, and the energy shifts bring about the shift in the peak positions of optical absorption coefficients and refractive index changes.

  7. Minimum dV for Targeted Spacecraft Disposal

    NASA Technical Reports Server (NTRS)

    Bacon, John

    2017-01-01

    The density scale height of the Earth's atmosphere undergoes significant reduction in the final phases of a natural decay. It can be shown that for most realistic ballistic numbers, it is possible to exploit this effect to amplify available spacecraft dV by using it at the penultimate perigee to penetrate into higher drag regions at final apogee. The drag at this lower pass can more effectively propel a spacecraft towards the final target region than applying the same dV direct Hohmann transfer at that final apogee. This study analyzes the potential use of this effect-- in combination with small phasing burns--to calculate the absolute minimum delta-V that would be required to reliably guide a spacecraft to any specified safe unoccupied ocean region as a function of ballistic number, orbit inclination, and initial eccentricity. This calculation is made for controllable spacecraft in several orbit inclinations and eccentricities with arbitrary initial LAN and ArgP one week before final entry, under three-sigma atmospheric perturbations. The study analyzes the dV required under varying levels of final controllable altitude at which dV may be imparted, and various definitions of the length and location of a "safe" disposal area. The goal of such research is to improve public safety by creating assured safe disposal strategies for low-dV and/or low-thrust spacecraft that under more traditional strategies would need to be abandoned to a fully random decay.

  8. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.

    2016-08-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  9. 2005 22nd International Symposium on Ballistics Volume 2 Wednesday

    DTIC Science & Technology

    2005-11-18

    Information 1 Experimental and Numerical Study of the Penetration of Tungsten Carbide Into Steel Targets During High Rates of Strain John F . Moxnes...QinetiQ; Vladimir Titarev, Eleuterio Toro , Umeritek Limited The Mechanism Analysis of Interior Ballistics of Serial Chamber Gun, Dr. Sanjiu Ying, Charge...Elements and Meshless Particles, Gordon R. Johnson and Robert A. Stryk, Network Computing Services, Inc. Experimental and Numerical Study of the

  10. Research on capability of detecting ballistic missile by near space infrared system

    NASA Astrophysics Data System (ADS)

    Lu, Li; Sheng, Wen; Jiang, Wei; Jiang, Feng

    2018-01-01

    The infrared detection technology of ballistic missile based on near space platform can effectively make up the shortcomings of high-cost of traditional early warning satellites and the limited earth curvature of ground-based early warning radar. In terms of target detection capability, aiming at the problem that the formula of the action distance based on contrast performance ignores the background emissivity in the calculation process and the formula is only valid for the monochromatic light, an improved formula of the detecting range based on contrast performance is proposed. The near space infrared imaging system parameters are introduced, the expression of the contrastive action distance formula based on the target detection of the near space platform is deduced. The detection range of the near space infrared system for the booster stage ballistic missile skin, the tail nozzle and the tail flame is calculated. The simulation results show that the near-space infrared system has the best effect on the detection of tail-flame radiation.

  11. A new gun facility dedicated to performing shock physics and terminal ballistics experiments

    NASA Astrophysics Data System (ADS)

    Zakraysek, Alan J.; Sutherland, Gerrit T.; Sandusky, Harold D.; Strange, David

    2000-04-01

    A new building has been constructed to house various powder and single-stage and two-stage gas guns at the Naval Surface Warfare Center, Indian Head Division. Guns previously located at the Naval Research Laboratory and the former White Oak Site of the Naval Surface Warfare Center have been relocated here. Most of the guns are mounted on moveable pedestals to allow them to be shot into various chambers. The facility includes a concrete blast chamber, a target chamber/catch tank for flyer plate experiments, and a target chamber outfitted for terminal ballistics measurements. This paper will discuss the capabilities of this new facility.

  12. Physics of a ballistic missile defense - The chemical laser boost-phase defense

    NASA Technical Reports Server (NTRS)

    Grabbe, Crockett L.

    1988-01-01

    The basic physics involved in proposals to use a chemical laser based on satellites for a boost-phase defense are investigated. After a brief consideration of simple physical conditions for the defense, a calculation of an equation for the number of satellites needed for the defense is made along with some typical values of this for possible future conditions for the defense. Basic energy and power requirements for the defense are determined. A sumary is made of probable minimum conditions that must be achieved for laser power, targeting accuracy, number of satellites, and total sources for power needed.

  13. Comparison of Non-Parabolic Hydrodynamic Simulations for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Parabolic drift-diffusion simulators are common engineering level design tools for semiconductor devices. Hydrodynamic simulators, based on the parabolic band approximation, are becoming more prevalent as device dimensions shrink and energy transport effects begin to dominate device characteristic. However, band structure effects present in state-of-the-art devices necessitate relaxing the parabolic band approximation. This paper presents simulations of ballistic diodes, a benchmark device, of Si and GaAs using two different non-parabolic hydrodynamic formulations. The first formulation uses the Kane dispersion relationship in the derivation of the conservation equations. The second model uses a power law dispersion relation {(hk)(exp 2)/2m = xW(exp Y)}. Current-voltage relations show that for the ballistic diodes considered. the non-parabolic formulations predict less current than the parabolic case. Explanations of this will be provided by examination of velocity and energy profiles. At low bias, the simulations based on the Kane formulation predict greater current flow than the power law formulation. As the bias is increased this trend changes and the power law predicts greater current than the Kane formulation. It will be shown that the non-parabolicity and energy range of the hydrodynamic model based on the Kane dispersion relation are limited due to the binomial approximation which was utilized in the derivation.

  14. A photovoltaic device structure based on internal electron emission.

    PubMed

    McFarland, Eric W; Tang, Jing

    2003-02-06

    There has been an active search for cost-effective photovoltaic devices since the development of the first solar cells in the 1950s (refs 1-3). In conventional solid-state solar cells, electron-hole pairs are created by light absorption in a semiconductor, with charge separation and collection accomplished under the influence of electric fields within the semiconductor. Here we report a multilayer photovoltaic device structure in which photon absorption instead occurs in photoreceptors deposited on the surface of an ultrathin metal-semiconductor junction Schottky diode. Photoexcited electrons are transferred to the metal and travel ballistically to--and over--the Schottky barrier, so providing the photocurrent output. Low-energy (approximately 1 eV) electrons have surprisingly long ballistic path lengths in noble metals, allowing a large fraction of the electrons to be collected. Unlike conventional cells, the semiconductor in this device serves only for majority charge transport and separation. Devices fabricated using a fluorescein photoreceptor on an Au/TiO2/Ti multilayer structure had typical open-circuit photovoltages of 600-800 mV and short-circuit photocurrents of 10-18 micro A cm(-2) under 100 mW cm(-2) visible band illumination: the internal quantum efficiency (electrons measured per photon absorbed) was 10 per cent. This alternative approach to photovoltaic energy conversion might provide the basis for durable low-cost solar cells using a variety of materials.

  15. Injuries of the head from backface deformation of ballistic protective helmets under ballistic impact.

    PubMed

    Rafaels, Karin A; Cutcliffe, Hattie C; Salzar, Robert S; Davis, Martin; Boggess, Brian; Bush, Bryan; Harris, Robert; Rountree, Mark Steve; Sanderson, Ellory; Campman, Steven; Koch, Spencer; Dale Bass, Cameron R

    2015-01-01

    Modern ballistic helmets defeat penetrating bullets by energy transfer from the projectile to the helmet, producing helmet deformation. This deformation may cause severe injuries without completely perforating the helmet, termed "behind armor blunt trauma" (BABT). As helmets become lighter, the likelihood of larger helmet backface deformation under ballistic impact increases. To characterize the potential for BABT, seven postmortem human head/neck specimens wearing a ballistic protective helmet were exposed to nonperforating impact, using a 9 mm, full metal jacket, 124 grain bullet with velocities of 400-460 m/s. An increasing trend of injury severity was observed, ranging from simple linear fractures to combinations of linear and depressed fractures. Overall, the ability to identify skull fractures resulting from BABT can be used in forensic investigations. Our results demonstrate a high risk of skull fracture due to BABT and necessitate the prevention of BABT as a design factor in future generations of protective gear. © 2014 American Academy of Forensic Sciences.

  16. Treatment Protocol for High Velocity/High Energy Gunshot Injuries to the Face

    PubMed Central

    Peled, Micha; Leiser, Yoav; Emodi, Omri; Krausz, Amir

    2011-01-01

    Major causes of facial combat injuries include blasts, high-velocity/high-energy missiles, and low-velocity missiles. High-velocity bullets fired from assault rifles encompass special ballistic properties, creating a transient cavitation space with a small entrance wound and a much larger exit wound. There is no dispute regarding the fact that primary emergency treatment of ballistic injuries to the face commences in accordance with the current advanced trauma life support (ATLS) recommendations; the main areas in which disputes do exist concern the question of the timing, sequence, and modes of surgical treatment. The aim of the present study is to present the treatment outcome of high-velocity/high-energy gunshot injuries to the face, using a protocol based on the experience of a single level I trauma center. A group of 23 injured combat soldiers who sustained bullet and shrapnel injuries to the maxillofacial region during a 3-week regional military conflict were evaluated in this study. Nine patients met the inclusion criteria (high-velocity/high-energy injuries) and were included in the study. According to our protocol, upon arrival patients underwent endotracheal intubation and were hemodynamically stabilized in the shock-trauma unit and underwent total-body computed tomography with 3-D reconstruction of the head and neck and computed tomography angiography. All patients underwent maxillofacial surgery upon the day of arrival according to the protocol we present. In view of our treatment outcomes, results, and low complication rates, we conclude that strict adherence to a well-founded and structured treatment protocol based on clinical experience is mandatory in providing efficient, appropriate, and successful treatment to a relatively large group of patients who sustain various degrees of maxillofacial injuries during a short period of time. PMID:23449809

  17. International Infantry and Joint Services Small Arms Systems Symposium: Exhibition and Firing Demonstration

    DTIC Science & Technology

    2008-05-22

    operation of weapon system) Phit Weapon System (e.g. dispersion) Most important influence ● Operator ● Distance to target together with ballistic...Suitable for a variety of weapons where ballistical correction to improve range performance and PHit /PKill is essential ● Prepare system for additional...status ● Prototypes have been delivered to FMV (Swedish Defence Materiel Administration) ● Demonstrated for NATO in Toledo 2007-02-15: > 65% PHit

  18. Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system

    NASA Astrophysics Data System (ADS)

    Zheng, Yipeng; Tan, Wenjiang; Si, Jinhai; Ren, YuHu; Xu, Shichao; Tong, Junyi; Hou, Xun

    2016-09-01

    We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. This imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.

  19. Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yipeng; Tan, Wenjiang, E-mail: tanwenjiang@mail.xjtu.edu.cn; Si, Jinhai

    2016-09-07

    We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. Thismore » imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.« less

  20. Using the spatial distribution and lithology of ballistic blocks to interpret eruption sequence and dynamics: August 6 2012 Upper Te Maari eruption, New Zealand

    NASA Astrophysics Data System (ADS)

    Breard, E. C. P.; Lube, G.; Cronin, S. J.; Fitzgerald, R.; Kennedy, B.; Scheu, B.; Montanaro, C.; White, J. D. L.; Tost, M.; Procter, J. N.; Moebis, A.

    2014-10-01

    The ballistic ejection of blocks during explosive eruptions constitutes a major hazard near active volcanoes. Fields of ballistic clasts can provide important clues towards quantifying the energy, dynamics and directionality of explosive events, but detailed datasets are rare. During the 6 August 2012 hydrothermal eruption of Upper Te Maari (Tongariro), New Zealand, three explosions occurred in rapid succession within less than 20 s. The first two produced laterally-directed pyroclastic density currents (PDC), and the final vertical explosion generated an ash plume. Each of these explosions was associated with the ejection of ballistic blocks. We present detailed maps of the resulting 5.1 km2 block impact field and the distribution of the > 2200 impact craters with diameters > 2.5 m. There are two distinct regions of high crater concentration, where crater densities reach more than six times the average background density. These occur at distances of 500-700 m east and 1000-1350 west of a 430-m-long fissure that was created during the eruption. The high-density fields are characterized by a narrow radial spread of < 45° and are located along the proximal transport direction of the pyroclastic density currents. A provenance analysis of ballistic blocks allowed us to reconstruct two different eruptive vents for the explosions. The first two laterally-directed explosions were sourced from the fissure, while the third explosion occurred through the pre-existing Upper Te Maari Crater, generating a roughly axisymmetric shower of ballistics. Stratigraphic relationships between impact craters, PDC and fall deposits suggest that the ballistic blocks were initially coupled with the rapidly expanding gas-particle mixtures that produced the PDCs. Ballistic trajectory modeling, reproducing the lateral extent and main impact density pattern of the western impact field, allows estimation of the vertical expansion angle of the second and largest explosion. The calculations show that the largest proportion of the explosion energy was strongly focused as a narrow and extremely shallow (from - 3 to 15° from the horizontal) laterally expanding hydrothermal blast. The results presented here constitute an important data set for ballistic hazard assessment at Tongariro volcano and they can provide further clues towards better understanding highly energetic laterally directed volcanic explosions at similar hydrothermal fields.

  1. Self-pinched lithium beam transport experiments on SABRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, D.L.; Olson, C.L.; Poukey, J.W.

    Self-pinched transport of ion beams has many advantages for ion-driven ICF applications involving high yield and energy production. The authors are currently preparing for a self-pinched lithium beam transport experiment on the SABRE accelerator. There are three transport elements that must eventually be demonstrated: (1) efficient lithium beam generation and ballistic transport to a focus at the self-pinched transport channel entrance; (2) self-pinched transport in the channel, requiring optimized injection conditions and gas breakdown; and (3) self-pinched transport of the equilibrated beam from the channel into free space, with associated aiming and stability considerations. In the present experiment, a hollowmore » annular lithium beam from an applied-B extraction ion diode will be focused to small radius (r {le} 2 cm) in a 60 cm long ballistic focus section containing argon gas at a pressure of a few Torr. The self-pinched transport channel will contain a low pressure background gas of 10--40 mTorr argon to allow sufficient net current to confine the beam for long distance transport. IPROP simulations are in progress to optimize the design of the ballistic and self-pinched transport sections. Progress on preparation of this lithium self-pinched transport experiment, including a discussion of transport system design, important gas breakdown issues, and diagnostics, will be presented.« less

  2. Cloth ballistic vest alters response to blast.

    PubMed

    Phillips, Y Y; Mundie, T G; Yelverton, J T; Richmond, D R

    1988-01-01

    Ballistic wounds have been and will remain the principal cause of casualties in combat. Cloth ballistic vests (CBV) play an important role in limiting critical wounds from fragments and small-arms fire. There is an increased risk of primary blast injury on the modern battlefield. In a previous study, volunteers were exposed to short-duration blast waves of low peak pressure (18.6 +/- 0.8 kPa). Pressure measurements made in the distal esophagus as an estimate of intrathoracic pressure (ITP) were significantly higher (p less than 0.05) when the standard U.S. Army ballistic jacket was worn (8.7 +/- 1.2 kPa) than when fatigues alone were worn (7.4 +/- 0.7 kPa). In this study 58 sheep were exposed to nominal blast levels of 115, 230, 295, and 420 kPa peak pressure in groups of 12, 18, 16, and 12, respectively. Half of each group was fitted with a CBV. Lung weight index (LWI), lung weight expressed as a percentage of body weight, was used as a measure of blast injury. Use of the CBV was associated with a significant increase in LWI (p less than 0.05) which averaged 21% for the two middle exposure groups. At the 420 kPa level, two of six non-CBV animals died as opposed to five of six animals wearing the CBV. Intrathoracic pressure was generally higher in the CBV group. Likely mechanisms of injury enhancement include an increase in target surface area and an alteration of the effective loading function on the thorax. This information may be useful in the triage and treatment of casualties exposed to intense blast environments.

  3. Ballistic performance of a Kevlar-29 woven fibre composite under varied temperatures

    NASA Astrophysics Data System (ADS)

    Soykasap, O.; Colakoglu, M.

    2010-05-01

    Armours are usually manufactured from polymer matrix composites and used for both military and non-military purposes in different seasons, climates, and regions. The mechanical properties of the composites depend on temperature, which also affects their ballistic characteristics. The armour is used to absorb the kinetic energy of a projectile without any major injury to a person. Therefore, besides a high strength and lightness, a high damping capacity is required to absorb the impact energy transferred by the projectile. The ballistic properties of a Kevlar 29/polyvinyl butyral composite are investigated under varied temperatures in this study. The elastic modulus of the composite is determined from the natural frequency of composite specimens at different temperatures by using a damping monitoring method. Then, the backside deformation of composite plates is analysed experimentally and numerically employing the finite-element program Abaqus. The experimental and numeric results obtained are in good agreement.

  4. Ballistic capture into lunar and Martian distant retrograde orbits

    NASA Astrophysics Data System (ADS)

    Bezrouk, Collin J.

    Distant retrograde orbits (DROs) are a neutrally stable class of three-body orbits. Because of their stability, DROs cannot be targeted with a low-energy transfer along a stable manifold like unstable three-body orbits in the circular restricted three-body problem (CR3BP). However, in more complicated dynamical models, the effects of small perturbing forces can be exploited to build ballistic capture trajectories (BCTs) into DROs. We develop a method for building sets of BCTs for a particular reference DRO with recommendations for minimizing computational effort. Sets of BCTs are generated in the Earth-Moon system and the Mars-Phobos system due to their applicability to near-term missions and large difference in mass parameters. These BCT sets are stochastically analyzed to determine the range of conditions necessary for using a BCT, such as energy, solar system geometry, and origin. The nature of the DRO after the spacecraft is captured is studied, including minor body flyby altitudes and variations in the size and shape over time. After a spacecraft has used a BCT, it can decrease its sensitivity to perturbations and extend its mission duration with a series of stabilizing maneuvers. Quasi-periodic orbits are constructed in the Earth-Moon CR3BP that lie on the boundary of stability, and closely resemble the DROs that result from using a BCT. Minimum cost transfers are then constructed between these quasi-periodic orbits and a target periodic DRO using a variety of methods for searching and optimizing. It is discovered that BCTs that target planar quasi-periodic DROs can be stabilized for about 15% of the cost of stabilizing a BCT with large out-of-plane motion. Once a spacecraft is in a stable DRO, the long duration evolution of that orbit is of interest. Using a high fidelity dynamical model and numerical precision techniques, the evolution of several DROs in the Earth-Moon system is studied over a period of 30,000 years. The perturbing forces that cause a DRO to transition into an unstable orbit are identified and analyzed. DROs larger than 60,000 km grow in amplitude due to solar gravity until they depart the Moon after several centuries. DROs smaller than 45,000 km remain stable for 25,000 years or more, but decay in size due to the Moon's solid tide bulge, which eventually causes the DRO to depart the Moon. The DROs evolve chaotically and occasionally experience periods of relatively fast amplitude growth when the period of the DRO is in resonance with the frequency of particular perturbing forces.

  5. Time-gated ballistic imaging using a large aperture switching beam.

    PubMed

    Mathieu, Florian; Reddemann, Manuel A; Palmer, Johannes; Kneer, Reinhold

    2014-03-24

    Ballistic imaging commonly denotes the formation of line-of-sight shadowgraphs through turbid media by suppression of multiply scattered photons. The technique relies on a femtosecond laser acting as light source for the images and as switch for an optical Kerr gate that separates ballistic photons from multiply scattered ones. The achievable image resolution is one major limitation for the investigation of small objects. In this study, practical influences on the optical Kerr gate and image quality are discussed theoretically and experimentally applying a switching beam with large aperture (D = 19 mm). It is shown how switching pulse energy and synchronization of switching and imaging pulse in the Kerr cell influence the gate's transmission. Image quality of ballistic imaging and standard shadowgraphy is evaluated and compared, showing that the present ballistic imaging setup is advantageous for optical densities in the range of 8 < OD < 13. Owing to the spatial transmission characteristics of the optical Kerr gate, a rectangular aperture stop is formed, which leads to different resolution limits for vertical and horizontal structures in the object. Furthermore, it is reported how to convert the ballistic imaging setup into a schlieren-type system with an optical schlieren edge.

  6. Simultaneous analysis of nuclear and mitochondrial DNA, mRNA and miRNA from backspatter from inside parts of firearms generated by shots at "triple contrast" doped ballistic models.

    PubMed

    Grabmüller, Melanie; Schyma, Christian; Euteneuer, Jan; Madea, Burkhard; Courts, Cornelius

    2015-09-01

    When a firearm projectile hits a biological target a spray of biological material (e.g., blood and tissue fragments) can be propelled from the entrance wound back towards the firearm. This phenomenon has become known as "backspatter" and if caused by contact shots or shots from short distances traces of backspatter may reach, consolidate on, and be recovered from, the inside surfaces of the firearm. Thus, a comprehensive investigation of firearm-related crimes must not only comprise of wound ballistic assessment but also backspatter analysis, and may even take into account potential correlations between these emergences. The aim of the present study was to evaluate and expand the applicability of the "triple contrast" method by probing its compatibility with forensic analysis of nuclear and mitochondrial DNA and the simultaneous investigation of co-extracted mRNA and miRNA from backspatter collected from internal components of different types of firearms after experimental shootings. We demonstrate that "triple contrast" stained biological samples collected from the inside surfaces of firearms are amenable to forensic co-analysis of DNA and RNA and permit sequence analysis of the entire mtDNA displacement-loop, even for "low template" DNA amounts that preclude standard short tandem repeat DNA analysis. Our findings underscore the "triple contrast" method's usefulness as a research tool in experimental forensic ballistics.

  7. Bias estimation for moving optical sensor measurements with targets of opportunity

    NASA Astrophysics Data System (ADS)

    Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov

    2014-06-01

    Integration of space based sensors into a Ballistic Missile Defense System (BMDS) allows for detection and tracking of threats over a larger area than ground based sensors [1]. This paper examines the effect of sensor bias error on the tracking quality of a Space Tracking and Surveillance System (STSS) for the highly non-linear problem of tracking a ballistic missile. The STSS constellation consists of two or more satellites (on known trajectories) for tracking ballistic targets. Each satellite is equipped with an IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant or slowly varying bias error present in each sensor's line of sight measurements. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. The measurements provided by these sensors are assumed time-coincident (synchronous) and perfectly associated. The line of sight (LOS) measurements from the sensors can be fused into measurements which are the Cartesian target position, i.e., linear in the target state. We evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance of the bias estimates, which serves as a quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the (unknown) trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.

  8. Guidance and Control Architecture Design and Demonstration for Low Ballistic Coefficient Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Swei, Sean

    2014-01-01

    We propose to develop a robust guidance and control system for the ADEPT (Adaptable Deployable Entry and Placement Technology) entry vehicle. A control-centric model of ADEPT will be developed to quantify the performance of candidate guidance and control architectures for both aerocapture and precision landing missions. The evaluation will be based on recent breakthroughs in constrained controllability/reachability analysis of control systems and constrained-based energy-minimum trajectory optimization for guidance development operating in complex environments.

  9. Ballistic Majorana nanowire devices

    NASA Astrophysics Data System (ADS)

    Gül, Ã.-nder; Zhang, Hao; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Geresdi, Attila; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2018-01-01

    Majorana modes are zero-energy excitations of a topological superconductor that exhibit non-Abelian statistics1-3. Following proposals for their detection in a semiconductor nanowire coupled to an s-wave superconductor4,5, several tunnelling experiments reported characteristic Majorana signatures6-11. Reducing disorder has been a prime challenge for these experiments because disorder can mimic the zero-energy signatures of Majoranas12-16, and renders the topological properties inaccessible17-20. Here, we show characteristic Majorana signatures in InSb nanowire devices exhibiting clear ballistic transport properties. Application of a magnetic field and spatial control of carrier density using local gates generates a zero bias peak that is rigid over a large region in the parameter space of chemical potential, Zeeman energy and tunnel barrier potential. The reduction of disorder allows us to resolve separate regions in the parameter space with and without a zero bias peak, indicating topologically distinct phases. These observations are consistent with the Majorana theory in a ballistic system21, and exclude the known alternative explanations that invoke disorder12-16 or a nonuniform chemical potential22,23.

  10. Inroads in the Non-Invasive Diagnostics of Ballistic Impact Damage

    DTIC Science & Technology

    2006-11-01

    2004; Wells, et al., 2002), Ti - 6Al - 4V metallic armor materials (Wells, et al., 2004) and, most recently, on a ballistic gelatin target (Wells, 2006...spiral cracking outside of the penetration cavity in a Ti - 6Al - 4V sample disk. This type of volumetric damage characterization information, otherwise...visualization of the penetration cavity and spiral cracking in a Ti - 6Al - 4V sample. 4 Figure 8. Quantitative 3-D unit damage fraction

  11. Intracranial Pressure Response to Non-Penetrating Ballistic Impact: An Experimental Study Using a Pig Physical Head Model and Live Pigs

    PubMed Central

    Liu, Hai; Kang, Jianyi; Chen, Jing; Li, Guanhua; Li, Xiaoxia; Wang, Jianmin

    2012-01-01

    This study was conducted to characterize the intracranial pressure response to non-penetrating ballistic impact using a "scalp-skull-brain" pig physical head model and live pigs. Forty-eight ballistic tests targeting the physical head model and anesthetized pigs protected by aramid plates were conducted with standard 9 mm bullets at low (279-297 m/s), moderate (350-372 m/s), and high (409-436 m/s) velocities. Intracranial pressure responses were recorded with pressure sensors embedded in similar brain locations in the physical head model and the anesthetized pigs. Three parameters of intracranial pressure were determined from the measured data: intracranial maximum pressure (Pmax), intracranial maximum pressure impulse (PImax), and the duration of the first positive phase (PPD). The intracranial pressure waves exhibited blast-like characteristics for both the physical model and l live pigs. Of all three parameters, Pmax is most sensitive to impact velocity, with means of 126 kPa (219 kPa), 178 kPa (474 kPa), and 241 kPa (751 kPa) for the physical model (live pigs) for low, moderate, and high impact velocities, respectively. The mean PPD becomes increasingly short as the impact velocity increases, whereas PImax shows the opposite trend. Although the pressure parameters of the physical model were much lower than those of the live pigs, good correlations between the physical model and the live pigs for the three pressure parameters, especially Pmax, were found using linear regression. This investigation suggests that Pmax is a preferred parameter for predicting the severity of the brain injury resulting from behind armor blunt trauma (BABT). PMID:23055817

  12. Opportunities for ballistic missions to Halley's comet

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Wooden, W. H., II

    1977-01-01

    Alternative strategies for ballistic missions to Halley's comet in 1985-86 are described. A large scientific return would be acquired from a ballistic Halley intercept in spite of the high flyby speeds that are associated with this mission mode. The possibility of retargeting the cometary spacecraft to additional comets after the Halley intercept also exists. Two cometary spacecraft of identical design would be used to carry out four separate cometary encounters over a 3 year period. One spacecraft would intercept Halley's comet before its perihelion passage in December 1985 and then go on to comet Borrelly with an encounter in January 1988. The other spacecraft would be targeted for a postperihelion Halley intercept in March 1986 before proceeding toward an encounter with comet Tempel 2 in September 1988.

  13. Examples of the nonlinear dynamics of ballistic capture and escape in the earth-moon system

    NASA Technical Reports Server (NTRS)

    Belbruno, Edward A.

    1990-01-01

    An example of a trajectory is given which is initially captured in an elliptic resonant orbit about the earth and then ballistically escapes the earth-moon system. This is demonstrated by a numerical example in three-dimensions using a planetary ephemeris. Another example shows a mechanism of how an elliptic orbit about the earth can increase its energy by performing a complex nonlinear transition to an elliptic orbit of a larger semi-major axis. Capture is also considered. An application of ballistic capture at the moon via an unstable periodic orbit using the four-body sun-earth-moon-S/C interaction is described.

  14. Automated design of gravity-assist trajectories to Mars and the outer planets

    NASA Technical Reports Server (NTRS)

    Longuski, James M.; Williams, Steve N.

    1991-01-01

    In this paper, a new approach to planetary mission design is described which automates the search for gravity-assist trajectories. This method finds all conic solutions given a range of launch dates, a range of launch energies and a set of target planets. The new design tool is applied to the problems of finding multiple encounter trajectories to the outer planets and Venus gravity-assist trajectories to Mars. The last four-planet grand tour opportunity (until the year 2153) is identified. It requires an earth launch in 1996 and encounters Jupiter, Uranus, Neptune, and Pluto. Venus gravity-assist trajectories to Mars for the 30 year period 1995-2024 are examined. It is shown that in many cases these trajectories require less launch energy to reach Mars than direct ballistic trajectories.

  15. Impact-generated winds on Venus: Causes and effects

    NASA Technical Reports Server (NTRS)

    Schultz, Pater H.

    1992-01-01

    The pressure of the dense atmosphere of Venus significantly changes the appearance of ejecta deposits relative to craters on the Moon and Mercury. Conversely, specific styles and sequences of ejecta emplacement can be inferred to represent different intensities of atmospheric response winds acting over different timescales. Three characteristic timescales can be inferred from the geologic record: surface scouring and impactor-controlled (angle and direction) initiation of the long fluidized run-out flows; nonballistic emplacement of inner, radar-bright ejecta facies and radar-dark outer facies; and very late reworking of surface materials. These three timescales roughly correspond to processes observed in laboratory experiments that can be scaled to conditions on Venus (with appropriate assumptions): coupling between the atmosphere and earlytime vapor/melt (target and impactor) that produces an intense shock that subsequently evolves into blast/response winds; less energetic dynamic response of the atmosphere to the outward-moving ballistic ejecta curtain that generates nonthermal turbulent eddies; and late recovery of the atmosphere to impact-generated thermal and pressure gradients expressed as low-energy but long-lived winds. These different timescales and processes can be viewed as the atmosphere equivalent of shock melting, material motion, and far-field seismic response in the target. The three processes (early Processes, Atmospheric Processes, and Late Recovery Winds) are discussed at length.

  16. The Lunar IceCube Mission Challenge: Attaining Science Orbit Parameters from a Constrained Approach Trajectory

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.

    2017-01-01

    The challenges of targeting specific lunar science orbit parameters from a concomitant Sun-EarthMoon system trajectory are examined. While the concept of ballistic lunar capture is well-studied, achieving and controlling the time evolution of the orbital elements to satisfy mission constraints is especially problematic when the spacecraft is equipped with a low-thrust propulsion system. Satisfying these requirements on the lunar approach and capture segments is critical to the success of the Lunar IceCube mission, a 6U CubeSat that will prospect for water in solid (ice), liquid, and vapor forms and other lunar volatiles from a low-periapsis, highly inclined elliptical lunar orbit.

  17. The Lunar IceCube Mission Challenge: Attaining Science Orbit Parameters from a Constrained Approach Trajectory

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.

    2017-01-01

    The challenges of targeting specific lunar science orbit parameters from a concomitant Sun-Earth/Moon system trajectory are examined. While the concept of ballistic lunar capture is well-studied, achieving and controlling the time evolution of the orbital elements to satisfy mission constraints is especially problematic when the spacecraft is equipped with a low-thrust propulsion system. Satisfying these requirements on the lunar approach and capture segments is critical to the success of the Lunar IceCube mission, a 6U CubeSat that will prospect for water in solid (ice), liquid, and vapor forms and other lunar volatiles from a low-periapsis, highly inclined elliptical lunar orbit.

  18. Ballistic strength training compared with usual care for improving mobility following traumatic brain injury: protocol for a randomised, controlled trial.

    PubMed

    Williams, Gavin; Ada, Louise; Hassett, Leanne; Morris, Meg E; Clark, Ross; Bryant, Adam L; Olver, John

    2016-07-01

    Traumatic brain injury is the leading cause of disability in young adults aged 15 to 45 years. Mobility limitations are prevalent, and range in severity from interfering with basic day-to-day tasks to restricting participation in higher level social, leisure, employment and sporting activities. Despite the prevalence and severity of physical impairments, such as poor balance and spasticity, the main contributor to mobility limitations following traumatic brain injury is low muscle power generation. Strengthening exercises that are performed quickly are termed 'ballistic' as they are aimed at improving the rate of force production and, hence, muscle power. This is compared with conventional strength training, which is performed slowly and aims to improve maximum force production, yet has limited impact on mobility. In people recovering from traumatic brain injury: (1) is a 12-week ballistic strength-training program targeting the three muscle groups critical for walking more effective than usual care at improving mobility, strength and balance; and (2) does improved mobility translate to better health-related quality of life? A prospective, multi-centre, randomised, single-blind trial with concealed allocation will be conducted. Participants will be patients with a neurologically based movement disorder affecting mobility as a result of traumatic brain injury. Patients will be recruited during the acute phase of rehabilitation (n=166), from brain injury units in large metropolitan hospitals in Melbourne and Sydney, Australia. For 12 weeks, participants in the experimental group will have three 60-minute sessions of usual physiotherapy intervention replaced by three 60-minute sessions of strength training (ballistic strength, gait). The three key muscle groups responsible for forward propulsion will be targeted: ankle plantarflexors, hip flexors and the hip extensors. Initial loads will be low, to facilitate high contraction velocities. Progression to higher loads will occur only if participants can perform the exercises ballistically. The control group will have their three 60-minute sessions of usual physiotherapy intervention (balance, strength, stretch, cardiovascular fitness, gait) standardised so that all participants have equivalent therapy time. Both groups will continue to receive usual rehabilitation. The primary outcome will be mobility, measured using the High Level Mobility Assessment Tool. The secondary outcomes will be walking speed, muscle strength, balance and health-related quality of life. Walking speed will be measured using the 10-m walking test. Strength will be measured by a 6 repetition maximum, seated, single leg press test. Balance will be measured as the single limb support time. Health-related quality of life will be measured using the Assessment of Quality of Life. Outcomes will be measured at baseline (0 months), at completion of the intervention phase (3 months), and 3 months after cessation of intervention (6 months). Baseline measures will be completed prior to randomisation. Assessors blinded to group allocation will perform all measures. Baseline characteristics of participants will be determined according to group, using descriptive statistics. The proportion of patients compliant with the intervention will be calculated according to group and compared using Fisher's exact test. Compliance with the intervention will be defined as those who have satisfactorily completed at least 80% of the allocated sessions (29 of 36 sessions). The between-group difference for all outcomes will be estimated using analysis of covariance, adjusting for baseline High Level Mobility Assessment Tool score, age, gender and length of post-traumatic amnesia. Analyses will be conducted on an intention-to-treat basis. Strength training in neurological rehabilitation is highly topical because muscle weakness has been identified as the primary impairment leading to mobility limitations in many neurological populations. This project represents the first international study of ballistic strength training after traumatic brain injury. The novelty of ballistic strength training is that the exercises attempt to replicate how lower limb muscles work, by targeting the high angular velocities attained during walking and higher level activities. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  19. Characteristics of ballistic and blast injuries.

    PubMed

    Powers, David B; Delo, Robert I

    2013-03-01

    Ballistic injury wounds are formed by variable interrelated factors, such as the nature of the tissue, the compositional makeup of the bullet, distance to the target, and the velocity, shape, and mass of the of the projectile. This complex arrangement, with the ultimate outcome dependent on each other, makes the prediction of wounding potential difficult to assess. As the facial features are the component of the body most involved in a patient's personality and interaction with society, preservation of form, cosmesis, and functional outcome should remain the primary goals in the management of ballistic injury. A logical, sequential analysis of the injury patterns to the facial complex is an absolutely necessary component for the treatment of craniomaxillofacial ballistic injuries. Fortunately, these skill sets should be well honed in all craniomaxillofacial surgeons through their exposure to generalized trauma, orthognathic, oncologic, and cosmetic surgery patients. Identification of injured tissues, understanding the functional limitations of these injuries, and preservation of both hard and soft tissues minimizing the need for tissue replacement are paramount.

  20. Movement Integration and the One-Target Advantage.

    PubMed

    Hoffmann, Errol R

    2017-01-01

    The 1-target advantage (OTA) has been found to occur in many circumstances and the current best explanation for this phenomenon is that of the movement integration hypothesis. The author's purpose is twofold: (a) to model the conditions under which there is integration of the movement components in a 2-component movement and (b) to study the factors that determine the magnitude of the OTA for both the first and second component of a 2-component movement. Results indicate that integration of movement components, where times for one component are affected by the geometry of the other component, occurs when 1 of the movement components is made ballistically. Movement components that require ongoing visual control show only weak interaction with the second component, whereas components made ballistically always show movement time dependence on first and second component amplitude, independent of location within the sequence. The OTA is present on both the first and second components of the movement, with a magnitude that is dependent on whether the components are performed ballistically or with ongoing visual control and also on the amplitudes and indexes of difficulty of the component movements.

  1. Management of civilian ballistic fractures.

    PubMed

    Seng, V S; Masquelet, A C

    2013-12-01

    The management of ballistic fractures, which are open fractures, has often been studied in wartime and has benefited from the principles of military surgery with debridement and lavage, and the use of external fixation for bone stabilization. In civilian practice, bone stabilization of these fractures is different and is not performed by external fixation. Fifteen civilian ballistic fractures, Gustilo II or IIIa, two associated with nerve damage and none with vascular damage, were reviewed. After debridement and lavage, ten internal fixations and five conservative treatments were used. No superficial or deep surgical site infection was noted. Fourteen of the 15 fractures (93%) healed without reoperation. Eleven of the 15 patients (73%) regained normal function. Ballistic fractures have a bad reputation due to their many complications, including infections. In civilian practice, the use of internal fixation is not responsible for excessive morbidity, provided debridement and lavage are performed. Civilian ballistic fractures, when they are caused by low-velocity firearms, differ from military ballistic fractures. Although the principle of surgical debridement and lavage remains the same, bone stabilization is different and is similar to conventional open fractures. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Possible impact of multi-electron loss events on the average beam charge state in an HIF target chamber and a neutral beam approach

    NASA Astrophysics Data System (ADS)

    Grisham, L. R.

    2001-05-01

    Experiments were carried out during the early 1980s to assess the obtainable atomic neutralization of energetic beams of negative ions ranging from lithium to silicon. The experiments found (Grisham et al. Rev. Sci. Instrum. 53 (1982) 281; Princeton Plasma Physics Laboratory Report PPPL-1857, 1981) that, for higher atomic number elements than lithium, it appeared that a substantial fraction of the time more than one electron was being lost in a single collision. This result was inferred from the existence of more than one ionization state in the product beam for even the thinnest line densities at which any electron removal took place. Because of accelerator limitations, these experiments were limited to maximum energies of 7 MeV. However, based upon these results, it is possible that multi-electron loss events may also play a significant role in determining the average ion charge state of the much higher Z and more energetic beams traversing the medium in an heavy ion fusion chamber. This could result in the beam charge state being considerably higher than previously anticipated, and might require designers to consider harder vacuum ballistic focusing approaches, or the development of additional space charge neutralization schemes. This paper discusses the measurements that gave rise for these concerns, as well as a description of further measurements that are proposed to be carried out for atomic numbers and energies per amu which would be closer to those required for heavy ion fusion drivers. With a very low current beam of a massive, but low charge state energetic ion, the charge state distribution emerging from a target gas cell could be measured as a function of line density and medium composition. Varying the line density would allow one to simulate the charge state evolution of the beam as a function of distance into the target chamber. This paper also briefly discusses a possible alternative driver approach using photodetachment-neutralized atomic beams, which could reduce plasma complications far from the target, but which would impose more stringent limitations upon chamber pressure and repetition rate.

  3. Higher-than-ballistic conduction of viscous electron flows

    PubMed Central

    Guo, Haoyu; Ilseven, Ekin; Falkovich, Gregory; Levitov, Leonid S.

    2017-01-01

    Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer’s ballistic limit Gball. The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at T=0 but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation G=Gball+Gvis, where the viscous contribution Gvis dominates over Gball in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics. PMID:28265079

  4. Matter, energy, and heat transfer in a classical ballistic atom pump.

    PubMed

    Byrd, Tommy A; Das, Kunal K; Mitchell, Kevin A; Aubin, Seth; Delos, John B

    2014-11-01

    A ballistic atom pump is a system containing two reservoirs of neutral atoms or molecules and a junction connecting them containing a localized time-varying potential. Atoms move through the pump as independent particles. Under certain conditions, these pumps can create net transport of atoms from one reservoir to the other. While such systems are sometimes called "quantum pumps," they are also models of classical chaotic transport, and their quantum behavior cannot be understood without study of the corresponding classical behavior. Here we examine classically such a pump's effect on energy and temperature in the reservoirs, in addition to net particle transport. We show that the changes in particle number, of energy in each reservoir, and of temperature in each reservoir vary in unexpected ways as the incident particle energy is varied.

  5. Direct observation of ballistic Andreev reflection

    NASA Astrophysics Data System (ADS)

    Klapwijk, T. M.; Ryabchun, S. A.

    2014-12-01

    An overview is presented of experiments on ballistic electrical transport in inhomogeneous superconducting systems which are controlled by the process of Andreev reflection. The initial experiments based on the coexistence of a normal phase and a superconducting phase in the intermediate state led to the concept itself. It was followed by a focus on geometrically inhomogeneous systems like point contacts, which provided a very clear manifestation of the energy and direction dependence of the Andreev reflection process. The point contacts have recently evolved towards the atomic scale owing to the use of mechanical break-junctions, revealing a very detailed dependence of Andreev reflection on the macroscopic phase of the superconducting state. In present-day research, the superconducting in homogeneity is constructed by clean room technology and combines superconducting materials, for example, with low-dimensional materials and topological insulators. Alternatively, the superconductor is combined with nano-objects, such as graphene, carbon nanotubes, or semiconducting nanowires. Each of these "inhomogeneous systems" provides a very interesting range of properties, all rooted in some manifestation of Andreev reflection.

  6. Force-induced desorption of 3-star polymers: a self-avoiding walk model

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Whittington, S. G.

    2018-05-01

    We consider a simple cubic lattice self-avoiding walk model of 3-star polymers adsorbed at a surface and then desorbed by pulling with an externally applied force. We determine rigorously the free energy of the model in terms of properties of a self-avoiding walk, and show that the phase diagram includes four phases, namely a ballistic phase where the extension normal to the surface is linear in the length, an adsorbed phase and a mixed phase, in addition to the free phase where the model is neither adsorbed nor ballistic. In the adsorbed phase all three branches or arms of the star are adsorbed at the surface. In the ballistic phase two arms of the star are pulled into a ballistic phase, while the remaining arm is in a free phase. In the mixed phase two arms in the star are adsorbed while the third arm is ballistic. The phase boundaries separating the ballistic and mixed phases, and the adsorbed and mixed phases, are both first order phase transitions. The presence of the mixed phase is interesting because it does not occur for pulled, adsorbed self-avoiding walks. In an atomic force microscopy experiment it would appear as an additional phase transition as a function of force.

  7. Analysis of spacecraft entry into Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Nakajima, Ken; Nagano, Koutarou

    1991-07-01

    The effects on a spacecraft body while entering the Martian atmosphere and the resulting design constraints are analyzed. The analyses are conducted using the Viking entry phase restriction conditions and a Mars atmosphere model. Results from analysis conducted by the Program to Optimize Simulated Trajectories (POST) are described. Results obtained from the analysis are as follows: (1) flight times depend greatly on lift-to-drag ratio and less on ballistic coefficients; (2) terminal landing speeds depend greatly on ballistic coefficients and less on lift-to-drag ratios; (3) the dependence of the flight path angles on ballistic coefficients is slightly larger than their dependence on lift-to-drag ratios; (4) as the ballistic coefficients become smaller and the lift-to-drag ratios become larger, the deceleration at high altitude becomes larger; (5) small ballistic coefficients and low lift-to-drag ratios are required to meet the constraints of Mach number at parachute deployment and deployment altitude; and (6) heating rates at stagnation points are dependent on ballistic coefficients. It is presumed that the aerodynamic characteristics will be 0.2 for the lift-to-drag ratio and 75 kg/sq m for the ballistic coefficient for the case of a Mars landing using capsules similar to those used in the Viking program.

  8. The effect of high-pressure devitrification and densification on ballistic-penetration resistance of fused silica

    NASA Astrophysics Data System (ADS)

    Avuthu, Vasudeva Reddy

    Despite the clear benefits offered by more advanced transparent materials, (e.g. transparent ceramics offer a very attractive combination of high stiffness and high hardness levels, highly-ductile transparent polymers provide superior fragment-containing capabilities, etc.), ballistic ceramic-glass like fused-silica remains an important constituent material in a majority of transparent impact-resistant structures (e.g. windshields and windows of military vehicles, portholes in ships, ground vehicles and spacecraft) used today. Among the main reasons for the wide-scale use of glass, the following three are most frequently cited: (i) glass-structure fabrication technologies enable the production of curved, large surface-area, transparent structures with thickness approaching several inches; (ii) relatively low material and manufacturing costs; and (iii) compositional modifications, chemical strengthening, and controlled crystallization have been demonstrated to be capable of significantly improving the ballistic properties of glass. In the present work, the potential of high-pressure devitrification and densification of fused-silica as a ballistic-resistance-enhancement mechanism is investigated computationally. In the first part of the present work, all-atom molecular-level computations are carried out to infer the dynamic response and material microstructure/topology changes of fused silica subjected to ballistic impact by a nanometer-sized hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the microstructural changes such as the deformation of highly sheared and densified regions, and the conversion of amorphous fused silica to SiO2 crystalline allotropic modifications (in particular, alpha-quartz and stishovite). The microstructural changes in question were determined by carrying out a post-processing atom-coordination procedure. This procedure suggested the formation of high-density stishovite (and perhaps alpha-quartz) within fused silica during ballistic impact. To rationalize the findings obtained, the all-atom molecular-level computational analysis is complemented by a series of quantum-mechanics density functional theory (DFT) computations. The latter computations enable determination of the relative potential energies of the fused silica, alpha-quartz and stishovite under ambient pressure (i.e. under their natural densities) as well as under imposed (as high as 50 GPa) pressures (i.e. under higher densities) and shear strains. In addition, the transition states associated with various fused-silica devitrification processes were identified. In the second part of the present work, the molecular-level computational results obtained in the first portion of the work are used to enrich a continuum-type constitutive model (that is, the so-called Johnson-Holmquist-2, JH2, model) for fused silica. Since the aforementioned devitrification and permanent-densification processes modify the response of fused silica to the pressure as well as to the deviatoric part of the stress, changes had to be made in both the JH2 equation of state and the strength model. To assess the potential improvements with respect to the ballistic-penetration resistance of this material brought about by the fused-silica devitrification and permanent-densification processes, a series of transient non-linear dynamics finite element analyses of the transverse impact of a fused-silica test plate with a solid right-circular cylindrical steel projectile was conducted. The results obtained revealed that, provided the projectile incident velocity and, hence, the attendant pressure, is sufficiently high, fused silica can undergo impact-induced energy-consuming devitrification, which improves its ballistic-penetration resistance.

  9. Estimates of point defect production in α-quartz using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cowen, Benjamin J.; El-Genk, Mohamed S.

    2017-07-01

    Molecular dynamics (MD) simulations are performed to investigate the production of point defects in α-quartz by oxygen and silicon primary knock-on atoms (PKAs) of 0.25-2 keV. The Wigner-Seitz (WS) defect analysis is used to identify the produced vacancies, interstitials, and antisites, and the coordination defect analysis is used to identify the under and over-coordinated oxygen and silicon atoms. The defects at the end of the ballistic phase and the residual defects, after annealing, increase with increased PKA energy, and are statistically the same for the oxygen and silicon PKAs. The WS defect analysis results show that the numbers of the oxygen vacancies and interstitials (VO, Oi) at the end of the ballistic phase is the highest, followed closely by those of the silicon vacancies and interstitials (VSi, Sii). The number of the residual oxygen and silicon vacancies and interstitials are statistically the same. In addition, the under-coordinated OI and SiIII, which are the primary defects during the ballistic phase, have high annealing efficiencies (>89%). The over-coordinated defects of OIII and SiV, which are not nearly as abundant in the ballistic phase, have much lower annealing efficiencies (<63%) that decrease with increased PKA energy.

  10. Innovative 3D Textile Structures for Soft Body Armor Protection: The EPIDARM Project

    NASA Astrophysics Data System (ADS)

    Maillet, Jérôme; Lefebvre, Marie; Boussu, François; Pirlot, Marc

    There is a real need for battlefield soldiers to be protected from ­ballistic and CBRNE threats and also to be in permanent contact and localization with the logistic support of the commander. Ballistic, CBRNE and tactical jackets are currently three different components, developed separately and worn on top of each other. One of the EPIDARM project's targets is to propose a personal protection demonstration for the optimal system configuration in order to reduce the cost and weight while improving protection. The systems approach used for the EPIDARM program considers the protective system inside its environment (threat, the wearer - generic soldier, task and climates). The latest emergent technologies in ballistic and CBRN protection, ergonomic effectiveness and financial cost are considered and help to select final solutions.

  11. Hybrid carbon-glass fiber/toughened epoxy thick composites subject to drop-weight and ballistic impacts

    NASA Astrophysics Data System (ADS)

    Sevkat, Ercan

    The goals of this study are to investigate the low velocity and ballistic impact response of thick-section hybrid fiber composites at room temperature. Plain-woven S2-Glass and IM7 Graphite fabrics are chosen as fiber materials reinforcing the SC-79 epoxy. Four different types of composites consisting of alternating layers of glass and graphite woven fabric sheets are considered. Tensile tests are conducted using 98 KN (22 kip) MTS testing machine equipped with environmental chamber. Low-velocity impact tests are conducted using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Ballistic impact tests are performed using helium pressured high-speed gas-gun. Tensile tests results were used to define the material behavior of the hybrid and non-hybrid composites in Finite Element modeling. The low velocity and ballistic impact tests showed that hybrid composites performance was somewhere between non-hybrid woven composites. Using woven glass fabrics as outer skin improved the impact performance of woven graphite composite. However hybrid composites are prone to delamination especially between dissimilar layers. The ballistic limit velocity V50 hybrid composites were higher that of woven graphite composite and lower than that of woven glass composite. Both destructive cross-sectional micrographs and nondestructive ultrasonic techniques are used to evaluate the damage created by impact. The Finite Element code LS-DYNA is chosen to perform numerical simulations of low velocity and ballistic impact on thick-section hybrid composites. The damage progression in these composites shows anisotropic nonlinearity. The material model to describe this behavior is not available in LS-DYNA material library. Initially, linear orthotropic material with damage (Chan-Chan Model) is employed to simulate some of the experimental results. Then, user-defined material subroutine is incorporated into LS-DYNA to simulate the nonlinear behavior. The experimentally obtained force-time histories, strain-time histories and damage patterns of impacted composites are compared with Finite element results. The results indicate that LS-DYNA could simulate the impact responses with sufficient accuracy once proper material models and boundary conditions are defined.

  12. Higher-than-ballistic conduction of viscous electron flows.

    PubMed

    Guo, Haoyu; Ilseven, Ekin; Falkovich, Gregory; Levitov, Leonid S

    2017-03-21

    Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer's ballistic limit [Formula: see text] The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at [Formula: see text] but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation [Formula: see text], where the viscous contribution [Formula: see text] dominates over [Formula: see text] in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics.

  13. High-brightness displays in integrated weapon sight systems

    NASA Astrophysics Data System (ADS)

    Edwards, Tim; Hogan, Tim

    2014-06-01

    In the past several years Kopin has demonstrated the ability to provide ultra-high brightness, low power display solutions in VGA, SVGA, SXGA and 2k x 2k display formats. This paper will review various approaches for integrating high brightness overlay displays with existing direct view rifle sights and augmenting their precision aiming and targeting capability. Examples of overlay display systems solutions will be presented and discussed. This paper will review significant capability enhancements that are possible when augmenting the real-world as seen through a rifle sight with other soldier system equipment including laser range finders, ballistic computers and sensor systems.

  14. The engineering of a nuclear thermal landing and ascent vehicle utilizing indigenous Martian propellant

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert M.

    1991-01-01

    The following paper reports on a design study of a novel space transportation concept known as a 'NIMF' (Nuclear rocket using Indigenous Martian Fuel). The NIMF is a ballistic vehicle which obtains its propellant out of the Martian air by compression and liquefaction of atmospheric CO2. This propellant is subsequently used to generate rocket thrust at a specific impulse of 264 s by being heated to high temperature (2800 K) gas in the NIMFs' nuclear thermal rocket engines. The vehicle is designed to provide surface to orbit and surface to surface transportation, as well as housing, for a crew of three astronauts. It is capable of refueling itself for a flight to its maximum orbit in less than 50 days. The ballistic NIMF has a mass of 44.7 tonnes and, with the assumed 2800 K propellant temperature, is capable of attaining highly energetic (250 km by 34,000 km elliptical) orbits. This allows it to rendezvous with interplanetary transfer vehicles which are only very loosely bound into orbit around Mars. If a propellant temperature of 2000 K is assumed, then low Mars orbit can be attained; while if 3100 K is assumed, then the ballistic NIMF is capable of injecting itself onto a minimum energy transfer orbit to Earth in a direct ascent from the Martian surface.

  15. Gunshot-induced fractures of the extremities: a review of antibiotic and debridement practices.

    PubMed

    Sathiyakumar, Vasanth; Thakore, Rachel V; Stinner, Daniel J; Obremskey, William T; Ficke, James R; Sethi, Manish K

    2015-09-01

    The use of antibiotic prophylaxis and debridement is controversial when treating low- and high-velocity gunshot-induced fractures, and established treatment guidelines are currently unavailable. The purpose of this review was to evaluate the literature for the prophylactic antibiotic and debridement policies for (1) low-velocity gunshot fractures of the extremities, joints, and pelvis and (2) high-velocity gunshot fractures of the extremities. Low-velocity gunshot fractures of the extremities were subcategorized into operative and non-operative cases, whereas low-velocity gunshot fractures of the joints and pelvis were evaluated based on the presence or absence of concomitant bowel injury. In the absence of surgical necessity for fracture care such as concomitant absence of gross wound contamination, vascular injury, large soft-tissue defect, or associated compartment syndrome, the literature suggests that superficial debridement for low-velocity ballistic fractures with administration of antibiotics is a satisfactory alternative to extensive operative irrigation and debridement. In operative cases or those involving bowel injuries secondary to pelvic fractures, the literature provides support for and against extensive debridement but does suggest the use of intravenous antibiotics. For high-velocity ballistic injuries, the literature points towards the practice of extensive immediate debridement with prophylactic intravenous antibiotics. Our systematic review demonstrates weak evidence for superficial debridement of low-velocity ballistic fractures, extensive debridement for high-velocity ballistic injuries, and antibiotic use for both types of injury. Intra-articular fractures seem to warrant debridement, while pelvic fractures with bowel injury have conflicting evidence for debridement but stronger evidence for antibiotic use. Given a relatively low number of studies on this subject, we recommend that further high-quality research on the debridement and antibiotic use for gunshot-induced fractures of the extremities should be conducted before definitive recommendations and guidelines are developed.

  16. Point of impact: the effect of size and speed on puncture mechanics.

    PubMed

    Anderson, P S L; LaCosse, J; Pankow, M

    2016-06-06

    The use of high-speed puncture mechanics for prey capture has been documented across a wide range of organisms, including vertebrates, arthropods, molluscs and cnidarians. These examples span four phyla and seven orders of magnitude difference in size. The commonality of these puncture systems offers an opportunity to explore how organisms at different scales and with different materials, morphologies and kinematics perform the same basic function. However, there is currently no framework for combining kinematic performance with cutting mechanics in biological puncture systems. Our aim here is to establish this framework by examining the effects of size and velocity in a series of controlled ballistic puncture experiments. Arrows of identical shape but varying in mass and speed were shot into cubes of ballistic gelatine. Results from high-speed videography show that projectile velocity can alter how the target gel responds to cutting. Mixed models comparing kinematic variables and puncture patterns indicate that the kinetic energy of a projectile is a better predictor of penetration than either momentum or velocity. These results form a foundation for studying the effects of impact on biological puncture, opening the door for future work to explore the influence of morphology and material organization on high-speed cutting dynamics.

  17. Self-Consistent Theory of Shot Noise Suppression in Ballistic Conductors

    NASA Astrophysics Data System (ADS)

    Bulashenko, O. M.; Rubí, J. M.; Kochelap, V. A.

    Shot-noise measurements become a fundamental tool to probe carrier interactions in mesoscopic systems [1]. A matter of particular interest is the significance of Coulomb interaction which may keep nearby electrons more regularly spaced rather than strictly at random and lead to the noise reduction. That effect occurs in different physical situations. Among them are charge-limited ballistic transport, resonant tunneling, single-electron tunneling, etc. In this communication we address the problem of Coulomb correlations in ballistic conductors under the space-charge-limited transport conditions, and present for the first time a semiclassical self-consistent theory of shot noise in these conductors by solving analytically the kinetic equation coupled self-consistently with a Poisson equation. Basing upon this theory, exact results for current noise in a two-terminal ballistic conductor under the action of long-range Coulomb correlations has been derived. The noise reduction factor (in respect to the uncorrelated value) is obtained in a closed analytical form for a full range of biases ranging from thermal to shot-noise limits which describe perfectly the results of the Monte Carlo simulations for a nondegenerate electron gas [2]. The magnitude of the noise reduction exceeds 0.01, which is of interest from the point of view of possible applications. Using these analytical results one may estimate a relative contribution to the noise from different groups of carriers (in energy space and/or real space) and to investigate in great detail the correlations between different groups of carriers. This leads us to suggest an electron energy spectroscopy experiment to probe the Coulomb correlations in ballistic conductors. Indeed, while the injected carriers are uncorrelated, those in the volume of the conductor are strongly correlated, as follows from the derived formulas for the fluctuation of the distribution function. Those correlations may be observed experimentally by making use of a combination of two already realized techniques: a hot-electron spectrometer [3,4] which allows one to analyze different energy groups of electrons collected at the contact and shot-noise measurements [5,6]. Such "shot noise reduction spectroscopy" allows one to measure the novel phenomena. In particular, we predict the (anti)correlation of the "tangent" electrons having the energy close to the potential barrier height, to all other electron energy groups collected at the receiving contact.

  18. Supercurrent and multiple Andreev reflections in micrometer-long ballistic graphene Josephson junctions.

    PubMed

    Zhu, Mengjian; Ben Shalom, Moshe; Mishchsenko, Artem; Fal'ko, Vladimir; Novoselov, Kostya; Geim, Andre

    2018-02-08

    Ballistic Josephson junctions are predicted to support a number of exotic physics processess, providing an ideal system to inject the supercurrent in the quantum Hall regime. Herein, we demonstrate electrical transport measurements on ballistic superconductor-graphene-superconductor junctions by contacting graphene to niobium with a junction length up to 1.5 μm. Hexagonal boron nitride encapsulation and one-dimensional edge contacts guarantee high-quality graphene Josephson junctions with a mean free path of several micrometers and record-low contact resistance. Transports in normal states including the observation of Fabry-Pérot oscillations and Sharvin resistance conclusively witness the ballistic propagation in the junctions. The critical current density J C is over one order of magnitude larger than that of the previously reported junctions. Away from the charge neutrality point, the I C R N product (I C is the critical current and R N the normal state resistance of junction) is nearly a constant, independent of carrier density n, which agrees well with the theory for ballistic Josephson junctions. Multiple Andreev reflections up to the third order are observed for the first time by measuring the differential resistance in the micrometer-long ballistic graphene Josephson junctions.

  19. Quasiballistic quantum transport through Ge/Si core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Kotekar-Patil, D.; Nguyen, B.-M.; Yoo, J.; Dayeh, S. A.; Frolov, S. M.

    2017-09-01

    We study signatures of ballistic quantum transport of holes through Ge/Si core/shell nanowires at low temperatures. We observe Fabry-Pérot interference patterns as well as conductance plateaus at integer multiples of 2e 2/h at zero magnetic field. Magnetic field evolution of these plateaus reveals relatively large effective Landé g-factors. Ballistic effects are observed in nanowires with silicon shell thickness of 1-3 nm, but not in bare germanium wires. These findings inform the future development of spin and topological quantum devices which rely on ballistic sub-band-resolved transport.

  20. Quasiballistic quantum transport through Ge/Si core/shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotekar-Patil, D.; Nguyen, B-M; Yoo, J.

    We study signatures of ballistic quantum transport of holes through Ge/Si core/shell nanowires at low temperatures. We observe Fabry–Pérot interference patterns as well as conductance plateaus at integer multiples of 2e 2/h at zero magnetic field. Magnetic field evolution of these plateaus reveals relatively large effective Landé g-factors. Ballistic effects are observed in nanowires with silicon shell thickness of 1–3 nm, but not in bare germanium wires. These findings inform the future development of spin and topological quantum devices which rely on ballistic sub-band-resolved transport.

  1. Quasiballistic quantum transport through Ge/Si core/shell nanowires

    DOE PAGES

    Kotekar-Patil, D.; Nguyen, B-M; Yoo, J.; ...

    2017-09-04

    We study signatures of ballistic quantum transport of holes through Ge/Si core/shell nanowires at low temperatures. We observe Fabry–Pérot interference patterns as well as conductance plateaus at integer multiples of 2e 2/h at zero magnetic field. Magnetic field evolution of these plateaus reveals relatively large effective Landé g-factors. Ballistic effects are observed in nanowires with silicon shell thickness of 1–3 nm, but not in bare germanium wires. These findings inform the future development of spin and topological quantum devices which rely on ballistic sub-band-resolved transport.

  2. Fake ballistics and real explosions: field-scale experiments on the ejection and emplacement of volcanic bombs during vent-clearing explosive activity

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Valentine, G.; Gaudin, D.; Graettinger, A. H.; Lube, G.; Kueppers, U.; Sonder, I.; White, J. D.; Ross, P.; Bowman, D. C.

    2013-12-01

    Ballistics - bomb-sized pyroclasts that travel from volcanic source to final emplacement position along ballistic trajectories - represent a prime source of volcanic hazard, but their emplacement range, size, and density is useful to inverse model key eruption parameters related to their initial ejection velocity. Models and theory, however, have so far focused on the trajectory of ballistics after leaving the vent, neglecting the complex dynamics of their initial acceleration phase in the vent/conduit. Here, we use field-scale buried explosion experiments to study the ground-to-ground ballistic emplacement of particles through their entire acceleration-deceleration cycle. Twelve blasts were performed at the University at Buffalo Large Scale Experimental Facility with a range of scaled depths (burial depth divided by the cubic root of the energy of the explosive charge) and crater configurations. In all runs, ballistic analogs were placed on the ground surface at variable distance from the vertical projection of the buried charge, resulting in variable ejection angle. The chosen analogs are tennis and ping-pong balls filled with different materials, covering a limited range of sizes and densities. The analogs are tracked in multiple high-speed and high-definition videos, while Particle Image Velocimetry is used to detail ground motion in response to the buried blasts. In addition, after each blast the emplacement position of all analog ballistics was mapped with respect to the blast location. Preliminary results show the acceleration history of ballistics to be quite variable, from very short and relatively simple acceleration coupled with ground motion, to more complex, multi-stage accelerations possibly affected not only by the initial ground motion but also by variable coupling with the gas-particle mixture generated by the blasts. Further analysis of the experimental results is expected to provide new interpretative tools for ballistic deposits and better hazard assessment, with particular emphasis for the case of vent-opening eruptions driven by explosive gas expansion beneath loose debris.

  3. Universal properties of materials with the Dirac dispersion relation of low-energy excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protogenov, A. P., E-mail: alprot@appl.sci-nnov.ru; Chulkov, E. V.

    2015-12-15

    The N-terminal scheme is considered for studying the contribution of edge states to the response of a two-dimensional topological insulator. A universal distribution of the nonlocal resistance between terminals is determined in the ballistic transport approach. The calculated responses are identical to experimentally observed values. The spectral properties of surface electronic states in Weyl semimetals are also studied. The density of surface states is accurately determined. The universal behavior of these characteristics is a distinctive feature of the considered Dirac materials which can be used in practical applications.

  4. Current orthopaedic treatment of ballistic injuries.

    PubMed

    Volgas, David A; Stannard, James P; Alonso, Jorge E

    2005-03-01

    The purpose of this review is to examine current orthopaedic treatment of gunshot wounds. Surgeons are increasingly confronted by gunshot wounds that occur in both military and civilian settings. Much of the published work has been from military settings. In the United States, low-energy gunshot wounds are very common, and their incidence is increasing elsewhere in the world. Current treatment and its rationale is reviewed and a systematic approach to the assessment and treatment of these injuries is offered, taking into account the entirety of the injury, rather than simply the velocity of the missile.

  5. Crimp-Imbalanced Protective (CRIMP) Fabrics: An Analytical Investigation into the Relationship Between Crimp Contents, Energy Absorption, and Fabric Ballistic Performance

    DTIC Science & Technology

    2010-09-15

    migration and yarn stretching. These mechanisms relate to the force required to pull a yarn out from the fabric. If the fabric is made of low...the following assumptions were made : The fabric architecture is plain-woven. The yarns have a circular cross section with diameter D equal to 1.0... Bulletproof Aramid Fabric," Journal of Materials Science, vol. 32, pp. 4167-4173, 1997. 16. D. A. Shockey, D. C. Erlich, and J. W. Simons, "Improved

  6. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    PubMed

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  7. Synergistic approach of asteroid exploitation and planetary protection

    NASA Astrophysics Data System (ADS)

    Sanchez, J. P.; McInnes, C. R.

    2012-02-01

    The asteroid and cometary impact hazard has long been recognised as an important issue requiring risk assessment and contingency planning. At the same time asteroids have also been acknowledged as possible sources of raw materials for future large-scale space engineering ventures. This paper explores possible synergies between these two apparently opposed views; planetary protection and space resource exploitation. In particular, the paper assumes a 5 tonne low-thrust spacecraft as a baseline for asteroid deflection and capture (or resource transport) missions. The system is assumed to land on the asteroid and provide a continuous thrust able to modify the orbit of the asteroid according to the mission objective. The paper analyses the capability of such a near-term system to provide both planetary protection and asteroid resources to Earth. Results show that a 5 tonne spacecraft could provide a high level of protection for modest impact hazards: airburst and local damage events (caused by 15-170 m diameter objects). At the same time, the same spacecraft could also be used to transport to bound Earth orbits significant quantities of material through judicious use of orbital dynamics and passively safe aero-capture manoeuvres or low energy ballistic capture. As will be shown, a 5 tonne low-thrust spacecraft could potentially transport between 12 and 350 times its own mass of asteroid resources by means of ballistic capture or aero-capture trajectories that pose very low dynamical pressures on the object.

  8. Muscle activity during leg strengthening exercise using free weights and elastic resistance: effects of ballistic vs controlled contractions.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Aagaard, Per; Andersen, Lars L

    2013-02-01

    The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG. Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: low

  9. Determination of the propellant combustion law under ballistic experiment conditions

    NASA Astrophysics Data System (ADS)

    Ishchenko, A. N.; Diachkovskii, A. S.; Zykova, A. I.; Kasimov, VZ; Samorokova, N. M.

    2017-11-01

    The main characteristics of ballistic experiment are the maximum pressure in the combustion chamber P max and the projectile velocity at the time of barrel leaving U M. During the work the burning law of the new high-energy fuel was determined in a ballistic experiment. This burning law was used for a parametric study of depending P max and U M from a powder charge mass and a traveling charge at initial temperature of + 20 °C was carried out. The optimal conditions for loading were obtained for improving the muzzle velocity by 14.9 %. Under optimal loading, there is defined the conditions, which is possible to get the greatest value muzzle velocity projectile at pressures up to 600 MPa.

  10. Laser radiography forming bremsstrahlung radiation to image an object

    DOEpatents

    Perry, Michael D.; Sefcik, Joseph A.

    2004-01-13

    A method of imaging an object by generating laser pulses with a short-pulse, high-power laser. When the laser pulse strikes a conductive target, bremsstrahlung radiation is generated such that hard ballistic high-energy electrons are formed to penetrate an object. A detector on the opposite side of the object detects these electrons. Since laser pulses are used to form the hard x-rays, multiple pulses can be used to image an object in motion, such as an exploding or compressing object, by using time gated detectors. Furthermore, the laser pulses can be directed down different tubes using mirrors and filters so that each laser pulse will image a different portion of the object.

  11. Management of High-energy Avulsive Ballistic Facial Injury: A Review of the Literature and Algorithmic Approach.

    PubMed

    Vaca, Elbert E; Bellamy, Justin L; Sinno, Sammy; Rodriguez, Eduardo D

    2018-03-01

    High-energy avulsive ballistic facial injuries pose one of the most significant reconstructive challenges. We conducted a systematic review of the literature to evaluate management trends and outcomes for the treatment of devastating ballistic facial trauma. Furthermore, we describe the senior author's early and definitive staged reconstructive approach to these challenging patients. A Medline search was conducted to include studies that described timing of treatment, interventions, complications, and/or aesthetic outcomes. Initial query revealed 41 articles, of which 17 articles met inclusion criteria. A single comparative study revealed that early versus delayed management resulted in a decreased incidence of soft-tissue contracture, required fewer total procedures, and resulted in shorter hospitalizations (level 3 evidence). Seven of the 9 studies (78%) that advocated delayed reconstruction were from the Middle East, whereas 5 of the 6 studies (83%) advocating immediate or early definitive reconstruction were from the United States. No study compared debridement timing directly in a head-to-head fashion, nor described flap selection based on defect characteristics. Existing literature suggests that early and aggressive intervention improves outcomes following avulsive ballistic injuries. Further comparative studies are needed; however, although evidence is limited, the senior author presents a 3-stage reconstructive algorithm advocating early and definitive reconstruction with aesthetic free tissue transfer in an attempt to optimize reconstructive outcomes of these complex injuries.

  12. Management of High-energy Avulsive Ballistic Facial Injury: A Review of the Literature and Algorithmic Approach

    PubMed Central

    Vaca, Elbert E.; Bellamy, Justin L.; Sinno, Sammy

    2018-01-01

    Background: High-energy avulsive ballistic facial injuries pose one of the most significant reconstructive challenges. We conducted a systematic review of the literature to evaluate management trends and outcomes for the treatment of devastating ballistic facial trauma. Furthermore, we describe the senior author’s early and definitive staged reconstructive approach to these challenging patients. Methods: A Medline search was conducted to include studies that described timing of treatment, interventions, complications, and/or aesthetic outcomes. Results: Initial query revealed 41 articles, of which 17 articles met inclusion criteria. A single comparative study revealed that early versus delayed management resulted in a decreased incidence of soft-tissue contracture, required fewer total procedures, and resulted in shorter hospitalizations (level 3 evidence). Seven of the 9 studies (78%) that advocated delayed reconstruction were from the Middle East, whereas 5 of the 6 studies (83%) advocating immediate or early definitive reconstruction were from the United States. No study compared debridement timing directly in a head-to-head fashion, nor described flap selection based on defect characteristics. Conclusions: Existing literature suggests that early and aggressive intervention improves outcomes following avulsive ballistic injuries. Further comparative studies are needed; however, although evidence is limited, the senior author presents a 3-stage reconstructive algorithm advocating early and definitive reconstruction with aesthetic free tissue transfer in an attempt to optimize reconstructive outcomes of these complex injuries. PMID:29707453

  13. Wound ballistics 101: the mechanisms of soft tissue wounding by bullets.

    PubMed

    Stefanopoulos, P K; Pinialidis, D E; Hadjigeorgiou, G F; Filippakis, K N

    2017-10-01

    The mechanisms of soft tissue injury by bullets are reviewed, in the belief that the current incidence of firearm injuries in many urban areas necessitates an understanding of wound ballistics on the part of trauma surgeons who may not be familiar with the wounding factors involved. Review of the literature, with technical information obtained from appropriate non-medical texts. Despite numerous publications concerning the treatment of gunshot wounds, relatively few papers contain details on the mechanisms of ballistic trauma, with the main body of evidence derived from previous laboratory and animal studies which have only recently been systematically appraised. These studies have shown that in rifle injuries the main wound tract is surrounded by an area of damaged tissue as a result of the temporary cavitation induced once the bullet becomes destabilized or deformed. On the other hand, the more commonly encountered non-deforming handgun bullets cause damage limited to the bullet's path, mainly as a result of localized crush injury. The bullet's construction and ballistic behavior within tissue determine to what extent the previously overestimated velocity factor may influence wound severity. The damage produced from temporary cavitation depends on the tensile properties of the tissues involved, and in high-energy injuries may lead to progressive muscle tissue necrosis. Therefore, the term "high-energy" should be reserved for those injuries with substantial tissue damage extending beyond the visible wound tract.

  14. Effect of low-velocity or ballistic impact damage on the strength of thin composite and aluminum shear panels

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1985-01-01

    Impact tests were conducted on shear panels fabricated from 6061-T6 aluminum and from woven fabric prepreg of Du Pont Kevlara fiber/epoxy resin and graphite fiber/epoxy resin. The shear panels consisted of three different composite laminates and one aluminum material configuration. Three panel aspect ratios were evaluated for each material configuration. Composite panels were impacted with a 1.27-cm (0.05-in) diameter aluminum sphere at low velocities of 46 m/sec (150 ft/sec) and 67 m/sec (220 ft/sec). Ballistic impact conditions consisted of a tumbled 0.50-caliber projectile impacting loaded composite and aluminum shear panels. The results of these tests indicate that ballistic threshold load (the lowest load which will result in immediate failure upon penetration by the projectile) varied between 0.44 and 0.61 of the average failure load of undamaged panels. The residual strengths of the panels after ballistic impact varied between 0.55 and 0.75 of the average failure strength of the undamaged panels. The low velocity impacts at 67 m/sec (220 ft/sec) caused a 15 to 20 percent reduction in strength, whereas the impacts at 46 m/sec (150 ft/sec) resulted in negligible strength loss. Good agreement was obtained between the experimental failure strengths and the predicted strength with the point stress failure criterion.

  15. Static and Dynamic Compaction of CL-20 Powders

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia; Brundage, Aaron; Dudley, Evan

    2009-06-01

    Hexanitrohexaazaisowurtzitane (CL-20) powders were compacted under quasi-static and dynamic loading conditions. A uniaxial compression apparatus quasi-statically compressed the powders to 90% theoretical maximum density with applied stresses up to 0.5 GPa. Dynamic compaction measurements using low-density pressings (62-70% theoretical maximum density) were obtained in a single-stage gas gun at impact velocities between 0.17-0.70 km/s. Experiments were conducted in a reverse ballistic arrangement in which the CL-20 ladened projectile impacted a target consisting of an aluminized window. VISAR-measured particle velocities at the explosive-window interface determined the shock Hugoniot states for pressures up to 0.9 GPa. The powder compaction behavior is found to be stiffer under dynamic loading than under quasi-static loading. Additional gas gun tests were conducted in which the low-density CL-20 pressings were confined within a target cup by the aluminized window. This arrangement enabled temporal measurement of the transmitted wave profiles in which elastic wave precursors were observed.

  16. Ballistic phonon transmission in quasiperiodic acoustic nanocavities

    NASA Astrophysics Data System (ADS)

    Mo, Yuan; Huang, Wei-Qing; Huang, Gui-Fang; Chen, Yuan; Hu, Wangyu; Wang, Ling-Ling; Pan, Anlian

    2011-04-01

    Ballistic phonon transport is investigated in acoustic nanocavities modulated in a quasiperiodic manner at low temperatures. Two different types of quasiperiodic acoustic nanocavities are considered: the lengths of nanocavities (QPL) and the lengths of the bridges (QPD) connecting two successive nanocavities are modulated according to the Fibonacci rule. We demonstrate that the transmission spectra and thermal conductance in both systems are similar, which is more prominent in QPD than in QPL. The transmission and thermal conductance of QPD are larger than those of QPL due to the fact that constant nanocavity length in QPD would strengthen ballistic phonon resonant transport, while varying nanocavity length in QPL lead to strong phonon scattering.

  17. A common control signal and a ballistic stage can explain the control of coordinated eye-hand movements.

    PubMed

    Gopal, Atul; Murthy, Aditya

    2016-06-01

    Voluntary control has been extensively studied in the context of eye and hand movements made in isolation, yet little is known about the nature of control during eye-hand coordination. We probed this with a redirect task. Here subjects had to make reaching/pointing movements accompanied by coordinated eye movements but had to change their plans when the target occasionally changed its position during some trials. Using a race model framework, we found that separate effector-specific mechanisms may be recruited to control eye and hand movements when executed in isolation but when the same effectors are coordinated a unitary mechanism to control coordinated eye-hand movements is employed. Specifically, we found that performance curves were distinct for the eye and hand when these movements were executed in isolation but were comparable when they were executed together. Second, the time to switch motor plans, called the target step reaction time, was different in the eye-alone and hand-alone conditions but was similar in the coordinated condition under assumption of a ballistic stage of ∼40 ms, on average. Interestingly, the existence of this ballistic stage could predict the extent of eye-hand dissociations seen in individual subjects. Finally, when subjects were explicitly instructed to control specifically a single effector (eye or hand), redirecting one effector had a strong effect on the performance of the other effector. Taken together, these results suggest that a common control signal and a ballistic stage are recruited when coordinated eye-hand movement plans require alteration. Copyright © 2016 the American Physiological Society.

  18. A common control signal and a ballistic stage can explain the control of coordinated eye-hand movements

    PubMed Central

    Gopal, Atul

    2016-01-01

    Voluntary control has been extensively studied in the context of eye and hand movements made in isolation, yet little is known about the nature of control during eye-hand coordination. We probed this with a redirect task. Here subjects had to make reaching/pointing movements accompanied by coordinated eye movements but had to change their plans when the target occasionally changed its position during some trials. Using a race model framework, we found that separate effector-specific mechanisms may be recruited to control eye and hand movements when executed in isolation but when the same effectors are coordinated a unitary mechanism to control coordinated eye-hand movements is employed. Specifically, we found that performance curves were distinct for the eye and hand when these movements were executed in isolation but were comparable when they were executed together. Second, the time to switch motor plans, called the target step reaction time, was different in the eye-alone and hand-alone conditions but was similar in the coordinated condition under assumption of a ballistic stage of ∼40 ms, on average. Interestingly, the existence of this ballistic stage could predict the extent of eye-hand dissociations seen in individual subjects. Finally, when subjects were explicitly instructed to control specifically a single effector (eye or hand), redirecting one effector had a strong effect on the performance of the other effector. Taken together, these results suggest that a common control signal and a ballistic stage are recruited when coordinated eye-hand movement plans require alteration. PMID:26888104

  19. Enhanced Tracking of Ballistic Targets Using Forward Looking Infrared Measurements with Active Target Illumination

    DTIC Science & Technology

    1989-12-01

    known a priori or could be estimated in real time. To overcome these disadvantages, Kalman filtering methodology has been incorporated into the...operator G(fx,fv) =F((xy) After centering, the data is incorporated into the template using the exponential smoothi -g technique of Equa- tion (3-11). It

  20. Ballistic representation for kinematic access

    NASA Astrophysics Data System (ADS)

    Alfano, Salvatore

    2011-01-01

    This work uses simple two-body orbital dynamics to initially determine the kinematic access for a ballistic vehicle. Primarily this analysis was developed to assess when a rocket body might conjunct with an orbiting satellite platform. A family of access opportunities can be represented as a volume for a specific rocket relative to its launch platform. Alternately, the opportunities can be represented as a geographical footprint relative to aircraft or satellite position that encompasses all possible launcher locations for a specific rocket. A thrusting rocket is treated as a ballistic vehicle that receives all its energy at launch and follows a coasting trajectory. To do so, the rocket's burnout energy is used to find its equivalent initial velocity for a given launcher's altitude. Three kinematic access solutions are then found that account for spherical Earth rotation. One solution finds the maximum range for an ascent-only trajectory while another solution accommodates a descending trajectory. In addition, the ascent engagement for the descending trajectory is used to depict a rapid access scenario. These preliminary solutions are formulated to address ground-, sea-, or air-launched vehicles.

  1. Imaging of nonlocal hot-electron energy dissipation via shot noise.

    PubMed

    Weng, Qianchun; Komiyama, Susumu; Yang, Le; An, Zhenghua; Chen, Pingping; Biehs, Svend-Age; Kajihara, Yusuke; Lu, Wei

    2018-05-18

    In modern microelectronic devices, hot electrons accelerate, scatter, and dissipate energy in nanoscale dimensions. Despite recent progress in nanothermometry, direct real-space mapping of hot-electron energy dissipation is challenging because existing techniques are restricted to probing the lattice rather than the electrons. We realize electronic nanothermometry by measuring local current fluctuations, or shot noise, associated with ultrafast hot-electron kinetic processes (~21 terahertz). Exploiting a scanning and contact-free tungsten tip as a local noise probe, we directly visualize hot-electron distributions before their thermal equilibration with the host gallium arsenide/aluminium gallium arsenide crystal lattice. With nanoconstriction devices, we reveal unexpected nonlocal energy dissipation at room temperature, which is reminiscent of ballistic transport of low-temperature quantum conductors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Video camera system for locating bullet holes in targets at a ballistics tunnel

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Rummler, D. R.; Goad, W. K.

    1990-01-01

    A system consisting of a single charge coupled device (CCD) video camera, computer controlled video digitizer, and software to automate the measurement was developed to measure the location of bullet holes in targets at the International Shooters Development Fund (ISDF)/NASA Ballistics Tunnel. The camera/digitizer system is a crucial component of a highly instrumented indoor 50 meter rifle range which is being constructed to support development of wind resistant, ultra match ammunition. The system was designed to take data rapidly (10 sec between shoots) and automatically with little operator intervention. The system description, measurement concept, and procedure are presented along with laboratory tests of repeatability and bias error. The long term (1 hour) repeatability of the system was found to be 4 microns (one standard deviation) at the target and the bias error was found to be less than 50 microns. An analysis of potential errors and a technique for calibration of the system are presented.

  3. Influence of pellet seating on the external ballistic parameters of spring-piston air guns.

    PubMed

    Werner, Ronald; Schultz, Benno; Frank, Matthias

    2016-09-01

    In firearm examiners' and forensic specialists' casework as well as in air gun proof testing, reliable measurement of the weapon's muzzle velocity is indispensable. While there are standardized and generally accepted procedures for testing the performance of air guns, the method of seating the diabolo pellets deeper into the breech of break barrel spring-piston air guns has not found its way into standardized test procedures. The influence of pellet seating on the external ballistic parameters was investigated using ten different break barrel spring-piston air guns. Test shots were performed with the diabolo pellets seated 2 mm deeper into the breech using a pellet seater. The results were then compared to reference shots with conventionally loaded diabolo pellets. Projectile velocity was measured with a high-precision redundant ballistic speed measurement system. In eight out of ten weapons, the muzzle energy increased significantly when the pellet seater was used. The average increase in kinetic energy was 31 % (range 9-96 %). To conclude, seating the pellet even slightly deeper into the breech of spring-piston air guns might significantly alter the muzzle energy. Therefore, it is strongly recommended that this effect is taken into account when accurate and reliable measurements of air gun muzzle velocity are necessary.

  4. Opportunities for ballistic missions to Halley's comet

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Wooden, W. H., II

    1977-01-01

    Alternative strategies for ballistic missions to Halley's comet in 1985-86 are described. It is shown that a large science return would be acquired from a ballistic Halley intercept in spite of the high flyby speeds of almost 60 km/sec that are associated with this mission mode. The possibility of retargeting the cometary spacecraft to additional comets after the Halley intercept also exists. In one scenario two cometary spacecraft of identical design would be used to carry out four separate cometary encounters over a three-year period. One spacecraft would intercept Halley before its perihelion passage in December 1985 and then go on to comet Borrelly witn an encounter in January 1988. The other spacecraft would be targeted for a post-perihelion Halley intercept in March 1986 before proceeding towards an encounter with comet Tempel-2 in September 1988. The flyby speeds for the Borrelly and Tempel-2 intercepts are 21 and 13 km/sec, respectively.

  5. A Materials Approach in the Development of Multi-Threat Warfighter Head Protection

    DTIC Science & Technology

    2008-12-01

    TUSJp TYSlp ’--- --"IO,,5083-="" H13 .’ (AI) ’AZ31B-H2’",(~",),,-- __ Figure 6. Specific Strength of Mg vs. Al Alloy Armor Plate of current interest because...perfonnance in metal alloys, and higher stiffness typically contributes to enhanced energy absorption upon ballistic impact ; therefore, one would predict...Helmets, and ballistic helmets in particular. have not been dominated by stiffness requirements but rather other properties (e.g., crash, impact

  6. DIN 1.7035 Steel Modification with High Intensity Nitrogen Ion Implantation

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A. I.; Sivin, D. O.; Anan'in, P. S.; Ivanova, A. I.; Uglov, V. V.; Korneva, O. S.

    2018-06-01

    The paper presents research results on the formation of deep ion-modified layers of the grade DIN 1.7035 alloy steel due to a high intensity, repetitively-pulsed nitrogen ion beams with the ion current density of up to 0.5 A/cm2. The formation of a low-energy, high intensity nitrogen ion beam is based on a plasma immersion ion extraction followed by the ballistic focusing in the equipotential drift region. The nitrogen ion implantation in steel specimens is performed at a 1.2 keV energy and 450, 500, 580 and 650°C temperatures during 60 minutes. The morphology, elementary composition and mechanical properties are investigated in deep layers of steel specimens alloyed with nitrogen ions.

  7. Trauma potential and ballistic parameters of cal. 9 mm P.A. dummy launchers.

    PubMed

    Frank, Matthias; Bockholdt, Britta; Philipp, Klaus-Peter; Ekkernkamp, Axel

    2010-07-15

    Blank cartridge actuated dummy launching devices are used by migratory bird hunters to train dogs to retrieve downed birds. The devices create a loud noise while simultaneously propelling a hard foam dummy for retrieval. A newly developed dummy launcher is based on a modified cal. 9 mm P.A. blank handgun with an extension tube pinned and welded to the barrel imitation. Currently, there are no experimental investigations on the ballistic background and trauma potential of these uncommon shooting devices. An experimental test set-up consisting of a photoelectric infrared light barrier was used for measurement of the velocity of hard foam dummies propelled with an automatic dummy launcher. Ballistic parameters of the dummies and an aluminium sleeve as improvised projectile (kinetic energy (E), impulse (p), energy density (E') and threshold velocity (v(tsh)) to cause penetrating wounds as a function of cross-sectional density (S)) were calculated. The average velocity (v) of the dummies was measured 25.71 m/s exerting an average impulse (p) of 3.342 Ns. The average kinetic energy (E) was calculated 43.04 J with an average energy density (E') of 0.069 J/mm(2). The average velocity (v) of the aluminium sleeves as improvised projectiles was measured 79.58 m/s exerting an average impulse (p) of 2.228 Ns. The average kinetic energy (E) of the aluminium sleeves was calculated as 88.70 J with an average energy density (E') of 0.282 J/mm(2). The energy delivered by these shooting devices is high enough to cause relevant injuries. The absence of skin penetration must not mislead the emergency physician or forensic expert into neglecting the potential damage from these devices. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Direct observation of ballistic Andreev reflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klapwijk, T. M., E-mail: t.m.klapwijk@tudelft.nl; Ryabchun, S. A.

    2014-12-15

    An overview is presented of experiments on ballistic electrical transport in inhomogeneous superconducting systems which are controlled by the process of Andreev reflection. The initial experiments based on the coexistence of a normal phase and a superconducting phase in the intermediate state led to the concept itself. It was followed by a focus on geometrically inhomogeneous systems like point contacts, which provided a very clear manifestation of the energy and direction dependence of the Andreev reflection process. The point contacts have recently evolved towards the atomic scale owing to the use of mechanical break-junctions, revealing a very detailed dependence ofmore » Andreev reflection on the macroscopic phase of the superconducting state. In present-day research, the superconducting in homogeneity is constructed by clean room technology and combines superconducting materials, for example, with low-dimensional materials and topological insulators. Alternatively, the superconductor is combined with nano-objects, such as graphene, carbon nanotubes, or semiconducting nanowires. Each of these “inhomogeneous systems” provides a very interesting range of properties, all rooted in some manifestation of Andreev reflection.« less

  9. Military Power of the People’s Republic of China, 2009

    DTIC Science & Technology

    2009-01-01

    executed for taking bribes to approve fake drugs. Environment . China’s economic development has come at a significant environmental cost...Satellite ASEAN : Association of Southeast Asian Nations ASEM: Asia-Europe Meeting ASBM: Anti-Ship Ballistic Missile ASCM: Anti-Ship Cruise Missile ASM...Operational Capability IRBM: Intermediate-Range Ballistic Missile LACM: Land Attack Cruise Missile LEO: Low Earth Orbit MaRV: Maneuvering Re- entry Vehicle

  10. A Simplified Guidance for Target Missiles Used in Ballistic Missile Defence Evaluation

    NASA Astrophysics Data System (ADS)

    Prabhakar, N.; Kumar, I. D.; Tata, S. K.; Vaithiyanathan, V.

    2013-01-01

    A simplified guidance scheme for the target missiles used in Ballistic Missile Defence is presented in this paper. The proposed method has two major components, a Ground Guidance Computation (GGC) and an In-Flight Guidance Computation. The GGC which runs on the ground uses a missile model to generate attitude history in pitch plane and computes launch azimuth of the missile to compensate for the effect of earth rotation. The vehicle follows the pre launch computed attitude (theta) history in pitch plane and also applies the course correction in azimuth plane based on its deviation from the pre launch computed azimuth plane. This scheme requires less computations and counters In-flight disturbances such as wind, gust etc. quite efficiently. The simulation results show that the proposed method provides the satisfactory performance and robustness.

  11. Spin Seebeck effect and ballistic transport of quasi-acoustic magnons in room-temperature yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Noack, Timo B.; Musiienko-Shmarova, Halyna Yu; Langner, Thomas; Heussner, Frank; Lauer, Viktor; Heinz, Björn; Bozhko, Dmytro A.; Vasyuchka, Vitaliy I.; Pomyalov, Anna; L’vov, Victor S.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    We studied the transient behavior of the spin current generated by the longitudinal spin Seebeck effect (LSSE) in a set of platinum-coated yttrium iron garnet (YIG) films of different thicknesses. The LSSE was induced by means of pulsed microwave heating of the Pt layer and the spin currents were measured electrically using the inverse spin Hall effect in the same layer. We demonstrate that the time evolution of the LSSE is determined by the evolution of the thermal gradient triggering the flux of thermal magnons in the vicinity of the YIG/Pt interface. These magnons move ballistically within the YIG film with a constant group velocity, while their number decays exponentially within an effective propagation length. The ballistic flight of the magnons with energies above 20 K is a result of their almost linear dispersion law, similar to that of acoustic phonons. By fitting the time-dependent LSSE signal for different film thicknesses varying by almost an order of magnitude, we found that the effective propagation length is practically independent of the YIG film thickness. We consider this fact as strong support of a ballistic transport scenario—the ballistic propagation of quasi-acoustic magnons in room temperature YIG.

  12. Wound ballistics of the pig mandibular angle: a preliminary finite element analysis and experimental study.

    PubMed

    Chen, Yubin; Miao, Yingyun; Xu, Chuan; Zhang, Gang; Lei, Tao; Tan, Yinghui

    2010-04-19

    To study wound ballistics of the mandibular angle, a combined hexahedral-tetrahedral finite element (FE) model of the pig mandible was developed to simulate ballistic impact. An experimental study was carried out by measuring impact load parameters from 14 fresh pig mandibles that were shot at the mandibular angle by a standard 7.62 mm M43 bullet. FE analysis was executed through the LS-DYNA code under impact loads similar to those obtained from the experimental study. The resulting residual velocity, the transferred energy from the bullet to the mandible, and the surface area of the entrance wound had no statistical differences between the FE simulation and the experimental study. However, the mean surface area of the exit wounds in the experimental study was significantly larger than that in the simulation. According to the FE analysis, the stress concentrated zones were mainly located at the region of impact, condylar neck, coronoid process and mandibular body. The simulation results also indicated that trabecular bone had less stress concentration and a lower speed of stress propagation compared with cortical bone. The FE model is appropriate and conforms to the basic principles of wound ballistics. This modeling system will be helpful for further investigations of the biomechanical mechanisms of wound ballistics. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Svirski, Gilad; Piran, Tsvi; Krolik, Julian

    2017-05-01

    Models for tidal disruption events (TDEs) in which a supermassive black hole disrupts a star commonly assume that the highly eccentric streams of bound stellar debris promptly form a circular accretion disc at the pericentre scale. However, the bolometric peak luminosity of most TDE candidates, ˜ 1044 erg s- 1, implies that we observe only ˜1 per cent of the energy expected from radiatively efficient accretion. Even the energy that must be lost to circularize the returning tidal flow is larger than the observed energy. Recently, Piran et al. suggested that the observed optical TDE emission is powered by shocks at the apocentre between freshly infalling material and earlier arriving matter. This model explains the small radiated energy, the low temperature and the large radius implied by the observations as well as the t-5/3 light curve. However the question of the system's low bolometric efficiency remains unanswered. We suggest that the high orbital energy and low angular momentum of the flow make it possible for magnetic stresses to reduce the matter's already small angular momentum to the point at which it can fall ballistically into the supermassive black hole before circularization. As a result, the efficiency is only ˜1-10 per cent of a standard accretion disc's efficiency. Thus, the intrinsically high eccentricity of the tidal debris naturally explains why most TDE candidates are fainter than expected.

  14. Mission Analysis for the Don Quijote Phase-A Study

    NASA Technical Reports Server (NTRS)

    Cano, Juan L.; Sanchez, Mariano; Cornara, Stefania; Carnelli, Ian

    2007-01-01

    The Don Quijote Phase-A study is a definition study funded by ESA and devoted to the analysis of the possibilities to deflect a Near Earth Object (NEO) in the range of 300-800 m diameter. DEIMOS Space S.L. and EADS Astrium have teamed up within this study to form one of the three consortia that have analyzed these aspects for ESA. Target asteroids for the mission are 1989 ML, 2002 AT4 and Apophis. This paper presents the mission analysis activities within the consortium providing: low-thrust interplanetary rendezvous Orbiter trajectories to the target asteroids, ballistic interplanetary trajectories for the Impactor, Orbiter arrival description at the asteroids, Orbiter stable orbits characterization at the asteroid, deflection determination by means of a Radio Science Experiment (RSE) as well as the mission timelines and overall mission scenarios.

  15. Graphene ballistic nano-rectifier with very high responsivity

    PubMed Central

    Auton, Gregory; Zhang, Jiawei; Kumar, Roshan Krishna; Wang, Hanbin; Zhang, Xijian; Wang, Qingpu; Hill, Ernie; Song, Aimin

    2016-01-01

    Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm2 V−1 s−1 is achieved at room temperature, well beyond that required for ballistic transport. This enables a voltage responsivity as high as 23,000 mV mW−1 with a low-frequency input signal. Taking advantage of the output channels being orthogonal to the input terminals, the noise is found to be not strongly influenced by the input. Hence, the corresponding noise-equivalent power is as low as 0.64 pW Hz−1/2. Such performance is even comparable to superconducting bolometers, which however need to operate at cryogenic temperatures. Furthermore, output oscillations are observed at low temperatures, the period of which agrees with the lateral size quantization. PMID:27241162

  16. Overlapping Ballistic Ejecta Fields: Separating Distinct Blasts at Kings Bowl, Idaho

    NASA Astrophysics Data System (ADS)

    Borg, C.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Heldmann, J. L.; Lim, D. S. S.; Haberle, C. W.; Sears, H.; Elphic, R. C.; Kobayashi, L.; Garry, W. B.; Neish, C.; Karunatillake, S.; Button, N.; Purcell, S.; Mallonee, H.; Ostler, B.

    2015-12-01

    Kings Bowl is a ~2200ka pit crater created by a phreatic blast along a volcanic fissure in the eastern Snake River Plain (ESRP), Idaho. The main crater measures approximately 80m in length, 30m in width, and 30m in depth, with smaller pits located nearby on the Great Rift fissure, and has been targeted by the FINESSE team as a possible analogue for Cyane Fossae, Mars. The phreatic eruption is believed to have occurred due to the interaction of groundwater with lava draining back into the fissure following a lava lake high stand, erupting already solidified basalt from this and previous ERSP lava flows. The contemporaneous draw back of the lava with the explosions may conceal some smaller possible blast pits as more lava drained into the newly formed pits. Ballistic ejecta from the blasts occur on both sides of the fissure. To the east, the ballistic blocks are mantled by fine tephra mixed with eolian dust, the result of a westerly wind during the explosions. We use differential GPS to map the distribution of ballistic blocks on the west side of the fissure, recording position, percent vesiculation, and the length of 3 mutually perpendicular axes for each block >20cm along multiple transects parallel to the fissure. From the several hundred blocks recorded, we have been able to separate the ballistic field into several distinct blast deposits on the basis of size distributions and block concentration. The smaller pits identified from the ballistic fields correspond broadly to the northern and southern limits of the tephra/dust field east of the fissure. Soil formation and bioturbation of the tephra by sagebrush have obliterated any tephrostratigraphy that could have been linked to individual blasts. The ballistic block patterns at Kings Bowl may be used to identify distinct ejecta groups in high-resolution imagery of Mars or other planetary bodies.

  17. Feature aided Monte Carlo probabilistic data association filter for ballistic missile tracking

    NASA Astrophysics Data System (ADS)

    Ozdemir, Onur; Niu, Ruixin; Varshney, Pramod K.; Drozd, Andrew L.; Loe, Richard

    2011-05-01

    The problem of ballistic missile tracking in the presence of clutter is investigated. Probabilistic data association filter (PDAF) is utilized as the basic filtering algorithm. We propose to use sequential Monte Carlo methods, i.e., particle filters, aided with amplitude information (AI) in order to improve the tracking performance of a single target in clutter when severe nonlinearities exist in the system. We call this approach "Monte Carlo probabilistic data association filter with amplitude information (MCPDAF-AI)." Furthermore, we formulate a realistic problem in the sense that we use simulated radar cross section (RCS) data for a missile warhead and a cylinder chaff using Lucernhammer1, a state of the art electromagnetic signature prediction software, to model target and clutter amplitude returns as additional amplitude features which help to improve data association and tracking performance. A performance comparison is carried out between the extended Kalman filter (EKF) and the particle filter under various scenarios using single and multiple sensors. The results show that, when only one sensor is used, the MCPDAF performs significantly better than the EKF in terms of tracking accuracy under severe nonlinear conditions for ballistic missile tracking applications. However, when the number of sensors is increased, even under severe nonlinear conditions, the EKF performs as well as the MCPDAF.

  18. Space-based IR tracking bias removal using background star observations

    NASA Astrophysics Data System (ADS)

    Clemons, T. M., III; Chang, K. C.

    2009-05-01

    This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.

  19. Pig Organ Energy Loss Comparison Experiments Using BBs.

    PubMed

    Maiden, Nicholas R; Musgrave, Ian; Fisk, Wesley; Byard, Roger W

    2016-05-01

    Torso models for ballistics research require that the mechanical properties of simulant materials must match the heterogeneous nature of tissues/organs within the human thorax/abdomen. A series of energy loss experiments were conducted on fresh porcine organs/tissues at room temperature and 37°C, using steel 4.5 mm BBs fired from a Daisy(®) brand air rifle. They were compared to FBI and NATO specification ordnance gelatin and a candidate surrogate material called Simulant "A". Two CED M2 chronographs measured BB velocity. The resulting energy loss was established using KE = 1/2 mv² before and after target perforation. The combined results at room temperature and 37°C were as follows: FBI specification gelatin was similar (p > 0.05) to heart and lung, spleen was similar to NATO specification gelatin, Simulant "A" was similar to hindquarter muscle, and hindquarter muscle, kidney, and spleen were similar to each other regarding energy retardation. These results can be used as a basis for the development of simulant materials to create an anatomically correct heterogeneous model. © 2016 American Academy of Forensic Sciences.

  20. High-energy laser weapons: technology overview

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.; Marciniak, Michael A.; Goda, Matthew

    2004-09-01

    High energy laser (HEL) weapons are ready for some of today"s most challenging military applications. For example, the Airborne Laser (ABL) program is designed to defend against Theater Ballistic Missiles in a tactical war scenario. Similarly, the Tactical High Energy Laser (THEL) program is currently testing a laser to defend against rockets and other tactical weapons. The Space Based Laser (SBL), Advanced Tactical Laser (ATL) and Large Aircraft Infrared Countermeasures (LAIRCM) programs promise even greater applications for laser weapons. This technology overview addresses both strategic and tactical roles for HEL weapons on the modern battlefield and examines current technology limited performance of weapon systems components, including various laser device types, beam control systems, atmospheric propagation, and target lethality issues. The characteristics, history, basic hardware, and fundamental performance of chemical lasers, solid state lasers and free electron lasers are summarized and compared. The elements of beam control, including the primary aperture, fast steering mirror, deformable mirrors, wavefront sensors, beacons and illuminators will be discussed with an emphasis on typical and required performance parameters. The effects of diffraction, atmospheric absorption, scattering, turbulence and thermal blooming phenomenon on irradiance at the target are described. Finally, lethality criteria and measures of weapon effectiveness are addressed. The primary purpose of the presentation is to define terminology, establish key performance parameters, and summarize technology capabilities.

  1. Observation of scale invariance and conformal symmetry breaking in expanding Fermi gases

    NASA Astrophysics Data System (ADS)

    Elliott, Ethan; Joseph, James; Thomas, John

    2014-05-01

    We precisely test scale invariance and examine local thermal equilibrium in the hydrodynamic expansion of a Fermi gas of atoms as a function of interaction strength. After release from an anisotropic optical trap, we observe that a resonantly interacting gas obeys scale-invariant hydrodynamics, where the mean square cloud size = expands ballistically (like a noninteracting gas) and the energy-averaged bulk viscosity is consistent with zero, 0 . 00 (0 . 04) ℏ n , with n the density. In contrast, the aspect ratios of the cloud exhibit anisotropic ``elliptic'' flow with an energy-dependent shear viscosity. Tuning away from resonance, we observe conformal symmetry breaking, where deviates from ballistic flow. NSF, DOE, ARO, AFO.

  2. Point of impact: the effect of size and speed on puncture mechanics

    PubMed Central

    Anderson, P. S. L.; LaCosse, J.; Pankow, M.

    2016-01-01

    The use of high-speed puncture mechanics for prey capture has been documented across a wide range of organisms, including vertebrates, arthropods, molluscs and cnidarians. These examples span four phyla and seven orders of magnitude difference in size. The commonality of these puncture systems offers an opportunity to explore how organisms at different scales and with different materials, morphologies and kinematics perform the same basic function. However, there is currently no framework for combining kinematic performance with cutting mechanics in biological puncture systems. Our aim here is to establish this framework by examining the effects of size and velocity in a series of controlled ballistic puncture experiments. Arrows of identical shape but varying in mass and speed were shot into cubes of ballistic gelatine. Results from high-speed videography show that projectile velocity can alter how the target gel responds to cutting. Mixed models comparing kinematic variables and puncture patterns indicate that the kinetic energy of a projectile is a better predictor of penetration than either momentum or velocity. These results form a foundation for studying the effects of impact on biological puncture, opening the door for future work to explore the influence of morphology and material organization on high-speed cutting dynamics. PMID:27274801

  3. Local and distant trauma after hypervelocity ballistic impact to the pig hind limb.

    PubMed

    Chen, Jin; Zhang, Bo; Chen, Wei; Kang, Jian-Yi; Chen, Kui-Jun; Wang, Ai-Min; Wang, Jian-Min

    2016-01-01

    The development of high-energy weapons could increase the velocity of projectiles to well over 1000 m/s. The nature of the injuries caused by the ballistic impact of projectiles at velocities much faster than 1000 m/s is unclear. This study characterizes the mechanical and biochemical alterations caused by high-speed ballistic impact generated by spherical steel ball to the hind limbs of the pig. That the local and distal injuries caused by hypervelocity ballistic impact to the living body are also identified. It is showed that the severity of the injury was positively correlated with the velocity of the projectile. And 4000 m/s seems to be the critical velocity for the 5.6 mm spherical steel ball, which would cause severe damage to either local or distal organs, as below that speed the projectile penetrated the body while above that speed it caused severe damage to the body. In addition, vaporization prevented the projectile from penetrating the body and the consequent pressure wave seems to be the causal factor for the distant damage.

  4. Charging conditions research to increase the initial projected velocity at different initial charge temperatures

    NASA Astrophysics Data System (ADS)

    Ishchenko, Aleksandr; Burkin, Viktor; Kasimov, Vladimir; Samorokova, Nina; Zykova, Angelica; Diachkovskii, Alexei

    2017-11-01

    The problems of the defense industry occupy the most important place in the constantly developing modern world. The daily development of defense technology does not stop, nor do studies on internal ballistics. The scientists of the whole world are faced with the task of managing the main characteristics of a ballistic experiment. The main characteristics of the ballistic experiment are the maximum pressure in the combustion chamber Pmax and the projected velocity at the time of barrel leaving UM. During the work the combustion law of the new high-energy fuel was determined in a ballistic experiment for different initial temperatures. This combustion law was used for a parametric study of depending Pmax and UM from a powder charge mass and a traveling charge was carried out. The optimal conditions for loading were obtained for improving the initial velocity at pressures up to 600 MPa for different initial temperatures. In this paper, one of the most promising schemes of throwing is considered, as well as a method for increasing the muzzle velocity of a projected element to 3317 m/s.

  5. Military Power of the People’s Republic of China

    DTIC Science & Technology

    2009-01-01

    executed for taking bribes to approve fake drugs. Environment . China’s economic development has come at a significant environmental cost. Acceptable air... ASEAN : Association of Southeast Asian Nations ASEM: Asia-Europe Meeting ASBM: Anti-Ship Ballistic Missile ASCM: Anti-Ship Cruise Missile ASM: Air-to...Capability IRBM: Intermediate-Range Ballistic Missile LACM: Land Attack Cruise Missile LEO: Low Earth Orbit MaRV: Maneuvering Re- entry Vehicle MINUSTAH

  6. Laminated helmet materials characterization by terahertz kinetics spectroscopy

    NASA Astrophysics Data System (ADS)

    Rahman, Anis; Rahman, Aunik K.

    2015-05-01

    High speed acquisition of reflected terahertz energy constitutes a kinetics spectrum that is an effective tool for layered materials' deformation characterization under ballistic impact. Here we describe utilizing the kinetics spectrum for quantifying a deformation event due to impact in material used for Soldier's helmet. The same technique may be utilized for real-time assessment of trauma by measuring the helmet wore by athletes. The deformation of a laminated material (e.g., a helmet) is dependent on the nature of impact and projectile; thus can uniquely characterize the impact condition leading to a diagnostic procedure based on the energy received by an athlete during an impact. We outline the calibration process for a given material under ballistic impact and then utilize the calibration for extracting physical parameters from the measured kinetics spectrum. Measured kinetics spectra are used to outline the method and rationale for extending the concept to a diagnosis tool. In particular, captured kinetics spectra from multilayered plates subjected to ballistic hit under experimental conditions by high speed digital acquisition system. An algorithm was devised to extract deformation and deformation velocity from which the energy received on the skull was estimated via laws of nonrelativistic motion. This energy is assumed to be related to actual injury conditions, thus forming a basis for determining whether the hit would cause concussion, trauma, or stigma. Such quantification may be used for diagnosing a Soldier's trauma condition in the field or that of an athlete's.

  7. Short Ballistic Josephson Coupling in Planar Graphene Junctions with Inhomogeneous Carrier Doping

    NASA Astrophysics Data System (ADS)

    Park, Jinho; Lee, Jae Hyeong; Lee, Gil-Ho; Takane, Yositake; Imura, Ken-Ichiro; Taniguchi, Takashi; Watanabe, Kenji; Lee, Hu-Jong

    2018-02-01

    We report on short ballistic (SB) Josephson coupling in junctions embedded in a planar heterostructure of graphene. Ballistic Josephson coupling is confirmed by the Fabry-Perot-type interference of the junction critical current Ic . The product of Ic and the normal-state junction resistance RN , normalized by the zero-temperature gap energy Δ0 of the superconducting electrodes, turns out to be exceptionally large close to 2, an indication of strong Josephson coupling in the SB junction limit. However, Ic shows a temperature dependence that is inconsistent with the conventional short-junction-like behavior based on the standard Kulik-Omel'yanchuk prediction. We argue that this feature stems from the effects of inhomogeneous carrier doping in graphene near the superconducting contacts, although the junction is in fact in the short-junction limit.

  8. Fragmentation of displacement cascades into subcascades: A molecular dynamics study

    DOE PAGES

    Antoshchenkova, E.; Luneville, L.; Simeone, D.; ...

    2014-12-12

    The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less

  9. Fragmentation of displacement cascades into subcascades: A molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoshchenkova, E.; Luneville, L.; Simeone, D.

    The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less

  10. Excimer Laser Fragmentation Studies of Selected Oximes: Nascent OH internal Energy Distributions and the Search of H2CN Fluorescence

    DTIC Science & Technology

    1990-05-01

    U Aberden Proving Ground , SID 21, 5066 Em OFFICIAL BUSINESS I_______ BUSINESS REPLY MAIL____ FIRST CLASS PERMIT No 0001, APG, MD POSTAGE WILL BE P040...JUN1319SUUWI &B •AFOV FOR PUKJC RE,,AS, DIS7RIBUTION UNLIMiED. U.S. ARMY LABORATORY COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND , MARYLAND 90 o...It. SPOSO MIIOWOiM -C WOE? - Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground , MD 21005-5066 11. SUPPLEMENTARY NOTES *The Johns

  11. Firearms, bullets, and wound ballistics: an imaging primer.

    PubMed

    Hanna, Tarek N; Shuaib, Waqas; Han, Tatiana; Mehta, Ajeet; Khosa, Faisal

    2015-07-01

    Based on its intrinsic mass and velocity, a bullet has an upper limit of wounding potential. Actual wound severity is a function of the bullet construction and trajectory, as well as the properties of the tissues traversed. Interpreting physicians must evaluate the bullet trajectory and describe patterns of injury resulting from the effect of energy transfer from the projectile into living tissue. A basic understanding of firearms, projectiles, and wound ballistics can help the interpreting physicians in conceptualizing these injuries and interpreting these cases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Interplanetary mission design handbook. Volume 1, part 3: Earth to Jupiter ballistic mission opportunities, 1985-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.

    1982-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Jupiter are provided. Contours of launch energy requirements, as well as many other launch and Jupiter arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Jupiter probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.

  13. Interplanetary mission design handbook. Volume 1, part 2: Earth to Mars ballistic mission opportunities, 1990-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.; Cunniff, R. A.

    1983-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Mars are provided. Contours of launch energy requirements, as well as many other launch and Mars arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1990 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Mars probe and orbiter arrival design, utilizing the graphical data as well as numerous equations relating various parameters.

  14. Interplanetary mission design handbook. Volume 1, part 1: Earth to Venus ballistic mission opportunities, 1991-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Yin, N. H.

    1983-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Venus is presented. Contours of launch energy requirements, as well as many other launch and arrival parameters, are presented in launch data/arrival date space for all launch opportunities from 1991 through 2005. An extensive text is included which explains mission design methods, from launch window development to Venus probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.

  15. How "Hot Precursors" Modify Island Nucleation: A Rate-Equation Model

    NASA Astrophysics Data System (ADS)

    Morales-Cifuentes, Josue R.; Einstein, T. L.; Pimpinelli, A.

    2014-12-01

    We propose a novel island nucleation and growth model explicitly including transient (ballistic) mobility of the monomers deposited at rate F , assumed to be in a hot precursor state before thermalizing. In limiting regimes, corresponding to fast (diffusive) and slow (ballistic) thermalization, the island density N obeys scaling N ∝Fα . In between is found a rich, complex behavior, with various distinctive scaling regimes, characterized by effective exponents αeff and activation energies that we compute exactly. Application to N (F ,T ) of recent organic-molecule deposition experiments yields an excellent fit.

  16. Ceramic composite protection for turbine disc bursts. [for the A-300 aircraft

    NASA Technical Reports Server (NTRS)

    Gardner, P. B.

    1977-01-01

    Ceramic composite turbine disc protection panels for the A300B were developed using armor technology. Analytical predictions for modifying the ballistic projectile armor system were verified by a test program conducted to qualify the rotor containment system. With only a slight change in the areal density of the armor system a more than two-fold increase in kinetic energy protection level was achieved. Thickness of the fiberglass reinforced plastic backing material was increased to achieve an optimum ratio of ceramic thickness to backing thickness for the different ballistic defeat condition.

  17. Performance of primary repair on colon injuries sustained from low-versus high-energy projectiles.

    PubMed

    Lazovic, Ranko; Radojevic, Nemanja; Curovic, Ivana

    2016-04-01

    Among various reasons, colon injuries may be caused by low- or high-energy firearm bullets, with the latter producing a temporary cavitation phenomenon. The available treatment options include primary repair and two-stage management, but recent studies have shown that primary repair can be widely used with a high success rate. This paper investigates the differences in performance of primary repair on these two types of colon injuries. Two groups of patients who sustained colon injuries due to single gunshot wounds, were retrospectively categorized based on the type of bullet. Primary colon repair was performed in all patients selected based on the inclusion and exclusion criteria (Stone and Fabian's criteria). An almost absolute homogeneity was attained among the groups in terms of age, latent time before surgery, and four trauma indexes. Only one patient from the low-energy firearm projectile group (4%) developed a postsurgical complication versus nine patients (25.8%) from the high-energy group, showing statistically significant difference (p = 0.03). These nine patients experienced the following postsurgical complications: pneumonia, abscess, fistula, suture leakage, and one multiorgan failure with sepsis. Previous studies concluded that one-stage primary repair is the best treatment option for colon injuries. However, terminal ballistics testing determined the projectile's path through the body and revealed that low-energy projectiles caused considerably lesser damage than their high-energy counterparts. Primary colon repair must be performed definitely for low-energy short firearm injuries but very carefully for high-energy injuries. Given these findings, we suggest that the treatment option should be determined based not only on the bullet type alone but also on other clinical findings. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. Performance of primary repair on colon injuries sustained from low-versus high-energy projectiles

    PubMed Central

    Lazovic, Ranko; Radojevic, Nemanja; Curovic, Ivana

    2017-01-01

    Among various reasons, colon injuries may be caused by low- or high-energy firearm bullets, with the latter producing a temporary cavitation phenomenon. The available treatment options include primary repair and two-stage management, but recent studies have shown that primary repair can be widely used with a high success rate. This paper investigates the differences in performance of primary repair on these two types of colon injuries. Two groups of patients who sustained colon injuries due to single gunshot wounds, were retrospectively categorized based on the type of bullet. Primary colon repair was performed in all patients selected based on the inclusion and exclusion criteria (Stone and Fabian's criteria). An almost absolute homogeneity was attained among the groups in terms of age, latent time before surgery, and four trauma indexes. Only one patient from the low-energy firearm projectile group (4%) developed a postsurgical complication versus nine patients (25.8%) from the high-energy group, showing statistically significant difference (p = 0.03). These nine patients experienced the following postsurgical complications: pneumonia, abscess, fistula, suture leakage, and one multiorgan failure with sepsis. Previous studies concluded that one-stage primary repair is the best treatment option for colon injuries. However, terminal ballistics testing determined the projectile's path through the body and revealed that low-energy projectiles caused considerably lesser damage than their high-energy counterparts. Primary colon repair must be performed definitely for low-energy short firearm injuries but very carefully for high-energy injuries. Given these findings, we suggest that the treatment option should be determined based not only on the bullet type alone but also on other clinical findings. PMID:26874437

  19. Reduction of lunar landing fuel requirements by utilizing lunar ballistic capture.

    PubMed

    Johnson, Michael D; Belbruno, Edward A

    2005-12-01

    Ballistic lunar capture trajectories have been successfully utilized for lunar orbital missions since 1991. Recent interest in lunar landing trajectories has occurred due to a directive from President Bush to return humans to the Moon by 2015. NASA requirements for humans to return to the lunar surface include separation of crew and cargo missions, all lunar surface access, and anytime-abort to return to Earth. Such requirements are very demanding from a propellant standpoint. The subject of this paper is the application of lunar ballistic capture for the reduction of lunar landing propellant requirements. Preliminary studies of the application of weak stability boundary (WSB) trajectories and ballistic capture have shown that considerable savings in low Earth orbit (LEO) mission mass may be realized, on the order of 36% less than conventional Hohmann transfer orbit missions. Other advantages, such as reduction in launch window constraints and reduction of lunar orbit maintenance propellant requirements, have also surfaced from this study.

  20. Exact harmonic solutions to Guyer-Krumhansl-type equation and application to heat transport in thin films

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.; Oskolkov, D.

    2018-03-01

    A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer-Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.

  1. Optimal dephasing for ballistic energy transfer in disordered linear chains

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev

    2017-11-01

    We study the interplay between dephasing, disorder, and coupling to a sink on transport efficiency in a one-dimensional chain of finite length N , and in particular the beneficial or detrimental effect of dephasing on transport. The excitation moves along the chain by coherent nearest-neighbor hopping Ω , under the action of static disorder W and dephasing γ . The last site is coupled to an external acceptor system (sink), where the excitation can be trapped with a rate Γtrap. While it is known that dephasing can help transport in the localized regime, here we show that dephasing can enhance energy transfer even in the ballistic regime. Specifically, in the localized regime we recover previous results, where the optimal dephasing is independent of the chain length and proportional to W or W2/Ω . In the ballistic regime, the optimal dephasing decreases as 1 /N or 1 /√{N } , respectively, for weak and moderate static disorder. When focusing on the excitation starting at the beginning of the chain, dephasing can help excitation transfer only above a critical value of disorder Wcr, which strongly depends on the sink coupling strength Γtrap. Analytic solutions are obtained for short chains.

  2. Transport of secondary electrons and reactive species in ion tracks

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  3. Ballistic Motion of Enzymes that Catalyze Highly Exothermic Reactions

    NASA Astrophysics Data System (ADS)

    Tsekouras, Konstantinos; Pressé, Steve

    Recently we proposed that the experimentally observed enhanced diffusion of enzymes catalyzing highly exothermic reactions is a consequence of their mechanism for dissipating reaction energy. More specifically, we proposed that reaction energy spreads out from the reaction site in the form of an acoustic wave which causes the enzyme to asymmetrically deform into the solvent. The solvent reaction propels the enzyme. However, it has been noted that in water, high viscosity should reduce enzyme momentum to zero within a few ps, so any diffusion increase should not be observable. Here we provide a model explaining how small volumetric expansions of biomolecules inside water may cause fluid compression that in turn creates regions of low fluid density around the biomolecule. We then investigate the dynamics of the biomolecule in the presence of these perturbations.

  4. The solar power satellite concepts: The past decade and the next decade

    NASA Technical Reports Server (NTRS)

    Kraft, C. C., Jr.

    1979-01-01

    Results of studies on the solar power satellite concept are summarized. The basic advantages are near continuous access to sunlight and freedom from atmospheric effects and cloud cover. The systems definition studies consider photovoltaic and thermal energy conversion systems and find both to be technically feasible, with the photovoltaic approach preferred. A microwave test program is under way which will provide quantitative data on critical parameters, including beam forming and steering accuracy. Ballistic and winged launch vehicles are defined for the transportation of construction materials, with the shuttle expected to provide low cost transportation to and from space. A reference system is outlined for evaluating the concept in terms of environmental and other considerations. Preliminary estimates of natural resource requirements and energy payback intervals are encouraging.

  5. Detection of Charged Particles in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Bandler, Simon Richard

    1995-01-01

    At the present time the measurement of the flux of neutrinos from the sun remains a challenging experimental problem. The ideal detector would be able to detect neutrinos at high rate, in real time, with good energy resolution and would have a threshold which is low enough for investigation of the entire solar neutrino spectrum. A new detection scheme using superfluid helium as a target has been proposed which has the potential to meet most of the criteria of the ideal detector. In this scheme a neutrino would be detected when it elastically scatters off an atomic electron in superfluid helium. The electron loses energy via a number of processes eventually leading to the generation of phonons and rotons in the liquid. At low temperatures these excitations propagate ballistically through the superfluid helium. When the excitations reach the free surface some of them are able to evaporate helium atoms. These atoms can be detected by an array of calorimeters suspended above the liquid surface. In this thesis, results are presented for a small -scale prototype of this type of detector. Experiments have been performed using various radioactive sources to generate energy depositions in the liquid. The results reveal details about the processes of generation of rotons and phonons, the propagation of these excitations through the superfluid, the evaporation of helium atoms and the adsorption of helium atoms onto the wafer. Results are also presented on the detection of fluorescent photons generated in the liquid. One source of energy depositions was 241{rm Am} which produces monoenergetic 5.5 MeV alpha particles. It was found that the ratio of the energy deposited in a calorimeter to the energy deposited in liquid helium was 0.084 when alpha's are emitted parallel to the liquid surface, and 0.020 for alpha's emitted perpendicular. The difference is due to the anisotropic distribution of helium excitations generated. A 113{rm Sn} source of 360 keV electrons stopped in superfluid helium have also produced signals in a calorimeter and this ratio was similar. Finally, the implications of these results to the design of a full-scale detector of solar neutrinos are discussed.

  6. HVI Ballistic Limit Charaterization of Fused Silica Thermal Pane

    NASA Technical Reports Server (NTRS)

    Bohl, William E.; Miller, Joshua E.; Christiansen, Eric L.; Deighton, Kevin.; Davis, Bruce

    2015-01-01

    The Orion spacecraft's windows are exposed to the micrometeroid and orbital debris (MMOD) space environments while in space as well as the Earth entry environment at the mission's conclusion. The need for a low-mass spacecraft window design drives the need to reduce conservatism when assessing the design for loss of crew due to MMOD impact and subsequent Earth entry. Therefore, work is underway at NASA and Lockheed Martin to improve characterization of the complete penetration ballistic limit of an outer fused silica thermal pane. Hypervelocity impact tests of the window configuration at up to 10 km/s and hydrocode modeling have been performed with a variety of projectile materials to enable refinement of the fused silica ballistic limit equation.

  7. The solar power satellite concept - The past decade and the next decade

    NASA Technical Reports Server (NTRS)

    Kraft, C. C., Jr.

    1979-01-01

    Results of studies on the solar power satellite concept, currently under evaluation by NASA and the Department of Energy, are summarized. The basic advantages provided by the concept are the near-continuous access to sunlight and the freedom from atmospheric effects and cloud cover. The systems definition studies have considered photovoltaic and thermal energy conversion systems and found both to be technically feasible, with the photovoltaic approach being currently preferred. A microwave test program is under way which will provide quantitative data on critical parameters, including beam forming and steering accuracy. Ballistic and winged launch vehicles have been defined for the transportation of construction materials, with the Shuttle expected to provide low-cost transportation to and from space. A reference system has been outlined for evaluating the concept in terms of environmental and other considerations. Preliminary estimates of natural resource requirements and energy payback intervals are encouraging.

  8. Diode Pumped Alkaline Laser System: A High Powered, Low SWaP Directed Energy Option for Ballistic Missile Defense High-Level Summary - April 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisoff, P. J.

    The Diode-Pumped Alkali Laser (DPAL) system is an R&D effort funded by the Missile Defense Agency (MDA) underway at Lawrence Livermore National Laboratory (LLNL). MDA has described the characteristics needed for a Boost Phase directed energy (DE) weapon to work against ICBM-class threat missiles. In terms of the platform, the mission will require a high altitude Unmanned Aerial Vehicle (UAV) that can fly in the “quiet” stratosphere and display long endurance – i.e., days on station. In terms of the laser, MDA needs a high power, low size and weight laser that could be carried by such a platform andmore » deliver lethal energy to an ICBM-class threat missile from hundreds of kilometers away. While both the military and industry are pursuing Directed Energy for tactical applications, MDA’s objectives pose a significantly greater challenge than other current efforts in terms of the power needed from the laser, the low size and weight required, and the range, speed, and size of the threat missiles. To that end, MDA is funding two R&D efforts to assess the feasibility of a high power (MWclass) and low SWaP (size, weight and power) laser: a fiber combining laser (FCL) project at MIT’s Lincoln Laboratory, and LLNL’s Diode-Pumped Alkali Laser (DPAL) system.« less

  9. Motion of a ballistic missile angularly misaligned with the flight path upon entering the atmosphere and its effect upon aerodynamic heating, aerodynamic loads, and miss distance

    NASA Technical Reports Server (NTRS)

    Allen, Julian H

    1957-01-01

    An analysis is given of the oscillating motion of a ballistic missile which upon entering the atmosphere is angularly misaligned with respect to the flight path. The history of the motion for some example missiles is discussed from the point of view of the effect of the motion on the aerodynamic heating and loading. The miss distance at the target due to misalignment and to small accidental trim angles is treated. The stability problem is also discussed for the case where the missile is tumbling prior to atmospheric entry.

  10. Visualizing excitations at buried heterojunctions in organic semiconductor blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Sadhanala, Aditya; Huettner, Sven; Rao, Akshay; Friend, Richard H

    2017-05-01

    Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.

  11. Visualizing excitations at buried heterojunctions in organic semiconductor blends

    NASA Astrophysics Data System (ADS)

    Jakowetz, Andreas C.; Böhm, Marcus L.; Sadhanala, Aditya; Huettner, Sven; Rao, Akshay; Friend, Richard H.

    2017-05-01

    Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.

  12. Multiple-Sensor Discrimination of Closely-Spaced Objects on a Ballistic Trajectory

    DTIC Science & Technology

    2015-05-18

    Nominal System Architecture ..................................................................................... 8 2 Simulation Environment... architecture ........................................................................................... 8 Figure 2. Simulation environment developed...uncertainty band for one or multiple sensors within the observation architecture . Resolving targets from one sensor image to another can prove difficult

  13. Sensitivity Analysis and Mitigation with Applications to Ballistic and Low-thrust Trajectory Design

    NASA Astrophysics Data System (ADS)

    Alizadeh, Iman

    The ever increasing desire to expand space mission capabilities within the limited budgets of space industries requires new approaches to the old problem of spacecraft trajectory design. For example, recent initiatives for space exploration involve developing new tools to design low-cost, fail-safe trajectories to visit several potential destinations beyond our celestial neighborhood such as Jupiter's moons, asteroids, etc. Designing and navigating spacecraft trajectories to reach these destinations safely are complex and challenging. In particular, fundamental questions of orbital stability imposed by planetary protection requirements are not easily taken into account by standard optimal control schemes. The event of temporary engine loss or an unexpected missed thrust can indeed quickly lead to impact with planetary bodies or other unrecoverable trajectories. While electric propulsion technology provides superior efficiency compared to chemical engines, the very low-control authority and engine performance degradation can impose higher risk to the mission in strongly perturbed orbital environments. The risk is due to the complex gravitational field and its associated chaotic dynamics which causes large navigation dispersions in a short time if left un-controlled. Moreover, in these situations it can be outside the low-thrust propulsion system capability to correct the spacecraft trajectory in a reasonable time frame. These concerns can lead to complete or partial mission failure or even an infeasible mission concept at the early design stage. The goal of this research is to assess and increase orbital stability of ballistic and low-thrust transfer trajectories in multi-body systems. In particular, novel techniques are presented to characterize sensitivity and improve recovery characteristics of ballistic and low-thrust trajectories in unstable orbital environments. The techniques developed are based on perturbation analysis around ballistic trajectories to determine analytically the maximum divergence directions and also optimal control theory with nonstandard cost functions along with inverse dynamics applied to low-thrust trajectories. Several mission scenarios are shown to demonstrate the applicability of the techniques in the Earth-Moon and the Jupiter-Europa system. In addition, the results provide fundamental insight into design, stability analysis and guidance, navigation and control of low-thrust trajectories to meet challenging mission requirements in support of NASA's vision for space exploration.

  14. Molecular dynamics simulations of high energy cascade in ordered alloys: Defect production and subcascade division

    NASA Astrophysics Data System (ADS)

    Crocombette, Jean-Paul; Van Brutzel, Laurent; Simeone, David; Luneville, Laurence

    2016-06-01

    Displacement cascades have been calculated in two ordered alloys (Ni3Al and UO2) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.

  15. Phase Contrast Imaging of Damage Initiation During Ballistic Impact of Boron Carbide

    NASA Astrophysics Data System (ADS)

    Schuster, Brian; Tonge, Andrew; Ramos, Kyle; Rigg, Paulo; Iverson, Adam; Schuman, Adam; Lorenzo, Nicholas

    2017-06-01

    For several decades, flash X-ray imaging has been used to perform time-resolved investigations of the response of ceramics under ballistic impact. Traditional absorption based contrast offers little insight into the early initiation of inelastic deformation mechanisms and instead typically only shows the gross deformation and fracture behavior. In the present work, we employed phase contrast imaging (PCI) at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory, to investigate crack initiation and propagation following the impact of copper penetrators into boron carbide targets. These experiments employed a single-stage propellant gun to launch small-scale (0.6 mm diameter by 3 mm long) pure copper impactors at velocities ranging from 0.9 to 1.9 km/s into commercially available boron carbide targets that were 8 mm on a side. At the lowest striking velocities the penetrator undergoes dwell or interface defeat and the target response is consistent with the cone crack formation at the impact site. At higher striking velocities there is a distinct transition to massive fragmentation leading to the onset of penetration.

  16. On the feasibility of increasing the energy of laser-accelerated protons by using low-density targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantov, A. V., E-mail: brantov@lebedev.ru; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru

    2015-06-15

    Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.

  17. Effect of crowding and confinement on first-passage times: A model study

    NASA Astrophysics Data System (ADS)

    Antoine, C.; Talbot, J.

    2016-06-01

    We study the "color dynamics" of a hard-disk fluid confined in an annulus, as well as the corresponding hard-sphere system in three dimensions, using event-driven simulation in order to explore the effect of confinement and self-crowding on the search for targets. We compute the mean first-passage times (MFPTs) of red particles transiting from the outer to the inner boundary as well as those of blue particles passing from the inner to the outer boundary for different packing fractions and geometries. In the steady state the reaction rate, defined as the rate of collision of red particles with the inner boundary, is inversely proportional to the sum of the MFPTs. The reaction rate is wall mediated (ballistic) at low densities and diffusion controlled at higher densities and displays a maximum at intermediate densities. At moderate to high densities, the presence of layering has a strong influence on the search process. The numerical results for the reaction rate and MFPTs are compared with a ballistic model at low densities and a Smoluchowski approach with uniform diffusivities at higher densities. We discuss the reasons for the limited validity of the theoretical approaches. The maximum in the reaction rate is qualitatively well rendered by a Bosanquet-like approach that interpolates between the two regimes. Finally, we compute the position-dependent diffusivity from the MFPTs and observe that it is out of phase with the radial density.

  18. Study on Protection Mechanism of 30CrMnMo-UHMWPE Composite Armor

    PubMed Central

    Zhou, Yu; Li, Guoju; Fan, Qunbo; Wang, Yangwei; Zheng, Haiyang; Tan, Lin; Xu, Xuan

    2017-01-01

    The penetration of a 30CrMnMo ultra-high molecular weight polyethylene armor by a high-speed fragment was investigated via experiments and simulations. Analysis of the projectile revealed that the nose (of the projectile) is in the non-equilibrium state at the initial stage of penetration, and the low-speed regions undergo plastic deformation. Subsequently, the nose-tail velocities of the projectile were virtually identical and fluctuated together. In addition, the effective combination of the steel plate and polyethylene (PE) laminate resulted in energy absorption by the PE just before the projectile nose impacts the laminate. This early absorption plays a positive role in the ballistic performance of the composite armor. Further analysis of the internal energy and mass loss revealed that the PE laminate absorbs energy via the continuous and stable failure of PE fibers during the initial stages of penetration, and absorbs energy via deformation until complete penetration occurs. The energy absorbed by the laminate accounts for 68% of the total energy absorption, indicating that the laminate plays a major role in energy absorption during the penetration process. PMID:28772764

  19. Terminal ballistics of the 9mm with Action Safety bullet or Blitz-Action-Trauma (BAT) ammunition.

    PubMed

    Lantz, P E; Stone, R S; Broudy, D; Morgan, T M

    1994-05-01

    Specialty ammunition creating atypical gunshot wounds of entrance can create confusion and may be misinterpreted by pathologists unfamiliar with the terminal ballistics of these projectiles. The previously unreported wound ballistics caused by the 9mm with Action Safety bullet described in a homicide highlights the atypical entrance wound(s) and wounding capacity of this novel ammunition. Manufactured by Geco division of Dynamit Nobel, the bullet consists of a nonjacketed solid copper alloy bullet body without a conventional lead core. The large deformation well and part of the smaller central channel is filled with a hard plastic core and post that creates a round nose bullet. The internal ballistics and unique design allow the plastic nose cap and post to separate from the copper alloy base while still in the barrel. The radiolucent nose cap leaves the bullet's path but can still penetrate tissue giving the appearance of a separate but smaller entrance wound. The sharp leading edge of the deformation well and relative high velocity of the bullet body creates a punched out entrance wound with minimal marginal abrasion. When the plastic nose cap or fragments of the plastic post impact the subject, test firings may allow an inference to the muzzle-target distance even in the absence of soot deposition or stippling.

  20. High Energy Failure Containment for Spacecraft

    NASA Technical Reports Server (NTRS)

    Pektas, Pete; Baker, Christopher

    2011-01-01

    Objective: The objective of this paper will be to investigate advancements and any commonality between spacecraft debris containment and the improvements being made in ballistic protection. Scope: This paper will focus on cross application of protection devices and methods, and how they relate to protecting humans from failures in spacecraft. The potential gain is to reduce the risk associated with hardware failure, while decreasing the weight and size of energy containment methods currently being used by the government and commercial industry. Method of Approach: This paper will examine testing that has already been accomplished in regards to the failure of high energy rotating hardware and compare it to advancements in ballistic protection. Examples are: DOT research and testing of turbine containment as documented in DOT/FAA/AR-96/110, DOT/FAA/AR-97/82, DOT/FAA/AR-98/22. It will also look at work accomplished by companies such as ApNano and IBD Deisenroth in the development of nano ceramics and nanometric steels. Other forms of energy absorbent materials and composites will also be considered and discussed. New Advances in State of the Art: There have been numerous advances in technology in regards to high energy debris containment and in the similar field of ballistic protection. This paper will discuss methods such as using impregnated or dry Kevlar, ceramic, and nano-technology which have been successfully tested but are yet to be utilized in spacecraft. Reports on tungsten disulfide nanotubes claim that they are 4-5 times stronger than steel and reports vary about the magnitude increase over Kevlar, but it appears to be somewhere in the range of 2-6 times stronger. This technology could also have applications in the protection of pressure vessels, motor housings, and hydraulic component failures.

  1. The Ballistic Slider.

    ERIC Educational Resources Information Center

    Taylor, David P.

    1995-01-01

    Presents an experiment that demonstrates conservation of momentum and energy using a box on the ground moving backwards as it is struck by a projectile. Discusses lab calculations, setup, management, errors, and improvements. (JRH)

  2. Miniature High-Let Radiation Spectrometer for Space and Avionics Applications

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, Craig A.; Brucker, G. J.

    1998-01-01

    This paper reports on the design and characterization of a small, low power, and low weight instrument, a High-LET Radiation Spectrometer (HiLRS), that measures energy deposited by heavy ions in microelectronic devices. The HILRS operates on pulse-height analysis principles and is designed for space and avionics applications. The detector component in the instrument is based on large scale arrays of p-n junctions. In this system, the pulse amplitude from a particle hit is directly proportional to the particle LET. A prototype flight unit has been fabricated and calibrated using several heavy ions with varying LETs and protons with several energies. The unit has been delivered to the Ballistic Missile Defense Organization (BMDO) c/o the Air Force Research Laboratory in Albuquerque, NM, for integration into the military Space Technology Research Vehicle (STRV), a US-UK cooperative mission. Another version of HILRS is being prepared for delivery in April to the Hubble Space Telescope (HST) project, to fly on the HST Orbital Systems Test (HOST) Platform on a shuttle mission.

  3. Ballistic impact response of lipid membranes.

    PubMed

    Zhang, Yao; Meng, Zhaoxu; Qin, Xin; Keten, Sinan

    2018-03-08

    Therapeutic agent loaded micro and nanoscale particles as high-velocity projectiles can penetrate cells and tissues, thereby serving as gene and drug delivery vehicles for direct and rapid internalization. Despite recent progress in developing micro/nanoscale ballistic tools, the underlying biophysics of how fast projectiles deform and penetrate cell membranes is still poorly understood. To understand the rate and size-dependent penetration processes, we present coarse-grained molecular dynamics simulations of the ballistic impact of spherical projectiles on lipid membranes. Our simulations reveal that upon impact, the projectile can pursue one of three distinct pathways. At low velocities below the critical penetration velocity, projectiles rebound off the surface. At intermediate velocities, penetration occurs after the projectile deforms the membrane into a tubular thread. At very high velocities, rapid penetration occurs through localized membrane deformation without tubulation. Membrane tension, projectile velocity and size govern which phenomenon occurs, owing to their positive correlation with the reaction force generated between the projectile and the membrane during impact. Two critical membrane tension values dictate the boundaries among the three pathways for a given system, due to the rate dependence of the stress generated in the membrane. Our findings provide broad physical insights into the ballistic impact response of soft viscous membranes and guide design strategies for drug delivery through lipid membranes using micro/nanoscale ballistic tools.

  4. A Survey of Ballistic Transfers to the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Parker, Jeffrey S.

    2011-01-01

    In this study techniques are developed which allow an analysis of a range of different types of transfer trajectories from the Earth to the lunar surface. Trajectories ranging from those obtained using the invariant manifolds of unstable orbits to those derived from collision orbits are analyzed. These techniques allow the computation of trajectories encompassing low-energy trajectories as well as more direct transfers. The range of possible trajectory options is summarized, and a broad range of trajectories that exist as a result of the Sun's influence are computed and analyzed. The results are then classified by type, and trades between different measures of cost are discussed.

  5. Business Case Analysis: Continuous Integrated Logistics Support-Targeted Allowance Technique (CILS-TAT)

    DTIC Science & Technology

    2013-06-01

    In this research, we examine the Naval Sea Logistics Command s Continuous Integrated Logistics Support Targeted Allowancing Technique (CILS TAT) and... the feasibility of program re-implementation. We conduct an analysis of this allowancing method s effectiveness onboard U.S. Navy Ballistic Missile...Defense (BMD) ships, measure the costs associated with performing a CILS TAT, and provide recommendations concerning possible improvements to the

  6. Computational and experimental models of the human torso for non-penetrating ballistic impact.

    PubMed

    Roberts, J C; Merkle, A C; Biermann, P J; Ward, E E; Carkhuff, B G; Cain, R P; O'Connor, J V

    2007-01-01

    Both computational finite element and experimental models of the human torso have been developed for ballistic impact testing. The human torso finite element model (HTFEM), including the thoracic skeletal structure and organs, was created in the finite element code LS-DYNA. The skeletal structure was assumed to be linear-elastic while all internal organs were modeled as viscoelastic. A physical human surrogate torso model (HSTM) was developed using biosimulant materials and the same anthropometry as the HTFEM. The HSTM response to impact was recorded with piezoresistive pressure sensors molded into the heart, liver and stomach and an accelerometer attached to the sternum. For experimentation, the HSTM was outfitted with National Institute of Justice (NIJ) Level I, IIa, II and IIIa soft armor vests. Twenty-six ballistic tests targeting the HSTM heart and liver were conducted with 22 caliber ammunition at a velocity of 329 m/s and 9 mm ammunition at velocities of 332, 358 and 430 m/s. The HSTM pressure response repeatability was found to vary by less than 10% for similar impact conditions. A comparison of the HSTM and HTFEM response showed similar pressure profiles and less than 35% peak pressure difference for organs near the ballistic impact point. Furthermore, the peak sternum accelerations of the HSTM and HTFEM varied by less than 10% for impacts over the sternum. These models provide comparative tools for determining the thoracic response to ballistic impact and could be used to evaluate soft body armor design and efficacy, determine thoracic injury mechanisms and assist with injury prevention.

  7. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paul A.

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is nonexistent but necessary to protect the heart and lungs. In tests against ballistic projectiles, protective apparel is placed over ballistic clay and the projectiles are fired into the armor/clay target. The clay represents the human torso and its behind-armor, permanent deflection is the principal metric used to assess armor protection. Although this approach provides relative merit assessment of protection, it does not examine the behind-armor blunt trauma to crucial torso organs. We propose a modeling andmore » simulation (M&S) capability for wound injury scenarios to the head, neck, and torso of the warfighter. We will use this toolset to investigate the consequences of, and mitigation against, blast exposure, blunt force impact, and ballistic projectile penetration leading to damage of critical organs comprising the central nervous, cardiovascular, and respiratory systems. We will leverage Sandia codes and our M&S expertise on traumatic brain injury to develop virtual anatomical models of the head, neck, and torso and the simulation methodology to capture the physics of wound mechanics. Specifically, we will investigate virtual wound injuries to the head, neck, and torso without and with protective armor to demonstrate the advantages of performing injury simulations for the development of body armor. The proposed toolset constitutes a significant advance over current methods by providing a virtual simulation capability to investigate wound injury and optimize armor design without the need for extensive field testing.« less

  8. Environmental assessment for the depleted uranium testing program at the Nevada Test Site by the United States Army Ballistics Research Laboratory. [Open-Air Tests and X-Tunnel Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-11-24

    This proposed action provides the Department of Energy (DOE) authorization to the US Army to conduct a testing program using Depleted Uranium (DU) in Area 25 at the Nevada Test Site (NTS). The US Army Ballistic Research Laboratory (BRL) would be the managing agency for the program. The proposed action site would utilize existing facilities, and human activity would be confined to areas identified as having no tortoise activity. Two classifications of tests would be conducted under the testing program: (1) open-air tests, and (2) X-Tunnel tests. A series of investigative tests would be conducted to obtain information on DUmore » use under the conditions of each classification. The open-air tests would include DU ammunition hazard classification and combat systems activity tests. Upon completion of each test or series of tests, the area would be decontaminated to meet requirements of DOE Order 5400.5, Radiation Protection of the Public and Environment. All contaminated materials would be decontaminated or disposed of as radioactive waste in an approved low-level Radioactive Waste Management Site (RWMS) by personnel trained specifically for this purpose.« less

  9. Environmental assessment for the depleted uranium testing program at the Nevada Test Site by the United States Army Ballistics Research Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-11-24

    This proposed action provides the Department of Energy (DOE) authorization to the US Army to conduct a testing program using Depleted Uranium (DU) in Area 25 at the Nevada Test Site (NTS). The US Army Ballistic Research Laboratory (BRL) would be the managing agency for the program. The proposed action site would utilize existing facilities, and human activity would be confined to areas identified as having no tortoise activity. Two classifications of tests would be conducted under the testing program: (1) open-air tests, and (2) X-Tunnel tests. A series of investigative tests would be conducted to obtain information on DUmore » use under the conditions of each classification. The open-air tests would include DU ammunition hazard classification and combat systems activity tests. Upon completion of each test or series of tests, the area would be decontaminated to meet requirements of DOE Order 5400.5, Radiation Protection of the Public and Environment. All contaminated materials would be decontaminated or disposed of as radioactive waste in an approved low-level Radioactive Waste Management Site (RWMS) by personnel trained specifically for this purpose.« less

  10. Reconstruction of a Phreatic Explosion from Block Dispersion Modeling at King's Bowl, Idaho

    NASA Astrophysics Data System (ADS)

    Kobs-Nawotniak, S. E.; Sears, D. W. G.; Hughes, S. S.; Borg, C.; Sears, H.; Skok, J. R.; Elphic, R. C.; Lim, D. S. S.; Heldmann, J. L.; Haberle, C. W.; Guy, H.; Kobayashi, L.; Garry, B.; Neish, C.; Kim, K. J.

    2014-12-01

    King's Bowl (KB), located in Idaho's eastern Snake River Plain, was formed by a phreatic blast through a mostly-congealed lava lake. Blocks up to ~2m diameter were ejected from the vent to form a ballistic ejecta blanket extending radially more than 100m. The blocks on the western side of the KB fissure are extraordinarily well exposed, as the fine fraction was blown eastward by ambient winds during the explosion. We present preliminary modeling results using the western ballistic blocks of KB to calculate the energy of the eruption, and the water volume necessary to create the blast. This work is presented in conjunction with two other 2014 AGU conference abstracts submitted by NASA SSERVI funded FINESSE (Field Investigations to Enable Solar System Science and Exploration) team members: Hughes et al., which introduces the geology of KB and Sears et al., which discusses field observation and data trends. Results of this research are extensible to steam-driven pits on other solar system bodies, including those observed on Mars, Phobos, Deimos, and the asteroids. Over 600 blocks ranging from .2 to 2m in diameter were mapped using differential GPS and measured for 3 axial lengths and vesicularity. Mass calculations were corrected using a scaling factor determined from measurements of 100 blocks at KB, coupled with targeted density measurements. The dispersed block trajectories were modeled using a fourth order Runge-Kutta solution of the equations of motion to calculate suites of possible ejection speeds and angles. The resulting characteristic vent velocities were used to calculate the kinetic energy necessary to evacuate the crater at KB; energy required for fragmentation is neglected at this time. Total mass in the kinetic energy calculations was calculated by two separate methods: 1) current volume expression of the KB crater and 2) an additive solution of the ejecta field as determined from radial transect surveys. From the kinetic energy we calculated the pressure behind the eruption, leading to the quantity of water required to create the phreatic blast.

  11. Eye movements and manual interception of ballistic trajectories: effects of law of motion perturbations and occlusions.

    PubMed

    Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco

    2015-02-01

    Manual interceptions are known to depend critically on integration of visual feedback information and experience-based predictions of the interceptive event. Within this framework, coupling between gaze and limb movements might also contribute to the interceptive outcome, since eye movements afford acquisition of high-resolution visual information. We investigated this issue by analyzing subjects' head-fixed oculomotor behavior during manual interceptions. Subjects moved a mouse cursor to intercept computer-generated ballistic trajectories either congruent with Earth's gravity or perturbed with weightlessness (0 g) or hypergravity (2 g) effects. In separate sessions, trajectories were either fully visible or occluded before interception to enforce visual prediction. Subjects' oculomotor behavior was classified in terms of amounts of time they gazed at different visual targets and of overall number of saccades. Then, by way of multivariate analyses, we assessed the following: (1) whether eye movement patterns depended on targets' laws of motion and occlusions; and (2) whether interceptive performance was related to the oculomotor behavior. First, we found that eye movement patterns depended significantly on targets' laws of motion and occlusion, suggesting predictive mechanisms. Second, subjects coupled differently oculomotor and interceptive behavior depending on whether targets were visible or occluded. With visible targets, subjects made smaller interceptive errors if they gazed longer at the mouse cursor. Instead, with occluded targets, they achieved better performance by increasing the target's tracking accuracy and by avoiding gaze shifts near interception, suggesting that precise ocular tracking provided better trajectory predictions for the interceptive response.

  12. Earth Return Aerocapture for the TransHab/Ellipsled Vehicle

    NASA Technical Reports Server (NTRS)

    Muth, W. D.; Hoffmann, C.; Lyne, J. E.

    2000-01-01

    The current architecture being considered by NASA for a human Mars mission involves the use of an aerocapture procedure at Mars arrival and possibly upon Earth return. This technique would be used to decelerate the vehicles and insert them into their desired target orbits, thereby eliminating the need for propulsive orbital insertions. The crew may make the interplanetary journey in a large, inflatable habitat known as the TransHab. It has been proposed that upon Earth return, this habitat be captured into orbit for use on subsequent missions. In this case, the TransHab would be complimented with an aeroshell, which would protect it from heating during the atmospheric entry and provide the vehicle with aerodynamic lift. The aeroshell has been dubbed the "Ellipsled" because of its characteristic shape. This paper reports the results of a preliminary study of the aerocapture of the TransHab/Ellipsled vehicle upon Earth return. Undershoot and overshoot boundaries have been determined for a range of entry velocities, and the effects of variations in the atmospheric density profile, the vehicle deceleration limit, the maximum vehicle roll rate, the target orbit, and the vehicle ballistic coefficient have been examined. A simple, 180 degree roll maneuver was implemented in the undershoot trajectories to target the desired 407 km circular Earth orbit. A three-roll sequence was developed to target not only a specific orbital energy, but also a particular inclination, thereby decreasing propulsive inclination changes and post-aerocapture delta-V requirements. Results show that the TransHab/Ellipsled vehicle has a nominal corridor width of at least 0.7 degrees for entry speeds up to 14.0 km/s. Most trajectories were simulated using continuum flow aerodynamics, but the impact of high-altitude viscous effects was evaluated and found to be minimal. In addition, entry corridor comparisons have been made between the TransHab/Ellipsled and a modified Apollo capsule which is also being considered as the crew return vehicle; because of its slightly higher lift-to-drag ratio, the TransHab has a modest advantage with regard to corridor width. Stagnation-point heating rates and integrated heat loads were determined for a range of vehicle ballistic coefficients and entry velocities.

  13. Ballistic vs. diffusive heat transfer across nanoscopic films of layered crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Meng; Keblinski, Pawel, E-mail: keblip@rpi.edu

    2014-04-14

    We use non-equilibrium molecular dynamics to study the heat transfer mechanism across sandwich interfacial structures of Si/n-atomic-layers/Si, with 1 ≤ n ≤ 20 and atomic layers composed of WSe{sub 2} and/or graphene. In the case of WSe{sub 2} sheets, we observe that the thermal resistance of the sandwich structure is increasing almost linearly with the number of WSe{sub 2} sheets, n, indicating a diffusive phonon transport mechanism. By contrast in the case of n graphene layers, the interfacial thermal resistance is more or less independent on the number of layers for 1 ≤ n ≤ 10, and is associated with ballistic phonon transport mechanism. We attribute the diffusivemore » heat transfer mechanism across WSe{sub 2} sheets to abundant low frequency and low group velocity optical modes that carry most of the heat across the interface. By contrast, in graphene, acoustic modes dominate the thermal transport across the interface and render a ballistic heat flow mechanism.« less

  14. Body models in forensic ballistics: reconstruction of a gunshot injury to the chest by bullet fragmentation after shooting through a finger.

    PubMed

    Thali, M J; Kneubuehl, B P; Dirnhofer, R; Zollinger, U

    2001-11-15

    Forensic science uses substitutes to reconstruct injury patterns in order to answer questions regarding the dynamic formation of unusual injuries. Using a case study, an experimental simulation of a finger was designed, for the first time with a combination of hard wood and glycerin soap. With this model as an intermediate target simulation, it was possible not only to demonstrate the "bullet-body (finger) interaction", but also to recreate the wound pattern found in the victim. This case demonstrates that by using ballistic models and body-part substitutes, gunshot cases can be reproduced simply and economically, without coming into conflict with ethical guidelines.

  15. Optimal Interception of a Maneuvering Long-range Missile

    NASA Astrophysics Data System (ADS)

    X. Vinh, Nguyen; T. Kabamba, Pierre; Takehira, Tetsuya

    2001-01-01

    In a Newtonian central force field, the minimum-fuel interception of a satellite, or a ballistic missile, in elliptic trajectory can be obtained via Lawden's theory of primer vector. To secure interception when the target performs evasive maneuvers, a new control law, with explicit solutions, is implemented. It is shown that by a rotation of coordinate system, the problem of three-dimensional interception is reduced to a planar problem. The general case of planar interception of a long-range ballistic missile is then studied. Examples of interception at a specified time, head-on interception and minimum-fuel interception are presented. In each case, the requirement for the thrust acceleration is expressed explicitly as a function of time.

  16. A hybrid model describing ion induced kinetic electron emission

    NASA Astrophysics Data System (ADS)

    Hanke, S.; Duvenbeck, A.; Heuser, C.; Weidtmann, B.; Wucher, A.

    2015-06-01

    We present a model to describe the kinetic internal and external electron emission from an ion bombarded metal target. The model is based upon a molecular dynamics treatment of the nuclear degree of freedom, the electronic system is assumed as a quasi-free electron gas characterized by its Fermi energy, electron temperature and a characteristic attenuation length. In a series of previous works we have employed this model, which includes the local kinetic excitation as well as the rapid spread of the generated excitation energy, in order to calculate internal and external electron emission yields within the framework of a Richardson-Dushman-like thermionic emission model. However, this kind of treatment turned out to fail in the realistic prediction of experimentally measured internal electron yields mainly due to the restriction of the treatment of electronic transport to a diffusive manner. Here, we propose a slightly modified approach additionally incorporating the contribution of hot electrons which are generated in the bulk material and undergo ballistic transport towards the emitting interface.

  17. Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions

    PubMed Central

    Li, S.; Kang, N.; Fan, D. X.; Wang, L. B.; Huang, Y. Q.; Caroff, P.; Xu, H. Q.

    2016-01-01

    Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson junction devices fabricated from InSb nanowires grown by molecular-beam epitaxy and provide a clear evidence for phase-coherent, ballistic charge transport through the nanowires in the junctions. We demonstrate that our devices show gate-tunable proximity-induced supercurrent and clear signatures of multiple Andreev reflections in the differential conductance, indicating phase-coherent transport within the junctions. We also observe periodic modulations of the critical current that can be associated with the Fabry-Pérot interference in the nanowires in the ballistic transport regime. Our work shows that the InSb nanowires grown by molecular-beam epitaxy are of excellent material quality and hybrid superconducting devices made from these nanowires are highly desirable for investigation of the novel physics in topological states of matter and for applications in topological quantum electronics. PMID:27102689

  18. Thermo-Electron Ballistic Coolers or Heaters

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    2003-01-01

    Electronic heat-transfer devices of a proposed type would exploit some of the quantum-wire-like, pseudo-superconducting properties of single-wall carbon nanotubes or, optionally, room-temperature-superconducting polymers (RTSPs). The devices are denoted thermo-electron ballistic (TEB) coolers or heaters because one of the properties that they exploit is the totally or nearly ballistic (dissipation or scattering free) transport of electrons. This property is observed in RTSPs and carbon nanotubes that are free of material and geometric defects, except under conditions in which oscillatory electron motions become coupled with vibrations of the nanotubes. Another relevant property is the high number density of electrons passing through carbon nanotubes -- sufficient to sustain electron current densities as large as 100 MA/square cm. The combination of ballistic motion and large current density should make it possible for TEB devices to operate at low applied potentials while pumping heat at rates several orders of magnitude greater than those of thermoelectric devices. It may also enable them to operate with efficiency close to the Carnot limit. In addition, the proposed TEB devices are expected to operate over a wider temperature range

  19. Penetrating chest trauma caused by a blank cartridge actuated rubber ball projectile: case presentation and ballistic investigation of an uncommon weapon type.

    PubMed

    Frank, Matthias; Peters, Dieter; Klemm, Wolfram; Grossjohann, Rico; Ekkernkamp, Axel; Bockholdt, Britta; Seifert, Julia

    2017-09-01

    Recently, an increasing number of an uncommon weapon type based on a caliber 6-mm Flobert blank cartridge actuated revolver which discharges 10-mm-diameter rubber ball projectiles has been confiscated by police authorities following criminal offenses. A recent trauma case presenting with a penetrating chest injury occasioned an investigation into the basic ballistic parameters of this type of weapon. Kinetic energy E of the test projectiles was calculated between 5.8 and 12.5 J. Energy density ED of the test projectiles was close to or higher than the threshold energy density of human skin. It can be concluded that penetrating skin injuries due to free-flying rubber ball projectiles discharged at close range cannot be ruled out. However, in case of a contact shot, the main injury potential of this weapon type must be attributed to the high energy density of the muzzle gas jet which may, similar to well-known gas or alarm weapons, cause life-threatening or even lethal injuries.

  20. Energy loss and impact of various stunning devices used for the slaughtering of water buffaloes.

    PubMed

    Glardon, Matthieu; Schwenk, Barbara K; Riva, Fabiano; von Holzen, Adrian; Ross, Steffen G; Kneubuehl, Beat P; Stoffel, Michael H

    2018-01-01

    Stock management of the Swiss water buffalo livestock results in the slaughtering of about 350 animals per year. As the stunning of water buffaloes still is an unresolved issue, we investigated the terminal ballistics of currently used perforating stunning devices. Cartridge fired captive bolt devices, handguns and a bullet casing gun were tested in a shooting steep by firing on bisected heads, forehead plates and soap blocks. Energy loss of captive bolts confirmed their inadequacy when used for heavy water buffaloes, notably adult males. As for the free projectiles, ballistics revealed that beyond the impact energy, bullet deformation has a strong impact on the outcome. Light 9mm Luger or .38 Spl bullets as well as large deformable .44 Rem. Magnum bullets should be avoided in favor of heavier .357 Magnum deformation ammunition. These data have been translated into the development of a new stunning device for water buffaloes meeting both animal welfare and occupational safety requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Interaction of CO with an Au monatomic chain at different strains: Electronic structure and ballistic transport

    NASA Astrophysics Data System (ADS)

    Sclauzero, Gabriele; Dal Corso, Andrea; Smogunov, Alexander

    2012-04-01

    We study the energetics, the electronic structure, and the ballistic transport of an infinite Au monatomic chain with an adsorbed CO molecule. We find that the bridge adsorption site is energetically favored with respect to the atop site, both at the equilibrium Au-Au spacing of the chain and at larger spacings. Instead, a substitutional configuration requires a very elongated Au-Au bond, well above the rupture distance of the pristine Au chain. The electronic structure properties can be described by the Blyholder model, which involves the formation of bonding/antibonding pairs of 5σ and 2π states through the hybridization between molecular levels of CO and metallic states of the chain. In the atop geometry, we find an almost vanishing conductance due to the 5σ antibonding states giving rise to a Fano-like destructive interference close to the Fermi energy. In the bridge geometry, instead, the same states are shifted to higher energies and the conductance reduction with respect to pristine Au chain is much smaller. We also examine the effects of strain on the ballistic transport, finding opposite behaviors for the atop and bridge conductances. Only the bridge geometry shows a strain dependence compatible with the experimental conductance traces.

  2. Business Case Analysis: Continuous Integrated Logistics Support-Targeted Allowance Technique (CILS-TAT)

    DTIC Science & Technology

    2013-05-30

    In this research, we examine the Naval Sea Logistics Command’s Continuous Integrated Logistics Support-Targeted Allowancing Technique (CILS-TAT) and... the feasibility of program re-implementation. We conduct an analysis of this allowancing method’s effectiveness onboard U.S. Navy Ballistic Missile...Defense (BMD) ships, measure the costs associated with performing a CILS-TAT, and provide recommendations concerning possible improvements to the

  3. Theatre Ballistic Missile Defense-Multisensor Fusion, Targeting and Tracking Techniques

    DTIC Science & Technology

    1998-03-01

    Washington, D.C., 1994. 8. Brown , R., and Hwang , P., Introduction to Random Signals and Applied Kaiman Filtering, Third Edition, John Wiley and Sons...C. ADDING MEASUREMENT NOISE 15 III. EXTENDED KALMAN FILTER 19 A. DISCRETE TIME KALMAN FILTER 19 B. EXTENDED KALMAN FILTER 21 C. EKF IN TARGET...tracking algorithms. 17 18 in. EXTENDED KALMAN FILTER This chapter provides background information on the development of a tracking algorithm

  4. Ballistic V50 Evaluation of TIMET Ti108

    DTIC Science & Technology

    2018-02-01

    complete penetration (CP) or partial penetration (PP). Since a CP was determined on the initial shots of both projectiles, the impact velocities...Ti-108 Material Target Data Shot Time: Results X-Ray Times Residual Velocity: Phantom Velocity: Launch Package: Total (grams) Case Size: Expected...H16168-5 Ti-108 Material Target Data Shot Time: Results X-Ray Times Residual Velocity: Phantom Velocity: Launch Package: Total (grams) Case Size

  5. A Model for Training Range Planning Data.

    DTIC Science & Technology

    1984-04-01

    firing over flank avoided; reduced accuracy Thermal Imaging System: For day and night target acLquisition and aiming Digital Ballistic Computer...ATTN: NGB-DAP US Army Engineer Districts USACC ATTN: DAAATTN Libary 41)WASH DC 20314 ATTN. Library (41) ATTN: Facilities Engineer (2) A C Chief

  6. Linking crime guns: the impact of ballistics imaging technology on the productivity of the Boston Police Department's Ballistics Unit.

    PubMed

    Braga, Anthony A; Pierce, Glenn L

    2004-07-01

    Ballistics imaging technology has received national attention as a potent tool for moving the law enforcement response to violent gun criminals forward by linking multiple crime scenes to one firearm. This study examines the impact of ballistics imaging technology on the productivity of the Boston Police Department's Ballistics Unit. Using negative binomial regression models to analyze times series data on ballistics matches, we find that ballistics imaging technology was associated with a more than sixfold increase in the monthly number of ballistics matches made by the Boston Police Department's Ballistics Unit. Cost-effectiveness estimates and qualitative evidence also suggest that ballistics imaging technology allows law enforcement agencies to make hits that would not have been possible using traditional ballistics methods.

  7. A ballistic performance study on multiphase particulate systems impacted by various projectiles

    NASA Astrophysics Data System (ADS)

    Comtois-Arnaldo, Christian; Petel, Oren

    2017-06-01

    The present study investigates the complex multiscale dynamic response of particulate composites, in an effort to link the bulk material behavior to strain-rate activated microstructures. These investigations involve multiphase systems containing micron-sized ceramic particles integrated into a siloxane elastomer to create flexible nanocomposites with varying inclusion properties. In particular, the effects of varying particle morphology, strength, volume fraction, and density are under investigation. The experimental focus of the study concerns the ballistic penetration of the nanocomposite targets. The targets are impacted by fragment simulating steel projectiles of constant mass and varying nose shapes (i.e., flat, ogive, and chisel-nose) to identify variations in the penetration mechanics. The projectiles are accelerated in a single-stage gas gun to velocities ranging from 200 m/s to 900 m/s prior to impact. The results for each projectile type are compared to analytical penetration models in order to shed light on the dominant penetration mechanisms and their relationship to the microstructure of the nanocomposites.

  8. Heat pulse propagation studies on DIII-D and the Tokamak Fusion Test Reactor

    NASA Astrophysics Data System (ADS)

    Fredrickson, E. D.; Austin, M. E.; Groebner, R.; Manickam, J.; Rice, B.; Schmidt, G.; Snider, R.

    2000-12-01

    Sawtooth phenomena have been studied on DIII-D and the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24]. In the experiments the sawtooth characteristics were studied with fast electron temperature (ECE) and soft x-ray diagnostics. For the first time, measurements of a strong ballistic electron heat pulse were made in a shaped tokamak (DIII-D) [J. Luxon and DIII-D Group, in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] and the "ballistic effect" was stronger than was previously reported on TFTR. Evidence is presented in this paper that the ballistic effect is related to the fast growth phase of the sawtooth precursor. Fast, 2 ms interval, measurements on DIII-D were made of the ion temperature evolution following sawteeth and partial sawteeth to document the ion heat pulse characteristics. It is found that the ion heat pulse does not exhibit the very fast, "ballistic" behavior seen for the electrons. Further, for the first time it is shown that the electron heat pulses from partial sawtooth crashes (on DIII-D and TFTR) are seen to propagate at speeds close to those expected from the power balance calculations of the thermal diffusivities whereas heat pulses from fishbones propagate at rates more consistent with sawtooth induced heat pulses. These results suggest that the fast propagation of sawtooth-induced heat pulses is not a feature of nonlinear transport models, but that magnetohydrodynamic events can have a strong effect on electron thermal transport.

  9. Static and Dynamic Compaction of CL-20 Powders

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia A.; Brundage, Aaron L.; Dudley, Evan C.

    2009-12-01

    Hexanitrohexaazaisowurtzitane (CL-20) powders were compacted under quasi-static and dynamic loading conditions. A uniaxial compression apparatus quasi-statically compressed the powders to 90% theoretical maximum density with applied stresses up to 0.4 GPa. Dynamic compaction measurements using low-density pressings approximately 64% theoretical maximum density (TMD) were obtained in a single-stage gas gun at impact velocities between 0.17-0.95 km/s. Experiments were conducted in a reverse ballistic arrangement in which the projectile contained the CL-20 powder bed and impacted a target consisting of an aluminized window. VISAR-measured particle velocities at the explosive-window interface determined the shock Hugoniot states for pressures up to 1.3 GPa. Approved for public release, SAND2009-4810C.

  10. Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al-Ge-Al Nanowire Heterostructures.

    PubMed

    Sistani, Masiar; Staudinger, Philipp; Greil, Johannes; Holzbauer, Martin; Detz, Hermann; Bertagnolli, Emmerich; Lugstein, Alois

    2017-08-09

    Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.

  11. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  12. The Dynamic Behaviour of Ballistic Gelatin

    NASA Astrophysics Data System (ADS)

    Shepherd, C. J.; Appleby-Thomas, G. J.; Hazell, P. J.; Allsop, D. F.

    2009-12-01

    In order to characterise the effect of projectiles it is necessary to understand the mechanism of both penetration and resultant wounding in biological systems. Porcine gelatin is commonly used as a tissue simulant in ballistic tests because it elastically deforms in a similar manner to muscular tissue. Bullet impacts typically occur in the 350-850 m/s range; thus knowledge of the high strain-rate dynamic properties of both the projectile and target materials are desirable to simulate wounds. Unlike projectile materials, relatively little data exists on the dynamic response of flesh simulants. The Hugoniot for a 20 wt.% porcine gelatin, which exhibits a ballistic response similar to that of human tissues at room temperature, was determined using the plate-impact technique at impact velocities of 75-860 m/s. This resulted in impact stresses around three times higher than investigated elsewhere. In US-uP space the Hugoniot had the form US = 1.57+1.77 uP, while in P-uP space it was essentially hydrodynamic. In both cases this was in good agreement with the limited available data from the literature.

  13. Mission options for rendezvous with the most accessible Near-Earth Asteroid - 1989 ML

    NASA Technical Reports Server (NTRS)

    Mcadams, Jim V.

    1992-01-01

    The recent discovery of the Amor-class 1989 ML, the most accessible known asteroid for minimum-energy rendezvous missions, has expedited the search for frequent, low-cost Near-Earth Asteroid rendezvous and round-trip missions. This paper identifies trajectory characteristics and assesses mass performance for low Delta V ballistic rendezvous opportunities to 1989 ML during the period 1996-2010. This asteroid also offers occasional unique extended mission opportunities, such as the lowest known Delta V requirement for any asteroid sample return mission as well as pre-rendezvous asteroid flyby and post-rendezvous comet flyby opportunities requiring less than 5.25 km/sec total Delta V. This paper also briefly comments concerning mission opportunities for asteroid 1991 JW, which recently replaced other known asteroids as the most accessible Near-Earth Asteroid for fast rendezvous and round-trip missions.

  14. The quantified evaluation of the wounding potential of a ricochet projectile of a handgun cartridge calibre 9 mm (type 82) in a ballistic experiment.

    PubMed

    Moravanský, Norbert; Rekeň, Viktor; Juříček, Ludvík; Zummerová, Anežka; Kováč, Peter

    2013-01-01

    The question of handgun use in a city or densely populated aglomerations requires a highly practical level of solution to this issue, though with the knowledge of theoretical presumptions of wound ballistics of ricochet projectiles. The application of wound ballistics into the practice of a forensic pathologist, as well as a surgeon or a traumatologist, enables a good understanding of the dynamics of projectile penetration through anatomic structures of the human body. In forensic assessment, gunshot wounds of limbs are relatively frequent cases. By the integration of wound ballistics principles into the research of gunshot wounds, it is also possible to establish, whether the projectile entered into the anatomic structures under direct trajectory steadily or whether through the course of its trajectory, before reaching the human body, it firstly contacted a particular object in the space, i. e. whether the injury could have been caused by a ricochet projectile. In connection with unclear gunshot wounds and their morphological image, it is necessary to consider the possibility of the effects of a ricochet projectile, especially when persons are injured accidentally. The daily practice of the officers of the Police Corps of the Slovak Republic essentially enhances the necessity of being informed about the behaviour of parametrically designated ricochet projectiles in a ballistic experiment with the use of a model of a built-up area in a town, with typical materials and surfaces of objects in between and a model of a human limb part as a potential target of an uncontrolled ricochet projectile. The proposed design of the situation is undoubtedly of an enormous significance, even when forensically evaluating the morphological consequences of ricochet projectiles. By the application of results of such experiments and their final comparison, when different types of projectiles are used, it is also possible to contribute to the experts groundwork in the process of rearmament of the official armed forces. The main aim of our work is to point out the high potential of the wounding effect of ricochet bullets of a particular calibre cartridge with focus on injuries of the femurs of the lower limbs. The carried out ballistic experiment was designed for the needs of the experimental part of a diploma thesis of a student from the Faculty of Medicine of Comenius University in Bratislava and his results point out at the possibilities for civilian safety strategies during the intervention of the armed forces as well. Terminal ballistics - Ballistic experiment - Ricochet projectile - Gunshot wounds.

  15. Orion Parachute Riser Cutter Development

    NASA Technical Reports Server (NTRS)

    Oguz, Sirri; Salazar, Frank

    2011-01-01

    This paper presents the tests and analytical approach used on the development of a steel riser cutter for the CEV Parachute Assembly System (CPAS) used on the Orion crew module. Figure 1 shows the riser cutter and the steel riser bundle which consists of six individual cables. Due to the highly compressed schedule, initial unavailability of the riser material and the Orion Forward Bay mechanical constraints, JSC primarily relied on a combination of internal ballistics analysis and LS-DYNA simulation for this project. Various one dimensional internal ballistics codes that use standard equation of state and conservation of energy have commonly used in the development of CAD devices for initial first order estimates and as an enhancement to the test program. While these codes are very accurate for propellant performance prediction, they usually lack a fully defined kinematic model for dynamic predictions. A simple piston device can easily and accurately be modeled using an equation of motion. However, the accuracy of analytical models is greatly reduced on more complicated devices with complex external loads, nonlinear trajectories or unique unlocking features. A 3D finite element model of CAD device with all critical features included can vastly improve the analytical ballistic predictions when it is used as a supplement to the ballistic code. During this project, LS-DYNA structural 3D model was used to predict the riser resisting load that was needed for the ballistic code. A Lagrangian model with eroding elements shown in Figure 2 was used for the blade, steel riser and the anvil. The riser material failure strain was fine tuned by matching the dent depth on the anvil with the actual test data. LS-DYNA model was also utilized to optimize the blade tip design for the most efficient cut. In parallel, the propellant type and the amount were determined by using CADPROG internal ballistics code. Initial test results showed a good match with LS-DYNA and CADPROG simulations. Final paper will present a detailed roadmap from initial ballistic modeling and LS-DYNA simulation to the performance testing. Blade shape optimization study will also be presented.

  16. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    NASA Astrophysics Data System (ADS)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic impact is lower and can therefore be counteracted by temperature, a better reordering of the structure should be achieved. Concerning 14C, except when located close to open pores where it can be removed through radiolytic corrosion, it tends to stabilize in the graphite matrix into sp2 or sp3 structures with variable proportions depending on the irradiation conditions.

  17. Graphene-based room-temperature implementation of a modified Deutsch-Jozsa quantum algorithm.

    PubMed

    Dragoman, Daniela; Dragoman, Mircea

    2015-12-04

    We present an implementation of a one-qubit and two-qubit modified Deutsch-Jozsa quantum algorithm based on graphene ballistic devices working at room temperature. The modified Deutsch-Jozsa algorithm decides whether a function, equivalent to the effect of an energy potential distribution on the wave function of ballistic charge carriers, is constant or not, without measuring the output wave function. The function need not be Boolean. Simulations confirm that the algorithm works properly, opening the way toward quantum computing at room temperature based on the same clean-room technologies as those used for fabrication of very-large-scale integrated circuits.

  18. Enhancing the ballistic thermal transport of silicene through smooth interface coupling

    NASA Astrophysics Data System (ADS)

    Chen, Chao-Yu; She, Yanchao; Xiao, Huaping; Ding, Jianwen; Cao, Juexian; Guo, Zhi-Xin

    2016-04-01

    We have performed nonequilibrium molecular dynamics calculations on the length (L ) dependence of thermal conductivity (K ) of silicene both supported on and sandwiched between the smooth surfaces, i.e. h-BN, at room temperature. We find that K of silicene follows a power law K\\propto {{L}β} , with β increasing from about 0.3-0.4 under the effect of interface coupling, showing an enhancement of the ballistic thermal transport of silicene. We also find that β can be further increased to about 0.6 by increasing the interface coupling strength for the silicene sandwiched between h-BN. The increase of β for the supported case is found to come from the variation of the flexural acoustic (ZA) phonon mode and the first optical phonon mode induced by the substrate, whereas the unusual increase of β for the sandwiched case is attributed to the increment of velocities of all three acoustic phonon modes. These findings provide an interesting route for manipulating the ballistic energy flow in nanomaterials.

  19. Investigation of Ballistic Penetration through Tibia Soft Tissue Simulant

    NASA Astrophysics Data System (ADS)

    Nguyen, Thuy-Tien N.; Masouros, Spyros D.; Tear, Gareth R.; Proud, William G.; Institute of Shock Physics; CentreBlast Injury Studies, Imperial College London, UK Team

    2017-06-01

    High energy trauma events such as from explosions and ballistic weapons can cause severe damage to the human body. The resulting injuries are very complex and their mechanism is not fully understood. Secondary blast injuries, effectively ballistic traumas, to the extremities are commonly reported, especially to the tibia. The aim of this study is to quantify the effect of parameters such as projectile mass and velocity, and impact location on injury thresholds in the leg. The bones of the leg were set in biofidelic gelatin tissue simulant. A 32-mm-bore gas gun was used to launch a sabot carrying a carbon steel projectile 0.5 to 1.1 g in mass at the sample with speeds of 50 to 300 m/s. Penetration depth and impact velocity were recorded. The effect of different postures - such as standing and non-weight bearing -- on injury were considered. The resulting injuries were scored clinically and their correlation with the various impact parameters was calculated. The project is funded by the Royal British Legion, United Kingdom.

  20. A photon thermal diode

    PubMed Central

    Chen, Zhen; Wong, Carlaton; Lubner, Sean; Yee, Shannon; Miller, John; Jang, Wanyoung; Hardin, Corey; Fong, Anthony; Garay, Javier E.; Dames, Chris

    2014-01-01

    A thermal diode is a two-terminal nonlinear device that rectifies energy carriers (for example, photons, phonons and electrons) in the thermal domain, the heat transfer analogue to the familiar electrical diode. Effective thermal rectifiers could have an impact on diverse applications ranging from heat engines to refrigeration, thermal regulation of buildings and thermal logic. However, experimental demonstrations have lagged far behind theoretical proposals. Here we present the first experimental results for a photon thermal diode. The device is based on asymmetric scattering of ballistic energy carriers by pyramidal reflectors. Recent theoretical work has predicted that this ballistic mechanism also requires a nonlinearity in order to yield asymmetric thermal transport, a requirement of all thermal diodes arising from the second Law of Thermodynamics, and realized here using an ‘inelastic thermal collimator’ element. Experiments confirm both effects: with pyramids and collimator the thermal rectification is 10.9±0.8%, while without the collimator no rectification is detectable (<0.3%). PMID:25399761

  1. Spectral mapping of thermal conductivity through nanoscale ballistic transport

    NASA Astrophysics Data System (ADS)

    Hu, Yongjie; Zeng, Lingping; Minnich, Austin J.; Dresselhaus, Mildred S.; Chen, Gang

    2015-08-01

    Controlling thermal properties is central to many applications, such as thermoelectric energy conversion and the thermal management of integrated circuits. Progress has been made over the past decade by structuring materials at different length scales, but a clear relationship between structure size and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral distribution of energy among heat carriers. Here, we experimentally measure this spectral distribution by probing quasi-ballistic transport near nanostructured heaters down to 30 nm using ultrafast optical spectroscopy. Our approach allows us to quantify up to 95% of the total spectral contribution to thermal conductivity from all phonon modes. The measurement agrees well with multiscale and first-principles-based simulations. We further demonstrate the direct construction of mean free path distributions. Our results provide a new fundamental understanding of thermal transport and will enable materials design in a rational way to achieve high performance.

  2. Ballistic and Cyclic Rig Testing of Braided Composite Fan Case Structures

    NASA Technical Reports Server (NTRS)

    Watson, William R.; Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.

    2015-01-01

    FAA fan blade-out certification testing on turbofan engines occurs very late in an engine's development program and is very costly. It is of utmost importance to approach the FAA Certification engine test with a high degree of confidence that the containment structure will not only contain the high-energy debris, but that it will also withstand the cyclic loads that occur with engine spooldown and continued rotation as the non-running engine maintains a low rotor RPM due to forced airflow as the engine-out aircraft returns to an airport. Accurate rig testing is needed for predicting and understanding material behavior of the fan case structure during all phases of this fan blade-out event.

  3. Bullet Trap Feasibility Assessment and Implementation Plan. (Technology Identification).

    DTIC Science & Technology

    1996-03-01

    reduce costs, perhaps one of their premier assets is income generation . Projectiles fired into and recovered from TEC System products can be resold...ombat shooting scenarios with up to 15 individual targets as far away as 300 yards. Page 7 \\IEUMATIC TARGET SYSTEMS gt reliable . portable and... SYYSTEM ] 3DULAR BALLISTIC PANELS (MBPs) A~rking with recycled rubber tire products, DUE- RON has created the proprietary MBP System ,or use in the

  4. Contemporary management of maxillofacial ballistic trauma.

    PubMed

    Breeze, J; Tong, D; Gibbons, A

    2017-09-01

    Ballistic maxillofacial trauma in the UK is fortunately relatively rare, and generally involves low velocity handguns and shotguns. Civilian terrorist events have, however, shown that all maxillofacial surgeons need to understand how to treat injuries from improvised explosive devices. Maxillofacial surgeons in the UK have also been responsible for the management of soldiers evacuated from Iraq and Afghanistan, and in this review we describe the newer types of treatment that have evolved from these conflicts, particularly that of damage-control maxillofacial surgery. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Kinetic Theory of Electronic Transport in Random Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    2018-03-01

    We present the theory of quasiparticle transport in perturbatively small inhomogeneous magnetic fields across the ballistic-to-hydrodynamic crossover. In the hydrodynamic limit, the resistivity ρ generically grows proportionally to the rate of momentum-conserving electron-electron collisions at large enough temperatures T . In particular, the resulting flow of electrons provides a simple scenario where viscous effects suppress conductance below the ballistic value. This new mechanism for ρ ∝T2 resistivity in a Fermi liquid may describe low T transport in single-band SrTiO3 .

  6. Kinetic Theory of Electronic Transport in Random Magnetic Fields.

    PubMed

    Lucas, Andrew

    2018-03-16

    We present the theory of quasiparticle transport in perturbatively small inhomogeneous magnetic fields across the ballistic-to-hydrodynamic crossover. In the hydrodynamic limit, the resistivity ρ generically grows proportionally to the rate of momentum-conserving electron-electron collisions at large enough temperatures T. In particular, the resulting flow of electrons provides a simple scenario where viscous effects suppress conductance below the ballistic value. This new mechanism for ρ∝T^{2} resistivity in a Fermi liquid may describe low T transport in single-band SrTiO_{3}.

  7. KSC-2012-1079

    NASA Image and Video Library

    2012-01-18

    VANDENBERG AIR FORCE BASE, Calif. -- Preparations for the second flight simulation of an Orbital Sciences Corp. Pegasus rocket are under way in processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The rocket is being prepared to launch NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on the Orbital Sciences' L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch, targeted for no earlier than March 14. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB

  8. KSC-2012-1076

    NASA Image and Video Library

    2012-01-18

    VANDENBERG AIR FORCE BASE, Calif. -- Processing and integration of the three stages comprising an Orbital Sciences Corp. Pegasus rocket are complete in processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The rocket is being prepared to launch NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on the Orbital Sciences' L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch, targeted for no earlier than March 14. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB

  9. KSC-2012-1078

    NASA Image and Video Library

    2012-01-18

    VANDENBERG AIR FORCE BASE, Calif. -- Processing and integration of a three-stage Orbital Sciences Corp. Pegasus rocket are complete in processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The rocket is being prepared to launch NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on the Orbital Sciences' L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch, targeted for no earlier than March 14. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB

  10. Theater Ballistic Missile Targets Programmatic Environmental Assessment Vandenberg Air Force Base, California

    DTIC Science & Technology

    1997-12-01

    S UNK Lichnanthe albopilosa White sand dune scarab beetle – S UNK Myotis ciliolabrum Small-footed myotis – S UNK Myotis evotis Long-eared myotis...many seabirds, including western gull and rhinoceros auklet (Cerorhinca monocerata). Regionally rare and declining species observed in the area

  11. Enhanced Algorithms for EO/IR Electronic Stabilization, Clutter Suppression, and Track-Before-Detect for Multiple Low Observable Targets

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Brown, A.; Brown, J.

    The paper describes the development and evaluation of a suite of advanced algorithms which provide significantly-improved capabilities for finding, fixing, and tracking multiple ballistic and flying low observable objects in highly stressing cluttered environments. The algorithms have been developed for use in satellite-based staring and scanning optical surveillance suites for applications including theatre and intercontinental ballistic missile early warning, trajectory prediction, and multi-sensor track handoff for midcourse discrimination and intercept. The functions performed by the algorithms include electronic sensor motion compensation providing sub-pixel stabilization (to 1/100 of a pixel), as well as advanced temporal-spatial clutter estimation and suppression to below sensor noise levels, followed by statistical background modeling and Bayesian multiple-target track-before-detect filtering. The multiple-target tracking is performed in physical world coordinates to allow for multi-sensor fusion, trajectory prediction, and intercept. Output of detected object cues and data visualization are also provided. The algorithms are designed to handle a wide variety of real-world challenges. Imaged scenes may be highly complex and infinitely varied -- the scene background may contain significant celestial, earth limb, or terrestrial clutter. For example, when viewing combined earth limb and terrestrial scenes, a combination of stationary and non-stationary clutter may be present, including cloud formations, varying atmospheric transmittance and reflectance of sunlight and other celestial light sources, aurora, glint off sea surfaces, and varied natural and man-made terrain features. The targets of interest may also appear to be dim, relative to the scene background, rendering much of the existing deployed software useless for optical target detection and tracking. Additionally, it may be necessary to detect and track a large number of objects in the threat cloud, and these objects may not always be resolvable in individual data frames. In the present paper, the performance of the developed algorithms is demonstrated using real-world data containing resident space objects observed from the MSX platform, with backgrounds varying from celestial to combined celestial and earth limb, with instances of extremely bright aurora clutter. Simulation results are also presented for parameterized variations in signal-to-clutter levels (down to 1/1000) and signal-to-noise levels (down to 1/6) for simulated targets against real-world terrestrial clutter backgrounds. We also discuss algorithm processing requirements and C++ software processing capabilities from our on-going MDA- and AFRL-sponsored development of an image processing toolkit (iPTK). In the current effort, the iPTK is being developed to a Technology Readiness Level (TRL) of 6 by mid-2010, in preparation for possible integration with STSS-like, SBIRS high-like and SBSS-like surveillance suites.

  12. Compact modeling of nanoscale triple-gate junctionless transistors covering drift-diffusion to quasi-ballistic carrier transport

    NASA Astrophysics Data System (ADS)

    Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.

    2018-04-01

    In this work, we extend our analytical compact model for nanoscale junctionless triple-gate (JL TG) MOSFETs, capturing carrier transport from drift-diffusion to quasi-ballistic regime. This is based on a simple formulation of the low-field mobility extracted from experimental data using the Y-function method, taking into account the ballistic carrier motion and an increased carrier scattering in process-induced defects near the source/drain regions. The case of a Schottky junction in non-ideal ohmic contact at the drain side was also taken into account by modifying the threshold voltage and ideality factor of the JL transistor. The model is validated with experimental data for n-channel JL TG MOSFETs with channel length varying from 95 down to 25 nm. It can be easily implemented as a compact model for use in Spice circuit simulators.

  13. Ignition of a granular propellant bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildegger-Gaissmaier, A.E.; Johnston, I.R.

    1996-08-01

    An experimental and theoretical study is reported on the ignition process of a low vulnerability ammunition (LOVA) propellant bed in a 127-mm (5-in) bore gun charge. The theoretical investigation was with a two-phase flow interior ballistics code and the model predictions showed the marked influence the igniter system can have on pressure wave development, flame spreading, and the overall interior ballistics performance. A number of different igniter systems were investigated in an empty and propellant-filled gun simulator. Pressure, flame spreading, and high-speed film records were used to analyze the ignition/combustion event. The model predictions for flame spreading were confirmed qualitativelymore » by the experimental data. Full-scale instrumented gun firings were conducted with the optimized igniter design. Pressure waves were not detected in the charge during the firings. Model predictions on overall interior ballistics performance agreed well with the firing data.« less

  14. Experimental observation of ballistic nanofriction on graphene

    NASA Astrophysics Data System (ADS)

    Blue, Brandon; Lodge, Michael; Tang, Chun; Hubbard, William; Martini, Ashlie; Dawson, Ben; Ishigami, Masa

    Recent calculations have predicted that gold nanocrystals slide on graphite with two radically different friction coefficients depending on their speeds. At high sliding speeds in the range of 100?m/s, nanocrystals are expected to behave radically differently in what is known as the ballistic nanofriction regime. In this work, we present a direct measurement of ballistic nanofriction for gold nanocrystals on graphene. Nanocrystals are deposited onto an oscillating graphene-coated quartz crystal microbalance (QCM) in-situ under UHV and allowed to periodically ring down. After deposition, frictional parameters are measured as a function of oscillatory velocity to investigate the predicted velocity dependence of friction. Lubricity beyond even the predictions of ballistic nanofriction is observed at much lower surface velocities than expected, with drag coefficients approaching 8.65*10-14 kg/s. In comparison to the theoretically-predicted value of 2.0*10-13 kg/s, our results suggest a much lower interaction strength than proposed in contemporary models of nanoscopic sliding contacts even at relatively low speeds. This work is based on research supported by the National Science Foundation, Grant No. 0955625 (MLS, BTB, BDD and MI) and Grant No. CMMI-1265594 (CT and AM). BDD and MI were also supported by the Intelligence Community Postdoctoral Fellowship.

  15. [Ballistic concepts and management of gunshot wounds at members].

    PubMed

    Fabeck, L; Hock, N; Goffin, J; Ngatchou, W

    2017-01-01

    Ballistic trauma is not the prerogative of battlefields and currently extends to civil environments. Any surgeon or emergency room can be faced with such trauma whose management requires an understanding of wound ballistics. The aim of this retrospective is reviewing the management of ballistic trauma within the C.H.U. Saint-Pierre hospital over a period of ten years. Data recorded included demographics data, lesions, clinical parameters, imaging, treatment and outcome. It appears that the wounds of the members have a low mortality rate but a significant rate of complications. Patients should be managed according to the ATLS protocol and according hemodynamic stability and location of the injury, benefit from imaging. Unstable patients will be operated in emergency, stable patients will be treated according to the extent of damage and the type of fracture either conservatively or by external fixator and intramedullary centromedullary. Debridement and antibiotics are recommended as a nerve exploration if there is a peripheral paralysis. The management of trauma in our sample appear not optimal in light of the literature especially in terms of setting the vascular point of debridement, antibiotic and nerve repair resulting in significant consequences. Two management protocols according to patients' hemodynamic status are offered.

  16. Impact Resistance of Lightweight Hybrid Structures for Gas Turbine Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Noebe, Ronald D.; Revilock, Duane M.

    2003-01-01

    The ballistic impact resistance of hybrid composite sandwich structures was evaluated with the ultimate goal of developing new materials or structures for potential gas turbine engine fan containment applications. The sandwich structures investigated consisted of GLARE-5 laminates as face sheets with lightweight cellular metallic materials such as honeycomb, foam, and lattice block as a core material. The impact resistance of these hybrid sandwich structures was compared to GLARE-5 laminates and 2024-T3 Al sheet, which were tested as a function of areal weight (material thickness). The GLARE-5 laminates exhibited comparable impact properties to that of 2024-T3 Al at low areal weights, even though there were significant differences in the static tensile properties of these materials. The GLARE-5, however, did have a greater ballistic limit than straight aluminum sheet at higher areal weights. Furthermore, there is up to a 25% advantage in ballistic limit for the GLARE-5/foam sandwich structures compared to straight 2024-T3 Al. But no advantage in ballistic limit was observed between any of the hybrid sandwich structures and thicker versions of GLARE-5. Recommendations for future work are provided, based on these preliminary data.

  17. Beam-induced pressure gradients in the early phase of proton-heated solar flares

    NASA Technical Reports Server (NTRS)

    Tamres, David H.; Canfield, Richard C.; Mcclymont, A. N.

    1986-01-01

    The pressure gradient induced in a coronal loop by proton beam momentum deposition is calculated and compared with the thermal pressure gradient arising from nonuniform deposition of beam energy; it is assumed that the transfer of momentum and energy from beam to target occurs via the Coulomb interaciton. Results are presented for both a low mean energy and a high mean energy proton beam injected at the loop apex and characterized by a power-law energy spectrum. The present treatment takes account of the breakdown of the cold target approximation for the low-energy proton beam in the corona, where the thermal speed of target electrons exceeds the beam speed. It is found that proton beam momentum deposition plays a potentially significant role in flare dynamics only in the low mean energy case and only in the corona, where it may dominate the acceleration of target material for as long as several tens of seconds. This conclusion suggest that the presence of low-energy nonthermal protons may be inferred from velocity-sensitive coronal observations in the early impulsive phase.

  18. Designing capture trajectories to unstable periodic orbits around Europa

    NASA Technical Reports Server (NTRS)

    Russell, Ryan P.; Lam, Try

    2006-01-01

    The hostile environment of third body perturbations restricts a mission designer's ability to find well-behaved reproducible capture trajectories when dealing with limited control authority as is typical with low-thrust missions. The approach outlined in this paper confronts this shortcoming by utilizing dynamical systems theory and an extensive preexisting database of Restricted Three Body Problem (RTBP) periodic orbits. The stable manifolds of unstable periodic orbits are utilized to attract a spacecraft towards Europa. By selecting an appropriate periodic orbit, a mission designer can control important characteristics of the captured state including stability, minimum altitudes, characteristic inclinations, and characteristic radii among others. Several free parameters are optimized in the non-trivial mapping from the RTBP to a more realistic model. Although the ephemeris capture orbit is ballistic by design, low-thrust is used to target the state that leads to the capture orbit, control the spacecraft after arriving on the unstable quasi-periodic orbit, and begin the spiral down towards the science orbit. The approach allows a mission designer to directly target fuel efficient captures at Europa in an ephemeris model. Furthermore, it provides structure and controllability to the design of capture trajectories that reside in a chaotic environment.

  19. FAST20XX: Achievements On European Suborbital Space Flight

    NASA Astrophysics Data System (ADS)

    Mack, A.; Steelant, J.; Adirim, H.; Lentsch, A.; Marini, M.; Pilz, N.

    2011-05-01

    In Europe, the EC co-funded project FAST20XX aims at exploring the borderline between aviation and space by investigating suborbital vehicles. The main focus is the identification and mastering of critical technologies for such vehicles rather than the vehicle development itself. Besides the objectives and overall layout of the project, the paper addresses also the progress made during the first period of the project. Two vehicle concepts are considered. A first one is a space vehicle launched from an airplane providing a low-energy ballistic flight experience using hybrid propulsion. The second is a vertically starting two-stage rocket space vehicle system concept taken as a basis to identify the conditions and constraints experienced during high- energy suborbital ultra-fast transport. The paper mainly discusses the two actual reference vehicles and the technical aspects of prerequisites for commercial operation including safety, human spaceflight, business cases, environmental and legal issues.

  20. Designing a Dielectric Laser Accelerator on a Chip

    NASA Astrophysics Data System (ADS)

    Niedermayer, Uwe; Boine-Frankenheim, Oliver; Egenolf, Thilo

    2017-07-01

    Dielectric Laser Acceleration (DLA) achieves gradients of more than 1GeV/m, which are among the highest in non-plasma accelerators. The long-term goal of the ACHIP collaboration is to provide relativistic (>1 MeV) electrons by means of a laser driven microchip accelerator. Examples of ’’slightly resonant” dielectric structures showing gradients in the range of 70% of the incident laser field (1 GV/m) for electrons with beta=0.32 and 200% for beta=0.91 are presented. We demonstrate the bunching and acceleration of low energy electrons in dedicated ballistic buncher and velocity matched grating structures. However, the design gradient of 500 MeV/m leads to rapid defocusing. Therefore we present a scheme to bunch the beam in stages, which does not only reduce the energy spread, but also the transverse defocusing. The designs are made with a dedicated homemade 6D particle tracking code.

  1. The Evaluation and Implementation of a Water Containment System to Support Aerospace Flywheel Testing

    NASA Technical Reports Server (NTRS)

    Trase, Larry M.

    2002-01-01

    High-energy flywheel systems for aerospace power storage and attitude control applications are being developed because of the potential for increasing the energy density and reducing operational costs. A significant challenge facing the development of the test hardware is containment of the rotating elements in the event of a failure during the development and qualification stages of testing. This containment is critical in order to ensure the safety of the test personnel and the facility. A containment system utilizing water as the containment media is presented. Water containment was found to be a low cost, flexible, and highly effective containment system. Ballistic test results and analytical results are discussed along with a description of a flywheel test facility that was designed and built utilizing the water containment system at the NASA Glenn Research Center at Lewis Field in Cleveland, Ohio.

  2. Electron-hole collision limited transport in charge-neutral bilayer graphene

    NASA Astrophysics Data System (ADS)

    Nam, Youngwoo; Ki, Dong-Keun; Soler-Delgado, David; Morpurgo, Alberto F.

    2017-12-01

    Ballistic transport occurs whenever electrons propagate without collisions deflecting their trajectory. It is normally observed in conductors with a negligible concentration of impurities, at low temperature, to avoid electron-phonon scattering. Here, we use suspended bilayer graphene devices to reveal a new regime, in which ballistic transport is not limited by scattering with phonons or impurities, but by electron-hole collisions. The phenomenon manifests itself in a negative four-terminal resistance that becomes visible when the density of holes (electrons) is suppressed by gate-shifting the Fermi level in the conduction (valence) band, above the thermal energy. For smaller densities, transport is diffusive, and the measured conductivity is reproduced quantitatively, with no fitting parameters, by including electron-hole scattering as the only process causing velocity relaxation. Experiments on a trilayer device show that the phenomenon is robust and that transport at charge neutrality is governed by the same physics. Our results provide a textbook illustration of a transport regime that had not been observed previously and clarify the nature of conduction through charge-neutral graphene under conditions in which carrier density inhomogeneity is immaterial. They also demonstrate that transport can be limited by a fully electronic mechanism, originating from the same microscopic processes that govern the physics of Dirac-like plasmas.

  3. Can p-channel tunnel field-effect transistors perform as good as n-channel?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhulst, A. S., E-mail: anne.verhulst@imec.be; Pourghaderi, M. A.; Collaert, N.

    2014-07-28

    We show that bulk semiconductor materials do not allow perfectly complementary p- and n-channel tunnel field-effect transistors (TFETs), due to the presence of a heavy-hole band. When tunneling in p-TFETs is oriented towards the gate-dielectric, field-induced quantum confinement results in a highest-energy subband which is heavy-hole like. In direct-bandgap IIIV materials, the most promising TFET materials, phonon-assisted tunneling to this subband degrades the subthreshold swing and leads to at least 10× smaller on-current than the desired ballistic on-current. This is demonstrated with quantum-mechanical predictions for p-TFETs with tunneling orthogonal to the gate, made out of InP, In{sub 0.53}Ga{sub 0.47}As, InAs,more » and a modified version of In{sub 0.53}Ga{sub 0.47}As with an artificially increased conduction-band density-of-states. We further show that even if the phonon-assisted current would be negligible, the build-up of a heavy-hole-based inversion layer prevents efficient ballistic tunneling, especially at low supply voltages. For p-TFET, a strongly confined n-i-p or n-p-i-p configuration is therefore recommended, as well as a tensily strained line-tunneling configuration.« less

  4. New Haven, Connecticut: Targeting Low-Income Household Energy Savings (City Energy: From Data to Decisions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strategic Priorities and Impact Analysis Team, Office of Strategic Programs

    This fact sheet "New Haven, Connecticut: Targeting Low-Income Household Energy Savings" explains how the City of New Haven used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  5. Ballistic Limit Equation for Single Wall Titanium

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  6. Miniature high-let radiation spectrometer for space and avionics applications

    NASA Astrophysics Data System (ADS)

    Stassinopoulos, E. G.; Stauffer, Craig A.; Brucker, G. J.

    This paper reports on the design and characterization of a small, low-power, and low-weight instrument, a High-LET Radiation Spectrometer (HiLRS), that measures energy deposited by heavy ions in microelectronic devices. The HiLRS operates on pulse-height analysis principles and is designed for space and avionics applications. The detector component in the instrument is based on large scale arrays of p-n junctions. In this system, the pulse amplitude from a particle hit is directly proportional to the particle LET. A prototype flight unit has been fabricated and calibrated using several heavy ions with varying LETs and protons with several energies. The unit has been delivered to the Ballistic Missile Defense Organization (BMDO) c/o the Air Force Research Laboratory in Albuquerque, NM, for integration into the military Space Technology Research Vehicle (STRV), a US-UK cooperative mission. Another version of HiLRS is being prepared for delivery in April to the Hubble Space Telescope (HST) project, to fly on the HST Orbital Systems Test (HOST) platform on a shuttle mission.

  7. Ballistics Trajectory and Impact Analysis for Insensitive Munitions and Hazard Classification Project Criteria

    NASA Astrophysics Data System (ADS)

    Baker, Ernest; van der Voort, Martijn; NATO Munitions Safety Information Analysis Centre Team

    2017-06-01

    Ballistics trajectory and impact conditions calculations were conducted in order to investigate the origin of the projection criteria for Insensitive Munitions (IM) and Hazard Classification (HC). The results show that the existing IM and HC projection criteria distance-mass relations are based on launch energy rather than impact conditions. The distance-mass relations were reproduced using TRAJCAN trajectory analysis by using launch energies of 8, 20 and 79J and calculating the maximum impact distance reached by a natural fragment (steel) launched from 1 m height. The analysis shows that at the maximum throw distances, the impact energy is generally much smaller than the launch energy. Using maximum distance projections, new distance-mass relations were developed that match the criteria based on impact energy at 15m and beyond rather than launch energy. Injury analysis was conducted using penetration injury and blunt injury models. The smallest projectile masses in the distance-mass relations are in the transition region from penetration injury to blunt injury. For this reason, blunt injury dominates the assessment of injury or lethality. State of the art blunt injury models predict only minor injury for a 20J impact. For a 79J blunt impact, major injury is likely to occur. MSIAC recommends changing the distance-mass relation that distinguishes a munitions burning response to a 20 J impact energy criterion at 15 m and updating of the UN Orange Book.

  8. Mission applications of electric propulsion

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.

    1974-01-01

    This paper reviews the mission applications of electric propulsion. The energy requirements of candidate high-energy missions gaining in NASA priority are used to highlight the potential of electric propulsion. Mission-propulsion interfaces are examined to point out differences between chemical and electric applications. Brief comparisons between ballistic requirements and capabilities and those of electric propulsion show that electric propulsion is presently the most practical and perhaps the only technology which can accomplish missions with these energy requirements.

  9. Low Energy Dissipation Nano Device Research

    NASA Astrophysics Data System (ADS)

    Yu, Jenny

    2015-03-01

    The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.

  10. Electron beam charging of insulators: A self-consistent flight-drift model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touzin, M.; Goeuriot, D.; Guerret-Piecourt, C.

    2006-06-01

    Electron beam irradiation and the self-consistent charge transport in bulk insulating samples are described by means of a new flight-drift model and an iterative computer simulation. Ballistic secondary electron and hole transport is followed by electron and hole drifts, their possible recombination and/or trapping in shallow and deep traps. The trap capture cross sections are the Poole-Frenkel-type temperature and field dependent. As a main result the spatial distributions of currents j(x,t), charges {rho}(x,t), the field F(x,t), and the potential slope V(x,t) are obtained in a self-consistent procedure as well as the time-dependent secondary electron emission rate {sigma}(t) and the surfacemore » potential V{sub 0}(t). For bulk insulating samples the time-dependent distributions approach the final stationary state with j(x,t)=const=0 and {sigma}=1. Especially for low electron beam energies E{sub 0}<4 keV the incorporation of mainly positive charges can be controlled by the potential V{sub G} of a vacuum grid in front of the target surface. For high beam energies E{sub 0}=10, 20, and 30 keV high negative surface potentials V{sub 0}=-4, -14, and -24 kV are obtained, respectively. Besides open nonconductive samples also positive ion-covered samples and targets with a conducting and grounded layer (metal or carbon) on the surface have been considered as used in environmental scanning electron microscopy and common SEM in order to prevent charging. Indeed, the potential distributions V(x) are considerably small in magnitude and do not affect the incident electron beam neither by retarding field effects in front of the surface nor within the bulk insulating sample. Thus the spatial scattering and excitation distributions are almost not affected.« less

  11. A Combinatorial Geometry Computer Description of the XR311 Vehicle

    DTIC Science & Technology

    1978-04-01

    cards or magnetic tape. The shot line output of the GRID subroutine of the GIFT code is also stored on magnetic tape for future vulnera- bility...descriptions as processed by the Geometric Information For Targets ( GIFT )2 computer code. This report documents the COM-GEOM target description for all...72, March 1974. ’L.W. Bains and M.J. Reisinger, "The GIFT Code User Manual, VOL 1, Introduction and Input Requirements, " Ballistic Research

  12. Ballistic Evaluation of 2060 Aluminum

    DTIC Science & Technology

    2016-05-24

    thicknesses subjected to impacts from various munitions including armor-piercing (AP) and fragment-simulating projectiles (FSPs). Additionally, Table 2...Experimental Procedure The V50 is defined as the impact velocity at which the projectile is equally as likely to penetrate the target as it is to arrest. A...0.51-mm (0.020-inch) 2024 T3 Al witness plate was positioned 152 mm (6 inches) behind the target to determine the outcome of each shot. An impact is

  13. Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos IIILaser: Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrabo, L. N.; Lyons, P. W.; Jones, R. A.

    This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt Pharos III neodymium-glass pulsed laser. Six different experimental setups were employed using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The 2nd Campaign investigated impulse generation with the laser beam focused at grazing incidence across near horizontal target surfaces, with pulse energies ranging from 55 to 186 J, and pulse-widths of 2 to 30 ns FWHM. Laser generated impulse was measuredmore » with a horizontal Plexiglas registered ballistic pendulum equipped with either a steel target insert or 0.5 Tesla permanent magnet (NEIT-40), to quantify changes in the momentum coupling coefficient (C{sub M}). Part 2 of this 2-part paper covers Campaign no. 2 results including C{sub M} performance data, and long exposure color photos of LP plasma phenomena.« less

  14. Speed-Dependent Contribution of Callosal Pathways to Ipsilateral Movements

    PubMed Central

    Tazoe, Toshiki

    2013-01-01

    Transcallosal inhibitory interactions between primary motor cortices are important to suppress unintended movements in a resting limb during voluntary activation of the contralateral limb. The functional contribution of transcallosal inhibition targeting the voluntary active limb remains unknown. Using transcranial magnetic stimulation, we examined transcallosal inhibition [by measuring interhemispheric inhibition (IHI) and the ipsilateral silent period (iSP)] in the preparatory and execution phases of isotonic slower self-paced and ballistic movements performed by the ipsilateral index finger into abduction and the elbow into flexion in intact humans. We demonstrate decreased IHI in the preparatory phase of self-paced and ballistic index finger and elbow movements compared to rest; the decrease in IHI was larger during ballistic than self-paced movements. In contrast, in the execution phase, IHI and the iSP increased during ballistic compared to self-paced movements. Transcallosal inhibition was negatively correlated with reaction times in the preparatory phase and positively correlated with movement amplitude in the execution phase. Together, our results demonstrate a widespread contribution of transcallosal inhibition to ipsilateral movements of different speeds with a functional role during rapid movements; at faster speeds, decreased transcallosal inhibition in the preparatory phase may contribute to start movements rapidly, while the increase in the execution phase may contribute to stop the movement. We argue that transcallosal pathways enable signaling of the time of discrete behavioral events during ipsilateral movements, which is amplified by the speed of a movement. PMID:24107950

  15. Ballistics considerations for small-caliber, low-density projectiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.

    1993-11-01

    One major application for single- and two-stage light gas guns is for fueling magnetic fusion confinement devices. Powder guns are not a feasible alternative due to possible plasma contamination by residual powder gases and the eventual requirement of steady-state operation at {approximately} 1 Hz, which will dictate a closed gas handling system where propellant gases are recovered, processed and recompressed. Interior ballistic calculations for single-stage light gas guns, both analytical and numerical, are compared to an extensive data base for low density hydrogenic projectiles (pellets). Some innovative range diagnostics are described for determining the size and velocity of these smallmore » (several mm) size projectiles. A conceptual design of a closed cycle propellant gas system is presented including tradeoffs between different light propellant gases.« less

  16. Design study of prestressed rotor spar concept

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1980-01-01

    Studies on the Bell Helicopter 540 Rotor System of the AH-1G helicopter were performed. The stiffness, mass and geometric configurations of the Bell blade were matched to give a dynamically similar prestressed composite blade. A multi-tube, prestressed composite spar blade configuration was designed for superior ballistic survivability at low life cycle cost. The composite spar prestresses, imparted during fabrication, are chosen to maintain compression in the high strength cryogenically stretchformed 304-L stainless steel liner and tension in the overwrapped HTS graphite fibers under operating loads. This prestressing results in greatly improved crack propagation and fatigue resistance as well as enhanced fiber stiffness properties. Advantages projected for the prestressed composite rotor spar concept include increased operational life and improved ballistic survivability at low life cycle cost.

  17. Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA

    NASA Astrophysics Data System (ADS)

    Michel, D. T.; Igumenshchev, I. V.; Davis, A. K.; Edgell, D. H.; Froula, D. H.; Jacobs-Perkins, D. W.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Campbell, E. M.

    2018-03-01

    Multiple self-emission x-ray images are used to measure tomographically target modes 1, 2, and 3 up to the end of the target acceleration in direct-drive implosions on OMEGA. Results show that the modes consist of two components: the first varies linearly with the laser beam-energy balance and the second is static and results from physical effects including beam mistiming, mispointing, and uncertainty in beam energies. This is used to reduce the target low modes of low-adiabat implosions from 2.2% to 0.8% by adjusting the beam-energy balance to compensate these static modes.

  18. Low Z target switching to increase tumor endothelial cell dose enhancement during gold nanoparticle-aided radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berbeco, Ross I., E-mail: rberbeco@partners.org; Detappe, Alexandre; Tsiamas, Panogiotis

    2016-01-15

    Purpose: Previous studies have introduced gold nanoparticles as vascular-disrupting agents during radiation therapy. Crucial to this concept is the low energy photon content of the therapy radiation beam. The authors introduce a new mode of delivery including a linear accelerator target that can toggle between low Z and high Z targets during beam delivery. In this study, the authors examine the potential increase in tumor blood vessel endothelial cell radiation dose enhancement with the low Z target. Methods: The authors use Monte Carlo methods to simulate delivery of three different clinical photon beams: (1) a 6 MV standard (Cu/W) beam,more » (2) a 6 MV flattening filter free (Cu/W), and (3) a 6 MV (carbon) beam. The photon energy spectra for each scenario are generated for depths in tissue-equivalent material: 2, 10, and 20 cm. The endothelial dose enhancement for each target and depth is calculated using a previously published analytic method. Results: It is found that the carbon target increases the proportion of low energy (<150 keV) photons at 10 cm depth to 28% from 8% for the 6 MV standard (Cu/W) beam. This nearly quadrupling of the low energy photon content incident on a gold nanoparticle results in 7.7 times the endothelial dose enhancement as a 6 MV standard (Cu/W) beam at this depth. Increased surface dose from the low Z target can be mitigated by well-spaced beam arrangements. Conclusions: By using the fast-switching target, one can modulate the photon beam during delivery, producing a customized photon energy spectrum for each specific situation.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, R.S.; Arkin, W.M.

    The US. nuclear stockpile is at its lowest level since late 1958 or early 1959. In the past year, many weapons were returned to central military storage depots in the United States and funneled to the Energy Department's Pantex facility for final disassembly and disposal. This article presents a table showing the author's current estimate of the composition of the current operational stockpile, which contains some 10,500 warheads. Also categorized are warheads in [open quotes]inactive reserve[close quotes] and warheads awaiting eventual disassembly. The warheads are generally grouped as bombs, submarine-launched ballistic missiles, intercontinental ballistic missiles, air-launched cruise missiles, and sea-launchedmore » cruise missiles. Initial production dates and yield are listed for the warheads.« less

  20. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems. Part 2; Ballistic Impact Testing

    NASA Technical Reports Server (NTRS)

    Pereira, J. M.; Revilock, D. M.

    2004-01-01

    Under the Federal Aviation Administration's Airworthiness Assurance Center of Excellence and the Aircraft Catastrophic Failure Prevention Program, National Aeronautics and Space Administration Glenn Research Center collaborated with Arizona State University, Honeywell Engines, Systems and Services, and SRI International to develop improved computational models for designing fabric-based engine containment systems. In the study described in this report, ballistic impact tests were conducted on layered dry fabric rings to provide impact response data for calibrating and verifying the improved numerical models. This report provides data on projectile velocity, impact and residual energy, and fabric deformation for a number of different test conditions.

  1. Interplanetary mission design handbook. Volume 1, part 4: Earth to Saturn ballistic mission opportunities, 1985-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.

    1981-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Saturn are provided. Contours of launch energy requirements as well as many other launch and Saturn arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Saturn probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations elating various parameters. This is the first of a planned series of mission design documents which will apply to all planets and some other bodies in the solar system.

  2. MIDAS - Mission design and analysis software for the optimization of ballistic interplanetary trajectories

    NASA Technical Reports Server (NTRS)

    Sauer, Carl G., Jr.

    1989-01-01

    A patched conic trajectory optimization program MIDAS is described that was developed to investigate a wide variety of complex ballistic heliocentric transfer trajectories. MIDAS includes the capability of optimizing trajectory event times such as departure date, arrival date, and intermediate planetary flyby dates and is able to both add and delete deep space maneuvers when dictated by the optimization process. Both powered and unpowered flyby or gravity assist trajectories of intermediate bodies can be handled and capability is included to optimize trajectories having a rendezvous with an intermediate body such as for a sample return mission. Capability is included in the optimization process to constrain launch energy and launch vehicle parking orbit parameters.

  3. Modeling internal ballistics of gas combustion guns.

    PubMed

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  4. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonicalmore » nucleobases fragmentations of N–H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N–H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π{sub 1}{sup −} and π{sub 2}{sup −} states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.« less

  5. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV).

    PubMed

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-07

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1 (-) and π2 (-) states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  6. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV)

    NASA Astrophysics Data System (ADS)

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-01

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1- and π2- states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  7. Capture of near-Earth objects with low-thrust propulsion and invariant manifolds

    NASA Astrophysics Data System (ADS)

    Tang, Gao; Jiang, Fanghua

    2016-01-01

    In this paper, a mission incorporating low-thrust propulsion and invariant manifolds to capture near-Earth objects (NEOs) is investigated. The initial condition has the spacecraft rendezvousing with the NEO. The mission terminates once it is inserted into a libration point orbit (LPO). The spacecraft takes advantage of stable invariant manifolds for low-energy ballistic capture. Low-thrust propulsion is employed to retrieve the joint spacecraft-asteroid system. Global optimization methods are proposed for the preliminary design. Local direct and indirect methods are applied to optimize the two-impulse transfers. Indirect methods are implemented to optimize the low-thrust trajectory and estimate the largest retrievable mass. To overcome the difficulty that arises from bang-bang control, a homotopic approach is applied to find an approximate solution. By detecting the switching moments of the bang-bang control the efficiency and accuracy of numerical integration are guaranteed. By using the homotopic approach as the initial guess the shooting function is easy to solve. The relationship between the maximum thrust and the retrieval mass is investigated. We find that both numerically and theoretically a larger thrust is preferred.

  8. Effects of Target Fragmentation on Evaluation of LET Spectra From Space Radiation in Low-Earth Orbit (LEO) Environment: Impact on SEU Predictions

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Cucinotta, F. A.; Badhwar, G. D.; ONeill, P. M.; Badavi, F. F.

    1995-01-01

    Recent improvements in the radiation transport code HZETRN/BRYNTRN and galactic cosmic ray environmental model have provided an opportunity to investigate the effects of target fragmentation on estimates of single event upset (SEU) rates for spacecraft memory devices. Since target fragments are mostly of very low energy, an SEU prediction model has been derived in terms of particle energy rather than linear energy transfer (LET) to account for nonlinear relationship between range and energy. Predictions are made for SEU rates observed on two Shuttle flights, each at low and high inclination orbit. Corrections due to track structure effects are made for both high energy ions with track structure larger than device sensitive volume and for low energy ions with dense track where charge recombination is important. Results indicate contributions from target fragments are relatively important at large shield depths (or any thick structure material) and at low inclination orbit. Consequently, a more consistent set of predictions for upset rates observed in these two flights is reached when compared to an earlier analysis with CREME model. It is also observed that the errors produced by assuming linear relationship in range and energy in the earlier analysis have fortuitously canceled out the errors for not considering target fragmentation and track structure effects.

  9. The topography of the environment alters the optimal search strategy for active particles

    PubMed Central

    Volpe, Giovanni

    2017-01-01

    In environments with scarce resources, adopting the right search strategy can make the difference between succeeding and failing, even between life and death. At different scales, this applies to molecular encounters in the cell cytoplasm, to animals looking for food or mates in natural landscapes, to rescuers during search and rescue operations in disaster zones, and to genetic computer algorithms exploring parameter spaces. When looking for sparse targets in a homogeneous environment, a combination of ballistic and diffusive steps is considered optimal; in particular, more ballistic Lévy flights with exponent α≤1 are generally believed to optimize the search process. However, most search spaces present complex topographies. What is the best search strategy in these more realistic scenarios? Here, we show that the topography of the environment significantly alters the optimal search strategy toward less ballistic and more Brownian strategies. We consider an active particle performing a blind cruise search for nonregenerating sparse targets in a 2D space with steps drawn from a Lévy distribution with the exponent varying from α=1 to α=2 (Brownian). We show that, when boundaries, barriers, and obstacles are present, the optimal search strategy depends on the topography of the environment, with α assuming intermediate values in the whole range under consideration. We interpret these findings using simple scaling arguments and discuss their robustness to varying searcher’s size. Our results are relevant for search problems at different length scales from animal and human foraging to microswimmers’ taxis to biochemical rates of reaction. PMID:29073055

  10. The topography of the environment alters the optimal search strategy for active particles

    NASA Astrophysics Data System (ADS)

    Volpe, Giorgio; Volpe, Giovanni

    2017-10-01

    In environments with scarce resources, adopting the right search strategy can make the difference between succeeding and failing, even between life and death. At different scales, this applies to molecular encounters in the cell cytoplasm, to animals looking for food or mates in natural landscapes, to rescuers during search and rescue operations in disaster zones, and to genetic computer algorithms exploring parameter spaces. When looking for sparse targets in a homogeneous environment, a combination of ballistic and diffusive steps is considered optimal; in particular, more ballistic Lévy flights with exponent α≤1 are generally believed to optimize the search process. However, most search spaces present complex topographies. What is the best search strategy in these more realistic scenarios? Here, we show that the topography of the environment significantly alters the optimal search strategy toward less ballistic and more Brownian strategies. We consider an active particle performing a blind cruise search for nonregenerating sparse targets in a 2D space with steps drawn from a Lévy distribution with the exponent varying from α=1 to α=2 (Brownian). We show that, when boundaries, barriers, and obstacles are present, the optimal search strategy depends on the topography of the environment, with α assuming intermediate values in the whole range under consideration. We interpret these findings using simple scaling arguments and discuss their robustness to varying searcher's size. Our results are relevant for search problems at different length scales from animal and human foraging to microswimmers' taxis to biochemical rates of reaction.

  11. Conventional Prompt Global Strike and Long-Range Ballistic Missiles: Background and Issues

    DTIC Science & Technology

    2011-03-01

    deployed. It also would be based on a conical design, with winglets , rather than on the winged design of the HTV-2. Upon nearing a target, the weapon...nuclear and conventional strike forces as a separate mission and separate concept from PGS, Congress, initially at least, blended both into the

  12. 75 FR 38991 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and Missile Launch Operations at... application from the Alaska Aerospace Corporation (AAC) for authorization to take marine mammals incidental to launching space launch vehicles, long range ballistic target missiles, and other smaller missile systems at...

  13. BALLISTIC MISSILE DEFENSE: Strategic Target System Launches from Kauai.

    DTIC Science & Technology

    1993-09-01

    d© Kauai Niihau ^V Molokai Oahu CSJ. Maui _ s>S> Lanai o Hawaii Hawaiian Islands 0 0 4 8 20 Kilometers 0 2 4 10...B-223094 Figure 6: Map of Launch Site Showing Ground Hazard Area t N rf#C?Kauai Niihau ^\\ Molokai Oahu <S3/wMaui Lanai • Hawaii

  14. Analysis and characterization of graphene-on-substrate devices

    NASA Astrophysics Data System (ADS)

    Berdebes, Dionisis

    The purpose of this MS Thesis is the analysis and characterization of graphene on substrate structures prepared at the Birck Nanotechnology Center-Purdue University/IBM Watson Research Center-N.Y., and characterized under low-field transport conditions. First, a literature survey is conducted, both in theoretical and experimental work on graphene transport phenomena, and the open issues are reported. Next, the theory of low-field transport in graphene is reviewed within a Landauer framework. Experimental results of back-gated graphene-on-substrate devices, prepared by the Appenzeller group, are then presented, followed by an extraction of an energy/temperature dependent backscattering mean free path as the main characterization parameter. A key conclusion is the critical role of contacts in two-probe measurements. In this framework, a non-self-consistent Non Equilibrium Green's Function method is employed for the calculation of the odd and even metal-graphene ballistic interfacial resistance. A good agreement with the relevant experimental work is observed.

  15. Effect of micro lesions of the basal ganglia on ballistic movements in patients with deep brain stimulation.

    PubMed

    Singh, Arun; Mehrkens, Jan H; Bötzel, Kai

    2012-03-15

    Bradykinesia and hypokinesia are the prominent symptoms of substantia nigra degeneration in Parkinson's disease (PD). In segmental dystonia, movements of not affected limbs are not impaired. Here we studied the impact of the mere implantation of stimulation electrodes on the performance of fast movements in these two groups. We investigated 9 PD patients with subthalamic electrodes and 9 patients with segmental dystonia with electrodes in the globus pallidus internum. Patients were studied on the first postoperative day without electrical stimulation of the electrodes. Subjects had to perform boxing movements with either touching the target or stopping the fist in front of the target. PD subjects performed significantly faster movements in the touch-task only as compared to dystonic patients. No difference was seen in the stopping task. In conclusion, our findings suggest that a small subthalamic lesion in individuals with PD specifically reverses bradykinesia during simple ballistic movements (touch) but not during complex ones requiring more pre-programming (no-touch paradigm). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Pyrotechnic Shock Analysis Using Statistical Energy Analysis

    DTIC Science & Technology

    2015-10-23

    SEA subsystems. A couple of validation examples are provided to demonstrate the new approach. KEY WORDS : Peak Ratio, phase perturbation...Ballistic Shock Prediction Models and Techniques for Use in the Crusader Combat Vehicle Program,” 11th Annual US Army Ground Vehicle Survivability

  17. Effects of Strength vs. Ballistic-Power Training on Throwing Performance

    PubMed Central

    Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos

    2013-01-01

    The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key points Ballistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks. In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance. The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters. PMID:24149736

  18. Effects of Strength vs. Ballistic-Power Training on Throwing Performance.

    PubMed

    Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos

    2013-01-01

    The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key pointsBallistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks.In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance.The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters.

  19. A safe model for creating blunt and penetrating ballistic injury.

    PubMed

    Graeber, G M; Belville, W D; Sepulveda, R A

    1981-06-01

    Minor modification of an existing readily available captive projectile weapon system has allowed development of a safe model for studying both penetrating ballistic and blunt tissue injury. A captive projectile weapon (defined as a firearm in which the projectile does not leave the weapon and in which the external wounding range is very limited) diminishes greatly the possibility of injury to personnel while it allows a high degree of reproducibility. The system has three parts: the pistol (wt 1.3 kg), a stainless steel stand, and a rack for holding the organ to be injured. It has been used 14 times in developing a canine model for the study of penetrating ballistic renal injury. When a 2 grain, .22 caliber charge is fired in the weapon, the .45 caliber captive projectile travels 7.5 cm and penetrates the kidney completely. The kinetic energy available for transfer from the projectile to the kidney and renal vessels totals 211 joules, which is comparable to the kinetic energy of projectiles for many law enforcement sidearms at 45.72 meters (50 yards) from the muzzle of the weapon. Comparison of the wounds showed complete reproducibility of injury (100%) over all 14 subjects [Entrance wound greater than or equal to .45 caliber (100%). Exit wound greater than or equal to .45 caliber (100%). Complete penetration (100%)]. This weapon system can be modified to duplicate the injury created by missiles from many small arms by modifying the captive projectile and/or the charge. Changing the leading surface of the captive projectile allows delivery of the energy over a broad surface such that blunt injuries can be simulated.

  20. Solid-propellant rocket motor internal ballistic performance variation analysis, phase 2

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.

    1976-01-01

    The Monte Carlo method was used to investigate thrust imbalance and its first time derivative throughtout the burning time of pairs of solid rocket motors firing in parallel. Results obtained compare favorably with Titan 3 C flight performance data. Statistical correlations of the thrust imbalance at various times with corresponding nominal trace slopes suggest several alternative methods of predicting thrust imbalance. The effect of circular-perforated grain deformation on internal ballistics is discussed, and a modified design analysis computer program which permits such an evaluation is presented. Comparisons with SRM firings indicate that grain deformation may account for a portion of the so-called scale factor on burning rate between large motors and strand burners or small ballistic test motors. Thermoelastic effects on burning rate are also investigated. Burning surface temperature is calculated by coupling the solid phase energy equation containing a strain rate term with a model of gas phase combustion zone using the Zeldovich-Novozhilov technique. Comparisons of solutions with and without the strain rate term indicate a small but possibly significant effect of the thermoelastic coupling.

  1. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 2; Ballistic Impact Testing

    NASA Technical Reports Server (NTRS)

    Revilock, D. M.; Pereira, J. M.

    2009-01-01

    This report summarizes the ballistic impact testing that was conducted to provide validation data for the development of numerical models of blade-out events in fabric containment systems. The ballistic impact response of two different fiber materials - Kevlar(TradeName) 49 and Zylon(TradeName) AS (as spun) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation, and velocity of the projectile were varied and recorded. In most cases, the tests were designed so the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models to predict the response of fabrics under conditions that simulate those of a jet engine blade-release situation. In addition, some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different fabric materials.

  2. FAA Development of Reliable Modeling Methodologies for Fan Blade Out Containment Analysis. Part 2; Ballistic Impact Testing

    NASA Technical Reports Server (NTRS)

    Revilock, Duane M.; Pereira, J. Michael

    2008-01-01

    This report summarizes the ballistic impact testing that was conducted to provide validation data for the development of numerical models of blade out events in fabric containment systems. The ballistic impact response of two different fiber materials - Kevlar 49 (E.I. DuPont Nemours and Company) and Zylon AS (Toyobo Co., Ltd.) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation and velocity of the projectile were varied and recorded. In most cases the tests were designed such that the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models for predicting the response of fabrics under conditions simulating those of a jet engine blade release situations. In addition some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different materials.

  3. KSC-2012-1117

    NASA Image and Video Library

    2012-01-22

    VANDENBERG AIR FORCE BASE, Calif. -- Stage 2 is separated from stage 3 of an Orbital Sciences Corp. Pegasus rocket in processing facility 1555 at Vandenberg Air Force Base (VAFB) in California to reinstall some RF cabling. The stages were remated after the installation was complete. The rocket is being prepared to launch NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on the Orbital Sciences' L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch, targeted for no earlier than March 14. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB

  4. A fast recognition method of warhead target in boost phase using kinematic features

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Xu, Shiyou; Tian, Biao; Wu, Jianhua; Chen, Zengping

    2015-12-01

    The radar targets number increases from one to more when the ballistic missile is in the process of separating the lower stage rocket or casting covers or other components. It is vital to identify the warhead target quickly among these multiple targets for radar tracking. A fast recognition method of the warhead target is proposed to solve this problem by using kinematic features, utilizing fuzzy comprehensive method and information fusion method. In order to weaken the influence of radar measurement noise, an extended Kalman filter with constant jerk model (CJEKF) is applied to obtain more accurate target's motion information. The simulation shows the validity of the algorithm and the effects of the radar measurement precision upon the algorithm's performance.

  5. Tolerance of the skull to blunt ballistic temporo-parietal impact.

    PubMed

    Raymond, David; Van Ee, Chris; Crawford, Gregory; Bir, Cynthia

    2009-11-13

    Less-lethal ballistic projectiles are used by police personnel to temporarily incapacitate suspects. While the frequency of these impacts to the head is low, they account for more serious injuries than impacts to any other body region. As a result, there is an urgent need to assess the tolerance of the head to such impacts. The focus of this study was to investigate the tolerance of the temporo-parietal skull to blunt ballistic impact and establish injury criteria for risk assessment. Seven unembalmed isolated cadaver heads were subjected to fourteen impacts. Specimens were instrumented with a nine-accelerometer array as well as strain gages surrounding the impact site. Impacts were performed with a 38 mm instrumented projectile at velocities ranging from 18 to 37 m/s. CT images and autopsies were performed to document resulting fractures. Peak fracture force for the seven resulting fractures was 5633+/-2095 N. Peak deformation for fracture-producing impacts was 7.8+/-3.2 mm. The blunt criterion (BC), peak force and principal strain were determined to be the best predictors of depressed comminuted fractures. Temporo-parietal tolerance levels were consistent with previous studies. An initial force tolerance level of 2346 N is established for the temporo-parietal region for blunt ballistic impact with a 38 mm diameter impactor.

  6. Low carbon and clean energy scenarios for India: Analysis of targets approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Priyadarshi R.; Chaturvedi, Vaibhav

    2012-12-01

    Low carbon energy technologies are gaining increasing importance in India for reducing emissions as well as diversifying its energy supply mix. The present paper presents and analyses a targeted approach for pushing solar, wind and nuclear technologies in the Indian energy market. Targets for these technologies have been constructed on the basis of Indian government documents, policy announcements and expert opinion. Different targets have been set for the reference scenario and the carbon price scenario. In the reference scenario it is found that in the long run all solar, wind and nuclear will achieve their targets without any subsidy push.more » In the short run however, nuclear and solar energy require significant subsidy push. Nuclear energy requires a much higher subsidy allocation as compared to solar because the targets assumed are also higher for nuclear energy. Under a carbon price scenario, the carbon price drives the penetration of these technologies significantly. Still subsidy is required especially in the short run when the carbon price is low. It is also found that pushing solar, wind and nuclear technologies might lead to decrease in share of CCS under the price scenario and biomass under both BAU and price scenario, which implies that one set of low carbon technologies is substituted by other set of low carbon technologies. Thus the objective of emission mitigation might not be achieved due to this substitution. Moreover sensitivity on nuclear energy cost was done to represent risk mitigation for this technology and it was found that higher cost can significantly decrease the share of this technology under both the BAU and carbon price scenario.« less

  7. Mechanical properties of silicone based composites as a temperature insensitive ballistic backing material for quantifying back face deformation.

    PubMed

    Edwards, Tara D; Bain, Erich D; Cole, Shawn T; Freeney, Reygan M; Halls, Virginia A; Ivancik, Juliana; Lenhart, Joseph L; Napadensky, Eugene; Yu, Jian H; Zheng, James Q; Mrozek, Randy A

    2018-04-01

    This paper describes a new witness material for quantifying the back face deformation (BFD) resulting from high rate impact of ballistic protective equipment. Accurate BFD quantification is critical for the assessment and certification of personal protective equipment, such as body armor and helmets, and ballistic evaluation. A common witness material is ballistic clay, specifically, Roma Plastilina No. 1 (RP1). RP1 must be heated to nearly 38°C to pass calibration, and used within a limited time frame to remain in calibration. RP1 also exhibits lot-to-lot variability and is sensitive to time, temperature, and handling procedures, which limits the BFD accuracy and reproducibility. A new silicone composite backing material (SCBM) was developed and tested side-by-side with heated RP1 using quasi-static indentation and compression, low velocity impact, spherical projectile penetration, and both soft and hard armor ballistic BFD measurements to compare their response over a broad range of strain rates and temperatures. The results demonstrate that SCBM mimics the heated RP1 response at room temperature and exhibits minimal temperature sensitivity. With additional optimization of the composition and processing, SCBM could be a drop-in replacement for RP1 that is used at room temperature during BFD quantification with minimal changes to the current RP1 handling protocols and infrastructure. It is anticipated that removing the heating requirement, and temperature-dependence, associated with RP1 will reduce test variability, simplify testing logistics, and enhance test range productivity. Published by Elsevier B.V.

  8. Ballistic projectile trajectory determining system

    DOEpatents

    Karr, Thomas J.

    1997-01-01

    A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile.

  9. Molecular-dynamics simulations of energetic C{sub 60} impacts on (2x1)-(100) silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaoyuan; Albe, Karsten; Averback, Robert S.

    2000-07-01

    Single impacts of energetic C{sub 60} clusters on (2x1)-(100) silicon substrates are studied by molecular-dynamics simulations. The role of impact energies and internal cluster energy are investigated in detail. Six different energy regimes can be identified at the end of the ballistic phase: At thermal energies below 20 eV the fullerene cages undergo elastic deformation, while impinging on the surface, and are mostly chemisorpted on top of the (2x1)-dimer rows. Between 20 and 100 eV the cage structure is preserved after the collision, but the cluster comes to rest within a few monolayers of the silicon surface. At energies ofmore » 100-500 eV the cluster partially decomposes and small coherent carbon caps are embedded in the surface. At higher energies up to 1.5 keV complete decomposition of the fullerene cluster occurs and an amorphous zone is formed in the subsurface area. At energies greater than approximately 1.5 keV craters form and above 6 keV sputtering becomes significant. In all cases the substrate temperature is of minor influence on the final result, but the projectile temperature is important for impacts at lower energies (<1.5 keV). For high energy impacts the ballistics resemble that of single atom impacts. Nearly 1:1 stoichiometry is obtained for impact energies around 1 keV. These results reveal an interesting possibility for controlled implantation of C in Si at high local concentrations, which might allow the formation of silicon carbide. (c) 2000 American Institute of Physics.« less

  10. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver.

    PubMed

    Petrusca, Lorena; Viallon, Magalie; Breguet, Romain; Terraz, Sylvain; Manasseh, Gibran; Auboiroux, Vincent; Goget, Thomas; Baboi, Loredana; Gross, Patrick; Sekins, K Michael; Becker, Christoph D; Salomir, Rares

    2014-01-16

    Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. At the end of the procedure, no ultrasound indication of the marker's presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Experimental validation of this new ballistic marker method was performed for liver MRgHIFU ablation, free of any side effects (e.g. no edema around the marker, no infection, no bleeding). The study suggests that the absolute reference marker had ultrasound conspicuity below the detection threshold, was irreversible, MR-compatible and MR-detectable, while also being a well-established histology staining technique.

  11. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver

    PubMed Central

    2014-01-01

    Background Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. Methods The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. Results At the end of the procedure, no ultrasound indication of the marker’s presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Conclusions Experimental validation of this new ballistic marker method was performed for liver MRgHIFU ablation, free of any side effects (e.g. no edema around the marker, no infection, no bleeding). The study suggests that the absolute reference marker had ultrasound conspicuity below the detection threshold, was irreversible, MR-compatible and MR-detectable, while also being a well-established histology staining technique. PMID:24433332

  12. Effects of radiation reaction in the interaction between cluster media and high intensity lasers in the radiation dominant regime

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki

    2016-06-01

    Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.

  13. Investigation of dental alginate and agar impression materials as a brain simulant for ballistic testing.

    PubMed

    Falland-Cheung, Lisa; Piccione, Neil; Zhao, Tianqi; Lazarjan, Milad Soltanipour; Hanlin, Suzanne; Jermy, Mark; Waddell, J Neil

    2016-06-01

    Routine forensic research into in vitro skin/skull/brain ballistic blood backspatter behavior has traditionally used gelatin at a 1:10 Water:Powder (W:P) ratio by volume as a brain simulant. A limitation of gelatin is its high elasticity compared to brain tissue. Therefore this study investigated the use of dental alginate and agar impression materials as a brain simulant for ballistic testing. Fresh deer brain, alginate (W:P ratio 91.5:8.5) and agar (W:P ratio 81:19) specimens (n=10) (11×22×33mm) were placed in transparent Perspex boxes of the same internal dimensions prior to shooting with a 0.22inch caliber high velocity air gun. Quantitative analysis to establish kinetic energy loss, vertical displacement elastic behavior and qualitative analysis to establish elasticity behavior was done via high-speed camera footage (SA5, Photron, Japan) using Photron Fastcam Viewer software (Version 3.5.1, Photron, Japan) and visual observation. Damage mechanisms and behavior were qualitatively established by observation of the materials during and after shooting. The qualitative analysis found that of the two simulant materials tested, agar behaved more like brain in terms of damage and showed similar mechanical response to brain during the passage of the projectile, in terms of energy absorption and vertical velocity displacement. In conclusion agar showed a mechanical and subsequent damage response that was similar to brain compared to alginate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Ballistic interference in ultraclean suspended monolayer graphene

    NASA Astrophysics Data System (ADS)

    Schonenberger, Christian; Rickhaus, Peter; Maurand, Romain; Makk, Peter; Hess, Samuel; Tovari, Endre; Weiss, Markus; Liu, Ming-Hao; Richter, Klaus

    2014-03-01

    We have developed a versatile technology that allows to suspend graphene and complement it with arbitrary bottom and top-gate structures. Using current annealing we demonstrate exceptional high mobililties in monolayer graphene approaching 100 m2/Vs. These suspended devices are ballistic over micrometer length scales and display intriguing interference patterns in the electrical con-ductance when different gate potentials are applied. Specifically we will discuss different types of Fabry-Perot resonances that appear in different gate voltage regimes of ballistic pn devices. We will go beyond our recent publication and also show electric transport measurements in magnetic field, where intriguing features appear in the intermediate field range in between the low-field Klein-tunneling regime and the quantum Hall regime. We observe a large number of non-dispersing states which might be due to so-called snake states confined to the pn interface. We will also discuss first results on electron guiding in ultraclean monolayer graphene. We acknowledge funding from the Swiss NFS and the EC.

  15. Evaluation of a new ballistic vest design for compliance with Standard No. PN-V-87000:2011 using physiological tests.

    PubMed

    Marszałek, Anna; Grabowska, Grażyna; Łężak, Krzysztof

    2018-05-09

    Research into newly developed ballistic vests to be worn by police officers under clothing was carried out with air temperature conditions of +20 °C. A ballistic vest should incorporate protective features, comfort and ergonomics. The thermal strain on users who wore the vests was evaluated as an average and individually, after they had been conditioned in high (+50 °C), low (-40 °C) or neutral (+20 °C) air temperatures, while performing various occupational activities. Research involved six police officers aged 36-42 years, who wore civilian clothing used in moderate environmental conditions. During the tests, physiological parameters (internal temperature, local skin temperatures and amount of sweat secreted) were determined. The ease of doing exercises while wearing the vests, vest service and level of discomfort in use were assessed. Research showed that the vests tested, both as an average and individually, meet the requirements of Standard No. PN-V-87000:2011 (clause 4.5).

  16. A first-principles analysis of ballistic conductance, grain boundary scattering and vertical resistance in aluminum interconnects

    NASA Astrophysics Data System (ADS)

    Zhou, Tianji; Lanzillo, Nicholas A.; Bhosale, Prasad; Gall, Daniel; Quon, Roger

    2018-05-01

    We present an ab initio evaluation of electron scattering mechanisms in Al interconnects from a back-end-of-line (BEOL) perspective. We consider the ballistic conductance as a function of nanowire size, as well as the impact of surface oxidation on electron transport. We also consider several representative twin grain boundaries and calculate the specific resistivity and reflection coefficients for each case. Lastly, we calculate the vertical resistance across the Al/Ta(N)/Al and Cu/Ta(N)/Cu interfaces, which are representative of typical vertical interconnect structures with diffusion barriers. Despite a high ballistic conductance, the calculated specific resistivities at grain boundaries are 70-100% higher in Al than in Cu, and the vertical resistance across Ta(N) diffusion barriers are 60-100% larger for Al than for Cu. These results suggest that in addition to the well-known electromigration limitations in Al interconnects, electron scattering represents a major problem in achieving low interconnect line resistance at fine dimensions.

  17. Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Niemelä, Janne-Petteri; Tynell, Tommi; Gaskins, John T.; Donovan, Brian F.; Karppinen, Maarit; Hopkins, Patrick E.

    2016-03-01

    Nanomaterial interfaces and concomitant thermal resistances are generally considered as atomic-scale planes that scatter the fundamental energy carriers. Given that the nanoscale structural and chemical properties of solid interfaces can strongly influence this thermal boundary conductance, the ballistic and diffusive nature of phonon transport along with the corresponding phonon wavelengths can affect how energy is scattered and transmitted across an interfacial region between two materials. In hybrid composites composed of atomic layer building blocks of inorganic and organic constituents, the varying interaction between the phononic spectrum in the inorganic crystals and vibronic modes in the molecular films can provide a new avenue to manipulate the energy exchange between the fundamental vibrational energy carriers across interfaces. Here, we systematically study the heat transfer mechanisms in hybrid superlattices of atomic- and molecular-layer-grown zinc oxide and hydroquinone with varying thicknesses of the inorganic and organic layers in the superlattices. We demonstrate ballistic energy transfer of phonons in the zinc oxide that is limited by scattering at the zinc oxide/hydroquinone interface for superlattices with a single monolayer of hydroquinone separating the thicker inorganic layers. The concomitant thermal boundary conductance across the zinc oxide interfacial region approaches the maximal thermal boundary conductance of a zinc oxide phonon flux, indicative of the contribution of long wavelength vibrations across the aromatic molecular monolayers in transmitting energy across the interface. This transmission of energy across the molecular interface decreases considerably as the thickness of the organic layers are increased.

  18. Pepper spray projectile/disperser for countering hostage and barricade situations

    NASA Astrophysics Data System (ADS)

    Kelly, Roy

    1997-01-01

    An improved less-than-lethal projectile for use in hostage, barricade and tactical assault situations has been developed. The projectile is launched from a standoff position and disperse the incapacitating agent oleoresin capsicum in the form of atomized droplets. A literature search followed by an experimental study were conducted of the mechanism of barrier defeat for various shaped projectiles against the targets of interest in this work: window glass, plasterboard and plywood. Some of the trade- offs between velocity, standoff, projectile shape and size, penetration, and residual energy were quantified. Analysis of the ballistic trajectory and recoil, together with calculations of he amount of pepper spray needed to incapacitate the occupants of a typical barricaded structure, indicated the suitability of using a fin stabilized projectile fired from a conventional 37 mm riot control gas gun. Two projectile designs were considered, manufactured and tested. The results of static tests to simulate target impact, together with live firing trials against a variety of targets, showed that rear ejection of the atomized spray was more reproducible and effective than nose ejection. The performance characteristics of the finalized design were investigated in trials using the standard barrier for testing barrier penetrating tear gas agents as defined by the National Institute of Justice.

  19. Conventional Prompt Global Strike and Long-Range Ballistic Missiles: Background and Issues

    DTIC Science & Technology

    2011-04-21

    winglets , rather than on the winged design of the HTV-2. Upon nearing a target, the weapon would be able to maneuver to avoid flying over third party...concept from PGS, Congress, initially at least, blended both into the request for a new report. The Air Force submitted its report on the CAV concept of

  20. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    DTIC Science & Technology

    2010-08-26

    Battelle Press: Columbus, OH, USA, 2006. 3. Donaldson, K.; Stone, V.; Clouter, A.; Renwick, L.; Mac Nee, W. Ultrafine Particles . Occupat. Eviron...Med. 2001, 58, 211-216. 4. Oberdörster, G. Pulmonary effects of inhaled ultrafine particles . Int. Arch. Occupat. Environ. Health 2001, 74, 1-8. 5

  1. 39. View of checkout indicator computer console for DR beams, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. View of checkout indicator computer console for DR beams, TR chains, and special checkout target control located in CSMR in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. Expedition 16 Soyuz TMA-11 Lands

    NASA Image and Video Library

    2008-04-18

    Chief of NASA's Astronaut office, Steve Lindsey, receives information at the Arkalyk airport in Kazakhstan, Friday, April 19, 2008, on the landing of the Expedition 16 crew in the Soyuz TMA-11 capsule. The Soyuz made a ballistic landing, touching down more then 400 kilometers short of the intended target in central Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  3. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    DTIC Science & Technology

    2012-12-10

    nuclear powered submarines, which are powered by energy sources such as diesel engines. A submarine’s use of nuclear or non-nuclear power as its energy ...WA, in Puget Sound; the other six are homeported at Kings Bay, GA, close to the Florida border. Unlike most Navy ships, which are operated by...countries on nuclear-related issues that is carried out under the 1958 Agreement for Cooperation on the Uses of Atomic Energy for Mutual Defense

  4. Localized and delocalized motion of colloidal particles on a magnetic bubble lattice.

    PubMed

    Tierno, Pietro; Johansen, Tom H; Fischer, Thomas M

    2007-07-20

    We study the motion of paramagnetic colloidal particles placed above magnetic bubble domains of a uniaxial garnet film and driven through the lattice by external magnetic field modulation. An external tunable precessing field propels the particles either in localized orbits around the bubbles or in superdiffusive or ballistic motion through the bubble array. This motion results from the interplay between the driving rotating signal, the viscous drag force and the periodic magnetic energy landscape. We explain the transition in terms of the incommensurability between the transit frequency of the particle through a unit cell and the modulation frequency. Ballistic motion dynamically breaks the symmetry of the array and the phase locked particles follow one of the six crystal directions.

  5. 10. Storage and shipping container, ballistic missile, mounted on ballistic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Storage and shipping container, ballistic missile, mounted on ballistic missile trailer, view from left front - Ellsworth Air Force Base, Delta Flight, 10 mile radius around Exit 127 off Interstate 90, Interior, Jackson County, SD

  6. 11. Storage and shipping container, ballistic missile, mounted on ballistic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Storage and shipping container, ballistic missile, mounted on ballistic missile trailer, view from left side - Ellsworth Air Force Base, Delta Flight, 10 mile radius around Exit 127 off Interstate 90, Interior, Jackson County, SD

  7. Room Temperature Deposition Processes Mediated By Ultrafast Photo-Excited Hot Electrons

    DTIC Science & Technology

    2014-01-30

    mechanical through resonant energy transfer. The average electron temperature (Tel) during τ2 evolves as energy is lost through optical and acoustic ...through ballistic collisions and acoustic phonons. The large difference in heat capacities between electrons and the substrate leads to negligible...temperature pyrometer indicated only a ~30oC temperature gradient between the thermocouple location and the topside of the sample which faced the

  8. Microdosimetry of low-energy electrons.

    PubMed

    Liamsuwan, Thiansin; Emfietzoglou, Dimitris; Uehara, Shuzo; Nikjoo, Hooshang

    2012-12-01

    To investigate differences in energy depositions and microdosimetric parameters of low-energy electrons in liquid and gaseous water using Monte Carlo track structure simulations. KURBUC-liq (Kyushu University and Radiobiology Unit Code for liquid water) was used for simulating electron tracks in liquid water. The inelastic scattering cross sections of liquid water were obtained from the dielectric response model of Emfietzoglou et al. (Radiation Research 2005;164:202-211). Frequencies of energy deposited in nanometre-size cylindrical targets per unit absorbed dose and associated lineal energies were calculated for 100-5000 eV monoenergetic electrons and the electron spectrum of carbon K edge X-rays. The results for liquid water were compared with those for water vapour. Regardless of electron energy, there is a limit how much energy electron tracks can deposit in a target. Phase effects on the frequencies of energy depositions are largely visible for the targets with diameters and heights smaller than 30 nm. For the target of 2.3 nm by 2.3 nm (similar to dimension of DNA segments), the calculated frequency- and dose-mean lineal energies for liquid water are up to 40% smaller than those for water vapour. The corresponding difference is less than 12% for the targets with diameters ≥ 30 nm. Condensed-phase effects are non-negligible for microdosimetry of low-energy electrons for targets with sizes smaller than a few tens of nanometres, similar to dimensions of DNA molecular structures and nucleosomes.

  9. Lunar Entry Downmode Options for Orion

    NASA Technical Reports Server (NTRS)

    Smith, Kelly; Rea, Jeremy

    2016-01-01

    Traditional ballistic entry does not scale well to higher energy entry trajectories. Clutch algorithm is a two-stage approach with the capture stage and load relief stage. Clutch may offer expansion of the operational entry corridor. Clutch is a candidate solution for Exploration Mission-2's degraded entry mode.

  10. The Thermodynamics of Interior Ballistics and Propellant Performance

    DTIC Science & Technology

    2013-11-01

    constant volume and energy. This is referred to as the “chamber” condition, where the propellant is all burnt . IB codes typically use the...for the remainder of this work are performed using BLAKE and illustrated using BLAKE commands as concrete examples of the required computations. It

  11. An opportunity analysis system for space surveillance experiments with the MSX

    NASA Technical Reports Server (NTRS)

    Sridharan, Ramaswamy; Duff, Gary; Hayes, Tony; Wiseman, Andy

    1994-01-01

    The Mid-Course Space Experiment consists of a set of payloads on a satellite being designed and built under the sponsorship of Ballistic Missile Defense Office. The MSX satellite will conduct a series of measurements of phenomenology of backgrounds, missile targets, plumes and resident space objects (RSO's); and will engage in functional demonstrations in support of detection, acquisition and tracking for ballistic missile defense and space-based space surveillance missions. A complex satellite like the MSX has several constraints imposed on its operation by the sensors, the supporting instrumentation, power resources, data recording capability, communications and the environment in which all these operate. This paper describes the implementation of an opportunity and feasibility analysis system, developed at Lincoln Laboratory, Massachusetts Institute of Technology, specifically to support the experiments of the Principal Investigator for space-based surveillance.

  12. A structural and electronic comparison of armchair and zigzag epitaxial graphene sidewall nanoribbons

    NASA Astrophysics Data System (ADS)

    Nevius, Meredith; Wang, F.; Palacio, I.; Celis, A.; Tejeda, A.; Taleb-Ibrahimi, A.; de Heer, W.; Berger, C.; Conrad, E.

    2014-03-01

    Graphene grown on sidewalls of trenches etched in SiC shows particular promise as a candidate for post-Si CMOS electronics because of its ballistic transport, exceptional mobilities, low intrinsic doping, and the opening of a large band gap. However, before definitive progress can be made toward epitaxial graphene-based transistors, we must fully understand the nuances of graphene ribbon growth on different SiC facets. We have now confirmed that sidewall ribbons grown in graphene's two primary crystallographic directions (``armchair'' and ``zigzag'') differ greatly in both structure and electronic band-structure. We present data from both geometries obtained using low-energy electron microscopy (LEEM), low-energy electron diffraction (LEED), angle-resolved photoemission spectroscopy (ARPES), photoemission electron microscopy (PEEM), micro-ARPES and dark-field micro-ARPES. We demonstrate that while graphene grows on stable facets of trenches oriented for armchair edge growth, trenches oriented for zigzag edge growth prefer narrow ribbons of graphene on the (0001) surface near the trench edge. The structure of these zigzag edge graphene ribbons is complex and paramount to understanding their transport. This work was supported by the NSF under grants DMR-1005880 and DMR-0820382, the W. M. Keck Foundation and the Partner University Fund from the Embassy of France

  13. Ballistic projectile trajectory determining system

    DOEpatents

    Karr, T.J.

    1997-05-20

    A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile. 8 figs.

  14. Wound ballistics and blast injuries.

    PubMed

    Prat, N J; Daban, J-L; Voiglio, E J; Rongieras, F

    2017-12-01

    Wounds due to gunshot and explosions, while usually observed during battlefield combat, are no longer an exceptional occurrence in civilian practice in France. The principles of wound ballistics are based on the interaction between the projectile and the human body as well as the transfer of energy from the projectile to tissues. The treatment of ballistic wounds relies on several principles: extremity wound debridement and absence of initial closure, complementary medical treatment, routine immobilization, revision surgery and secondary closure. Victims of explosions usually present with a complex clinical picture since injuries are directly or indirectly related to the shock wave (blast) originating from the explosion. These injuries depend on the type of explosive device, the environment and the situation of the victim at the time of the explosion, and are classed as primary, secondary, tertiary or quaternary. Secondary injuries due to flying debris and bomb fragments are generally the predominant presenting symptoms while isolated primary injuries (blast) are rare. The resulting complexity of the clinical picture explains why triage of these victims is particularly difficult. Certain myths, such as inevitable necrosis of the soft tissues that are displaced by the formation of the temporary cavitation by the projectile, or sterilization of the wounds by heat generated by the projectile should be forgotten. Ballistic-protective body armor and helmets are not infallible, even when they are not perforated, and can even be at the origin of injuries, either due to missile impact, or to the blast. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Ballistic induced pumping of hypersonic heat current in DNA nano wire

    NASA Astrophysics Data System (ADS)

    Behnia, Sohrab; Panahinia, Robabe

    2016-12-01

    Heat shuttling properties of DNA nano-wire driven by an external force against the spontaneous heat current direction in non-zero temperature bias (non averaged) have been studied. We examined the valid region of driving amplitude and frequency to have pumping state in terms of temperature bias and the system size. It was shown that DNA could act as a high efficiency thermal pump in the hypersonic region. Amplitude-dependent resonance frequencies of DNA indicating intrinsic base pair internal vibrations have been detected. Nonlinearity implies that by increasing the driven amplitude new vibration modes are detected. To verify the results, an analytical parallel investigation based on multifractal concept has been done. By using the geometric properties of the strange attractor of the system, the threshold value to transition to the pumping state for given external amplitude has been identified. It was shown that the system undergoes a phase transition in sliding point to the pumping state. Fractal dimension demonstrates that the ballistic transport is responsible for energy pumping in the system. In the forbidden band gap, DNA could transmit the energy by exceeding the threshold amplitude. Despite of success in energy pumping, in this framework, DNA could not act as a real cooler.

  16. Dimension dependence of clustering dynamics in models of ballistic aggregation and freely cooling granular gas

    NASA Astrophysics Data System (ADS)

    Paul, Subhajit; Das, Subir K.

    2018-03-01

    Via event-driven molecular dynamics simulations we study kinetics of clustering in assemblies of inelastic particles in various space dimensions. We consider two models, viz., the ballistic aggregation model (BAM) and the freely cooling granular gas model (GGM), for each of which we quantify the time dependence of kinetic energy and average mass of clusters (that form due to inelastic collisions). These quantities, for both the models, exhibit power-law behavior, at least in the long time limit. For the BAM, corresponding exponents exhibit strong dimension dependence and follow a hyperscaling relation. In addition, in the high packing fraction limit the behavior of these quantities become consistent with a scaling theory that predicts an inverse relation between energy and mass. On the other hand, in the case of the GGM we do not find any evidence for such a picture. In this case, even though the energy decay, irrespective of packing fraction, matches quantitatively with that for the high packing fraction picture of the BAM, it is inversely proportional to the growth of mass only in one dimension, and the growth appears to be rather insensitive to the choice of the dimension, unlike the BAM.

  17. Automatic measurement of target crossing speed

    NASA Astrophysics Data System (ADS)

    Wardell, Mark; Lougheed, James H.

    1992-11-01

    The motion of ground vehicle targets after a ballistic round is launched can be a major source of inaccuracy for small (handheld) anti-armour weapon systems. A method of automatically measuring the crossing component to compensate the fire control solution has been devised and tested against various targets in a range of environments. A photodetector array aligned with the sight's horizontal reticle obtains scene features, which are digitized and processed to separate target from sight motion. Relative motion of the target against the background is briefly monitored to deduce angular crossing rate and a compensating lead angle is introduced into the aim point. Research to gather quantitative data and optimize algorithm performance is described, and some results from field testing are presented.

  18. Radiation effects in cubic zirconia: A model system for ceramic oxides

    NASA Astrophysics Data System (ADS)

    Thomé, L.; Moll, S.; Sattonnay, G.; Vincent, L.; Garrido, F.; Jagielski, J.

    2009-06-01

    Ceramics are key engineering materials for electronic, space and nuclear industry. Some of them are promising matrices for the immobilization and/or transmutation of radioactive waste. Cubic zirconia is a model system for the study of radiation effects in ceramic oxides. Ion beams are very efficient tools for the simulation of the radiations produced in nuclear reactors or in storage form. In this article, we summarize the work made by combining advanced techniques (RBS/C, XRD, TEM, AFM) to study the structural modifications produced in ion-irradiated cubic zirconia single crystals. Ions with energies in the MeV-GeV range allow exploring the nuclear collision and electronic excitation regimes. At low energy, where ballistic effects dominate, the damage exhibits a peak around the ion projected range; it accumulates with a double-step process by the formation of a dislocation network. At high energy, where electronic excitations are favored, the damage profiles are rather flat up to several micrometers; the damage accumulation is monotonous (one step) and occurs through the creation and overlap of ion tracks. These results may be generalized to many nuclear ceramics.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junay, A.; Guézo, S., E-mail: sophie.guezo@univ-rennes1.fr; Turban, P.

    We study structural and electronic inhomogeneities in Metal—Organic Molecular monoLayer (OML)—semiconductor interfaces at the sub-nanometer scale by means of in situ Ballistic Electron Emission Microscopy (BEEM). BEEM imaging of Au/1-hexadecanethiols/GaAs(001) heterostructures reveals the evolution of pinholes density as a function of the thickness of the metallic top-contact. Using BEEM in spectroscopic mode in non-short-circuited areas, local electronic fingerprints (barrier height values and corresponding spectral weights) reveal a low-energy tunneling regime through the insulating organic monolayer. At higher energies, BEEM evidences new conduction channels, associated with hot-electron injection in the empty molecular orbitals of the OML. Corresponding band diagrams at buriedmore » interfaces can be thus locally described. The energy position of GaAs conduction band minimum in the heterostructure is observed to evolve as a function of the thickness of the deposited metal, and coherently with size-dependent electrostatic effects under the molecular patches. Such BEEM analysis provides a quantitative diagnosis on metallic top-contact formation on organic molecular monolayer and appears as a relevant characterization for its optimization.« less

  20. Ballistic Testing for Interceptor Body Armor Inserts Needs Improvement

    DTIC Science & Technology

    2011-08-01

    030, “Ballistic Testing and Product Quality Surveillance for the Interceptor Body Armor - Vest Components Need Improvement,” January 3, 2011. This...Body Armor Ballistic Inserts Interceptor Body Armor (IBA) is a modular body armor system that consists of an outer tactical vest , ballistic inserts...altitude tests was because the ceramic ballistic inserts are solid structures that are not sensitive to reduced pressure and moisture. PM SEQ offered no

  1. One shot, one kill: the forces delivered by archer fish shots to distant targets.

    PubMed

    Burnette, Morgan F; Ashley-Ross, Miriam A

    2015-10-01

    Archer fishes are skillful hunters of terrestrial prey, firing jets of water that dislodge insects perched on overhead vegetation. In the current investigation, we sought an answer to the question: are distant targets impractical foraging choices? Targets far from the shooter might not be hit with sufficient force to cause them to fall. However, observations from other investigators show that archer fish fire streams of water that travel in a non-ballistic fashion, which is thought to keep on-target forces high, even to targets that are several body lengths distant from the fish. We presented targets at different distances and investigated three aspects of foraging behavior: (i) on-target forces, (ii) shot velocity, (iii) a two-target choice assay to determine if fish would show any preference for downing closer targets or more distant targets. In general, shots from our fish (Toxotes chatareus) showed a mild decrease (less than 15% on average) in on-target forces at our most distant target offered (5.8 body lengths) with respect to the closest target offered (2.3 body lengths). One individual in our investigation showed slightly, but significantly, greater on-target forces as target distance increased. Forces on the furthest targets offered were found to double that of attachment forces for 200mg insects, even for individuals whose on-target forces showed mild decreases with increases in target distance. High-speed video analysis of jet impact with the target revealed that the shot was traveling in a non-ballistic manner, even to our most distant target offered, corroborating previous suppositions that on-target forces should remain high. Fish were able to accomplish this without large changes to shot velocity, but we did find evidence that the water jets appeared to differ in the timing of their acceleration as target distance increased. Our two-target choice experiment revealed that fish show preference for downing the closer target first, even though impact forces on distant targets only showed mild decreases. Our overall findings (and the findings of others) suggest that archer fish modulate many aspects of their shooting behavior: from target selection to active control over the water jet that allows the fish to deliver reliably forceful impacts to prey over a wide range of distances. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Ramifications of projectile velocity on the ballistic dart penetration of sand

    NASA Astrophysics Data System (ADS)

    Sable, Peter Anthony

    With the advent of novel in-situ experimental measurement techniques, highly resolved quantitative observations of dynamic events within granular media can now be made. In particular, high speed imagery and digital analysis now allow for the ballistic behaviors of sand to be examined not only across a range of event velocities but across multiple length scales. In an attempt to further understand the dynamic behavior of granular media, these new experimental developments were implemented utilizing high speed photography coupled with piezo-electric stress gauges to observe visually accessible ballistic events of a dart penetrating Ottawa sand. Projectile velocities ranged from 100 to over 300 meters per second with two distinct chosen fields of view to capture bulk and grain-scale behaviors. Each event was analyzed using the digital image correlation technique, particle image velocimetry from which two dimensional, temporally resolved, velocity fields were extracted, from which bulk granular flow and compaction wave propagation were observed and quantified. By comparing bulk, in situ, velocity field behavior resultant from dart penetration, momentum transfer could be quantified measuring radius of influence or dilatant fluid approximations from which a positive correlation was found across the explored velocity regime, including self similar tendencies. This was, however, not absolute as persistent scatter was observed attributed to granular heterogeneous effects. These were tentatively measured in terms of an irreversible energy amount calculated via energy balance. Grain scale analysis reveals analogous behavior to the bulk response with more chaotic structure, though conclusions were limited by the image processing method to qualitative observations. Even so, critical granular behaviors could be seen, such as densification, pore collapse, and grain fracture from which basic heterogeneous phenomena could be examined. These particularly dominated near nose interactions at high projectile velocities. Resulting empirical models and observations from all approaches provide a baseline from which other studies across may be compared, a metric against which penetrator effectiveness may be evaluated, and an alternative way to validate computationally based analyses. Velocity analysis was further contrasted with piezo-resistive stress gauge data in an effort to pair heterogeneous mechanisms in the bulk stress response. Phenomena such as grain fracture and densification were successfully observed in conjunction with a unique stress signature. Comparing stress responses across the tested velocity spectrum confirm conditional similitude with deviations a low projectile velocities attributed to domination by heterogeneous mechanisms.

  3. Nanophononics at low temperature: manipulating heat at the nanoscale

    NASA Astrophysics Data System (ADS)

    Bourgeois, Olivier

    2014-03-01

    Nanophononics is an emerging field of condensed matter that deals with transport of thermal phonons at small length scales. When the section of a waveguide becomes smaller than the mean free path or the phonon wavelength, heat transfer are strongly affected. Here, I will present the results we obtained by ultra- sensitive measurements of thermal conductance of suspended nano-objects (nanowires and membranes) using the 3 ω method. This experimental set-up allows the measurement of power as small as a fraction of femtoWatt (10-15 Watt). These experiments show that the concepts of mean free path and dominant wavelength are crucial to understand the phonon thermal transport below 10K. The phonon transport, at this temperature, is well described by the Casimir-Ziman model used here to treat the data. The contribution of the thermal contact between a nanowire and the heat bath has been estimated to be close to one, thanks to the fact that the nanowire are made out of monolithic single crystal. Strong reduction of thermal conductance has been obtained in serpentine nanowire where the transport of ballistic phonons is blocked. Moreover, in corrugated silicon nanowire, we showed that the corrugations induce significant backscattering of phonon that severely reduces the mean free path, beating in some cases, the Casimir limit. These experiments demonstrate the ability to manipulate ballistic phonons by adjusting the geometry of thermal conductors, and hence manipulate heat transfer. Finally, the use of these new concepts of engineering ballistic phonons at the nanoscale allows considering the development of new nanostructured materials for thermoelectrics at room temperature, opening exciting prospects for future applications in the energy recovery. J.-S. Heron, T. Fournier, N. Mingo and O. Bourgeois, Nano Letters 9, 1861 (2009). J-S. Heron, C. Bera, T. Fournier, N. Mingo, and O. Bourgeois, Phys. Rev. B 82, 155458 (2010). C. Blanc, A. Rajabpour, S. Volz, T. Fournier, and O. Bourgeois, Appl. Phys. Lett. 103, 043109 (2013). EU Merging Project grant Agreement No. 309150.

  4. Recent Developments in Gun Operating Techniques at the NASA Ames Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.; Miller, R. J.

    1996-01-01

    This paper describes recent developments in gun operating techniques at the Ames ballistic range complex. This range complex has been in operation since the early 1960s. Behavior of sabots during separation and projectile-target impact phenomena have long been observed by means of short-duration flash X-rays: new versions allow operation in the lower-energy ("soft") X-ray range and have been found to be more effective than the earlier designs. The dynamics of sabot separation is investigated in some depth from X-ray photographs of sabots launched in the Ames 1.0 in and 1.5 in guns; the sabot separation dynamics appears to be in reasonably good agreement with standard aerodynamic theory. Certain sabot packages appear to suffer no erosion or plastic deformation on traversing the gun barrel, contrary to what would be expected. Gun erosion data from the Ames 0.5 in, 1.0 in, and 1.5 in guns is examined in detail and can be correlated with a particular non- dimensionalized powder mass parameter. The gun erosion increases very rapidly as this parameter is increased. Representative shapes of eroded gun barrels are given. Guided by a computational fluid dynamics (CFD) code, the operating conditions of the Ames 0.5 in and 1.5 in guns were modified. These changes involved: (1) reduction in the piston mass, powder mass and hydrogen fill pressure and (2) reduction in pump tube volume, while maintaining hydrogen mass. These changes resulted in muzzle velocity increases of 0.5-0.8 km/sec, achieved simultaneously with 30-50 percent reductions in gun erosion.

  5. Usaf Space Sensing Cryogenic Considerations

    NASA Astrophysics Data System (ADS)

    Roush, F.

    2010-04-01

    Infrared (IR) space sensing missions of the future depend upon low mass components and highly capable imaging technologies. Limitations in visible imaging due to the earth's shadow drive the use of IR surveillance methods for a wide variety of applications for Intelligence, Surveillance, and Reconnaissance (ISR), Ballistic Missile Defense (BMD) applications, and almost certainly in Space Situational Awareness (SSA) and Operationally Responsive Space (ORS) missions. Utilization of IR sensors greatly expands and improves mission capabilities including target and target behavioral discrimination. Background IR emissions and electronic noise that is inherently present in Focal Plane Arrays (FPAs) and surveillance optics bench designs prevents their use unless they are cooled to cryogenic temperatures. This paper describes the role of cryogenic coolers as an enabling technology for generic ISR and BMD missions and provides ISR and BMD mission and requirement planners with a brief glimpse of this critical technology implementation potential. The interaction between cryogenic refrigeration component performance and the IR sensor optics and FPA can be seen as not only mission enabling but also as mission performance enhancing when the refrigeration system is considered as part of an overall optimization problem.

  6. Optimum Sensors Integration for Multi-Sensor Multi-Target Environment for Ballistic Missile Defense Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, Neena; Barhen, Jacob; Glover, Charles Wayne

    2012-01-01

    Multi-sensor networks may face resource limitations in a dynamically evolving multiple target tracking scenario. It is necessary to task the sensors efficiently so that the overall system performance is maximized within the system constraints. The central sensor resource manager may control the sensors to meet objective functions that are formulated to meet system goals such as minimization of track loss, maximization of probability of target detection, and minimization of track error. This paper discusses the variety of techniques that may be utilized to optimize sensor performance for either near term gain or future reward over a longer time horizon.

  7. Anti-Weak Localization Measurements in the Ballistic Regime

    NASA Astrophysics Data System (ADS)

    Jayathilaka, Dilhani; Dedigama, Aruna; Murphy, Sheena; Edirisooriya, Madhavie; Goel, Niti; Mishima, Tetsuya; Santos, Michael; Mullen, Kieran

    2007-03-01

    Anti-weak localization dominates at low fields in systems in which spin-orbit coupling is strong. The experimental results are well described by theory [1] in low mobility systems in which the magnetic length (lB) is greater than the mean free path; however high mobility systems with strong spin-orbit interactions, such the InSb based two dimensional systems (2DESs) examined here, are not in this diffusive regime. A recently developed theory [2] addresses both the diffusive and ballistic regimes taking into account both the backscattered and non-backscattered contributions to the conductivity. We will discuss the agreement of the new theory to measurements of InSb 2DESs prepared with both strong Dresselhaus and Rashba effects. [1] S.V. Iordanskii, Yu B. Lyanda-Geller, and G.E. Pikus, JETP Lett. 60, 206 (1994). [2] L.E. Golub, Phys. Rev. B. 71, 235310 (2005).

  8. Quantifying Ballistic Armor Performance: A Minimally Invasive Approach

    NASA Astrophysics Data System (ADS)

    Holmes, Gale; Kim, Jaehyun; Blair, William; McDonough, Walter; Snyder, Chad

    2006-03-01

    Theoretical and non-dimensional analyses suggest a critical link between the performance of ballistic resistant armor and the fundamental mechanical properties of the polymeric materials that comprise them. Therefore, a test methodology that quantifies these properties without compromising an armored vest that is exposed to the industry standard V-50 ballistic performance test is needed. Currently, there is considerable speculation about the impact that competing degradation mechanisms (e.g., mechanical, humidity, ultraviolet) may have on ballistic resistant armor. We report on the use of a new test methodology that quantifies the mechanical properties of ballistic fibers and how each proposed degradation mechanism may impact a vest's ballistic performance.

  9. An integrated approach towards future ballistic neck protection materials selection.

    PubMed

    Breeze, John; Helliker, Mark; Carr, Debra J

    2013-05-01

    Ballistic protection for the neck has historically taken the form of collars attached to the ballistic vest (removable or fixed), but other approaches, including the development of prototypes incorporating ballistic material into the collar of an under body armour shirt, are now being investigated. Current neck collars incorporate the same ballistic protective fabrics as the soft armour of the remaining vest, reflecting how ballistic protective performance alone has historically been perceived as the most important property for neck protection. However, the neck has fundamental differences from the thorax in terms of anatomical vulnerability, flexibility and equipment integration, necessitating a separate solution from the thorax in terms of optimal materials selection. An integrated approach towards the selection of the most appropriate combination of materials to be used for each of the two potential designs of future neck protection has been developed. This approach requires evaluation of the properties of each potential material in addition to ballistic performance alone, including flexibility, mass, wear resistance and thermal burden. The aim of this article is to provide readers with an overview of this integrated approach towards ballistic materials selection and an update of its current progress in the development of future ballistic neck protection.

  10. How adaptive optics may have won the Cold War

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    2013-05-01

    While there are many theories and studies concerning the end of the Cold War, circa 1990, I postulate that one of the contributors to the result was the development of adaptive optics. The emergence of directed energy weapons, specifically space-based and ground-based high energy lasers made practicable with adaptive optics, showed that a successful defense against inter-continental ballistic missiles was not only possible, but achievable in a reasonable period of time.

  11. Ballistic missile defense technologies

    NASA Astrophysics Data System (ADS)

    1985-09-01

    A report on Ballistic Missile Technologies includes the following: Executive summary; Introduction; Ballistic missiles then and now; Deterrence, U.S. nuclear strategy, and BMD; BMD capabilities and the strategic balance; Crisis stability, arms race stability, and arms control issues; Ballistic missile defense technologies; Feasibility; Alternative future scenarios; Alternative R&D programs.

  12. A new Monte Carlo code for light transport in biological tissue.

    PubMed

    Torres-García, Eugenio; Oros-Pantoja, Rigoberto; Aranda-Lara, Liliana; Vieyra-Reyes, Patricia

    2018-04-01

    The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.

  13. Deformation and Fracture Behavior of Steel Projectiles Impact AD95 Ceramic Targets-Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Wei, Gang; Zhang, Wei

    2013-06-01

    The deformation and fracture behavior of steel projectile impacting ceramic target is an interesting investigation topic. The deformation and failure behavior of projectile and target was investigated experimentally in the normal impact by different velocities. Lab-scale ballistic tests of AD95 ceramic targets with 20 mm thickness against two different hardness 38CrSi steel projectiles with 7.62 mm diameter have been conducted at a range of velocities from 100 to 1000 m/s. Experimental results show that, with the impact velocity increasing, for the soft projectiles, the deformation and fracture modes were mushrooming, shear cracking, petalling and fragmentation(with large fragments and less number), respectively; for the hard projectiles there are three deformation and fracture modes: mushrooming, shearing cracking and fragmentation(with small fragments and large number). All projectiles were rebound after impact. But, with the velocity change, the target failure modes have changed. At low velocity, only radial cracks were found; then circumferential cracks appeared with the increasing velocity; the ceramic cone occurred when the velocity reached 400 m/s above, and manifested in two forms: front surface intact at lower velocity and perforated at higher velocity. The higher velocity, the fragment size is smaller and more uniform distribution. The difference of ceramic target damage is not obvious after impacted by two kinds of projectiles with different hardness at the same velocity. National Natural Science Foundation of China (No.: 11072072).

  14. Lifting Entry & Atmospheric Flight (LEAF) System Concept Applications at Solar System Bodies With an Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Greg; Polidan, Ronald; Ross, Floyd; Sokol, Daniel; Warwick, Steve

    2015-11-01

    Northrop Grumman and L’Garde have continued the development of a hypersonic entry, semi-buoyant, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere.The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieves this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. The mass savings realized by eliminating the heavy aeroshell allows significantly more payload to be accommodated by the platform for additional science collection and return.In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the mid-cloud layer of Venus’ atmosphere at night.Titan also offers an attractive operating environment, allowing LEAF designs that can target low or medium altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface or high resolution surface imaging. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  15. Ultra low signals in ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Heller, Eric

    The extension of Scanning Tunneling Microscopy known as Ballistic Electron Emission Microscopy (BEEM) was expanded to allow useful data collection at lower signal levels than previously possible, and a critical BEEM shortcoming was discovered and quantified. As a separate effort, a new method for measuring SB-type step energies on Si(001) SA-type steps that under some circumstances is more accurate than previous methods was used and will be presented. Finally, extensive modifications to a Scanning Tunneling Microscope used for most of this research will be presented. First, it will be shown theoretically and experimentally that by amplifying the hot BEEM electrons that make up the useful BEEM signal before they are thermalized, internal gain can be applied specifically to these electrons without amplifying standard BEEM noise sources. It will be shown that BEEM with single hot electron sensitivity (approximately a factor of 1000 improvement in the minimum detectable BEEM signal) is attainable with modified commercially existing avalanche photodiodes. With this new low-signal capability, it was obvious that a new BEEM-like signal was being detected. We have discovered that photons generated by STM tunneling will create a false signal in most BEEM samples. Furthermore, we have characterized this effect which we call "STM-PC" and it will be demonstrated with Pd/SiO2/Si and Au/SiO2/Si samples that this false signal closely mimics BEEM and is easily confused for BEEM. We will discuss ways to separate real BEEM from this new effect. Separately, thermally generated kinks on A-type steps on the Si(001) surface were counted and analyzed to find the SB-type step energy. Previous work by others was extended by counting a new type of feature, the "switch" kink, to allow a more accurate determination of the energy of SB-steps in the presence of defects that can bow steps and cause non-thermal kinks. Considerable data collection along with this new extension allowed a more accurate determination of the SB-type kink energy than before and the first experimental evidence that it increases with tensile strain on the Si(001) surface. Modifications to an Omicron Variable Temperature Scanning Tunneling Microscope (VT-STM) will be presented. The VT-STM will be moved to the Electrical Engineering Department cleanroom of The Ohio State University and will allow in-situ studies of Molecular Beam Epitaxy (MBE) grown samples. Modifications, repairs, and operating procedures will be discussed for the VT-STM and supporting hardware. Last, work on Low Temperature Grown Gallium Arsenide (LTG-GaAs) will be presented. The ultimate goal of detecting mm-scale arsenic precipitates that form with annealing using BEEM was not successful. Precipitates were imaged with atomic force microscopy, but these same precipitates are not seen with BEEM under some conditions.

  16. 76 FR 14589 - Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ...-AH18 Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...). Section 222 repeals the restriction on purchase of Ballistic Missile Defense research, development, test... Ballistic Missile Defense research, development, test, and evaluation that was required by section 222 of...

  17. [Ballistic approach in head injuries caused by missiles].

    PubMed

    Jourdan, P; Billant, J B; Desgeorges, M

    1989-01-01

    If the missile head injury treatment is relatively well codified, wound ballistic, on the other hand, is not well known of neurosurgeons. Different means of study and tissue simulants are being listed. In face of numerous contradictory results, we shall only retain the M.L. Fackler method with 10% gelatin. Experimental results will depend on: 1. Missile parameters. For instance, in soft homogeneous tissue, one can discern shells with an uncertain path, full jacketed bullets which tumble after a variable "neck", and non jacketed missiles which cause wound through "mushrooming" and/or fragmentation effect. Buckshot wounds obey the rule "all or none". 2. Body reactions, particularly the clash with a hard material like bone, which can overturn everything described in soft tissues. These wound ballistic notions have lead us to formulate two pathogenic hypothesizes, allowing us to understand sometime case reports which had first seemed paradoxical: the brain structure, enclosed in the skull will not able to survive any major temporary cavity, the more or less deep missile pathway through the skull will be very different according to the type and energy of the missile, and to the hardness of pierced bone.

  18. Using Computer Simulations to Model Scoria Cone Growth

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Mehta, R. D.

    2016-12-01

    Scoria cones form from the accumulation of scoria delivered by either bursting lava bubbles (Strombolian style eruptions) or the gas thrust of an eruption column (Hawaiian to sub-Plinian style eruption). In this study, we focus on connecting the distribution of scoria delivery to the eventual cone shape rather than the specifics of the mechanism of delivery. For simplicity, we choose to model ballistic paths, that follow the scoria from ejection from crater to landing on the surface and then avalanching down slope. The first stage corresponds to Strombolian-like bursts of the bubble. The second stage only occurs if the angle of repose is greater than 30 degrees. After this condition is met, the scoria particles grain flow downwards until a stable slope is formed. These two stages of the volcanic eruption repeat themselves in the number of phases. We hypothesize that the horizontal travel distance of the ballistic paths, and as a result the width of the volcano, is primarily dependent of the velocity of the particles bursting from the bubble in the crater. Other parameters that may affect the shape of cinder cones are air resistance on ballistic paths, ranges in particle size, ballistic ejection angles, and the total number of particles. Ejection velocity, ejection angle, particle size and air resistance control the delivery distribution of scoria; a similar distribution of scoria can be obtained by sedimentation from columns and the controlling parameters of such (gas thrust velocity, particle density, etc.) can be related to the ballistic delivery in terms of eruption energy and particle characteristics. We present a series of numerical experiments that test our hypotheses by varying different parameters one or more at a time in sets each designed to test a specific hypothesis. Volcano width increases as ejection velocity, ejection angle (measured from surface), or the total number of scoria particles increases. Ongoing investigations seek the controls on crater width.

  19. Tunneling Spectroscopy of Quantum Hall States in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Harzheim, Achim; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip

    In the quantum Hall (QH) regime, ballistic conducting paths along the physical edges of a sample appear, leading to quantized Hall conductance and vanishing longitudinal magnetoconductance. These QH edge states are often described as ballistic compressible strips separated by insulating incompressible strips, the spatial profiles of which can be crucial in understanding the stability and emergence of interaction driven QH states. In this work, we present tunneling transport between two QH edge states in bilayer graphene. Employing locally gated device structure, we guide and control the separation between the QH edge states in bilayer graphene. Using resonant Landau level tunneling as a spectroscopy tool, we measure the energy gap in bilayer graphene as a function of displacement field and probe the emergence and evolution of incompressible strips.

  20. Low-energy ion beamline scattering apparatus for surface science investigations

    NASA Astrophysics Data System (ADS)

    Gordon, M. J.; Giapis, K. P.

    2005-08-01

    We report on the design, construction, and performance of a high current (monolayers/s), mass-filtered ion beamline system for surface scattering studies using inert and reactive species at collision energies below 1500 eV. The system combines a high-density inductively coupled plasma ion source, high-voltage floating beam transport line with magnet mass-filter and neutral stripping, decelerator, and broad based detection capabilities (ions and neutrals in both mass and energy) for products leaving the target surface. The entire system was designed from the ground up to be a robust platform to study ion-surface interactions from a more global perspective, i.e., high fluxes (>100μA/cm2) of a single ion species at low, tunable energy (50-1400±5eV full width half maximum) can be delivered to a grounded target under ultrahigh vacuum conditions. The high current at low energy problem is solved using an accel-decel transport scheme where ions are created at the desired collision energy in the plasma source, extracted and accelerated to high transport energy (20 keV to fight space charge repulsion), and then decelerated back down to their original creation potential right before impacting the grounded target. Scattered species and those originating from the surface are directly analyzed in energy and mass using a triply pumped, hybrid detector composed of an electron impact ionizer, hemispherical electrostatic sector, and rf/dc quadrupole in series. With such a system, the collision kinematics, charge exchange, and chemistry occurring on the target surface can be separated by fully analyzing the scattered product flux. Key design aspects of the plasma source, beamline, and detection system are emphasized here to highlight how to work around physical limitations associated with high beam flux at low energy, pumping requirements, beam focusing, and scattered product analysis. Operational details of the beamline are discussed from the perspective of available beam current, mass resolution, projectile energy spread, and energy tunability. As well, performance of the overall system is demonstrated through three proof-of-concept examples: (1) elastic binary collisions at low energy, (2) core-level charge exchange reactions involving Ne+20 with Mg /Al/Si/P targets, and (3) reactive scattering of CF2+/CF3+ off Si. These studies clearly demonstrate why low, tunable incident energy, as well as mass and energy filtering of products leaving the target surface is advantageous and often essential for studies of inelastic energy losses, hard-collision charge exchange, and chemical reactions that occur during ion-surface scattering.

  1. Effect of measurement on the ballistic-diffusive transition in turbid media.

    PubMed

    Glasser, Ziv; Yaroshevsky, Andre; Barak, Bavat; Granot, Er'el; Sternklar, Shmuel

    2013-10-01

    The dependence of the transition between the ballistic and the diffusive regimes of turbid media on the experimental solid angle of the detection system is analyzed theoretically and experimentally. A simple model is developed which shows the significance of experimental conditions on the location of the ballistic-diffusive transition. It is demonstrated that decreasing the solid angle expands the ballistic regime; however, this benefit is bounded by the initial Gaussian beam diffraction. In addition, choosing the appropriate wavelength according to the model's principles provides another means of expanding the ballistic regime. Consequently, by optimizing the experimental conditions, it should be possible to extract the ballistic image of a tissue with a thickness of 1 cm.

  2. Great Balls of Fire: A probabilistic approach to quantify the hazard related to ballistics - A case study at La Fossa volcano, Vulcano Island, Italy

    NASA Astrophysics Data System (ADS)

    Biass, Sébastien; Falcone, Jean-Luc; Bonadonna, Costanza; Di Traglia, Federico; Pistolesi, Marco; Rosi, Mauro; Lestuzzi, Pierino

    2016-10-01

    We present a probabilistic approach to quantify the hazard posed by volcanic ballistic projectiles (VBP) and their potential impact on the built environment. A model named Great Balls of Fire (GBF) is introduced to describe ballistic trajectories of VBPs accounting for a variable drag coefficient and topography. It relies on input parameters easily identifiable in the field and is designed to model large numbers of VBPs stochastically. Associated functions come with the GBF code to post-process model outputs into a comprehensive probabilistic hazard assessment for VBP impacts. Outcomes include probability maps to exceed given thresholds of kinetic energies at impact, hazard curves and probabilistic isoenergy maps. Probabilities are calculated either on equally-sized pixels or zones of interest. The approach is calibrated, validated and applied to La Fossa volcano, Vulcano Island (Italy). We constructed a generic eruption scenario based on stratigraphic studies and numerical inversions of the 1888-1890 long-lasting Vulcanian cycle of La Fossa. Results suggest a ~ 10- 2% probability of occurrence of VBP impacts with kinetic energies ≤ 104 J at the touristic locality of Porto. In parallel, the vulnerability to roof perforation was estimated by combining field observations and published literature, allowing for a first estimate of the potential impact of VBPs during future Vulcanian eruptions. Results indicate a high physical vulnerability to the VBP hazard, and, consequently, half of the building stock having a ≥ 2.5 × 10- 3% probability of roof perforation.

  3. Low-energy nuclear reactions in crystal structures

    NASA Astrophysics Data System (ADS)

    Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Rusetskii, A. S.

    2017-09-01

    Results of studying low-energy nuclear reactions at the HELIS facility (LPI) are presented. Investigations of yields from DD reactions in deuterated crystal structures at deuteron energies of 10 to 25 keV show a considerable enhancement effect. It is shown that exposure of the deuterated targets to the H+ (proton) and Ne+ beams with energies from 10 to 25 keV and an X-ray beam with the energy of 20 to 30 keV stimulates DD reaction yields. For the CVD diamond target, it is shown that its orientation with respect to the deuteron beam affects the neutron yield. The D+ beam is shown to cause much higher heat release in the TiDx target than the H+ and Ne+ beams, and this heat release depends on the deuterium concentration in the target and the current density of the deuteron beam.

  4. 48 CFR 252.225-7018 - Notice of prohibition of certain contracts with foreign entities for the conduct of ballistic...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... certain contracts with foreign entities for the conduct of ballistic missile defense research, development... foreign entities for the conduct of ballistic missile defense research, development, test, and evaluation... With Foreign Entities for the Conduct of Ballistic Missile Defense Research, Development, Test, and...

  5. Modeling of Nano-Scale Transistors and Memory Devices for Low Power Applications

    NASA Astrophysics Data System (ADS)

    Cao, Xi

    As the featuring size of transistors scaled down to sub-20 nm, the continuous scaling of power has become one of the main challenges of the semiconductor industry. The power issue is raised by the barely scalable supply voltage and a limitation on the subthreshold swing (SS) of conventional metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, self-consistent quantum transport device simulators are developed to examine the nanoscale transistors based on black phosphorus (BP) materials. The scaling limit of double-gated BP MOSFETs is assessed. To reduce the SS below the thermionic limit for ultra-steep switching, tunnel FETs (TFETs) and vertical ballistic impact ionization FETs based on BP and its heterojunctions are investigated. Furthermore, the ferroelectric tunneling junction (FTJ) is modeled and examined for potential low power memory applications. For BP MOSFETs, the device physics at the ultimate scaling limit are examined. The performance of monolayer BP MOSFETs is projected to sub-10 nm and compared with the International Technology Roadmap for Semiconductors (ITRS) requirements. And the interplay of quantum mechanical effects and the highly anisotropic bandstructure of BP at this scale is investigated. By choice of layer number and crystalline direction, BP materials can offer a range of bandgap and effective mass values, which is attractive for TFET applications. Therefore, scaling behaviors of BP TFETs near and below the 10 nm scale are studied. The gate oxide thickness scaling and the effect of high-k dielectric are compared between the TFETs and the MOSFETs. For the TFETs with the gate lengths beyond 10 nm and at the sub-10 nm scale, the direct-source-to-drain tunneling issues are evaluated, and different strategies to achieve ultra-steep switching are specified. In a sub-10 nm graphene-BP-graphene heterojunction transistor, the sharp turnon behavior was observed, under a small source-drain bias of 0.1 V. The fast switch is attributed to a ballistic energy-dependent impact ionization mechanism. A device model is developed, which shows agreement with experiment results. The model is applied to explore the gate oxide scaling behavior and the effect of graphene doping, and to optimize the device for low power applications. Finally, to keep the integrity of the computing system, the FTJ is studied for its possible use as a low power memory device. A compact model for FTJ, dealing with both static and dynamic behaviors, is developed and compared with experimental data. The write energy consumed by the memory cell, comprising one transistor and one FTJ, is estimated by applying the compact model to circuit simulation. And a way to reduce the write energy is suggested.

  6. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    DTIC Science & Technology

    2013-03-14

    submarines, which are powered by energy sources such as diesel engines. A submarine’s use of nuclear or non-nuclear power as its energy source is not an...current force of 14 Ohio-class SSBNs, all of which are armed with D-5 SLBMs. Eight of the 14 Ohio-class SSBNs are homeported at Bangor, WA, in Puget ...nuclear-related issues that is carried out under the 1958 Agreement for Cooperation on the Uses of Atomic Energy for Mutual Defense Purposes (also known as

  7. Method and apparatus for real time imaging and monitoring of radiotherapy beams

    DOEpatents

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA; Macey, Daniel J [Birmingham, AL; Weisenberger, Andrew G [Yorktown, VA

    2011-11-01

    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  8. Definition of an anti-missile ballistic defense architecture for Europe

    NASA Astrophysics Data System (ADS)

    Deas, M.; Tanter, A.

    1995-01-01

    The end of the Seventies and beginning of the Eighties showed significant technological developments in ballistic missiles, in particular,impact precision. These improvements caused Western strategists to be concerned with use of ballistic missiles equipped with conventional loads against military objectives (the Pact of Varsovie). The concept of ballistic missile tactical had been born. The ballistic vector, which until this time was marked with a 'strategic' label, was then 'standardized' and has interested a number of countries in the process of its development. The world has just entered the era of the ballistic proliferation. From the very start of the Eighties, the United States and, to a lesser degree, NATO lead studies and reflections concerned with defense against tactical ballistic missiles within a East West framework. From these studies the ATBM (Anti Tactical Ballistic Missile) made its appearance. In spite of the attempts at control, missile proliferation has accelerated and led, towards the end of the Eighties and the beginning of the Nineties, to the awakening of a new risk known as proliferating. The 1991 Gulf War was accelerated in this manner. This conflict also clarified the fact that the ballistic weapon constituted a formidable means of pressure for countries which had it, in spite of the PATRIOT, which demonstrated the feasibility of an active defense against ballistic missiles, in spite of their limited performances. This present presentation proposes an overall analysis of the ballistic risk and the possible threat which could result from it and examines the means available for protection against this risk by looking further into all the defensive means. This will constitute the main part of the speech. Lastly, we will endeavor to evaluate the difficulties faced by the architects of the DAMB.

  9. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  10. Investigation of Severe Craniomaxillofacial Battle Injuries Sustained by U.S. Service Members: A Case Series

    DTIC Science & Technology

    2012-11-05

    advancement flaps and reconstructive advancement of lower lip and a buccal mucosa advancement flap to reconstruct maxillary lip. (C) Incision markings for...Maxillofac Surg 2007;65:1215 1218 6 Clark N, Birely B, Manson PN, et al. High energy ballistic and avulsive facial injuries: classification, patterns, and

  11. Effect of SiC addition to the characteristics of Al-11Zn-6.7Mg composite produced by squeeze casting for ballistic application

    NASA Astrophysics Data System (ADS)

    Adiputra, R. F.; Wijanarko, R.; Angela, I.; Sofyan, B. T.

    2018-01-01

    Aluminium composite material as an alternative to steel used in body of tactical vehicles has been studied. Addition of SiC was expected to have strengthening effect on the composite matrix therefore improving its ballistic performance. Composites of Al-11Zn-6.7Mg matrix and SiC strengthening particles with the fraction of 0, 10, and 15 vol. % were fabricated through squeeze casting process. Composite samples were then precipitation strengthened at 130 °C for 102 h to further improve their toughness. Final products were characterized by using chemical composition testing, optical microscopy, Scanning Electron Microscope - Energy Dispersive Spectroscopy (SEM-EDS) and quantitative metallography to calculate porosity, hardness test, impact test, and type III ballistic test in accordance with NIJ 0108.04 standard. The results showed that increase in SiC volume fraction from 0 to 10 and 15 vol. % managed to improve the hardness from 73 to 85 and 87 HRB, respectively, while on the other hand reduced the impact values from 12,278.69 to 11,290.35 and 9,924.54 J/m2. SEM-EDS observation confirmed the presence of Mg3Zn3Al2 intermetallic compound which formed during solidification and indicated the precipitation of MgZn2 precipitates during ageing. The ballistic testing demonstrated a promising result of the potential of Al-11Zn-6.7Mg composite strengthened by 15 vol. % SiC to withstand penetration of type III bullet (7.62 mm).

  12. Elevated Temperature Ballistic Impact Testing of PBO and Kevlar Fabrics for Application in Supersonic Jet Engine Fan Containment Systems

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts Gary D.; Revilock, Duane M., Jr.

    1997-01-01

    Ballistic impact tests were conducted on fabric made from both Poly(phenylene benzobizoxazole) (PBO) and Kevlar 29 which were selected to be similar in weave pattern, areal density, and fiber denier. The projectiles were 2.54-cm- (1-in.-) long aluminum cylinders with a diameter of 1.27 cm (0.5 in.). The fabric specimens were clamped on four sides in a 30.5-cm- (12-in.-) square frame. Tests on PBO were conducted at room temperature and at 260 C (500 F). A number of PBO specimens were aged in air at 204 and 260 C (400 and 500 F) before impact testing. Kevlar specimens were tested only at room temperature and with no aging. The PBO absorbed significantly more energy than the Kevlar at both room and elevated temperatures. However, after aging at temperatures of 204 C (400 F) and above, the PBO fabric lost almost all of its energy absorbing ability. It was concluded that PBO fabric is not a feasible candidate for fan containment system applications in supersonic jet engines where operating temperatures exceed this level.

  13. Wound ballistics: theory and practice.

    PubMed

    Ordog, G J; Wasserberger, J; Balasubramanium, S

    1984-12-01

    Ballistics is the study of the natural laws governing projectile missiles and their predictable performances, and wound ballistics is the study of a missile's effect on living tissue. A knowledge of these topics is essential to determine the extent and type of injury from a missile. The type of missile can often be determined by radiography. The caliber can be measured directly if the bullet is close to the x-ray plate and the x-ray tube is at least six feet from the film. Changing these distances can result in a maximum magnification of the bullet image of 20%, and the exact amount can be calculated using a formula provided. Definitions of ballistic and wound ballistic terms are provided, as are examples of wound ballistics in application.

  14. Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation.

    PubMed

    Lu, Fengyuan; Wang, Jianwei; Lang, Maik; Toulemonde, Marcel; Namavar, Fereydoon; Trautmann, Christina; Zhang, Jiaming; Ewing, Rodney C; Lian, Jie

    2012-09-21

    Bulk ZrO(2) polymorphs generally have an extremely high amorphization tolerance upon low energy ion and swift heavy ion irradiation in which ballistic interaction and ionization radiation dominate the ion-solid interaction, respectively. However, under very high-energy irradiation by 1.33 GeV U-238, nanocrystalline (40-50 nm) monoclinic ZrO(2) can be amorphized. A computational simulation based on a thermal spike model reveals that the strong ionizing radiation from swift heavy ions with a very high electronic energy loss of 52.2 keV nm(-1) can induce transient zones with temperatures well above the ZrO(2) melting point. The extreme electronic energy loss, coupled with the high energy state of the nanostructured materials and a high thermal confinement due to the less effective heat transport within the transient hot zone, may eventually be responsible for the ionizing radiation-induced amorphization without transforming to the tetragonal polymorph. The amorphization of nanocrystalline zirconia was also confirmed by 1.69 GeV Au ion irradiation with the electronic energy loss of 40 keV nm(-1). These results suggest that highly radiation tolerant materials in bulk forms, such as ZrO(2), may be radiation sensitive with the reduced length scale down to the nano-metered regime upon irradiation above a threshold value of electronic energy loss.

  15. New High Gain Target Design for a Laser Fusion Power Plant

    DTIC Science & Technology

    2000-06-07

    target with a minimum energy gain, about 100. Demonstration of ignition or low gain is only important for fusion energy if it leads into a target concept...nonlinear saturation of these instabilities. Our approach is to try to avoid them. 4. A Development Path to Fusion Energy The laser and target concept...on the exact date required to develop fusion energy , it would be worthwhile for a power plant development program to provide enough time and funds

  16. Understanding the Anti-Access and Area Denial Threat: An Army Perspective

    DTIC Science & Technology

    2015-05-21

    Perspective Approved by: , Monograph Director Peter J . Schifferle, PhD , Seminar Leader James MacGregor, COL...targeting purposes. See also: Ben Berk , China’s Silver Bullet: A Brief Analysis of the Threat Posed by the PRC’s Anti- ship Ballistic Missile (Chapel...16Ben Berk , China’s Silver Bullet: A Brief Analysis of the Threat Posed by the PRC’s Anti

  17. High-acceleration cable deployment

    NASA Technical Reports Server (NTRS)

    Barns, C. E.; Canning, T. N.; Gin, B.; King, R. W.; Murphy, J. P.

    1980-01-01

    Prototype high-acceleration umbilical-cable deployment allows electrical communication between above-ground instrumentation and ballistic projectile below surface. Cable deployment is made up of forebody and afterbody. Foreboy can be separated from afterbody by rocket, or they can be fired as unit at target that stops afterbody on impact (forebody would continue, deploying cable). Similar design could be used in study of sea ice and in other surface-penetration studies.

  18. Integrated detection, estimation, and guidance in pursuit of a maneuvering target

    NASA Astrophysics Data System (ADS)

    Dionne, Dany

    The thesis focuses on efficient solutions of non-cooperative pursuit-evasion games with imperfect information on the state of the system. This problem is important in the context of interception of future maneuverable ballistic missiles. However, the theoretical developments are expected to find application to a broad class of hybrid control and estimation problems in industry. The validity of the results is nevertheless confirmed using a benchmark problem in the area of terminal guidance. A specific interception scenario between an incoming target with no information and a single interceptor missile with noisy measurements is analyzed in the form of a linear hybrid system subject to additive abrupt changes. The general research is aimed to achieve improved homing accuracy by integrating ideas from detection theory, state estimation theory and guidance. The results achieved can be summarized as follows. (i) Two novel maneuver detectors are developed to diagnose abrupt changes in a class of hybrid systems (detection and isolation of evasive maneuvers): a new implementation of the GLR detector and the novel adaptive- H0 GLR detector. (ii) Two novel state estimators for target tracking are derived using the novel maneuver detectors. The state estimators employ parameterized family of functions to described possible evasive maneuvers. (iii) A novel adaptive Bayesian multiple model predictor of the ballistic miss is developed which employs semi-Markov models and ideas from detection theory. (iv) A novel integrated estimation and guidance scheme that significantly improves the homing accuracy is also presented. The integrated scheme employs banks of estimators and guidance laws, a maneuver detector, and an on-line governor; the scheme is adaptive with respect to the uncertainty affecting the probability density function of the filtered state. (v) A novel discretization technique for the family of continuous-time, game theoretic, bang-bang guidance laws is introduced. The performance of the novel algorithms is assessed for the scenario of a pursuit-evasion engagement between a randomly maneuvering ballistic missile and an interceptor. Extensive Monte Carlo simulations are employed to evaluate the main statistical properties of the algorithms. (Abstract shortened by UMI.)

  19. Correlating Distal, Medial and Proximal Ejecta Transport/Emplacement From Oblique Cosmic Impact On North American Continental Ice Sheet At MIS20 ( 786 ka) Via Suborbital Analysis (SA).

    NASA Astrophysics Data System (ADS)

    Harris, T. H. S.; Davais, M. E.

    2017-12-01

    Several elements of the 786 ka Australasian (AA) tektite imprint bear close scrutinyin order to locate the parent impact site or structure. The unique Carolina bays unit geologic formation is indicated as a large "medial" ejecta blanket from a large cosmic impact during a period containing 786 ka. Coincidence? Kg-scale sub-spherical hollow splash form AA tektites implies prolonged atmospheric blow out-scale momentum current with a core of sub-parallel or divergent flow volume having essentially zero turbulence. This would allow for plasma entrainment and heating of target mass at prolonged low dynamic pressure during outflow, where adiabatic expansion could deliver both semi-solid Muong Nong-type and inviscid melts above the atmosphere for gentle release upon rarefaction in vacuum. Within a large atmospheric blow-out scale momentum current, target mass becomes entrained at the speed of adiabatic outflow. 10+ km/s ejecta entrainment yields inter-hemispheric emplacement from launch per governing suborbital mechanics, without question. Oblique impact into a thick ice sheet explains reduced excavation volume and shearing disruption in the form of hypersonic steam plasma scouring. Adiabatic expansion would be immediately available to accelerate and further heat proto-tektite target mass. With shock no longer the sole transport engine, kg-scale splash forms and tektite speeds above the post-shock vaporization velocity of quartz are explained by expansion of shocked ice, in agreement with the observed imprint. The 6 Carolina bay shapes or "Davias Archetypes" are reproducible using conic perturbation in Suborbital Analysis, conforming to a formative mechanism of suborbital transport and ballistic emplacement: "Suborbital Obstruction Shadowing" needs only 3 parts in 10,000 of VEL variation around a circular EL-AZ-VEL launch cone, before considering re-entry effects. Transport energy of the Carolina bay sand, calculated using the 3.5 to 4 km/s launch VEL required for its indicated transport, must account for inefficiency of entrained transport. Roughly 1600 cubic kilometers of Carolina bays sand must have taken 10 to 1000 times more energy to transport than the entire Chixulub event yield. Imagery by M. E. Davias of Cintos.org, S.E. Nebraska (top) and Bennettsville, South Carolina (bottom).

  20. Measurements of the effective atomic numbers of minerals using bremsstrahlung produced by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Czarnecki, S.; Williams, S.

    2017-12-01

    The accuracy of a method for measuring the effective atomic numbers of minerals using bremsstrahlung intensities has been investigated. The method is independent of detector-efficiency and maximum accelerating voltage. In order to test the method, experiments were performed which involved low-energy electrons incident on thick malachite, pyrite, and galena targets. The resultant thick-target bremsstrahlung was compared to bremsstrahlung produced using a standard target, and experimental effective atomic numbers were calculated using data from a previous study (in which the Z-dependence of thick-target bremsstrahlung was studied). Comparisons of the results to theoretical values suggest that the method has potential for implementation in energy-dispersive X-ray spectroscopy systems.

  1. Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions

    NASA Astrophysics Data System (ADS)

    Lefebvre, M.; Boussu, F.; Coutellier, D.; Vallee, D.

    2012-08-01

    The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices) may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP) impact. During this research, several parameters has being studied as the influence of the yarns insertions [1-4], the degradation of the yarns during the weaving process [5-7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two processes. The first is a classical vacuum resin infusion; the second used a press in order to reach a resin ratio near to the existing protection. The existing protection is a prepreg structure with a fibre content of 88%. It has been revealed that a resin rate less than 35% inside the warp interlocks composite material leads to have equivalent ballistics performances than existing protection.

  2. Methods for Analysis and Simulation of Ballistic Impact

    DTIC Science & Technology

    2017-04-01

    ARL-RP-0597 ● Apr 2017 US Army Research Laboratory Methods for Analysis and Simulation of Ballistic Impact by John D Clayton...Laboratory Methods for Analysis and Simulation of Ballistic Impact by John D Clayton Weapons and Materials Research Directorate, ARL...analytical, and numerical methods of ballistics research . Similar lengthy references dealing with pertinent aspects include [8, 9]. In contrast, the

  3. Development of Si3N4 and SiC of improved toughness. [for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Brennan, J. J.; Hulse, C. O.

    1977-01-01

    The application of energy absorbing surface layers to Si3N4 and SiC was investigated. Among the layers studied were microcracked materials such as iron titanate and a silica-zircon mixture and porous materials such as reaction sintered Si3N4. Energy absorption due to microcrack extension upon impact was found not to be an important mechanism. Instead, the fivefold improvement in Charpy and ballistic impact at elevated temperature (1250 C and 1370 C) found for Fe2TiO5 was due to plastic deformation while similar improvement found for silica-zircon mixtures at RT was due to crushing of the porous material. Due to thermal expansion mismatch, these two materials could not withstand thermal cycling when used as energy absorbing surface layers on Si3N4. Reaction sintered Si3N4 layers on dense Si3N4 were found to give up to a sevenfold increase in ballistic impact resistance due to crushing of the layer upon impact. High porosity (45%), large particle size R.S. Si3N4 layers fabricated from -100, +200 mesh Si powder gave better impact improvement than less porous (30%), small particle size layers fabricated from -325 mesh Si powder.

  4. On ballistic parameters of less lethal projectiles influencing the severity of thoracic blunt impacts.

    PubMed

    Pavier, Julien; Langlet, André; Eches, Nicolas; Jacquet, Jean-François

    2015-01-01

    The development and safety certification of less lethal projectiles require an understanding of the influence of projectile parameters on projectile-chest interaction and on the resulting terminal effect. Several energy-based criteria have been developed for chest injury assessment. Many studies consider kinetic energy (KE) or energy density as the only projectile parameter influencing terminal effect. In a common KE range (100-160 J), analysis of the firing tests of two 40 mm projectiles of different masses on animal surrogates has been made in order to investigate the severity of the injuries in the thoracic region. Experimental results have shown that KE and calibre are not sufficient to discriminate between the two projectiles as regards their injury potential. Parameters, such as momentum, shape and impedance, influence the projectile-chest interaction and terminal effect. A simplified finite element model of projectile-structure interaction confirms the experimental tendencies. Within the range of ballistic parameters used, it has been demonstrated that maximum thoracic deflection is a useful parameter to predict the skeletal level of injury, and it largely depends on the projectile pre-impact momentum. However, numerical simulations show that these results are merely valid for the experimental conditions used and cannot be generalised. Nevertheless, the transmitted impulse seems to be a more general factor governing the thorax deflection.

  5. HREM study of irradiation damage in human dental enamel crystals.

    PubMed

    Brès, E F; Hutchison, J L; Senger, B; Voegel, J C; Frank, R M

    1991-06-01

    Several phenomena have been observed during the examination of human dental enamel crystals (mainly constituted by hydroxyapatite (OHAP] by high-resolution electron microscopy (HREM) at 300 and 400 keV: orientation-dependent damage in the form of mass loss from voids or uniform destruction of crystal structure, beam-induced diffusion creating outgrowths at the crystal surfaces, recrystallization of the bulk crystal and crystallization of the inorganic components of the matrix surrounding the crystals. These beam-induced crystals have the CaO structure. The phenomena observed are most likely due to various electron-crystal interaction mechanisms (ballistic knock-on damage, electronic excitations, temperature rise, etc.). In this paper, the contribution of the ballistic process to the phenomena observed is discussed. The quantitative description of the knock-on collisions rests on the McKinley-Feshbach cross-section formula. The minimum ion displacement energies which appear in this expression have been estimated on the basis of the electrostatic ion binding energies, and the covalent bond energies if required. It is shown that hydroxyl, calcium and oxygen ions can effectively be displaced by the incident 300 and 400 keV electrons. Thus, the formation of CaO crystals by the combination of calcium and oxygen ions diffusing from their initial sites inside the OHAP lattice can tentatively be explained.

  6. Earth to Orbit Beamed Energy Experiment

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.

    2017-01-01

    As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are large area, low mass spacecraft and efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, if approved, then it would be the next step toward that goal.

  7. A hypersonic vehicle approach to planetary exploration

    NASA Technical Reports Server (NTRS)

    Murbach, Marcus S.

    1993-01-01

    An enhanced Mars network class mission using a lifting hypersonic entry vehicle is proposed. The basic vehicle, derived from a mature hypersonic flight system called SWERVE, offers several advantages over more conventional low L/D or ballistic entry systems. The proposed vehicle has greatly improved lateral and cross range capability (e.g., it is capable of reaching the polar regions during less than optimal mission opportunities), is not limited to surface target areas of low elevation, and is less susceptible to problems caused by Martian dust storms. Further, the integrated vehicle has attractive deployment features and allows for a much improved evolutionary path to larger vehicles with greater science capability. Analysis of the vehicle is aided by the development of a Mars Hypersonic Flight Simulator from which flight trajectories are obtained. Atmospheric entry performance of the baseline vehicle is improved by a deceleration skirt and transpiration cooling system which significantly reduce TPS (Thermal Protection System) and flight battery mass. The use of the vehicle is also attractive in that the maturity of the flight systems make it cost-competitive with the development of a conventional low L/D entry system. Finally, the potential application of similar vehicles to other planetary missions is discussed.

  8. [Bullet and shrapnel injuries in the face and neck regions. Current aspects of wound ballistics].

    PubMed

    Hauer, T; Huschitt, N; Kulla, M; Kneubuehl, B; Willy, C

    2011-08-01

    A basic understanding of the ballistic behaviour of projectiles or fragments after entering the human body is essential for the head and neck surgeon in the military environment in order to anticipate the diagnostic and therapeutic consequences of this type of injury. Although a large number of factors influence the missile in flight and after penetration of the body, the most important factor is the amount of energy transmitted to the tissue. Long guns (rifles or shotguns) have a much higher muzzle energy compared to handguns, explaining why the remote effects beyond the bullet track play a major role. While most full metal jacket bullets release their energy after 12-20 cm (depending on the calibre), soft point bullets release their energy immediately after entry into the human body. This results in a major difference in extremity wounds, but not so much in injuries with long bullet paths (e.g. diagonal shots). Shrapnel wounds are usually produced with similarly high kinetic energy to those caused by hand- and long guns. However, fragments tend to dissipate the entire amount of energy within the body, which increases the degree of tissue disruption. Of all relevant injuries in the head and neck region, soft tissue injuries make up the largest proportion (60%), while injuries to the face are seen three times more often than injuries to the neck. Concomitant intracranial or spinal injury is seen in 30% of cases. Due to high levels of wound contamination, the infection rate is approximately 15%, often associated with a complicated and/or multiresistant spectrum of germs.

  9. A hemispherical imaging and tracking (HIT) system

    NASA Astrophysics Data System (ADS)

    Gilbert, John A.; Fair, Sara B.; Caldwell, Scott E.; Gronner, Sally J.

    1992-05-01

    A hemispherical imaging and tracking (HIT) system is described which is used for an interceptor designed to acquire, select, home, and hit-to-kill reentry vehicle targets from intercontinental ballistic missiles. The system provides a sizable field of view, over which a target may be tracked and yields a unique and distinctive optical signal when the system is 'on target'. The system has an infinite depth of focus and no moving parts are required for imaging within a hemisphere. Critical alignment of the HIT system is based on the comparison of signals captured through different points on an annular window. Assuming that the perturbations are radially symmetric, errors may be eliminated during the subtraction.

  10. Tunnel and field effect carrier ballistics

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Bell, L. Douglas (Inventor)

    1989-01-01

    Methods and apparatus for interacting carriers with a structure of matter employ an electrode for emitting said carriers at a distance from a surface of that structure, and cause such carriers to travel along ballistic trajectories inside that structure by providing along the mentioned distance a gap for performance of a process selected from the group of carrier tunneling and field emission and injecting carriers emitted by the mentioned electrode and that process ballistically into the structure through the gap and the mentioned surface. The carriers are collected or analyzed after their travel along ballistic trajectories in the structure of matter. Pertinent information on the inside of the structure is obtained by conducting inside that structure what conventionally would have been considered external ballistics, while performing the carrier-propelling internal ballistics conversely outside that structure.

  11. Thermodynamic properties of UF sub 6 measured with a ballistic piston compressor

    NASA Technical Reports Server (NTRS)

    Sterritt, D. E.; Lalos, G. T.; Schneider, R. T.

    1973-01-01

    From experiments performed with a ballistic piston compressor, certain thermodynamic properties of uranium hexafluoride were investigated. Difficulties presented by the nonideal processes encountered in ballistic compressors are discussed and a computer code BCCC (Ballistic Compressor Computer Code) is developed to analyze the experimental data. The BCCC unfolds the thermodynamic properties of uranium hexafluoride from the helium-uranium hexafluoride mixture used as the test gas in the ballistic compressor. The thermodynamic properties deduced include the specific heat at constant volume, the ratio of specific heats for UF6, and the viscous coupling constant of helium-uranium hexafluoride mixtures.

  12. Head Rotation Movement Times.

    PubMed

    Hoffmann, Errol R; Chan, Alan H S; Heung, P T

    2017-09-01

    The aim of this study was to measure head rotation movement times in a Fitts' paradigm and to investigate the transition region from ballistic movements to visually controlled movements as the task index of difficulty (ID) increases. For head rotation, there are gaps in the knowledge of the effects of movement amplitude and task difficulty around the critical transition region from ballistic movements to visually controlled movements. Under the conditions of 11 ID values (from 1.0 to 6.0) and five movement amplitudes (20° to 60°), participants performed a head rotation task, and movement times were measured. Both the movement amplitude and task difficulty have effects on movement times at low IDs, but movement times are dependent only on ID at higher ID values. Movement times of participants are higher than for arm/hand movements, for both ballistic and visually controlled movements. The information-processing rate of head rotational movements, at high ID values, is about half that of arm movements. As an input mode, head rotations are not as efficient as the arm system either in ability to use rapid ballistic movements or in the rate at which information may be processed. The data of this study add to those in the review of Hoffmann for the critical IDs of different body motions. The data also allow design for the best arrangement of display that is under the design constraints of limited display area and difficulty of head-controlled movements in a data-inputting task.

  13. The Effects of Multiple Sets of Squats and Jump Squats on Mechanical Variables.

    PubMed

    Rossetti, Michael L; Munford, Shawn N; Snyder, Brandon W; Davis, Shala E; Moir, Gavin L

    2017-07-28

    The mechanical responses to two non-ballistic squat and two ballistic jump squat protocols performed over multiple sets were investigated. One protocol from each of the two non-ballistic and ballistic conditions incorporated a pause between the eccentric and concentric phases of the movements in order to determine the influence of the coupling time on the mechanical variables and post-activation potentiation (PAP). Eleven men (age: 21.9 ± 1.8 years; height: 1.79 ± 0.05 m; mass: 87.0 ± 7.4 kg) attended four sessions where they performed multiple sets of squats and jump squats with a load equivalent to 30% 1-repeititon maximum under one of the following conditions: 1) 3 × 4 repetitions of non-ballistic squats (30N-B); 2) 3 × 4 repetitions of non-ballistic squats with a 3-second pause between the eccentric and concentric phases of each repetition (30PN-B); 3) 3 × 4 repetitions of ballistic jump squats (30B); 4) 3 × 4 repetitions of ballistic jump squats with a 3-second pause between the eccentric and concentric phases of each repetition (30PB). Force plates were used to calculate variables including average vertical velocity, average vertical force (GRF), and average power output (PO). Vertical velocities during the ballistic conditions were significantly greater than those attained during the non-ballistic conditions (mean differences: 0.21 - 0.25 m/s, p<0.001, effect sizes [ES]: 1.70 - 1.89) as were GRFs (mean differences: 478 - 526 N, p<0.001, ES: 1.61 - 1.63), and PO (mean differences: 711 - 869 W, p<0.001, ES: 1.66 - 1.73). Moreover, the increase in PO across the three sets in 30B was significantly greater than the changes observed during 30N-B, 30PN-B, and 30PB (p≤0.015). The pause reduced the mechanical variables during both the non-ballistic and ballistic conditions, although the differences were not statistically significant (p>0.05). Ballistic jump squats may be an effective exercise for developing PO given the high velocities and forces generated in these exercises. Furthermore, the completion of multiple sets of jump squats may induce PAP to enhance PO. The coupling times between the eccentric and concentric phases of the jump squats should be short in order to maximize the GRF and PO across the sets.

  14. Low-velocity ion stopping in a dense and low-temperature plasma target

    NASA Astrophysics Data System (ADS)

    Deutsch, Claude; Popoff, Romain

    2007-07-01

    We investigate the stopping specificities involved in the heating of thin foils irradiated by intense ion beams in the 0.3-3 MeV/amu energy range and in close vicinity of the Bragg peak. Considering a swiftly ionized target to eV temperatures before expansion while retaining solid-state density, a typical warm dense matter (WDM) situation thus arises. We stress low Vp stopping through ion diffusion in the given target plasma. This allows to include the case of a strongly magnetized target in a guiding center approximation. We also demonstrate that the ion projectile penetration depth in target is significantly affected by multiple scattering on target electrons. The given plasma target is taken weakly coupled with Maxwell electron either with no magnetic field ( B=0) or strongly magnetized ( B≠0). Dynamical coupling between ion projectiles energy losses and projectiles charge state will also be addressed.

  15. Martian rampart crater ejecta - Experiments and analysis of melt-water interaction

    NASA Technical Reports Server (NTRS)

    Wohletz, K. H.; Sheridan, M. F.

    1983-01-01

    The possible effects of explosive water vaporization on ejecta emplacement after impact into a wet target are described. A general model is formulated from analysis of Viking imagery of Mars and experimental vapor explosions as well as consideration of fluidized particulate transport and lobate volcanic deposits. The discussed model contends that as target water content increases, the effects of vapor expansion due to impact increasingly modify the ballistic flow field during crater excavation. This modification results in transport by gravity-driven surface flowage, and is similar to that of atmospheric drag effects on ejecta modelled by Schultz and Gault (1979).

  16. A simplified model for the assessment of the impact probability of fragments.

    PubMed

    Gubinelli, Gianfilippo; Zanelli, Severino; Cozzani, Valerio

    2004-12-31

    A model was developed for the assessment of fragment impact probability on a target vessel, following the collapse and fragmentation of a primary vessel due to internal pressure. The model provides the probability of impact of a fragment with defined shape, mass and initial velocity on a target of a known shape and at a given position with respect to the source point. The model is based on the ballistic analysis of the fragment trajectory and on the determination of impact probabilities by the analysis of initial direction of fragment flight. The model was validated using available literature data.

  17. Understanding the ballistic event : Methodology and observations relevant to ceramic armour

    NASA Astrophysics Data System (ADS)

    Healey, Adam

    The only widely-accepted method of gauging the ballistic performance of a material is to carry out ballistic testing; due to the large volume of material required for a statistically robust test, this process is very expensive. Therefore a new test, or suite of tests, that employ widely-available and economically viable characterisation methods to screen candidate armour materials is highly desirable; in order to design such a test, more information on the armour/projectile interaction is required. This work presents the design process and results of using an adapted specimen configuration to increase the amount of information obtained from a ballistic test. By using a block of ballistic gel attached to the ceramic, the fragmentation generated during the ballistic event was captured and analysed. In parallel, quasi-static tests were carried out using ring-on-ring biaxial disc testing to investigate relationships between quasi-static and ballistic fragment fracture surfaces. Three contemporary ceramic armour materials were used to design the test and to act as a baseline; Sintox FA alumina, Hexoloy SA silicon carbide and 3M boron carbide. Attempts to analyse the post-test ballistic sample non-destructively using X-ray computed tomography (XCT) were unsuccessful due to the difference in the density of the materials and the compaction of fragments. However, the results of qualitative and quantitative fracture surface analysis using scanning electron microscopy showed similarities between the fracture surfaces of ballistic fragments at the edges of the tile and biaxial fragments; this suggests a relationship between quasi-static and ballistic fragments created away from the centre of impact, although additional research will be required to determine the reason for this. Ballistic event-induced porosity was observed and quantified on the fracture surfaces of silicon carbide samples, which decreased as distance from centre of impact increased; upon further analysis this porosity was linked to the loss of a boron-rich second phase. Investigating why these inclusions are lost and the extent of the effect of this on ballistic behaviour may have important implications for the use of multi-phase ceramic materials as armour.

  18. Behavior of characteristic X-rays from a partial-transmission-type X-ray target.

    PubMed

    Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2013-10-01

    The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  20. Missileer: The Dawn, Decline, and Reinvigoration of America’s Intercontinental Ballistic Missile Operators

    DTIC Science & Technology

    2017-06-01

    Group, resulting in all missiles entering ‘ radio mode’ and making them air-launch accessible.1 This loss of communications was an anomaly caused by an...MEECN) Program (MMP) Part of MEECN program that replaced legacy Survivable Low Frequency Communications System (SLFCS) with integrated extremely high...very low/low frequency (EHF/VLF/LF) communications capability. Began in 2003 and finished in 2005. Security Modernization (Three phases: Fast

  1. Plasma ``anti-assistance'' and ``self-assistance'' to high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anders, André; Yushkov, Georgy Yu.

    2009-04-01

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  2. Semantic bifurcated importance field visualization

    NASA Astrophysics Data System (ADS)

    Lindahl, Eric; Petrov, Plamen

    2007-04-01

    While there are many good ways to map sensual reality to two dimensional displays, mapping non-physical and possibilistic information can be challenging. The advent of faster-than-real-time systems allow the predictive and possibilistic exploration of important factors that can affect the decision maker. Visualizing a compressed picture of the past and possible factors can assist the decision maker summarizing information in a cognitive based model thereby reducing clutter and perhaps related decision times. Our proposed semantic bifurcated importance field visualization uses saccadic eye motion models to partition the display into a possibilistic and sensed data vertically and spatial and semantic data horizontally. Saccadic eye movement precedes and prepares decision makers before nearly every directed action. Cognitive models for saccadic eye movement show that people prefer lateral to vertical saccadic movement. Studies have suggested that saccades may be coupled to momentary problem solving strategies. Also, the central 1.5 degrees of the visual field represents 100 times greater resolution that then peripheral field so concentrating factors can reduce unnecessary saccades. By packing information according to saccadic models, we can relate important decision factors reduce factor dimensionality and present the dense summary dimensions of semantic and importance. Inter and intra ballistics of the SBIFV provide important clues on how semantic packing assists in decision making. Future directions of SBIFV are to make the visualization reactive and conformal to saccades specializing targets to ballistics, such as dynamically filtering and highlighting verbal targets for left saccades and spatial targets for right saccades.

  3. Modeling terminal ballistics using blending-type spline surfaces

    NASA Astrophysics Data System (ADS)

    Pedersen, Aleksander; Bratlie, Jostein; Dalmo, Rune

    2014-12-01

    We explore using GERBS, a blending-type spline construction, to represent deform able thin-plates and model terminal ballistics. Strategies to construct geometry for different scenarios of terminal ballistics are proposed.

  4. Impact ejecta on the moon

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.

    1976-01-01

    The partitioning of energy and the distribution of the resultant ejecta on the moon is numerically modeled using a Eulerian finite difference grid. The impact of an iron meteoroid at 15 km/sec on a gabbroic anorthosite lunar crust is examined. The high speed impact induced flow is described over the entire hydrodynamic regime from a time where the peak pressures are 6 Mbar until the stresses everywhere in the flow are linearly elastic, and less than 5 kbar. Shock-induced polymorphic phase changes, (plagioclase and pyroxene to hollandite and perovskite), and the subsequent reversion to low pressure phases are demonstrated to enhance shock wave attenuation. A rate-dependent equation of state is used for describing the hysteretic effect of the phase change. Ballistic equations for a spherical planet are then applied to material with net velocity away from the moon.

  5. Investigations of high-speed digital imaging of low-light-level events using pulsed near-infrared laser light sources

    NASA Astrophysics Data System (ADS)

    Jantzen, Connie; Slagle, Rick

    1997-05-01

    The distinction between exposure time and sample rate is often the first point raised in any discussion of high speed imaging. Many high speed events require exposure times considerably shorter than those that can be achieved solely by the sample rate of the camera, where exposure time equals 1/sample rate. Gating, a method of achieving short exposure times in digital cameras, is often difficult to achieve for exposure time requirements shorter than 100 microseconds. This paper discusses the advantages and limitations of using the short duration light pulse of a near infrared laser with high speed digital imaging systems. By closely matching the output wavelength of the pulsed laser to the peak near infrared response of current sensors, high speed image capture can be accomplished at very low (visible) light levels of illumination. By virtue of the short duration light pulse, adjustable to as short as two microseconds, image capture of very high speed events can be achieved at relatively low sample rates of less than 100 pictures per second, without image blur. For our initial investigations, we chose a ballistic subject. The results of early experimentation revealed the limitations of applying traditional ballistic imaging methods when using a pulsed infrared lightsource with a digital imaging system. These early disappointing results clarified the need to further identify the unique system characteristics of the digital imager and pulsed infrared combination. It was also necessary to investigate how the infrared reflectance and transmittance of common materials affects the imaging process. This experimental work yielded a surprising, successful methodology which will prove useful in imaging ballistic and weapons tests, as well as forensics, flow visualizations, spray pattern analyses, and nocturnal animal behavioral studies.

  6. Pulsed holographic system for imaging through spatially extended scattering media

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.; Judd, K. P.; Lebow, P.; Watnik, A. T.; Novak, K. M.; Lindle, J. R.

    2017-10-01

    Imaging through scattering media is a highly sought capability for military, industrial, and medical applications. Unfortunately, nearly all recent progress was achieved in microscopic light propagation and/or light propagation through thin or weak scatterers which is mostly pertinent to medical research field. Sensing at long ranges through extended scattering media, for example turbid water or dense fog, still represents significant challenge and the best results are demonstrated using conventional approaches of time- or range-gating. The imaging range of such systems is constrained by their ability to distinguish a few ballistic photons that reach the detector from the background, scattered, and ambient photons, as well as from detector noise. Holography can potentially enhance time-gating by taking advantage of extra signal filtering based on coherence properties of the ballistic photons as well as by employing coherent addition of multiple frames. In a holographic imaging scheme ballistic photons of the imaging pulse are reflected from a target and interfered with the reference pulse at the detector creating a hologram. Related approaches were demonstrated previously in one-way imaging through thin biological samples and other microscopic scale scatterers. In this work, we investigate performance of holographic imaging systems under conditions of extreme scattering (less than one signal photon per pixel signal), demonstrate advantages of coherent addition of images recovered from holograms, and discuss image quality dependence on the ratio of the signal and reference beam power.

  7. An air-breathing ballistic space transporter for Europe

    NASA Technical Reports Server (NTRS)

    Kramer, P. A.; Buehler, R. D.

    1985-01-01

    With increasing transport requirements, reusable space transporters again receive serious consideration in Europe as successors to the Ariane family. The paper deals with a hydrogen-ramjet-propelled, 1-1/2-stage reusable ballistic space transporter with vertical take-off and landing and using liquid hydrogen/oxygen rockets. This novel concept was developed in a theoretical study at the University of Stuttgart. The results are compared with recently published studies of several other European space transporter concepts. The data derived for the Istra - concept are: 15.4 Mg payload into low Earth-orbit, 155 Mg gross lift-off mass, 10% payload ratio, which represents a 57% propellant saving, and 44% reduction in dry mass (structure and engines) compared with comparable two-stage pure rocket concepts.

  8. Tunable quantum criticality and super-ballistic transport in a "charge" Kondo circuit.

    PubMed

    Iftikhar, Z; Anthore, A; Mitchell, A K; Parmentier, F D; Gennser, U; Ouerghi, A; Cavanna, A; Mora, C; Simon, P; Pierre, F

    2018-05-03

    Quantum phase transitions (QPTs) are ubiquitous in strongly-correlated materials. However the microscopic complexity of these systems impedes the quantitative understanding of QPTs. Here, we observe and thoroughly analyze the rich strongly-correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. Notably, an unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated phenomena. Copyright © 2018, American Association for the Advancement of Science.

  9. Parachuting to Safety

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Langley Research Center awarded Ballistic Recovery Systems, Inc., three Small Business Innovation Research (SBIR) contracts to research and develop a new, low cost, lightweight recovery system for aircraft in both civilian and military markets. The company responded with a unique ballistic parachute system that lowers an entire aircraft to the ground in the event of an emergency. BRS parachutes are designed to provide a safe landing for pilots and passengers while keeping them in their aircraft. They currently fit ultralights, kit-built aircraft, and certified small business aircraft. The parachutes are lifesavers in cases of engine failure, mid-air collisions, pilot disorientation or incapacitation, unrecovered spins, extreme icing, and fuel exhaustion. To date, over 148 lives were saved as a result of a BRS parachute system.

  10. Global Energetics of Solar Flares. Part III; Nonthermal Energies

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Holman, Gordon; O'Flannagain, Aidan; Caspi, Amir; McTiernan, James M.; Kontar, Eduard P.

    2016-01-01

    This study entails the third part of a global flare energetics project, in which Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) data of 191 M and X-class flare events from the first 3.5 years of the Solar Dynamics Observatory mission are analyzed. We fit a thermal and a nonthermal component to RHESSI spectra, yielding the temperature of the differential emission measure (DEM) tail, the nonthermal power-law slope and flux, and the thermal nonthermal cross-over energy eco. From these parameters, we calculate the total nonthermal energy E(sub nt) in electrons with two different methods: (1) using the observed cross-over energy e(sub co) as low-energy cutoff, and (2) using the low-energy cut off e(sub wt) predicted by the warm thick-target bremsstrahlung model of Kontar et al. Based on a mean temperature of T(sub e) = 8.6 MK in active regions, we find low-energy cutoff energies of e(sub wt) = 6.2 +/-1.6 keV for the warm-target model, which is significantly lower than the cross-over energies e(sub co) = 21 +/- 6 keV. Comparing with the statistics of magnetically dissipated energies E(sub mag) and thermal energies E(sub th) from the two previous studies, we find the following mean (logarithmic) energy ratios with the warm-target model: E(sub nt) = 0.41E(sub mag), E(sub th) = 0.08 E(sub mag), and E(sub th) = 0.15 E(sub nt). The total dissipated magnetic energy exceeds the thermal energy in 95% and the nonthermal energy in 71% of the flare events, which confirms that magnetic reconnection processes are sufficient to explain flare energies. The nonthermal energy exceeds the thermal energy in 85% of the events, which largely confirms the warm thick-target model.

  11. Assessing behind armor blunt trauma in accordance with the National Institute of Justice Standard for Personal Body Armor Protection using finite element modeling.

    PubMed

    Roberts, Jack C; Ward, Emily E; Merkle, Andrew C; O'Connor, James V

    2007-05-01

    To assess the possibility of injury as a result of behind armor blunt trauma (BABT), a study was undertaken to determine the conditions necessary to produce the 44-mm clay deformation as set forth in the National Institute of Justice (NIJ) Standard 0101.04. These energy levels were then applied to a three-dimensional Human Torso Finite Element Model (HTFEM) with soft armor vest. An examination will be made of tissue stresses to determine the effects of the increased kinetic energy levels on the probability of injury. A clay finite element model (CFEM) was created with a material model that required nonlinear properties for clay. To determine these properties empirically, the results from the CFEM were matched with experimental drop tests. A soft armor vest was modeled over the clay to create a vest over clay block finite element model (VCFEM) and empirical methods were again used to obtain material properties for the vest from experimental ballistic testing. Once the properties for the vest and clay had been obtained, the kinetic energy required to produce a 44-mm deformation in the VCFEM was determined through ballistic testing. The resulting kinetic energy was then used in the HTFEM to evaluate the probability of BABT. The VCFEM, with determined clay and vest material properties, was exercised with the equivalent of a 9-mm (8-gm) projectile at various impact velocities. The 44-mm clay deformation was produced with a velocity of 785 m/s. This impact condition (9-mm projectile at 785 m/s) was used in ballistic exercises of the HTFEM, which was modeled with high-strain rate human tissue properties for the organs. The impact zones were over the sternum anterior to T6 and over the liver. The principal stresses in both soft and hard tissue at both locations exceeded the tissue tensile strength. This study indicates that although NIJ standard 0101.04 may be a good guide to soft armor failure, it may not be as good a guide in BABT, especially at large projectile kinetic energies. Further studies, both numerical and experimental, are needed to assist in predicting injury using the NIJ standard.

  12. Ballistic Evaluation of 6055 Aluminum

    DTIC Science & Technology

    2015-09-01

    impacts from various munitions including armor-piercing (AP) and fragment-simulating projectiles (FSPs). Additionally, Table 2 provides the required...percentage of the combination of silicon and iron cannot exceed 0.40%. 2. Experimental Procedure The V50 is defined as the impact velocity at which...152 mm (6 inches) behind the target to determine the outcome of each shot. An impact is regarded as a complete penetration (CP), or loss, if the

  13. Allied Command Structures in the New NATO

    DTIC Science & Technology

    1997-01-01

    demonstrated in the Bosnia operation. • The growing need for advanced systems to counter ballistic missile proliferation targeted primarily at the...the impression that the United States w~s unsupportive towards ESDI. In reality, there was growing recognition in U.S. circles that ESDI was an...NATO. Following the June 1996 NATO ministerials, NATO support for the WEU gained substance and continues to grow . The WEU and NATO meet quarterly in

  14. Ballistic heat transport in laser generated nano-bubbles

    NASA Astrophysics Data System (ADS)

    Lombard, Julien; Biben, Thierry; Merabia, Samy

    2016-08-01

    Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications.Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR02144A

  15. A model for combined targeting and tracking tasks in computer applications.

    PubMed

    Senanayake, Ransalu; Hoffmann, Errol R; Goonetilleke, Ravindra S

    2013-11-01

    Current models for targeted-tracking are discussed and shown to be inadequate as a means of understanding the combined task of tracking, as in the Drury's paradigm, and having a final target to be aimed at, as in the Fitts' paradigm. It is shown that the task has to be split into components that are, in general, performed sequentially and have a movement time component dependent on the difficulty of the individual component of the task. In some cases, the task time may be controlled by the Fitts' task difficulty, and in others, it may be dominated by the Drury's task difficulty. Based on an experiment carried out that captured movement time in combinations of visually controlled and ballistic movements, a model for movement time in targeted-tracking was developed.

  16. The experimental and numerical investigation of pistol bullet penetrating soft tissue simulant.

    PubMed

    Wang, Yongjuan; Shi, Xiaoning; Chen, Aijun; Xu, Cheng

    2015-04-01

    Gelatin, a representative simulant for soft tissue of the human body, was used to study the effects of 9 mm pistol bullet's penetration. The behavior of a bullet penetrating gelatin was quantified by the temporary cavity sizes in ballistic gelatin and the pressure values of bullet's impact. A numerical simulation model of a bullet penetrating the soft tissue simulant gelatin was built using the finite element method (FEM). The model was validated by the comparison between the numerical results and the experimental results. During a bullet penetrating ballistic gelatin, four stages were clearly observed in both the experiment and the numerical simulation: a smooth attenuation stage, a rolling stage, a full penetration stage, and a stage of expansion and contraction. The cavity evolution, equivalent stress field and the strain field in gelatin were analyzed by numerical simulation. Moreover, the effects of the bullet's impact velocities and angles of incidence on the temporary cavity in gelatin, its velocity attenuation, and its rolling angle were investigated, as well as the bullet's resistance and energy variation. The physical process and the interactive mechanism during a pistol bullet penetrating gelatin were comprehensively revealed. This may be significant for research in wound ballistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. X-ray lasers: Strategic problems and potential as an in-orbit exoatmospheric ballistic missile defense system

    NASA Astrophysics Data System (ADS)

    Perusich, Karl Anthony

    1986-12-01

    The problems and potential of a single proposed ballistic missile defense system, the X-ray laser-armed satellite, are examined in this research. Specifically, the X-ray laser satellite system is examined to determine its impact on the issues of cost-effectiveness and crisis stability. To examime the cost-effectiveness and the crisis stability of the X-ray laser satellites, a simulation of a nuclear exchange was constructed. The X-ray laser satellites were assumed to be vulnerable to attack from energy satellites with limited satellite-to-satellite lethal ranges. Symmetric weapons and force postures were used. Five principal weapon classes were used in the model: ICMBs, SLBMs, X-ray laser satellites, bombers, and endo-atmospheric silo defenses. Also, the orbital dynamics of the ballistic missiles and satellites were simulated. The cost-effectiveness of the X-ray laser satellites was determined for two different operational capabilities, damage-limitation and assured destruction. The following conclusions were reached. The effects of deployment of a new weapon system on the Triad as a whole should be examined. The X-ray laser was found to have little effectiveness as a damage-limiting weapon for a defender. For an assured destruction capability, X-ray laser satellites could be part of a minimum-cost force mix with that capability.

  18. Emerging national space launch programs: Economics and safeguards

    NASA Astrophysics Data System (ADS)

    Chow, Brian G.

    Most ballistic missile nonproliferation studies have focused on trends in the numbers and performance of missiles and the resulting security threats. This report concentrates on the economic viability of emerging national space launch programs and the prospects for imposing effective safeguards against the use of space launch technology for military missiles. For the convenience of discussion in this report, a reference to ballistic missiles hereafter means surface-to-surface guided ballistic missiles only. Space launch vehicles (SLV's) are surface-to-space ballistic missiles, and they will be referred to explicitly as 'space launch vehicles' or 'space launchers'. Surface-to-surface unguided ballistic missiles will be referred to as 'rockets.'

  19. Introscopy in nano- and mesoscopic physics: Single electronics and quantum ballistics

    NASA Astrophysics Data System (ADS)

    Tkachenko, V. A.; Tkachenko, O. A.; Kvon, Z. D.; Latyshev, A. V.; Aseev, A. L.

    2016-09-01

    A method is presented to be used in a computational experiment aimed at studying the internal structure of nano- and mesoscopic objects, i.e., conducting subsystems and quantum phenomena in solid submicron objects, which demonstrate an individual behavior of low-temperature resistance.

  20. Space shuttle: Stability and control effectiveness at high and low angles of attack and effects of variations in engine shround, fin, and drag petal configurations for the Boeing 0.008899-scale pressure-fed ballistic recoverable booster, model 979-160

    NASA Technical Reports Server (NTRS)

    Hanson, R. L.; Obrien, R. G.; Oiye, M. Y.; Vanderleest, S.

    1972-01-01

    Experimental aerodynamic investigations were carried out in the Boeing transonic and supersonic wind tunnels on a 0.008899-scale model of a proposed pressure-fed ballistic recoverable booster (BRB) configuration. The purpose of the test program was to determine the stability and control effectiveness of the basic configuration at high and low angles of attack, and to conduct parametric studies of various engine shroud, fin, and drag petal configurations. Six-component force data and base pressure data were obtained over a Mach number range of 0.35 to 4.0 at angles of attack of -5 to 25 and 55 to 85 at zero degrees sideslip and over a sideslip range of -10 to +10 at angles of attack ranging from -10 to 72.5. Two-component force data were also obtained with a fin balance on selected runs.

Top