Sample records for targeting sirna inhibit

  1. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    PubMed

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  2. HIVsirDB: a database of HIV inhibiting siRNAs.

    PubMed

    Tyagi, Atul; Ahmed, Firoz; Thakur, Nishant; Sharma, Arun; Raghava, Gajendra P S; Kumar, Manoj

    2011-01-01

    Human immunodeficiency virus (HIV) is responsible for millions of deaths every year. The current treatment involves the use of multiple antiretroviral agents that may harm patients due to their toxic nature. RNA interference (RNAi) is a potent candidate for the future treatment of HIV, uses short interfering RNA (siRNA/shRNA) for silencing HIV genes. In this study, attempts have been made to create a database HIVsirDB of siRNAs responsible for silencing HIV genes. HIVsirDB is a manually curated database of HIV inhibiting siRNAs that provides comprehensive information about each siRNA or shRNA. Information was collected and compiled from literature and public resources. This database contains around 750 siRNAs that includes 75 partially complementary siRNAs differing by one or more bases with the target sites and over 100 escape mutant sequences. HIVsirDB structure contains sixteen fields including siRNA sequence, HIV strain, targeted genome region, efficacy and conservation of target sequences. In order to facilitate user, many tools have been integrated in this database that includes; i) siRNAmap for mapping siRNAs on target sequence, ii) HIVsirblast for BLAST search against database, iii) siRNAalign for aligning siRNAs. HIVsirDB is a freely accessible database of siRNAs which can silence or degrade HIV genes. It covers 26 types of HIV strains and 28 cell types. This database will be very useful for developing models for predicting efficacy of HIV inhibiting siRNAs. In summary this is a useful resource for researchers working in the field of siRNA based HIV therapy. HIVsirDB database is accessible at http://crdd.osdd.net/raghava/hivsir/.

  3. Whole-Genome Thermodynamic Analysis Reduces siRNA Off-Target Effects

    PubMed Central

    Chen, Xi; Liu, Peng; Chou, Hui-Hsien

    2013-01-01

    Small interfering RNAs (siRNAs) are important tools for knocking down targeted genes, and have been widely applied to biological and biomedical research. To design siRNAs, two important aspects must be considered: the potency in knocking down target genes and the off-target effect on any nontarget genes. Although many studies have produced useful tools to design potent siRNAs, off-target prevention has mostly been delegated to sequence-level alignment tools such as BLAST. We hypothesize that whole-genome thermodynamic analysis can identify potential off-targets with higher precision and help us avoid siRNAs that may have strong off-target effects. To validate this hypothesis, two siRNA sets were designed to target three human genes IDH1, ITPR2 and TRIM28. They were selected from the output of two popular siRNA design tools, siDirect and siDesign. Both siRNA design tools have incorporated sequence-level screening to avoid off-targets, thus their output is believed to be optimal. However, one of the sets we tested has off-target genes predicted by Picky, a whole-genome thermodynamic analysis tool. Picky can identify off-target genes that may hybridize to a siRNA within a user-specified melting temperature range. Our experiments validated that some off-target genes predicted by Picky can indeed be inhibited by siRNAs. Similar experiments were performed using commercially available siRNAs and a few off-target genes were also found to be inhibited as predicted by Picky. In summary, we demonstrate that whole-genome thermodynamic analysis can identify off-target genes that are missed in sequence-level screening. Because Picky prediction is deterministic according to thermodynamics, if a siRNA candidate has no Picky predicted off-targets, it is unlikely to cause off-target effects. Therefore, we recommend including Picky as an additional screening step in siRNA design. PMID:23484018

  4. Dual-targeting siRNAs

    PubMed Central

    Tiemann, Katrin; Höhn, Britta; Ehsani, Ali; Forman, Stephen J.; Rossi, John J.; Sætrom, Pål

    2010-01-01

    We have developed an algorithm for the prediction of dual-targeting short interfering RNAs (siRNAs) in which both strands are deliberately designed to separately target different mRNA transcripts with complete complementarity. An advantage of this approach versus the use of two separate duplexes is that only two strands, as opposed to four, are competing for entry into the RNA-induced silencing complex. We chose to design our dual-targeting siRNAs as Dicer substrate 25/27mer siRNAs, since design features resembling pre-microRNAs (miRNAs) can be introduced for Dicer processing. Seven different dual-targeting siRNAs targeting genes that are potential targets in cancer therapy have been developed including Bcl2, Stat3, CCND1, BIRC5, and MYC. The dual-targeting siRNAs have been characterized for dual target knockdown in three different cell lines (HEK293, HCT116, and PC3), where they were as effective as their corresponding single-targeting siRNAs in target knockdown. The algorithm developed in this study should prove to be useful for predicting dual-targeting siRNAs in a variety of different targets and is available from http://demo1.interagon.com/DualTargeting/. PMID:20410240

  5. Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs.

    PubMed

    Zhang, Huifang M; Su, Yue; Guo, Songchuan; Yuan, Ji; Lim, Travis; Liu, Jing; Guo, Peixuan; Yang, Decheng

    2009-09-01

    Coxsackievirus B3 (CVB3) is a common pathogen of myocarditis. We previously synthesized a siRNA targeting the CVB3 protease 2A (siRNA/2A) gene and achieved reduction of CVB3 replication by 92% in vitro. However, like other drugs under development, CVB3 siRNA faces a major challenge of targeted delivery. In this study, we investigated a novel approach to deliver CVB3 siRNAs to a specific cell population (e.g. HeLa cells containing folate receptor) using receptor ligand (folate)-linked packaging RNA (pRNA) from bacterial phage phi29. pRNA monomers can spontaneously form dimers and multimers under optimal conditions by base-pairing between their stem loops. By covalently linking a fluorescence-tag to folate, we delivered the conjugate specifically to HeLa cells without the need of transfection. We further demonstrated that pRNA covalently conjugated to siRNA/2A achieved an equivalent antiviral effect to that of the siRNA/2A alone. Finally, the drug targeted delivery was further evaluated by using pRNA monomers or dimers, which carried both the siRNA/2A and folate ligand and demonstrated that both of them strongly inhibited CVB3 replication. These data indicate that pRNA as a siRNA carrier can specifically deliver the drug to target cells via its ligand and specific receptor interaction and inhibit virus replication effectively.

  6. Therapeutic silence of pleiotrophin by targeted delivery of siRNA and its effect on the inhibition of tumor growth and metastasis.

    PubMed

    Zha, Lisha; He, Lichun; Xie, Weidong; Cheng, Jin; Li, Tong; Mohsen, Mona O; Lei, Fan; Storni, Federico; Bachmann, Martin; Chen, Hongquan; Zhang, Yaou

    2017-01-01

    Pleiotrophin (PTN) is a secreted cytokine that is expressed in various cancer cell lines and human tumor such as colon cancer, lung cancer, gastric cancer and melanoma. It plays significant roles in angiogenesis, metastasis, differentiation and cell growth. The expression of PTN in the adult is limited to the hippocampus in an activity-dependent manner, making it a very attractive target for cancer therapy. RNA interference (RNAi) offers great potential as a new powerful therapeutic strategy based on its highly specific and efficient silencing of a target gene. However, efficient delivery of small interfering RNA (siRNA) in vivo remains a significant hurdle for its successful therapeutic application. In this study, we first identified, on a cell-based experiment, applying a 1:1 mixture of two PTN specific siRNA engenders a higher silencing efficiency on both mRNA and protein level than using any of them discretely at the same dose. As a consequence, slower melanoma cells growth was also observed for using two specific siRNA combinatorially. To establish a robust way for siRNA delivery in vivo and further investigate how silence of PTN affects tumor growth, we tested three different methods to deliver siRNA in vivo: first non-targeted in-vivo delivery of siRNA via jetPEI; second lung targeted delivery of siRNA via microbubble coated jetPEI; third tumor cell targeted delivery of siRNA via transferrin-polyethylenimine (Tf-PEI). As a result, we found that all three in-vivo siRNAs delivery methods led to an evident inhibition of melanoma growth in non-immune deficiency C57BL/6 mice without a measureable change of ALT and AST activities. Both targeted delivery methods showed more significant curative effect than jetPEI. The lung targeted delivery by microbubble coated jetPEI revealed a comparable therapeutic effect with Tf-PEI, indicating its potential application for target delivery of siRNA in vivo.

  7. Therapeutic silence of pleiotrophin by targeted delivery of siRNA and its effect on the inhibition of tumor growth and metastasis

    PubMed Central

    Xie, Weidong; Cheng, Jin; Li, Tong; Mohsen, Mona O.; Lei, Fan; Storni, Federico; Bachmann, Martin; Chen, Hongquan; Zhang, Yaou

    2017-01-01

    Pleiotrophin (PTN) is a secreted cytokine that is expressed in various cancer cell lines and human tumor such as colon cancer, lung cancer, gastric cancer and melanoma. It plays significant roles in angiogenesis, metastasis, differentiation and cell growth. The expression of PTN in the adult is limited to the hippocampus in an activity-dependent manner, making it a very attractive target for cancer therapy. RNA interference (RNAi) offers great potential as a new powerful therapeutic strategy based on its highly specific and efficient silencing of a target gene. However, efficient delivery of small interfering RNA (siRNA) in vivo remains a significant hurdle for its successful therapeutic application. In this study, we first identified, on a cell-based experiment, applying a 1:1 mixture of two PTN specific siRNA engenders a higher silencing efficiency on both mRNA and protein level than using any of them discretely at the same dose. As a consequence, slower melanoma cells growth was also observed for using two specific siRNA combinatorially. To establish a robust way for siRNA delivery in vivo and further investigate how silence of PTN affects tumor growth, we tested three different methods to deliver siRNA in vivo: first non-targeted in-vivo delivery of siRNA via jetPEI; second lung targeted delivery of siRNA via microbubble coated jetPEI; third tumor cell targeted delivery of siRNA via transferrin-polyethylenimine (Tf-PEI). As a result, we found that all three in-vivo siRNAs delivery methods led to an evident inhibition of melanoma growth in non-immune deficiency C57BL/6 mice without a measureable change of ALT and AST activities. Both targeted delivery methods showed more significant curative effect than jetPEI. The lung targeted delivery by microbubble coated jetPEI revealed a comparable therapeutic effect with Tf-PEI, indicating its potential application for target delivery of siRNA in vivo. PMID:28562667

  8. Perivascular Delivery of Notch 1 siRNA Inhibits Injury-Induced Arterial Remodeling

    PubMed Central

    Redmond, Eileen M.; Liu, Weimin; Hamm, Katie; Hatch, Ekaterina; Cahill, Paul A.; Morrow, David

    2014-01-01

    Objectives To determine the efficacy of perivascular delivery of Notch 1 siRNA in preventing injury-induced arterial remodeling. Methods and Results Carotid artery ligation was performed to induce arterial remodeling. After 14 days, morphometric analysis confirmed increased vSMC growth and subsequent media thickening and neointimal formation. Laser capture microdissection, quantitative qRT-PCR and immunoblot analysis of medial tissue revealed a significant increase in Notch1 receptor and notch target gene, Hrt 1 and 2 expression in the injured vessels. Perivascular delivery of Notch 1 siRNA by pluronic gel inhibited the injury-induced increase in Notch 1 receptor and target gene expression when compared to scrambled siRNA controls while concomitantly reducing media thickening and neointimal formation to pre-injury, sham-operated levels. Selective Notch 1 knockdown also reversed the injury-induced inhibition of pro-apoptotic Bax expression while decreasing injury-induced anti-apoptotic Bcl-XL expression to sham-operated control levels. In parallel experiments, proliferative cyclin levels, as measured by PCNA expression, were reversed to sham-operated control levels following selective Notch 1 knockdown. Conclusion These results suggest that injury-induced arterial remodeling can be successfully inhibited by localized perivascular delivery of Notch 1 siRNA. PMID:24416200

  9. [Study on the inhibition effect of siRNA on herpes simplex virus type 2 ICP4 gene].

    PubMed

    Liu, Ji-feng; Guan, Cui-ping; Tang, Xu; Xu, Ai-e

    2010-06-01

    To explore the inhibition effect of RNA interference on the ICP4 expression and DNA replication of herpes simplex virus type 2 (HSV2). Four pairs of siRNA targeted to HSV2 ICP4 gene and negative control siRNA were synthetized by chemical method, named as siRNA-1, siRNA-2, siRNA-3, siRNA-4 and siRNA-N respecticely. HSV2 HG52 was used to attack Vero cell after transfection overnight. Vero cell and supernatant were collected at 1d, 2d, 3d, 4d and 5d after virus attacking. Flurogenic quantitative reverse transcription polymerase chain reaction (FQ-RT-PCR)was used to detect the expression of HSV2 ICP4 mRNA, flurogenic quantitative polymerase chain reaction(FG-PCR) was used to detect the expression of HSV2 DNA and Western-Blot was used to detect the expression of HSV2 ICP4 protein. All the four pairs of siRNA could significantly inhibit the expression of HSV2 ICP4 mRNA and protein, especially siRNA-2. The above siRNAs could significantly decrease HSV2 DNA copy number,too. siRNAs targeted to HSV2 ICP4 gene could significantly inhibit expression of HSV2 ICP4 mRNA and protein, and decrease HSV2 DNA copy number, suggesting that siRNA can inhibit HSV2 DNA replication through silencing ICP4 gene.

  10. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model.

    PubMed

    Murali, Reena; John, Philips George; Peter S, David

    2015-05-15

    The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model

  11. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    PubMed

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  12. In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus.

    PubMed

    Watanabe, Tsunamasa; Hatakeyama, Hiroto; Matsuda-Yasui, Chiho; Sato, Yusuke; Sudoh, Masayuki; Takagi, Asako; Hirata, Yuichi; Ohtsuki, Takahiro; Arai, Masaaki; Inoue, Kazuaki; Harashima, Hideyoshi; Kohara, Michinori

    2014-04-23

    The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5' untranslated region are capable of inducing strong RNAi activity. By dissecting the 5'-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.

  13. Folate-targeted amphiphilic cyclodextrin nanoparticles incorporating a fusogenic peptide deliver therapeutic siRNA and inhibit the invasive capacity of 3D prostate cancer tumours.

    PubMed

    Evans, James C; Malhotra, Meenakshi; Sweeney, Katrina; Darcy, Raphael; Nelson, Colleen C; Hollier, Brett G; O'Driscoll, Caitriona M

    2017-10-30

    The main barrier to the development of an effective RNA interference (RNAi) therapy is the lack of a suitable delivery vector. Modified cyclodextrins have emerged in recent years for the delivery of siRNA. In the present study, a folate-targeted amphiphilic cyclodextrin was formulated using DSPE-PEG 5000 -folate to target prostate cancer cells. The fusogenic peptide GALA was included in the formulation to aid in the endosomal release of siRNA. Targeted nanoparticles were less than 200nm in size with a neutral surface charge. The complexes were able to bind siRNA and protect it from serum nucleases. Incubation with excess free folate resulted in a significant decrease in the uptake of targeted nanoparticles in LNCaP and PC3 cells, both of which have been reported to have differing pathways of folate uptake. There was a significant reduction in the therapeutic targets, ZEB1 and NRP1 at mRNA and protein level following treatment with targeted complexes. In preliminary functional assays using 3D spheroids, treatment of PC3 tumours with targeted complexes with ZEB1 and NRP1 siRNA resulted in more compact colonies relative to the untargeted controls and inhibited infiltration into the Matrigel™ layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. siRNA associated with immunonanoparticles directed against cd99 antigen improves gene expression inhibition in vivo in Ewing's sarcoma.

    PubMed

    Ramon, A L; Bertrand, J R; de Martimprey, H; Bernard, G; Ponchel, G; Malvy, C; Vauthier, C

    2013-07-01

    Ewing's sarcoma is a rare, mostly pediatric bone cancer that presents a chromosome abnormality called EWS/Fli-1, responsible for the development of the tumor. In vivo, tumor growth can be inhibited specifically by delivering small interfering RNA (siRNA) associated with nanoparticles. The aim of the work was to design targeted nanoparticles against the cell membrane glycoprotein cd99, which is overexpressed in Ewing's sarcoma cells to improve siRNA delivery to tumor cells. Biotinylated poly(isobutylcyanoacrylate) nanoparticles were conceived as a platform to design targeted nanoparticles with biotinylated ligands and using the biotin-streptavidin coupling method. The targeted nanoparticles were validated in vivo for the targeted delivery of siRNA after systemic administration to mice bearing a tumor model of the Ewing's sarcoma. The expression of the gene responsible of Ewing's sarcoma was inhibited at 78% ± 6% by associating the siRNA with the cd99-targeted nanoparticles compared with an inhibition of only 41% ± 9% achieved with the nontargeted nanoparticles. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation.

    PubMed

    Takahashi, Hironobu; Wang, Yuwei; Grainger, David W

    2010-11-01

    Fibrous encapsulation of surgically implanted devices is associated with elevated proliferation and activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body complications. Here we test the hypothesis that inhibition of the expression of mammalian target of rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small interfering RNA (siRNA) conjugated with branched polyethylenimine (bPEI) in fibroblastic lineage cells in serum-based cell culture as shown by both gene and protein analysis. This mTOR knock-down led to an inhibition in fibroblast proliferation by 70% and simultaneous down-regulation in the expression of type I collagen in fibroblasts in vitro. These siRNA/bPEI complexes were released from poly(ethylene glycol) (PEG)-based hydrogel coatings surrounding model polymer implants in a subcutaneous rodent model in vivo. No significant reduction in fibrous capsule thickness and mTOR expression in the foreign body capsules were observed. The siRNA inefficacy in this in vivo implant model was attributed to siRNA dosing limitations in the gel delivery system, and lack of targeting ability of the siRNA complex specifically to fibroblasts. While in vitro data supported mTOR knock-down in fibroblast cultures, in vivo siRNA delivery must be further improved to produce clinically relevant effects on fibrotic encapsulation around implants. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs.

    PubMed

    Vickers, Timothy A; Crooke, Stanley T

    2012-07-01

    While most siRNAs induce sequence-specific target mRNA cleavage and degradation in a process mediated by Ago2/RNA-induced silencing complex (RISC), certain siRNAs have also been demonstrated to direct target RNA reduction through deadenylation and subsequent degradation of target transcripts in a process which involves Ago1/RISC and P-bodies. In the current study, we present data suggesting that a third class of siRNA exist, which are capable of promoting target RNA reduction that is independent of both Ago and RISC. These siRNAs bind the target messenger RNA at the polyA signal and are capable of redirecting a small amount of polyadenylation to downstream polyA sites when present, however, the majority of the activity appears to be due to inhibition of polyadenylation or deadenylation of the transcript, followed by exosomal degradation of the immature mRNA.

  17. [Locally administered lentivirus-mediated siRNA inhibits wear debris-induced inflammation].

    PubMed

    Peng, Xiao-chun; Zhang, Xian-long; Tao, Kun; Cheng, Tao; Zhu, Jun-feng; Zeng, Bing-fang

    2009-03-01

    To determine the safety and efficacy of local administration of lentivirus-mediated small interfering RNA (siRNA) targeting tumor necrosis factor-alpha (TNF-alpha) in murine air pouch model. From May 2007 to April 2008 a siRNA targeting TNF-alpha and a missense siRNA were designed, and recombine lentivirus which coexpressed the green fluorescent protein (GFP) as a marker gene was constructed. Air pouches were established and stimulated by Ti-6Al-4V particles. Pouches were divided into 3 groups randomly. Lentivirus-mediated siRNA targeting TNF-alpha (TNF-alpha group) or lentivirus-mediated missense siRNA (MS group), or virus-free saline (control group) were injected into pouches respectively. Pouch membrane, peripheral blood, heart, liver, spleen, kidney, lung and brain were harvested at 28 d after transfection, and assayed for markers of inflammation using histological, molecular, immunological techniques and Xenogen in vivo imaging system (IVIS) 50 vivo bioluminescent assay system. Xenogen IVIS 50 vivo image revealed strong expression of GFP localized in pouch areas and no expression in other parts of mice both in TNF-alpha group and MS group at 4 weeks after transfection, while no expression of GFP was found in control group. By RT-PCR and ELISA, the mRNA and protein levels of TNF-alpha in TNF-alpha group decreased by 81.6% and 82.6% respectively compared to control group (P < 0.01), and decreased by 78.9% and 84.0% respectively compared to MS group (P < 0.01), whereas TNF-alpha level in peripheral blood, heart, liver, spleen, kidney, lung and brain remained invariant (P > 0.05). Less inflammatory responses (thinner pouch membrane and decreased cellular infiltration) were observed in TNF-alpha group. Efficient local delivery of lentivirus-mediated siRNA targeting TNF-alpha into modified murine air pouch can inhibit debris-induced inflammation effectively, with no systemic adverse effects.

  18. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation

    PubMed Central

    Takahashi, Hironobu; Wang, Yuwei; Grainger, David W.

    2010-01-01

    Fibrous encapsulation of surgically implant devices is associated with elevated proliferation and activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body complications. Here we test the hypothesis that inhibition of the expression of mammalian target of rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small interfering RNA conjugated with branched cationic polyethylenimine (bPEI) in fibroblastic lineage cells in serum-based cell culture as shown by both gene and protein analysis. This mTOR knockdown led to an inhibition in fibroblast proliferation by 70% and simultaneous down-regulation in the expression of type I collagen in fibroblasts in vitro. These siRNA/bPEI complexes were released from poly(ethylene glycol) (PEG)-based hydrogel coatings surrounding model polymer implants in a subcutaneous rodent model in vivo. No significant reduction in fibrous capsule thickness and mTOR expression in the foreign body capsules was observed. Observed siRNA inefficacy in this in vivo implant model was attributed to siRNA dosing limitations in the gel delivery system, and lack of targeting ability of the siRNA complex specifically to fibroblasts. While in vitro data supported mTOR knock-down in fibroblast cultures, in vivo siRNA delivery must be further improved to produce clinically relevant effects on fibrotic encapsulation around implants. PMID:20727922

  19. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects

    PubMed Central

    Bramsen, Jesper B.; Pakula, Malgorzata M.; Hansen, Thomas B.; Bus, Claus; Langkjær, Niels; Odadzic, Dalibor; Smicius, Romualdas; Wengel, Suzy L.; Chattopadhyaya, Jyoti; Engels, Joachim W.; Herdewijn, Piet; Wengel, Jesper; Kjems, Jørgen

    2010-01-01

    Small interfering RNAs (siRNAs) are now established as the preferred tool to inhibit gene function in mammalian cells yet trigger unintended gene silencing due to their inherent miRNA-like behavior. Such off-target effects are primarily mediated by the sequence-specific interaction between the siRNA seed regions (position 2–8 of either siRNA strand counting from the 5′-end) and complementary sequences in the 3′UTR of (off-) targets. It was previously shown that chemical modification of siRNAs can reduce off-targeting but only very few modifications have been tested leaving more to be identified. Here we developed a luciferase reporter-based assay suitable to monitor siRNA off-targeting in a high throughput manner using stable cell lines. We investigated the impact of chemically modifying single nucleotide positions within the siRNA seed on siRNA function and off-targeting using 10 different types of chemical modifications, three different target sequences and three siRNA concentrations. We found several differently modified siRNAs to exercise reduced off-targeting yet incorporation of the strongly destabilizing unlocked nucleic acid (UNA) modification into position 7 of the siRNA most potently reduced off-targeting for all tested sequences. Notably, such position-specific destabilization of siRNA–target interactions did not significantly reduce siRNA potency and is therefore well suited for future siRNA designs especially for applications in vivo where siRNA concentrations, expectedly, will be low. PMID:20453030

  20. Inhibition of Hepatitis C Virus Replication by Intracellular Delivery of Multiple siRNAs by Nanosomes

    PubMed Central

    Chandra, Partha K; Kundu, Anup K; Hazari, Sidhartha; Chandra, Sruti; Bao, Lili; Ooms, Tara; Morris, Gilbert F; Wu, Tong; Mandal, Tarun K; Dash, Srikanta

    2012-01-01

    Sustained antiviral responses of chronic hepatitis C virus (HCV) infection have improved recently by the use of direct-acting antiviral agents along with interferon (IFN)-α and ribavirin. However, the emergence of drug-resistant variants is expected to be a major problem. We describe here a novel combinatorial small interfering RNA (siRNA) nanosome-based antiviral approach to clear HCV infection. Multiple siRNAs targeted to the highly conserved 5′-untranslated region (UTR) of the HCV genome were synthesized and encapsulated into lipid nanoparticles called nanosomes. We show that siRNA can be repeatedly delivered to 100% of cells in culture using nanosomes without toxicity. Six siRNAs dramatically reduced HCV replication in both the replicon and infectious cell culture model. Repeated treatments with two siRNAs were better than a single siRNA treatment in minimizing the development of an escape mutant, resulting in rapid inhibition of viral replication. Systemic administration of combinatorial siRNA-nanosomes is well tolerated in BALB/c mice without liver injury or histological toxicity. As a proof-of-principle, we showed that systemic injections of siRNA nanosomes significantly reduced HCV replication in a liver tumor-xenotransplant mouse model of HCV. Our results indicate that systemic delivery of combinatorial siRNA nanosomes can be used to minimize the development of escape mutants and inhibition of HCV infection. PMID:22617108

  1. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  2. PEGylated poly(ethylene imine) copolymer-delivered siRNA inhibits HIV replication in vitro.

    PubMed

    Weber, Nick D; Merkel, Olivia M; Kissel, Thomas; Muñoz-Fernández, María Ángeles

    2012-01-10

    RNA interference is increasingly being utilized for the specific targeting and down-regulation of disease-causing genes, including targeting viral infections such as HIV. T lymphocytes, the primary target for HIV, are very difficult to treat with gene therapy applications such as RNA interference because of issues with drug delivery. To circumvent these problems, we investigated poly(ethylene imine) (PEI) as a method of improving transfection efficiency of siRNA to T lymphocytes. Additionally, polyethylene glycol (PEG) moieties were engrafted to the PEI polymers with the goals of improving stability and reducing cytotoxicity. Initial studies on PEG-PEI/siRNA polyplex formation, size and their interaction with cell membranes demonstrated their feasibility as drug delivery agents. Assays with lymphocytes revealed low cytotoxicity profiles of the polyplexes at pharmacologically relevant concentrations with PEGylated copolymers obtaining the best results. Successful transfection of a T cell line or primary T cells with siRNA was observed via flow cytometry and confocal microscopy. Finally, the biological effect of copolymer-delivered siRNA was measured. Of particular significance, siRNA targeted to the HIV gene nef and delivered by one of the PEG-PEI copolymers in repetitive treatments every 2-3 days was observed to inhibit HIV replication to the same extent as azidothymidine over the course of 15 days. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.

    PubMed

    Gu, Jijin; Al-Bayati, Karam; Ho, Emmanuel A

    2017-08-01

    RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b Tf

  4. Ultrasound-Targeted Microbubble Destruction to Deliver siRNA Cancer Therapy

    PubMed Central

    Carson, Andrew R; McTiernan, Charles F; Lavery, Linda; Grata, Michelle; Leng, Xiaoping; Wang, Jianjun; Chen, Xucai; Villanueva, Flordeliza S

    2012-01-01

    Microbubble contrast agents can specifically deliver nucleic acids to target tissues when exposed to ultrasound treatment parameters that mediate microbubble destruction. In this study, we evaluated whether microbubbles and ultrasound targeted microbubble destruction (UTMD) could be used to enhance delivery of EGFR-directed small inhibitory RNA (siRNA) to murine squamous cell carcinomas. Custom designed microbubbles efficiently bound siRNA and mediated RNAse protection. UTMD-mediated delivery of microbubbles loaded with EGFR-directed siRNA to murine squamous carcinoma cells in vitro reduced EGFR expression and EGF-dependent growth, relative to delivery of control siRNA. Similarly, serial UTMD-mediated delivery of EGFR siRNA to squamous cell carcinoma in vivo decreased EGFR expression and increased tumor doubling times, relative to controls receiving EGFR siRNA loaded microbubbles but not ultrasound or control siRNA loaded microbubbles and UTMD. Taken together, our results offer a preclinical proof of concept for customized microbubbles and UTMD to deliver gene-targeted siRNA for cancer therapy. PMID:23010078

  5. Targeting Sphingosine Kinase-1 To Inhibit Melanoma

    PubMed Central

    Madhunapantula, SubbaRao V.; Hengst, Jeremy; Gowda, Raghavendra; Fox, Todd E.; Yun, Jong K; Robertson, Gavin P.

    2012-01-01

    SUMMARY Resistance to therapies develops rapidly for melanoma leading to more aggressive disease. Therefore, agents are needed that specifically inhibit proteins or pathways controlling the development of this disease, which can be combined, dependent on genes deregulated in a particular patient’s tumors. This study shows that elevated sphingosine-1-phosphate (S-1-P) levels resulting from increased activity of sphingosine kinase-1 (SPHK1) occur in advanced melanomas. Targeting SPHK1 using siRNA decreased anchorage dependent and independent growth as well as sensitized melanoma cells to apoptosis inducing agents. Pharmacological SPHK1 inhibitors SKI-I but not SKI-II decreased S-1-P content, elevated ceramide levels, caused a G2-M block and induced apoptotic cell death in melanomas. Targeting SPHK1 using siRNA or the pharmacological agent called SKI-I, decreased the levels of pAKT. Furthermore, SKI-I inhibited the expression of CYCLIN D1 protein and increased the activity of caspase-3/7, which in turn led to the degradation of PARP. In animals, SKI-I but not SKI-II retarded melanoma growth by 25-40%. Thus, targeting SPHK1 using siRNAs or SKI-I has therapeutic potential for melanoma treatment either alone or in combination with other targeted agents. PMID:22236408

  6. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting

    PubMed Central

    De Paula, Daniel; Bentley, M. Vitória L.B.; Mahato, Ram I.

    2007-01-01

    RNA interference (RNAi) is an evolutionarily conserved process by which double-stranded small interfering RNA (siRNA) induces sequence-specific, post-transcriptional gene silencing. Unlike other mRNA targeting strategies, RNAi takes advantage of the physiological gene silencing machinery. The potential use of siRNA as therapeutic agents has attracted great attention as a novel approach for treating severe and chronic diseases. RNAi can be achieved by either delivery of chemically synthesized siRNAs or endogenous expression of small hairpin RNA, siRNA, and microRNA (miRNA). However, the relatively high dose of siRNA required for gene silencing limits its therapeutic applications. This review discusses several strategies to improve therapeutic efficacy as well as to abrogate off-target effects and immunostimulation caused by siRNAs. There is an in-depth discussion on various issues related to the (1) mechanisms of RNAi, (2) methods of siRNA production, (3) barriers to RNAi-based therapies, (4) biodistribution, (5) design of siRNA molecules, (6) chemical modification and bioconjugation, (7) complex formation with lipids and polymers, (8) encapsulation into lipid particles, and (9) target specificity for enhanced therapeutic effectiveness. PMID:17329355

  7. Targeting the kinesin Eg5 to monitor siRNA transfection in mammalian cells.

    PubMed

    Weil, D; Garçon, L; Harper, M; Duménil, D; Dautry, F; Kress, M

    2002-12-01

    RNA interference, the inhibition of gene expression by double-stranded RNA, provides a powerful tool for functional studies once the sequence of a gene is known. In most mammalian cells, only short molecules can be used because long ones induce the interferon pathway. With the identification of a proper target sequence, the penetration of the oligonucleotides constitutes the most serious limitation in the application of this technique. Here we show that a small interfering RNA (siRNA) targeting the mRNA of the kinesin Eg5 induces a rapid mitotic arrest and provides a convenient assay for the optimization of siRNA transfection. Thus, dose responses can be established for different transfection techniques, highlighting the great differences in response to transfection techniques of various cell types. We report that the calcium phosphate precipitation technique can be an efficient and cost-effective alternative to Oligofectamine in some adherent cells, while electroporation can be efficient for some cells growing in suspension such as hematopoietic cells and some adherent cells. Significantly, the optimal parameters for the electroporation of siRNA differ from those for plasmids, allowing the use of milder conditions that induce less cell toxicity. In summary, a single siRNA leading to an easily assayed phenotype can be used to monitor the transfection of siRNA into any type of proliferating cells of both human and murine origin.

  8. The impact of target site accessibility on the design of effective siRNAs.

    PubMed

    Tafer, Hakim; Ameres, Stefan L; Obernosterer, Gregor; Gebeshuber, Christoph A; Schroeder, Renée; Martinez, Javier; Hofacker, Ivo L

    2008-05-01

    Small-interfering RNAs (siRNAs) assemble into RISC, the RNA-induced silencing complex, which cleaves complementary mRNAs. Despite their fluctuating efficacy, siRNAs are widely used to assess gene function. Although this limitation could be ascribed, in part, to variations in the assembly and activation of RISC, downstream events in the RNA interference (RNAi) pathway, such as target site accessibility, have so far not been investigated extensively. In this study we present a comprehensive analysis of target RNA structure effects on RNAi by computing the accessibility of the target site for interaction with the siRNA. Based on our observations, we developed a novel siRNA design tool, RNAxs, by combining known siRNA functionality criteria with target site accessibility. We calibrated our method on two data sets comprising 573 siRNAs for 38 genes, and tested it on an independent set of 360 siRNAs targeting four additional genes. Overall, RNAxs proves to be a robust siRNA selection tool that substantially improves the prediction of highly efficient siRNAs.

  9. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Bo; Campbell, Robert B., E-mail: robert.campbell@mcphs.edu

    2014-04-04

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carriermore » systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest

  10. Kinetic analysis of the effects of target structure on siRNA efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Zhang, Wenbing

    2012-12-01

    RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.

  11. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy

    NASA Astrophysics Data System (ADS)

    Qiu, Chong; Wei, Wei; Sun, Jing; Zhang, Hai-Tao; Ding, Jing-Song; Wang, Jian-Cheng; Zhang, Qiang

    2016-06-01

    In this study, hyaluronan (HA)-functionalized calcium phosphate nanoparticles (CaP-AHA/siRNA NPs) were developed for an injectable and targetable delivery of siRNA, which were prepared by coating the alendronate-hyaluronan graft polymer (AHA) around the surface of calcium phosphate-siRNA co-precipitates. The prepared CaP-AHA/siRNA NPs had a uniform spherical core-shell morphology with an approximate size of 170 nm and zeta potential of -12 mV. The coating of hydrophilic HA improved the physical stability of nanoparticles over one month due to the strong interactions between phosphonate and calcium. In vitro experiments demonstrated that the negatively charged CaP-AHA/siRNA NPs could effectively deliver EGFR-targeted siRNA into A549 cells through CD44-mediated endocytosis and significantly down-regulate the level of EGFR expression. Also, the internalized CaP-AHA/siRNA NPs exhibited a pH-responsive release of siRNA, indicating that the acidification of lysosomes probably facilitated the disassembling of nanoparticles and the resultant ions sharply increased the inner osmotic pressure and thus expedited the release of siRNA from late lysosomes into the cytoplasm. Furthermore, in vivo tumor therapy demonstrated that high accumulation of CaP-AHA/siEGFR NPs in tumor led to a significant tumor growth inhibition with a specific EGFR gene silencing effect after intravenous administration in nude mice xenografted with A549 tumor, along with a negligible body weight loss. These results suggested that the CaP-AHA/siRNA NPs could be an effective and safe systemic siRNA delivery system for a RNAi-based tumor targeted therapy strategy.In this study, hyaluronan (HA)-functionalized calcium phosphate nanoparticles (CaP-AHA/siRNA NPs) were developed for an injectable and targetable delivery of siRNA, which were prepared by coating the alendronate-hyaluronan graft polymer (AHA) around the surface of calcium phosphate-siRNA co-precipitates. The prepared CaP-AHA/siRNA NPs had a uniform

  12. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance.

    PubMed

    Yhee, Ji Young; Song, Seungyong; Lee, So Jin; Park, Sung-Gurl; Kim, Ki-Suk; Kim, Myung Goo; Son, Sejin; Koo, Heebeom; Kwon, Ick Chan; Jeong, Ji Hoon; Jeong, Seo Young; Kim, Sun Hwa; Kim, Kwangmeyung

    2015-01-28

    P-glycoprotein (Pgp) mediated multi-drug resistance (MDR) is a major cause of failure in chemotherapy. In this study, small interfering RNA (siRNA) for Pgp down-regulation was delivered to tumors to overcome MDR in cancer. To achieve an efficient siRNA delivery in vivo, self-polymerized 5'-end thiol-modified siRNA (poly-siRNA) was incorporated in tumor targeting glycol chitosan nanoparticles. Pgp-targeted poly-siRNA (psi-Pgp) and thiolated glycol chitosan polymers (tGC) formed stable nanoparticles (psi-Pgp-tGC NPs), and the resulting nanoparticles protected siRNA molecules from enzymatic degradation. The psi-Pgp-tGC NPs could release functional siRNA molecules after cellular delivery, and they were able to facilitate siRNA delivery to Adriamycin-resistant breast cancer cells (MCF-7/ADR). After intravenous administration, the psi-Pgp-tGC NPs accumulated in MCF-7/ADR tumors and down-regulated P-gp expression to sensitize cancer cells. Consequently, chemo-siRNA combination therapy significantly inhibited tumor growth without systemic toxicity. These psi-Pgp-tGC NPs showed great potential as a supplementary therapeutic agent for drug-resistant cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Noninvasive Drug Delivery Using Ultrasound: Targeting Melanoma Using siRNA Against Mutant (V600E) B-Raf

    NASA Astrophysics Data System (ADS)

    Tran, Melissa A.; Gowda, Raghavendra; Park, Eun-Joo; Adair, James; Smith, Nadine; Kester, Mark; Robertson, Gavin P.

    2009-04-01

    Melanoma is the most deadly form of skin cancer. Currently early surgical removal is the best treatment option for melanoma patients with little hope of successful treatment of late stage melanoma. Clearly new treatment options must be explored. Topical administration of drugs provides the advantage of being able to apply large quantities of drug in close proximity to the tumor without the issue of systemic side effects. However, the natural barrier formed by the skin must first be overcome for topical treatment to become a viable option. With this in mind we have sought to use low-frequency ultrasound to transiently permeabilize the stratum corneum and successfully deliver liposomal siRNA to melanoma cells residing at the basement membrane. B-Raf is one of the most frequently activated genes in melanoma, making it an ideal candidate for targeting via siRNA. The novel liposomes used in this study load siRNA, protect if from the outside environment and lead to knockdown of target message. Combining ultrasound with liposomal siRNA we show that siRNA can be delivered into melanoma cells. Additionally, we show that siRNA to mutant B-Raf can effectively inhibit melanoma growth in reconstructs and in mice by 60% and 30% respectively. Therefore, ultrasound with liposomal siRNA is a potentially valuable treatment option for melanoma patients.

  14. The siRNA Non-seed Region and Its Target Sequences Are Auxiliary Determinants of Off-Target Effects.

    PubMed

    Kamola, Piotr J; Nakano, Yuko; Takahashi, Tomoko; Wilson, Paul A; Ui-Tei, Kumiko

    2015-12-01

    RNA interference (RNAi) is a powerful tool for post-transcriptional gene silencing. However, the siRNA guide strand may bind unintended off-target transcripts via partial sequence complementarity by a mechanism closely mirroring micro RNA (miRNA) silencing. To better understand these off-target effects, we investigated the correlation between sequence features within various subsections of siRNA guide strands, and its corresponding target sequences, with off-target activities. Our results confirm previous reports that strength of base-pairing in the siRNA seed region is the primary factor determining the efficiency of off-target silencing. However, the degree of downregulation of off-target transcripts with shared seed sequence is not necessarily similar, suggesting that there are additional auxiliary factors that influence the silencing potential. Here, we demonstrate that both the melting temperature (Tm) in a subsection of siRNA non-seed region, and the GC contents of its corresponding target sequences, are negatively correlated with the efficiency of off-target effect. Analysis of experimentally validated miRNA targets demonstrated a similar trend, indicating a putative conserved mechanistic feature of seed region-dependent targeting mechanism. These observations may prove useful as parameters for off-target prediction algorithms and improve siRNA 'specificity' design rules.

  15. Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection.

    PubMed

    Bivalkar-Mehla, Shalmali; Mehla, Rajeev; Chauhan, Ashok

    2017-04-01

    Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4 +  lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.

  16. Assessment of Nanobiotechnology-Targeted siRNA Designed to Inhibit NF-kappaB Classical And Alternative Signaling in Breast Tumor Macrophages

    DTIC Science & Technology

    2012-07-01

    tumor microenvironment we intend to deliver siRNA specifically to tumor- associated-macrophages ( TAMs ). Therefore, the proposed work seeks to synthesize...characterize and assess multifunctional nanoparticles for siRNA delivery specifically to tumor-associated-macrophages ( TAMs ). The nanoparticles...knockdown protein expression of NF-κB modulators with exceptional specificity for TAMs . TAM -specific nanoparticle targeting offers an innovative approach

  17. Species specific inhibition of viral replication using dicer substrate siRNAs (DsiRNAs) targeting the viral nucleoprotein of the fish pathogenic rhabdovirus viral hemorrhagic septicemia virus (VHSV).

    PubMed

    Bohle, Harry; Lorenzen, Niels; Schyth, Brian Dall

    2011-06-01

    Gene knock down by the use of small interfering RNAs (siRNAs) is widely used as a method for reducing the expression of specific genes in eukaryotic cells via the RNA interference pathway. But, the effectivity of siRNA induced gene knock down in cells from fish has in several studies been questioned and the specificity seems to be a general problem in cells originating from both lower and higher vertebrates. Here we show that we are able to reduce the level of viral gene expression and replication specifically in fish cells in vitro. We do so by using 27/25-mer DsiRNAs acting as substrates for dicer for the generation of siRNAs targeting the nucleoprotein N gene of viral hemorrhagic septicemia virus (VHSV). This rhabdovirus infects salmonid fish and is responsible for large yearly losses in aquaculture production. Specificity of the DsiRNA is assured in two ways: first, by using the conventional method of testing a control DsiRNA which should not target the gene of interest. Second, by assuring that replication of a heterologous virus of the same genus as the target virus was not inhibited by the DsiRNA. Target controls are, as we have previously highlighted, essential for verification of the specificity of siRNA-induced interference with virus multiplication, but they are still not in general use. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Ultrasound-targeted microbubble destruction of calcium channel subunit α 1D siRNA inhibits breast cancer via G protein-coupled receptor 30.

    PubMed

    Ji, Yanlei; Han, Zhen; Shao, Limei; Zhao, Yuehuan

    2016-10-01

    Estrogen has been closely associated with breast cancer. Several studies reported that Ca2+ signal and Ca2+ channels act in estrogen-modulated non-genomic pathway of breast cancer, however little was revealed on the function of L-type Ca2+ channels. The L-type Ca2+ channel subunit α 1D, named Cav1.3 was found in breast cancer cells. We aimed to investigate the expression and activity of Cav1.3 in human breast cancer, and reveal the effect of estrogen in regulating the expression of Cav1.3. The qRT-PCR and western blotting were employed to show that Cav1.3 was highly expressed in breast cancer tissues. E2 exposure rapidly upregulated the expression of Cav1.3 in dosage- and time-dependent manner, and promoted Ca2+ influx. The silencing of G protein-coupled estrogen receptor 30 (GPER1/GPR30) using siRNA transfection inhibited the upregulation of Cav1.3 and Ca2+ influx induced by E2. Moreover, the inhibition of Cav1.3 by siRNA transfection suppressed E2-induced second peak of Ca2+ signal, the expression of p-ERK1/2, and the cell proliferation. Ultrasound-targeted microbubble destruction (UTMD) of Cav1.3 siRNA was used in MCF-7 cells in vitro and in the tumor xenografts mice in vivo. The application of UTMD significantly suppressed the tumor growth and promoted the survival rate. In conclusion, E2 upregulated the expression of Cav1.3 for Ca2+ influx to promote the expression of p-ERK1/2 for cell proliferation. The study confirmed that the mechanism of E2 inducing the expression of Cav1.3 through a non-genomic pathway, and highlighted that UTMD of Cav1.3 siRNA is a powerful promising technology for breast cancer gene therapy.

  19. PRL-3 siRNA Inhibits the Metastasis of B16-BL6 Mouse Melanoma Cells In Vitro and In Vivo

    PubMed Central

    Qian, Feng; Li, Yu-Pei; Sheng, Xia; Zhang, Zi-Chao; Song, Ran; Dong, Wei; Cao, Shao-Xian; Hua, Zi-Chun; Xu, Qiang

    2007-01-01

    Phosphatase of regenerating liver-3 (PRL-3) has been proposed to promote the invasion of tumor cells to metastasis sites. However, the effect of PRL-3 on spontaneous metastasis has not been clearly demonstrated, and whether PRL-3 could become a new therapeutic target in malignant tumor is still unknown. In this study, we used PRL-3 siRNA as a molecular medicine to specifically reduce the expression of PRL-3 in B16-BL6 cells, a highly metastatic melanoma cell line. In vitro, PRL-3 siRNA significantly inhibited cell adhesion and migration, but had no effect on cell proliferation. In the spontaneous metastatic tumor model in vivo, PRL-3 siRNA treatment remarkably inhibited the proliferation of primary tumor, prevented tumor cells from invading the draining lymph nodes, and prolonged the life span of mice. Therefore, our results indicate that PRL-3 plays a critical role in promoting the whole process of spontaneous metastasis and tumor growth initiation, and that inhibiting PRL-3 will improve malignant tumor therapy. PMID:17592549

  20. PRL-3 siRNA inhibits the metastasis of B16-BL6 mouse melanoma cells in vitro and in vivo.

    PubMed

    Qian, Feng; Li, Yu-Pei; Sheng, Xia; Zhang, Zi-Chao; Song, Ran; Dong, Wei; Cao, Shao-Xian; Hua, Zi-Chun; Xu, Qiang

    2007-01-01

    Phosphatase of regenerating liver-3 (PRL-3) has been proposed to promote the invasion of tumor cells to metastasis sites. However, the effect of PRL-3 on spontaneous metastasis has not been clearly demonstrated, and whether PRL-3 could become a new therapeutic target in malignant tumor is still unknown. In this study, we used PRL-3 siRNA as a molecular medicine to specifically reduce the expression of PRL-3 in B16-BL6 cells, a highly metastatic melanoma cell line. In vitro, PRL-3 siRNA significantly inhibited cell adhesion and migration, but had no effect on cell proliferation. In the spontaneous metastatic tumor model in vivo, PRL-3 siRNA treatment remarkably inhibited the proliferation of primary tumor, prevented tumor cells from invading the draining lymph nodes, and prolonged the life span of mice. Therefore, our results indicate that PRL-3 plays a critical role in promoting the whole process of spontaneous metastasis and tumor growth initiation, and that inhibiting PRL-3 will improve malignant tumor therapy.

  1. Amelioration of cirrhotic portal hypertension by targeted cyclooxygenase-1 siRNA delivery to liver sinusoidal endothelium with polyethylenimine grafted hyaluronic acid.

    PubMed

    Lin, Liteng; Cai, Mingyue; Deng, Shaohui; Huang, Wensou; Huang, Jingjun; Huang, Xinghua; Huang, Mingsheng; Wang, Yong; Shuai, Xintao; Zhu, Kangshun

    2017-10-01

    Portal hypertension (PH), a leading cause of mortality in cirrhosis, lacks effective clinical therapeutic strategies. The increased thromboxane A 2 (TXA 2 ), derived primarily from the upregulation of cyclooxygenase-1 (COX-1) in cirrhotic liver sinusoidal endothelial cells (LSECs), is responsible for hepatic endothelial dysfunction and PH. Thus, blocking the COX-1 pathway in cirrhotic LSECs may benefit the treatment of PH. In this study, hyaluronate-graft-polyethylenimine (HA-PEI) was synthesized for the targeted delivery of COX-1 siRNA to LSECs. Compared to non-targeted PEI, HA-PEI mediated much more efficient siRNA delivery, which resulted in potent targeted gene silencing in LSECs. In vivo, HA-PEI notably increased the accumulation of siRNA along the sinusoidal lining of the liver, inhibited over-activation of the COX-1/TXA 2 pathway in LSECs, and successfully reduced portal pressure in cirrhotic mice. These results highlight the potential of HA-PEI complexed siRNA to serve as a LSECs-specific nanomedical system for effective gene therapy in PH. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cancer-targeting siRNA delivery from porous silicon nanoparticles.

    PubMed

    Wan, Yuan; Apostolou, Sinoula; Dronov, Roman; Kuss, Bryone; Voelcker, Nicolas H

    2014-10-01

    Porous silicon nanoparticles (pSiNPs) with tunable pore size are biocompatible and biodegradable, suggesting that they are suitable biomaterials as vehicles for drug delivery. Loading of small interfering RNA (siRNA) into the pores of pSiNPs can protect siRNA from degradation as well as improve the cellular uptake. We aimed to deliver MRP1 siRNA loaded into pSiNPs to glioblastoma cells, and to demonstrate downregulation of MRP1 at the mRNA and protein levels. 50-220 nm pSiNPs with an average pore size of 26 nm were prepared, followed by electrostatic adsorption of siRNA into pores. Oligonucleotide loading and release profiles were investigated; MRP1 mRNA and protein expression, cell viability and cell apoptosis were studied. Approximately 7.7 µg of siRNA was loaded per mg of pSiNPs. Cells readily took up nanoparticles after 30 min incubation. siRNA-loaded pSiNPs were able to effectively downregulate target mRNA (~40%) and protein expression (31%), and induced cell apoptosis and necrosis (33%). siRNA loaded pSiNPs downregulated mRNA and protein expression and induced cell death. This novel siRNA delivery system may pave the way towards developing more effective tumor therapies.

  3. siRNA Targeting of the SNCG Gene Inhibits the Growth of Gastric Carcinoma SGC7901 Cells in vitro and in vivo by Downregulating the Phosphorylation of AKT/ERK.

    PubMed

    Fan, Changru; Liu, Jinju; Tian, Jianhai; Zhang, Yuliang; Yan, Maojun; Zhu, Chaoyu

    2018-06-15

    The aim of the study was to evaluate the effects of synuclein-γ (SNCG) silencing on gastric cancer SGC7901 cells and to elucidate the associated mechanisms. pGCSIL-lentiviral siRNA targeting of the SNCG gene was employed to inhibit SNCG expression. Several experiments such as quantitative real-time PCR, Western blotting, MTT, colony formation, migration assay, and flow cytometry were performed to investigate the biological behavior of infected SGC7901 cells. BALB/c nude mice were used as tumor xenograft models to assess the effects of SNCG silencing on tumor growth. Western blot analysis was carried out to determine the relative levels of AKT, p-AKT, ERK, and p-ERK expression. Our results showed that SNCG was overexpressed in SGC7901 cells as compared to normal gastric mucosal epithelial cells. SGC7901 cells transfected with SNCG siRNA demonstrated significantly decreased gastric cancer growth (p < 0.01), reduced cell migration, cell cycle arrest in the G0/G1 phase, promoted tumor cell apoptosis (p < 0.01), and inhibited tumorigenesis in xenograft animal models. Western blot analysis indicated that the protein levels of p-AKT and p-ERK were much lower in the SNCG siRNA group than in the control groups. The results of the present study suggest that SNCG siRNA plays a significant role in the proliferation, migration, and tumorigenesis of gastric cancer by downregulating the phosphorylation of AKT and ERK. RNA interference-mediated silencing of SNCG may provide an opportunity to develop a novel treatment strategy for gastric cancer. © 2018 S. Karger AG, Basel.

  4. Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection.

    PubMed

    Christie, R James; Matsumoto, Yu; Miyata, Kanjiro; Nomoto, Takahiro; Fukushima, Shigeto; Osada, Kensuke; Halnaut, Julien; Pittella, Frederico; Kim, Hyun Jin; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2012-06-26

    Small interfering ribonucleic acid (siRNA) cancer therapies administered by intravenous injection require a delivery system for transport from the bloodstream into the cytoplasm of diseased cells to perform the function of gene silencing. Here we describe nanosized polymeric micelles that deliver siRNA to solid tumors and elicit a therapeutic effect. Stable multifunctional micelle structures on the order of 45 nm in size formed by spontaneous self-assembly of block copolymers with siRNA. Block copolymers used for micelle formation were designed and synthesized to contain three main features: a siRNA binding segment containing thiols, a hydrophilic nonbinding segment, and a cell-surface binding peptide. Specifically, poly(ethylene glycol)-block-poly(L-lysine) (PEG-b-PLL) comprising lysine amines modified with 2-iminothiolane (2IT) and the cyclo-Arg-Gly-Asp (cRGD) peptide on the PEG terminus was used. Modification of PEG-b-PLL with 2IT led to improved control of micelle formation and also increased stability in the blood compartment, while installation of the cRGD peptide improved biological activity. Incorporation of siRNA into stable micelle structures containing the cRGD peptide resulted in increased gene silencing ability, improved cell uptake, and broader subcellular distribution in vitro and also improved accumulation in both the tumor mass and tumor-associated blood vessels following intravenous injection into mice. Furthermore, stable and targeted micelles inhibited the growth of subcutaneous HeLa tumor models and demonstrated gene silencing in the tumor mass following treatment with antiangiogenic siRNAs. This new micellar nanomedicine could potentially expand the utility of siRNA-based therapies for cancer treatments that require intravenous injection.

  5. siRNA screen identifies QPCT as a druggable target for Huntington's disease.

    PubMed

    Jimenez-Sanchez, Maria; Lam, Wun; Hannus, Michael; Sönnichsen, Birte; Imarisio, Sara; Fleming, Angeleen; Tarditi, Alessia; Menzies, Fiona; Dami, Teresa Ed; Xu, Catherine; Gonzalez-Couto, Eduardo; Lazzeroni, Giulia; Heitz, Freddy; Diamanti, Daniela; Massai, Luisa; Satagopam, Venkata P; Marconi, Guido; Caramelli, Chiara; Nencini, Arianna; Andreini, Matteo; Sardone, Gian Luca; Caradonna, Nicola P; Porcari, Valentina; Scali, Carla; Schneider, Reinhard; Pollio, Giuseppe; O'Kane, Cahir J; Caricasole, Andrea; Rubinsztein, David C

    2015-05-01

    Huntington's disease (HD) is a currently incurable neurodegenerative condition caused by an abnormally expanded polyglutamine tract in huntingtin (HTT). We identified new modifiers of mutant HTT toxicity by performing a large-scale 'druggable genome' siRNA screen in human cultured cells, followed by hit validation in Drosophila. We focused on glutaminyl cyclase (QPCT), which had one of the strongest effects on mutant HTT-induced toxicity and aggregation in the cell-based siRNA screen and also rescued these phenotypes in Drosophila. We found that QPCT inhibition induced the levels of the molecular chaperone αB-crystallin and reduced the aggregation of diverse proteins. We generated new QPCT inhibitors using in silico methods followed by in vitro screening, which rescued the HD-related phenotypes in cell, Drosophila and zebrafish HD models. Our data reveal a new HD druggable target affecting mutant HTT aggregation and provide proof of principle for a discovery pipeline from druggable genome screen to drug development.

  6. siRNA targeting mCD14 inhibits TNF-α, MIP-2, and IL-6 secretion and NO production from LPS-induced RAW264.7 cells.

    PubMed

    Lei, Ming; Jiao, Hanwei; Liu, Tao; Du, Li; Cheng, Ying; Zhang, Donglin; Hao, Yongchang; Man, Churiga; Wang, Fengyang

    2011-10-01

    Innate immunity plays a key role in protecting a host against invading microorganism, including Gram-negative bacteria. Cluster of differentiation antigen 14 (CD14) is an important innate immunity molecule, existing as a soluble (sCD14) and membrane-associated (mCD14) protein. Endotoxin [lipopolysaccharide (LPS)] is recognized as a key molecule in the pathogenesis of sepsis and septic shock caused by Gram negative bacteria. Emerging evidences indicate that upstream inhibition of bacterial LPS/Toll-like receptor 4(TLR4)/CD14-mediated inflammation pathway is an effective therapeutic approach for attenuating damaging immune activation. RNA interference (RNAi) provides a promising approach to down-regulate gene expression specifically. To explore the possibility of using RNAi against mCD14 as a strategy for inhibiting the secretion of cytokines and the nitric oxide (NO) production from LPS-activated RAW264.7 cells, four different short interfering RNA (siRNA) molecules corresponding to the sequence of mCD14 gene were designed and synthesized. We then tested the inhibition effects of these siRNA molecules on mCD14 expression by real-time quantitative RT-PCR and Western blot. After effective siRNA molecule (mCD14-siRNA-224), which is capable of reducing messenger RNA (mRNA) accumulation and protein expression of mCD14 specifically, was identified, RAW264.7 cells pretreated with mCD14-siRNA-224 were stimulated with LPS, and the secretion of tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein-2 (MIP-2) and interleukin-6 (IL-6) and the NO production were evaluated. The results indicated that mCD14-siRNA-224 effectively inhibited TNF-α, MIP-2, and IL-6 release and NO production from LPS-stimulated RAW 264.7 cells by down-regulating mRNA accumulation and protein expression of mCD14 specifically. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for endotoxin-related diseases.

  7. Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.

    PubMed

    Gredell, Joseph A; Berger, Angela K; Walton, S Patrick

    2008-07-01

    The selection of active siRNAs is generally based on identifying siRNAs with certain sequence and structural properties. However, the efficiency of RNA interference has also been shown to depend on the structure of the target mRNA, primarily through studies using exogenous transcripts with well-defined secondary structures in the vicinity of the target sequence. While these studies provide a means for examining the impact of target sequence and structure independently, the predicted secondary structures for these transcripts are often not reflective of structures that form in full-length, native mRNAs where interactions can occur between relatively remote segments of the mRNAs. Here, using a combination of experimental results and analysis of a large dataset, we demonstrate that the accessibility of certain local target structures on the mRNA is an important determinant in the gene silencing ability of siRNAs. siRNAs targeting the enhanced green fluorescent protein were chosen using a minimal siRNA selection algorithm followed by classification based on the predicted minimum free energy structures of the target transcripts. Transfection into HeLa and HepG2 cells revealed that siRNAs targeting regions of the mRNA predicted to have unpaired 5'- and 3'-ends resulted in greater gene silencing than regions predicted to have other types of secondary structure. These results were confirmed by analysis of gene silencing data from previously published siRNAs, which showed that mRNA target regions unpaired at either the 5'-end or 3'-end were silenced, on average, approximately 10% more strongly than target regions unpaired in the center or primarily paired throughout. We found this effect to be independent of the structure of the siRNA guide strand. Taken together, these results suggest minimal requirements for nucleation of hybridization between the siRNA guide strand and mRNA and that both mRNA and guide strand structure should be considered when choosing candidate siRNAs

  8. Impact of target mRNA structure on siRNA silencing efficiency: a large-scale study

    PubMed Central

    Gredell, Joseph A.; Berger, Angela K.; Walton, S. Patrick

    2009-01-01

    The selection of active siRNAs is generally based on identifying siRNAs with certain sequence and structural properties. However, the efficiency of RNA interference has also been shown to depend on the structure of the target mRNA, primarily through studies using exogenous transcripts with well-defined secondary structures in the vicinity of the target sequence. While these studies provide a means for examining the impact of target sequence and structure independently, the predicted secondary structures for these transcripts are often not reflective of structures that form in full-length, native mRNAs where interactions can occur between relatively remote segments of the mRNAs. Here, using a combination of experimental results and analysis of a large dataset, we demonstrate that the accessibility of certain local target structures on the mRNA is an important determinant in the gene silencing ability of siRNAs. siRNAs targeting the enhanced green fluorescent protein were chosen using a minimal siRNA selection algorithm followed by classification based on the predicted minimum free energy structures of the target transcripts. Transfection into HeLa and HepG2 cells revealed that siRNAs targeting regions of the mRNA predicted to have unpaired 5’- and 3’-ends resulted in greater gene silencing than regions predicted to have other types of secondary structure. These results were confirmed by analysis of gene silencing data from previously published siRNAs, which showed that mRNA target regions unpaired at either the 5’-end or 3’-end were silenced, on average, ~10% more strongly than target regions unpaired in the center or primarily paired throughout. We found this effect to be independent of the structure of the siRNA guide strand. Taken together, these results suggest minimal requirements for nucleation of hybridization between the siRNA guide strand and mRNA and that both mRNA and guide strand structure should be considered when choosing candidate siRNAs. PMID

  9. FcepsilonRI-alpha siRNA inhibits the antigen-induced activation of mast cells.

    PubMed

    Safaralizadeh, Reza; Soheili, Zahra-Soheila; Deezagi, Abdolkhaleg; Pourpak, Zahra; Samiei, Shahram; Moin, Mostafa

    2009-12-01

    FcepsilonRI, The high affinity receptor for IgE plays a critical role in triggering the allergic reactions. It is responsible for inducing mast cell degranulation and deliberation of allergy mediators when it is aggregated by allergen and IgE complexes. FcepsilonRI on the mast cells consists of three subunits; alpha chain directly binds IgE, beta chain and dimmer of gamma chains together mediate intracellular signaling. Cross-linking of IgE-bound FcepsilonRI on the surface of mast cells and basophils by the multivalent antigen induces release of chemical mediators. The present in vitro study was designed to investigate the effect of synthetic FcepsilonRI-alpha siRNA on the antigen-induced activation of MC/9 cells. MC/9 cells which are murine mast cells were transfected by FcepsilonRI-alpha siRNA and negative control siRNA. After 6 h, anti-DNP (Dinitrophenyl) IgE was used for the cells sensitization. Then the cells were challenged with Dinitrophenyl-Human Serum Albumin (DNP-HSA) for mast cell degranulation induction before collection of supernatants. The amount of mRNA and protein expression was measured by Real Time PCR and western blot analysis, respectively. Determination of the expression rate of FcepsilonRI-alpha on cell surface was achieved by flow cytometry. ELISA and spectrophotometry methods were used subsequently for measuring the effects of FcepsilonRI-alpha siRNA on antigen-induced histamine and beta-hexosaminidase release. FcepsilonRI-alpha siRNA treated cells showed significant decrease in FcepsilonRI-alpha mRNA and protein expression in comparison to control cells. FcepsilonRI-mediated mast cell release of beta-hexosaminidase and histamine were also inhibited. In this study it was shown that FcepsilonRI-alpha siRNA could suppress FcepsilonRI-alpha expression and inhibited degranulation and histamine release in antigen-stimulated MC/9 cells. In conclusion, knock-down of FcepsilonRI-alpha by siRNA could be a promising method for inhibition of the mast

  10. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment.

    PubMed

    Kim, Sang-Soo; Ye, Chunting; Kumar, Priti; Chiu, Isaac; Subramanya, Sandesh; Wu, Haoquan; Shankar, Premlata; Manjunath, N

    2010-05-01

    Inflammation mediated by tumor necrosis factor-alpha (TNF-alpha) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-alpha in the central nervous system (CNS). Here, we show that suppression of TNF-alpha by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because macrophage/microglia express the nicotinic acetylcholine receptor (AchR) on their surface, we used a short AchR-binding peptide derived from the rabies virus glycoprotein (RVG) as a targeting ligand. This peptide was fused to nona-D-arginine residues (RVG-9dR) to enable siRNA binding. RVG-9dR was able to deliver siRNA to induce gene silencing in macrophages and microglia cells from wild type, but not AchR-deficient mice, confirming targeting specificity. Treatment with anti-TNF-alpha siRNA complexed to RVG-9dR achieved efficient silencing of LPS-induced TNF-alpha production by primary macrophages and microglia cells in vitro. Moreover, intravenous injection with RVG-9dR-complexed siRNA in mice reduced the LPS-induced TNF-alpha levels in blood as well as in the brain, leading to a significant reduction in neuronal apoptosis. These results demonstrate that RVG-9dR provides a tool for siRNA delivery to macrophages and microglia and that suppression of TNF-alpha can potentially be used to suppress neuroinflammation in vivo.

  11. Targeted Delivery of siRNA with pH-Responsive Hybrid Gold Nanostars for Cancer Treatment

    PubMed Central

    Zhu, Hongyan; Liu, Wanwan; Cheng, Ziting; Yao, Ke; Yang, Yu; Xu, Bohui

    2017-01-01

    In this work, we report the engineering of gold nanostars (GNS) to deliver small interfering RNA (siRNA) into HepG2 cells. The ligand DG-PEG-Lipoic acid (LA)-Lys-9R (hydrazone) was designed to functionalize GNS, and create the nanoparticles named as 9R/DG-GNS (hydrazone). In the ligand, 2-deoxyglucose (DG) is the targeting molecule, polyethylene glycol (PEG) helps to improve the dispersity and biocompatibility, 9-poly-d-arginine (9R) is employed to provide a positive surface charge and adsorb negative siRNA, and hydrazone bonds are pH-responsive and can avoid receptor-mediated endosomal recycling. Compared to GNS alone, 9R/DG-GNS (hydrazone) showed superior transfection efficiency. The expressions of cyclooxygenase-2 (COX-2) in HepG2 and SGC7901 cells were significantly suppressed by siRNA/9R/DG-GNS (hydrazone) complex. Notably, 9R/DG-GNS (hydrazone) possessed low cytotoxicity even at high concentrations in both normal cells and tumor cells. The combination treatment of siRNA/9R/DG-GNS (hydrazone) complex inhibited the cell growth rate by more than 75%. These results verified that the pH-responsive GNS complex is a promising siRNA delivery system for cancer therapy, and it is anticipated that near-infrared absorbing GNS with good photothermal conversion efficiency can be potentially used for photothermal therapy of tumors. PMID:28937584

  12. Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs

    PubMed Central

    Ely, Abdullah; ul Islam, Rafique; Barichievy, Samantha; Bloom, Kristie; Weinberg, Marc S; van Otterlo, Willem AL; de Koning, Charles B; Salazar, Felix; Marion, Patricia; Roesch, Eric B; LeMaitre, Marc; Herdewijn, Piet

    2010-01-01

    Chronic infection with the hepatitis B virus (HBV) occurs in approximately 6% of the world's population and carriers of the virus are at risk for complicating hepatocellular carcinoma. Current treatment options have limited efficacy and chronic HBV infection is likely to remain a significant global medical problem for many years to come. Silencing HBV gene expression by harnessing RNA interference (RNAi) presents an attractive option for development of novel and effective anti HBV agents. However, despite significant and rapid progress, further refinement of existing technologies is necessary before clinical application of RNAi-based HBV therapies is realized. Limiting off target effects, improvement of delivery efficiency, dose regulation and preventing reactivation of viral replication are some of the hurdles that need to be overcome. To address this, we assessed the usefulness of the recently described class of altritol-containing synthetic siRNAs (ANA siRNAs), which were administered as lipoplexes and tested in vivo in a stringent HBV transgenic mouse model. Our observations show that ANA siRNAs are capable of silencing of HBV replication in vivo. Importantly, non specific immunostimulation was observed with unmodified siRNAs and this undesirable effect was significantly attenuated by ANA modification. Inhibition of HBV replication of approximately 50% was achieved without evidence for induction of toxicity. These results augur well for future application of ANA siRNA therapeutic lipoplexes. PMID:21687523

  13. Efficient Receptor Mediated siRNA Delivery in Vitro by Folic Acid Targeted Pentablock Copolymer-Based Micelleplexes.

    PubMed

    Lehner, Roman; Liu, Kegang; Wang, Xueya; Hunziker, Patrick

    2017-08-14

    Novel, biocompatible polyplexes, based on the combination of cationic pentablock copolymers with folic acid functionalized copolymers, were designed and developed for target-specific siRNA delivery. The resulting micelleplexes spontaneously formed polymeric micelles with a hydrophobic core surrounded directly by a cationic poly-2-(4-aminobutyl)-oxazole (PABOXA) and subsequently shielded by hydrophilic poly-2-methyl-oxazole (PMOXA) layer. The described micelleplexes form highly stable particles even in complete serum after 24 h compared with the highly cationic polymer PEI, which show aggregate formation in serum containing buffer solution. Targeted siRNA delivery and gene knockdown could be shown using green fluorescent protein (GFP) expressing HeLa cells, resulting in ∼31% and ∼8% suppression of the expression of GFP for targeted and nontargeted micelleplexes, respectively. Comparison studies of folic-receptor positive HeLa cells with normal folic-receptor-negative HEK293 cells revealed involvement of receptor mediated cellular uptake of fluorescently labeled siRNA. The new designed nanocarrier showed no cytotoxicity, having a potential application. The presented concept of shielding a nucleic-acid complexing cationic chains with a stealth layer and combining it with receptor ligand overcomes typical problems with undesired protein and cell interactions in delivery of nucleic acids using polymeric systems, opening new doors for application if RNA inhibition in the organism.

  14. Targeted inhibition of EG-1 blocks breast tumor growth.

    PubMed

    Lu, Ming; Sartippour, Maryam R; Zhang, Liping; Norris, Andrew J; Brooks, Mai N

    2007-06-01

    EG-1 is a gene product that is significantly elevated in human breast cancer tissues. Previously, we have shown that EG-1 overexpression stimulates cellular proliferation both in vitro and in vivo. Here, we ask whether this molecule can be targeted for experimental therapeutic purpose. siRNA lentivirus and polyclonal antibodies were designed to suppress EG-1 expression. These agents were then used in cell culture proliferation assays and breast tumor xenograft models. Serum and urine from breast cancer patients were also analyzed for the presence of EG-1 peptide. We report here for the first time that endogenous EG-1 can be targeted to inhibit breast tumor growth. This inhibition, whether delivered via siRNA lentivirus or polyclonal antibody, resulted in decreased cellular proliferation in culture and smaller xenografts in mice. The effects were shown in both ER (estrogen receptor)-positive human breast cancer MCF-7 cells, as well as in ER-negative MDA-MB-231 cells. Furthermore, we detected soluble EG-1 in serum and urine of breast cancer patients. These observations demonstrate that EG-1 is relevant to human breast cancer, and is a molecular target worthy of translational efforts into effective breast cancer therapy.

  15. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology.

    PubMed

    Xia, Chun-Fang; Zhang, Yufeng; Zhang, Yun; Boado, Ruben J; Pardridge, William M

    2007-12-01

    The effective delivery of short interfering RNA (siRNA) to brain following intravenous administration requires the development of a delivery system for transport of the siRNA across the brain capillary endothelial wall, which forms the blood-brain barrier in vivo. siRNA was delivered to brain in vivo with the combined use of a receptor-specific monoclonal antibody delivery system, and avidin-biotin technology. The siRNA was mono-biotinylated on either terminus of the sense strand, in parallel with the production of a conjugate of the targeting MAb and streptavidin. Rat glial cells (C6 or RG-2) were permanently transfected with the luciferase gene, and implanted in the brain of adult rats. Following the formation of intra-cranial tumors, the rats were treated with a single intravenous injection of 270 microg/kg of biotinylated siRNA attached to a transferrin receptor antibody via a biotin-streptavidin linker. The intravenous administration of the siRNA caused a 69-81% decrease in luciferase gene expression in the intracranial brain cancer in vivo. Brain delivery of siRNA following intravenous administration is possible with siRNAs that are targeted to brain with the combined use of receptor specific antibody delivery systems and avidin-biotin technology.

  16. [siRNAs with high specificity to the target: a systematic design by CRM algorithm].

    PubMed

    Alsheddi, T; Vasin, L; Meduri, R; Randhawa, M; Glazko, G; Baranova, A

    2008-01-01

    'Off-target' silencing effect hinders the development of siRNA-based therapeutic and research applications. Common solution to this problem is an employment of the BLAST that may miss significant alignments or an exhaustive Smith-Waterman algorithm that is very time-consuming. We have developed a Comprehensive Redundancy Minimizer (CRM) approach for mapping all unique sequences ("targets") 9-to-15 nt in size within large sets of sequences (e.g. transcriptomes). CRM outputs a list of potential siRNA candidates for every transcript of the particular species. These candidates could be further analyzed by traditional "set-of-rules" types of siRNA designing tools. For human, 91% of transcripts are covered by candidate siRNAs with kernel targets of N = 15. We tested our approach on the collection of previously described experimentally assessed siRNAs and found that the correlation between efficacy and presence in CRM-approved set is significant (r = 0.215, p-value = 0.0001). An interactive database that contains a precompiled set of all human siRNA candidates with minimized redundancy is available at http://129.174.194.243. Application of the CRM-based filtering minimizes potential "off-target" silencing effects and could improve routine siRNA applications.

  17. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins.

    PubMed

    Bedi, Deepa; Gillespie, James W; Petrenko, Vasily A; Ebner, Andreas; Leitner, Michael; Hinterdorfer, Peter; Petrenko, Valery A

    2013-02-04

    Nucleic acids, including antisense oligonucleotides, small interfering RNA (siRNA), aptamers, and rybozymes, emerged as versatile therapeutics due to their ability to interfere in a well-planned manner with the flow of genetic information from DNA to protein. However, a systemic use of NAs is hindered by their instability in physiological liquids and inability of intracellular accumulation in the site of action. We first evaluated the potential of cancer specific phage fusion proteins as targeting ligands that provide encapsulation, protection, and navigation of siRNA to the target cell. The tumor-specific proteins were isolated from phages that were affinity selected from a landscape phage library against target breast cancer cells. It was found that fusion phage coat protein fpVIII displaying cancer-targeting peptides can effectively encapsulate siRNAs and deliver them into the cells leading to specific silencing of the model gene GAPDH. Complexes of siRNA and phage protein form nanoparticles (nanophages), which were characterized by atomic force microscopy and ELISA, and their stability was demonstrated by resistance of encapsulated siRNA to degradation by serum nucleases. The phage protein/siRNA complexes can make a new type of highly selective, stable, active, and physiologically acceptable cancer nanomedicine.

  18. Connexin43 Mediated Delivery of ADAMTS5 Targeting siRNAs from Mesenchymal Stem Cells to Synovial Fibroblasts.

    PubMed

    Liu, Shuo; Niger, Corinne; Koh, Eugene Y; Stains, Joseph P

    2015-01-01

    Osteoarthritis is a joint-destructive disease that has no effective cure. Human mesenchymal stem cells (hMSCs) could offer therapeutic benefit in the treatment of arthritic diseases by suppressing inflammation and permitting tissue regeneration, but first these cells must overcome the catabolic environment of the diseased joint. Likewise, gene therapy also offers therapeutic promise given its ability to directly modulate key catabolic factors that mediate joint deterioration, although it too has limitations. In the current study, we explore an approach that combines hMSCs and gene therapy. Specifically, we test the use of hMSC as a vehicle to deliver ADAMTS5 (an aggrecanase with a key role in osteoarthritis)-targeting siRNAs to SW982 synovial fibroblast-like cells via connexin43 containing gap junctions. Accordingly, we transduced hMSCs with ADAMTS5-targeting shRNA or non-targeted shRNA, and co-cultured them with synovial fibroblasts to allow delivery of siRNAs from hMSC to synovial fibroblasts. We found that co-culture of hMSCs-shRNA-ADAMTS5 and synovial fibroblasts reduced ADAMTS5 expression relative to co-culture of hMSCs-shRNA-control and synovial fibroblasts. Furthermore, ADAMTS5 was specifically reduced in the synovial fibroblasts populations as determined by fluorescence-activated cell sorting, suggesting transfer of the siRNA between cells. To test if Cx43-containing gap junctions are involved in the transfer of siRNA, we co-cultured hMSCs-shRNA-ADAMTS5 cells with synovial fibroblasts in which connexin43 was knocked down. Under these conditions, ADAMTS5 levels were not inhibited by co-culture, indicating that connexin43 mediates the delivery of siRNA from hMSCs to synovial fibroblasts. In total, our findings demonstrate that hMSCs can function as donor cells to host and deliver siRNAs to synovial fibroblasts via connexin43 gap junction in vitro. These data may have implications in the combination of hMSCs and gene therapy to treat diseases like

  19. Adenovirus small interfering RNA targeting ezrin induces apoptosis and inhibits metastasis of human osteosarcoma MG-63 cells.

    PubMed

    Tao, Zhi-Wei; Zou, Ping-An

    2018-06-13

    Osteosarcoma is a disease prone to recurrence and metastasis, and adenovirus expression vector is frequently studied as a therapeutic target of osteosarcoma in recent year. This study attempts to explore the effect of adenovirus-mediated small interfering RNA (siRNA) targeting ezrin on the proliferation, migration, invasion and apoptosis of human osteosarcoma MG-63 cells. Human osteosarcoma MG-63 cell line was selected for construction of recombinant adenovirus vector. The mRNA and protein levels of ezrin, Bcl2-associated X protein (Bax), B cell lymphoma-2 (Bcl-2), p21, p53, Caspase-3, matrix metalloproteinase 2 (MMP-2) and MMP-9, Cyclin D1, and cyclin-dependent kinase 4a (CDK4a) were determined. Through ELISA, the levels of Caspase-3, MMP-2 and MMP-9 were examined. Finally, human osteosarcoma MG-63 cell viability, growth, invasion, migration, and apoptosis were detected. Initially, adenovirus expression vector of ezrin was constructed by ezrin 2 siRNA sequence. Adenovirus-mediated siRNA targeting ezrin reduced expression of ezrin in MG-63 cells. The results revealed that adenovirus-mediated siRNA targeting ezrin elevated expression levels of Bax, P21, P53, and Caspase-3, Cyclin D1, and CDK4a and reduced expression levels of Bcl-2, MMP-2, and MMP-9. Furthermore, adenovirus-mediated siRNA targeting ezrin inhibited human osteosarcoma MG-63 cell viability, growth, invasion, and migration, and promoted apoptosis. Our study demonstrates that adenovirus-mediated siRNA targeting ezrin can induce apoptosis and inhibit the proliferation, migration and invasion of human osteosarcoma MG-63 cells. ©2018 The Author(s).

  20. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery.

    PubMed

    Chen, Guojun; Wang, Yuyuan; Xie, Ruosen; Gong, Shaoqin

    2017-08-10

    A unique pH/redox dual-sensitive cationic unimolecular nanoparticle (NP) enabling excellent endosomal/lysosomal escape and efficient siRNA decomplexation inside the target cells was developed for tumor-targeted delivery of siRNA. siRNA was complexed into the cationic core of the unimolecular NP through electrostatic interactions. The cationic core used for complexing siRNA contained reducible disulfide bonds that underwent intracellular reduction owing to the presence of high concentrations of reduced glutathione (GSH) inside the cells, thereby facilitating the decomplexation of siRNA from the unimolecular NPs. The cationic polymers were conjugated onto the hyperbranched core (H40) via a pH-sensitive bond, which further facilitated the decomplexation of siRNA from the NPs. In vitro studies on the siRNA release behaviors showed that dual stimuli (pH=5.3, 10mM GSH) induced the quickest release of siRNA from the NPs. In addition, the imidazole groups attached to the cationic polymer segments enhanced the endosomal/lysosomal escape of NPs via the proton sponge effect. Intracellular tracking studies revealed that siRNA delivered by unimolecular NPs was efficiently released to the cytosol. Moreover, the GE11 peptide, an anti-EGFR peptide, enhanced the cellular uptake of NPs in MDA-MB-468, an EFGR-overexpressing triple negative breast cancer (TNBC) cell line. The GE11-conjugated, GFP-siRNA-complexed NPs exhibited excellent GFP gene silencing efficiency in GFP-MDA-MB-468 TNBC cells without any significant cytotoxicity. Therefore, these studies suggest that this smart unimolecular NP could be a promising nanoplatform for targeted siRNA delivery to EFGR-overexpressing cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.

    PubMed

    Zhou, Yinjian; Zhang, Chunling; Liang, Wei

    2014-11-10

    RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. [Efficacy of siRNA on feline leukemia virus replication in vitro].

    PubMed

    Lehmann, Melanie; Weber, Karin; Rauch, Gisep; Hofmann-Lehmann, Regina; Hosie, Margaret J; Meli, Marina L; Hartmann, Katrin

    2015-01-01

    Feline leukemia virus (FeLV) can lead to severe clinical signs in cats. Until now, there is no effective therapy for FeLV-infected cats. RNA interference-based antiviral therapy is a new concept. Specific small interfering RNA (siRNA) are designed complementary to the mRNA of a target region, and thus inhibit replication. Several studies have proven efficacy of siRNAs in inhibiting virus replication. The aim of this study was to evaluate the inhibitory potential of siRNAs against FeLV replication in vitro. siRNAs against the FeLV env gene and the host cell surface receptor (feTHTR1) which is used by FeLV-A for entry as well as siRNA that were not complementary to the FeLV or cat genome, were tested. Crandell feline kidney cells (CrFK cells) were transfected with FeLV-A/Glasgow-1. On day 13, infected cells were transfected with siRNAs. As control, cells were mock-transfected or treated with azidothymidine (AZT) (5 μg/ml). Culture supernatants were analyzed for FeLV RNA using quantitative real-time RT-PCR and for FeLV p27 by ELISA every 24 hours for five days. All siRNAs significantly reduced viral RNA and p27 production, starting after 48 hours. The fact that non-complementary siRNAs also inhibited virus replication may lead to the conclusion that unspecific mechanisms rather than specific binding lead to inhibition.

  3. An RGD-Modified MRI-Visible Polymeric Vector for Targeted siRNA Delivery to Hepatocellular Carcinoma in Nude Mice

    PubMed Central

    Shen, Min; Zhu, Kangshun; Cheng, Du; Liu, Zhihao; Shan, Hong

    2013-01-01

    RNA interference (RNAi) has significant therapeutic promise for the genetic treatment of hepatocellular carcinoma (HCC). Targeted vectors are able to deliver small interfering RNA (siRNA) into HCC cells with high transfection efficiency and stability. The tripeptide arginine glycine aspartic acid (RGD)-modified non-viral vector, polyethylene glycol-grafted polyethylenimine functionalized with superparamagnetic iron oxide nanoparticles (RGD-PEG-g-PEI-SPION), was constructed as a magnetic resonance imaging (MRI)-visible nanocarrier for the delivery of Survivin siRNA targeting the human HCC cell line Bel-7402. The biophysical characterization of the RGD-PEG-g-PEI-SPION was performed. The RGD-modified complexes exhibited a higher transfection efficiency in transferring Survivin siRNA into Bel-7402 cells compared with a non-targeted delivery system, which resulted in more significant gene suppression at both the Survivin mRNA and protein expression levels. Then, the level of caspase-3 activation was significantly elevated, and a remarkable level of tumor cell apoptosis was induced. As a result, the tumor growth in the nude mice Bel-7402 hepatoma model was significantly inhibited. The targeting ability of the RGD-PEG-g-PEI-SPION was successfully imaged by MRI scans performed in vitro and in vivo. Our results strongly indicated that the RGD-PEG-g-PEI-SPION can potentially be used as a targeted non-viral vector for altering gene expression in the treatment of hepatocellular carcinoma and for detecting the tumor in vivo as an effective MRI probe. PMID:23922634

  4. Suppression of SOX18 by siRNA inhibits cell growth and invasion of breast cancer cells.

    PubMed

    Zhang, Jianxiang; Ma, Yanmei; Wang, Shoujun; Chen, Fu; Gu, Yuanting

    2016-06-01

    Breast cancer is the most common malignancy in women around the world, and its incidence and mortality rates are still rising. An increasing number of studies have reported that SOX18 plays an important role in various cancers. However, the role of SOX18 in breast cancer remains poorly understood. In this study, we aimed to investigate the biological role and potential molecular mechanism of SOX18 in breast cancer. We found that the mRNA and protein expression levels of SOX18 were prevalently and significantly overexpressed in human breast cancer cell lines. Next, we performed loss-of-function experiments by transfection of two breast cancer cell lines, BT-474 and MCF-7, with SOX18 small interfering RNAs (siRNA). Results showed that SOX18 siRNA transfection significantly suppressed mRNA and protein expression of SOX18 in breast cancer cells. Furthermore, knockdown of SOX18 significantly inhibited cell proliferation and invasion, but promoted apoptosis in breast cancer cells. Importantly, several oncogenic proteins, including the Ras homolog gene family member A (RhoA), platelet-derived growth factor B (PDGFB), Insulin-like growth factor 1 receptor (IGF-1R), and matrix metalloproteinase-7 (MMP-7), were markedly decreased by SOX18 siRNA. Taken together, the results of our study suggest that knockdown of SOX18 inhibits breast cancer cell growth and invasion, possibly by downregulating downstream oncogenic proteins, providing novel insights into the development of breast cancer therapy through targeting of SOX18.

  5. In vitro validation of self designed "universal human Influenza A siRNA".

    PubMed

    Jain, Bhawana; Jain, Amita; Prakash, Om; Singh, Ajay Kr; Dangi, Tanushree; Singh, Mastan; Singh, K P

    2015-08-01

    The genomic variability of Influenza A virus (IAV) makes it difficult for the existing vaccines or anti-influenza drugs to control. The siRNA targeting viral gene induces RNAi mechanism in the host and silent the gene by cleaving mRNA. In this study, we developed an universal siRNA and validated its efficiency in vitro. The siRNA was designed rationally, targeting the most conserved region (delineated with the help of multiple sequence alignment) of M gene of IAV strains. Three level screening method was adopted, and the most efficient one was selected on the basis of its unique position in the conserved region. The siRNA efficacy was confirmed in vitro with the Madin Darby Canine Kidney (MDCK) cell line for IAV propagation using two clinical isolates i.e., Influenza A/H3N2 and Influenza A/pdmH1N1. Of the total 168 strains worldwide and 33 strains from India, 97 bp long (position 137-233) conserved region was identified. The longest ORF of matrix gene was targeted by the selected siRNA, which showed 73.6% inhibition in replication of Influenza A/pdmH1N1 and 62.1% inhibition in replication of Influenza A/H3N2 at 48 h post infection on MDCK cell line. This study provides a basis for the development of siRNA which can be used as universal anti-IAV therapeutic agent.

  6. Co-delivery of doxorubicin and siRNA using octreotide-conjugated gold nanorods for targeted neuroendocrine cancer therapy

    NASA Astrophysics Data System (ADS)

    Xiao, Yuling; Jaskula-Sztul, Renata; Javadi, Alireza; Xu, Wenjin; Eide, Jacob; Dammalapati, Ajitha; Kunnimalaiyaan, Muthusamy; Chen, Herbert; Gong, Shaoqin

    2012-10-01

    A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The Au NR was conjugated with (1) DOX, an anticancer drug, via a pH-labile hydrazone linkage to enable pH-controlled drug release, (2) polyarginine, a cationic polymer for complexing siRNA, and (3) octreotide (OCT), a tumor-targeting ligand, to specifically target NE cancer cells with overexpressed somatostatin receptors. The Au NR-based nanocarriers exhibited a uniform size distribution as well as pH-sensitive drug release. The OCT-conjugated Au NR-based nanocarriers (Au-DOX-OCT, targeted) exhibited a much higher cellular uptake in a human carcinoid cell line (BON cells) than non-targeted Au NR-based nanocarriers (Au-DOX) as measured by both flow cytometry and confocal laser scanning microscopy (CLSM). Moreover, Au-DOX-OCT-ASCL1 siRNA (Au-DOX-OCT complexed with ASCL1 siRNA) resulted in significantly higher gene silencing in NE cancer cells than Au-DOX-ASCL1 siRNA (non-targeted Au-DOX complexed with ASCL1 siRNA) as measured by an immunoblot analysis. Additionally, Au-DOX-OCT-ASCL1 siRNA was the most efficient nanocarrier at altering the NE phenotype of NE cancer cells and showed the strongest anti-proliferative effect. Thus, combined chemotherapy and RNA silencing using NE tumor-targeting Au NR-based nanocarriers could potentially enhance the therapeutic outcomes in treating NE cancers.A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The

  7. Current siRNA Targets in the Prevention and Treatment of Intimal Hyperplasia

    PubMed Central

    Pradhan-Nabzdyk, Leena; Huang, Chenyu; LoGerfo, Frank W.; Nabzdyk, Christoph S.

    2014-01-01

    Intimal hyperplasia (IH) is the leading cause of late vein and prosthetic bypass graft failure. Injury at the time of graft implantation leading to the activation of endothelial cells and dedifferentiation of vascular smooth muscle cells to a synthetic phenotype are known causes of IH. Prior attempts to develop therapy to mitigate these cellular changes to prevent IH and graft failure have failed. Small interfering RNA (siRNA) mediated targeted gene silencing is a promising tool to prevent IH. Several studies have been performed in this direction to target genes that are involved in IH. In this review we discuss siRNA targets that are being investigated for prevention and treatment of IH. PMID:25227753

  8. siRNAs encapsulated in recombinant capsid protein derived from Dengue serotype 2 virus inhibits the four serotypes of the virus and proliferation of cancer cells.

    PubMed

    Kumar, A S Manoj; Reddy, G E C Vidyadhar; Rajmane, Yogesh; Nair, Soumya; Pai Kamath, Sangita; Sreejesh, Greeshma; Basha, Khalander; Chile, Shailaja; Ray, Kriti; Nelly, Vivant; Khadpe, Nilesh; Kasturi, Ravishankar; Ramana, Venkata

    2015-01-10

    siRNA delivery potential of the Dengue virus capsid protein in cultured cells was recently reported, but target knockdown potential in the context of specific diseases has not been explored. In this study we have evaluated the utility of the protein as an siRNA carrier for anti Dengue viral and anti cancer applications using cell culture systems. We show that target specific siRNAs delivered using the capsid protein inhibit infection by the four serotypes of Dengue virus and proliferation of two cancer cell lines. Our data confirm the potential of the capsid for anti Dengue viral and anti cancer RNAi applications. In addition, we have optimized a fermentation strategy to improve the yield of Escherichia coli expressed D2C protein since the reported yields of E. coli expressed flaviviral capsid proteins are low. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Small interfering RNA targeting ILK inhibits metastasis in human tongue cancer cells through repression of epithelial-to-mesenchymal transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Yu; Laboratory of Forensic Medicine and Biomedical Information, Chongqing Medical University, Chongqing; Qi, Jin

    2013-08-01

    Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase. Accumulating evidences suggest that ILK are involved in cell–matrix interactions, cell proliferation, invasion, migration, angiogenesis and Epithelial–mesenchymal transition (EMT). However, the underlying mechanisms remain largely unknown. EMT has been postulated as a prerequisite for metastasis. The reports have demonstrated that EMT was implicated in metastasis of oral squamous cell carcinomas. Therefore, here we further postulate that ILK might participate in EMT of tongue cancer. We showed that ILK siRNA inhibited EMT with low N-cadherin, Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and in vitro. We foundmore » that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β as well as reduced expression of MMP2 and MMP9. Furthermore, we found that the tongue tumor with high metastasis capability showed higher ILK, Vimentin, Snail, Slug and Twist as well as lower E-cadherin expression in clinical specimens. Finally, ILK siRNA led to the suppression for tumorigenesis and metastasis in vivo. Our findings suggest that ILK could be a novel diagnostic and therapeutic target for tongue cancer. Highlights: • ILK siRNA influences cell morphology, cell cycle, migration and invasion. • ILK siRNA affects the expression of proteins associated with EMT. • ILK expression is related to EMT in clinical human tongue tumors. • ILK siRNA inhibits metastasis of the tongue cancer cells through suppressing EMT.« less

  10. Apoptosis and reduced cell proliferation of HL-60 cell line caused by human telomerase reverse transcriptase inhibition by siRNA.

    PubMed

    Miri-Moghaddam, Ebrahim; Deezagi, Abdolkhaleg; Soheili, Zahra Sohaila; Shariati, Parvin

    2010-01-01

    The close correlation between telomerase activity and human telomerase reverse transcriptase (hTERT) expression has made hTERT to be considered as a selective molecular target for human cancer therapy. In this study, the ability of short-interfering RNA (siRNA) to downregulate hTERT expression and its correlation with cell growth and apoptosis in the promyelocytic cell line HL-60 was evaluated. hTERT siRNA was designed and transfected to HL-60. hTERT mRNA expression, cell proliferation and apoptotic cells were measured. The results indicated that hTERT siRNA resulted in 97.2 ± 0.6% downregulation of the hTERT mRNA content; inhibition of the cell proliferation rate was about 52.8 ± 2.3% and the apoptotic index of cells was 30.5 ± 1.5%. hTERT plays an essential role in cell proliferation and control of the viability of leukemic cells, thus promising the development of drugs for leukemia. Copyright © 2010 S. Karger AG, Basel.

  11. Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo.

    PubMed

    Alexander-Bryant, Angela A; Zhang, Haiwen; Attaway, Christopher C; Pugh, William; Eggart, Laurence; Sansevere, Robert M; Andino, Lourdes M; Dinh, Lu; Cantini, Liliana P; Jakymiw, Andrew

    2017-09-01

    Despite significant advances in cancer treatment, the prognosis for oral cancer remains poor in comparison to other cancer types, including breast, skin, and prostate. As a result, more effective therapeutic modalities are needed for the treatment of oral cancer. Consequently, in the present study, we examined the feasibility of using a dual peptide carrier approach, combining an epidermal growth factor receptor (EGFR)-targeting peptide with an endosome-disruptive peptide, to mediate targeted delivery of small interfering RNAs (siRNAs) into EGFR-overexpressing oral cancer cells and induce silencing of the targeted oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A). Fluorescence microscopy, real-time PCR, Western blot analysis, and in vivo bioimaging of mice containing orthotopic xenograft tumors were used to examine the ability of the dual peptide carrier to mediate specific delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells/tissues. Co-complexation of the EGFR-targeting peptide, GE11R9, with the endosome-disruptive 599 peptide facilitated the specific uptake of siRNAs into oral cancer cells overexpressing EGFR in vitro with optimal gene silencing observed at a 60:30:1 (GE11R9:599:siRNA) molar ratio. Furthermore, when administered systemically to mice bearing xenograft oral tumors, this dual peptide complex mediated increased targeted delivery of siRNAs into tumor tissues in comparison to the 599 peptide alone and significantly enhanced CIP2A silencing. Herein we provide the first report demonstrating the clinical potential of a dual peptide strategy for siRNA-based therapeutics by synergistically mediating the effective targeting and delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery

    NASA Astrophysics Data System (ADS)

    Zhou, Jihan; Li, Dong; Wen, Hao; Zheng, Shuquan; Su, Cuicui; Yi, Fan; Wang, Jue; Liang, Zicai; Tang, Tao; Zhou, Demin; Zhang, Li-He; Liang, Dehai; Du, Quan

    2016-03-01

    Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications.

  13. SiRNA Crosslinked Nanoparticles for the Treatment of Inflammation-induced Liver Injury.

    PubMed

    Tang, Yaqin; Zeng, Ziying; He, Xiao; Wang, Tingting; Ning, Xinghai; Feng, Xuli

    2017-02-01

    RNA interference mediated by small interfering RNA (siRNA) provides a powerful tool for gene regulation, and has a broad potential as a promising therapeutic strategy. However, therapeutics based on siRNA have had limited clinical success due to their undesirable pharmacokinetic properties. This study presents pH-sensitive nanoparticles-based siRNA delivery systems (PNSDS), which are positive-charge-free nanocarriers, composed of siRNA chemically crosslinked with multi-armed poly(ethylene glycol) carriers via acid-labile acetal linkers. The unique siRNA crosslinked structure of PNSDS allows it to have minimal cytotoxicity, high siRNA loading efficiency, and a stimulus-responsive property that enables the selective intracellular release of siRNA in response to pH conditions. This study demonstrates that PNSDS can deliver tumor necrosis factor alpha (TNF-α) siRNA into macrophages and induce the efficient down regulation of the targeted gene in complete cell culture media. Moreover, PNSDS with mannose targeting moieties can selectively accumulate in mice liver, induce specific inhibition of macrophage TNF-α expression in vivo, and consequently protect mice from inflammation-induced liver damages. Therefore, this novel siRNA delivering platform would greatly improve the therapeutic potential of RNAi based therapies.

  14. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery.

    PubMed

    Thapa, Bindu; Bahadur Kc, Remant; Uludağ, Hasan

    2018-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in variety of cancer cells without affecting most normal cells, which makes it a promising agent for cancer therapy. However, TRAIL therapy is clinically not effective due to resistance induction. To identify novel regulators of TRAIL that can aid in therapy, protein targets whose silencing sensitized breast cancer cells against TRAIL were screened with an siRNA library against 446 human apoptosis-related proteins in MDA-231 cells. Using a cationic lipopolymer (PEI-αLA) for delivery of library members, 16 siRNAs were identified that sensitized the TRAIL-induced death in MDA-231 cells. The siRNAs targeting BCL2L12 and SOD1 were further evaluated based on the novelty and their ability to sensitize TRAIL induced cell death. Silencing both targets sensitized TRAIL-mediated cell death in MDA-231 cells as well as TRAIL resistant breast cancer cells, MCF-7. Combination of TRAIL and siRNA silencing BCL2L12 had no effect in normal human umbilical vein cells and human bone marrow stromal cell. The silencing of BCL2L12 and SOD1 enhanced TRAIL-mediated apoptosis in MDA-231 cells via synergistically activating capsase-3 activity. Hence, here we report siRNAs targeting BCL2L12 and SOD1 as a novel regulator of TRAIL-induced cell death in breast cancer cells, providing a new approach for enhancing TRAIL therapy for breast cancer. The combination of siRNA targeting BCL2L12 and TRAIL can be a highly effective synergistic pair in breast cancer cells with minimal effect on the non-transformed cells. © 2017 UICC.

  15. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells

    PubMed Central

    Herrmann, Andreas; Priceman, Saul J.; Kujawski, Maciej; Xin, Hong; Cherryholmes, Gregory A.; Zhang, Wang; Zhang, Chunyan; Lahtz, Christoph; Kowolik, Claudia; Forman, Steve J.; Kortylewski, Marcin; Yu, Hua

    2014-01-01

    Intracellular therapeutic targets that define tumor immunosuppression in both tumor cells and T cells remain intractable. Here, we have shown that administration of a covalently linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte–associated antigen 4 (CTLA4apt) allows gene silencing in exhausted CD8+ T cells and Tregs in tumors as well as CTLA4-expressing malignant T cells. CTLA4 expression was upregulated in CD8+ T cells in the tumor milieu; therefore, CTLA4apt fused to a STAT3-targeting siRNA (CTLA4apt–STAT3 siRNA) resulted in internalization into tumor-associated CD8+ T cells and silencing of STAT3, which activated tumor antigen–specific T cells in murine models. Both local and systemic administration of CTLA4apt–STAT3 siRNA dramatically reduced tumor-associated Tregs. Furthermore, CTLA4apt–STAT3 siRNA potently inhibited tumor growth and metastasis in various mouse tumor models. Importantly, CTLA4 expression is observed in T cells of patients with blood malignancies, and CTLA4apt–STAT3 siRNA treatment of immunodeficient mice bearing human T cell lymphomas promoted tumor cell apoptosis and tumor growth inhibition. These data demonstrate that a CTLA4apt-based siRNA delivery strategy allows gene silencing in both tumor-associated T cells and tumor cells and inhibits tumor growth and metastasis. PMID:24892807

  16. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome.

    PubMed

    Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao

    2016-10-15

    Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular siRNA

  17. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    PubMed Central

    Arif, Tasleem; Vasilkovsky, Lilia; Refaely, Yael; Konson, Alexander; Shoshan-Barmatz, Varda

    2014-01-01

    Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1), a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA). A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP) levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF). VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi) dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs. PMID:24781191

  18. siRNA as a tool to improve the treatment of brain diseases: Mechanism, targets and delivery.

    PubMed

    Gomes, Maria João; Martins, Susana; Sarmento, Bruno

    2015-05-01

    As the population ages, brain pathologies such as neurodegenerative diseases and brain cancer increase their incidence, being the need to find successful treatments of upmost importance. Drug delivery to the central nervous system (CNS) is required in order to reach diseases causes and treat them. However, biological barriers, mainly blood-brain barrier (BBB), are the key obstacles that prevent the effectiveness of possible treatments due to their ability to strongly limit the perfusion of compounds into the brain. Over the past decades, new approaches towards overcoming BBB and its efflux transporters had been proposed. One of these approaches here reviewed is through small interfering RNA (siRNA), which is capable to specifically target one gene and silence it in a post-transcriptional way. There are different possible functional proteins at the BBB, as the ones responsible for transport or just for its tightness, which could be a siRNA target. As important as the effective silence is the way to delivery siRNA to its anatomical site of action. This is where nanotechnology-based systems may help, by protecting siRNA circulation and providing cell/tissue-targeting and intracellular siRNA delivery. After an initial overview on incidence of brain diseases and basic features of the CNS, BBB and its efflux pumps, this review focuses on recent strategies to reach brain based on siRNA, and how to specifically target these approaches in order to treat brain diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Current siRNA Targets in Atherosclerosis and Aortic Aneurysm

    PubMed Central

    Pradhan-Nabzdyk, Leena; Huang, Chenyu; Logerfo, Frank W.; Nabzdyk, Christoph S.

    2014-01-01

    Atherosclerosis (ATH) and aortic aneurysms (AA) remain challenging chronic diseases that confer high morbidity and mortality despite advances in medical, interventional, and surgical care. RNA interference represents a promising technology that may be utilized to silence genes contributing to ATH and AA. Despite positive results in preclinical and some clinical feasibility studies, challenges such as target/sequence validation, tissue specificity, transfection efficiency, and mitigation of unwanted off-target effects remain to be addressed. In this review the most current targets and some novel approaches in siRNA delivery are being discussed. Due to the plethora of investigated targets, only studies published between 2010 and 2014 were included. PMID:24882715

  20. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells

    PubMed Central

    Palanca-Wessels, Maria C.; Booth, Garrett C.; Convertine, Anthony J.; Lundy, Brittany B.; Berguig, Geoffrey Y.; Press, Michael F.; Stayton, Patrick S.; Press, Oliver W.

    2016-01-01

    The therapeutic potential of RNA interference (RNAi) has been limited by inefficient delivery of short interfering RNA (siRNA). Tumor-specific recognition can be effectively achieved by antibodies directed against highly expressed cancer cell surface receptors. We investigated the utility of linking an internalizing streptavidin-conjugated HER2 antibody to an endosome-disruptive biotinylated polymeric nanocarrier to improve the functional cytoplasmic delivery of siRNA in breast and ovarian cancer cells in vitro and in an intraperitoneal ovarian cancer xenograft model in vivo, yielding an 80% reduction of target mRNA and protein levels with sustained repression for at least 96 hours. RNAi-mediated site specific cleavage of target mRNA was demonstrated using the 5′ RLM-RACE (RNA ligase mediated-rapid amplification of cDNA ends) assay. Mice bearing intraperitoneal human ovarian tumor xenografts demonstrated increased tumor accumulation of Cy5.5 fluorescently labeled siRNA and 70% target gene suppression after treatment with HER2 antibody-directed siRNA nanocarriers. Detection of the expected mRNA cleavage product by 5′ RLM-RACE assay confirmed that suppression occurs via the expected RNAi pathway. Delivery of siRNA via antibody-directed endosomolytic nanoparticles may be a promising strategy for cancer therapy. PMID:26840082

  1. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells.

    PubMed

    Palanca-Wessels, Maria C; Booth, Garrett C; Convertine, Anthony J; Lundy, Brittany B; Berguig, Geoffrey Y; Press, Michael F; Stayton, Patrick S; Press, Oliver W

    2016-02-23

    The therapeutic potential of RNA interference (RNAi) has been limited by inefficient delivery of short interfering RNA (siRNA). Tumor-specific recognition can be effectively achieved by antibodies directed against highly expressed cancer cell surface receptors. We investigated the utility of linking an internalizing streptavidin-conjugated HER2 antibody to an endosome-disruptive biotinylated polymeric nanocarrier to improve the functional cytoplasmic delivery of siRNA in breast and ovarian cancer cells in vitro and in an intraperitoneal ovarian cancer xenograft model in vivo, yielding an 80% reduction of target mRNA and protein levels with sustained repression for at least 96 hours. RNAi-mediated site specific cleavage of target mRNA was demonstrated using the 5' RLM-RACE (RNA ligase mediated-rapid amplification of cDNA ends) assay. Mice bearing intraperitoneal human ovarian tumor xenografts demonstrated increased tumor accumulation of Cy5.5 fluorescently labeled siRNA and 70% target gene suppression after treatment with HER2 antibody-directed siRNA nanocarriers. Detection of the expected mRNA cleavage product by 5' RLM-RACE assay confirmed that suppression occurs via the expected RNAi pathway. Delivery of siRNA via antibody-directed endosomolytic nanoparticles may be a promising strategy for cancer therapy.

  2. Novel targeted therapy for neuroblastoma: silencing the MXD3 gene using siRNA.

    PubMed

    Duong, Connie; Yoshida, Sakiko; Chen, Cathy; Barisone, Gustavo; Diaz, Elva; Li, Yueju; Beckett, Laurel; Chung, Jong; Antony, Reuben; Nolta, Jan; Nitin, Nitin; Satake, Noriko

    2017-09-01

    BackgroundNeuroblastoma is the second most common extracranial cancer in children. Current therapies for neuroblastoma, which use a combination of chemotherapy drugs, have limitations for high-risk subtypes and can cause significant long-term adverse effects in young patients. Therefore, a new therapy is needed. In this study, we investigated the transcription factor MXD3 as a potential therapeutic target in neuroblastoma.MethodsMXD3 expression was analyzed in five neuroblastoma cell lines by immunocytochemistry and quantitative real-time reverse transcription PCR, and in 18 primary patient tumor samples by immunohistochemistry. We developed nanocomplexes using siRNA and superparamagnetic iron oxide nanoparticles to target MXD3 in neuroblastoma cell lines in vitro as a single-agent therapeutic and in combination with doxorubicin, vincristine, cisplatin, or maphosphamide-common drugs used in current neuroblastoma treatment.ResultsMXD3 was highly expressed in neuroblastoma cell lines and in patient tumors that had high-risk features. Neuroblastoma cells treated in vitro with the MXD3 siRNA nanocomplexes showed MXD3 protein knockdown and resulted in cell apoptosis. Furthermore, on combining MXD3 siRNA nanocomplexes with each of the four drugs, all showed additive efficacy.ConclusionThese results indicate that MXD3 is a potential new target and that the use of MXD3 siRNA nanocomplexes is a novel therapeutic approach for neuroblastoma.

  3. Engineering RNA for Targeted siRNA Delivery and Medical Application

    PubMed Central

    Guo, Peixuan; Coban, Oana; Snead, Nick; Trebley, Joe; Hoeprich, Steve; Guo, Songchuan; Shu, Yi

    2010-01-01

    RNA engineering for nanotechnology and medical applications is an exciting emerging research field. RNA has intrinsically defined features on the nanometer scale and is a particularly interesting candidate for such applications due to its amazing diversity, flexibility and versatility in structure and function. Specifically, the current use of siRNA to silence target genes involved in disease has generated much excitement in the scientific community. The intrinsic ability to sequence-specifically down-regulate gene expression in a temporally- and spatially-controlled fashion has led to heightened interest and rapid development of siRNA-based therapeutics. Though methods for gene silencing with high efficacy and specificity have been achieved in vitro, the effective delivery of nucleic acids to specific cells in vivo has been a hurdle for RNA therapeutics. This review covers different RNA-based approaches for diagnosis, prevention and treatment of human disease, with a focus on the latest developments of nonviral carriers of siRNA for delivery in vivo. The applications and challenges of siRNA therapy, as well as potential solutions to these problems, the approaches for using phi29 pRNA-based vectors as polyvalent vehicles for specific delivery of siRNA, ribozymes, drugs or other therapeutic agents to specific cells for therapy will also be addressed. PMID:20230868

  4. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy.

    PubMed

    Wang, Qin; Jiang, Hao; Li, Yan; Chen, Wenfei; Li, Hanmei; Peng, Ke; Zhang, Zhirong; Sun, Xun

    2017-04-01

    The transcription factor NF-kB plays a pivotal role in the pathogenesis of rheumatoid arthritis. Here we attempt to slow arthritis progression by co-delivering the glucocorticoid dexamethasone (Dex) and small-interfering RNA targeting NF-kB p65 using our previously developed polymeric hybrid micelle system. These micelles contain two similar amphiphilic copolymers: polycaprolactone-polyethylenimine (PCL-PEI) and polycaprolactone-polyethyleneglycol (PCL-PEG). The hybrid micelles loaded with Dex and siRNA effectively inhibited NF-kB signaling in murine macrophages more efficiently than micelles containing either Dex or siRNA on their own. In addition, the co-delivery system was able to switch macrophages from the M1 to M2 state. Injecting hybrid micelles containing Dex and siRNA into mice with collagen-induced arthritis led the therapeutic agents to accumulate in inflamed joints and reduce inflammation, without damaging renal or liver function. Thus, blocking NF-kB activation in inflammatory tissue using micelle-based co-delivery may provide a new approach for treating inflammatory disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision.

    PubMed

    Denise, Hubert; Moschos, Sterghios A; Sidders, Benjamin; Burden, Frances; Perkins, Hannah; Carter, Nikki; Stroud, Tim; Kennedy, Michael; Fancy, Sally-Ann; Lapthorn, Cris; Lavender, Helen; Kinloch, Ross; Suhy, David; Corbau, Romu

    2014-02-04

    TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

  6. Targeting Sirna Missiles to Her2+ Breast Cancer

    DTIC Science & Technology

    2008-06-01

    intact and appears to be protected from serum nucleases (Fig. 1) . T7 -transcribed siRNA induces higher breast cancer cell cytotoxicity than synthetic...cytotoxicity of T7 transcribed vs s y n t h e t i c anti-HER2 siRNA on HER2+ cells. We acquired a 21 nucleotide (nt) s y n t h e t i c anti-HER2...ErbB2) siRNA and also produced a T7 -transcribed molecule (Silencer Principal Investigator: Medina-Kauwe, Lali K. 2 siRNA construction kit; Ambion) using

  7. Targeting siRNA Missiles to Her2+ Breast Cancer

    DTIC Science & Technology

    2009-06-01

    that HerPBK10 protects siRNA from serum nuclease-mediated degradation, T7 transcribed siRNA is more cytotoxic than synthetic siRNA when delivered to...nuclease-mediated degradation, T7 transcribed siRNA is more cytotoxic than synthetic siRNA when delivered to HER2+ breast cancer cells by HerPBK10...produced either synthetically by a commercial vendor (Dharmacon), or from a T7 transcription kit (Ambion), and shRNA, which is reportedly a more effective

  8. Inhibition of adenovirus multiplication by short interfering RNAs directly or indirectly targeting the viral DNA replication machinery.

    PubMed

    Kneidinger, Doris; Ibrišimović, Mirza; Lion, Thomas; Klein, Reinhard

    2012-06-01

    Human adenoviruses are a common threat to immunocompromised patients, e.g., HIV-positive individuals or solid-organ and, in particular, allogeneic stem cell transplant recipients. Antiviral drugs have a limited effect on adenoviruses, and existing treatment modalities often fail to prevent fatal outcome. Silencing of viral genes by short interfering RNAs (siRNAs) holds a great promise in the treatment of viral infections. The aim of the present study was to identify adenoviral candidate targets for RNA interference-mediated inhibition of adenoviral replication. We investigated the impact of silencing of a set of early, middle, and late viral genes on the replication of adenovirus 5 in vitro. Adenovirus replication was inhibited by siRNAs directed against the adenoviral E1A, DNA polymerase, preterminal protein (pTP), IVa2, hexon, and protease genes. Silencing of early and middle genes was more effective in inhibiting adenovirus multiplication than was silencing of late genes. A siRNA directed against the viral DNA polymerase mRNA decreased viral genome copy numbers and infectious virus progeny by several orders of magnitude. Since silencing of any of the early genes directly or indirectly affected viral DNA synthesis, our data suggest that reducing viral genome copy numbers is a more promising strategy for the treatment of adenoviral infections than is reducing the numbers of proteins necessary for capsid generation. Thus, adenoviral DNA replication was identified as a key target for RNAi-mediated inhibition of adenovirus multiplication. In addition, the E1A transcripts emerged as a second important target, because its knockdown markedly improved the viability of cells at late stages of infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Synthetic siRNAs effectively target cystein protease 12 and α-actinin transcripts in Trichomonas vaginalis.

    PubMed

    Ravaee, Roya; Ebadi, Parimah; Hatam, Gholamreza; Vafafar, Arghavan; Ghahramani Seno, Mohammad Mahdi

    2015-10-01

    The flagellated protozoan Trichomonas vaginalis (T. vaginalis) causes trichomoniasis, a reproductive tract infection, in humans. Trichomoniasis is the most common non-viral sexually transmitted disease worldwide. In addition to direct consequences such as infertility and abortion, there are indications that trichomoniasis favours development of prostate cancer and it has also been associated with increased risk of spreading human immunodeficiency virus and papillomavirus infections. Reports from around the world show that the rate of drug resistance in T. vaginalis is increasing, and therefore new therapeutic approaches have to be developed. Studying molecular biology of T. vaginalis will be quite helpful in identifying new drugable targets. RNAi is a powerful technique which allows biologist to specifically target gene products (i.e. mRNA) helping them in unravelling gene functions and biology of systems. However, due to lack of some parts of the required intrinsic RNAi machinery, the RNAi system is not functional in all orders of life. Here, by using synthetic siRNAs targeting two genes, i.e. α-actinin and cystein protease 12 (cp12), we demonstrate T. vaginalis cells are amenable to RNAi experiments conducted by extrinsic siRNAs. Electroporation of siRNAs targeting α-actinin or cp12 into T. vaginalis cells resulted in, respectively, 48-67% and 33-72% downregulation of the cognate transcripts compared to the T. vaginalis cells received siRNAs targeting GL2 luciferase as a control. This finding is helpful in that it demonstrates the potential of using extrinsically induced RNAi in studies on molecular biology of T. vaginalis such as those aiming at identifying new drug targets. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Inhibition of apoptosis by knockdown of caspase-3 with siRNA in rat bone marrow mesenchymal stem cells.

    PubMed

    Hua, Ping; Liu, Li-Bao; Liu, Jia-Liang; Wang, Meng; Jiang, Hui-Qi; Zeng, Kuan; Yang, Yan-Qi; Yang, Song-Ran

    2013-09-01

    Transplantation of bone marrow mesenchymal stem cells is a promising new strategy for the repair of infarcted cardiac tissue. However, the majority of transplanted bone marrow mesenchymal stem cells (BMSCs) die soon after transplantation, due in part to oxidative stress in the ischemic region. Oxidative stress is known to induce apoptosis through the activation of caspase-3. The aim of this study is to determine whether small interfering RNA targeting caspase-3 can inhibit the apoptosis of rat BMSCs in vitro. Caspase-3 siRNA expression vectors were prepared and transfected into rat BMSCs in the presence of liposomes. Western blot assay and real-time polymerase chain reaction (RT-PCR) were performed to detect caspase-3 expression. A retrovirus packaging system was employed to package 293FT cells producing caspase-3 siRNA virus, which were transfected into rat BMSCs. Those stably expressing caspase-3 siRNA were screened by Western blot assay and RT-PCR to determine caspase-3 expression levels. Stable transfection of caspase-3 siRNA significantly decreased caspase-3 protein (0.26 ± 0.001 vs. 0.42 ± 0.004, P < 0.05) and mRNA expression (0.19 ± 0.002 vs. 1, P < 0.05) in BMSCs compared to non-transfected BMSCs. Cells were incubated in H2O2 to induce apoptosis, which was detected by TUNEL staining, and BMSC morphology was not altered by either transient or stable transfection of caspase-3 siRNA. H2O2-induced apoptosis of BMSCs stably transfected with caspase-3 siRNA was dramatically reduced compared to that of normal BMSCs (11.0 ± 3.2 vs. 25.8 ± 4.2, P < 0.05). Caspase-3 knockdown BMSCs are thus more resistant to apoptosis than normal BMSCs, potentially increasing their survival rates under conditions that cause oxidative stress.

  11. Adeno-associated virus type 8 vector–mediated expression of siRNA targeting vascular endothelial growth factor efficiently inhibits neovascularization in a murine choroidal neovascularization model

    PubMed Central

    Igarashi, Tsutomu; Miyake, Noriko; Fujimoto, Chiaki; Yaguchi, Chiemi; Iijima, Osamu; Shimada, Takashi; Takahashi, Hiroshi

    2014-01-01

    Purpose To assess the feasibility of a gene therapeutic approach to treating choroidal neovascularization (CNV), we generated an adeno-associated virus type 8 vector (AAV2/8) encoding an siRNA targeting vascular endothelial growth factor (VEGF), and determined the AAV2/8 vector’s ability to inhibit angiogenesis. Methods We initially transfected 3T3 cells expressing VEGF with the AAV2/8 plasmid vector psiRNA-VEGF using the H1 promoter and found that VEGF expression was significantly diminished in the transfectants. We next injected 1 μl (3 × 1014 vg/ml) of AAV2/8 vector encoding siRNA targeting VEGF (AAV2/8/SmVEGF-2; n = 12) or control vector encoding green fluorescent protein (GFP) (AAV2/8/GFP; n = 14) into the subretinal space in C57BL/6 mice. One week later, CNV was induced by using a diode laser to make four separate choroidal burns around the optic nerve in each eye. After an additional 2 weeks, the eyes were removed for flat mount analysis of the CNV surface area. Results Subretinal delivery of AAV2/8/SmVEGF-2 significantly diminished CNV at the laser lesions, compared to AAV8/GFP (1597.3±2077.2 versus 5039.5±4055.9 µm2; p<0.05). Using an enzyme-linked immunosorbent assay, we found that VEGF levels were reduced by approximately half in the AAV2/8/SmVEGF-2 treated eyes. Conclusions These results suggest that siRNA-VEGF can be expressed across the retina and that long-term suppression of CNV is possible through the use of stable AAV2/8-mediated siRNA-VEGF expression. In vivo gene therapy may thus be a feasible approach to the clinical management of CNV in conditions such as age-related macular degeneration. PMID:24744609

  12. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis

    NASA Astrophysics Data System (ADS)

    Huang, Jia-Lin; Jiang, Gan; Song, Qing-Xiang; Gu, Xiao; Hu, Meng; Wang, Xiao-Lin; Song, Hua-Hua; Chen, Le-Pei; Lin, Ying-Ying; Jiang, Di; Chen, Jun; Feng, Jun-Feng; Qiu, Yong-Ming; Jiang, Ji-Yao; Jiang, Xin-Guo; Chen, Hong-Zhuan; Gao, Xiao-Ling

    2017-05-01

    Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to `drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.

  13. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    PubMed

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Delivery of ENaC siRNA to epithelial cells mediated by a targeted nanocomplex: a therapeutic strategy for cystic fibrosis.

    PubMed

    Manunta, Maria D I; Tagalakis, Aristides D; Attwood, Martin; Aldossary, Ahmad M; Barnes, Josephine L; Munye, Mustafa M; Weng, Alexander; McAnulty, Robin J; Hart, Stephen L

    2017-04-06

    The inhibition of ENaC may have therapeutic potential in CF airways by reducing sodium hyperabsorption, restoring lung epithelial surface fluid levels, airway hydration and mucociliary function. The challenge has been to deliver siRNA to the lung with sufficient efficacy for a sustained therapeutic effect. We have developed a self-assembling nanocomplex formulation for siRNA delivery to the airways that consists of a liposome (DOTMA/DOPE; L), an epithelial targeting peptide (P) and siRNA (R). LPR formulations were assessed for their ability to silence expression of the transcript of the gene encoding the α-subunit of the sodium channel ENaC in cell lines and primary epithelial cells, in submerged cultures or grown in air-liquid interface conditions. LPRs, containing 50 nM or 100 nM siRNA, showed high levels of silencing, particularly in primary airway epithelial cells. When nebulised these nanocomplexes still retained their biophysical properties and transfection efficiencies. The silencing ability was determined at protein level by confocal microscopy and western blotting. In vivo data demonstrated that these nanoparticles had the ability to silence expression of the α-ENaC subunit gene. In conclusion, these findings show that LPRs can modulate the activity of ENaC and this approach might be promising as co-adjuvant therapy for cystic fibrosis.

  15. A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain.

    PubMed

    Haroon, Mohamed Mohamed; Dar, Ghulam Hassan; Jeyalakshmi, Durga; Venkatraman, Uthra; Saba, Kamal; Rangaraj, Nandini; Patel, Anant Bahadur; Gopal, Vijaya

    2016-04-28

    RNA interference represents a novel therapeutic approach to modulate several neurodegenerative disease-related genes. However, exogenous delivery of siRNA restricts their transport into different tissues and specifically into the brain mainly due to its large size and the presence of the blood-brain barrier (BBB). To overcome these challenges, we developed here a strategy wherein a peptide known to target specific gangliosides was fused to a double-stranded RNA binding protein to deliver siRNA to the brain parenchyma. The designed fusion protein designated as TARBP-BTP consists of a double-stranded RNA-binding domain (dsRBD) of human Trans Activation response element (TAR) RNA Binding Protein (TARBP2) fused to a brain targeting peptide that binds to monosialoganglioside GM1. Conformation-specific binding of TARBP2 domain to siRNA led to the formation of homogenous serum-stable complex with targeting potential. Further, uptake of the complex in Neuro-2a, IMR32 and HepG2 cells analyzed by confocal microscopy and fluorescence activated cell sorting, revealed selective requirement of GM1 for entry. Remarkably, systemic delivery of the fluorescently labeled complex (TARBP-BTP:siRNA) in ΑβPP-PS1 mouse model of Alzheimer's disease (AD) led to distinctive localization in the cerebral hemisphere. Further, the delivery of siRNA mediated by TARBP-BTP led to significant knockdown of BACE1 in the brain, in both ΑβPP-PS1 mice and wild type C57BL/6. The study establishes the growing importance of fusion proteins in delivering therapeutic siRNA to brain tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. RNA interference targeting CD147 inhibits metastasis and invasion of human breast cancer MCF-7 cells by downregulating MMP-9/VEGF expression.

    PubMed

    Li, Fang; Zhang, Junping; Guo, Jiqiang; Jia, Yuan; Han, Yaping; Wang, Zhuanhua

    2018-06-12

    Breast cancer is one of the most common malignancies. It is necessary to identify new markers for predicting tumor progression and therapeutic molecular targets. It has been reported that CD147 is one of the most commonly expressed proteins in primary tumors and in metastatic cells. In this study, we investigated the role of CD147 in human breast cancer metastasis and invasion, and examined its underlying molecular mechanisms. Immunohistochemistry results revealed high expression of CD147 in human breast tumor tissues, which was positively correlated with the malignancy of breast cancer. MCF-7 cells were transfected with CD147 siRNA eukaryotic expression vector, which resulted in significant knockdown of CD147. We found that CD147 siRNA dramatically inhibited cell proliferation, metastasis, and invasion. Furthermore, our results demonstrated that CD147 siRNA inhibited the synthesis of matrix metalloproteinase 9 (MMP-9) but had no significant effect on matrix metalloproteinase 2 (MMP-2). In addition, CD147 siRNA significantly inhibited the production of vascular endothelial growth factor (VEGF). Taken together, these data indicate that CD147 promotes breast cancer cell proliferation, metastasis, and invasion by modulating MMP-9 and VEGF expression. Thus, CD147 may be used as an important indicator for the judgment of malignant behavior of breast cancer, and may be a potential novel target for breast cancer therapy.

  17. Properties of Native High-Density Lipoproteins Inspire Synthesis of Actively Targeted In Vivo siRNA Delivery Vehicles.

    PubMed

    McMahon, Kaylin M; Plebanek, Michael P; Thaxton, C Shad

    2016-11-15

    Efficient systemic administration of therapeutic short interfering RNA (siRNA) is challenging. High-density lipoproteins (HDL) are natural in vivo RNA delivery vehicles. Specifically, native HDLs: 1) Load single-stranded RNA; 2) Are anionic, which requires charge reconciliation between the RNA and HDL, and 3) Actively target scavenger receptor type B-1 (SR-B1) to deliver RNA. Emphasizing these particular parameters, we employed templated lipoprotein particles (TLP), mimics of spherical HDLs, and self-assembled them with single-stranded complements of, presumably, any highly unmodified siRNA duplex pair after formulation with a cationic lipid. Resulting siRNA templated lipoprotein particles (siRNA-TLP) are anionic and tunable with regard to RNA assembly and function. Data demonstrate that the siRNA-TLPs actively target SR-B1 to potently reduce androgen receptor (AR) and enhancer of zeste homolog 2 (EZH2) proteins in multiple cancer cell lines. Systemic administration of siRNA-TLPs demonstrated no off-target toxicity and significantly reduced the growth of prostate cancer xenografts. Thus, native HDLs inspired the synthesis of a hybrid siRNA delivery vehicle that can modularly load single-stranded RNA complements after charge reconciliation with a cationic lipid, and that function due to active targeting of SR-B1.

  18. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment.

    PubMed

    Nishimura, Masato; Jung, Eun-Jung; Shah, Maitri Y; Lu, Chunhua; Spizzo, Riccardo; Shimizu, Masayoshi; Han, Hee Dong; Ivan, Cristina; Rossi, Simona; Zhang, Xinna; Nicoloso, Milena S; Wu, Sherry Y; Almeida, Maria Ines; Bottsford-Miller, Justin; Pecot, Chad V; Zand, Behrouz; Matsuo, Koji; Shahzad, Mian M; Jennings, Nicholas B; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; Sood, Anil K; Calin, George A

    2013-11-01

    Development of improved RNA interference-based strategies is of utmost clinical importance. Although siRNA-mediated silencing of EphA2, an ovarian cancer oncogene, results in reduction of tumor growth, we present evidence that additional inhibition of EphA2 by a microRNA (miRNA) further "boosts" its antitumor effects. We identified miR-520d-3p as a tumor suppressor upstream of EphA2, whose expression correlated with favorable outcomes in two independent patient cohorts comprising 647 patients. Restoration of miR-520d-3p prominently decreased EphA2 protein levels, and suppressed tumor growth and migration/invasion both in vitro and in vivo. Dual inhibition of EphA2 in vivo using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes loaded with miR-520d-3p and EphA2 siRNA showed synergistic antitumor efficiency and greater therapeutic efficacy than either monotherapy alone. This synergy is at least in part due to miR-520d-3p targeting EphB2, another Eph receptor. Our data emphasize the feasibility of combined miRNA-siRNA therapy, and will have broad implications for innovative gene silencing therapies for cancer and other diseases. This study addresses a new concept of RNA inhibition therapy by combining miRNA and siRNA in nanoliposomal particles to target oncogenic pathways altered in ovarian cancer. Combined targeting of the Eph pathway using EphA2-targeting siRNA and the tumor suppressor miR-520d-3p exhibits remarkable therapeutic synergy and enhanced tumor suppression in vitro and in vivo compared with either monotherapy alone. ©2013 AACR.

  19. Cyclodextrin and Polyethylenimine Functionalized Mesoporous Silica Nanoparticles for Delivery of siRNA Cancer Therapeutics

    PubMed Central

    Shen, Jianliang; Kim, Han-Cheon; Su, Hua; Wang, Feng; Wolfram, Joy; Kirui, Dickson; Mai, Junhua; Mu, Chaofeng; Ji, Liang-Nian; Mao, Zong-Wan; Shen, Haifa

    2014-01-01

    Effective delivery holds the key to successful in vivo application of therapeutic small interfering RNA (siRNA). In this work, we have developed a universal siRNA carrier consisting of a mesoporous silica nanoparticle (MSNP) functionalized with cyclodextrin-grafted polyethylenimine (CP). CP provides positive charge for loading of siRNA through electrostatic interaction and enables effective endosomal escape of siRNA. Using intravital microscopy we were able to monitor tumor enrichment of CP-MSNP/siRNA particles in live mice bearing orthotopic MDA-MB-231 xenograft tumors. CP-MSNP delivery of siRNA targeting the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2) resulted in effective knockdown of gene expression in vitro and in vivo. Suppression of PKM2 led to inhibition of tumor cell growth, invasion, and migration. PMID:24672582

  20. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    PubMed Central

    Yang, Xiaoqian; lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-01-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer. PMID:25687880

  1. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  2. Developing a novel therapeutic strategy targeting Kallikrein-4 to inhibit prostate cancer growth and metastasis

    DTIC Science & Technology

    Kallikrein-related peptidase 4 (KLK4) is a rational therapeutic target for prostate cancer (PCa) as it is up-regulated in both localised and bone ...in PCa homing to bone . We therefore hypothesize that blockade of KLK4 activity will inhibit PCa growth and prevent metastasis to secondary sites like... bone . This project aims to develop a novel therapeutic strategy targeting KLK4 specifically in PCa. KLK4 siRNA is incorporated into a novel polymeric

  3. Expression of a single siRNA against a conserved region of NP gene strongly inhibits in vitro replication of different Influenza A virus strains of avian and swine origin.

    PubMed

    Stoppani, Elena; Bassi, Ivan; Dotti, Silvia; Lizier, Michela; Ferrari, Maura; Lucchini, Franco

    2015-08-01

    Influenza A virus is the principal agent responsible of the respiratory tract's infections in humans. Every year, highly pathogenic and infectious strains with new antigenic assets appear, making ineffective vaccines so far developed. The discovery of RNA interference (RNAi) opened the way to the progress of new promising drugs against Influenza A virus and also to the introduction of disease resistance traits in genetically modified animals. In this paper, we show that Madin-Darby Canine Kidney (MDCK) cell line expressing short hairpin RNAs (shRNAs) cassette, designed on a specific conserved region of the nucleoprotein (NP) viral genome, can strongly inhibit the viral replication of four viral strains sharing the target sequence, reducing the viral mRNA respectively to 2.5×10(-4), 7.5×10(-5), 1.7×10(-3), 1.9×10(-4) compared to the control, as assessed by real-time PCR. Moreover, we demonstrate that during the challenge with a viral strain bearing a single mismatch on the target sequence, although a weaker inhibition is observed, viral mRNA is still lowered down to 1.2×10(-3) folds in the shRNA-expressing clone compared to the control, indicating a broad potential use of this approach. In addition, we developed a highly predictive and fast screening test of siRNA sequences based on dual-luciferase assay, useful for the in vitro prediction of the potential effect of viral inhibition. In conclusion, these findings reveal new siRNA sequences able to inhibit Influenza A virus replication and provide a basis for the development of siRNAs as prophylaxis and therapy for influenza infection both in humans and animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Topical treatment of herpes simplex virus infection with enzymatically created siRNA swarm.

    PubMed

    Paavilainen, Henrik; Lehtinen, Jenni; Romanovskaya, Alesia; Nygårdas, Michaela; Bamford, Dennis H; Poranen, Minna M; Hukkanen, Veijo

    2017-01-01

    Herpes simplex virus (HSV) is a common human pathogen. Despite current antivirals, it causes a significant medical burden. Drug resistant strains exist and they are especially prevalent in immunocompromised patients and in HSV eye infections. New treatment modalities are needed. BALB/c mice were corneally infected with HSV and subsequently treated with a swarm of enzymatically created, Dicer-substrate small interfering RNA (siRNA) molecules that targeted the HSV gene UL29. Two infection models were used, one in which the infection was predominantly peripheral and another in which it spread to the central nervous system. Mouse survival, as well as viral spread, load, latency and peripheral shedding, was studied. The anti-HSV-UL29 siRNA swarm alleviated HSV infection symptoms, inhibited viral shedding and replication and had a favourable effect on mouse survival. Treatment with anti-HSV-UL29 siRNA swarm reduced symptoms and viral spread in HSV infection of mice and also inhibited local viral replication in mouse corneas.

  5. Fusogenic-Oligoarginine Peptide-Mediated Delivery of siRNAs Targeting the CIP2A Oncogene into Oral Cancer Cells

    PubMed Central

    Cantini, Liliana; Attaway, Christopher C.; Butler, Betsy; Andino, Lourdes M.; Sokolosky, Melissa L.; Jakymiw, Andrew

    2013-01-01

    Despite a better understanding of the pathogenesis of oral cancer, its treatment outcome remains poor. Thus, there is a need for new therapeutic strategies to improve the prognosis of this disease. RNA interference (RNAi) appears to be a promising therapeutic tool for the treatment of many diseases, including oral cancer. However, an obstacle for RNAi-mediated therapies has been delivery, in particular, the retention of small interfering RNAs (siRNAs) in endosomes and their subsequent degradation in lysosomes, resulting in inefficient gene silencing. Thus, the current study examined the feasibility of designing and utilizing a peptide, termed 599, consisting of a synthetic influenza virus-derived endosome-disruptive fusogenic peptide sequence and a stretch of cationic cell-penetrating nona(D-arginine) residues, to deliver siRNAs into oral cancer cells and induce silencing of the therapeutic target, CIP2A, an oncoprotein overexpressed in various human malignancies including oral cancer. Increasing the 599 peptide-to-siRNA molar ratio demonstrated a higher binding capacity for siRNA molecules and enhanced siRNA delivery into the cytoplasm of oral cancer cells. In fact, quantitative measurements of siRNA delivery into cells demonstrated that a 50∶1 peptide-to-siRNA molar ratio could deliver 18-fold higher amounts of siRNAs compared to cells treated with siRNA alone with no significant long-term cytotoxic effects. Most importantly, the 599 peptide-mediated siRNA delivery promoted significant CIP2A mRNA and protein silencing which resulted in decreased oral cancer cell invasiveness and anchorage-independent growth. Together, these data demonstrate that a chimeric peptide consisting of a fusogenic sequence, in combination with cell-penetrating residues, can be used to effectively deliver siRNAs into oral cancer cells and induce the silencing of its target gene, potentially offering a new therapeutic strategy in combating oral cancer. PMID:24019920

  6. Assessment of drug delivery and anticancer potentials of nanoparticles-loaded siRNA targeting STAT3 in lung cancer, in vitro and in vivo.

    PubMed

    Das, Jayeeta; Das, Sreemanti; Paul, Avijit; Samadder, Asmita; Bhattacharyya, Soumya Sundar; Khuda-Bukhsh, Anisur Rahman

    2014-03-21

    Activation of signal transducer and activator of transcription3 (STAT3) is a hallmark of several types of cancer. Failure to inhibit STAT3 expression by injection of siRNA for STAT3 directly to Balb/c mice led us to adopt alternative means. We formulated nanoparticle-based encapsulation of siRNA (NsiRNA) with polyethylenimine (PEI) and poly(lactide-co-glycolide) (PLGA) and characterized them. The siRNA treated and NsiRNA-treated cells were subjected separately to different assay systems. We also checked if NsiRNA could cross the blood brain barrier (BBB). Cell viability reduced dramatically in A549 cells after NsiRNA administration (23.89% at 24 h), thereby implicating considerable silencing of STAT3 by NsiRNA, but not after siRNA administration. Compared to controls, a significant decrease in expression of IL-6 and the angiogenic factor (VEGF) and increase in Caspase 3 activity was observed with corresponding regression in tumor growth in mice treated with NsiRNA. NsiRNA induced apoptosis of cells and arrested cells at G1/G0 stage, both in vitro and in vivo. Apoptosis was also verified by Annexin-V-FITC/Propidium-iodide staining. NsiRNA could cross blood brain barrier. Overall results revealed PEI-PLGA to be a promising carrier for delivery of siRNA targeting STAT3 expression, which can be utilized as an effective strategy for cancer therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Utility of MicroRNAs and siRNAs in Cervical Carcinogenesis

    PubMed Central

    Díaz-González, Sacnite del Mar; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3′-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer. PMID:25874209

  8. Utility of microRNAs and siRNAs in cervical carcinogenesis.

    PubMed

    Díaz-González, Sacnite del Mar; Deas, Jessica; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3'-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer.

  9. Designing highly active siRNAs for therapeutic applications.

    PubMed

    Walton, S Patrick; Wu, Ming; Gredell, Joseph A; Chan, Christina

    2010-12-01

    The discovery of RNA interference (RNAi) generated considerable interest in developing short interfering RNAs (siRNAs) for understanding basic biology and as the active agents in a new variety of therapeutics. Early studies showed that selecting an active siRNA was not as straightforward as simply picking a sequence on the target mRNA and synthesizing the siRNA complementary to that sequence. As interest in applying RNAi has increased, the methods for identifying active siRNA sequences have evolved from focusing on the simplicity of synthesis and purification, to identifying preferred target sequences and secondary structures, to predicting the thermodynamic stability of the siRNA. As more specific details of the RNAi mechanism have been defined, these have been incorporated into more complex siRNA selection algorithms, increasing the reliability of selecting active siRNAs against a single target. Ultimately, design of the best siRNA therapeutics will require design of the siRNA itself, in addition to design of the vehicle and other components necessary for it to function in vivo. In this minireview, we summarize the evolution of siRNA selection techniques with a particular focus on one issue of current importance to the field, how best to identify those siRNA sequences likely to have high activity. Approaches to designing active siRNAs through chemical and structural modifications will also be highlighted. As the understanding of how to control the activity and specificity of siRNAs improves, the potential utility of siRNAs as human therapeutics will concomitantly grow. © 2010 The Authors Journal compilation © 2010 FEBS.

  10. Nanotherapeutics Using an HIV-1 Poly A and Transactivator of the HIV-1 LTR-(TAR-) Specific siRNA

    PubMed Central

    Mahajan, Supriya D.; Aalinkeel, Ravikumar; Reynolds, Jessica L.; Nair, Bindukumar; Sykes, Donald E.; Law, Wing-Cheung; Ding, Hong; Bergey, Earl J.; Prasad, Paras N.; Schwartz, Stanley A.

    2011-01-01

    HIV-1 replication can be efficiently inhibited by intracellular expression of an siRNA targeting the viral RNA. We used a well-validated siRNA (si510) which targets the poly A/TAR (transactivator of the HIV-1 LTR) site and suppresses viral replication. Nanotechnology holds much potential for impact in the field of HIV-1 therapeutics, and nanoparticles such as quantum rods (QRs) can be easily functionalized to incorporate siRNA forming stable nanoplexes that can be used for gene silencing. We evaluated the efficacy of the QR-si510 HIV-1 siRNA nanoplex in suppressing viral replication in the HIV-1-infected monocytic cell line THP-1 by measuring p24 antigen levels and gene expression levels of HIV-1 LTR. Our results suggest that the QR-si510 HIV-1 siRNA nanoplex is not only effective in delivering siRNA, but also in suppressing HIV-1 viral replication for a longer time period. HIV-1 nanotherapeutics can thus enhance systemic bioavailability and offer multifunctionality. PMID:21660279

  11. Targeting the Blind Spot of Polycationic Nanocarrier-Based siRNA Delivery

    PubMed Central

    Zheng, Mengyao; Pavan, Giovanni M.; Neeb, Manuel; Schaper, Andreas K.; Danani, Andrea; Klebe, Gerhard; Merkel, Olivia M.; Kissel, Thomas

    2013-01-01

    Polycationic nanocarriers attract increasing attention to the field of siRNA delivery. We investigated the self-assembly of siRNA vs pDNA with polycations, which are broadly used for nonviral gene and siRNA delivery. Although polyethyleneimine (PEI) was routinely adopted as siRNA carrier based on its efficacy in delivering pDNA, it has not been investigated yet why PEI efficiently delivers pDNA to cells but is controversially discussed in terms of efficacy for siRNA delivery. We are the first to investigate the self-assembly of PEI/siRNA vs PEI/pDNA and the steps of complexation and aggregation through different levels of hierarchy on the atomic and molecular scale with the novel synergistic use of molecular modeling, molecular dynamics simulation, isothermal titration calorimetry, and other characterization techniques. We are also the fist to elucidate atomic interactions, size, shape, stoichiometry, and association dynamics for polyplexes containing siRNA vs pDNA. Our investigation highlights differences in the hierarchical mechanism of formation of related polycation–siRNA and polycation–pDNA complexes. The results of fluorescence quenching assays indicated a biphasic behavior of siRNA binding with polycations where molecular reorganization of the siRNA within the polycations occurred at lower N/P ratios (nitrogen/phosphorus). Our results, for the first time, emphasize a biphasic behavior in siRNA complexation and the importance of low N/P ratios, which allow for excellent siRNA delivery efficiency. Our investigation highlights the formulation of siRNA complexes from a thermodynamic point of view and opens new perspectives to advance the rational design of new siRNA delivery systems. PMID:23036046

  12. Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy.

    PubMed

    Xu, Xiaoding; Wu, Jun; Liu, Yanlan; Saw, Phei Er; Tao, Wei; Yu, Mikyung; Zope, Harshal; Si, Michelle; Victorious, Amanda; Rasmussen, Jonathan; Ayyash, Dana; Farokhzad, Omid C; Shi, Jinjun

    2017-03-28

    With the capability of specific silencing of target gene expression, RNA interference (RNAi) technology is emerging as a promising therapeutic modality for the treatment of cancer and other diseases. One key challenge for the clinical applications of RNAi is the safe and effective delivery of RNAi agents such as small interfering RNA (siRNA) to a particular nonliver diseased tissue (e.g., tumor) and cell type with sufficient cytosolic transport. In this work, we proposed a multifunctional envelope-type nanoparticle (NP) platform for prostate cancer (PCa)-specific in vivo siRNA delivery. A library of oligoarginine-functionalized and sharp pH-responsive polymers was synthesized and used for self-assembly with siRNA into NPs with the features of long blood circulation and pH-triggered oligoarginine-mediated endosomal membrane penetration. By further modification with ACUPA, a small molecular ligand specifically recognizing prostate-specific membrane antigen (PSMA) receptor, this envelope-type nanoplatform with multifunctional properties can efficiently target PSMA-expressing PCa cells and silence target gene expression. Systemic delivery of the siRNA NPs can efficiently silence the expression of prohibitin 1 (PHB1), which is upregulated in PCa and other cancers, and significantly inhibit PCa tumor growth. These results suggest that this multifunctional envelope-type nanoplatform could become an effective tool for PCa-specific therapy.

  13. Anti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs

    PubMed Central

    Meng, Gang; Xu, Chun; Song, Yong; Wei, Jiwu

    2015-01-01

    Short interfering RNA (siRNA) targeting angiogenic factors and further inhibiting tumor angiogenesis, is one of the potent antitumor candidates for lung cancer treatment. However, this strategy must be combined with other therapeutics like chemotherapy. In this study, we designed a 5′-triphosphate siRNA targeting VEGF (ppp-VEGF), and showed that ppp-VEGF exerted three distinct antitumor effects: i) inhibition of tumor angiogenesis by silencing VEGF, ii) induction of innate immune responses by activating RIG-I signaling pathway, and thus activate antitumor immunity, iii) induction of apoptosis. In a subcutaneous model of murine lung cancer, ppp-VEGF displayed a potent antitumor effect. Our results provide a multifunctional antitumor molecule that may overcome the shortages of traditional antiangiogenic agents. PMID:26336994

  14. Competition between siRNA duplexes: impact of RNA-induced silencing complex loading efficiency and comparison between conventional-21 bp and Dicer-substrate siRNAs.

    PubMed

    Tanudji, Marcel; Machalek, Dorothy; Arndt, Greg M; Rivory, Laurent

    2010-02-01

    Cotransfection of a mixture of siRNAs species is typically used when simultaneous targeting of more than one mRNA is required. However, competition between siRNAs could occur and reduce the activity of some siRNAs within the mixture. To further study the factors affecting the degree of competition between siRNAs, we cotransfected luciferase targeting siRNAs with various irrelevant (ie, nonluciferase targeting) siRNAs into cells and examined differences in their competition profiles by assessing the effect on luciferase expression. We show that the degree of competition varies between irrelevant siRNAs and occurs at the point of RISC loading. Although the competition profile appears to be related to the calculated RNA-induced silencing complex (RISC) loading potential, empirical testing is required to confirm the competitive effects. We also observed reduced competition with siRNAs in the Dicer-substrate format, presumably due to more efficient RISC loading as a consequence of the physical transfer of the processed siRNA from Dicer.

  15. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene.

    PubMed

    Minami, Kosuke; Okamoto, Koji; Doi, Kent; Harano, Koji; Noiri, Eisei; Nakamura, Eiichi

    2014-05-12

    The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications.

  16. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene

    NASA Astrophysics Data System (ADS)

    Minami, Kosuke; Okamoto, Koji; Doi, Kent; Harano, Koji; Noiri, Eisei; Nakamura, Eiichi

    2014-05-01

    The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications.

  17. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene

    PubMed Central

    MINAMI, Kosuke; OKAMOTO, Koji; DOI, Kent; HARANO, Koji; NOIRI, Eisei; NAKAMURA, Eiichi

    2014-01-01

    The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications. PMID:24814863

  18. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors

    PubMed Central

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-01-01

    Purpose The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer (PCa) tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in PCa cells. The junction of theTMPRSS2 and ERG derived portions of the fusion mRNA constitutes a cancer specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low toxicity treatment for PCa. Experimental Design We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (Type III or Type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of PCa cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. Results The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Conclusions Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with PCa. PMID:23052253

  19. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors.

    PubMed

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-12-15

    The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in prostate cancer cells. The junction of theTMPRSS2- and ERG-derived portions of the fusion mRNA constitutes a cancer-specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low-toxicity treatment for prostate cancer. We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (type III or type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of prostate cancer cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with prostate cancer. ©2012 AACR.

  20. Targeted co-delivery of Beclin 1 siRNA and FTY720 to hepatocellular carcinoma by calcium phosphate nanoparticles for enhanced anticancer efficacy.

    PubMed

    Wu, Jun-Yi; Wang, Zhong-Xia; Zhang, Guang; Lu, Xian; Qiang, Guang-Hui; Hu, Wei; Ji, An-Lai; Wu, Jun-Hua; Jiang, Chun-Ping

    2018-01-01

    FTY720, known as fingolimod, is a new immunosuppressive agent with effective anticancer properties. Although it was recently confirmed that FTY720 inhibits cancer cell proliferation, FTY720 can also induce protective autophagy and reduce cytotoxicity. Blocking autophagy with Beclin 1 siRNA after treatment with FTY720 promotes apoptosis. The objective of this study was to enhance the anticancer effect of FTY720 in hepatocellular carcinoma (HCC) by targeted co-delivery of FTY720 and Beclin 1 siRNA using calcium phosphate (CaP) nanoparticles (NPs). First, the siRNA was encapsulated within the CaP core. To form an asymmetric lipid bilayer structure, we then used an anionic lipid for the inner leaflet and a cationic lipid for the outer leaflet; after removing chloroform by rotary evaporation, these lipids were dispersed in a saline solution with FTY720. The NPs were analyzed by transmission electron microscopy, dynamic light scattering and ultraviolet-visible spectrophotometry. Cancer cell viability and cell death were analyzed by MTT assays, fluorescence-activated cell sorting analysis and Western blotting. In addition, the in vivo effects of the NPs were investigated using an athymic nude mouse subcutaneous transplantation tumor model. When the CaP NPs, called LCP-II NPs, were loaded with FTY720 and siRNA, they exhibited the expected size and were internalized by cells. These NPs were stable in systemic circulation. Furthermore, co-delivery of FTY720 and Beclin 1 siRNA significantly increased cytotoxicity in vitro and in vivo compared with that caused by treatment with the free drug alone. The CaP NP system can be further developed for co-delivery of FTY720 and Beclin 1 siRNA to treat HCC, enhancing the anticancer efficacy of FTY720. Our findings provide a new insight into HCC treatment with co-delivered small molecules and siRNA, and these results can be readily translated into cancer clinical trials.

  1. Targets of small interfering RNA restriction during human immunodeficiency virus type 1 replication.

    PubMed

    Gao, Yong; Lobritz, Michael A; Roth, Justin; Abreha, Measho; Nelson, Kenneth N; Nankya, Immaculate; Moore-Dudley, Dawn M; Abraha, Awet; Gerson, Stanton L; Arts, Eric J

    2008-03-01

    Small interfering RNAs (siRNAs) have been shown to effectively inhibit human immunodeficiency virus type 1 (HIV-1) replication in vitro. The mechanism(s) for this inhibition is poorly understood, as siRNAs may interact with multiple HIV-1 RNA species during different steps of the retroviral life cycle. To define susceptible HIV-1 RNA species, siRNAs were first designed to specifically inhibit two divergent primary HIV-1 isolates via env and gag gene targets. A self-inactivating lentiviral vector harboring these target sequences confirmed that siRNA cannot degrade incoming genomic RNA. Disruption of the incoming core structure by rhesus macaque TRIM5alpha did, however, provide siRNA-RNA-induced silencing complex access to HIV-1 genomic RNA and promoted degradation. In the absence of accelerated core disruption, only newly transcribed HIV-1 mRNA in the cytoplasm is sensitive to siRNA degradation. Inhibitors of HIV-1 mRNA nuclear export, such as leptomycin B and camptothecin, blocked siRNA restriction. All HIV-1 RNA regions and transcripts found 5' of the target sequence, including multiply spliced HIV-1 RNA, were degraded by unidirectional 3'-to-5' siRNA amplification and spreading. In contrast, HIV-1 RNA 3' of the target sequence was not susceptible to siRNA. Even in the presence of siRNA, full-length HIV-1 RNA is still encapsidated into newly assembled viruses. These findings suggest that siRNA can target only a relatively "naked" cytoplasmic HIV-1 RNA despite the involvement of viral RNA at nearly every step in the retroviral life cycle. Protection of HIV-1 RNA within the core following virus entry, during encapsidation/virus assembly, or within the nucleus may reflect virus evolution in response to siRNA, TRIM5alpha, or other host restriction factors.

  2. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Zhang, Yong; Lim, Kian Meng; Sim, Eugene K. W.; Ye, Lei

    2009-04-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  3. Reduction of bilirubin by targeting human heme oxygenase-1 through siRNA.

    PubMed

    Xia, Zhen-Wei; Li, Chun-E; Jin, You-Xin; Shi, Yi; Xu, Li-Qing; Zhong, Wen-Wei; Li, Yun-Zhu; Yu, Shan-Chang; Zhang, Zi-Li

    2007-04-01

    Neonatal hyperbilirubinemia is a common clinical condition caused mainly by the increased production and decreased excretion of bilirubin. Current treatment is aimed at reducing the serum levels of bilirubin. Heme oxygenase-1 (HO-1) is a rate-limiting enzyme that generates bilirubin. In this study we intended to suppress HO-1 using the RNA interference technique. Small interfering RNA (siRNA)-A, -B, and -C were designed based on human HO-1 (hHO-1) mRNA sequences. siRNA was transfected into a human hepatic cell line (HL-7702). hHO-1 transcription and protein levels were then determined. In addition, the inhibitory effect of siRNA on hHO-1 was assessed in cells treated with hemin or transfected with an hHO-1 plasmid. siRNA-C showed the most potent suppressive effect on hHO-1. This inhibition is dose and time dependent. Compared with control, both hemin and hHO-1 plasmids up-regulated hHO-1 expression in HL-7702 cells. However, the up-regulation was significantly attenuated by siRNA-C. Furthermore, the decrease in hHO-1 activity was coincident with the suppression of its transcription. Finally, siRNA-C was shown to reduce hHO-1 enzymatic activity and bilirubin levels. Thus, this study provides a novel therapeutic rationale by blocking bilirubin formation via siRNA for preventing and treating neonatal hyperbilirubinemia and bilirubin encephalopathy at an early clinical stage.

  4. siRNA Delivery to the Glomerular Mesangium Using Polycationic Cyclodextrin Nanoparticles Containing siRNA

    PubMed Central

    Gale, Aaron; Wu, Peiwen; Ma, Rong; Davis, Mark E.

    2015-01-01

    There is an urgent need for new therapies that can halt or reverse the course of chronic kidney disease with minimal side-effect burden on the patient. Small interfering RNA (siRNA) nanoparticles are new therapeutic entities in clinical development that could be useful for chronic kidney disease treatment because they combine the tissue-specific targeting properties of nanoparticles with the gene-specific silencing effects of siRNA. Recent reports have emerged demonstrating that the kidney, specifically the glomerulus, is a readily accessible site for nanoparticle targeting. Here, we explore the hypothesis that intravenously administered polycationic cyclodextrin nanoparticles containing siRNA (siRNA/CDP-NPs) can be used for delivery of siRNA to the glomerular mesangium. We demonstrate that siRNA/CDP-NPs localize to the glomerular mesangium with limited deposition in other areas of the kidney after intravenous injection. Additionally, we report that both mouse and human mesangial cells rapidly internalize siRNA/CDP-NPs in vitro and that nanoparticle uptake can be enhanced by attaching the targeting ligands mannose or transferrin to the nanoparticle surface. Lastly, we show knockdown of mesangial enhanced green fluorescent protein expression in a reporter mouse strain following iv treatment with siRNA/CDP-NPs. Altogether, these data demonstrate the feasibility of mesangial targeting using intravenously administered siRNA/CDP-NPs. PMID:25734248

  5. RNA interference targeting carbohydrate sulfotransferase 3 diminishes macrophage accumulation, inhibits MMP-9 expression and promotes lung recovery in murine pulmonary emphysema.

    PubMed

    Kai, Yoshiro; Tomoda, Koichi; Yoneyama, Hiroyuki; Yoshikawa, Masanori; Kimura, Hiroshi

    2015-12-09

    Chondroitin sulfate proteoglycans are an important mediators in inflammation and leukocyte trafficking. However, their roles in pulmonary emphysema have not been explored. In a murine model of elastase-induced pulmonary emphysema, we found increased carbohydrate sulfotransferase 3 (CHST3), a specific enzyme that synthesizes chondroitin 6-sulfate proteoglycan (C6SPG). To elucidate the role of C6SPG, we investigated the effect of small interfering RNA (siRNA) targeting CHST3 that inhibits C6SPG-synthesis on the pathogenesis of pulmonary emphysema. Mice were intraperitoneally injected with CHST3 siRNA or negative control siRNA on day0 and 7 after intratracheal instillation of elastase. Histology, respiratory function, glycosaminoglycans (GAGs) content, bronchoalveolar lavage (BAL), elastin staining and gene expressions of tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)-9 mRNA were evaluated on day7 and/or day21. CHST3 mRNA increased at day 7 and decreased thereafter in lung. CHST3 siRNA successfully inhibited the expression of CHST3 mRNA throughout the study and this was associated with significant reduction of GAGs and C6SPG. Airway destruction and respiratory function were improved by the treatment with CHST3 siRNA. CHST3 siRNA reduced the number of macrophages both in BAL and lung parenchyma and also suppressed the increased expressions of TNF-α and MMP-9 mRNA. Futhermore, CHST3 siRNA improved the reduction of the elastin in the alveolar walls. CHST3 siRNA diminishes accumulation of excessive macrophages and the mediators, leading to accelerate the functional recovery from airway damage by repair of the elastin network associated with pulmonary emphysema.

  6. Multifunctional pH-Sensitive Amino Lipids for siRNA Delivery.

    PubMed

    Gujrati, Maneesh; Vaidya, Amita; Lu, Zheng-Rong

    2016-01-20

    RNA interference (RNAi) represents a powerful modality for human disease therapy that can regulate gene expression signature using small interfering RNA (siRNA). Successful delivery of siRNA into the cytoplasm of target cells is imperative for efficient RNAi and also constitutes the primary stumbling block in the clinical applicability of RNAi. Significant progress has been made in the development of lipid-based siRNA delivery systems, which have practical advantages like simple chemistry and easy formulation of nanoparticles with siRNA. This review discusses the recent development of pH-sensitive amino lipids, with particular focus on multifunctional pH-sensitive amino lipids for siRNA delivery. The key components of these multifunctional lipids include a protonatable amino head group, distal lipid tails, and two cross-linkable thiol groups, which together facilitate the facile formation of stable siRNA-nanoparticles, easy surface modification for target-specific delivery, endosomal escape in response to the pH decrease during subcellular trafficking, and reductive dissociation of the siRNA-nanoparticles for cytoplasmic release of free siRNA. By virtue of these properties, multifunctional pH-sensitive lipids can mediate efficient cytosolic siRNA delivery and gene silencing. Targeted siRNA nanoparticles can be readily formulated with these lipids, without the need for other helper lipids, to promote systemic delivery of therapeutic siRNAs. Such targeted siRNA nanoparticles have been shown to effectively regulate the expression of cancer-related genes, resulting in significant efficacy in the treatment of aggressive tumors, including metastatic triple negative breast cancer. These multifunctional pH-sensitive lipids constitute a promising platform for the systemic and targeted delivery of therapeutic siRNA for the treatment of human diseases. This review summarizes the structure-property relationship of the multifunctional pH-sensitive lipids and their efficacy in

  7. New insights into siRNA amplification and RNAi

    PubMed Central

    Zhang, Chi; Ruvkun, Gary

    2012-01-01

    In the nematode Caenorhabditis elegans (C. elegans), gene inactivation by RNA interference can achieve remarkable potency due to the amplification of initial silencing triggers by RNA-dependent RNA polymerases (RdRPs). RdRPs catalyze the biogenesis of an abundant species of secondary small interfering RNAs (siRNAs) using the target mRNA as template. The interaction between primary siRNAs derived from the exogenous double-stranded RNA (dsRNA) trigger and the target mRNA is required for the recruitment of RdRPs. Other genetic requirements for RdRP activities have not been characterized. Recent studies have identified the RDE-10/RDE-11 complex which interacts with the primary siRNA bound target mRNA and acts upstream of the RdRPs. rde-10 and rde-11 mutants show an RNAi defective phenotype because the biogenesis of secondary siRNAs is completely abolished. In addition, the RDE-10/RDE-11 complex plays a similar role in the endogenous RNAi pathway for the biogenesis of a subset of siRNAs targeting recently acquired, duplicated genes. PMID:22858672

  8. New insights into siRNA amplification and RNAi.

    PubMed

    Zhang, Chi; Ruvkun, Gary

    2012-08-01

    In the nematode Caenorhabditis elegans (C. elegans), gene inactivation by RNA interference can achieve remarkable potency due to the amplification of initial silencing triggers by RNA-dependent RNA polymerases (RdRPs). RdRPs catalyze the biogenesis of an abundant species of secondary small interfering RNAs (siRNAs) using the target mRNA as template. The interaction between primary siRNAs derived from the exogenous double-stranded RNA (dsRNA) trigger and the target mRNA is required for the recruitment of RdRPs. Other genetic requirements for RdRP activities have not been characterized. Recent studies have identified the RDE-10/RDE-11 complex which interacts with the primary siRNA bound target mRNA and acts upstream of the RdRPs. rde-10 and rde-11 mutants show an RNAi defective phenotype because the biogenesis of secondary siRNAs is completely abolished. In addition, the RDE-10/RDE-11 complex plays a similar role in the endogenous RNAi pathway for the biogenesis of a subset of siRNAs targeting recently acquired, duplicated genes.

  9. Synthesis of PLGA-Lipid Hybrid Nanoparticles for siRNA Delivery Using the Emulsion Method PLGA-PEG-Lipid Nanoparticles for siRNA Delivery.

    PubMed

    Wang, Lei; Griffel, Benjamin; Xu, Xiaoyang

    2017-01-01

    The effective delivery of small interfering RNA (siRNA) to tumor cells remains a challenge for applications in cancer therapy. The development of polymeric nanoparticles with high siRNA loading efficacy has shown great potential for cancer targets. Double emulsion solvent evaporation technique is a useful tool for encapsulation of hydrophilic molecules (e.g., siRNA). Here we describe a versatile platform for siRNA delivery based on PLGA-PEG-cationic lipid nanoparticles by using the double emulsion method. The resulting nanoparticles show high encapsulation efficiency for siRNA (up to 90%) and demonstrate effective downregulation of the target genes in vitro and vivo.

  10. CD147-targeting siRNA inhibits cell-matrix adhesion of human malignant melanoma cells by phosphorylating focal adhesion kinase.

    PubMed

    Nishibaba, Rie; Higashi, Yuko; Su, Juan; Furukawa, Tatsuhiko; Kawai, Kazuhiro; Kanekura, Takuro

    2012-01-01

    CD147/basigin, highly expressed on the surface of malignant tumor cells including malignant melanoma (MM) cells, plays a critical role in the invasiveness and metastasis of MM. Metastasis is an orchestrated process comprised of multiple steps including adhesion and invasion. Integrin, a major adhesion molecule, co-localizes with CD147/basigin on the cell surface. Using the human MM cell line A375 that highly expresses CD147/basigin, we investigated whether CD147/basigin is involved in adhesion in association with integrin. CD147/basigin was knocked-down using siRNA targeting CD147 to elucidate the role of CD147/basigin. Cell adhesion was evaluated by adhesion assay on matrix-coated plates. The localization of integrin was inspected under a confocal microscope and the expression and phosphorylation of focal adhesion kinase (FAK), a downstream kinase of integrin, were examined by western blot analysis. Silencing of CD147/basigin in A375 cells by siRNA induced the phosphorylation of FAK at Y397. Integrin identified on the surface of parental cells was distributed in a speckled fashion in the cytoplasm of CD147 knockdown cells, resulting in morphological changes from a round to a polygonal shape with pseudopodial protrusions. Silencing of CD147/basigin in A375 cells clearly weakened their adhesiveness to collagen I and IV. Our results suggest that CD147/basigin regulates the adhesion of MM cells to extracellular matrices and of integrin β1 signaling via the phosphorylation of FAK. © 2011 Japanese Dermatological Association.

  11. Polysaccharide Nanoparticles for Efficient siRNA Targeting in Cancer Cells by Supramolecular pKa Shift

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ming; Yang, Yang; Zhang, Yu-Hui; Liu, Yu

    2016-07-01

    Biomacromolecular pKa shifting is considered as one of the most ubiquitous processes in biochemical events, e.g., the enzyme-catalyzed reaction and protein conformational stabilization. In this paper, we report on the construction of biocompatible polysaccharide nanoparticle with targeting ability and lower toxicity by supramolecular pKa shift strategy. This was realized through a ternary assembly constructed by the dual host‒guest interactions of an adamantane-bis(diamine) conjugate (ADA) with cucurbit[6]uril (CB[6]) and a polysaccharide. The potential application of such biocompatible nanostructure was further implemented by the selective transportation of small interfering RNA (siRNA) in a controlled manner. It is demonstrated that the strong encapsulation of the ADA’s diammonium tail by CB[6] not only reduced the cytotoxicity of the nano-scaled vehicle but also dramatically enhanced cation density through an obvious positive macrocycle-induced pKa shift, which eventually facilitated the subsequent siRNA binding. With a targeted polysaccharide shell containing a cyclodextrin‒hyaluronic acid conjugate, macrocycle-incorporated siRNA polyplexes were specifically delivered into malignant human prostate PC-3 cells. The supramolecular polysaccharide nanoparticles, the formation of which was enabled and promoted by the complexation-assisted pKa shift, may be used as a versatile tool for controlled capture and release of biofunctional substrates.

  12. Delivery of siRNA Silencing Runx2 Using a Multifunctional Polymer-Lipid Nanoparticle Inhibits Osteogenesis in a Cell Culture Model of Heterotopic Ossification

    PubMed Central

    Mishra, Swati; Vaughn, Asa D.; Devore, David I.

    2015-01-01

    Heterotopic ossification (HO) associated with traumatic neurological or musculoskeletal injuries remains a major clinical challenge. One approach to understanding better and potentially treating this condition is to silence one or more genes believed to be responsible for osteogenesis by small interfering RNA (siRNA) post-injury. Improved methods of delivering siRNA to myoprogenitor cells as well as relevant cell culture models of HO are needed to advance this approach. We utilize a model of HO featuring C2C12 myoprogenitor cells stimulated to the osteogenic phenotype by addition of BMP-2. For siRNA delivery, we utilize a nanocomposite consisting of DOTAP- based cationic liposomes coated with a graft copolymer of poly(propylacrylic acid) grafted with polyetheramine (Jeffamine), as this system has been shown previously to deliver antisense oligonucleotides safely into cells and out of endosomes for gene silencing in vitro and in vivo. Delivery of siRNA targeting Runx2, a transcription factor downstream of BMP-2, to stimulated C2C12 cells produced greater than 60% down-regulation of the Runx2 gene. This level of gene silencing was sufficient to inhibit alkaline phosphatase activity over the course of several days and calcium phosphate deposition over the course of 2 weeks. These results show the utility of the BMP-2/C2C12 model for capturing the cellular cell-fate decision in HO. Further, they suggest DOTAP/PPAA-g-Jeffamine as a promising delivery system for siRNA– based therapy for HO. PMID:23146945

  13. Design of siRNA Therapeutics from the Molecular Scale

    PubMed Central

    Angart, Phillip; Vocelle, Daniel; Chan, Christina; Walton, S. Patrick

    2013-01-01

    While protein-based therapeutics is well-established in the market, development of nucleic acid therapeutics has lagged. Short interfering RNAs (siRNAs) represent an exciting new direction for the pharmaceutical industry. These small, chemically synthesized RNAs can knock down the expression of target genes through the use of a native eukaryotic pathway called RNA interference (RNAi). Though siRNAs are routinely used in research studies of eukaryotic biological processes, transitioning the technology to the clinic has proven challenging. Early efforts to design an siRNA therapeutic have demonstrated the difficulties in generating a highly-active siRNA with good specificity and a delivery vehicle that can protect the siRNA as it is transported to a specific tissue. In this review article, we discuss design considerations for siRNA therapeutics, identifying criteria for choosing therapeutic targets, producing highly-active siRNA sequences, and designing an optimized delivery vehicle. Taken together, these design considerations provide logical guidelines for generating novel siRNA therapeutics. PMID:23976875

  14. Targeted Delivery of siRNA to Activated T Cells via Transferrin-Polyethylenimine (Tf-PEI) as a Potential Therapy of Asthma

    PubMed Central

    Xie, Yuran; Kim, Na Hyung; Nadithe, Venkatareddy; Schalk, Dana; Thakur, Archana; Kılıç, Ayşe; Lum, Lawrence G.; Bassett, David JP; Merkel, Olivia M

    2016-01-01

    Asthma is a worldwide health problem. Activated T cells (ATCs) in the lung, particularly T helper 2 cells (Th2), are strongly associated with inducing airway inflammatory responses and chemoattraction of inflammatory cells in asthma. Small interfering RNA (siRNA) as a promising anti-sense molecule can specifically silence inflammation related genes in ATCs, however, lack of safe and efficient siRNA delivery systems limits the application of siRNA as a therapeutic molecule in asthma. Here, we designed a novel pulmonary delivery system of siRNA, transferrin-polyethylenimine (Tf-PEI), to selectively deliver siRNA to ATCs in the lung. Tf-PEI polyplexes demonstrated optimal physicochemical properties such as size, distribution, zeta-potential, and siRNA condensation efficiency. Moreover, in vitro studies showed significantly enhanced cellular uptake and gene knockdown mediated by Tf-PEI polyplexes in human primary ATCs. Biodistribution of polyplexes in a murine asthmatic model confirmed that Tf-PEI polyplexes can efficiently and selectively deliver siRNA to ATCs. In conclusion, the present work proves the feasibility to target ATCs in asthma via Tf receptor. This strategy could potentially be used to design an efficient siRNA delivery system for asthma therapy. PMID:27001893

  15. EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery

    NASA Astrophysics Data System (ADS)

    Müller, Katharina; Klein, Philipp M.; Heissig, Philipp; Roidl, Andreas; Wagner, Ernst

    2016-11-01

    Antitumoral siRNA and miRNA delivery was demonstrated by epidermal growth factor receptor (EGFR) targeted oligoaminoamide polyplexes. For this purpose, the T-shaped lipo-oligomer 454 was used to complex RNA into a core polyplex, which was subsequently functionalized with the targeting peptide ligand GE11 via a polyethylene glycol (PEG) linker. To this end, free cysteines on the surface of 454 polyplex were coupled with a maleimide-PEG-GE11 reagent (Mal-GE11). Resulting particles with sizes of 120-150 nm showed receptor-mediated uptake into EGFR-positive T24 bladder cancer cells, MDA-MB 231 breast cancer cells and Huh7 liver cancer cells. Furthermore, these formulations led to ligand-dependent gene silencing. RNA interference (RNAi) triggered antitumoral effects were observed for two different therapeutic RNAs, a miRNA-200c mimic or EG5 siRNA. Using polyplexes modified with a ratio of 0.8 molar equivalents of Mal-GE11, treatment of T24 or MDA-MB 231 cancer cells with miR-200c led to the expected decreased proliferation and migration, changes in cell cycle and enhanced sensitivity towards doxorubicin. Delivery of EG5 siRNA into Huh7 cells resulted in antitumoral activity with G2/M arrest, triggered by loss of mitotic spindle separation and formation of mono-astral spindles. These findings demonstrate the potential of GE11 ligand-containing RNAi polyplexes for cancer treatment.

  16. siRNA targeting PLK-1 induces apoptosis of synoviocytes in rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, Makoto; Kawahito, Yutaka; Kimura, Shinya

    Polo-like kinase-1 (PLK-1) is a member of the PLK family and participates in the control of cell mitosis. Here, we show that immunoreactive PLK-1 is strongly expressed in synoviocytes and some infiltrative mononuclear cells in synovial tissues from patients with rheumatoid arthritis (RA), while patients with osteoarthritis and injury show little or no expression of PLK-1 in synovial tissues. Western blot analysis shows that PLK is expressed and its expression is enhanced by IL-1{beta} in RA synoviocytes. IL-1{beta} also enhanced the cell growth of RA synoviocytes. Moreover, siRNA targeted against PLK-1 significantly decreases the expression of PLK-1 of RA synoviocytesmore » stimulated by IL-1{beta} and suppresses the proliferation of these synoviocytes through apoptosis. These findings suggest that PLK-1 plays a critical role in the proliferation of RA synoviocytes leading to bone destruction, and siRNA against PLK-1 is potentially useful for the treatment of RA.« less

  17. The antifibrotic effects of TGF-{beta}1 siRNA on hepatic fibrosis in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Qing; Liu, Qi; Xu, Ning

    2011-06-10

    RNA expression of TGF-{beta}1, type I collagen and type III collagen (P < 0.01). Conclusions: Using siRNA to target TGF-{beta}1 can inhibit the expression of TGF-{beta}1 and attenuate rat hepatic fibrosis induced by a high-fat diet and CCL4. A possible mechanism is through the down-regulation of TGF-{beta}1 expression, which could inhibit HSC activation, as well as the proliferation and collagen production of collagen reducing, so that collagen deposition in the liver is reduced.« less

  18. Delivery of siRNA using ternary complexes containing branched cationic peptides: the role of peptide sequence, branching and targeting.

    PubMed

    Kudsiova, Laila; Welser, Katharina; Campbell, Frederick; Mohammadi, Atefeh; Dawson, Natalie; Cui, Lili; Hailes, Helen C; Lawrence, M Jayne; Tabor, Alethea B

    2016-03-01

    Ternary nanocomplexes, composed of bifunctional cationic peptides, lipids and siRNA, as delivery vehicles for siRNA have been investigated. The study is the first to determine the optimal sequence and architecture of the bifunctional cationic peptide used for siRNA packaging and delivery using lipopolyplexes. Specifically three series of cationic peptides of differing sequence, degrees of branching and cell-targeting sequences were co-formulated with siRNA and vesicles prepared from a 1 : 1 molar ratio of the cationic lipid DOTMA and the helper lipid, DOPE. The level of siRNA knockdown achieved in the human alveolar cell line, A549-luc cells, in both reduced serum and in serum supplemented media was evaluated, and the results correlated to the nanocomplex structure (established using a range of physico-chemical tools, namely small angle neutron scattering, transmission electron microscopy, dynamic light scattering and zeta potential measurement); the conformational properties of each component (circular dichroism); the degree of protection of the siRNA in the lipopolyplex (using gel shift assays) and to the cellular uptake, localisation and toxicity of the nanocomplexes (confocal microscopy). Although the size, charge, structure and stability of the various lipopolyplexes were broadly similar, it was clear that lipopolyplexes formulated from branched peptides containing His-Lys sequences perform best as siRNA delivery agents in serum, with protection of the siRNA in serum balanced against efficient release of the siRNA into the cytoplasm of the cell.

  19. Technologies for Controlled, Local Delivery of siRNA

    PubMed Central

    Sarett, Samantha M.; Nelson, Christopher E.; Duvall, Craig L.

    2015-01-01

    The discovery of RNAi in the late 1990s unlocked a new realm of therapeutic possibilities by enabling potent and specific silencing of theoretically any desired genetic target. Better elucidation of the mechanism of action, the impact of chemical modifications that stabilize and reduce nonspecific effects of siRNA molecules, and the key design considerations for effective delivery systems has spurred progress toward developing clinically-successful siRNA therapies. A logical aim for initial siRNA translation is local therapies, as delivering siRNA directly to its site of action helps to ensure that a sufficient dose reaches the target tissue, lessens the potential for off-target side effects, and circumvents the substantial systemic delivery barriers. While topical siRNA delivery has progressed into numerous clinical trials, an enormous opportunity also exists to develop sustained-release, local delivery systems that enable both spatial and temporal control of gene silencing. This review focuses on material platforms that establish both localized and controlled gene silencing, with emphasis on the systems that show most promise for clinical translation. PMID:26476177

  20. Fab’-bearing siRNA TNFα-loaded nanoparticles targeted to colonic macrophages offer an effective therapy for experimental colitis

    PubMed Central

    Hamed, Laroui; Emilie, Viennois; Xiao, Bo; Canup, Brandon S.; Duke, Geem; Denning, Timothy L.; Didier, Merlin

    2014-01-01

    Patients suffering from Inflammatory Bowel Disease (IBD) are currently treated by systemic drugs that can have significant side effects. Thus, it would be highly desirable to target TNFα siRNA (a therapeutic molecule) to the inflamed tissue. Here, we demonstrate that TNFα siRNA can be efficiently loaded into nanoparticles (NPs) made of poly (lactic acid) poly (ethylene glycol) block copolymer (PLA-PEG), and that grafting of the Fab’ portion of the F4/80 Ab (Fab’-bearing) onto the NP surface via maleimide/thiol group-mediated covalent bonding improves the macrophage (MP)-targeting kinetics of the NPs to RAW264.7 cells in vitro. Direct binding was shown between MPs and the Fab’-bearing NPs. Next, we orally administered hydrogel (chitosan/alginate)-encapsulated Fab’-bearing TNFα-siRNA-loaded NPs to 3% dextran sodium sulfate (DSS)-treated mice and investigated the therapeutic effect on colitis. In vivo, the release of TNFα-siRNA-loaded NPs into the mouse colon attenuated colitis more efficiently when the NPs were covered with Fab’-bearing, compared to uncovered NPs. All DSS-induced parameters of colonic inflammation (e.g., weight loss, myeloperoxidase activity, and Iκbα accumulation) were more attenuated Fab’-bearing NPs loaded with TNFα siRNA than without the Fab’-bearing. Grafting the Fab’-bearing onto the NPs improved the kinetics of endocytosis as well as the MP-targeting ability, as indicated by flow cytometry. Collectively, our results show that Fab’-bearing PLA-PEG NPs are powerful and efficient nanosized tools for delivering siRNAs into colonic macrophages. PMID:24810114

  1. SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis.

    PubMed

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-12-15

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20-24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5', but not 3'-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5' to the cleavage site, but several examples of 3'-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5'-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5'-cleavage fragments. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma.

    PubMed

    Xie, Yuran; Kim, Na Hyung; Nadithe, Venkatareddy; Schalk, Dana; Thakur, Archana; Kılıç, Ayşe; Lum, Lawrence G; Bassett, David J P; Merkel, Olivia M

    2016-05-10

    Asthma is a worldwide health problem. Activated T cells (ATCs) in the lung, particularly T helper 2 cells (Th2), are strongly associated with inducing airway inflammatory responses and chemoattraction of inflammatory cells in asthma. Small interfering RNA (siRNA) as a promising anti-sense molecule can specifically silence inflammation related genes in ATCs, however, lack of safe and efficient siRNA delivery systems limits the application of siRNA as a therapeutic molecule in asthma. Here, we designed a novel pulmonary delivery system of siRNA, transferrin-polyethylenimine (Tf-PEI), to selectively deliver siRNA to ATCs in the lung. Tf-PEI polyplexes demonstrated optimal physicochemical properties such as size, distribution, zeta-potential, and siRNA condensation efficiency. Moreover, in vitro studies showed significantly enhanced cellular uptake and gene knockdown mediated by Tf-PEI polyplexes in human primary ATCs. Biodistribution of polyplexes in a murine asthmatic model confirmed that Tf-PEI polyplexes can efficiently and selectively deliver siRNA to ATCs. In conclusion, the present work proves the feasibility to target ATCs in asthma via Tf receptor. This strategy could potentially be used to design an efficient siRNA delivery system for asthma therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effective delivery of siRNA into cancer cells and tumors using well-defined biodegradable cationic star polymers.

    PubMed

    Boyer, Cyrille; Teo, Joann; Phillips, Phoebe; Erlich, Rafael B; Sagnella, Sharon; Sharbeen, George; Dwarte, Tanya; Duong, Hien T T; Goldstein, David; Davis, Thomas P; Kavallaris, Maria; McCarroll, Joshua

    2013-06-03

    Cancer is one of the most common causes of death worldwide. Two types of cancer that have high mortality rates are pancreatic and lung cancer. Despite improvements in treatment strategies, resistance to chemotherapy and the presence of metastases are common. Therefore, novel therapies which target and silence genes involved in regulating these processes are required. Short-interfering RNA (siRNA) holds great promise as a therapeutic to silence disease-causing genes. However, siRNA requires a delivery vehicle to enter the cell to allow it to silence its target gene. Herein, we report on the design and synthesis of cationic star polymers as novel delivery vehicles for siRNA to silence genes in pancreatic and lung cancer cells. Dimethylaminoethyl methacrylate (DMAEMA) was polymerized via reversible addition-fragmentation transfer polymerization (RAFT) and then chain extended in the presence of both cross-linkers N,N-bis(acryloyl)cistamine and DMAEMA, yielding biodegradable well-defined star polymers. The star polymers were characterized by transmission electron microscopy, dynamic light scattering, ζ potential, and gel permeation chromatography. Importantly, the star polymers were able to self-assemble with siRNA and form small uniform nanoparticle complexes. Moreover, the ratios of star polymer required to complex siRNA were nontoxic in both pancreatic and lung cancer cells. Treatment with star polymer-siRNA complexes resulted in uptake of siRNA into both cell lines and a significant decrease in target gene mRNA and protein levels. In addition, delivery of clinically relevant amounts of siRNA complexed to the star polymer were able to silence target gene expression by 50% in an in vivo tumor setting. Collectively, these results provide the first evidence of well-defined small cationic star polymers to deliver active siRNA to both pancreatic and lung cancer cells and may be a valuable tool to inhibit key genes involved in promoting chemotherapy drug resistance and

  4. Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages

    PubMed Central

    Soto, Ernesto R.; O'Connell, Olivia; Dikengil, Fusun; Peters, Paul J.; Clapham, Paul R.

    2016-01-01

    Glucan particles (GPs) are hollow, porous 3–5 μm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles) encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles. PMID:27965897

  5. Hybrid inorganic-organic capsules for efficient intracellular delivery of novel siRNAs against influenza A (H1N1) virus infection.

    PubMed

    Timin, Alexander S; Muslimov, Albert R; Petrova, Aleksandra V; Lepik, Kirill V; Okilova, Maria V; Vasin, Andrey V; Afanasyev, Boris V; Sukhorukov, Gleb B

    2017-03-07

    The implementation of RNAi technology into the clinical practice has been significantly postponing due to the issues regarding to the delivery of naked siRNA predominantly to target cells. Here we report the approach to enhance the efficiency of siRNA delivery by encapsulating the siRNA into new carrier systems which are obtained via the combination of widely used layer-by-layer technique and in situ modification by sol-gel chemistry. We used three types of siRNAs (NP-717, NP-1155 and NP-1496) in encapsulated form as new therapeutic agents against H1N1 influenza virus infection. By employing the hybrid microcontainers for the siRNA encapsulation we demonstrate the reduction of viral nucleoprotein (NP) level and inhibition of influenza virus production in infected cell lines (MDCK and A549). The obtained hybrid carriers based on assembled biodegradable polyelectrolytes and sol-gel coating possess several advantages such as a high cell uptake efficiency, low toxicity, efficient intracellular delivery of siRNAs and the protection of siRNAs from premature degradation before reaching the target cells. These findings underpin a great potential of versatile microencapsulation technology for the development of anti-viral RNAi delivery systems against influenza virus infection.

  6. Intranasal delivery of antiviral siRNA.

    PubMed

    Barik, Sailen

    2011-01-01

    Intranasal administration of synthetic siRNA is an effective modality of RNAi delivery for the prevention and therapy of respiratory diseases, including pulmonary infections. Vehicles used for nasal siRNA delivery include established as well as novel reagents, many of which have been recently optimized. In general, they all promote significant uptake of siRNA into the lower respiratory tract, including the lung. When properly designed and optimized, these siRNAs offer significant protection against respiratory viruses such as influenza virus, parainfluenza virus and respiratory syncytial virus (RSV). Nasally administered siRNA remains within the lung and does not access systemic blood flow, as judged by its absence in other major organs such as liver, heart, kidney, and skeletal muscle. Adverse immune reaction is generally not encountered, especially when immunogenic and/or off-target siRNA sequences and toxic vehicles are avoided. In fact, siRNA against RSV has entered Phase II clinical trials in human with promising results. Here, we provide a standardized procedure for using the nose as a specific route for siRNA delivery into the lung of laboratory animals. It should be clear that this simple and efficient system has enormous potential for therapeutics.

  7. siRNA and innate immunity.

    PubMed

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  8. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis

    PubMed Central

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-01-01

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments. PMID:26464441

  9. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  10. Effective gene silencing activity of prodrug-type 2'-O-methyldithiomethyl siRNA compared with non-prodrug-type 2'-O-methyl siRNA.

    PubMed

    Hayashi, Junsuke; Nishigaki, Misa; Ochi, Yosuke; Wada, Shun-Ichi; Wada, Fumito; Nakagawa, Osamu; Obika, Satoshi; Harada-Shiba, Mariko; Urata, Hidehito

    2018-07-01

    Small interfering RNAs (siRNAs) are an active agent to induce gene silencing and they have been studied for becoming a biological and therapeutic tool. Various 2'-O-modified RNAs have been extensively studied to improve the nuclease resistance. However, the 2'-O-modified siRNA activities were often decreased by modification, since the bulky 2'-O-modifications inhibit to form a RNA-induced silencing complex (RISC). We developed novel prodrug-type 2'-O-methyldithiomethyl (MDTM) siRNA, which is converted into natural siRNA in an intracellular reducing environment. Prodrug-type 2'-O-MDTM siRNAs modified at the 5'-end side including 5'-end nucleotide and the seed region of the antisense strand exhibited much stronger gene silencing effect than non-prodrug-type 2'-O-methyl (2'-O-Me) siRNAs. Furthermore, the resistances for nuclease digestion of siRNAs were actually enhanced by 2'-O-MDTM modifications. Our results indicate that 2'-O-MDTM modifications improve the stability of siRNA in serum and they are able to be introduced at any positions of siRNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Notch3-specific inhibition using siRNA knockdown or GSI sensitizes paclitaxel-resistant ovarian cancer cells.

    PubMed

    Kang, Haeyoun; Jeong, Ju-Yeon; Song, Ji-Ye; Kim, Tae Heon; Kim, Gwangil; Huh, Jin Hyung; Kwon, Ah-Young; Jung, Sang Geun; An, Hee Jung

    2016-07-01

    Notch signaling plays an important role in ovarian cancer chemoresistance, which is responsible for recurrence. Gamma-secretase inhibitor (GSI) is a broad-spectrum Notch inhibitor, but it has serious side effects. The efficacy of Notch3-specific inhibition in paclitaxel-resistant ovarian cancers was assessed in this study, which has not yet been evaluated relative to GSI. To analyze the effect of Notch3-specific inhibition on paclitaxel-resistant ovarian cancers, we compared cell viability, apoptosis, cell migration, angiogenesis, cell cycle, and spheroid formation after treatment with either Notch3 siRNA or GSI in paclitaxel-resistant SKpac cells and parental SKOV3 cells. Expression levels of survival, cell cycle, and apoptosis-related proteins were measured and compared between groups. Notch3 was significantly overexpressed in chemoresistant cancer tissues and cell lines relative to chemosensitive group. In paclitaxel-resistant cancer cells, Notch inhibition significantly reduced viability, migration, and angiogenesis and increased apoptosis, thereby boosting sensitivity to paclitaxel. Spheroid formation was also significantly reduced. Both Notch3 siRNA-treated cells and GSI-treated cells arrested in the G2/M phase of the cell cycle. Proteins of cell survival, cyclin D1 and cyclin D3 were reduced, whereas p21 and p27 were elevated. Both GSI and Notch3 siRNA treatment reduced expression of anti-apoptotic proteins (BCL-W, BCL2, and BCL-XL) and increased expression of pro-apoptotic proteins (Bad, Bak, Bim, Bid, and Bax). These results indicate that Notch3-specific inhibition sensitizes paclitaxel-resistant cancer cells to paclitaxel treatment, with an efficacy comparable to that of GSI. This approach would be likely to avoid the side effects of broad-spectrum GSI treatment. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Nonviral pulmonary delivery of siRNA.

    PubMed

    Merkel, Olivia M; Kissel, Thomas

    2012-07-17

    RNA interference (RNAi) is an important part of the cell's defenses against viruses and other foreign genes. Moreover, the biotechnological exploitation of RNAi offers therapeutic potential for a range of diseases for which drugs are currently unavailable. Unfortunately, the small interfering RNAs (siRNAs) that are central to RNAi in the cytoplasm are readily degradable by ubiquitous nucleases, are inefficiently targeted to desired organs and cell types, and are excreted quickly upon systemic injection. As a result, local administration techniques have been favored over the past few years, resulting in great success in the treatment of viral infections and other respiratory disorders. Because there are several advantages of pulmonary delivery over systemic administration, two of the four siRNA drugs currently in phase II clinical trials are delivered intranasally or by inhalation. The air-blood barrier, however, has only limited permeability toward large, hydrophilic biopharmaceuticals such as nucleic acids; in addition, the lung imposes intrinsic hurdles to efficient siRNA delivery. Thus, appropriate formulations and delivery devices are very much needed. Although many different formulations have been optimized for in vitro siRNA delivery to lung cells, only a few have been reported successful in vivo. In this Account, we discuss both obstacles to pulmonary siRNA delivery and the success stories that have been achieved thus far. The optimal pulmonary delivery vehicle should be neither cytotoxic nor immunogenic, should protect the payload from degradation by nucleases during the delivery process, and should mediate the intracellular uptake of siRNA. Further requirements include the improvement of the pharmacokinetics and lung distribution profiles of siRNA, the extension of lung retention times (through reduced recognition by macrophages), and the incorporation of reversible or stimuli-responsive binding of siRNA to allow for efficient release of the siRNAs at the

  13. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy.

    PubMed

    Yang, Xian-Zhu; Dou, Shuang; Sun, Tian-Meng; Mao, Cheng-Qiong; Wang, Hong-Xia; Wang, Jun

    2011-12-10

    Delivery of small interfering RNA (siRNA) has been one of the major hurdles for the application of RNA interference in therapeutics. Here, we describe a cationic lipid assisted polymeric nanoparticle system with stealthy property for efficient siRNA encapsulation and delivery, which was fabricated with poly(ethylene glycol)-b-poly(d,l-lactide), siRNA and a cationic lipid, using a double emulsion-solvent evaporation technique. By incorporation of the cationic lipid, the encapsulation efficiency of siRNA into the nanoparticles could be above 90% and the siRNA loading weight ratio was up to 4.47%, while the diameter of the nanoparticles was around 170 to 200nm. The siRNA retained its integrity within the nanoparticles, which were effectively internalized by cancer cells and escaped from the endosome, resulting in significant gene knockdown. This effect was demonstrated by significant down-regulation of luciferase expression in HepG2-luciferase cells which stably express luciferase, and suppression of polo-like kinase 1 (Plk1) expression in HepG2 cells, following delivery of specific siRNAs by the nanoparticles. Furthermore, the nanoparticles carrying siRNA targeting the Plk1 gene were found to induce remarkable apoptosis in both HepG2 and MDA-MB-435s cancer cells. Systemic delivery of specific siRNA by nanoparticles significantly inhibited luciferase expression in an orthotopic murine liver cancer model and suppressed tumor growth in a MDA-MB-435s murine xenograft model, suggesting its therapeutic promise in disease treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. RNase non-sensitive and endocytosis independent siRNA delivery system: delivery of siRNA into tumor cells and high efficiency induction of apoptosis

    NASA Astrophysics Data System (ADS)

    Jiang, Xinglu; Wang, Guobao; Liu, Ru; Wang, Yaling; Wang, Yongkui; Qiu, Xiaozhong; Gao, Xueyun

    2013-07-01

    To date, RNase degradation and endosome/lysosome trapping are still serious problems for siRNA-based molecular therapy, although different kinds of delivery formulations have been tried. In this report, a cell penetrating peptide (CPP, including a positively charged segment, a linear segment, and a hydrophobic segment) and a single wall carbon nanotube (SWCNT) are applied together by a simple method to act as a siRNA delivery system. The siRNAs first form a complex with the positively charged segment of CPP via electrostatic forces, and the siRNA-CPP further coats the surface of the SWCNT via hydrophobic interactions. This siRNA delivery system is non-sensitive to RNase and can avoid endosome/lysosome trapping in vitro. When this siRNA delivery system is studied in Hela cells, siRNA uptake was observed in 98% Hela cells, and over 70% mRNA of mammalian target of rapamycin (mTOR) is knocked down, triggering cell apoptosis on a significant scale. Our siRNA delivery system is easy to handle and benign to cultured cells, providing a very efficient approach for the delivery of siRNA into the cell cytosol and cleaving the target mRNA therein.

  15. siRNA Versus miRNA as Therapeutics for Gene Silencing

    PubMed Central

    Lam, Jenny K W; Chow, Michael Y T; Zhang, Yu; Leung, Susan W S

    2015-01-01

    Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed. PMID:26372022

  16. Generation of siRNA Nanosheets for Efficient RNA Interference

    NASA Astrophysics Data System (ADS)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  17. Retrovirus-mediated siRNA targeting TRPM7 gene induces apoptosis in RBL-2H3 cells.

    PubMed

    Ng, N-M; Jiang, S-P; Lv, Z-Q

    2012-09-01

    Calcium signaling is important for both normal physiologic processes and pathology of various diseases. Transient receptor potential melastatin 7 (TRPM7) gene has been reported to be a potential candidate for calcium influx. The present study aimed to investigate the possible role of TRPM7 channels in apoptosis in rat basophilic leukemia mast cell line (RBL-2H3), which is widely used in mast cell-associated studies. A recombinant retrovirus vector siRNA targeting rat TRPM7 gene was constructed and identified. Cellular survival was assessed by MTT. Cell apoptosis was evaluated by flow cytometry and TUNEL-FITC/Hoechst 33258 staining. The transfection efficiency by retrovirus vector was about 60%-70%. Transfection with TRPM7 siRNA significantly reduced TRPM7 expression both at mRNA and protein levels. Suppression of TRPM7 expression by siRNA led to significantly decreased cellular survival rates and increased apoptosis rates in RBL-2H3 cells. This study indicates that TRPM7 is involved in the apoptosis process in RBL-2H3 cells.

  18. MysiRNA: improving siRNA efficacy prediction using a machine-learning model combining multi-tools and whole stacking energy (ΔG).

    PubMed

    Mysara, Mohamed; Elhefnawi, Mahmoud; Garibaldi, Jonathan M

    2012-06-01

    The investigation of small interfering RNA (siRNA) and its posttranscriptional gene-regulation has become an extremely important research topic, both for fundamental reasons and for potential longer-term therapeutic benefits. Several factors affect the functionality of siRNA including positional preferences, target accessibility and other thermodynamic features. State of the art tools aim to optimize the selection of target siRNAs by identifying those that may have high experimental inhibition. Such tools implement artificial neural network models as Biopredsi and ThermoComposition21, and linear regression models as DSIR, i-Score and Scales, among others. However, all these models have limitations in performance. In this work, a neural-network trained new siRNA scoring/efficacy prediction model was developed based on combining two existing scoring algorithms (ThermoComposition21 and i-Score), together with the whole stacking energy (ΔG), in a multi-layer artificial neural network. These three parameters were chosen after a comparative combinatorial study between five well known tools. Our developed model, 'MysiRNA' was trained on 2431 siRNA records and tested using three further datasets. MysiRNA was compared with 11 alternative existing scoring tools in an evaluation study to assess the predicted and experimental siRNA efficiency where it achieved the highest performance both in terms of correlation coefficient (R(2)=0.600) and receiver operating characteristics analysis (AUC=0.808), improving the prediction accuracy by up to 18% with respect to sensitivity and specificity of the best available tools. MysiRNA is a novel, freely accessible model capable of predicting siRNA inhibition efficiency with improved specificity and sensitivity. This multiclassifier approach could help improve the performance of prediction in several bioinformatics areas. MysiRNA model, part of MysiRNA-Designer package [1], is expected to play a key role in siRNA selection and evaluation

  19. Systemic Administration of siRNA via cRGD-containing Peptide.

    PubMed

    Huang, Yuanyu; Wang, Xiaoxia; Huang, Weiyan; Cheng, Qiang; Zheng, Shuquan; Guo, Shutao; Cao, Huiqing; Liang, Xing-Jie; Du, Quan; Liang, Zicai

    2015-08-24

    Although small interfering RNAs (siRNAs) have been demonstrated to specifically silence their target genes in disease models and clinical trials, in vivo siRNA delivery is still the technical bottleneck that limits their use in therapeutic applications. In this study, a bifunctional peptide named RGD10-10R was designed and tested for its ability to deliver siRNA in vitro and in vivo. Because of their electrostatic interactions with polyarginine (10R), negatively charged siRNAs were readily complexed with RGD10-10R peptides, forming spherical RGD10-10R/siRNA nanoparticles. In addition to enhancing their serum stability by preventing RNase from attacking siRNA through steric hindrance, peptide binding facilitated siRNA transfection into MDA-MB-231 cells, as demonstrated by FACS and confocal microscopy assays and by the repressed expression of target genes. When RGD10 peptide, a receptor competitor of RGD10-10R, was added to the transfection system, the cellular internalization of RGD10-10R/siRNA was significantly compromised, suggesting a mechanism of ligand/receptor interaction. Tissue distribution assays indicated that the peptide/siRNA complex preferentially accumulated in the liver and in several exocrine/endocrine glands. Furthermore, tumor-targeted delivery of siRNA was also demonstrated by in vivo imaging and cryosection assays. In summary, RGD10-10R might constitute a novel siRNA delivery tool that could potentially be applied in tumor treatment.

  20. Systemic Administration of siRNA via cRGD-containing Peptide

    PubMed Central

    Huang, Yuanyu; Wang, Xiaoxia; Huang, Weiyan; Cheng, Qiang; Zheng, Shuquan; Guo, Shutao; Cao, Huiqing; Liang, Xing-Jie; Du, Quan; Liang, Zicai

    2015-01-01

    Although small interfering RNAs (siRNAs) have been demonstrated to specifically silence their target genes in disease models and clinical trials, in vivo siRNA delivery is still the technical bottleneck that limits their use in therapeutic applications. In this study, a bifunctional peptide named RGD10-10R was designed and tested for its ability to deliver siRNA in vitro and in vivo. Because of their electrostatic interactions with polyarginine (10R), negatively charged siRNAs were readily complexed with RGD10-10R peptides, forming spherical RGD10-10R/siRNA nanoparticles. In addition to enhancing their serum stability by preventing RNase from attacking siRNA through steric hindrance, peptide binding facilitated siRNA transfection into MDA-MB-231 cells, as demonstrated by FACS and confocal microscopy assays and by the repressed expression of target genes. When RGD10 peptide, a receptor competitor of RGD10-10R, was added to the transfection system, the cellular internalization of RGD10-10R/siRNA was significantly compromised, suggesting a mechanism of ligand/receptor interaction. Tissue distribution assays indicated that the peptide/siRNA complex preferentially accumulated in the liver and in several exocrine/endocrine glands. Furthermore, tumor-targeted delivery of siRNA was also demonstrated by in vivo imaging and cryosection assays. In summary, RGD10-10R might constitute a novel siRNA delivery tool that could potentially be applied in tumor treatment. PMID:26300278

  1. Antibody-mediated platelet phagocytosis by human macrophages is inhibited by siRNA specific for sequences in the SH2 tyrosine kinase, Syk.

    PubMed

    Lu, Ying; Wang, Weiming; Mao, Huiming; Hu, Hai; Wu, Yanling; Chen, Bing-Guan; Liu, Zhongmin

    2011-01-01

    Immune thrombocytopenia depends upon Fc receptor-mediated phagocytosis that involves signaling through the SH2 tyrosine kinase, Syk. We designed small interfering (siRNA) sequences complementary to Syk coding regions to decrease the expression of Syk in the human macrophage cell line, THP-1. To evaluate the functional effect of siRNA on phagocytosis, we developed a new in vitro assay for antibody-mediated platelet ingestion by THP-1 cells. Incubation of THP-1 cells at 37°C with fluorescence-labeled platelets and anti-platelet antibody promoted ingestion of platelets that could be quantitated by flow cytometry. Transfection of THP-1 cells with Syk-specific siRNA resulted in a reduction in the amount of FcγRII-associated Syk protein. Coincident with decreased Syk expression, we observed inhibition of antibody-mediated platelet ingestion. These results confirm a key role for Syk in antibody-mediated phagocytosis and suggest Syk-specific siRNA as a possible therapeutic candidate for immune thrombocytopenia. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Galactose Derivative-Modified Nanoparticles for Efficient siRNA Delivery to Hepatocellular Carcinoma.

    PubMed

    Huang, Kuan-Wei; Lai, Yu-Tsung; Chern, Guann-Jen; Huang, Shao-Feng; Tsai, Chia-Lung; Sung, Yun-Chieh; Chiang, Cheng-Chin; Hwang, Pi-Bei; Ho, Ting-Lun; Huang, Rui-Lin; Shiue, Ting-Yun; Chen, Yunching; Wang, Sheng-Kai

    2018-05-29

    Successful siRNA therapy requires suitable delivery systems with targeting moieties such as small molecules, peptides, antibodies, or aptamers. Galactose (Gal) residues recognized by the asialoglycoprotein receptor (ASGPR) can serve as potent targeting moieties for hepatocellular carcinoma (HCC) cells. However, efficient targeting to HCC via galactose moieties rather than normal liver tissues in HCC patients remains a challenge. To achieve more efficient siRNA delivery in HCC, we synthesized various galactoside derivatives and investigated the siRNA delivery capability of nanoparticles modified with those galactoside derivatives. In this study, we assembled lipid/calcium/phosphate nanoparticles (LCP NPs) conjugated with eight types of galactoside derivatives and demonstrated that phenyl β-d-galactoside-decorated LCP NPs (L4-LCP NPs) exhibited a superior siRNA delivery into HCC cells compared to normal hepatocytes. VEGF siRNAs delivered by L4-LCP NPs downregulated VEGF expression in HCC in vitro and in vivo and led to a potent antiangiogenic effect in the tumor microenvironment of a murine orthotopic HCC model. The efficient delivery of VEGF siRNA by L4-LCP NPs that resulted in significant tumor regression indicates that phenyl galactoside could be a promising HCC-targeting ligand for therapeutic siRNA delivery to treat liver cancer.

  3. Inhibition of RAD51 by siRNA and Resveratrol Sensitizes Cancer Stem Cells Derived from HeLa Cell Cultures to Apoptosis

    PubMed Central

    Ruíz, Graciela; Valencia-González, Heriberto A.; León-Galicia, Ismael; García-Villa, Enrique

    2018-01-01

    Cervical cancer is the second most frequent tumor type in women worldwide with cases developing clinical recurrence, metastasis, and chemoresistance. The cancer stem cells (CSC) may be implicated in tumor resistance to therapy. RESveratrol (RES), a natural compound, is an antioxidant with multiple beneficial activities. We previously determined that the expression of RAD51 is decreased by RES. The aim of our study was to examine molecular mechanism by which CSC from HeLa cultures exhibit chemoresistance. We hypothesized CSC repair more efficiently DNA breaks and that RAD51 plays an important role in this mechanism. We found that CSC, derived from cervical cancer cell lines, overexpress RAD51 and are less sensitive to Etoposide (VP16). We inhibited RAD51 in CSC-enriched cultures using RES or siRNA against RAD51 messenger RNA and observed a decrease in cell viability and induction of apoptosis when treated simultaneously with VP16. In addition, we found that inhibition of RAD51 expression using RES also sensitizes CSC to VP16 treatment. Our results suggest that resveratrol is effective to sensitize cervical CSC because of RAD51 inhibition, targeting high RAD51 expressing CD49f-positive cells, which supports the possible therapeutic application of RES as a novel agent to treat cancer. PMID:29681946

  4. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation.

    PubMed

    Baumberger, Nicolas; Tsai, Ching-Hsui; Lie, Miranda; Havecker, Ericka; Baulcombe, David C

    2007-09-18

    Plant and animal viruses encode suppressor proteins of an adaptive immunity mechanism in which viral double-stranded RNA is processed into 21-25 nt short interfering (si)RNAs. The siRNAs guide ARGONAUTE (AGO) proteins so that they target viral RNA. Most viral suppressors bind long dsRNA or siRNAs and thereby prevent production of siRNA or binding of siRNA to AGO. The one exception is the 2b suppressor of Cucumoviruses that binds to and inhibits AGO1. Here we describe a novel suppressor mechanism in which a Polerovirus-encoded F box protein (P0) targets the PAZ motif and its adjacent upstream sequence in AGO1 and mediates its degradation. F box proteins are components of E3 ubiquitin ligase complexes that add polyubiquitin tracts on selected lysine residues and thereby mark a protein for proteasome-mediated degradation. With P0, however, the targeted degradation of AGO is insensitive to inhibition of the proteasome, indicating that the proteasome is not involved. We also show that P0 does not block a mobile signal of silencing, indicating that the signal molecule does not have AGO protein components. The ability of P0 to block silencing without affecting signal movement may contribute to the phloem restriction of viruses in the Polerovirus group.

  5. A novel program to design siRNAs simultaneously effective to highly variable virus genomes.

    PubMed

    Lee, Hui Sun; Ahn, Jeonghyun; Jun, Eun Jung; Yang, Sanghwa; Joo, Chul Hyun; Kim, Yoo Kyum; Lee, Heuiran

    2009-07-10

    A major concern of antiviral therapy using small interfering RNAs (siRNAs) targeting RNA viral genome is high sequence diversity and mutation rate due to genetic instability. To overcome this problem, it is indispensable to design siRNAs targeting highly conserved regions. We thus designed CAPSID (Convenient Application Program for siRNA Design), a novel bioinformatics program to identify siRNAs targeting highly conserved regions within RNA viral genomes. From a set of input RNAs of diverse sequences, CAPSID rapidly searches conserved patterns and suggests highly potent siRNA candidates in a hierarchical manner. To validate the usefulness of this novel program, we investigated the antiviral potency of universal siRNA for various Human enterovirus B (HEB) serotypes. Assessment of antiviral efficacy using Hela cells, clearly demonstrates that HEB-specific siRNAs exhibit protective effects against all HEBs examined. These findings strongly indicate that CAPSID can be applied to select universal antiviral siRNAs against highly divergent viral genomes.

  6. Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes.

    PubMed

    Yin, Tinghui; Wang, Ping; Li, Jingguo; Wang, Yiru; Zheng, Bowen; Zheng, Rongqin; Cheng, Du; Shuai, Xintao

    2014-07-01

    Drug resistance is a big problem in systemic chemotherapy of hepatocellular carcinoma (HCC), and nanomedicines loaded with both chemotherapeutic agents (e.g. paclitaxel, PTX) and siRNA's targeting antiapoptosis genes (e.g. BCL-2) possess the advantages to simultaneously overcome the efflux pump-mediated drug resistance and antiapoptosis-related drug resistance. However, tumor-penetrating drug delivery with this type of nanomedicines is extremely difficult due to their relatively big size compared to the single drug-loaded nanomedicines. Aiming at address this problem, US-responsive nanobubbles encapsulating both anti-cancer drug paclitaxel (PTX) and siRNA (PTX-NBs/siRNA) for HCC treatment were developed by hetero-assembly of polymeric micelles and liposomes in the present study. Utilizing an external low-frequency US force imposed to the tumor site, effective tumor-penetrating codelivery of siRNA and PTX was achieved via tail vein injection of PTX-NBs/siRNA into nude mice bearing human HepG2 xerografts. Consequently, the PTX treatment-inducible antiapoptosis in HepG2 cells was effectively suppressed by the codelivered siRNA targeting an antiapoptosis gene (BCL-2 siRNA) during chemotherapy. Owing to the synergistic anti-cancer effect of two therapeutic agents, tumor growth was completely inhibited using low-dose PTX in animal study. Our results highlight the great potential of this type of US-responsive hetero-assemblies carrying both anti-cancer drug and siRNA as an effective nanomedicinal system for HCC therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature

    PubMed Central

    Ladunga, Istvan

    2007-01-01

    Highly accurate knockdown functional analyses based on RNA interference (RNAi) require the possible most complete hydrolysis of the targeted mRNA while avoiding the degradation of untargeted genes (off-target effects). This in turn requires significant improvements to target selection for two reasons. First, the average silencing activity of randomly selected siRNAs is as low as 62%. Second, applying more than five different siRNAs may lead to saturation of the RNA-induced silencing complex (RISC) and to the degradation of untargeted genes. Therefore, selecting a small number of highly active siRNAs is critical for maximizing knockdown and minimizing off-target effects. To satisfy these needs, a publicly available and transparent machine learning tool is presented that ranks all possible siRNAs for each targeted gene. Support vector machines (SVMs) with polynomial kernels and constrained optimization models select and utilize the most predictive effective combinations from 572 sequence, thermodynamic, accessibility and self-hairpin features over 2200 published siRNAs. This tool reaches an accuracy of 92.3% in cross-validation experiments. We fully present the underlying biophysical signature that involves free energy, accessibility and dinucleotide characteristics. We show that while complete silencing is possible at certain structured target sites, accessibility information improves the prediction of the 90% active siRNA target sites. Fast siRNA activity predictions can be performed on our web server at . PMID:17169992

  8. Preparation of siRNA encapsulated nanoliposomes suitable for siRNA delivery by simply discontinuous mixing.

    PubMed

    Mokhtarieh, Amir Abbas; Lee, Jieun; Kim, Semi; Lee, Myung Kyu

    2018-06-01

    Previously a scalable and extrusion-free method has been developed for efficient liposomal encapsulation of DNA by twice stepwise mixing of lipids in ethanol and DNA solution using T-shape mixing chamber. In this study, we prepared nanoliposomes encapsulating siRNA by simply discontinuous mixing of lipids in ethanol/ether/water mixture and acidic siRNA solution without use of special equipment. The simple mixing siRNA/liposomal particles (siRNA/SMLs) prepared using ethanol/ether/water (3:1:1) mixture showed 120.4 ± 20.2 nm particle size, 0.174 ± 0.033 polydispersity and 86.5 ± 2.76% siRNA encapsulation rate. In addition, the SMLs almost completely protected the encapsulated siRNA from RNase A digestion. Coupling of anti-human epidermal growth factor receptor (EGFR) Fab' to siRNA/SMLs enhanced EGFR-specific cell penetration of SMLs and induced siRNA dependent gene silencing. Unexpectedly, the Cy5.5-labeled Fab' showed almost no in vivo targeting to the xenografted A549 tumors in SCID-NOD mice. However, multiple injection of the unmodified siRNA/SMLs accumulated in the tumors and induced siRNA-dependent in vivo gene silencing. These results demonstrate that the siRNA/SMLs can be used as a siRNA delivery tool for gene therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Mesoporous Silica Nanoparticle Delivery of Chemically Modified siRNA Against TWIST1 Leads to Reduced Tumor Burden

    PubMed Central

    Finlay, James; Roberts, Cai M.; Dong, Juyao; Zink, Jeffrey I.; Tamanoi, Fuyuhiko; Glackin, Carlotta A.

    2015-01-01

    Growth and progression of solid tumors depends on the integration of multiple pro-growth and survival signals, including the induction of angiogenesis. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer cell stemness, survival, and invasiveness. Additionally, TWIST1 drives angiogenesis via activation of IL-8 and CCL2, independent of VEGF signaling. In this work, results suggest that chemically modified siRNA against TWIST1 reverses EMT both in vitro and in vivo. siRNA delivery with a polyethyleneimine-coated mesoporous silica nanoparticle (MSN) led to reduction of TWIST1 target genes and migratory potential in vitro. In mice bearing xenograft tumors, weekly intravenous injections of the siRNA-nanoparticle complexes resulted in decreased tumor burden together with a loss of CCL2 suggesting a possible anti-angiogenic response. Therapeutic use of TWIST1 siRNA delivered via MSNs has the potential to inhibit tumor growth and progression in many solid tumor types. Chemically modified siRNA against TWIST1 was complexed to cation-coated mesoporous silica nanoparticles and tested in vitro and in vivo. In cell culture experiments, siRNA reduced expression of TWIST1 and its target genes, and reduced cell migration. In mice, injections of the siRNA-nanoparticle complex led to reduced tumor weight. Data suggest that diminished tumor burden was the result of reduced CCL2 expression and angiogenesis following TWIST1 knockdown. PMID:26115637

  10. Effects of a human plasma membrane-associated sialidase siRNA on prostate cancer invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaojie; Taizhou Polytechnic College, Taizhou; Zhang, Ling

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Neu3 is as one of the sialidases and regulates cell surface functions. Black-Right-Pointing-Pointer A Neu3-specific siRNA inhibited prostrate cancer cell invasion and migration. Black-Right-Pointing-Pointer The Neu3-specific siRNA inhibited prostate cancer metastasis in mice. Black-Right-Pointing-Pointer Targeting Neu3 may have utility for gene-based therapy of human cancer metastasis. -- Abstract: Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated themore » effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed

  11. Targeting CCl4 -induced liver fibrosis by RNA interference-mediated inhibition of cyclin E1 in mice.

    PubMed

    Bangen, Jörg-Martin; Hammerich, Linda; Sonntag, Roland; Baues, Maike; Haas, Ute; Lambertz, Daniela; Longerich, Thomas; Lammers, Twan; Tacke, Frank; Trautwein, Christian; Liedtke, Christian

    2017-10-01

    Initiation and progression of liver fibrosis requires proliferation and activation of resting hepatic stellate cells (HSCs). Cyclin E1 (CcnE1) is the regulatory subunit of the cyclin-dependent kinase 2 (Cdk2) and controls cell cycle re-entry. We have recently shown that genetic inactivation of CcnE1 prevents activation, proliferation, and survival of HSCs and protects from liver fibrogenesis. The aim of the present study was to translate these findings into preclinical applications using an RNA interference (RNAi)-based approach. CcnE1-siRNA (small interfering RNA) efficiently inhibited CcnE1 gene expression in murine and human HSC cell lines and in primary HSCs, resulting in diminished proliferation and increased cell death. In C57BL/6 wild-type (WT) mice, delivery of stabilized siRNA using a liposome-based carrier targeted approximately 95% of HSCs, 70% of hepatocytes, and 40% of CD45 + cells after single injection. Acute CCl 4 -mediated liver injury in WT mice induced endogenous CcnE1 expression and proliferation of surviving hepatocytes and nonparenchymal cells, including CD45 + leukocytes. Pretreatment with CcnE1-siRNA reverted CcnE1 induction to baseline levels of healthy mice, which was associated with reduced liver injury, diminished proliferation of hepatocytes and leukocytes, and attenuated overall inflammatory response. For induction of liver fibrosis, WT mice were challenged with CCl 4 for 4-6 weeks. Co-treatment with CcnE1-siRNA once a week was sufficient to continuously block CcnE1 expression and cell-cycle activity of hepatocytes and nonparenchymal cells, resulting in significantly ameliorated liver fibrosis and inflammation. Importantly, CcnE1-siRNA also prevented progression of liver fibrosis if applied after onset of chronic liver injury. Therapeutic targeting of CcnE1 in vivo using RNAi is feasible and has high antifibrotic activity. (Hepatology 2017;66:1242-1257). © 2017 by the American Association for the Study of Liver Diseases.

  12. Effective inhibition of HIV-1 production by short hairpin RNAs and small interfering RNAs targeting a highly conserved site in HIV-1 Gag RNA is optimized by evaluating alternative length formats.

    PubMed

    Scarborough, Robert J; Adams, Kelsey L; Daher, Aïcha; Gatignol, Anne

    2015-09-01

    We have previously identified a target site in HIV-1 RNA that was particularly accessible to a ribozyme and a short hairpin RNA (shRNA). To design small interfering RNAs (siRNAs) targeting this site, we evaluated the effects of siRNAs with different lengths on HIV-1 production. The potency and efficacy of these siRNAs were dependent on the length of their intended sense strand with trends for symmetrical and asymmetrical formats that were similar. Although a typical canonical format with a 21-nucleotide (nt) sense strand was effective at inhibiting HIV-1 production, Dicer substrate siRNAs (dsiRNAs) with the longest lengths (27 to 29 nucleotides) were the most effective. Induction of double-stranded RNA immune responses and effects on cell viability were not detected in cells transfected with different siRNAs, suggesting that the differences observed were not related to indirect effects on HIV-1 production. For the corresponding shRNA designs, a different trend in potency and efficacy against HIV-1 production was observed, with the most effective shRNAs having stem lengths from 20 to 27 bp. Our results highlight the importance of evaluating different designs to identify the best siRNA and shRNA formats for any particular target site and provide a set of highly effective molecules for further development as drug and gene therapies for HIV-1 infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Progress and perspective of inorganic nanoparticles based siRNA delivery system

    PubMed Central

    Jiang, Ying; Huo, Shuaidong; Hardie, Joseph; Liang, Xing-Jie; Rotello, Vincent M.

    2016-01-01

    Introduction Small interfering RNA (siRNA) is an effective method for regulating the expression of proteins, even “undruggable” ones that are nearly impossible to target through traditional small molecule therapeutics. Delivery to the cell and then to the cytosol is the primary requirement for realization of therapeutic potential of siRNA. Areas covered We summarize recent advances in the design of inorganic nanoparticle with surface functionality and physicochemical properties engineered for siRNA delivery. Specifically, we discuss the main approaches developed so far to load siRNA into/onto NPs, and NP surface chemistry engineered for enhanced intracellular siRNA delivery, endosomal escape, and targeted delivery of siRNA to disease cells and tissues. Expert Opinion Several challenges remain in developing inorganic NPs for efficient and effective siRNA delivery. Getting the material to the chosen site is important, however the greatest hurdle may well be delivery into the cytosol, either through efficient endosomal escape or by direct cytosolic siRNA delivery. Effective delivery at the organismic and cellular level coupled with biocompatible vehicles with low immunogenic response will facilitate the clinical translation of RNAi for the treatment of genetic diseases. PMID:26735861

  14. Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by siRNA silencing of tumor necrosis factor receptor-associated factor 2

    PubMed Central

    Zheng, Min; Morgan-Lappe, Susan E.; Yang, Jie; Bockbrader, Katrina M.; Pamarthy, Deepika; Thomas, Dafydd; Fesik, Stephen W.; Sun, Yi

    2008-01-01

    Radiotherapy combined with chemotherapy is the treatment of choice for glioblastoma and locally advanced lung cancer, but radioresistance of these two types of cancer remains a significant therapeutic hindrance. To identify molecular target(s) for radiosensitization, we screened a siRNA library targeting all protein kinases and E3 ubiquitin ligases in the human genome and identified TRAF2 (TNF Receptor-associated factor 2). Silencing of TRAF2 using siRNA caused a significant growth suppression of glioblastoma U251 cells and moderately sensitized these radioresistant cells to radiation. Overexpression of a RING deleted dominant negative TRAF2 mutant, also conferred radiosensitivity; whereas over-expression of wild type TRAF2 significantly protected cells from radiation-induced killing. Likewise, siRNA silencing of TRAF2 in radioresistant lung cancer H1299 cells caused growth suppression and radiosensitization, whereas overexpression of wild type TRAF2 enhanced radioresistance in a RING ligase-dependent manner. Moreover, siRNA silencing of TRAF2 in UM-SCC-1 head and neck cancer cells also conferred radiosensitization. Further support for the role of TRAF2 in cancer comes from the observations that TRAF2 is overexpressed in both lung adenocarcinoma tissues and multiple lung cancer cell lines. Importantly, TRAF2 expression was very low in normal bronchial epithelial NL20 cells, and TRAF2 silencing had a minimal effect on NL20 growth and radiation sensitivity. Mechanistically, TRAF2 silencing blocks the activation of the NF-kB signaling pathway, and down-regulates a number of G2/M cell cycle control proteins, resulting in enhanced G2/M arrest, growth suppression, and radiosensitization. Our studies suggest that TRAF2 is an attractive drug target for anti-cancer therapy and for radiosensitization. PMID:18794145

  15. Long (27-nucleotides) small inhibitory RNAs targeting E6 protein eradicate effectively the cervical cancer cells harboring human papilloma virus.

    PubMed

    Cho, Jun Sik; Lee, Shin-Wha; Kim, Yong-Man; Kim, Dongho; Kim, Dae-Yeon; Kim, Young-Tak

    2015-05-01

    This study was to identify small inhibitory RNAs (siRNAs) that are effective in inhibiting growth of cervical cancer cell lines harboring human papilloma virus (HPV) and to examine how siRNAs interact with interferon beta (IFN-β) and thimerosal. The HPV18-positive HeLa and C-4I cell lines were used. Four types of siRNAs were designed according to their target (both E6 and E7 vs. E6 only) and sizes (21- vs. 27-nucleotides); Ex-18E6/21, Ex-18E6/27, Sp-18E6/21, and Sp-18E6/27. Each siRNA-transfected cells were cultured with or without IFN-b and thimerosal and their viability was measured. The viabilities of HPV18-positive tumor cells were reduced by 21- and 27-nucleotide siRNAs in proportion to the siRNA concentrations. Of the two types of siRNAs, the 27-nucleotide siRNA constructs showed greater inhibitory efficacy. Sp-18E6 siRNAs, which selectively downregulates E6 protein only, were more effective than the E6- and E7-targeting Ex-18E6 siRNAs. siRNAs and IFN-β showed the synergistic effect to inhibit HeLa cell survival and the effect was proportional to both siRNA and IFN-β concentrations. Thimerosal in the presence of siRNA exerted a dose-dependent inhibition of C-4I cell survival. Finally, co-treatment with siRNA, IFN-β, and thimerosal induced the most profound decrease in the viability of both cell lines. Long (27-nucleotides) siRNAs targeting E6-E7 mRNAs effectively reduce the viability of HPV18-positive cervical cancer cells and show the synergistic effect in combination with IFN-b and thimerosal. It is necessary to find the rational design of siRNAs and effective co-factors to eradicate particular cervical cancer.

  16. Assessment of Nanobiotechnology-Targeted siRNA Designed to inhibit NF-kappaB Classical and Alternative Signaling in Breast Tumor Macrophages

    DTIC Science & Technology

    2013-07-01

    expression of key proteins within each pathway to examine their individual and combined roles with respect to potential breast cancer immunotherapy. We...selected as our initial targets the IKKβ activator (canonical) or p52 (alternative) proteins . In order to harness inhibition of these pathways to...intended to knockdown protein expression of NF-κB modulators with exceptional specificity for TAMs. TAM-specific nanoparticle targeting offers an

  17. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment.

    PubMed

    Jiang, Ying; Hardie, Joseph; Liu, Yuanchang; Ray, Moumita; Luo, Xiang; Das, Riddha; Landis, Ryan F; Farkas, Michelle E; Rotello, Vincent M

    2018-06-05

    The use of nanoparticle-stabilized nanocapsules for cytosolic siRNA delivery for immunomodulation in vitro and in vivo is reported. These NPSCs deliver siRNA directly to the cytosol of macrophages in vitro with concomitant knockdown of gene expression. In vivo studies showed directed delivery of NPSCs to the spleen, enabling gene silencing of macrophages, with preliminary studies showing 70% gene knockdown at a siRNA dose of 0.28 mg/kg. Significantly, the delivery of siRNA targeting tumor necrosis factor-α efficiently silenced TNF-α expression in LPS-challenged mice, demonstrating efficacy in modulating immune response in an organ-selective manner. This research highlights the potential of the NPSC platform for targeted immunotherapy and further manipulation of the immune system. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Efficient siRNA delivery system using carboxilated single-wall carbon nanotubes in cancer treatment.

    PubMed

    Neagoe, Ioana Berindan; Braicu, Cornelia; Matea, Cristian; Bele, Constantin; Florin, Graur; Gabriel, Katona; Veronica, Chedea; Irimie, Alexandru

    2012-08-01

    Several functionalized carbon nanotubes have been designed and tested for the purpose of nucleic acid delivery. In this study, the capacity of SWNTC-COOH for siRNA deliverey were investigated delivery in parallel with an efficient commercial system. Hep2G cells were reverse-transfected with 50 nM siRNA (p53 siRNA, TNF-alphasiRNA, VEGFsiRNA) using the siPORT NeoFX (Ambion) transfection agent in paralel with SWNTC-COOH, functionalised with siRNA. The highest level of gene inhibition was observed in the cases treated with p53 siRNA gene; in the case of transfection with siPort, the NeoFX value was 33.8%, while in the case of SWNTC-COOH as delivery system for p53 siRNA was 37.5%. The gene silencing capacity for VEGF was 53.7%, respectively for TNF-alpha 56.7% for siPORT NeoFX delivery systems versus 47.7% (VEGF) and 46.5% (TNF-alpha) for SWNTC-COOH delivery system. SWNTC-COOH we have been showed to have to be an efficient carrier system. The results from the inhibition of gene expresion for both transfection systems were confirmed at protein level. Overall, the lowest mRNA expression was confirmed at protein level, especially in the case of p53 siRNA and TNF-alpha siRNA transfection. Less efficient reduction protein expressions were observed in the case of VEGF siRNA, for both transfection systems at 24 h; only at 48 h, there was a statistically significant reduction of VEGF protein expression. SWCNT-COOH determined an efficient delivery of siRNA. SWNTC-COOH, combined with suitable tumor markers like p53 siRNA, TNFalpha siRNA or VEGF siRNA can be used for the efficient delivery of siRNA.

  19. The utility of tumor-specifically internalizing peptides for targeted siRNA delivery into human solid tumors.

    PubMed

    Un, Frank; Zhou, Bingsen; Yen, Yun

    2012-11-01

    Ribonucleotide reductase composed of the hRRM1 and hRRM2 subunits catalyzes the conversion of ribonucleotides to their corresponding deoxy forms for DNA replication. Anti-hRRM2 siRNA degrades hRRM2's mRNA and suppresses tumorigenesis. A Phase I clinical trial demonstrated its therapy potential. HN-1 represents a tumor-specifically internalizing peptide for targeted-drug delivery into human head and neck squamous cell carcinoma. Internalization of peptide was monitored by fluorescence microscopy. The peptide-siRNA conjugate was chemically synthesized. The hRRM2 expression was monitored by western blot analysis. HN-1(TYR) (HN-1 with two N-terminally added tyrosines) was internalized by human head and neck or breast cancer cells. Anti-hRRM2 siRNA(R) (resistant to RNase degradation) was conjugated to HN-1(TYR) without compromising their properties. The treatment with HN-1(TYR)-anti-hRRM2 siRNA(R) partly suppressed the endogenously expressed hRRM2 in human breast cancer cells. Our results establish the utility of tumor-specifically internalizing peptides for targeted siRNA delivery into human cancer cells.

  20. siRNA targeting decoy receptor 3 enhances the sensitivity of gastric carcinoma cells to 5-fluorouracil.

    PubMed

    Xu, Xiao-Tao; Tao, Ze-Zhang; Song, Qi-Bin; Yao, Yi; Ruan, Peng

    2012-09-01

    In order to investigate the effects of RNA interference of decoy receptor 3 (DcR3) on the sensitivity of gastric cancer cells to 5-fluorouracil (5-FU) and the relevant mechanisms, siRNA against DcR3 was transfected into the gastric cancer cell line AGS. AGS cells were treated with different doses of 5-FU or for different time periods. The sensitivity of AGS cells to 5-FU was determined. The cell survival rate was detected by MTT assay. The apoptotic rate was determined by DAPI staining, and the expression of related proteins were detected by western blot analysis. The results showed that the cell survival rate was significanlty decreased in the knockdown group compared to the control group at different doses of 5-FU (P<0.01). After different time periods of treatment with 5-FU, the cell survival rate in the knockdown group was significantly decreased compared to the control group, respectively (P<0.01). The apoptotic rate of AGS cells in the knockdown group was increased along with the increasing dose of siRNA. The siRNA against DcR3 enhanced the expression of Fas, FasL, caspase-3 and caspase-8. In conclusion, knockdown of DcR3 by RNA interference enhances apoptosis and inhibits the growth of gastric cancer cells. Downregulation of DcR3 enhances the sensitivity of gastric cancer cells to 5-FU and increased the expression of Fas, FasL and caspase-3/8.

  1. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma

    NASA Astrophysics Data System (ADS)

    Reddy, Teegala Lakshminarayan; Garikapati, Koteswara Rao; Reddy, S. Gopal; Reddy, B. V. Subba; Yadav, J. S.; Bhadra, Utpal; Bhadra, Manika Pal

    2016-10-01

    pH-sensitive drug carriers that are sensitive to the acidic (pH = ~6.5) microenvironments of tumor tissues have been primarily used as effective drug/gene/siRNA/microRNA carriers for releasing their payloads to tumor cells/tissues. Resistance to various drugs has become a big hurdle in systemic chemotherapy in cancer. Therefore delivery of chemotherapeutic agents and siRNA’s targeting anti apoptotic genes possess advantages to overcome the efflux pump mediated and anti apoptosis-related drug resistance. Here, we report the development of nanocarrier system prepared from kojic acid backbone-based cationic amphiphile containing endosomal pH-sensitive imidazole ring. This pH-sensitive liposomal nanocarrier effectively delivers anti-cancer drug (Paclitaxel; PTX) and siRNA (Bcl-2), and significantly inhibits cell proliferation and reduces tumor growth. Tumor inhibition response attributes to the synergistic effect of PTX potency and MDR reversing ability of Bcl-2 siRNA in the tumor supporting that kojic acid based liposomal pH-sensitive nanocarrier as efficient vehicle for systemic co-delivery of drugs and siRNA.

  2. Inhibition of coxsackievirus B3 replication by small interfering RNAs requires perfect sequence match in the central region of the viral positive strand.

    PubMed

    Yuan, Ji; Cheung, Paul K M; Zhang, Huifang M; Chau, David; Yang, Decheng

    2005-02-01

    Coxsackievirus B3 (CVB3) is the most common causal agent of viral myocarditis, but existing drug therapies are of limited value. Application of small interfering RNA (siRNA) in knockdown of gene expression is an emerging technology in antiviral gene therapy. To investigate whether RNA interference (RNAi) can protect against CVB3 infection, we evaluated the effects of RNAi on viral replication in HeLa cells and murine cardiomyocytes by using five CVB3-specific siRNAs targeting distinct regions of the viral genome. The most effective one is siRNA-4, targeting the viral protease 2A, achieving a 92% inhibition of CVB3 replication. The specific RNAi effects could last at least 48 h, and cell viability assay revealed that 90% of siRNA-4-pretreated cells were still alive and lacked detectable viral protein expression 48 h postinfection. Moreover, administration of siRNAs after viral infection could also effectively inhibit viral replication, indicating its therapeutic potential. Further evaluation by combination found that no enhanced inhibitory effects were observed when siRNA-4 was cotransfected with each of the other four candidates. In mutational analysis of the mechanisms of siRNA action, we found that siRNA functions by targeting the positive strand of virus and requires a perfect sequence match in the central region of the target, but mismatches were more tolerated near the 3' end than the 5' end of the antisense strand. These findings reveal an effective target for CVB3 silencing and provide a new possibility for antiviral intervention.

  3. Knocking down disease: a progress report on siRNA therapeutics

    PubMed Central

    Wittrup, Anders; Lieberman, Judy

    2016-01-01

    Small interfering RNAs (siRNAs), which downregulate gene expression guided by sequence complementarity, can be used therapeutically to block the synthesis of disease-causing proteins. The main obstacle to siRNA drugs — their delivery into the target cell cytosol — has been overcome to allow suppression of liver gene expression. Here, we review the results of recent clinical trials of siRNA therapeutics, which show efficient and durable gene knockdown in the liver, with signs of promising clinical outcomes and little toxicity. We also discuss the barriers to more widespread applications that target tissues besides the liver and the most promising avenues to overcome them. PMID:26281785

  4. Therapeutic effect for liver-metastasized tumor by sequential intravenous injection of anionic polymer and cationic lipoplex of siRNA.

    PubMed

    Hattori, Yoshiyuki; Arai, Shohei; Kikuchi, Takuto; Ozaki, Kei-Ichi; Kawano, Kumi; Yonemochi, Etsuo

    2016-04-01

    Previously, we developed a novel siRNA transfer method to the liver by sequential intravenous injection of anionic polymer and cationic liposome/siRNA complex (cationic lipoplex). In this study, we investigated whether siRNA delivered by this sequential injection could significantly suppress mRNA expression of the targeted gene in liver metastasis and inhibit tumor growth. When cationic lipoplex was intravenously injected into mice bearing liver metastasis of human breast tumor MCF-7 at 1 min after intravenous injection of chondroitin sulfate C (CS) or poly-l-glutamic acid (PGA), siRNA was accumulated in tumor-metastasized liver. In terms of a gene silencing effect, sequential injections of CS or PGA plus cationic lipoplex of luciferase siRNA could reduce luciferase activity in liver MCF-7-Luc metastasis. Regarding the side effects, sequential injections of CS plus cationic lipoplex did not exhibit hepatic damage or induction of inflammatory cytokines in serum after repeated injections, but sequential injections of PGA plus cationic lipoplex did. Finally, sequential injections of CS plus cationic lipoplex of protein kinase N3 siRNA could suppress tumor growth in the mice bearing liver metastasis. From these findings, sequential injection of CS and cationic lipoplex of siRNA might be a novel systemic method of delivering siRNA to liver metastasis.

  5. Knockdown of antiapoptotic genes in breast cancer cells by siRNA loaded into hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    João de Mello, Leônidas, Jr.; Rosa Souza, Gabriela Regina; Winter, Evelyn; Silva, Adny Henrique; Pittella, Frederico; Creczynski-Pasa, Tânia Beatriz

    2017-04-01

    Tumorigenesis is related to an imbalance in controlling mechanisms of apoptosis. Expression of the genes BCL-2 and BCL-xL results in the promotion of cell survival by inhibiting apoptosis. Thus, a novel approach to suppress antiapoptotic genes is the use of small interfering RNA (siRNA) in cancer cells. However, there are some limitations for the application of siRNA such as the need for vectors to pass the cell membrane and deliver the nucleic acid. In this study CaP-siRNA-PEG-polyanion hybrid nanoparticles were developed to promote siRNA delivery to cultured human breast cancer cells (MCF-7) in order to evaluate whether the silencing of antiapoptotic genes BCL-2 and BCL-xL by siRNA would increase cancer cell death. After 48 h of incubation the expression of BCL-2 and BCL-xL genes decreased to 49% and 23%, respectively. The siRNA sequence used induced cancer cell death at a concentration of 200 nM siRNA after 72 h of incubation. As the targeted proteins are related to the resistance to chemotherapeutic drugs, the nanocarriers systems were also tested in the presence of doxorubicin (DOX). The results showed a significant reduction in the CC50 of the DOX, after silencing the antiapoptotic genes. In addition, an increase in apoptotic cell counts for both incubations conditions was observed as well. In conclusion, silencing antiapoptotic genes such as BCL-2 and BCL-xL through the use of siRNA carried by hybrid nanoparticles showed to be effective in vitro, and presents a promising strategy for pre-clinical analysis, especially when combined with DOX against breast cancer.

  6. Development of siRNA expression vector utilizing rock bream beta-actin promoter: a potential therapeutic tool against viral infection in fish.

    PubMed

    Zenke, Kosuke; Nam, Yoon Kwon; Kim, Ki Hong

    2010-01-01

    In the present study, we have developed short interfering RNA (siRNA) expression vector utilizing rock bream beta-actin promoter and examined the possible use for the inhibition of highly pathogenic fish virus, rock bream iridovirus (RBIV), replication in vitro. Initially, in order to express siRNA effectively, we added several modifications to wild-type rock bream beta-actin promoter. Next, we succeeded in knocking down the expression of enhanced green fluorescent protein reporter gene expression in fish cells using newly developed vector more effectively than the fugu U6 promoter-driven vector we described previously. Finally, we could observe that cells transfected with modified rock bream beta-actin promoter-driven siRNA expression vector targeting major capsid protein (MCP) gene of RBIV exhibited more resistance to RBIV challenge than other control cells. Our results indicate that this novel siRNA expression vector can be used as a new tool for therapeutics in virus infection in fish species.

  7. Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles.

    PubMed

    Liu, Yang; Zhu, Yan-Hua; Mao, Cheng-Qiong; Dou, Shuang; Shen, Song; Tan, Zi-Bin; Wang, Jun

    2014-10-28

    There is no effective clinical therapy yet for triple-negative breast cancer (TNBC) without particular human epidermal growth factor receptor-2, estrogen and progesterone receptor expression. In this study, we report a molecularly targeted and synthetic lethality-based siRNA therapy for TNBC treatment, using cationic lipid assisted poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PLA) nanoparticles as the siRNA carrier. It is demonstrated that only in c-Myc overexpressed TNBC cells, while not in normal mammary epithelial cells, delivery of siRNA targeting cyclin-dependent kinase 1 (CDK1) with the nanoparticle carrier (NPsiCDK1) induces cell viability decreasing and cell apoptosis through RNAi-mediated CDK1 expression inhibition, indicating the synthetic lethality between c-Myc with CDK1 in TNBC cells. Moreover, systemic delivery of NPsiCDK1 is able to suppress tumor growth in mice bearing SUM149 and BT549 xenograft and cause no systemic toxicity or activate the innate immune response, suggesting the therapeutic promise with such nanoparticles carrying siCDK1 for c-Myc overexpressed triple negative breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Nonviral siRNA delivery for gene silencing in neurodegenerative diseases.

    PubMed

    Prakash, Satya; Malhotra, Meenakshi; Rengaswamy, Venkatesh

    2010-01-01

    Linking genes with the underlying mechanisms of diseases is one of the biggest challenges of genomics-driven drug discovery research. Designing an inhibitor for any neurodegenerative disease that effectively halts the pathogenicity of the disease is yet to be achieved. The challenge lies in crossing the blood-brain barrier (BBB)/blood-cerebrospinal fluid barrier (BCSFB) to reach the catalytic pockets of the enzyme/protein involved in the molecular mechanism of the disease process. Designing siRNA with exquisite specificity may result in selective suppression of the disease-linked gene. Although siRNA is the most promising method, it loses its potency in downregulating the gene due to its inherent instability, off-target effects, and lack of on-target effective delivery systems. Viral as well as nonviral delivery methods have been effectively tested in vivo for silencing of molecular targets and have resulted in significant efficacy in animal models of Alzheimer's disease, amyotrophic lateral sclerosis (ALS), anxiety, depression, encephalitis, glioblastoma, Huntington's disease, neuropathic pain, and spinocerebellar ataxia. To realize the full therapeutic potential of siRNA for neurodegenerative diseases, we need to overcome many hurdles and challenges such as selecting suitable tissue-specific delivery vectors, minimizing the off-target effects, and achieving distribution in sufficient concentrations at the target tissue without any side effects. Cationic nanoparticle-mediated targeted siRNA delivery for therapeutic purposes has gained considerable clinical importance as a result of its promising efficacy.

  9. AKT2 siRNA delivery with amphiphilic-based polymeric micelles show efficacy against cancer stem cells.

    PubMed

    Rafael, Diana; Gener, Petra; Andrade, Fernanda; Seras-Franzoso, Joaquin; Montero, Sara; Fernández, Yolanda; Hidalgo, Manuel; Arango, Diego; Sayós, Joan; Florindo, Helena F; Abasolo, Ibane; Schwartz, Simó; Videira, Mafalda

    2018-11-01

    Development of RNA interference-based therapies with appropriate therapeutic window remains a challenge for advanced cancers. Because cancer stem cells (CSC) are responsible of sustaining the metastatic spread of the disease to distal organs and the progressive gain of resistance of advanced cancers, new anticancer therapies should be validated specifically for this subpopulation of cells. A new amphihilic-based gene delivery system that combines Pluronic ® F127 micelles with polyplexes spontaneously formed by electrostatic interaction between anionic siRNA and cationic polyethylenimine (PEI) 10K, was designed (PM). Resultant PM gather the requirements for an efficient and safe transport of siRNA in terms of its physicochemical characteristics, internalization capacity, toxicity profile and silencing efficacy. PM were loaded with a siRNA against AKT2, an important oncogene involved in breast cancer tumorigenesis, with a special role in CSC malignancy. Efficacy of siAKT2-PM was validated in CSC isolated from two breast cancer cell lines: MCF-7 and Triple Negative MDA-MB-231 corresponding to an aggressive subtype of breast cancer. In both cases, we observed significant reduction on cell invasion capacity and strong inhibition of mammosphere formation after treatment. These results prompt AKT2 inhibition as a powerful therapeutic target against CSC and pave the way to the appearance of more effective nanomedicine-based gene therapies aimed to prevent CSC-related tumor recurrence.

  10. Fluorescence Cross-Correlation Spectroscopy Reveals Mechanistic Insights into the Effect of 2′-O-Methyl Modified siRNAs in Living Cells

    PubMed Central

    Ohrt, Thomas; Staroske, Wolfgang; Mütze, Jörg; Crell, Karin; Landthaler, Markus; Schwille, Petra

    2011-01-01

    RNA interference (RNAi) offers a powerful tool to specifically direct the degradation of complementary RNAs, and thus has great therapeutic potential for targeting diseases. Despite the reported preferences of RNAi, there is still a need for new techniques that will allow for a detailed mechanistic characterization of RNA-induced silencing complex (RISC) assembly and activity to further improve the biocompatibility of modified siRNAs. In contrast to previous reports, we investigated the effects of 2′-O-methyl (2′OMe) modifications introduced at specific positions within the siRNA at the early and late stages of RISC assembly, as well as their influence on target recognition and cleavage directly in living cells. We found that six to 10 2′OMe nucleotides on the 3′-end inhibit passenger-strand release as well as target-RNA cleavage without changing the affinity, strand asymmetry, or target recognition. 2′OMe modifications introduced at the 5′-end reduced activated RISC stability, whereas incorporations at the cleavage site showed only minor effects on passenger-strand release when present on the passenger strand. Our new fluorescence cross-correlation spectroscopy assays resolve different steps and stages of RISC assembly and target recognition with heretofore unresolved detail in living cells, which is needed to develop therapeutic siRNAs with optimized in vivo properties. PMID:21689532

  11. Combination Anticancer Nanopreparations of Novel Proapoptotic Drug, TRAIL and siRNA

    NASA Astrophysics Data System (ADS)

    Riehle, Robert D.

    . The addition of TNFa-related apoptosis-inducing ligand (TRAIL) bound to the surface of the micelle creates a combination micelle with excellent cytotoxic effects. TRAIL has been shown to be an effective apoptosis inducing ligand in a variety of in vitro and in vivo studies. TRAIL receptors are preferentially expressed on many cancer cell types as compared to healthy cells making this ligand an intriguing potential therapy. The combination of TRAIL and PIP3-PH inhibitors in a micellar delivery system has the potential to create a powerful anti-cancer therapeutic. Including modified siRNA to down regulate cancer defense mechanisms can further sensitize the cell to apoptosis. siRNA delivery has been shown to be a difficult task. Rapid metabolism and clearance in the blood hinders their ability to reach the tumor. Additionally, their large size and negative charge prevents them from crossing the cell membrane to reach their location of action. Reversibly conjugating a modified siRNA to a lipid thereby creating an siRNA-S-S-PE, allows for their incorporation into PEG-PE micelles. These mixed micelles have been shown to protect the siRNA and successfully transfect cells. This study aimed to combine the aforementioned therapeutics into a multifunctional PEG-PE based micelle delivery system. Novel proapoptotic drugs targeting the PIP3-PH binding domain have been successfully incorporated into the lipid core of the micelle. These drugs were able to effectively sensitize the cell to the effects of surface-bound TRAIL. Additionally, siRNA targeting the anti-apoptotic protein survivin was shown to be incorporated into the micelles and further sensitize the tumor to the effects of the above compounds. Lastly, conjugating transferrin (TF) to the surface of the micelle was shown increase the tumor cell targeting and cytotoxicity in vitro. Critical evaluation of this system was performed along the following specific aims: (1) characterization of PIP3-PH inhibition and cytotoxicity of

  12. New Type of BACE1 siRNA Delivery to Cells

    PubMed Central

    Jabłkowski, Maciej; Szemraj, Maciej; Oszajca, Katarzyna; Janiszewska, Grażyna; Bartkowiak, Jacek; Szemraj, Janusz

    2014-01-01

    Background Small interfering RNA (siRNA) gene therapy is a new molecular approach in the search for an efficient therapy for Alzheimer disease (AD), based on the principle of RNA interference. Reducing BACE activity can have great therapeutic potential for the treatment of AD. In this study, receptor-mediated delivery was used to deliver opioid peptide-conjugated BACE 1 to INR-32 human neuroblastoma cells. Material/Methods An INR-32 human neuroblastoma cell line was stably transfected to express the APP cDNA coding fragment containing the predicted sites for cleavage by α, β, or γ-secretase. This was then treated with BACE 1 siRNA to silence BACE gene expression. BACE gene transcription and translation was determined using BACE-1 siRNA cross-linked with opioid peptide, together with RT-PCR, Western blot analysis, and ELISA. Results Receptor-mediated delivery was used to introduce BACE1 siRNA to the APP – INR 32 human neuroblastoma cells. Decreased BACE mRNA and protein expression were observed after the cells were transfected with BACE1 siRNA. Conclusions Delivery of BACE1 siRNA appears to specifically reduce the cleavage of APP by inhibiting BACE1 activity. PMID:25491230

  13. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates

    PubMed Central

    Grijalvo, Santiago; Alagia, Adele

    2018-01-01

    Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed. PMID:29415514

  14. A review on current status of antiviral siRNA.

    PubMed

    Qureshi, Abid; Tantray, Vaqar Gani; Kirmani, Altaf Rehman; Ahangar, Abdul Ghani

    2018-04-15

    Viral diseases like influenza, AIDS, hepatitis, and Ebola cause severe epidemics worldwide. Along with their resistant strains, new pathogenic viruses continue to be discovered so creating an ongoing need for new antiviral treatments. RNA interference is a cellular gene-silencing phenomenon in which sequence-specific degradation of target mRNA is achieved by means of complementary short interfering RNA (siRNA) molecules. Short interfering RNA technology affords a potential tractable strategy to combat viral pathogenesis because siRNAs are specific, easy to design, and can be directed against multiple strains of a virus by targeting their conserved gene regions. In this review, we briefly summarize the current status of siRNA therapy for representative examples from different virus families. In addition, other aspects like their design, delivery, medical significance, bioinformatics resources, and limitations are also discussed. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier - from Targeting to Safe Administration.

    PubMed

    Gomes, Maria João; Fernandes, Carlos; Martins, Susana; Borges, Fernanda; Sarmento, Bruno

    2017-03-01

    Blood-brain barrier is a tightly packed layer of endothelial cells surrounding the brain that acts as the main obstacle for drugs enter the central nervous system (CNS), due to its unique features, as tight junctions and drug efflux systems. Therefore, since the incidence of CNS disorders is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm and association efficiency close to 52 %. Their surface was functionalized with a peptide-binding transferrin receptor, in a site-oriented manner confirmed by NMR, and their targeting ability against human brain endothelial cells was successfully demonstrated by fluorescence microscopy and flow cytometry. The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without significant cytotoxicity, bring a new hopeful breath to the future of brain diseases therapies.

  16. In vivo gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation.

    PubMed

    Hegde, Vikas; Hickerson, Robyn P; Nainamalai, Sitheswaran; Campbell, Paul A; Smith, Frances J D; McLean, W H Irwin; Pedrioli, Deena M Leslie

    2014-12-28

    Therapeutics based on short interfering RNAs (siRNAs), which act by inhibiting the expression of target transcripts, represent a novel class of potent and highly specific next-generation treatments for human skin diseases. Unfortunately, the intrinsic barrier properties of the skin combined with the large size and negative charge of siRNAs make epidermal delivery of these macromolecules quite challenging. To help evaluate the in vivo activity of these therapeutics and refine delivery strategies we generated an innovative reporter mouse model that predominantly expresses firefly luciferase (luc2p) in the paw epidermis--the region of murine epidermis that most closely models the tissue architecture of human skin. Combining this animal model with state-of-the-art live animal imaging techniques, we have developed a real-time in vivo analysis work-flow that has allowed us to compare and contrast the efficacies of a wide range nucleic acid-based gene silencing reagents in the skin of live animals. While inhibition was achieved with all of the reagents tested, only the commercially available "self-delivery" modified Accell-siRNAs (Dharmacon) produced potent and sustained in vivo gene silencing. Together, these findings highlight just how informative reliable reporter mouse models can be when assessing novel therapeutics in vivo. Using this work-flow, we developed a novel clinically-relevant topical formulation that facilitates non-invasive epidermal delivery of unmodified and "self-delivery" siRNAs. Remarkably, a sustained >40% luc2p inhibition was observed after two 1-hour treatments with Accell-siRNAs in our topical formulation. Importantly, our ability to successfully deliver siRNA molecules topically brings these novel RNAi-based therapeutics one-step closer to clinical use. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  17. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung.

    PubMed

    Tagalakis, Aristides D; Munye, Mustafa M; Ivanova, Rositsa; Chen, Hanpeng; Smith, Claire M; Aldossary, Ahmad M; Rosa, Luca Z; Moulding, Dale; Barnes, Josephine L; Kafetzis, Konstantinos N; Jones, Stuart A; Baines, Deborah L; Moss, Guy W J; O'Callaghan, Christopher; McAnulty, Robin J; Hart, Stephen L

    2018-05-10

    Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (V t ), short circuit current (I sc ), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced V t , the amiloride-sensitive I sc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    PubMed Central

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-01-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC–siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC–siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC–siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer. PMID:28440296

  19. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-04-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC-siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC-siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC-siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer.

  20. RNA interference inhibits herpes simplex virus type 1 isolated from saliva samples and mucocutaneous lesions.

    PubMed

    Silva, Amanda Perse da; Lopes, Juliana Freitas; Paula, Vanessa Salete de

    2014-01-01

    The aim of this study was to evaluate the use of RNA interference to inhibit herpes simplex virus type-1 replication in vitro. For herpes simplex virus type-1 gene silencing, three different small interfering RNAs (siRNAs) targeting the herpes simplex virus type-1 UL39 gene (sequence si-UL 39-1, si-UL 39-2, and si-UL 39-3) were used, which encode the large subunit of ribonucleotide reductase, an essential enzyme for DNA synthesis. Herpes simplex virus type-1 was isolated from saliva samples and mucocutaneous lesions from infected patients. All mucocutaneous lesions' samples were positive for herpes simplex virus type-1 by real-time PCR and by virus isolation; all herpes simplex virus type-1 from saliva samples were positive by real-time PCR and 50% were positive by virus isolation. The levels of herpes simplex virus type-1 DNA remaining after siRNA treatment were assessed by real-time PCR, whose results demonstrated that the effect of siRNAs on gene expression depends on siRNA concentration. The three siRNA sequences used were able to inhibit viral replication, assessed by real-time PCR and plaque assays and among them, the sequence si-UL 39-1 was the most effective. This sequence inhibited 99% of herpes simplex virus type-1 replication. The results demonstrate that silencing herpes simplex virus type-1 UL39 expression by siRNAs effectively inhibits herpes simplex virus type-1 replication, suggesting that siRNA based antiviral strategy may be a potential therapeutic alternative. Copyright © 2014. Published by Elsevier Editora Ltda.

  1. Inhibition of Hazara nairovirus replication by small interfering RNAs and their combination with ribavirin.

    PubMed

    Flusin, Olivier; Vigne, Solenne; Peyrefitte, Christophe N; Bouloy, Michèle; Crance, Jean-Marc; Iseni, Frédéric

    2011-05-21

    The genus Nairovirus in the family Bunyaviridae contains 34 tick-borne viruses classified into seven serogroups. Hazara virus (HAZV) belongs to the Crimean-Congo hemorrhagic fever (CCHF) serogroup that also includes CCHF virus (CCHFV) a major pathogen for humans. HAZV is an interesting model to study CCHFV due to a close serological and phylogenetical relationship and a classification which allows handling in a BSL2 laboratory. Nairoviruses are characterized by a tripartite negative-sense single stranded RNA genome (named L, M and S segments) that encode the RNA polymerase, the Gn-Gc glycoproteins and the nucleoprotein (NP), respectively. Currently, there are neither vaccines nor effective therapies for the treatment of any bunyavirus infection in humans. In this study we report, for the first time, the use of RNA interference (RNAi) as an approach to inhibit nairovirus replication. Chemically synthesized siRNAs were designed to target the mRNA produced by the three genomic segments. We first demonstrated that the siRNAs targeting the NP mRNA displayed a stronger antiviral effect than those complementary to the L and M transcripts in A549 cells. We further characterized the two most efficient siRNAs showing, that the induced inhibition is specific and associated with a decrease in NP synthesis during HAZV infection. Furthermore, both siRNAs depicted an antiviral activity when used before and after HAZV infection. We next showed that HAZV was sensitive to ribavirin which is also known to inhibit CCHFV. Finally, we demonstrated the additive or synergistic antiviral effect of siRNAs used in combination with ribavirin. Our study highlights the interest of using RNAi (alone or in combination with ribavirin) to treat nairovirus infection. This approach has to be considered for the development of future antiviral compounds targeting CCHFV, the most pathogenic nairovirus.

  2. Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy.

    PubMed

    Qian, Junmin; Xu, Minghui; Suo, Aili; Xu, Weijun; Liu, Ting; Liu, Xuefeng; Yao, Yu; Wang, Hongjie

    2015-03-01

    To minimize the side effects and enhance the efficiency of chemotherapy, a novel folate-decorated hydrophilic cationic star-block terpolymer, [poly(l-glutamic acid γ-hydrazide)-b-poly(N,N-dimethylaminopropyl methacrylamide)]3-g-poly(ethylene glycol) ((PGAH-b-PDMAPMA)3-g-PEG), with disulfide linkages between the PEG and PDMAPMA blocks, was developed for targeted co-delivery of doxorubicin and Bcl-2 small interfering RNA (siRNA) into breast cancer cells. The terpolymer was synthesized by a combination of ring-opening polymerization, reversible addition-fragmentation chain transfer polymerization, PEGylation and hydrazinolysis. The chemical structures of the polymers were confirmed by (1)H-NMR analysis. The terpolymer could conjugate doxorubicin via an acid-labile hydrazone linkage and simultaneously efficiently complex siRNA through electrostatic interaction at N/P ratios of ⩾4:1 to form "two-in-one" nanomicelleplexes, which displayed a spherical shape and had an average size of 101.3 nm. The doxorubicin loading efficiency and content were 61.0 and 13.23%, respectively. The cytotoxicity, drug release profile, targeting ability, cellular uptake and intracellular distribution of the nanomicelleplexes were evaluated in vitro. We found that the release behaviors of doxorubicin and siRNA had a pH/reduction dual dependency. They were released faster under reductive acidic conditions (pH 5.0, glutathione: 10mM) than under physiological conditions (pH 7.4). The folate-decorated nanomicelleplexes could deliver doxorubicin and Bcl-2 siRNA more efficiently into the same MCF-7 cell and exhibited a higher cytotoxicity than non-targeted nanomicelleplexes. These results indicate that the terpolymer could act as an efficient vehicle for targeted intracellular co-delivery of doxorubicin and therapeutic siRNA in cancer therapy. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study

    PubMed Central

    2010-01-01

    Background Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. Results An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. Conclusions The knowledge gained from our study provides useful insights on how to analyze various cross

  4. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study.

    PubMed

    Liu, Qi; Xu, Qian; Zheng, Vincent W; Xue, Hong; Cao, Zhiwei; Yang, Qiang

    2010-04-10

    Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. The knowledge gained from our study provides useful insights on how to analyze various cross-platform RNAi data for uncovering

  5. Biodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing

    PubMed Central

    Du, Jing; Sun, Ying; Shi, Qiu-Sheng; Liu, Pei-Feng; Zhu, Ming-Jie; Wang, Chun-Hui; Du, Lian-Fang; Duan, You-Rong

    2012-01-01

    Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing. PMID:22312268

  6. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    PubMed Central

    Khraiwesh, Basel; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. PMID:21605713

  7. Effective Skin Cancer Treatment by Topical Co-delivery of Curcumin and STAT3 siRNA Using Cationic Liposomes.

    PubMed

    Jose, Anup; Labala, Suman; Ninave, Kunal Manoj; Gade, Sudeep Kumar; Venuganti, Venkata Vamsi Krishna

    2018-01-01

    The aim of the present study was to evaluate the effectiveness of iontophoretic co-delivery of curcumin and anti-STAT3 siRNA using cationic liposomes against skin cancer. Curcumin was encapsulated in DOTAP-based cationic liposomes and then complexed with STAT3 siRNA. This nanocomplex was characterized for the average particle size, zeta-potential, and encapsulation efficiency. The cell viability studies in B16F10 mouse melanoma cells have shown that the co-delivery of curcumin and STAT3 siRNA significantly (p < 0.05) inhibited the cancer cell growth compared with either liposomal curcumin or STAT3 siRNA alone. The curcumin-loaded liposomes were able to penetrate up to a depth of 160 μm inside the skin after iontophoretic (0.47 mA/cm 2 ) application. The in vivo efficacy studies were performed in the mouse model of melanoma skin cancer. Co-administration of the curcumin and STAT3 siRNA using liposomes significantly (p < 0.05) inhibited the tumor progression as measured by tumor volume and tumor weight compared with either liposomal curcumin or STAT3 siRNA alone. Furthermore, the iontophoretic administration of curcumin-loaded liposome-siRNA complex showed similar effectiveness in inhibiting tumor progression and STAT3 protein suppression compared with intratumoral administration. Taken together, cationic liposomes can be utilized for topical iontophoretic co-delivery of small molecule and siRNA for effective treatment of skin diseases.

  8. siRNA blocking the RAS signalling pathway and inhibits the growth of oesophageal squamous cell carcinoma in nude mice.

    PubMed

    Wang, Xinjie; Zheng, Yuling; Fan, Qingxia; Zhang, Xudong; Shi, Yonggang

    2014-12-01

    The aim of this study was to study RAS-siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS-siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS-siRNA group, paclitaxel group and RAS-siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS-siRNA group, and the number of apoptosis cells in the paclitaxel and RAS-siRNA group is significantly most than the paclitaxel group and RAS-siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS-siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS-siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Adenovirus Delivered Short Hairpin RNA Targeting a Conserved Site in the 5′ Non-Translated Region Inhibits All Four Serotypes of Dengue Viruses

    PubMed Central

    Korrapati, Anil Babu; Swaminathan, Gokul; Singh, Aarti; Khanna, Navin; Swaminathan, Sathyamangalam

    2012-01-01

    Background Dengue is a mosquito-borne viral disease caused by four closely related serotypes of Dengue viruses (DENVs). This disease whose symptoms range from mild fever to potentially fatal haemorrhagic fever and hypovolemic shock, threatens nearly half the global population. There is neither a preventive vaccine nor an effective antiviral therapy against dengue disease. The difference between severe and mild disease appears to be dependent on the viral load. Early diagnosis may enable timely therapeutic intervention to blunt disease severity by reducing the viral load. Harnessing the therapeutic potential of RNA interference (RNAi) to attenuate DENV replication may offer one approach to dengue therapy. Methodology/Principal Findings We screened the non-translated regions (NTRs) of the RNA genomes of representative members of the four DENV serotypes for putative siRNA targets mapping to known transcription/translation regulatory elements. We identified a target site in the 5′ NTR that maps to the 5′ upstream AUG region, a highly conserved cis-acting element essential for viral replication. We used a replication-defective human adenovirus type 5 (AdV5) vector to deliver a short-hairpin RNA (shRNA) targeting this site into cells. We show that this shRNA matures to the cognate siRNA and is able to inhibit effectively antigen secretion, viral RNA replication and infectious virus production by all four DENV serotypes. Conclusion/Significance The data demonstrate the feasibility of using AdV5-mediated delivery of shRNAs targeting conserved sites in the viral genome to achieve inhibition of all four DENV serotypes. This paves the way towards exploration of RNAi as a possible therapeutic strategy to curtail DENV infection. PMID:22848770

  10. Guanidinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymer as siRNA carriers for inhibiting human telomerase reverse transcriptase expression.

    PubMed

    Wu, Yang; Ji, Jinkai; Yang, Ran; Zhang, Xiaoqiang; Li, Yuanhui; Pu, Yuepu; Li, Xinsong

    2013-01-01

    In this report, a series of well-defined glucose- and guanidine-based cationic copolymers as gene carriers were developed to inhibit human telomerase reverse transcriptase (hTERT) gene expression. First of all, guandinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymers (guanidinylated GAPMA-s-APMA, abbreviated as GGA) were prepared via aqueous reversible addition--fragmentation chain transfer polymerization (RAFT). Then, three target hTERT siRNA TERT-1, TERT-2 and TERT-3 were designed and combined with GGA copolymers to form siRNA/GGA polyplexes. The polyplexes were examined by dynamic light scattering and agarose gel electrophoresis. The results indicated that GGA copolymers can condense siRNA effectively to form particles with the diameter from 157 nm to 411 nm and zeta potential values in the range from +3.7 to +15.8 mV at various charge ratios (N/P). The MTT assay data of siRNA/GGA polyplexes on human hepatocellular liver carcinoma cells (HepG2) indicated that GGA copolymer had better cell viabilities than polyethylenimine (PEI). Furthermore, the transfection of siRNA/GGA polyplexes was detected by real-time quantitative PCR (RT-qPCR) in HepG2. It was found that siRNA/GGA polyplexes could effectively silence hTERT mRNA expression in serum-free media (p<0.01). In the presence of serum, the hTERT mRNA expression in HepG2 cells have significant difference (p<0.01) between siRNA/GGA3 polyplexes and blank. The results showed that the GAPMA component can reduce the aggregation of protein in serum media. Therefore, the enhancement of transfection may be attributed to the combination of guadino groups and glucose component. And, the guandinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymers might be promise in gene delivery.

  11. Nanocarriers Assisted siRNA Gene Therapy for the Management of Cardiovascular Disorders.

    PubMed

    Maheshwari, Rahul; Tekade, Muktika; Sharma, Piyoosh A; Tekade, Rakesh Kumar

    2015-01-01

    Cardiovascular diseases (CVDs), primarily myocardial infarction (MI), atherosclerosis, hypertension and congestive heart failure symbolize the foremost cause of death in almost all parts of the world. Besides the traditional therapeutic approaches for the management of CVDs, newer innovative strategies are also emerging on the horizon. Recently, gene silencing via small interfering RNA (siRNA) is one of the hot topics amongst various strategies involved in the management of CVDs. The siRNA mechanism involves natural catalytic processes to silence pathological genes that are overexpressed in a particular disease. Also the versatility of gene expression by siRNA deciphers a prospective tactic to down-regulate diseases associated gene, protein or receptor existing on a specific disease target. This article reviews the application of siRNA against CVDs with special emphasis on gene targets in combination with delivery systems such as cationic hydrogels, polyplexes, peptides, liposomes and dendrimers.

  12. Peptide- and Amine-Modified Glucan Particles for the Delivery of Therapeutic siRNA

    PubMed Central

    Aouadi, Myriam; Vangala, Pranitha; Tencerova, Michaela; Amano, Shinya U.; Nicoloro, Sarah M.; Yawe, Joseph C.; Czech, Michael P.

    2016-01-01

    Translation of siRNA technology into the clinic is limited by the need for improved delivery systems that target specific cell types. Macrophages are particularly attractive targets for RNAi therapy because they promote pathogenic inflammatory responses in a number of important human diseases. We previously demonstrated that a multi-component formulation of β-1,3-D-glucan-encapsulated siRNA particles (GeRPs) can specifically and potently silence genes in mouse macrophages. A major advance would be to simplify the GeRP system by reducing the number of delivery components, thus enabling more facile manufacturing and future commercialization. Here we report the synthesis and evaluation of a simplified glucan-based particle (GP) capable of delivering siRNA in vivo to selectively silence macrophage genes. Covalent attachment of small-molecule amines and short peptides containing weak bases to GPs facilitated electrostatic interaction of the particles with siRNA and aided in the endosomal release of siRNA by the proton-sponge effect. Modified GPs were non-toxic and were efficiently internalized by macrophages in vitro. When injected intraperitoneally (i.p.), several of the new peptide-modified GPs were found to efficiently deliver siRNA to peritoneal macrophages in lean, healthy mice. In an animal model of obesity-induced inflammation, i.p. administration of one of the peptide-modified GPs (GP-EP14) bound to siRNA selectively reduced the expression of target inflammatory cytokines in the visceral adipose tissue macrophages. Decreasing adipose tissue inflammation resulted in an improvement of glucose metabolism in these metabolically challenged animals. Thus, modified GPs represent a promising new simplified system for the efficient delivery of therapeutic siRNAs specifically to phagocytic cells in vivo for modulation of inflammation responses. PMID:26815386

  13. First siRNA library screening in hard-to-transfect HUVEC cells

    PubMed Central

    Zumbansen, Markus; Altrogge, Ludger M; Spottke, Nicole UE; Spicker, Sonja; Offizier, Sheila M; Domzalski, Sandra BS; St Amand, Allison L; Toell, Andrea; Leake, Devin; Mueller-Hartmann, Herbert A

    2010-01-01

    Meaningful RNAi-based data for target gene identification are strongly dependent on the use of a biologically relevant cell type and efficient delivery of highly functional siRNA reagents into the selected cell type. Here we report the use of the Amaxa® Nucleofector® 96-well Shuttle® System for siRNA screening in primary cells. Lonza's Clonetics® HUVEC-Human Umbilical Vein Endothelial Cells were transfected with Thermo Scientific Dharmacon siGENOME® siRNA Libraries targeting protein kinases and cell cycle related genes and screened for genes important for cell viability. Of the 37 primary hits, down-regulation of 33 led to reduced proliferation or increased cell death, while down-regulation of two allowed for better cell viability. The validated four genes out of the 16 strongest primary hits (COPB2, PYCS, CDK4 and MYC) influenced cell proliferation to varying degrees, reflecting differing importance for survival of HUVEC cells. Our results demonstrate that the Nucleofector® 96-well Shuttle® System allows the delivery of siRNA libraries in cell types previously considered to be difficult to transfect. Thus, identification and validation of gene targets can now be conducted in primary cells, as the selection of cell types is not limited to those accessible by lipid-mediated transfection. PMID:20628494

  14. Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.

    PubMed

    Shajari, Neda; Mansoori, Behzad; Davudian, Sadaf; Mohammadi, Ali; Baradaran, Behzad

    2017-01-01

    Despite therapeutics based on siRNA have an immense potential for the treatment of incurable diseases such as cancers. However, the in vivo utilization of siRNA and also the delivery of this agent to the target site is one of the most controversial challenges. The helpful assistance by nanoparticles can improve stable delivery and also enhance efficacy. More nanoparticle-based siRNA therapeutics is expected to become available in the near future. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The studies were identified from seven databases (Scopus, Web of Science, Academic Search Premiere, CINAHL, Medline Ovid, Eric and Cochrane Library). Studies was selected based on titles, abstracts and full texts. One hundred twenty nine papers were included in the review. These papers defined hurdles in RNAi delivery and also strategies to overcome these hurdles. This review discussed the existing hurdles for systemic administration of siRNA as therapeutic agents and highlights the various strategies to overcome these hurdles, including lipid-based nanoparticles and polymeric nanoparticles, and we also briefly reviewed chemical modification. Delivery of siRNA to the target site is the biggest challenge for its application in the clinic. The findings of this review confirmed by encapsulation siRNA in the nanoparticles can overcome these challenges. The rapid progress in nanotechnology has enabled the development of effective nanoparticles as the carrier for siRNA delivery. However, our data about siRNA-based therapeutics and also nanomedicine are still limited. More clinical data needs to be completely understood in the benefits and drawbacks of siRNA-based therapeutics. Prospective studies must pay attention to the in vivo safety profiles of the different delivery systems, including uninvited immune system stimulation and cytotoxicity. In essence, the development of nontoxic, biocompatible, and biodegradable delivery systems for

  15. Inhibition of DNA nanotube-conjugated mTOR siRNA on the growth of pulmonary arterial smooth muscle cells.

    PubMed

    You, Zaichun; Qian, Hang; Wang, Changzheng; He, Binfeng; Yan, Jiawei; Mao, Chengde; Wang, Guansong

    2015-12-01

    Here we provide raw and processed data and methods behind mTOR siRNA loaded DNA nanotubes (siRNA-DNA-NTs) in the growth of pulmonary arterial smooth muscle cells (PASMCs) under both normoxic and hypoxic condition, and also related to (You et al., Biomaterials, 2015, 67:137-150, [1]). The MTT analysis, Semi-quantitative RT-PCR data presented here were used to probe cytotoxicity of mTOR siRNA-DNA-NT complex in its TAE-Mg(2+) buffer. siRNA-DNA-NTs have a lower cytotoxicity and higher transfection efficiency and can, based on inhibition of mTOR expression, decrease PASMCs growth both hypoxic and normal condition.

  16. Effective non-viral delivery of siRNA to acute myeloid leukemia cells with lipid-substituted polyethylenimines.

    PubMed

    Landry, Breanne; Aliabadi, Hamidreza Montazeri; Samuel, Anuja; Gül-Uludağ, Hilal; Jiang, Xiaoyan; Kutsch, Olaf; Uludağ, Hasan

    2012-01-01

    Use of small interfering RNA (siRNA) is a promising approach for AML treatment as the siRNA molecule can be designed to specifically target proteins that contribute to aberrant cell proliferation in this disease. However, a clinical-relevant means of delivering siRNA molecules must be developed, as the cellular delivery of siRNA is problematic. Here, we report amphiphilic carriers combining a cationic polymer (2 kDa polyethyleneimine, PEI2) with lipophilic moieties to facilitate intracellular delivery of siRNA to AML cell lines. Complete binding of siRNA by the designed carriers was achieved at a polymer:siRNA ratio of ≈ 0.5 and led to siRNA/polymer complexes of ≈ 100 nm size. While the native PEI2 did not display cytotoxicity on AML cell lines THP-1, KG-1 and HL-60, lipid-modification on PEI2 slightly increased the cytotoxicity, which was consistent with increased interaction of polymers with cell membranes. Cellular delivery of siRNA was dependent on the nature of lipid substituent and the extent of lipid substitution, and varied among the three AML cell lines used. Linoleic acid-substituted polymers performed best among the prepared polymers and gave a siRNA delivery equivalent to better performing commercial reagents. Using THP-1 cells and a reporter (GFP) and an endogenous (CXCR4) target, effective silencing of the chosen targets was achieved with 25 to 50 nM of siRNA concentrations, and without adversely affecting subsequent cell growth. We conclude that lipid-substituted PEI2 can serve as an effective delivery of siRNA to leukemic cells and could be employed in molecular therapy of leukemia.

  17. Effective Non-Viral Delivery of siRNA to Acute Myeloid Leukemia Cells with Lipid-Substituted Polyethylenimines

    PubMed Central

    Landry, Breanne; Aliabadi, Hamidreza Montazeri; Samuel, Anuja; Gül-Uludağ, Hilal; Jiang, Xiaoyan; Kutsch, Olaf; Uludağ, Hasan

    2012-01-01

    Use of small interfering RNA (siRNA) is a promising approach for AML treatment as the siRNA molecule can be designed to specifically target proteins that contribute to aberrant cell proliferation in this disease. However, a clinical-relevant means of delivering siRNA molecules must be developed, as the cellular delivery of siRNA is problematic. Here, we report amphiphilic carriers combining a cationic polymer (2 kDa polyethyleneimine, PEI2) with lipophilic moieties to facilitate intracellular delivery of siRNA to AML cell lines. Complete binding of siRNA by the designed carriers was achieved at a polymer:siRNA ratio of ∼0.5 and led to siRNA/polymer complexes of ∼100 nm size. While the native PEI2 did not display cytotoxicity on AML cell lines THP-1, KG-1 and HL-60, lipid-modification on PEI2 slightly increased the cytotoxicity, which was consistent with increased interaction of polymers with cell membranes. Cellular delivery of siRNA was dependent on the nature of lipid substituent and the extent of lipid substitution, and varied among the three AML cell lines used. Linoleic acid-substituted polymers performed best among the prepared polymers and gave a siRNA delivery equivalent to better performing commercial reagents. Using THP-1 cells and a reporter (GFP) and an endogenous (CXCR4) target, effective silencing of the chosen targets was achieved with 25 to 50 nM of siRNA concentrations, and without adversely affecting subsequent cell growth. We conclude that lipid-substituted PEI2 can serve as an effective delivery of siRNA to leukemic cells and could be employed in molecular therapy of leukemia. PMID:22952927

  18. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice.

    PubMed

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Martinez, Ana; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-03-23

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA- or HDAC4 siRNA-induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1 -/- mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets.

  19. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells.

    PubMed

    Cavallaro, Gennara; Farra, Rossella; Craparo, Emanuela Fabiola; Sardo, Carla; Porsio, Barbara; Giammona, Gaetano; Perrone, Francesca; Grassi, Mario; Pozzato, Gabriele; Grassi, Gabriele; Dapas, Barbara

    2017-06-20

    The limited efficacy of available treatments for hepatocellular carcinoma (HCC) requires the development of novel therapeutic approaches. We synthesized a novel cationic polymer based on α,β-poly-(N-2-hydroxyethyl)-d,L-aspartamide (PHEA) for drug delivery to HCC cells. The copolymer was synthesized by subsequent derivatization of PHEA with diethylene triamine (DETA) and with a polyethylene glycol (PEG) derivative bearing galactose (GAL) molecules, obtaining the cationic derivative PHEA-DETA-PEG-GAL. PHEA-DETA-PEG-GAL has suitable chemical-physical characteristics for a potential systemic use and can effectively deliver a siRNA (siE2F1) targeted against the transcription factor E2F1, a gene product involved in HCC. The presence of GAL residues in the polyplexes allows the targeting of HCC cells that express the asialo-glycoprotein receptor (ASGP-R). In these cells, but not in ASGP-R non-expressing cells, PHEA-DETA-PEG-GAL/siE2F1 polyplexes induce the reduction of the mRNA and protein levels of E2F1 and of E2F1-regulated genes, all involved in the promotion of the G1/S phase transition. This results in a decrease of cell proliferation with a G1/G0 phase cells accumulation. Notably, removal of GAL residue almost completely abrogates the targeting capacity of the developed polyplexes. In conclusion, the generated polyplexes demonstrate the potential to effectively contributing to the development of novel anti-HCC therapeutic approaches via a siRNA-targeted delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Prediction of siRNA potency using sparse logistic regression.

    PubMed

    Hu, Wei; Hu, John

    2014-06-01

    RNA interference (RNAi) can modulate gene expression at post-transcriptional as well as transcriptional levels. Short interfering RNA (siRNA) serves as a trigger for the RNAi gene inhibition mechanism, and therefore is a crucial intermediate step in RNAi. There have been extensive studies to identify the sequence characteristics of potent siRNAs. One such study built a linear model using LASSO (Least Absolute Shrinkage and Selection Operator) to measure the contribution of each siRNA sequence feature. This model is simple and interpretable, but it requires a large number of nonzero weights. We have introduced a novel technique, sparse logistic regression, to build a linear model using single-position specific nucleotide compositions which has the same prediction accuracy of the linear model based on LASSO. The weights in our new model share the same general trend as those in the previous model, but have only 25 nonzero weights out of a total 84 weights, a 54% reduction compared to the previous model. Contrary to the linear model based on LASSO, our model suggests that only a few positions are influential on the efficacy of the siRNA, which are the 5' and 3' ends and the seed region of siRNA sequences. We also employed sparse logistic regression to build a linear model using dual-position specific nucleotide compositions, a task LASSO is not able to accomplish well due to its high dimensional nature. Our results demonstrate the superiority of sparse logistic regression as a technique for both feature selection and regression over LASSO in the context of siRNA design.

  1. Engineering functional inorganic-organic hybrid systems: advances in siRNA therapeutics.

    PubMed

    Shen, Jianliang; Zhang, Wei; Qi, Ruogu; Mao, Zong-Wan; Shen, Haifa

    2018-03-21

    Cancer treatment still faces a lot of obstacles such as tumor heterogeneity, drug resistance and systemic toxicities. Beyond the traditional treatment modalities, exploitation of RNA interference (RNAi) as an emerging approach has immense potential for the treatment of various gene-caused diseases including cancer. The last decade has witnessed enormous research and achievements focused on RNAi biotechnology. However, delivery of small interference RNA (siRNA) remains a key challenge in the development of clinical RNAi therapeutics. Indeed, functional nanomaterials play an important role in siRNA delivery, which could overcome a wide range of sequential physiological and biological obstacles. Nanomaterial-formulated siRNA systems have potential applications in protection of siRNA from degradation, improving the accumulation in the target tissues, enhancing the siRNA therapy and reducing the side effects. In this review, we explore and summarize the role of functional inorganic-organic hybrid systems involved in the siRNA therapeutic advancements. Additionally, we gather the surface engineering strategies of hybrid systems to optimize for siRNA delivery. Major progress in the field of inorganic-organic hybrid platforms including metallic/non-metallic cores modified with organic shells or further fabrication as the vectors for siRNA delivery is discussed to give credit to the interdisciplinary cooperation between chemistry, pharmacy, biology and medicine.

  2. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    PubMed

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-28

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.

  3. Development and biophysical characterization of HK polymer for siRNA delivery to tumor in a mouse model

    NASA Astrophysics Data System (ADS)

    Chou, Szu-Ting

    was used to target the Raf-1 oncogene, an important mediator of tumor cell growth and angiogenesis. As in the luciferase studies, the polyplex reduced Raf-1 mRNA by more than 75%, and more importantly, the treatment inhibited the tumor growth by 60% in a mouse model. We anticipate that further design and engineering of HK carriers will improve the predictability and therapeutic activity of siRNA polyplexes in cancer treatment.

  4. Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription

    NASA Astrophysics Data System (ADS)

    Jang, Mihue; Kim, Jong Hwan; Nam, Hae Yun; Kwon, Ick Chan; Ahn, Hyung Jun

    2015-08-01

    For therapeutic applications of siRNA, there are technical challenges with respect to targeted and systemic delivery. We here report a new siRNA carrier, RNAtr NPs, in a way that multiple tandem copies of RNA hairpins as a result of rolling circle transcription (RCT) can be readily adapted in tumour-targeted and systemic siRNA delivery. RNAtr NPs provide a means of condensing large amounts of multimeric RNA transcripts into the compact nanoparticles, especially without the aid of polycationic agents, and thus reduce the risk of immunogenicity and cytotoxicity by avoiding the use of synthetic polycationic reagents. This strategy allows the design of a platform technology for systemic delivery of siRNA to tumour sites, because RCT reaction, which enzymatically generates RNA polymers in multiple copy numbers at low cost, can lead to directly accessible routes to targeted and systemic delivery. Therefore, RNAtr NPs suggest great potentials as the siRNA therapeutics for cancer treatment.

  5. Construction of Hyaluronic Tetrasaccharide Clusters Modified Polyamidoamine siRNA Delivery System.

    PubMed

    Ma, Yingcong; Sha, Meng; Cheng, Shixuan; Yao, Wang; Li, Zhongjun; Qi, Xian-Rong

    2018-06-14

    The CD44 protein, as a predominant receptor for hyaluronan (HA), is highly expressed on the surface of multiple tumor cells. HA, as a targeting molecule for a CD44-contained delivery system, increases intracellular drug concentration in tumor tissue. However, due to the weak binding ability of hyaluronan oligosaccharide to CD44, targeting for tumor drug delivery has been restricted. In this study, we first use a HA tetrasaccharide cluster as the target ligand to enhance the binding ability to CD44. A polyamidoamine (PAMAM) dendrimer was modified by a HA tetrasaccharide cluster as a nonviral vector for small interfering RNA (siRNA) delivery. The dendrimer/siRNA nanocomplexes increased the cellular uptake capacity of siRNA through the CD44 receptor-mediated endocytosis pathway, allowing the siRNA to successfully escape the endosome/lysosome. Compared with the control group, nanocomplexes effectively reduced the expression of GFP protein and mRNA in MDA-MB-231-GFP cells. This delivery system provides a foundation to increase the clinical applications of PAMAM nanomaterials.

  6. Embedding siRNA sequences targeting Apolipoprotein B100 in shRNA and miRNA scaffolds results in differential processing and in vivo efficacy

    PubMed Central

    Maczuga, Piotr; Lubelski, Jacek; van Logtenstein, Richard; Borel, Florie; Blits, Bas; Fakkert, Erwin; Costessi, Adalberto; Butler, Derek; van Deventer, Sander; Petry, Harald; Koornneef, Annemart; Konstantinova, Pavlina

    2013-01-01

    Overexpression of short hairpin RNA (shRNA) often causes cytotoxicity and using microRNA (miRNA) scaffolds can circumvent this problem. In this study, identically predicted small interfering RNA (siRNA) sequences targeting apolipoprotein B100 (siApoB) were embedded in shRNA (shApoB) or miRNA (miApoB) scaffolds and a direct comparison of the processing and long-term in vivo efficacy was performed. Next generation sequencing of small RNAs originating from shApoB- or miApoB-transfected cells revealed substantial differences in processing, resulting in different siApoB length, 5′ and 3′ cleavage sites and abundance of the guide or passenger strands. Murine liver transduction with adeno-associated virus (AAV) vectors expressing shApoB or miApoB resulted in high levels of siApoB expression associated with strong decrease of plasma ApoB protein and cholesterol. Expression of miApoB from the liver-specific LP1 promoter was restricted to the liver, while the H1 promoter-expressed shApoB was ectopically present. Delivery of 1 × 1011 genome copies AAV-shApoB or AAV-miApoB led to a gradual loss of ApoB and plasma cholesterol inhibition, which was circumvented by delivering a 20-fold lower vector dose. In conclusion, incorporating identical siRNA sequences in shRNA or miRNA scaffolds results in differential processing patterns and in vivo efficacy that may have serious consequences for future RNAi-based therapeutics. PMID:23089734

  7. Therapeutic Inhibition of miR-4260 Suppresses Colorectal Cancer via Targeting MCC and SMAD4.

    PubMed

    Xiao, Junjie; Lv, Dongchao; Zhou, Jinzhe; Bei, Yihua; Chen, Ting; Hu, Muren; Zhou, Qiulian; Fu, Siyi; Huang, Qi

    2017-01-01

    Dysregulation of microRNAs (miRNAs, miRs) and their putative target genes have been increasingly reported to contribute to colorectal cancer. However, miRNAs that directly target the mutated in colorectal cancer (MCC) gene, a tumor suppressor which is downregulated or inactivated in colorectal cancer, remain largely unknown. By using an array-based miRNA analysis, we identified a group of miRNAs that were dysregulated in human metastatic versus non-metastatic colorectal cancer tissues. One of these miRNAs, miR-4260, was predicted to target MCC in the miRDB database. Results using human HCT116 and HT29 colorectal cancer cell lines showed that miR-4260 mimic enhanced cell proliferation and migration and reduced apoptosis induced by the chemotherapeutic agent 5-fluorouracil while miR-4260 inhibitor had inverse effects. Furthermore, miR-4260 negatively regulated MCC as well as SMAD4 by directly binding to the 3'untranslational region (3'UTR). Using siRNAs targeting MCC or SMAD4, we showed that upregulation of MCC and SMAD4 was essential to mediate the functional roles of miR-4260 inhibitor in colorectal cancer cells. Our in vivo experiments indicated that inhibition of miR-4260 reduced colorectal tumor growth in nude mice subcutaneously implanted with HCT116 cells. Significantly, miR-4260 was increased in human colorectal cancer tissues with simultaneous downregulation of MCC and SMAD4, strongly suggesting the clinical relevance of targeting miR-4260 in the treatment of colorectal cancer. In summary, we identified miR-4260 as a novel oncomiR for colorectal cancer that targets MCC and SMAD4. Inhibition of miR-4260 can, therefore, be a potential therapeutic strategy for colorectal cancer.

  8. Knocking down cyclin D1b inhibits breast cancer cell growth and suppresses tumor development in a breast cancer model.

    PubMed

    Wei, Min; Zhu, Li; Li, Yafen; Chen, Weiguo; Han, Baosan; Wang, Zhiwei; He, Jianrong; Yao, Hongliang; Yang, Zhongyin; Zhang, Qing; Liu, Bingya; Gu, Qinlong; Zhu, Zhenggang; Shen, Kunwei

    2011-08-01

    Cyclin D1 is aberrantly expressed in many types of cancers, including breast cancer. High levels of cyclin D1b, the truncated isoform of cyclin D1, have been reported to be associated with a poor prognosis for breast cancer patients. In the present study, we used siRNA to target cyclin D1b overexpression and assessed its ability to suppress breast cancer growth in nude mice. Cyclin D1b siRNA effectively inhibited overexpression of cyclin D1b. Depletion of cyclin D1b promoted apoptosis of cyclin D1b-overexpressing cells and blocked their proliferation and transformation phenotypes. Notably, cyclin D1b overexpression is correlated with triple-negative basal-like breast cancers, which lack specific therapeutic targets. Administration of cyclin D1b siRNA inhibited breast tumor growth in nude mice and cyclin D1b siRNA synergistically enhanced the cell killing effects of doxorubicin in cell culture, with this combination significantly suppressing tumor growth in the mouse model. In conclusion, the results indicate that cyclin D1b, which is overexpressed in breast cancer, may serve as a novel and effective therapeutic target. More importantly, the present study clearly demonstrated a very promising therapeutic potential for cyclin D1b siRNA in the treatment of cyclin D1b-overexpressing breast cancers, including the very malignant triple-negative breast cancers. © 2011 Japanese Cancer Association.

  9. 2'-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity.

    PubMed

    Wu, Sherry Y; Yang, Xianbin; Gharpure, Kshipra M; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H; Nagaraja, Archana S; Miyake, Takahito M; Rupaimoole, Rajesha; Pecot, Chad V; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J; Previs, Rebecca A; Armaiz-Pena, Guillermo N; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J; Kovvali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A J; Overwijk, Willem W; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A; Lopez-Berestein, Gabriel; Ram, Prahlad T; Nawrot, Barbara; Sood, Anil K

    2014-03-12

    Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2'-O-Methyl (2'-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2'-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM domain containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumours following MePS2-modified siRNA treatment, leading to a synergistic anti-tumour effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types.

  10. Tripartite polyionic complex (PIC) micelles as non-viral vectors for mesenchymal stem cell siRNA transfection.

    PubMed

    Raisin, Sophie; Morille, Marie; Bony, Claire; Noël, Danièle; Devoisselle, Jean-Marie; Belamie, Emmanuel

    2017-08-22

    In the context of regenerative medicine, the use of RNA interference mechanisms has already proven its efficiency in targeting specific gene expression with the aim of enhancing, accelerating or, more generally, directing stem cell differentiation. However, achievement of good transfection levels requires the use of a gene vector. For in vivo applications, synthetic vectors are an interesting option to avoid possible issues associated with viral vectors (safety, production costs, etc.). Herein, we report on the design of tripartite polyionic complex micelles as original non-viral polymeric vectors suited for mesenchymal stem cell transfection with siRNA. Three micelle formulations were designed to exhibit pH-triggered disassembly in an acidic pH range comparable to that of endosomes. One formulation was selected as the most promising with the highest siRNA loading capacity while clearly maintaining pH-triggered disassembly properties. A thorough investigation of the internalization pathway of micelles into cells with tagged siRNA was made before showing an efficient inhibition of Runx2 expression in primary bone marrow-derived stem cells. This work evidenced PIC micelles as promising synthetic vectors that allow efficient MSC transfection and control over their behavior, from the perspective of their clinical use.

  11. Identifying and targeting determinants of melanoma cellular invasion.

    PubMed

    Jayachandran, Aparna; Prithviraj, Prashanth; Lo, Pu-Han; Walkiewicz, Marzena; Anaka, Matthew; Woods, Briannyn L; Tan, BeeShin; Behren, Andreas; Cebon, Jonathan; McKeown, Sonja J

    2016-07-05

    Epithelial-to-mesenchymal transition is a critical process that increases the malignant potential of melanoma by facilitating invasion and dissemination of tumor cells. This study identified genes involved in the regulation of cellular invasion and evaluated whether they can be targeted to inhibit melanoma invasion. We identified Peroxidasin (PXDN), Netrin 4 (NTN4) and GLIS Family Zinc Finger 3 (GLIS3) genes consistently elevated in invasive mesenchymal-like melanoma cells. These genes and proteins were highly expressed in metastatic melanoma tumors, and gene silencing led to reduced melanoma invasion in vitro. Furthermore, migration of PXDN, NTN4 or GLIS3 siRNA transfected melanoma cells was inhibited following transplantation into the embryonic chicken neural tube compared to control siRNA transfected melanoma cells. Our study suggests that PXDN, NTN4 and GLIS3 play a functional role in promoting melanoma cellular invasion, and therapeutic approaches directed toward inhibiting the action of these proteins may reduce the incidence or progression of metastasis in melanoma patients.

  12. Identifying and targeting determinants of melanoma cellular invasion

    PubMed Central

    Jayachandran, Aparna; Prithviraj, Prashanth; Lo, Pu-Han; Walkiewicz, Marzena; Anaka, Matthew; Woods, Briannyn L.; Tan, BeeShin

    2016-01-01

    Epithelial-to-mesenchymal transition is a critical process that increases the malignant potential of melanoma by facilitating invasion and dissemination of tumor cells. This study identified genes involved in the regulation of cellular invasion and evaluated whether they can be targeted to inhibit melanoma invasion. We identified Peroxidasin (PXDN), Netrin 4 (NTN4) and GLIS Family Zinc Finger 3 (GLIS3) genes consistently elevated in invasive mesenchymal-like melanoma cells. These genes and proteins were highly expressed in metastatic melanoma tumors, and gene silencing led to reduced melanoma invasion in vitro. Furthermore, migration of PXDN, NTN4 or GLIS3 siRNA transfected melanoma cells was inhibited following transplantation into the embryonic chicken neural tube compared to control siRNA transfected melanoma cells. Our study suggests that PXDN, NTN4 and GLIS3 play a functional role in promoting melanoma cellular invasion, and therapeutic approaches directed toward inhibiting the action of these proteins may reduce the incidence or progression of metastasis in melanoma patients. PMID:27172792

  13. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice

    PubMed Central

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Martinez, Ana; Faghihi, Mohammad A.; Jope, Richard S.; Beurel, Eleonore

    2017-01-01

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA– or HDAC4 siRNA–induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1–/– mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets. PMID:28352664

  14. EGFP-EGF1-Conjugated PLGA Nanoparticles for Targeted Delivery of siRNA into Injured Brain Microvascular Endothelial Cells for Efficient RNA Interference

    PubMed Central

    Chen, Chen; Mei, Heng; Shi, Wei; Deng, Jun; Zhang, Bo; Guo, Tao; Wang, Huafang; Hu, Yu

    2013-01-01

    Injured endothelium is an important target for drug and/or gene therapy because brain microvascular endothelial cells (BMECs) play critical roles in various pathophysiological conditions. RNA-mediated gene silencing presents a new therapeutic approach for treating such diseases, but major challenge is to ensure minimal toxicity and target delivery of siRNA to injured BMECs. Injured BMECs overexpress tissue factor (TF), which the fusion protein EGFP-EGF1 could be targeted to. In this study, TNF alpha (TNF-α) was chosen as a stimulus for primary BMECs to produce injured endothelium in vitro. The EGFP-EGF1-PLGA nanoparticles (ENPs) with loaded TF-siRNA were used as a new carrier for targeted delivery to the injured BMECs. The nanoparticles then produced intracellular RNA interference against TF. We compared ENP-based transfections with NP-mediated transfections, and our studies show that the ENP-based transfections result in a more efficient downregulation of TF. Our findings also show that the TF siRNA-loaded ENPs had minimal toxicity, with almost 96% of the cells viable 24 h after transfection while Lipofectamine-based transfections resulted in only 75% of the cells. Therefore, ENP-based transfection could be used for efficient siRNA transfection to injured BMECs and for efficient RNA interference (RNAi). This transfection could serve as a potential treatment for diseases, such as stroke, atherosclerosis and cancer. PMID:23593330

  15. Therapeutic siRNAs for dominant genetic skin diseases including pachyonychia congenita

    PubMed Central

    Leachman, Sancy A.; Hickerson, Robyn P.; Hull, Peter R.; Smith, Frances J. D.; Milstone, Leonard M.; Lane, E. Birgitte; Bale, Sherri J.; Roop, Dennis R.; McLean, W. H. Irwin; Kaspar, Roger L.

    2008-01-01

    The field of science and medicine has experienced a flood of data and technology associated with the human genome project. Over 10,000 human diseases have been genetically defined, but little progress has been made with respect to the clinical application of this knowledge. A notable exception to this exists for pachyonychia congenita (PC), a rare, dominant negative keratin disorder. The establishment of a non-profit organization, PC Project, has led to an unprecedented coalescence of patients, scientists, and physicians with a unified vision of developing novel therapeutics for PC. Utilizing the technological by-products of the human genome project, such as RNA interference (RNAi) and quantitative RT-PCR (qRT-PCR), physicians and scientists have collaborated to create a candidate siRNA therapeutic that selectively inhibits a mutant allele of KRT6A, the most commonly affected PC keratin. In vitro investigation of this siRNA demonstrates potent inhibition of the mutant allele and reversal of the cellular aggregation phenotype. In parallel, an allele-specific quantitative real time RT-PCR assay has been developed and validated on patient callus samples in preparation for clinical trials. If clinical efficacy is ultimately demonstrated, this “first-in-skin” siRNA may herald a paradigm shift in the treatment of dominant negative genetic disorders. PMID:18495438

  16. Therapeutic siRNAs for dominant genetic skin disorders including pachyonychia congenita.

    PubMed

    Leachman, Sancy A; Hickerson, Robyn P; Hull, Peter R; Smith, Frances J D; Milstone, Leonard M; Lane, E Birgitte; Bale, Sherri J; Roop, Dennis R; McLean, W H Irwin; Kaspar, Roger L

    2008-09-01

    The field of science and medicine has experienced a flood of data and technology associated with the human genome project. Over 10,000 human diseases have been genetically defined, but little progress has been made with respect to the clinical application of this knowledge. A notable exception to this exists for pachyonychia congenita (PC), a rare, dominant-negative keratin disorder. The establishment of a non-profit organization, PC Project, has led to an unprecedented coalescence of patients, scientists, and physicians with a unified vision of developing novel therapeutics for PC. Utilizing the technological by-products of the human genome project, such as RNA interference (RNAi) and quantitative RT-PCR (qRT-PCR), physicians and scientists have collaborated to create a candidate siRNA therapeutic that selectively inhibits a mutant allele of KRT6A, the most commonly affected PC keratin. In vitro investigation of this siRNA demonstrates potent inhibition of the mutant allele and reversal of the cellular aggregation phenotype. In parallel, an allele-specific quantitative real-time RT-PCR assay has been developed and validated on patient callus samples in preparation for clinical trials. If clinical efficacy is ultimately demonstrated, this "first-in-skin" siRNA may herald a paradigm shift in the treatment of dominant-negative genetic disorders.

  17. INTRARENAL GHRELIN RECEPTOR INHIBITION AMELIORATES ANGIOTENSIN II-DEPENDENT HYPERTENSION IN RATS.

    PubMed

    Kemp, Brandon A; Howell, Nancy L; Padia, Shetal H

    2018-06-20

    The intrarenal ghrelin receptor (GR) is localized to collecting duct (CD) cells where it increases αENaC-dependent sodium reabsorption in rodents. We hypothesized that chronic GR inhibition with intrarenal GR siRNA lowers blood pressure (BP) in Angiotensin II-dependent hypertension via reductions in αENaC-dependent sodium reabsorption. Uninephrectomized Sprague-Dawley rats (N=121) received subcutaneous osmotic pumps for chronic systemic delivery of Angiotensin II or vehicle (5% dextrose in water). Rats also received intrarenal infusion of vehicle, GR siRNA, or scrambled (SCR) siRNA. In rats receiving intrarenal vehicle or intrarenal SCR siRNA, systemic Angiotensin II infusion increased sodium retention and BP on day 1, and BP remained elevated throughout the 5-day study. These rats also demonstrated increased CD GR expression after 5 days of infusion. However, intrarenal GR siRNA infusion prevented Angiotensin II-mediated sodium retention on day 1, induced a continuously negative cumulative sodium balance compared with Angiotensin II alone, and reduced BP chronically. Glomerular filtration rate and renal blood flow remained unchanged in GR siRNA-infused rats. Systemic Angiotensin II infusion also increased serum aldosterone levels, CD αENaC and pSGK1 expression in rats with intrarenal SCR siRNA; however these effects were not observed in the presence of intrarenal GR siRNA, despite exposure to the same systemic Angiotensin II. These data demonstrate that chronic inhibition of intrarenal GR activity significantly reduces αENaC -dependent sodium retention, resulting in a negative cumulative sodium balance, thereby ameliorating Angiotensin II-induced hypertension in rats. Renal GRs represent a novel therapeutic target for the treatment of hypertension and other sodium-retaining states.

  18. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery.

    PubMed

    Xu, Leyuan; Yeudall, W Andrew; Yang, Hu

    2017-07-15

    The utility of folic acid (FA)-decorated polyamidoamine dendrimer G4 (G4-FA) as a vector was investigated for local delivery of siRNA. In a xenograft HN12 (or HN12-YFP) tumor mouse model of head and neck squamous cell carcinomas (HNSCC), intratumorally (i.t.) injected G4-FA exhibited high tumor uptake and sustained highly localized retention in the tumors according to near infrared (NIR) imaging assessment. siRNA against vascular endothelial growth factor A (siVEGFA) was chosen as a therapeutic modality. Compared to the nontherapeutic treatment groups (PBS solution or dendrimer complexed with nontherapeutic siRNA against green fluorescent protein (siGFP)), G4-FA/siVEGFA showed tumor inhibition effects in single-dose and two-dose regimen studies. In particular, two doses of G4-FA/siVEGFA i.t. administered eight days apart resulted in a more profound inhibition of tumor growth, accompanied with significant reduction in angiogenesis, as judged by CD31 staining and microvessel counts. Tumor size reduction in the two-dose regimen study was ascertained semi-quantitatively by live fluorescence imaging of YFP tumors and independently supported antitumor effects of G4-FA/siVEGFA. Taken together, G4-FA shows high tumor uptake and sustained retention properties, making it a suitable platform for local delivery of siRNAs to treat cancers that are readily accessible such as HNSCC. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is difficult to transfect for gene therapy. We developed folate receptor (FR)-targeted polyamidoamine (PAMAM) dendrimer for enhanced delivery of genes to HNSCC and gained in-depth understanding of how gene delivery and transfection in head and neck squamous cancer cells can be enhanced via FR-targeted PAMAM dendrimers. The results we report here are encouraging and present latest advances in using dendrimers for cancer therapies, in particular for HNSCC. Our work has demonstrated that localized delivery of FR-targeted

  19. Complete cure of persistent virus infections by antiviral siRNAs.

    PubMed

    Saulnier, Aure; Pelletier, Isabelle; Labadie, Karine; Colbère-Garapin, Florence

    2006-01-01

    Small interfering RNAs (siRNAs) have been developed as antiviral agents for mammalian cells. The capacity of specific siRNAs to prevent virus infections has been demonstrated, and there is evidence that these new antiviral agents could have a partial therapeutic effect a few days after infection. We investigated the possibility of curing a persistent infection, several months after becoming established, using an in vitro model of persistent poliovirus (PV) infection in HEp-2 cells. Despite high virus titers and the presence of PV mutants, repeated treatment with a mixture of two siRNAs targeting both noncoding and coding regions, one of them in a highly conserved region, resulted in the complete cure of the majority of persistently infected cultures. No escape mutants emerged in treated cultures. The antiviral effect of specific siRNAs, consistent with a mechanism of RNA interference, correlated with a decrease in the amount of viral RNA, until its complete disappearance, resulting in cultures cured of virions and viral RNA.

  20. Establishment of conditional vectors for hairpin siRNA knockdowns

    PubMed Central

    Matsukura, Shiro; Jones, Peter A.; Takai, Daiya

    2003-01-01

    Small interference RNA (siRNA) is an emerging methodology in reverse genetics. Here we report the development of a new tetracycline-inducible vector-based siRNA system, which uses a tetracycline-responsive derivative of the U6 promoter and the tetracycline repressor for conditional in vivo transcription of short hairpin RNA. This method prevents potential lethality immediately after transfection of a vector when the targeted gene is indispensable, or the phenotype of the knockdown is lethal or results in a growth abnormality. We show that the controlled knockdown of DNA methyltransferase 1 (DNMT1) in human cancer resulted in growth arrest. Removal of the inducer, doxycycline, from treated cells led to re-expression of the targeted gene. Thus the method allows for a highly controlled approach to gene knockdown. PMID:12888529

  1. Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses

    PubMed Central

    Villegas-Rosales, Paula M; Méndez-Tenorio, Alfonso; Ortega-Soto, Elizabeth; Barrón, Blanca L

    2012-01-01

    Dengue virus (DENV 1-4) represents the major emerging arthropod-borne viral infection in the world. Currently, there is neither an available vaccine nor a specific treatment. Hence, there is a need of antiviral drugs for these viral infections; we describe the prediction of short interfering RNA (siRNA) as potential therapeutic agents against the four DENV serotypes. Our strategy was to carry out a series of multiple alignments using ClustalX program to find conserved sequences among the four DENV serotype genomes to obtain a consensus sequence for siRNAs design. A highly conserved sequence among the four DENV serotypes, located in the encoding sequence for NS4B and NS5 proteins was found. A total of 2,893 complete DENV genomes were downloaded from the NCBI, and after a depuration procedure to identify identical sequences, 220 complete DENV genomes were left. They were edited to select the NS4B and NS5 sequences, which were aligned to obtain a consensus sequence. Three different servers were used for siRNA design, and the resulting siRNAs were aligned to identify the most prevalent sequences. Three siRNAs were chosen, one targeted the genome region that codifies for NS4B protein and the other two; the region for NS5 protein. Predicted secondary structure for DENV genomes was used to demonstrate that the siRNAs were able to target the viral genome forming double stranded structures, necessary to activate the RNA silencing machinery. PMID:22829722

  2. Bio-inspired materials in drug delivery: Exploring the role of pulmonary surfactant in siRNA inhalation therapy.

    PubMed

    De Backer, Lynn; Cerrada, Alejandro; Pérez-Gil, Jesús; De Smedt, Stefaan C; Raemdonck, Koen

    2015-12-28

    Many pathologies of the respiratory tract are inadequately treated with existing small molecule-based therapies. The emergence of RNA interference (RNAi) enables the post-transcriptional silencing of key molecular disease factors that cannot readily be targeted with conventional small molecule drugs. Pulmonary administration of RNAi effectors, such as small interfering RNA (siRNA), allows direct delivery into the lung tissue, hence reducing systemic exposure. Unfortunately, the clinical translation of RNAi is severely hampered by inefficient delivery of siRNA therapeutics towards the cytoplasm of the target cells. In order to have a better control of the siRNA delivery process, both extra- and intracellular, siRNAs are typically formulated in nanosized delivery vehicles (nanoparticles, NPs). In the lower airways, which are the targeted sites of action for multiple pulmonary disorders, these siRNA-loaded NPs will encounter the pulmonary surfactant (PS) layer, covering the entire alveolar surface. The interaction between the instilled siRNA-loaded NPs and the PS at this nano-bio interface results in the adsorption of PS components onto the surface of the NPs. The formation of this so-called biomolecular corona conceals the original NP surface and will therefore profoundly determine the biological efficacy of the NP. Though this interplay has initially been regarded as a barrier towards efficient siRNA delivery to the respiratory target cell, recent reports have illustrated that the interaction with PS might also be beneficial for local pulmonary siRNA delivery.

  3. Intramyocardial Injection of siRNAs Can Efficiently Establish Myocardial Tissue-Specific Renalase Knockdown Mouse Model.

    PubMed

    Huang, Kun; Liu, Ju; Zhang, Hui; Wang, Jiliang; Li, Huili

    2016-01-01

    Ischaemia/reperfusion (I/R) injury will cause additional death of cardiomyocytes in ischaemic heart disease. Recent studies revealed that renalase was involved in the I/R injury. So, the myocardial tissue-specific knockdown mouse models were needed for the investigations of renalase. To establish the mouse models, intramyocardial injection of siRNAs targeting renalase was performed in mice. The wild distribution and high transfection efficiency of the siRNAs were approved. And the renalase expression was efficiently suppressed in myocardial tissue. Compared with the high cost, time consumption, and genetic compensation risk of the Cre/loxP technology, RNA interference (RNAi) technology is much cheaper and less time-consuming. Among the RNAi technologies, injection of siRNAs is safer than virus. And considering the properties of the I/R injury mouse models, the efficiency and durability of injection with siRNAs are acceptable for the studies. Altogether, intramyocardial injection of siRNAs targeting renalase is an economical, safe, and efficient method to establish myocardial tissue-specific renalase knockdown mouse models.

  4. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression

    PubMed Central

    Goldberg, Michael S.

    2012-01-01

    The development of cancer-specific therapeutics has been limited because most healthy cells and cancer cells depend on common pathways. Pyruvate kinase (PK) exists in M1 (PKM1) and M2 (PKM2) isoforms. PKM2, whose expression in cancer cells results in aerobic glycolysis and is suggested to bestow a selective growth advantage, is a promising target. Because many oncogenes impart a common alteration in cell metabolism, inhibition of the M2 isoform might be of broad applicability. We show that several small interfering (si) RNAs designed to target mismatches between the M2 and M1 isoforms confer specific knockdown of the former, resulting in decreased viability and increased apoptosis in multiple cancer cell lines but less so in normal fibroblasts or endothelial cells. In vivo delivery of siPKM2 additionally causes substantial tumor regression of established xenografts. Our results suggest that the inherent nucleotide-level specificity of siRNA can be harnessed to develop therapeutics that target isoform-specific exons in genes exhibiting differential splicing patterns in various cell types. PMID:22271574

  5. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer.

    PubMed

    Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying

    2017-11-10

    Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p<0.001). BAG3 expression was associated with FIGO stage and metastasis (all p<0.05). In-vitro analysis demonstrated that BAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach.

  6. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer

    PubMed Central

    Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying

    2017-01-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p<0.001). BAG3 expression was associated with FIGO stage and metastasis (all p<0.05). In-vitro analysis demonstrated that BAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach. PMID:29221135

  7. No significant impact of Foxf1 siRNA treatment in acute and chronic CCl4 liver injury.

    PubMed

    Abshagen, Kerstin; Rotberg, Tobias; Genz, Berit; Vollmar, Brigitte

    2017-08-01

    Chronic liver injury of any etiology is the main trigger of fibrogenic responses and thought to be mediated by hepatic stellate cells. Herein, activating transcription factors like forkhead box f1 are described to stimulate pro-fibrogenic genes in hepatic stellate cells. By using a liver-specific siRNA delivery system (DBTC), we evaluated whether forkhead box f1 siRNA treatment exhibit beneficial effects in murine models of acute and chronic CCl 4 -induced liver injury. Systemic administration of DBTC-forkhead box f1 siRNA in mice was only sufficient to silence forkhead box f1 in acute CCl 4 model, but was not able to attenuate liver injury as measured by liver enzymes and necrotic liver cell area. Therapeutic treatment of mice with DBTC-forkhead box f1 siRNA upon chronic CCl 4 exposition failed to inhibit forkhead box f1 expression and hence lacked to diminish hepatic stellate cells activation or fibrosis development. As a conclusion, DBTC-forkhead box f1 siRNA reduced forkhead box f1 expression in a model of acute but not chronic toxic liver injury and showed no positive effects in either of these mice models. Impact statement As liver fibrosis is a worldwide health problem, antifibrotic therapeutic strategies are urgently needed. Therefore, further developments of new technologies including validation in different experimental models of liver disease are essential. Since activation of hepatic stellate cells is a key event upon liver injury, the activating transcription factor forkhead box f1 (Foxf1) represents a potential target gene. Previously, we evaluated Foxf1 silencing by a liver-specific siRNA delivery system (DBTC), exerting beneficial effects in cholestasis. The present study was designed to confirm the therapeutic potential of Foxf1 siRNA in models of acute and chronic CCl 4 -induced liver injury. DBTC-Foxf1 siRNA was only sufficient to silence Foxf1 in acute CCl 4 model and did not ameliorate liver injury or fibrogenesis. This underlines the

  8. Targeting the yin and the yang: combined inhibition of the tyrosine kinase c-Src and the tyrosine phosphatase SHP-2 disrupts pancreatic cancer signaling and biology in vitro and tumor formation in vivo.

    PubMed

    Gomes, Evan G; Connelly, Sarah F; Summy, Justin M

    2013-07-01

    Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.

  9. VRP09 Reduction of Corneal Scarring Following Blast and Burn Injuries to Cornea Using siRNAs Targeting TGFb and CTGF

    DTIC Science & Technology

    2012-10-01

    selective of all gene-targeted, oligonucleotide-based drug approaches (better than ribozymes, antisense oligonucleotides ( ASO ), or microRNAs).(4) We will...respect to a scrambled siRNA control. For the migration assay, a circular region in the middle of the well was removed using a gel removal solution...oligonucleotides, ASOs ) into rabbit corneal cells and found that technique was very effective in delivering ASOs into the stroma and even into the endothelial cell

  10. Decrease of murine cytomegalovirus-induced retinitis by intravenous delivery of immediate early protein-3-specific siRNA.

    PubMed

    Marshall, Brendan; Mo, Juan; Covar, Jason; Atherton, Sally S; Zhang, Ming

    2014-06-06

    Retinitis induced by both human and murine cytomegaloviruses following immunosuppression is characterized by progressive loss of retinal architecture, due to necrosis of virus-infected cells as well as widespread apoptosis of uninfected bystander cells. Because small inhibitory RNA molecules (siRNA) can reduce murine cytomegalovirus (MCMV) gene expression and thereby inhibit virus replication in vitro, we tested siRNAs directed against MCMV immediate early protein-3 (IE-3) to determine if MCMV-induced retinitis could be alleviated in vivo. Immunosuppressed Balb/c mice (2.0 mg methylprednisolone acetate every 3 days beginning on day -2) were infected with 5 × 10(3) pfu of the K181 strain of MCMV via the supraciliary route. At day 2 post infection, mice were treated with various doses of IE-3-specific siRNA ranging from 0.1 nmol to 10 nmol, in a volume of 20 μL PBS via tail vein injection. Injected eyes were collected at various times post inoculation and subjected to plaque assay for virus titer, MCMV antigen staining, H&E staining, TUNEL assay, and Western blot for MCMV IE-3 protein. Small but significant amounts of fluorescently labeled IE-3-specific siRNA localized to the RPE layer 48 hours after intravenous injection. IE-3-specific siRNA significantly reduced virus titers at all concentrations tested (ranging from 0.1 nmol to 10 nmol), but the most potent effect of siRNA was observed at a dose of 1 nmol. We also observed that IE-3-specific siRNA produced a substantial decrease in MCMV titers and a substantial reduction in bystander cell apoptosis over the time course of virus infection. Systemic administration of IE-3-specific siRNA could alleviate MCMV retinitis by inhibiting virus replication and subsequent death of uninfected retinal cells. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  11. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    PubMed Central

    Huang, Weizhe; He, Ziying

    2013-01-01

    RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system. PMID:24288498

  12. 2’f-OMe-phosphorodithioate modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity

    PubMed Central

    Wu, Sherry Y.; Yang, Xianbin; Gharpure, Kshipra M.; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H.; Nagaraja, Archana S.; Miyake, Takahito M.; Rupaimoole, Rajesha; Pecot, Chad V.; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J.; Previs, Rebecca A.; Armaiz-Pena, Guillermo N.; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J.; Kowali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A.J.; Overwijk, Willem W.; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A.; Lopez-Berestein, Gabriel; Ram, Prahlad T.; Nawrot, Barbara; Sood, Anil K.

    2014-01-01

    Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2’-O-Methyl (2’-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2’-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM Domain Containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumors following MePS2-modified siRNA treatment, leading to a synergistic anti-tumor effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types. PMID:24619206

  13. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors

    PubMed Central

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong

    2016-01-01

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately −16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy. PMID:26625203

  14. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors.

    PubMed

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2016-01-19

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy.

  15. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death.

    PubMed

    Kim, Jin Hee; Kang, Tae Heung; Noh, Kyung Hee; Bae, Hyun Cheol; Kim, Seok-Ho; Yoo, Young Do; Seong, Seung-Yong; Kim, Tae Woo

    2009-01-29

    Dendritic cells (DCs) have become an important measure for the treatment of malignancies. Current DC preparations, however, generate short-lived DCs because they are subject to cell death from various apoptotic pressures. Antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is one of the main obstacles to limit the DC-mediated immune priming since CTLs can recognize the target antigen expressing DCs as target cells and kill the DCs. CTLs secret perforin and serine protease granzymes during CTL killing. Perforin and serine protease granzymes induce the release of a number of mitochondrial pro-apoptotic factors, which are controlled by members of the BCL-2 family, such as BAK, BAX and BIM. FasL linking to Fas on DCs triggers the activation of caspase-8, which eventually leads to mitochondria-mediated apoptosis via truncation of BID. In this study, we tried to enhance the DC priming capacity by prolonging DC survival using anti-apoptotic siRNA targeting these key pro-apoptotic molecules in CTL killing. Human papillomavirus (HPV)-16 E7 antigen presenting DCs that were transfected with these anti-apoptotic siRNAs showed increased resistance to T cell-mediated death, leading to enhanced E7-specific CD8(+) T cell activation in vitro and in vivo. Among them, siRNA targeting BIM (siBIM) generated strongest E7-specific E7-specific CD8(+) T cell immunity. More importantly, vaccination with E7 presenting DCs transfected with siBIM was capable of generating a marked therapeutic effect in vaccinated mice. Our data indicate that ex vivo manipulation of DCs with siBIM may represent a plausible strategy for enhancing dendritic cell-based vaccine potency.

  16. Preventing intimal thickening of vein grafts in vein artery bypass using STAT-3 siRNA

    PubMed Central

    2012-01-01

    Background Proliferation and migration of vascular smooth muscle cells (VSMCs) play a key role in neointimal formation which leads to restenosis of vein graft in venous bypass. STAT-3 is a transcription factor associated with cell proliferation. We hypothesized that silencing of STAT-3 by siRNA will inhibit proliferation of VSMCs and attenuate intimal thickening. Methods Rat VSMCs were isolated and cultured in vitro by applying tissue piece inoculation methods. VSMCs were transfected with STAT 3 siRNA using lipofectamine 2000. In vitro proliferation of VSMC was quantified by the MTT assay, while in vivo assessment was performed in a venous transplantation model. In vivo delivery of STAT-3 siRNA plasmid or scramble plasmid was performed by admixing with liposomes 2000 and transfected into the vein graft by bioprotein gel applied onto the adventitia. Rat jugular vein-carotid artery bypass was performed. On day 3 and7 after grafting, the vein grafts were extracted, and analyzed morphologically by haematoxylin eosin (H&E), and assessed by immunohistochemistry for expression of Ki-67 and proliferating cell nuclear antigen (PCNA). Western-blot and reverse transcriptase polymerase chain reaction (RT-PCR) were used to detect the protein and mRNA expression in vivo and in vitro. Cell apoptosis in vein grafts was detected by TUNEL assay. Results MTT assay shows that the proliferation of VSMCs in the STAT-3 siRNA treated group was inhibited. On day 7 after operation, a reduced number of Ki-67 and PCNA positive cells were observed in the neointima of the vein graft in the STAT-3 siRNA treated group as compared to the scramble control. The PCNA index in the control group (31.3 ± 4.7) was higher than that in the STAT-3 siRNA treated group (23.3 ± 2.8) (P < 0.05) on 7d. The neointima in the experimental group(0.45 ± 0.04 μm) was thinner than that in the control group(0.86 ± 0.05 μm) (P < 0.05).Compared with the control group, the protein and mRNA levels in the experimental

  17. Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers.

    PubMed

    Zhang, Wenna; Kollwig, Gregor; Stecyk, Ewelina; Apelt, Federico; Dirks, Rob; Kragler, Friedrich

    2014-10-01

    In plants, small interfering RNAs (siRNA) and microRNAs move to distant tissues where they control numerous developmental and physiological processes such as morphogenesis and stress responses. Grafting techniques and transient expression systems have been employed to show that sequence-specific siRNAs with a size of 21-24 nucleotides traffic to distant organs. We used inverted-repeat constructs producing siRNA targeting the meiosis factor DISRUPTED MEIOTIC cDNA 1 (DMC1) and GFP to test whether silencing signals move into meiotically active tissues. In grafted Nicotiana tabacum, a transgenic DMC1 siRNA signal made in source tissues preferably entered the anthers formed in the first flowers. Here, the DMC1 siRNA interfered with meiotic progression and, consequently, the flowers were at least partially sterile. In agro-infiltrated N. benthamiana plants, a GFP siRNA signal produced in leaves was allocated and active in most flower tissues including anthers. In hypocotyl-grafted Arabidopsis thaliana plants, the DMC1 silencing signal consistently appeared in leaves, petioles, and stem, and only a small number of plants displayed DMC1 siRNA signals in flowers. In all three tested plant species the systemic silencing signal penetrated male sporogenic tissues suggesting that plants harbour an endogenous long-distance small RNA transport pathway facilitating siRNA signalling into meiotically active cells. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  18. RNA major groove modifications improve siRNA stability and biological activity

    PubMed Central

    Terrazas, Montserrat; Kool, Eric T.

    2009-01-01

    RNA 5-methyl and 5-propynyl pyrimidine analogs were substituted into short interfering RNAs (siRNAs) to probe major groove steric effects in the active RNA-induced silencing complex (RISC). Synthetic RNA guide strands containing varied combinations of propynyl and methyl substitution revealed that all C-5 substitutions increased the thermal stability of siRNA duplexes containing them. Cellular gene suppression experiments using luciferase targets in HeLa cells showed that the bulky 5-propynyl modification was detrimental to RNA interference activity, despite its stabilization of the helix. Detrimental effects of this substitution were greatest at the 5′-half of the guide strand, suggesting close steric approach of proteins in the RISC complex with that end of the siRNA/mRNA duplex. However, substitutions with the smaller 5-methyl group resulted in gene silencing activities comparable to or better than that of wild-type siRNA. The major groove modifications also increased the serum stability of siRNAs. PMID:19042976

  19. Pulmonary Delivery of siRNA via Polymeric Vectors as Therapies of Asthma

    PubMed Central

    Xie, Yuran; Merkel, Olivia M

    2015-01-01

    Asthma is a chronic inflammatory disease. Despite the fact that current therapies, such as the combination of inhaled corticosteroids and β2-agonists, can control the symptoms of asthma in most patients, there is still an urgent need for an alternative anti-inflammatory therapy for patients who suffer from severe asthma but lack acceptable response to conventional therapies. Many molecular factors are involved in the inflammatory process in asthma, and thus blocking the function of these factors could efficiently alleviate airway inflammation. RNA interference (RNAi) is often thought to be the answer in the search for more efficient and biocompatible treatments. However, difficulties of efficient delivery of small interference RNA (siRNA), the key factor in RNAi, to target cells and tissues has limited its clinical application. In this review, we summarize cytokines and chemokines, transcription factors, tyrosine kinases and costimulatory factors that have been reported as targets of siRNA mediated treatment in experimental asthma. Additionally, we conclude several targeted delivery systems of siRNA to specific cells such as T cells, macrophages and dendritic cells, which could potentially be applied in asthma therapy. PMID:26148454

  20. Designing Tyrosinase siRNAs by Multiple Prediction Algorithms and Evaluation of Their Anti-Melanogenic Effects.

    PubMed

    Kwon, Ok-Seon; Kwon, Soo-Jung; Kim, Jin Sang; Lee, Gunbong; Maeng, Han-Joo; Lee, Jeongmi; Hwang, Gwi Seo; Cha, Hyuk-Jin; Chun, Kwang-Hoon

    2018-05-01

    Melanin is a pigment produced from tyrosine in melanocytes. Although melanin has a protective role against UVB radiation-induced damage, it is also associated with the development of melanoma and darker skin tone. Tyrosinase is a key enzyme in melanin synthesis, which regulates the rate-limiting step during conversion of tyrosine into DOPA and dopaquinone. To develop effective RNA interference therapeutics, we designed a melanin siRNA pool by applying multiple prediction programs to reduce human tyrosinase levels. First, 272 siRNAs passed the target accessibility evaluation using the RNAxs program. Then we selected 34 siRNA sequences with ΔG ≥-34.6 kcal/mol, i-Score value ≥65, and siRNA scales score ≤30. siRNAs were designed as 19-bp RNA duplexes with an asymmetric 3' overhang at the 3' end of the antisense strand. We tested if these siRNAs effectively reduced tyrosinase gene expression using qRT-PCR and found that 17 siRNA sequences were more effective than commercially available siRNA. Three siRNAs further tested showed an effective visual color change in MNT-1 human cells without cytotoxic effects, indicating these sequences are anti-melanogenic. Our study revealed that human tyrosinase siRNAs could be efficiently designed using multiple prediction algorithms.

  1. Targeted therapy with MXD3 siRNA, anti-CD22 antibody and nanoparticles for precursor B-cell acute lymphoblastic leukaemia.

    PubMed

    Satake, Noriko; Duong, Connie; Chen, Cathy; Barisone, Gustavo A; Diaz, Elva; Tuscano, Joseph; Rocke, David M; Nolta, Jan; Nitin, Nitin

    2014-11-01

    Conventional chemotherapy for precursor B-cell (preB) acute lymphoblastic leukaemia (ALL) has limitations that could be overcome by targeted therapy. Previously, we discovered a potential therapeutic molecular target, MDX3 (MAX dimerization protein 3), in preB ALL. In this study, we hypothesize that an effective siRNA therapy for preB ALL can be developed using antiCD22 antibody (αCD22 Ab) and nanoparticles. We composed nanocomplexes with super paramagnetic iron oxide nanoparticles (SPIO NPs), αCD22 Abs and MXD3 siRNA molecules based on physical interactions between the molecules. We demonstrated that the MXD3 siRNA-αCD22 Ab-SPIO NP complexes entered leukaemia cells and knocked down MXD3, leading the cells to undergo apoptosis and resulting in decreased live cell counts in the cell line Reh and in primary preB ALL samples in vitro. Furthermore, the cytotoxic effects of the MXD3 siRNA-αCD22 Ab-SPIO NP complexes were significantly enhanced by addition of the chemotherapy drugs vincristine or doxorubicin. We also ruled out potential cytotoxic effects of the MXD3 siRNA-αCD22 Ab-SPIO NP complexes on normal primary haematopoietic cells. Normal B cells were affected while CD34-positive haematopoietic stem cells and non-B cells were not. These data suggest that MXD3 siRNA-αCD22 Ab-SPIO NP complexes have the potential to be a new targeted therapy for preB ALL. © 2014 John Wiley & Sons Ltd.

  2. Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer.

    PubMed

    Jose, Anup; Labala, Suman; Venuganti, Venkata Vamsi Krishna

    2017-04-01

    Skin cancer is one of the most widely prevalent cancer types with over expression of multiple oncogenic signaling molecules including STAT3. Curcumin is a natural compound with effective anti-cancer properties. The objective of this work was to investigate the liposomal co-delivery of curcumin and STAT3 siRNA by non-invasive topical iontophoretic application to treat skin cancer. Curcumin was encapsulated in cationic liposomes and then complexed with STAT3 siRNA. The liposomal nanocomplex was characterized for particle size, zeta-potential, drug release and stability. Human epidermoid (A431) cancer cells were used to study the cell uptake, growth inhibition and apoptosis induction of curcumin-loaded liposome-siRNA complex. Topical iontophoresis was applied to study the skin penetration of nanocomplex in excised porcine skin model. Results showed that curcumin-loaded liposome-siRNA complex was rapidly taken up by cells preferentially through clathrin-mediated endocytosis pathway. The co-delivery of curcumin and STAT3 siRNA using liposomes resulted in significantly (p < .05) greater cancer cell growth inhibition and apoptosis events compared with neat curcumin and free STAT3 siRNA treatment. Furthermore, topical iontophoresis application enhanced skin penetration of nanocomplex to penetrate viable epidermis. In conclusion, cationic liposomal system can be developed for non-invasive iontophoretic co-delivery of curcumin and siRNA to treat skin cancer.

  3. MiR-211 inhibits invasion and epithelial-to-mesenchymal transition (EMT) of cervical cancer cells via targeting MUC4.

    PubMed

    Xu, Dongkui; Liu, Shikai; Zhang, Liang; Song, Lili

    2017-04-01

    The dysregulated molecules and their involvement in lymph node metastases of cervical cancer are far from been fully revealed. In this study, by reviewing MUC4 expression in The Human Protein Atlas and retrieving gene microarray data in GEO dataset (No. GDS4664), we found that MUC4 upregulation is associated with lymph node metastasis in cervical cancer. Knockdown of MUC4 in Hela and SiHa cells significantly reduced their invasion and also reduced the mesenchymal properties. By performing bioinformatics analysis, we observed that miR-211 is a potential suppressor of MUC4, which has a predicted highly conserved binding site in the 3'UTR of MUC among mammals. The following assays confirmed that miR-211 can directly target the 3'UTR of MUC4 and inhibit its expression at both mRNA and protein levels. In addition, enforced miR-211 expression phenocopies the effects of MUC4 siRNA in inhibiting cervical cancer cell invasion and reversing EMT properties. Therefore, we infer that miR-211 is a novel miRNA with suppressive effect on MUC4 expression and can inhibit cervical cancer cell invasion and EMT. Copyright © 2016. Published by Elsevier Inc.

  4. PLGA microspheres encapsulating siRNA.

    PubMed

    De Rosa, Giuseppe; Salzano, Giuseppina

    2015-01-01

    The therapeutic use of small interfering RNA (siRNA) represents a new and powerful approach to suppress the expression of pathologically genes. However, biopharmaceutical drawbacks, such as short half-life, poor cellular uptake, and unspecific distribution into the body, hamper the development of siRNA-based therapeutics. Poly(lactide-co-glycolide), (PLGA) microspheres can be a useful tool to overcome these issues. siRNA can be encapsulated into the PLGA microspheres, which protects the loaded nucleic acid against the enzymatic degradation. Moreover, PLGA microspheres can be injected directly into the action site, where the siRNA can be released in controlled manner, thus avoiding the need of frequent invasive administrations. The complete biodegradability of PLGA to monomers easily metabolized by the body, and its approval by FDA and EMA for parenteral administration, assure the safety of this copolymer and do not require the removal of the device after the complete drug release. In chapter, a basic protocol for the preparation of PLGA microspheres encapsulating siRNA is described. This protocol is based on a double emulsion/solvent evaporation technique, a well known and easy to reproduce method. This specific protocol has been developed to encapsulate a siRNA anti-TNFα in PLGA microspheres, and it has been designed and optimized to achieve high siRNA encapsulation efficiency and slow siRNA release in vitro. However, it can be extended also to other siRNA as well as other RNA or DNA-based oligonucleotides (miRNA, antisense, decoy, etc.). Depending on the applications, chemical modifications of the backbone and site-specific modification within the siRNA sequences could be required.

  5. Decrease of Murine Cytomegalovirus–Induced Retinitis by Intravenous Delivery of Immediate Early Protein-3–Specific siRNA

    PubMed Central

    Marshall, Brendan; Mo, Juan; Covar, Jason; Atherton, Sally S.; Zhang, Ming

    2014-01-01

    Purpose. Retinitis induced by both human and murine cytomegaloviruses following immunosuppression is characterized by progressive loss of retinal architecture, due to necrosis of virus-infected cells as well as widespread apoptosis of uninfected bystander cells. Because small inhibitory RNA molecules (siRNA) can reduce murine cytomegalovirus (MCMV) gene expression and thereby inhibit virus replication in vitro, we tested siRNAs directed against MCMV immediate early protein-3 (IE-3) to determine if MCMV-induced retinitis could be alleviated in vivo. Methods. Immunosuppressed Balb/c mice (2.0 mg methylprednisolone acetate every 3 days beginning on day −2) were infected with 5 × 103 pfu of the K181 strain of MCMV via the supraciliary route. At day 2 post infection, mice were treated with various doses of IE-3–specific siRNA ranging from 0.1 nmol to 10 nmol, in a volume of 20 μL PBS via tail vein injection. Injected eyes were collected at various times post inoculation and subjected to plaque assay for virus titer, MCMV antigen staining, H&E staining, TUNEL assay, and Western blot for MCMV IE-3 protein. Results. Small but significant amounts of fluorescently labeled IE-3–specific siRNA localized to the RPE layer 48 hours after intravenous injection. IE-3–specific siRNA significantly reduced virus titers at all concentrations tested (ranging from 0.1 nmol to 10 nmol), but the most potent effect of siRNA was observed at a dose of 1 nmol. We also observed that IE-3–specific siRNA produced a substantial decrease in MCMV titers and a substantial reduction in bystander cell apoptosis over the time course of virus infection. Conclusions. Systemic administration of IE-3–specific siRNA could alleviate MCMV retinitis by inhibiting virus replication and subsequent death of uninfected retinal cells. PMID:24906861

  6. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA

    NASA Astrophysics Data System (ADS)

    Chen, Lijue; She, Xiaodong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2018-02-01

    The technology of RNA interference (RNAi) that uses small interfering RNA (siRNA) to silence the gene expression with complementary messenger RNA (mRNA) sequence has great potential for the treatment of cancer in which certain genes were usually found overexpressed. However, the carry and delivery of siRNA to the target site in the human body can be challenging for this technology to be used clinically to silence the cancer-related gene expression. In this work, rod shaped mesoporous silica nanoparticles (MSNs) were developed as siRNA delivery system for specific intracellular delivery. The rod MSNs with an aspect ratio of 1.5 had a high surface area of 934.28 m2/g and achieved a siRNA loading of more than 80 mg/g. With the epidermal growth factor (EGF) grafted on the surface of the MSNs, siRNA can be delivered to the epidermal growth factor receptor (EGFR) overexpressed colorectal cancer cells with high intracellular concentration compared to MSNs without EGF and lead to survivin gene knocking down to less than 30%.

  7. Time-series oligonucleotide count to assign antiviral siRNAs with long utility fit in the big data era.

    PubMed

    Wada, K; Wada, Y; Iwasaki, Y; Ikemura, T

    2017-10-01

    Oligonucleotides are key elements of nucleic acid therapeutics such as small interfering RNAs (siRNAs). Influenza and Ebolaviruses are zoonotic RNA viruses mutating very rapidly, and their sequence changes must be characterized intensively to design therapeutic oligonucleotides with long utility. Focusing on a total of 182 experimentally validated siRNAs for influenza A, B and Ebolaviruses compiled by the siRNA database, we conducted time-series analyses of occurrences of siRNA targets in these viral genomes. Reflecting their high mutation rates, occurrences of target oligonucleotides evidently fluctuate in viral populations and often disappear. Time-series analysis of the one-base changed sequences derived from each original target identified the oligonucleotide that shows a compensatory increase and will potentially become the 'awaiting-type oligonucleotide'; the combined use of this oligonucleotide with the original can provide therapeutics with long utility. This strategy is also useful for assigning diagnostic reverse transcription-PCR primers with long utility.

  8. Time-series oligonucleotide count to assign antiviral siRNAs with long utility fit in the big data era

    PubMed Central

    Wada, K; Wada, Y; Iwasaki, Y; Ikemura, T

    2017-01-01

    Oligonucleotides are key elements of nucleic acid therapeutics such as small interfering RNAs (siRNAs). Influenza and Ebolaviruses are zoonotic RNA viruses mutating very rapidly, and their sequence changes must be characterized intensively to design therapeutic oligonucleotides with long utility. Focusing on a total of 182 experimentally validated siRNAs for influenza A, B and Ebolaviruses compiled by the siRNA database, we conducted time-series analyses of occurrences of siRNA targets in these viral genomes. Reflecting their high mutation rates, occurrences of target oligonucleotides evidently fluctuate in viral populations and often disappear. Time-series analysis of the one-base changed sequences derived from each original target identified the oligonucleotide that shows a compensatory increase and will potentially become the ‘awaiting-type oligonucleotide’ the combined use of this oligonucleotide with the original can provide therapeutics with long utility. This strategy is also useful for assigning diagnostic reverse transcription-PCR primers with long utility. PMID:28905886

  9. Splicing stimulates siRNA formation at Drosophila DNA double-strand breaks

    PubMed Central

    Merk, Karin; Breinig, Marco; Böttcher, Romy; Krebs, Stefan; Blum, Helmut; Boutros, Michael

    2017-01-01

    DNA double-strand breaks trigger the production of locus-derived siRNAs in fruit flies, human cells and plants. At least in flies, their biogenesis depends on active transcription running towards the break. Since siRNAs derive from a double-stranded RNA precursor, a major question is how broken DNA ends can generate matching sense and antisense transcripts. We performed a genome-wide RNAi-screen in cultured Drosophila cells, which revealed that in addition to DNA repair factors, many spliceosome components are required for efficient siRNA generation. We validated this observation through site-specific DNA cleavage with CRISPR-cas9 followed by deep sequencing of small RNAs. DNA breaks in intron-less genes or upstream of a gene’s first intron did not efficiently trigger siRNA production. When DNA double-strand breaks were induced downstream of an intron, however, this led to robust siRNA generation. Furthermore, a downstream break slowed down splicing of the upstream intron and a detailed analysis of siRNA coverage at the targeted locus revealed that unspliced pre-mRNA contributes the sense strand to the siRNA precursor. Since splicing factors are stimulating the response but unspliced transcripts are entering the siRNA biogenesis, the spliceosome is apparently stalled in a pre-catalytic state and serves as a signaling hub. We conclude that convergent transcription at DNA breaks is stimulated by a splicing dependent control process. The resulting double-stranded RNA is converted into siRNAs that instruct the degradation of cognate mRNAs. In addition to a potential role in DNA repair, the break-induced transcription may thus be a means to cull improper RNAs from the transcriptome of Drosophila melanogaster. Since the splicing factors identified in our screen also stimulated siRNA production from high copy transgenes, it is possible that this surveillance mechanism serves in genome defense beyond DNA double-strand breaks. PMID:28628606

  10. Dendrimer Nanovectors for SiRNA Delivery.

    PubMed

    Liu, Xiaoxuan; Peng, Ling

    2016-01-01

    Small interfering RNA (SiRNA) delivery remains a major challenge in RNAi-based therapy. Dendrimers are emerging as appealing nonviral vectors for SiRNA delivery thanks to their well-defined architecture and their unique cooperativity and multivalency confined within a nanostructure. We have recently demonstrated that structurally flexible poly(amidoamine) (PAMAM) dendrimers are safe and effective nanovectors for SiRNA delivery in various disease models in vitro and in vivo. The present chapter showcases these dendrimers can package different SiRNA molecules into stable and nanosized particles, which protect SiRNA from degradation and promote cellular uptake of SiRNA, resulting in potent gene silencing at both mRNA and protein level in the prostate cancer cell model. Our results demonstrate this set of flexible PAMAM dendrimers are indeed safe and effective nonviral vectors for SiRNA delivery and hold great promise for further applications in functional genomics and RNAi-based therapies.

  11. Human Papillomavirus E6/E7-Specific siRNA Potentiates the Effect of Radiotherapy for Cervical Cancer in Vitro and in Vivo

    PubMed Central

    Jung, Hun Soon; Rajasekaran, Nirmal; Song, Sang Yong; Kim, Young Deug; Hong, Sungyoul; Choi, Hyuck Jae; Kim, Young Seok; Choi, Jong-Sun; Choi, Yoon-La; Shin, Young Kee

    2015-01-01

    The functional inactivation of TP53 and Rb tumor suppressor proteins by the HPV-derived E6 and E7 oncoproteins is likely an important step in cervical carcinogenesis. We have previously shown siRNA technology to selectively silence both E6/E7 oncogenes and demonstrated that the synthetic siRNAs could specifically block its expression in HPV-positive cervical cancer cells. Herein, we investigated the potentiality of E6/E7 siRNA candidates as radiosensitizers of radiotherapy for the human cervical carcinomas. HeLa and SiHa cells were transfected with HPV E6/E7 siRNA; the combined cytotoxic effect of E6/E7 siRNA and radiation was assessed by using the cell viability assay, flow cytometric analysis and the senescence-associated β-galactosidase (SA-β-Gal) assay. In addition, we also investigated the effect of combined therapy with irradiation and E6/E7 siRNA intravenous injection in an in vivo xenograft model. Combination therapy with siRNA and irradiation efficiently retarded tumor growth in established tumors of human cervical cancer cell xenografted mice. In addition, the chemically-modified HPV16 and 18 E6/E7 pooled siRNA in combination with irradiation strongly inhibited the growth of cervical cancer cells. Our results indicated that simultaneous inhibition of HPV E6/E7 oncogene expression with radiotherapy can promote potent antitumor activity and radiosensitizing activity in human cervical carcinomas. PMID:26035754

  12. β-Catenin transcriptional activity is minimal in canine osteosarcoma and its targeted inhibition results in minimal changes to cell line behaviour.

    PubMed

    Piskun, Caroline M; Stein, Timothy J

    2016-06-01

    Canine osteosarcoma (OS) is an aggressive malignancy associated with poor outcomes. Therapeutic improvements are likely to develop from an improved understanding of signalling pathways contributing to OS development and progression. The Wnt signalling pathway is of interest for its role in osteoblast differentiation, its dysregulation in numerous cancer types, and the relative frequency of cytoplasmic accumulation of β-catenin in canine OS. This study aimed to determine the biological impact of inhibiting canonical Wnt signalling in canine OS, by utilizing either β-catenin siRNA or a dominant-negative T-cell factor (TCF) construct. There were no consistent, significant changes in cell line behaviour with either method compared to parental cell lines. Interestingly, β-catenin transcriptional activity was three-fold higher in normal canine primary osteoblasts compared to canine OS cell lines. These results suggest canonical Wnt signalling is minimally active in canine OS and its targeted inhibition is not a relevant therapeutic strategy. © 2013 John Wiley & Sons Ltd.

  13. Recent advances in magnetofection and its potential to deliver siRNAs in vitro.

    PubMed

    Mykhaylyk, Olga; Zelphati, Olivier; Hammerschmid, Edelburga; Anton, Martina; Rosenecker, Joseph; Plank, Christian

    2009-01-01

    This chapter describes how to design and conduct experiments to deliver siRNA to adherent mammalian cells in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles. These magnetic complexes are targeted to the cell surface by the application of a magnetic gradient field. In this chapter, first we describe the synthesis of magnetic nanoparticles for magnetofection and the association of siRNA with the magnetic components of the transfection complex. Second, a simple protocol is described in order to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Third, protocols are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA, magnetofection, downregulation of gene expression, and the determination of cell viability. The addition of INF-7 peptide, a fusogenic peptide, to the magnetic transfection triplexes improved gene silencing in HeLa cells. The described protocols are also valuable for screening vector compositions and novel magnetic nanoparticle preparations to optimize siRNA transfection by magnetofection in every cell type.

  14. Designing Tyrosinase siRNAs by Multiple Prediction Algorithms and Evaluation of Their Anti-Melanogenic Effects

    PubMed Central

    Kwon, Ok-Seon; Kwon, Soo-Jung; Kim, Jin Sang; Lee, Gunbong; Maeng, Han-Joo; Lee, Jeongmi; Hwang, Gwi Seo; Cha, Hyuk-Jin; Chun, Kwang-Hoon

    2018-01-01

    Melanin is a pigment produced from tyrosine in melanocytes. Although melanin has a protective role against UVB radiation-induced damage, it is also associated with the development of melanoma and darker skin tone. Tyrosinase is a key enzyme in melanin synthesis, which regulates the rate-limiting step during conversion of tyrosine into DOPA and dopaquinone. To develop effective RNA interference therapeutics, we designed a melanin siRNA pool by applying multiple prediction programs to reduce human tyrosinase levels. First, 272 siRNAs passed the target accessibility evaluation using the RNAxs program. Then we selected 34 siRNA sequences with ΔG ≥−34.6 kcal/mol, i-Score value ≥65, and siRNA scales score ≤30. siRNAs were designed as 19-bp RNA duplexes with an asymmetric 3′ overhang at the 3′ end of the antisense strand. We tested if these siRNAs effectively reduced tyrosinase gene expression using qRT-PCR and found that 17 siRNA sequences were more effective than commercially available siRNA. Three siRNAs further tested showed an effective visual color change in MNT-1 human cells without cytotoxic effects, indicating these sequences are anti-melanogenic. Our study revealed that human tyrosinase siRNAs could be efficiently designed using multiple prediction algorithms. PMID:29223142

  15. [Construction of lentiviral mediated CyPA siRNA and its functions in non-small cell lung cancer].

    PubMed

    FENG, Yan-ming; WU, Yi-ming; TU, Xin-ming; XU, Zheng-shun; WU, Wei-dong

    2010-02-01

    To construct a lentiviral-vector-mediated CyPA small interference RNA (siRNA) and study its function in non-small cell lung cancer. First, four target sequences were selected according to CyPA mRNA sequence, the complementary DNA contained both sense and antisense oligonucleotides were designed, synthesized and cloned into the pGCL-GFP vector, which contained U6 promoter and green fluorescent protein (GFP). The resulting lentiviral vector containing CyPA shRNA was named Lv-shCyPA, and it was confirmed by PCR and sequencing. Next, it was cotransfected by Lipofectamine 2000 along with pHelper1.0 and pHelper 2.0 into 293T cells to package lentivirus particles. At the same time, the packed virus infected non-small cell lung cancer cell (A549), the level of CyPA protein at 5 d after infection was detected by Western Blot to screen the target of CyPA. A549 were infected with Lv-shCyPA and grown as xenografts in severe combined immunodeficient mice. Cell cycle and apoptosis were measured by FCM. It was confirmed by PCR and DNA sequencing that lentiviral-vector-mediated CyPA siRNA (Lv-shCyPA) producing CyPA shRNA was constructed successfully. The titer of concentrated virus were 1 x 10(7) TU/ml. Flow cytometric analysis demonstrated G2-M phase (11.40% +/- 0.68%) was decreased relatively in A549/LvshCyPA compared with control groups (14.52% +/- 1.19%) (P<0.05). The apoptosis rate of A549/Lv-shCyPA (5.01% +/- 0.5%) was higher than control groups (0.35% +/- 0.17%) (P<0.05). Visible tumors were only detectable at 6th day after inoculated by A549/Lv-shCyPA. The xenograft tumors of A549/Lv-shCyPA remarkably delayed tumor growth and remained at a similarly small average size at 38th days after inoculation compared with the control group (P < 0.05). Lentiviral-vector-mediated siRNA technique effectively inhibits the expression of CyPA, induces the NSCLC cell apoptosis, inhibits the tumor growth. Elucidation of the precise role of CypA in these pathways may lead to new targeted

  16. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Ming; Kao, Wei-Chien; Yeh, Chun-An; Chen, Hui-Jye; Lin, Shinn-Zong; Hsieh, Hsien-Hsu; Sun, Wei-Shen; Chang, Chih-Hsuan; Hung, Huey-Shan

    2015-03-01

    Benzo[a]pyrene (BaP), a component of cooking oil fumes (COF), promotes lung cancer cell proliferation and survival via the induction of inhibitor of apoptosis protein-2 (IAP-2) proteins. Thus knockdown of IAP-2 would be a promising way to battle against lung cancer caused by COF. Functionalized gold nanoparticle (AuNP) is an effective delivery system for bio-active materials. Here, biocompatible hyaluronic acid (HA) was fabricated into nanoparticles to increase the target specificity by binding to CD44-over-expressed cancer cells. IAP-2-specific small-interfering RNA (siRNAs) or fluorescein isothiocyanate (FITC) were then incorporated into AuNP-HA. Conjugation of IAP-2 siRNA into AuNPs-HA was verified by the UV-vis spectrometer and Fourier transform infrared spectrometer. Further studies showed that AuNP-HA/FITC were effectively taken up by A549 cells through CD44-mediated endocytosis. Incubation of BaP-challenged cells with AuNP-HA-IAP-2 siRNAs silenced the expression of IAP-2, decreased cell proliferation and triggered pronounced cell apoptosis by the decrease in Bcl-2 protein and the increase in Bax protein as well as the active form of caspases-3. The BaP-elicited cell migration and enzymatic activity of the secreted matrix metalloproteinase-2 were also substantially suppressed by treatment with AuNP-HA-IAP-2 siRNAs. These results indicated that IAP-2 siRNAs can be efficiently delivered into A549 cells by functionalized AuNP-HA to repress the IAP-2 expression and BaP-induced oncogenic events, suggesting the potential therapeutic application of IAP-2 siRNA or other siRNA-conjugated AuNP-HA composites to COF-induced lung cancer and other gene-caused diseases in the future.

  17. Evaluation of Acanthamoeba Myosin-IC as a Potential Therapeutic Target

    PubMed Central

    Lorenzo-Morales, Jacob; López-Arencibia, Atteneri; Reyes-Batlle, María; Piñero, José E.; Valladares, Basilio; Maciver, Sutherland K.

    2014-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a fatal encephalitis. We have targeted myosin-IC by using small interfering RNA (siRNA) silencing as a therapeutic approach, since it is known that the function of this protein is vital for the amoeba. In this work, specific siRNAs against the Acanthamoeba myosin-IC gene were developed. Treated and control amoebae were cultured in growth and encystment media to evaluate the induced effects after myosin-IC gene knockdown, as we have anticipated that cyst formation may be impaired. The effects of myosin-IC gene silencing were inhibition of cyst formation, inhibition of completion of cytokinesis, inhibition of osmoregulation under osmotic stress conditions, and death of the amoebae. The finding that myosin-IC silencing caused incompletion of cytokinesis is in agreement with earlier suggestions that the protein plays a role in cell locomotion, which is necessary to pull daughter cells apart after mitosis in a process known as “traction-mediated cytokinesis”. We conclude that myosin-IC is a very promising potential drug target for the development of much-needed antiamoebal drugs and that it should be further exploited for Acanthamoeba therapy. PMID:24468784

  18. Synthesis and characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA delivery.

    PubMed

    Bakan, Feray; Kara, Goknur; Cokol Cakmak, Melike; Cokol, Murat; Denkbas, Emir Baki

    2017-10-01

    Small interfering RNAs (siRNA) are short nucleic acid fragments of about 20-27 nucleotides, which can inhibit the expression of specific genes. siRNA based RNAi technology has emerged as a promising method for the treatment of a variety of diseases. However, a major limitation in the therapeutic use of siRNA is its rapid degradation in plasma and cellular cytoplasm, resulting in short half-life. In addition, as siRNA molecules cannot penetrate into the cell efficiently, it is required to use a carrier system for its delivery. In this work, chemically and morphologically different calcium phosphate (CaP) nanoparticles, including spherical-like hydroxyapatite (HA-s), needle-like hydroxyapatite (HA-n) and calcium deficient hydroxyapatite (CDHA) nanoparticles were synthesized by the sol-gel technique and the effects of particle characteristics on the binding capacity of siRNA were investigated. In order to enhance the gene loading efficiency, the nanoparticles were functionalized with arginine and the morphological and their structural characteristics were analyzed. The addition of arginine did not significantly change the particle sizes; however, it provided a significantly increased binding of siRNA for all types of CaP nanoparticles, as revealed by spectrophotometric measurements analysis. Arginine functionalized HA-n nanoparticles showed the best binding behavior with siRNA among the other nanoparticles due to its high, positive zeta potential (+18.8mV) and high surface area of Ca ++ rich "c" plane. MTT cytotoxicity assays demonstrated that all the nanoparticles tested herein were biocompatible. Our results suggest that high siRNA entrapment in each of the three modified non-toxic CaP nanoparticles make them promising candidates as a non-viral vector for delivering therapeutic siRNA molecules to treat cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Exosomes as nanocarriers for siRNA delivery: paradigms and challenges.

    PubMed

    Shahabipour, Fahimeh; Banach, Maciej; Sahebkar, Amirhossein

    2016-12-01

    Exosomes are nano-sized vesicles that facilitate intercellular communications through carrying genetic materials and functional biomolecules. Owing to their unique size and structure, exosomes have emerged as a useful tool to overcome the limitations of siRNA delivery. The use of exosomes as siRNA delivery vehicles lacks certain disadvantages of the existing foreign delivery systems such as viruses, polycationic polymers and liposomes, and introduces several advantages including inherent capacity to pass through biological barriers and escape from phagocytosis by the reticuloendothelial system, as well as being biocompatible, non-toxic, and immunologically inert. Different strategies have been employed to harness exosome-based delivery systems, including surface modification with targeting ligands, and using exosome-display technology, virus-modified exosomes, and exosome-mimetic vesicles. The present review provides a capsule summary of the recent advances and current challenges in the field of exosome-mediated siRNA delivery.

  20. JNK-1 Inhibition Leads to Antitumor Activity in Ovarian Cancer

    PubMed Central

    Vivas-Mejia, Pablo; Benito, Juliana Maria; Fernandez, Ariel; Han, Hee-Dong; Mangala, Lingegowda; Rodriguez-Aguayo, Cristian; Chavez-Reyes, Arturo; Lin, Yvonne G.; Nick, Alpa M.; Stone, Rebecca L.; Kim, Hye Sun; Claret, Francois-Xavier; Bornmann, William; Hennessy, Bryan TJ.; Sanguino, Angela; Peng, Zhengong; Sood, Anil K.; Lopez-Berestein, Gabriel

    2011-01-01

    Purpose To demonstrate the functional, clinical and biological significance of JNK-1 in ovarian carcinoma. Experimental Design Analysis of the impact of JNK on 116 epithelial ovarian cancers was conducted. The role of JNK in vitro and in experimental models of ovarian cancer was assessed. We studied the role of WBZ_4, a novel JNK inhibitor redesigned from imatinib based on targeting wrapping defects, in cell lines and in experimental models of ovarian cancer. Results We found a significant association of pJNK with progression free survival in the 116 epithelial ovarian cancers obtained at primary debulking therapy. WBZ_4 led to cell growth inhibition and increased apoptosis in a dose dependent fashion in four ovarian cancer cell lines. In vivo, while imatinib had no effect on tumor growth, WBZ_4 inhibited tumor growth in orthotopic murine models of ovarian cancer. The anti-tumor effect was further increased in combination with docetaxel. Silencing of JNK-1 with systemically administered siRNA led to significantly reduced tumor weights as compared to non-silencing siRNA controls, indicating that indeed the antitumor effects observed were due to JNK-1 inhibition. Conclusions These studies identify JNK-1 as an attractive therapeutic target in ovarian carcinoma and that the re-designed WBZ_4 compound should be considered for further clinical development. PMID:20028751

  1. Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery

    PubMed Central

    Kim, Hyun Ah; Nam, Kihoon; Kim, Sung Wan

    2014-01-01

    Targeted delivery of therapeutic genes to the tumor site is critical for successful and safe cancer gene therapy. The arginine grafted bio-reducible poly (cystamine bisacrylamide-diaminohexane, CBA-DAH) polymer (ABP) conjugated poly (amido amine) (PAMAM), PAM-ABP (PA) was designed previously as an efficient gene delivery carrier. To achieve high efficacy in cancer selective delivery, we developed the tumor targeting bio-reducible polymer, PA-PEG1k-RGD, by conjugating cyclic RGDfC (RGD) peptides, which bind αvβ3/5 integrins, to the PAM-ABP using polyethylene glycol (PEG,1kDa) as a spacer. Physical characterization showed nanocomplex formation with bio-reducible properties between PA-PEG1k-RGD and plasmid DNA (pDNA). In transfection assays, PA-PEG1k-RGD showed significantly higher transfection efficiency in comparison with PAM-ABP or PA-PEG1k-RGD in αvβ3/5 positive MCF7 breast cancer and PANC-1 pancreatic cancer cells. The targeting ability of PA-PEG1k-RGD was further established using a competition assay. To confirm the therapeutic effect, the VEGF siRNA expressing plasmid was constructed and then delivered into cancer cells using PA-PEG1k-RGD. PA-PEG1k-RGD showed 20-59% higher cellular uptake rate into MCF7 and PANC-1 than that of non-targeted polymers. In addition, MCF7 and PANC-1 cancer cells transfected with PA-PEG1k-RGD/pshVEGF complexes had significantly decreased VEGF gene expression (51-71%) and cancer cell viability (35-43%) compared with control. These results demonstrate that a tumor targeting bio-reducible polymer with an anti-angiogenic therapeutic gene could be used for efficient and safe cancer gene therapy. PMID:24894645

  2. PAMAM-RGD Conjugates Enhance siRNA Delivery Through a Multicellular Spheroid Model of Malignant Glioma

    PubMed Central

    Waite, Carolyn L.; Roth, Charles M.

    2011-01-01

    Generation 5 poly(amidoamine) (PAMAM) dendrimers were modified by the addition of cyclic RGD targeting peptides and were evaluated for their ability to associate with siRNA and mediate siRNA delivery to U87 malignant glioma cells. PAMAM-RGD conjugates were able to complex with siRNA to form complexes of approximately 200 nm in size. Modest siRNA delivery was observed in U87 cells using either PAMAM or PAMAM-RGD conjugates. PAMAM-RGD conjugates prevented the adhesion of U87 cells to fibrinogen coated plates, in a manner that depends on the number of RGD ligands per dendrimer. The delivery of siRNA through three-dimensional multicellular spheroids of U87 cells was enhanced using PAMAM-RGD conjugates compared to the native PAMAM dendrimers, presumably by interfering with integrin-ECM contacts present in a three-dimensional tumor model. PMID:19775120

  3. High-Content Surface and Total Expression siRNA Kinase Library Screen with VX-809 Treatment Reveals Kinase Targets that Enhance F508del-CFTR Rescue.

    PubMed

    Perkins, Lydia A; Fisher, Gregory W; Naganbabu, Matharishwan; Schmidt, Brigitte F; Mun, Frederick; Bruchez, Marcel P

    2018-03-05

    The most promising F508del-CFTR corrector, VX-809, has been unsuccessful as an effective, stand-alone treatment for CF patients, but the rescue effect in combination with other drugs may confer an acceptable level of therapeutic benefit. Targeting cellular factors that modify trafficking may act to enhance the cell surface density of F508-CFTR with VX-809 correction. Our goal is to identify druggable kinases that enhance F508del-CFTR rescue and stabilization at the cell surface beyond that achievable with the VX-809 corrector alone. To achieve this goal, we implemented a new high-throughput screening paradigm that quickly and quantitatively measures surface density and total protein in the same cells. This allowed for rapid screening for increased surface targeting and proteostatic regulation. The assay utilizes fluorogen-activating-protein (FAP) technology with cell excluded and cell permeant fluorogenic dyes in a quick, wash-free fluorescent plate reader format on live cells to first measure F508del-CFTR expressed on the surface and then the total amount of F508del-CFTR protein present. To screen for kinase targets, we used Dharmacon's ON-TARGET plus SMARTpool siRNA Kinase library (715 target kinases) with and without 10 μM VX-809 treatment in triplicate at 37 °C. We identified several targets that had a significant interaction with VX-809 treatment in enhancing surface density with siRNA knockdown. Select small-molecule inhibitors of the kinase targets demonstrated augmented surface expression with VX-809 treatment.

  4. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.

    PubMed

    Corrêa, Régis L; Steiner, Florian A; Berezikov, Eugene; Ketting, René F

    2010-04-08

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.

  5. MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans

    PubMed Central

    Corrêa, Régis L.; Steiner, Florian A.; Berezikov, Eugene; Ketting, René F.

    2010-01-01

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi–related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer. PMID:20386745

  6. Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells.

    PubMed

    Vitale, Ilio; Senovilla, Laura; Galluzzi, Lorenzo; Criollo, Alfredo; Vivet, Sonia; Castedo, Maria; Kroemer, Guido

    2008-07-01

    We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the alpha isoform of p38 MAPK (p38alpha MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38alpha MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.

  7. Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize.

    PubMed

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Motta, Mariana Romeiro; Vieira, Tauan; Regulski, Michael; Martienssen, Robert A; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2014-09-06

    Small RNA (sRNA) has been described as a regulator of gene expression. In order to understand the role of maize sRNA (Zea mays-hybrid UENF 506-8) during association with endophytic nitrogen-fixing bacteria, we analyzed the sRNA regulated by its association with two diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Deep sequencing analysis was done with RNA extracted from plants inoculated with H. seropedicae, allowing the identification of miRNA and siRNA. A total of 25 conserved miRNA families and 15 novel miRNAs were identified. A dynamic regulation in response to inoculation was also observed. A hypothetical model involving copper-miRNA is proposed, emphasizing the fact that the up-regulation of miR397, miR398, miR408 and miR528, which is followed by inhibition of their targets, can facilitate association with diazotrophic bacteria. Similar expression patterns were observed in samples inoculated with A. brasilense. Moreover, novel miRNA and siRNA were classified in the Transposable Elements (TE) database, and an enrichment of siRNA aligned with TE was observed in the inoculated samples. In addition, an increase in 24-nt siRNA mapping to genes was observed, which was correlated with an increase in methylation of the coding regions and a subsequent reduction in transcription. Our results show that maize has RNA-based silencing mechanisms that can trigger specific responses when plants interact with beneficial endophytic diazotrophic bacteria. Our findings suggest important roles for sRNA regulation in maize, and probably in other plants, during association with diazotrophic bacteria, emphasizing the up-regulation of Cu-miRNA.

  8. Silencing the roadblocks to effective triple-negative breast cancer treatments by siRNA nanoparticles.

    PubMed

    Parvani, Jenny G; Jackson, Mark W

    2017-04-01

    Over the past decade, RNA interference (RNAi) has been ubiquitously utilized to study biological function in vitro ; however, limitations were associated with its utility in vivo More recently, small interfering RNA (siRNA) nanoparticles with improved biocompatibility have gained prevalence as a potential therapeutic option for the treatment of various diseases. The adaptability of siRNA nanoparticles enables the delivery of virtually any siRNA, which is especially advantageous for therapeutic applications in heterogeneous diseases that lack unifying molecular features, such as triple-negative breast cancer (TNBC). TNBC is an aggressive subtype of breast cancer that is stratified by the lack of estrogen receptor/progesterone receptor expression and HER2 amplification. There are currently no FDA-approved targeted therapies for the treatment of TNBCs, making cytotoxic chemotherapy the only treatment option available to these patients. In this review, we outline the current status of siRNA nanoparticles in clinical trials for cancer treatment and discuss the promising preclinical approaches that have utilized siRNA nanoparticles for TNBC treatment. Next, we address TNBC subtype-specific therapeutic interventions and highlight where and how siRNA nanoparticles fit into these strategies. Lastly, we point out ongoing challenges in the field of siRNA nanoparticle research that, if addressed, would significantly improve the efficacy of siRNA nanoparticles as a therapeutic option for cancer treatment. © 2017 Society for Endocrinology.

  9. Quantitative measurement of delivery and gene silencing activities of siRNA polyplexes containing pyridylthiourea-grafted polyethylenimines.

    PubMed

    Pinel, Sophie; Aman, Emmanuel; Erblang, Felix; Dietrich, Jonathan; Frisch, Benoit; Sirman, Julien; Kichler, Antoine; Sibler, Annie-Paule; Dontenwill, Monique; Schaffner, Florence; Zuber, Guy

    2014-05-28

    The activity of synthetic interfering nucleic acids (siRNAs) relies on the capacity of delivery systems to efficiently transport nucleic acids into the cytosol of target cells. The pyridylthiourea-grafted 25KDa polyethylenimine (πPEI) is an excellent carrier for siRNA delivery into cells and it was extensively investigated in this report. Quantification of the siRNA-mediated gene silencing efficiency indicated that the πPEI specific delivery activity at the cell level may be measured and appears relatively constant in various cell lines. Delivery experiments assaying inhibitors of various entry pathways or concanamycin A, an inhibitor of the H(+)/ATPase vacuolar pump showed that the πPEI/siRNA polyplexes did not require any specific entry mode but strongly relied on vacuolar acidification for functional siRNA delivery. Next, πPEI polyplexes containing a siRNA targeting the transcription factor HIF-1α, known to be involved in tumor progression, were locally injected into mice xenografted with a human glioblastoma. A 55% reduction of the level of the target mRNA was observed at doses comparable to those used in vitro when the πPEI delivery activity was calculated per cell. Altogether, our study underscores the usefulness of "simple"/rough cationic polymers for siRNA delivery despite their intrinsic limitations. The study underscores as well as that bottom-up strategies make sense. The in vitro experiments can precede in vivo administration and be of high value for selection of the carrier with enhanced specific delivery activity and parallel other research aiming at improving synthetic delivery systems for resilience in the blood and for enhanced tissue-targeting capacity. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Targeted nanoconjugate co-delivering siRNA and tyrosine kinase inhibitor to KRAS mutant NSCLC dissociates GAB1-SHP2 post oncogene knockdown

    PubMed Central

    Srikar, R.; Suresh, Dhananjay; Zambre, Ajit; Taylor, Kristen; Chapman, Sarah; Leevy, Matthew; Upendran, Anandhi; Kannan, Raghuraman

    2016-01-01

    A tri-block nanoparticle (TBN) comprising of an enzymatically cleavable porous gelatin nanocore encapsulated with gefitinib (tyrosine kinase inhibitor (TKI)) and surface functionalized with cetuximab-siRNA conjugate has been synthesized. Targeted delivery of siRNA to undruggable KRAS mutated non-small cell lung cancer cells would sensitize the cells to TKI drugs and offers an efficient therapy for treating cancer; however, efficient delivery of siRNA and releasing it in cytoplasm remains a major challenge. We have shown TBN can efficiently deliver siRNA to cytoplasm of KRAS mutant H23 Non-Small Cell Lung Cancer (NSCLC) cells for oncogene knockdown; subsequently, sensitizing it to TKI. In the absence of TKI, the nanoparticle showed minimal toxicity suggesting that the cells adapt a parallel GAB1 mediated survival pathway. In H23 cells, activated ERK results in phosphorylation of GAB1 on serine and threonine residues to form GAB1-p85 PI3K complex. In the absence of TKI, knocking down the oncogene dephosphorylated ERK, and negated the complex formation. This event led to tyrosine phosphorylation at Tyr627 domain of GAB1 that regulated EGFR signaling by recruiting SHP2. In the presence of TKI, GAB1-SHP2 dissociation occurs, leading to cell death. The outcome of this study provides a promising platform for treating NSCLC patients harboring KRAS mutation. PMID:27530552

  11. Targeted nanoconjugate co-delivering siRNA and tyrosine kinase inhibitor to KRAS mutant NSCLC dissociates GAB1-SHP2 post oncogene knockdown.

    PubMed

    Srikar, R; Suresh, Dhananjay; Zambre, Ajit; Taylor, Kristen; Chapman, Sarah; Leevy, Matthew; Upendran, Anandhi; Kannan, Raghuraman

    2016-08-17

    A tri-block nanoparticle (TBN) comprising of an enzymatically cleavable porous gelatin nanocore encapsulated with gefitinib (tyrosine kinase inhibitor (TKI)) and surface functionalized with cetuximab-siRNA conjugate has been synthesized. Targeted delivery of siRNA to undruggable KRAS mutated non-small cell lung cancer cells would sensitize the cells to TKI drugs and offers an efficient therapy for treating cancer; however, efficient delivery of siRNA and releasing it in cytoplasm remains a major challenge. We have shown TBN can efficiently deliver siRNA to cytoplasm of KRAS mutant H23 Non-Small Cell Lung Cancer (NSCLC) cells for oncogene knockdown; subsequently, sensitizing it to TKI. In the absence of TKI, the nanoparticle showed minimal toxicity suggesting that the cells adapt a parallel GAB1 mediated survival pathway. In H23 cells, activated ERK results in phosphorylation of GAB1 on serine and threonine residues to form GAB1-p85 PI3K complex. In the absence of TKI, knocking down the oncogene dephosphorylated ERK, and negated the complex formation. This event led to tyrosine phosphorylation at Tyr627 domain of GAB1 that regulated EGFR signaling by recruiting SHP2. In the presence of TKI, GAB1-SHP2 dissociation occurs, leading to cell death. The outcome of this study provides a promising platform for treating NSCLC patients harboring KRAS mutation.

  12. Targeted nanoconjugate co-delivering siRNA and tyrosine kinase inhibitor to KRAS mutant NSCLC dissociates GAB1-SHP2 post oncogene knockdown

    NASA Astrophysics Data System (ADS)

    Srikar, R.; Suresh, Dhananjay; Zambre, Ajit; Taylor, Kristen; Chapman, Sarah; Leevy, Matthew; Upendran, Anandhi; Kannan, Raghuraman

    2016-08-01

    A tri-block nanoparticle (TBN) comprising of an enzymatically cleavable porous gelatin nanocore encapsulated with gefitinib (tyrosine kinase inhibitor (TKI)) and surface functionalized with cetuximab-siRNA conjugate has been synthesized. Targeted delivery of siRNA to undruggable KRAS mutated non-small cell lung cancer cells would sensitize the cells to TKI drugs and offers an efficient therapy for treating cancer; however, efficient delivery of siRNA and releasing it in cytoplasm remains a major challenge. We have shown TBN can efficiently deliver siRNA to cytoplasm of KRAS mutant H23 Non-Small Cell Lung Cancer (NSCLC) cells for oncogene knockdown; subsequently, sensitizing it to TKI. In the absence of TKI, the nanoparticle showed minimal toxicity suggesting that the cells adapt a parallel GAB1 mediated survival pathway. In H23 cells, activated ERK results in phosphorylation of GAB1 on serine and threonine residues to form GAB1-p85 PI3K complex. In the absence of TKI, knocking down the oncogene dephosphorylated ERK, and negated the complex formation. This event led to tyrosine phosphorylation at Tyr627 domain of GAB1 that regulated EGFR signaling by recruiting SHP2. In the presence of TKI, GAB1-SHP2 dissociation occurs, leading to cell death. The outcome of this study provides a promising platform for treating NSCLC patients harboring KRAS mutation.

  13. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi.

    PubMed

    Tsai, Hsin-Yue; Chen, Chun-Chieh G; Conte, Darryl; Moresco, James J; Chaves, Daniel A; Mitani, Shohei; Yates, John R; Tsai, Ming-Daw; Mello, Craig C

    2015-01-29

    Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots.

    PubMed

    Yang, Yingzhen; Jittayasothorn, Yingyos; Chronis, Demosthenis; Wang, Xiaohong; Cousins, Peter; Zhong, Gan-Yuan

    2013-01-01

    Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5' end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs.

  15. [Screening efficient siRNAs in vitro as the candidate genes for chicken anti-avian influenza virus H5N1 breeding].

    PubMed

    Zhang, P; Wang, J G; Wan, J G; Liu, W Q

    2010-01-01

    The frequent disease outbreaks caused by avian influenza virus not only affect the poultry industry but also pose a threat to human safety. To address the problem, RNA interference (RNAi) has recently been widely used as a potential antiviral approach. Transgenesis in combination with RNAi to specifically inhibit avian enza virus gene expression has been proposed to make chickens resistant to the infection. For the transgenic breeding, screening in vitro efficient siRNAs as the candidate genes is one of the most important tasks. Here, we combined an online search tool and a series of bioinformatics programs with a set of rules for designing siRNAs targeted towards different mRNA regions of H5N1 avian influenza virus. Five rational siRNAs were chosen by this method, five U6 promoter-driven shRNA expression plasmids containing the siRNA genes were constructed and used for producing stably transfected MDCK cells. The data obtained by virus titration, IFA, PI-stained flow cytometry, real-time quantitative RT-PCR, and DAS-ELISA analyses showed that all five stably transfected cell lines we re resistant to virusreplication when exposed to 100 CCID50 of avian influenza virus H5N1. Finally, most effective plasmids (pSi-604i and pSi-1597i) as the candidates for making the transgenic chickens were chosen. These findings provide baseline information on use of RNAi technique for breeding transgenic chickens resistant to avian influenza virus.

  16. Facile Synthesis of Multivalent Folate-Block Copolymer Conjugates via Aqueous RAFT Polymerization: Targeted Delivery of siRNA and Subsequent Gene Suppression†

    PubMed Central

    York, Adam W.; Zhang, Yilin; Holley, Andrew C.; Guo, Yanlin; Huang, Faqing; McCormick, Charles L.

    2009-01-01

    Cell specific delivery of small interfering ribonucleic acid (siRNA) using well-defined multivalent folate-conjugated block copolymers is reported. Primary amine functional, biocompatible, hydrophilic-block-cationic copolymers were synthesized via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. N-(2-hydroxypropyl)methacrylamide) (HPMA), a permanently hydrophilic monomer, was copolymerized with a primary amine containing monomer, N-(3-aminopropyl)methacrylamide (APMA). Poly(HPMA) confers biocompatibility while APMA provides amine functionality allowing conjugation of folate derivatives. (HPMA-stat-APMA) was chain extended with a cationic block, poly(N-[3-(dimethylamino)propyl]methacrylamide) in order to promote electrostatic complexation between the copolymer and the negatively charged phosphate backbone of siRNA. Notably, poly(HPMA) stabilizes the neutral complexes in aqueous solution while APMA allows the conjugation of a targeting moiety, thus, dually circumventing problems associated with the delivery of genes via cationically charged complexes (universal transfection). Fluorescence microscopy and gene down-regulation studies indicate that these neutral complexes can be specifically delivered to cancer cells that over-express folate receptors. PMID:19290625

  17. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery.

    PubMed

    Yao, Yao; Su, Zhihui; Liang, Yanchao; Zhang, Na

    2015-01-01

    Combination of chemotherapeutic drug and small interfering RNA (siRNA) can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome to co-deliver drug and siRNA to tumor region. Driven by the electrostatic interaction, the pH-sensitive material, carboxymethyl chitosan (CMCS), was coated onto the surface of the cationic liposome (CL) preloaded with sorafenib (Sf) and siRNA (Si). To evaluate whether the resulting CMCS-modified Sf and siRNA co-delivery cationic liposome (CMCS-SiSf-CL) enhanced antitumor efficiency after systematic administration, in vitro and in vivo experiments were evaluated in HepG2 cells and the H22 cells-bearing Kunming mice model. The experimental results demonstrated that CMCS-SiSf-CL was able to condense siRNA efficiently and protect siRNA from being degraded by serum and RNase. The release rate of Sf from CMCS-modified liposome exhibited pH-sensitive release behavior. Furthermore, in vitro cellular uptake results showed that CMCS-SiSf-CL yielded higher fluorescence intensity at pH 6.5 than at pH 7.4, and that siRNA could be delivered to tumor site by CMCS-SiSf-CL in vivo. The in vivo antitumor efficacy showed that CMCS-Sf-CL inhibits tumor growth effectively when compared with free Sf solution. In current experimental conditions, this liposomal formulation did not show significant toxicity both in vitro and in vivo. Therefore, co-delivering Sf with siRNA by CMCS-SiSf-CL might provide a promising approach for tumor therapy.

  18. Functional delivery of synthetic naked siRNA to the human trabecular meshwork in perfused organ cultures.

    PubMed

    Comes, Nuria; Borrás, Teresa

    2007-08-01

    meshwork perfused with naked MGP siRNA. MGP transcripts were reduced 94.7% +/- 0.62 (individual 3) and 93.6% +/- 0.13 (individual 4) from those present in the contralateral eye perfused with the scramble control. Pretreatment of GR siRNA followed by DEX treatment caused a reduction of the MYOC and CDT6 gene expressions when compared with eyes pretreated with scramble-control (percent silencing: 99.3% +/- 0.005 and 97.3% +/- 0.25, respectively, for individual 5 and 98.2% +/- 0.06 and 85.6% +/- 0.88, respectively, for individual 6). Western blots revealed the decrease of MYOC secreted by GR siRNA-treated cell and organ cultures. Readily available siRNA can be delivered to the intact human trabecular meshwork by intracameral perfusion. The delivered naked siRNA is functional, inhibiting not only the targeted gene but also their downstream effectors. This functional intracameral delivery might be of use to protect the trabecular meshwork from unwanted insults and could have important therapeutic applications.

  19. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2

    PubMed Central

    2010-01-01

    Background Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. Results We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. Conclusions MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer. PMID:20409325

  20. Nanostructured Lipid Carriers as Multifunctional Nanomedicine Platform for Pulmonary Co-Delivery of Anticancer Drugs and siRNA

    PubMed Central

    Taratula, Oleh; Kuzmov, Andriy; Shah, Milin; Garbuzenko, Olga B.; Minko, Tamara

    2013-01-01

    We developed, synthesized, and tested a multifunctional nanostructured lipid nanocarrier-based system (NLCS) for efficient delivery of an anticancer drug and siRNA directly into the lungs by inhalation. The system contains: (1) nanostructured lipid carriers (NLC); (2) anticancer drug (doxorubicin or paclitaxel); (3) siRNA targeted to MRP1 mRNA as a suppressor of pump drug resistance; (4) siRNA targeted to BCL2 mRNA as a suppressor of nonpump cellular resistance and (5) a modified synthetic analog of luteinizing hormone-releasing hormone (LHRH) as a targeting moiety specific to the receptors that are overexpressed in the plasma membrane of lung cancer cells. The NLCS was tested in vitro using human lung cancer cells and in vivo utilizing mouse orthotopic model of human lung cancer. After inhalation, the proposed NLCS effectively delivered its payload into lung cancer cells leaving healthy lung tissues intact and also significantly decreasing the exposure of healthy organs when compared with intravenous injection. The NLCS showed enhanced antitumor activity when compared with intravenous treatment. The data obtained demonstrated high efficiency of proposed NLCS for tumor-targeted local delivery by inhalation of anticancer drugs and mixture of siRNAs specifically to lung cancer cells and, as a result, efficient suppression of tumor growth and prevention of adverse side effects on healthy organs. PMID:23648833

  1. Molecular Characteristics and Efficacy of 16D10 siRNAs in Inhibiting Root-Knot Nematode Infection in Transgenic Grape Hairy Roots

    PubMed Central

    Chronis, Demosthenis; Wang, Xiaohong; Cousins, Peter; Zhong, Gan-Yuan

    2013-01-01

    Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5′ end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs

  2. A potential adjuvant chemotherapeutics, 18β-glycyrrhetinic acid, inhibits renal tubular epithelial cells apoptosis via enhancing BMP-7 epigenetically through targeting HDAC2.

    PubMed

    Ma, Taotao; Huang, Cheng; Meng, Xiaoming; Li, Xiaofeng; Zhang, Yilong; Ji, Shuai; Li, Jun; Ye, Min; Liang, Hong

    2016-05-05

    Cisplatin, a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by an effective adjuvant via epigenetic modification through targeting HDAC2. Molecular docking and SPR assay firstly reported that 18βGA, major metabolite of GA, could directly bind to HDAC2 and inhibit the activity of HDAC2. The effects and mechanisms of GA and 18βGA were assessed in CP-induced AKI in C57BL/6 mice, and in CP-treated HK-2 and mTEC cells lines. TUNEL and FCM results confirmed that GA and 18βGA could inhibit apoptosis of renal tubular epithelial cells induced by CP in vivo and in vitro. Western blot and immunofluorescence results demonstrated that the expression of BMP-7 was clearly induced by 18βGA in AKI models while siRNA BMP-7 could reduce the inhibitory effect of 18βGA on apoptosis. Results of current study indicated that 18βGA inhibited apoptosis of renal tubular epithelial cells via enhancing the level of BMP-7 epigenetically through targeting HDAC2, therefore protecting against CP-induced AKI. These available evidence, which led to an improved understanding of molecular recognition, suggested that 18βGA could serve as a potential clinical adjuvant in chemotherapy.

  3. Strand antagonism in RNAi: an explanation of differences in potency between intracellularly expressed siRNA and shRNA

    PubMed Central

    Jin, Xin; Sun, Tingting; Zhao, Chuanke; Zheng, Yongxiang; Zhang, Yufan; Cai, Weijing; He, Qiuchen; Taira, Kaz; Zhang, Lihe; Zhou, Demin

    2012-01-01

    Strategies to regulate gene function frequently use small interfering RNAs (siRNAs) that can be made from their shRNA precursors via Dicer. However, when the duplex components of these siRNA effectors are expressed from their respective coding genes, the RNA interference (RNAi) activity is much reduced. Here, we explored the mechanisms of action of shRNA and siRNA and found the expressed siRNA, in contrast to short hairpin RNA (shRNA), exhibits strong strand antagonism, with the sense RNA negatively and unexpectedly regulating RNAi. Therefore, we altered the relative levels of strands of siRNA duplexes during their expression, increasing the level of the antisense component, reducing the level of the sense component, or both and, in this way we were able to enhance the potency of the siRNA. Such vector-delivered siRNA attacked its target effectively. These findings provide new insight into RNAi and, in particular, they demonstrate that strand antagonism is responsible for making siRNA far less potent than shRNA. PMID:22039150

  4. WNK4 inhibits plasma membrane targeting of NCC through regulation of syntaxin13 SNARE formation.

    PubMed

    Chung, Woo Young; Park, Hyun Woo; Han, Jung Woo; Lee, Min Goo; Kim, Joo Young

    2013-12-01

    WNK4, a serine/threonine kinase, plays a critical role in the expression of membrane proteins in the cell surface; however, the underlying mechanism of WNK4 is not clear. Here, we demonstrate that WNK4 inhibits the fusion of plasma membrane delivering vesicle with sorting/recycling endosome through disrupting SNARE formation of syntaxin13, an endosomal t-SNARE and VAMP2, the v-SNARE in plasma membrane delivering vesicle. Their interaction and co-localization were enhanced by hyperosmotic stimulation which is known for WNK4 activation. The kinase domain of WNK4 interacts with the transmembrane domain (TM) of syntaxin13 and this interaction was abolished when the TM was replaced with that of syntaxin16. Interestingly, cell fractionation using sucrose gradients revealed that WNK4 inhibited the formation of the syntaxin13/VAMP2 SNARE complex in the endosomal compartment, but not syntaxin16/VAMP2 or syntaxin13/VAMP7. Syntaxin13 was not phosphorylated by WNK4 and WNK4KI also showed the same binding strength and similar inhibitory regulation on SNARE formation of syntaxin13. Physiological relevance of this mechanism was proved with the expression of NCC (Na(+) C1(-) co-transporter) in the cell surface. The inhibiting activity of WNK4 on surface expression of NCC was abolished by syntaxin13 siRNA transfection. These results suggest that WNK4 attenuates PM targeting of NCC proteins through regulation of syntaxin13 SNARE complex formation with VAMP2 in recycling and sorting endosome. © 2013.

  5. ZEB1 knockdown mediated using polypeptide cationic micelles inhibits metastasis and effects sensitization to a chemotherapeutic drug for cancer therapy

    NASA Astrophysics Data System (ADS)

    Fang, Shengtao; Wu, Lei; Li, Mingxing; Yi, Huqiang; Gao, Guanhui; Sheng, Zonghai; Gong, Ping; Ma, Yifan; Cai, Lintao

    2014-08-01

    Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced metastasis in the lung. When DOX and siRNA were co-delivered by the nanocarriers (siRNA-DOX-NP), a synergistic therapeutic effect was observed, resulting in dramatic inhibition of tumor growth in a H460 xenograft model. These results demonstrated that the siRNA-NP or siRNA-DOX-NP complex targeting ZEB1 could be developed into a new therapeutic approach for non-small cell lung cancer (NSCLC) treatment.Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced

  6. Carbon nanotube-mediated siRNA delivery for gene silencing in cancer cells

    NASA Astrophysics Data System (ADS)

    Hong, Tu; Guo, Honglian; Xu, Yaqiong

    2011-10-01

    Small interfering RNA (siRNA) is potentially a promising tool in influencing gene expression with a high degree of target specificity. However, its poor intracellular uptake, instability in vivo, and non-specific immune stimulations impeded its effect in clinical applications. In this study, carbon nanotubes (CNTs) functionalized with two types of phospholipid-polyethylene glycol (PEG) have shown capabilities to stabilize siRNA in cell culture medium during the transfection and efficiently deliver siRNA into neuroblastoma and breast cancer cells. Moreover, the intrinsic optical properties of CNTs have been investigated through absorption and fluorescence measurements. We have found that the directly-functionalized groups play an important role on the fluorescence imaging of functionalized CNTs. The unique fluorescence imaging and high delivery efficiency make CNTs a promising material to deliver drugs and evaluate the treatment effect simultaneously.

  7. Enhanced Wound Healing Using Topically Administered Nanoparticle Encapsulated siRNA

    DTIC Science & Technology

    2013-11-01

    from eye surgery such as LASIK surgery, LASEK surgery, PRK surgery, glaucoma filtration surgery, cataract surgery, or surgery in which the lens...treatment vs . siRNA transfection using the RNAiMAX delivery system from InVitrogen (http://www.invitrogen.com/site/us/en/home/Products-and- Services...consisting of: wounds of the skin; wounds of the eye (including the inhibition of scarring resulting from eye surgery such as LASIK surgery, LASEK surgery

  8. Expression of the proto-oncogene Pokemon in colorectal cancer--inhibitory effects of an siRNA.

    PubMed

    Zhao, Gan-Ting; Yang, Li-Juan; Li, Xi-Xia; Cui, Hui-Lin; Guo, Rui

    2013-01-01

    This study aimed to investigate expression of the proto-oncogene POK erythroid myeloid ontogenic factor (Pokemon) in colorectal cancer (CRC), and assess inhibitory effects of a small interference RNA (siRNA) expression vector in SW480 and SW620 cells. Semi-quantitative reverse transcription-polymerase chain reaction (PCR) and immunohistochemistry were performed to determine mRNA and protein expression levels of Pokemon in CRC tissues. Indirect immunofluorescence staining was applied to investigate the location of Pokemon in SW480 and SW620 cells. The siRNA expression vectors that were constructed to express a short hairpin RNA against Pokemon were transfected to the SW480 and SW620 cells with a liposome. Expression levels of Pokemon mRNA and protein were examined by real-time quantitative-fluorescent PCR and western blot analysis. The effects of Pokemon silencing on proliferation of SW480 and SW620 cells were evaluated with reference to growth curves with MTT assays. The mRNA expression level of Pokemon in tumor tissues (0.845 ± 0.344) was significantly higher than that in adjacent tumor specimens (0.321 ± 0.197). The positive expression ratio of Pokemon protein in CRC (87.0%) was significantly higher than that in the adjacent tissues (19.6%). Strong fluorescence staining of Pokemon protein was observed in the cytoplasm of the SW480 and SW620 cells. The inhibition ratios of Pokemon mRNA and protein in the SW480 cells were 83.1% and 73.5% at 48 and 72 h, respectively, compared with those of the negative control cells with the siRNA. In the SW620 cells, the inhibition ratios of Pokemon mRNA and protein were 76.3% and 68.7% at 48 and 72 h, respectively. MTT showed that Pokemon gene silencing inhibited the proliferation of SW480 and SW620 cells. Overexpression of Pokemon in CRC may have a function in carcinogenesis and progression. siRNA expression vectors could effectively inhibit mRNA and protein expression of Pokemon in SW480 and SW620 cells, thereby reducing

  9. The pH-Triggered Triblock Nanocarrier Enabled Highly Efficient siRNA Delivery for Cancer Therapy.

    PubMed

    Du, Lili; Zhou, Junhui; Meng, Lingwei; Wang, Xiaoxia; Wang, Changrong; Huang, Yuanyu; Zheng, Shuquan; Deng, Liandong; Cao, Huiqing; Liang, Zicai; Dong, Anjie; Cheng, Qiang

    2017-01-01

    Small interfering RNA (siRNA) therapies have been hampered by lack of delivery systems in the past decades. Nowadays, a few promising vehicles for siRNA delivery have been developed and it is gradually revealed that enhancing siRNA release from endosomes into cytosol is a very important factor for successful delivery. Here, we designed a novel pH-sensitive nanomicelle, PEG-PTTMA-P(GMA-S-DMA) (PTMS), for siRNA delivery. Owing to rapid hydrolysis in acidic environment, PTMS NPs underwent hydrophobic-to-hydrophilic transition in endosomes that enabled combination of proton sponge effect and raised osmotic pressure in endosomes, resulting in vigorous release of siRNAs from endosomes into cytosol. In vitro results demonstrated that PTMS/siRNA complexes exhibited excellent gene silencing effects in several cell lines. Their gene silencing efficiency could reach ~91%, ~87% and ~90% at the N/P ratio of 50/1 in MDA-MB-231, A549 and Hela cells respectively, which were better than that obtained with Lipofectamine 2000. The highly efficient gene silencing was then proven from enhanced siRNA endosomal release, which is mainly attributed to pH-triggered degradation of polymer and acid-accelerated siRNA release. In vivo experiments indicated that NPs/siRNA formulation rapidly accumulated in tumor sites after i.v. injection. Tumor growth was effectively inhibited and ~45% gene knockdown efficacy was determined at the siRRM2 dose of 1mg/kg. Meanwhile, no significant toxicity was observed during the whole treatment. We also found that PTMS/siRNA formulations could lead to significant gene silencing effects in liver (~63%) and skin (~80%) when injected by i.v. and s.c., respectively. This research work gives a rational strategy to optimize siRNA delivery systems for tumor treatments.

  10. In vivo silencing of alpha-synuclein using naked siRNA

    PubMed Central

    Lewis, Jada; Melrose, Heather; Bumcrot, David; Hope, Andrew; Zehr, Cynthia; Lincoln, Sarah; Braithwaite, Adam; He, Zhen; Ogholikhan, Sina; Hinkle, Kelly; Kent, Caroline; Toudjarska, Ivanka; Charisse, Klaus; Braich, Ravi; Pandey, Rajendra K; Heckman, Michael; Maraganore, Demetrius M; Crook, Julia; Farrer, Matthew J

    2008-01-01

    Background Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. Conclusion We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression. PMID:18976489

  11. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.

    PubMed

    Zhang, Haiyang; Wang, Yi; Bai, Ming; Wang, Junyi; Zhu, Kegan; Liu, Rui; Ge, Shaohua; Li, JiaLu; Ning, Tao; Deng, Ting; Fan, Qian; Li, Hongli; Sun, Wu; Ying, Guoguang; Ba, Yi

    2018-03-01

    Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF-cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co-culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents.

    PubMed

    Zhao, Jing; Feng, Si-Shen

    2015-07-01

    A major problem in cancer treatment is the multidrug resistance. siRNA inhibitors have great advantages to solve the problem, if the bottleneck of their delivery could be well addressed by the various nanocarriers. Moreover, co-delivery of siRNA together with the various anticancer agents in one nanocarrier may maximize their additive or synergistic effect. This review provides a comprehensive summary on the state-of-the-art of the nanocarriers, which may include prodrugs, micelles, liposomes, dendrimers, nanohydrogels, solid lipid nanoparticles, nanoparticles of biodegradable polymers and nucleic acid nanocarriers for delivery of siRNA and co-delivery of siRNA together with anticancer agents with focus on synthesis of the nanocarrier materials, design and characterization, in vitro and in vivo evaluation, and prospect and challenges of nanocarriers.

  13. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery.

    PubMed

    Liu, Peifeng; Yu, Hui; Sun, Ying; Zhu, Mingjie; Duan, Yourong

    2012-06-01

    A amphiphilic block copolymer composed of conventional monomethoxy (polyethylene glycol)-poly (d,l-lactide-co-glycolide)-poly (l-lysine) (mPEG-PLGA-b-PLL) was synthesized. The chemical structure of this copolymer and its precursors was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), (1)H Nuclear Magnetic Resonance ((1)H NMR) and Gel Permeation Chromatography (GPC). The copolymer was used to prepare nanoparticles (NPs) that were then loaded with either the anti-cancer drug adriamycin or small interfering RNA-negative (siRNA) using a double emulsion method. MTT assays used to study the in vitro cytotoxicity of mPEG-PLGA-b-PLL NPs showed that these particles were not toxic in huh-7 hepatic carcinoma cells. Confocal laser scanning microscopy (CLSM) and flow cytometer analysis results demonstrated efficient mPEG-PLGA-b-PLL NPs-mediated delivery of both adriamycin and siRNA into the cells. In vivo the targeting delivery of adriamycin or siRNA mediated by mPEG-PLGA-b-PLL NPs in the huh-7 hepatic carcinoma-bearing mice was evaluated using a fluorescence imaging system. The targeting delivery results and froze section analysis confirmed that drug or siRNA is deliver to tumor more efficiently by mPEG-PLGA-b-PLL NPs than free drug or Lipofectamine™2000. The high efficiency delivery of mPEG-PLGA-b-PLL NPs mainly due to the enhancement of cellular uptake. These results imply that mPEG-PLGA-b-PLL NPs have a great potential to be used as an effective carriers for adriamycin or siRNA. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat.

    PubMed

    Amadio, Marialaura; Pascale, Alessia; Cupri, Sarha; Pignatello, Rosario; Osera, Cecilia; D Agata, Velia; D Amico, Agata Grazia; Leggio, Gian Marco; Ruozi, Barbara; Govoni, Stefano; Drago, Filippo; Bucolo, Claudio

    2016-09-01

    We evaluated whether specifically and directly targeting human antigen R (HuR), a member of embryonic lethal abnormal vision (ELAV) proteins family, may represent a new potential therapeutic strategy to manage diabetic retinopathy. Nanosystems loaded with siRNA silencing HuR expression (lipoplexes), consisting of solid lipid nanoparticles (SLN) and liposomes (SUV) were prepared. Photon correlation spectroscopy analysis, Zeta potential measurement and atomic force microscopy (AFM) studies were carried out to characterize the complexation of siRNA with the lipid nanocarriers. Nanosystems were evaluated by using AFM and scanning electron microscopy. The lipoplexes were injected into the eye of streptozotocin (STZ)-induced diabetic rats. Retinal HuR and VEGF levels were detected by Western blot and ELISA, respectively. Retinal histology was also carried out. The results demonstrated that retinal HuR and VEGF are significantly increased in STZ-rats and are blunted by HuR siRNA treatment. Lipoplexes with a weak positive surface charge and with a 4:1 N/P (cationic lipid nitrogen to siRNA phosphate) ratio exert a better transfection efficiency, significantly dumping retinal HuR and VEGF levels. In conclusion, we demonstrated that siRNA can be efficiently delivered into the rat retina using lipid-based nanocarriers, and some of the lipoplexes loaded with siRNA silencing HuR expression are potential candidates to manage retinal diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls.

    PubMed

    Thomas, Andreas; Walpurgis, Katja; Delahaut, Philippe; Kohler, Maxie; Schänzer, Wilhelm; Thevis, Mario

    2013-01-01

    Uncovering manipulation of athletic performance via small interfering (si)RNA is an emerging field in sports drug testing. Due to the potential to principally knock down every target gene in the organism by means of the RNA interference pathway, this facet of gene doping has become a realistic scenario. In the present study, two distinct model siRNAs comprising 21 nucleotides were designed as double strands which were perfect counterparts to a sequence of the respective messenger RNA coding the muscle regulator myostatin of Rattus norvegicus. Several modified nucleotides were introduced in both the sense and the antisense strand comprising phosphothioates, 2'-O-methylation, 2'-fluoro-nucleotides, locked nucleic acids and a cholesterol tag at the 3'-end. The model siRNAs were applied to rats at 1 mg/kg (i.v.) and blood as well as urine samples were collected. After isolation of the RNA by means of a RNA purification kit, the target analytes were detected by liquid chromatography - high resolution/high accuracy mass spectrometry (LC-HRMS). Analytes were detected as modified nucleotides after alkaline hydrolysis, as intact oligonucleotide strands (top-down) and by means of denaturing SDS-PAGE analysis. The gel-separated siRNA was further subjected to in-gel hydrolysis with different RNases and subsequent identification of the fragments by untargeted LC-HRMS analysis (bottom-up, 'experimental RNomics'). Combining the results of all approaches, the identification of several 3'-truncated urinary metabolites was accomplished and target analytes were detected up to 24 h after a single administration. Simultaneously collected blood samples yielded no promising results. The methods were validated and found fit-for-purpose for doping controls. Copyright © 2013 John Wiley & Sons, Ltd.

  16. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery.

    PubMed

    Zhao, Yi; Wang, Wei; Guo, Shutao; Wang, Yuhua; Miao, Lei; Xiong, Yang; Huang, Leaf

    2016-06-06

    Metformin, a widely implemented anti-diabetic drug, exhibits potent anticancer efficacies. Herein a polymeric construction of Metformin, PolyMetformin (PolyMet) is successfully synthesized through conjugation of linear polyethylenimine (PEI) with dicyandiamide. The delocalization of cationic charges in the biguanide groups of PolyMet reduces the toxicity of PEI both in vitro and in vivo. Furthermore, the polycationic properties of PolyMet permits capture of siRNA into a core-membrane structured lipid-polycation-hyaluronic acid (LPH) nanoparticle for systemic gene delivery. Advances herein permit LPH-PolyMet nanoparticles to facilitate VEGF siRNA delivery for VEGF knockdown in a human lung cancer xenograft, leading to enhanced tumour suppressive efficacy. Even in the absence of RNAi, LPH-PolyMet nanoparticles act similarly to Metformin and induce antitumour efficacy through activation of the AMPK and inhibition of the mTOR. In essence, PolyMet successfully combines the intrinsic anticancer efficacy of Metformin with the capacity to carry siRNA to enhance the therapeutic activity of an anticancer gene therapy.

  17. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    PubMed

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  18. Sequential intravenous injection of anionic polymer and cationic lipoplex of siRNA could effectively deliver siRNA to the liver.

    PubMed

    Hattori, Yoshiyuki; Arai, Shohei; Okamoto, Ryou; Hamada, Megumi; Kawano, Kumi; Yonemochi, Etsuo

    2014-12-10

    In this study, we developed novel siRNA transfer method to the liver by sequential intravenous injection of anionic polymer and cationic liposome/cholesterol-modified siRNA complex (cationic lipoplex). When cationic lipoplex was intravenously injected into mice, the accumulation of siRNA was mainly observed in the lungs. In contrast, when cationic lipoplex was intravenously injected at 1 min after intravenous injection of poly-L-glutamic acid (PGA) or chondroitin sulfate C (CS), siRNA was accumulated in the liver. In terms of suppression of gene expression in vivo, apolipoprotein B (ApoB) mRNA in the liver and low-density-lipoprotein (LDL) and very low-density-lipoprotein (VLDL) cholesterol level in serum were reduced at 48 h after single sequential injection of PGA or CS plus cationic lipoplex of cholesterol-modified ApoB siRNA. Furthermore, sequential injections of PGA plus cationic lipoplex of cholesterol-modified luciferase siRNA could reduce luciferase activity in tumor xenografts bearing liver metastasis of human breast tumor MCF-7-Luc. From these findings, sequential injection of anionic polymer and cationic lipoplex of siRNA might produce a systemic vector of siRNA to the liver. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Neurotensin stimulates sortilin and mTOR in human microglia inhibitable by methoxyluteolin, a potential therapeutic target for autism.

    PubMed

    Patel, Arti B; Tsilioni, Irene; Leeman, Susan E; Theoharides, Theoharis C

    2016-09-23

    We had reported elevated serum levels of the peptide neurotensin (NT) in children with autism spectrum disorders (ASD). Here, we show that NT stimulates primary human microglia, the resident immune cells of the brain, and the immortalized cell line of human microglia-SV40. NT (10 nM) increases the gene expression and release (P < 0.001) of the proinflammatory cytokine IL-1β and chemokine (C-X-C motif) ligand 8 (CXCL8), chemokine (C-C motif) ligand 2 (CCL2), and CCL5 from human microglia. NT also stimulates proliferation (P < 0.05) of microglia-SV40. Microglia express only the receptor 3 (NTR3)/sortilin and not the NTR1 or NTR2. The use of siRNA to target sortilin reduces (P < 0.001) the NT-stimulated cytokine and chemokine gene expression and release from human microglia. Stimulation with NT (10 nM) increases the gene expression of sortilin (P < 0.0001) and causes the receptor to be translocated from the cytoplasm to the cell surface, and to be secreted extracellularly. Our findings also show increased levels of sortilin (P < 0.0001) in the serum from children with ASD (n = 36), compared with healthy controls (n = 20). NT stimulation of microglia-SV40 causes activation of the mammalian target of rapamycin (mTOR) signaling kinase, as shown by phosphorylation of its substrates and inhibition of these responses by drugs that prevent mTOR activation. NT-stimulated responses are inhibited by the flavonoid methoxyluteolin (0.1-1 μM). The data provide a link between sortilin and the pathological findings of microglia and inflammation of the brain in ASD. Thus, inhibition of this pathway using methoxyluteolin could provide an effective treatment of ASD.

  20. SiRNA knockdown of the DEK nuclear protein mRNA enhances apoptosis and chemosensitivity of canine transitional cell carcinoma cells.

    PubMed

    Yamazaki, Hiroki; Iwano, Tomomi; Otsuka, Saori; Kagawa, Yumiko; Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro; Takagi, Satoshi

    2015-04-01

    Transitional cell carcinoma (TCC) in dogs is an aggressive malignant neoplasm, originating in the epithelium of the urinary bladder. The DEK nuclear protein is overexpressed in several types of human bladder cancer, where it is involved in chromatin reconstruction, gene transcription and apoptosis. Since DEK represents a potential therapeutic target for canine TCC, this study was designed to investigate DEK expression in canine TCC and to determine the effects of DEK mRNA silencing on TCC cells in vitro. The gene expression profiles of seven selected cancer-associated genes was assessed in four canine TCC cell lines and expression of DEK protein was evaluated in bladder tissue biopsies from healthy dogs and those affected with cystitis or TCC. After transfection of four canine TCC cell lines with DEK-specific or scrambled siRNA, annexin V staining was performed to evaluate apoptosis, and methylthiazole tetrazolium assays were performed to assess both cell viability and sensitivity to carboplatin. DEK mRNA expression was relatively high in canine TCC cells and expression of the DEK protein was significantly greater in TCC tumours compared with the other tissue samples. After transfection with DEK-specific siRNA, apoptosis, cell growth inhibition, and enhanced sensitivity to carboplatin were observed in all TCC cells assessed. These research findings suggest that DEK could be a potential therapeutic target for canine TCC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Gene Silencing of SOCS3 by siRNA Intranasal Delivery Inhibits Asthma Phenotype in Mice

    PubMed Central

    Mazzeo, Carla; Gámez, Cristina; Rodriguez Marco, Ainara; de Zulueta, Ana; Sanz, Veronica; Bilbao, Izaskun; Ruiz-Cabello, Jesús; Zubeldia, Jose M.; del Pozo, Victoria

    2014-01-01

    Suppresors of cytokine signaling (SOCS) proteins regulate cytokine responses and control immune balance. Several studies have confirmed that SOCS3 is increased in asthmatic patients, and SOCS3 expression is correlated with disease severity. The objective of this study was to evaluate if delivering of SOCS3 short interfering RNA (siRNA) intranasally in lungs could be a good therapeutic approach in an asthma chronic mouse model. Our results showed that intranasal treatment with SOCS3-siRNA led to an improvement in the eosinophil count and the normalization of hyperresponsiveness to methacholine. Concomitantly, this treatment resulted in an improvement in mucus secretion, a reduction in lung collagen, which are prominent features of airway remodeling. The mechanism implies JAK/STAT and RhoA/Rho-kinase signaling pathway, because we found a decreasing in STAT3 phosphorylation status and down regulation of RhoA/Rho-kinase protein expression. These results might lead to a new therapy for the treatment of chronic asthma. PMID:24637581

  2. Ultrasound-Guided Delivery of siRNA and a Chemotherapeutic Drug by Using Microbubble Complexes: In Vitro and In Vivo Evaluations in a Prostate Cancer Model.

    PubMed

    Bae, Yun Jung; Yoon, Young Il; Yoon, Tae-Jong; Lee, Hak Jong

    2016-01-01

    To evaluate the effectiveness of ultrasound and microbubble-liposome complex (MLC)-mediated delivery of siRNA and doxorubicin into prostate cancer cells and its therapeutic capabilities both in vitro and in vivo. Microbubble-liposome complexes conjugated with anti-human epidermal growth factor receptor type 2 (Her2) antibodies were developed to target human prostate cancer cell lines PC-3 and LNCaP. Intracellular delivery of MLC was observed by confocal microscopy. We loaded MLC with survivin-targeted small interfering RNA (siRNA) and doxorubicin, and delivered it into prostate cancer cells. The release of these agents was facilitated by ultrasound application. Cell viability was analyzed by MTT assay after the delivery of siRNA and doxorubicin. Survivin-targeted siRNA loaded MLC was delivered into the xenograft mouse tumor model. Western blotting was performed to quantify the expression of survivin in vivo. Confocal microscopy demonstrated substantial intracellular uptake of MLCs in LNCaP, which expresses higher levels of Her2 than PC-3. The viability of LNCaP cells was significantly reduced after the delivery of MLCs loaded with siRNA and doxorubicin (85.0 ± 2.9%), which was further potentiated by application of ultrasound (55.0 ± 3.5%, p = 0.009). Survivin expression was suppressed in vivo in LNCaP tumor xenograft model following the ultrasound and MLC-guided delivery of siRNA (77.4 ± 4.90% to 36.7 ± 1.34%, p = 0.027). Microbubble-liposome complex can effectively target prostate cancer cells, enabling intracellular delivery of the treatment agents with the use of ultrasound. Ultrasound and MLC-mediated delivery of survivin-targeted siRNA and doxorubicin can induce prostate cell apoptosis and block survivin expression in vitro and in vivo.

  3. siRNA for Influenza Therapy.

    PubMed

    Barik, Sailen

    2010-07-01

    Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA), has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.

  4. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes.

    PubMed

    Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A

    2011-02-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Terminal Duplex Stability and Nucleotide Identity Differentially Control siRNA Loading and Activity in RNA Interference

    PubMed Central

    Angart, Phillip A.; Carlson, Rebecca J.; Adu-Berchie, Kwasi

    2016-01-01

    Efficient short interfering RNA (siRNA)-mediated gene silencing requires selection of a sequence that is complementary to the intended target and possesses sequence and structural features that encourage favorable functional interactions with the RNA interference (RNAi) pathway proteins. In this study, we investigated how terminal sequence and structural characteristics of siRNAs contribute to siRNA strand loading and silencing activity and how these characteristics ultimately result in a functionally asymmetric duplex in cultured HeLa cells. Our results reiterate that the most important characteristic in determining siRNA activity is the 5′ terminal nucleotide identity. Our findings further suggest that siRNA loading is controlled principally by the hybridization stability of the 5′ terminus (Nucleotides: 1–2) of each siRNA strand, independent of the opposing terminus. Postloading, RNA-induced silencing complex (RISC)–specific activity was found to be improved by lower hybridization stability in the 5′ terminus (Nucleotides: 3–4) of the loaded siRNA strand and greater hybridization stability toward the 3′ terminus (Nucleotides: 17–18). Concomitantly, specific recognition of the 5′ terminal nucleotide sequence by human Argonaute 2 (Ago2) improves RISC half-life. These findings indicate that careful selection of siRNA sequences can maximize both the loading and the specific activity of the intended guide strand. PMID:27399870

  6. Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis.

    PubMed Central

    Siegmund, Daniela; Hadwiger, Philipp; Pfizenmaier, Klaus; Vornlocher, Hans-Peter; Wajant, Harald

    2002-01-01

    BACKGROUND: Most tumors express death receptors and their activation represents a potential selective approach in cancer treatment. The most promising candidate for tumor selective death receptor-activation is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L, which activates the death receptors TRAIL-R1 and TRAIL-R2, and induces apoptosis preferentially in tumor cells but not in normal tissues. However, many cancer cells are not or only moderately sensitive towards TRAIL and require cotreatment with irradiation or chemotherapy to yield a therapeutically reasonable apoptotic response. Because chemotherapy can have a broad range of unwanted side effects, more specific means for sensitizing tumor cells for TRAIL are desirable. The expression of the cellular FLICE-like inhibitory protein (cFLIP) is regarded as a major cause of TRAIL resistance. We therefore analyzed the usefulness of targeting FLIP to sensitize tumor cells for TRAIL-induced apoptosis. MATERIALS AND METHODS: To selectively interfere with expression of cFLIP short double-stranded RNA oligonucleotides (small interfering RNAs [siRNAs]) were introduced in the human cell lines SV80 and KB by electroporation. Effects of siRNA on FLIP expression were analyzed by Western blotting and RNase protection assay and correlated with TRAIL sensitivity upon stimulation with recombinant soluble TRAIL and TRAIL-R1- and TRAIL-R2-specific agonistic antibodies. RESULTS: FLIP expression can be inhibited by RNA interference using siRNAs, evident from reduced levels of FLIP-mRNA and FLIP protein. Inhibition of cFLIP expression sensitizes cells for apoptosis induction by TRAIL and other death ligands. In accordance with the presumed function of FLIP as an inhibitor of death receptor-induced caspase-8 activation, down-regulation of FLIP by siRNAs enhanced TRAIL-induced caspase-8 activation. CONCLUSION: Inhibition of FLIP expression was sufficient to sensitize tumor cells for TRAIL-induced apoptosis. The

  7. Inhibition of KLF7-Targeting MicroRNA 146b Promotes Sciatic Nerve Regeneration.

    PubMed

    Li, Wen-Yuan; Zhang, Wei-Ting; Cheng, Yong-Xia; Liu, Yan-Cui; Zhai, Feng-Guo; Sun, Ping; Li, Hui-Ting; Deng, Ling-Xiao; Zhu, Xiao-Feng; Wang, Ying

    2018-06-01

    A previous study has indicated that Krüppel-like factor 7 (KLF7), a transcription factor that stimulates Schwann cell (SC) proliferation and axonal regeneration after peripheral nerve injury, is a promising therapeutic transcription factor in nerve injury. We aimed to identify whether inhibition of microRNA-146b (miR-146b) affected SC proliferation, migration, and myelinated axon regeneration following sciatic nerve injury by regulating its direct target KLF7. SCs were transfected with miRNA lentivirus, miRNA inhibitor lentivirus, or KLF7 siRNA lentivirus in vitro. The expression of miR146b and KLF7, as well as SC proliferation and migration, were subsequently evaluated. In vivo, an acellular nerve allograft (ANA) followed by injection of GFP control vector or a lentiviral vector encoding an miR-146b inhibitor was used to assess the repair potential in a model of sciatic nerve gap. miR-146b directly targeted KLF7 by binding to the 3'-UTR, suppressing KLF7. Up-regulation of miR-146b and KLF7 knockdown significantly reduced the proliferation and migration of SCs, whereas silencing miR-146b resulted in increased proliferation and migration. KLF7 protein was localized in SCs in which miR-146b was expressed in vivo. Similarly, 4 weeks after the ANA, anti-miR-146b increased KLF7 and its target gene nerve growth factor cascade, promoting axonal outgrowth. Closer analysis revealed improved nerve conduction and sciatic function index score, and enhanced expression of neurofilaments, P0 (anti-peripheral myelin), and myelinated axon regeneration. Our findings provide new insight into the regulation of KLF7 by miR-146b during peripheral nerve regeneration and suggest a potential therapeutic strategy for peripheral nerve injury.

  8. PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy

    PubMed Central

    Komeili-Movahhed, Tahereh; Fouladdel, Shamileh; Barzegar, Elmira; Atashpour, Shekoufeh; Hossein Ghahremani, Mohammad; Nasser Ostad, Seyed; Madjd, Zahra; Azizi, Ebrahim

    2015-01-01

    Objective(s): Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted therapy against PI3K/Akt signaling pathway using LY294002 (LY) to re-sensitize breast cancer MCF7 cell line to mitoxantrone (MTX) chemotherapy. Materials and Methods: Anticancer effects of MTX, siRNA, and LY alone and in combination were evaluated in MCF7 cells using MTT cytotoxicity assay and flow cytometry analysis of cell cycle distribution and apoptosis induction. Results: MTT and apoptosis assays showed that both MTX and LY inhibited cell proliferation and induced apoptosis in MCF7 cells. Results indicated that inhibition of BCRP by siRNA or PI3K/Akt signaling pathway by LY significantly increased sensitivity of MCF7 cells to antiproliferation and apoptosis induction of MTX. Furthermore, MTX showed G2/M arrest, whereas LY induced G0/G1 arrest in cell cycle distribution of MCF7 cells. Combination of siRNA or LY with MTX chemotherapy significantly increased accumulation of MCF7 cells in the G2/M phase of cell cycle. Conclusion: Combination of MTX chemotherapy with BCRP siRNA and PI3K/Akt inhibition can overcome MDR in breast cancer cells. This study furthermore suggests that novel therapeutic approaches are needed to enhance anticancer effects of available drugs in breast cancer. PMID:26124933

  9. Evaluating the Mechanisms of Light-Triggered siRNA Release from Nanoshells for Temporal Control Over Gene Regulation.

    PubMed

    Riley, Rachel S; Dang, Megan N; Billingsley, Margaret M; Abraham, Baxter; Gundlach, Lars; Day, Emily S

    2018-06-13

    The ability to regulate intracellular gene expression with exogenous nucleic acids such as small interfering RNAs (siRNAs) has substantial potential to improve the study and treatment of disease. However, most transfection agents and nanoparticle-based carriers that are used for the intracellular delivery of nucleic acids cannot distinguish between diseased and healthy cells, which may cause them to yield unintended widespread gene regulation. An ideal delivery system would only silence targeted proteins in diseased tissue in response to an external stimulus. To enable spatiotemporal control over gene silencing, researchers have begun to develop nucleic acid-nanoparticle conjugates that keep their nucleic acid cargo inactive until it is released from the nanoparticle on-demand by externally applied near-infrared laser light. This strategy can overcome several limitations of other nucleic acid delivery systems, but the mechanisms by which these platforms operate remain ill understood. Here, we perform a detailed investigation of the mechanisms by which silica core/gold shell nanoshells (NSs) release conjugated siRNA upon excitation with either pulsed or continuous wave (CW) near-infrared (NIR) light, with the goal of providing insight into how these nanoconjugates can enable on-demand gene regulation. We demonstrate that siRNA release from NSs upon pulsed laser irradiation is a temperature-independent process that is substantially more efficient than siRNA release triggered by CW irradiation. Contrary to literature, which suggests that only pulsed irradiation releases siRNA duplexes, we found that both modes of irradiation release a mixture of siRNA duplexes and single-stranded oligonucleotides, but that pulsed irradiation results in a higher percentage of released duplexes. To demonstrate that the siRNA released from NSs upon pulsed irradiation remains functional, we evaluated the use of NSs coated with green fluorescent protein (GFP)-targeted siRNA (siGFP-NS) for

  10. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB–siRNA conjugates

    PubMed Central

    Cuellar, Trinna L.; Barnes, Dwight; Nelson, Christopher; Tanguay, Joshua; Yu, Shang-Fan; Wen, Xiaohui; Scales, Suzie J.; Gesch, Julie; Davis, David; van Brabant Smith, Anja; Leake, Devin; Vandlen, Richard; Siebel, Christian W.

    2015-01-01

    Delivery of siRNA is a key hurdle to realizing the therapeutic promise of RNAi. By targeting internalizing cell surface antigens, antibody–siRNA complexes provide a possible solution. However, initial reports of antibody–siRNA complexes relied on non-specific charged interactions and have not been broadly applicable. To assess and improve this delivery method, we built on an industrial platform of therapeutic antibodies called THIOMABs, engineered to enable precise covalent coupling of siRNAs. We report that such coupling generates monomeric antibody–siRNA conjugates (ARCs) that retain antibody and siRNA activities. To broadly assess this technology, we generated a battery of THIOMABs against seven targets that use multiple internalization routes, enabling systematic manipulation of multiple parameters that impact delivery. We identify ARCs that induce targeted silencing in vitro and extend tests to target prostate carcinoma cells following systemic administration in mouse models. However, optimal silencing was restricted to specific conditions and only observed using a subset of ARCs. Trafficking studies point to ARC entrapment in endocytic compartments as a limiting factor, independent of the route of antigen internalization. Our broad characterization of multiple parameters using therapeutic-grade conjugate technology provides a thorough assessment of this delivery technology, highlighting both examples of success as well as remaining challenges. PMID:25550431

  11. RNA interference targeting E637K mutation rescues hERG channel currents and restores its kinetic properties.

    PubMed

    Lu, Xiaoli; Yang, Xi; Huang, Xiaoyan; Huang, Chen; Sun, Huan Huan; Jin, Lihua; Xu, Weifeng; Mao, Haiyan; Guo, Junming; Zhou, Jianqing; Lian, Jiangfang

    2013-01-01

    Long QT syndrome (LQTS) is a monogenic proarrhythmic disorder that predisposes affected individuals to sudden death from tachyarrhythmia. As an inherited disease, LQTS cannot be completely cured by conventional treatment modalities. Individualized gene therapy is a promising therapeutic approach. The purpose of this study was to investigate the role of small interference RNA (siRNA) on expression of E637K-hERG (human ether-a-go-go-related gene) mutant and whether it can be used to rescue the mutant's dominant-negative suppressive effects on hERG protein channel function. Western blot was performed to select the most sensitive siRNAs to target E637K-hERG mutant knockdown. Confocal laser scanning microscope was performed to monitor cellular localization of wild-type (WT)-hERG and E637K-hERG with or without siRNA. Patch-clamp technique was used to assess the effect of siRNA on the electrophysiologic characteristics of the rapidly activating delayed rectifier K(+) current I(Kr) of the hERG protein channel. siRNA led to a significant decrease in the level of E637K-hERG protein but did not affect the level of WT-hERG protein. WT-hERG localization in cells coexpressing E637K-hERG mutant was restored to the membrane by siRNA. The siRNA-mediated inhibition of E637K-hERG mutant restored the maximum current and tail current amplitudes. Furthermore, siRNA treatment rescued the kinetic properties of WT/E637K-hERG protein channel to a level comparable to that of WT-hERG protein channel. Our findings illustrated that siRNA can effectively inhibit E637K-hERG protein expression and rescue the dominant-negative effect of this mutation by restoring the kinetic properties of hERG protein channel. It has potential clinical implications with regard to the possibility of using siRNA in the treatment of LQTS. Copyright © 2013 Heart Rhythm Society. All rights reserved.

  12. Selective nuclear localization of siRNA by metallic versus semiconducting single wall carbon nanotubes in keratinocytes

    PubMed Central

    Huzil, John Torin; Saliaj, Evi; Ivanova, Marina V; Gharagozloo, Marjan; Loureiro, Maria Jimena; Lamprecht, Constanze; Korinek, Andreas; Chen, Ding Wen; Foldvari, Marianna

    2015-01-01

    Background: The potential use of carbon nanotubes (CNTs) in gene therapy as delivery systems for nucleic acids has been recently recognized. Here, we describe that metallic versus semiconducting single-wall CNTs can produce significant differences in transfection rate and cellular distribution of siRNA in murine PAM212 keratinocytes. Results/Methodology: The results of cell interaction studies, coupled with supportive computational simulations and ultrastructural studies revealed that the use of metallic single wall CNTs resulted in siRNA delivery into both the cytoplasm and nucleus of keratinocytes, whereas semiconducting CNTs resulted in delivery only to the cytoplasm. Conclusion: Using enriched fractions of metallic or semiconducting CNTs for siRNA complex preparation may provide specific subcellular targeting advantages. PMID:28031892

  13. A glutamine-rich carrier efficiently delivers anti-CD47 siRNA driven by "glutamine trap" to inhibit lung cancer cell growth.

    PubMed

    Wu, JiaMin; Li, Zhi; Yang, Zeping; Guo, Ling; Zhang, Ye; Deng, Huihui; Wang, Cuifeng; Feng, Min

    2018-06-25

    It is not efficient enough using the current approaches for tumor-selective drug delivery based on the EPR effect and ligand-receptor interactions, and they have largely failed to translate into the clinic. So it is urgent to explore an enhanced strategy for effective delivery of anticancer agents. Clinically, many cancers require large amounts of glutamine for their continued growth and survival, resulting in circulating glutamine extraction by the tumor being much greater than that for any organs, behaving as a "glutamine trap". In the present study, we sought to elucidate whether the glutamine trap effect could be exploited to deliver therapeutic agents to selectively kill cancer cells. Here, a macromolecular glutamine analog, glutamine-functionalized branched polyethylenimine (GPI), was constructed as the carrier to deliver anti-CD47 siRNA for the blockage of CD47 "don't eat me" signals on cancer cells. The GPI/siRNA glutamine-rich polyplexes exhibited remarkably high levels of cellular uptake by glutamine-dependent lung cancer cells, wild-type A549 cells (A549WT) and its cisplatin-resistant cells (A549DDP), specifically under glutamine-depleted conditions. It was noted that the glutamine transporter ASCT2 was highly expressed both on A549WT and A549DDP, but almost no expression in normal human lung fibroblasts cells. Inhibition of ASCT2 significantly prevented the internalization of GPI polyplexes. These findings raised the intriguing possibility that the glutamine-rich GPI polyplexes utilize the ASCT2 pathway to selectively facilitate their cellular uptake by cancer cells. GPI further delivered anti-CD47 siRNA efficiently both in vitro and in vivo to down-regulate the intratumoral mRNA and protein expression levels of CD47. CD47 functions as a "don't eat me" signal and binds to the immunoreceptor SIRPα inducing evasion of phagocytic clearance. GPI/anti-CD47 siRNA polyplexes achieved significant antitumor activities both on A549WT and A549DDP tumor

  14. Multifunctional Triblock Nanocarrier (PAMAM-PEG-PLL) for the Efficient Intracellular siRNA Delivery and Gene Silencing

    PubMed Central

    2011-01-01

    A novel triblock poly(amido amine)-poly(ethylene glycol)-poly-l-lysine (PAMAM-PEG-PLL) nanocarrier was designed, synthesized, and evaluated for the delivery of siRNA. The design of the nanocarrier is unique and provides a solution to most of the common problems associated with the delivery and therapeutic applications of siRNA. Every component in the triblock nanocarrier plays a significant role and performs multiple functions: (1) tertiary amine groups in the PAMAM dendrimer work as a proton sponge and play a vital role in the endosomal escape and cytoplasmic delivery of siRNA; (2) PEG, a linker connecting PLL and PAMAM dendrimers renders nuclease stability and protects siRNA in human plasma; (3) PLL provides primary amines to form polyplexes with siRNA through electrostatic interaction and also acts as penetration enhancer; and (4) conjugation to PEG and PAMAM reduced toxicity of PLL and the entire triblock nanocarrier PAMAM-PEG-PLL. The data obtained show that the polyplexes resulted from the conjugation of siRNA, and the proposed nanocarriers were effectively taken up by cancer cells and induced the knock down of the target BCL2 gene. In addition, triblock nanocarrier/siRNA polyplexes showed excellent stability in human plasma. PMID:21322531

  15. Enhancement or inhibition of PLCγ2 expression in rat hepatocytes by recombinant adenoviral vectors that contain full-length gene or siRNA.

    PubMed

    Chen, X G; Liu, Y M; Lv, Q X; Ma, J

    2017-01-01

    We investigated the effects of recombinant adenovirus vectors that overexpress or silence PLCγ2 on the expression of this gene during hepatocyte proliferation. Hepatocytes were isolated, identified by immunofluorescent cytochemical staining and infected by previously constructed Ad-PLCγ2 and Ad-PLCγ2 siRNA1, siRNA2 and siRNA3. Green fluorescent protein (GFP) expression was observed by fluorescence microscopy. Infection percentage was calculated by flow cytometry. mRNA and protein levels of PLCγ2 were detected by quantitative reverse transcription-PCR (qRT-PCR) and western blotting, respectively. The viability of the infected hepatocytes was measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. We found that nearly 97% of cells were positive for the hepatocyte marker, CK18. After infection of Ad-PLCγ2 and Ad-PLCγ2 siRNA, more than 99% of hepatocytes expressed GFP significantly, and mRNA and protein expression of PLCγ2 was up-regulated significantly in Ad-PLCγ2 infected hepatocytes, but down-regulated in Ad-PLCγ2 siRNA2 infected cells. The cell proliferation rate decreased in PLCγ2-overexpressing cells, while the rate increased in PLCγ2-silencing cells. We verified that recombinant Ad-PLCγ2 and Ad-PLCγ2 siRNA2 were constructed successfully. These two recombinant vectors promoted or decreased the expression of PLCγ2 in rat hepatocytes and affected the cell proliferation rate, which provides a useful tool for further investigation of the role of PLCγ2 in hepatocyte apoptosis.

  16. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA.

    PubMed

    Zhu, Jia; Qiao, Mingxi; Wang, Qi; Ye, Yuqing; Ba, Shuang; Ma, Jingjing; Hu, Haiyang; Zhao, Xiuli; Chen, Dawei

    2018-04-01

    Despite the extracellular barriers for siRNA delivery have been overcome by utilizing advanced nanoparticle delivery systems, the key intracellular barriers after internalization including efficient disassembly of siRNA and endosomal escape still remains challenging. To address the issues, we developed a unique pH- and redox potential-responsive polyplex delivery system based on the copolymer of mPEG-b-PLA-PHis-ssPEI1.8 k, which is composed of a pH-responsive copolymer of PEG-b-PLA-PHis (Mw 5 k) and a branched PEI (Mw1.8 k) linked with redox cleavable disulfide bond. The copolymer showed excellent siRNA complexation and protection abilities against endogenous substances at the relatively low N/P ratio of 6. The siRNA release from the polyplexes (N/P 6) was markedly increased from 13.62% to 58.67% under conditions simulating the endosomal microenvironment. Fluorescence resonance energy transfer (FRET) test also indicated a higher disassembly extent of siRNA from the copolymer. The accelerated siRNA release from the polyplexes was markedly restrained when the N/P ratio was raised above 10 due to the increasing of electrostatic interactions. The efficient endosomal escape of siRNA after internalization was confirmed by confocal microscopy, which was attributed to the cleavaged PEI chains inducing membrane destabilization, the "proton sponge effect" of PHis and PEI as well as the relative small size of after disassembly. The enhanced disassembly and endosomal escape were elucidated as the leading cause for polyplexes (N/P 6) showed more efficient Bcl-2 silencing (85.45%) than those polyplexes with higher N/P ratios (N/P 10 and 15). In vivo results further demonstrated that polyplexes (N/P 6) delivery of siBcl-2 significantly inhibited the MCF-7 breast tumor growth as compared to its counterparts. The incorporation of convertible non-electrical interactions at a balance with electrostatic interactions in complexation siRNA has been demonstrated as an effective

  17. Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R.

    PubMed

    Patel, Bhaumik B; Gupta, Deepshika; Elliott, Althea A; Sengupta, Vivek; Yu, Yingjie; Majumdar, Adhip P N

    2010-02-01

    Curcumin (diferuloylmethane), which has no discernible toxicity, inhibits initiation, promotion and progression of carcinogenesis. 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) remains the backbone of colorectal cancer chemotherapeutics, but produces an incomplete response resulting in survival of cells (chemo-surviving cells) that may lead to cancer recurrence. The present investigation was, therefore, undertaken to examine whether addition of curcumin to FOLFOX is a superior therapeutic strategy for chemo-surviving cells. Forty-eight-hour treatment of colon cancer HCT-116 and HT-29 cells with FOLFOX resulted in 60-70% survival, accompanied by a marked activation of insulin like growth factor-1 receptor (IGF-1R) and minor to moderate increase in epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (HER-2) as well as v-akt murine thymoma viral oncogene homolog 1 (AKT), cyclooxygenase-2 (COX-2) and cyclin-D1. However, inclusion of curcumin to continued FOLFOX treatment for another 48 h greatly reduced the survival of these cells, accompanied by a concomitant reduction in activation of EGFR, HER-2, IGF-1R and AKT, as well as expression of COX-2 and cyclin-D1. More importantly, EGFR tyrosine kinase inhibitor gefitinib or attenuation of IGF-1R expression by the corresponding si-RNA caused a 30-60% growth inhibition of chemo-surviving HCT-116 cells. However, curcumin alone was found to be more effective than both gefitinib and IGF-1R si-RNA mediated growth inhibition of chemo-surviving HCT-116 cells and addition of FOLFOX to curcumin did not increase the growth inhibitory effect of curcumin. Our data suggest that inclusion of curcumin in conventional chemotherapeutic regimens could be an effective strategy to prevent the emergence of chemoresistant colon cancer cells.

  18. Tumor responsive targeted multifunctional nanosystems for cancer imaging, chemo- and siRNA therapy

    NASA Astrophysics Data System (ADS)

    Savla, Ronak

    Cancer is one of the most insidious diseases. Compromising of over 100 different types and sharing the unifying factors of uncontrolled growth and metastasis, unmet clinical needs in terms of cancer diagnosis and treatment continue to exist. It is widely accepted that most forms of cancer are treatable or even curable if detected before widespread metastasis occurs. Nearly a quarter of deaths in the United States is the result of cancer and it only trails heart disease in terms of annual mortality. Surgery, chemotherapy, and radiation therapy are the primary treatment modalities for cancer. Research in these procedures has resulted in substantial benefits for cancer patients, but there is still room for an improvement. However, a time has been reached at which it appears that the benefits from these modalities have been reached the maximum. Therefore, it is vital to develop new strategies for the diagnosis and treatment of cancer. The field of nanotechnology is concerned with structures in the nanometer size range and holds the potential to drastically impact and improve the lives of patients suffering from cancer. Not only can nanotechnology improve current methods of diagnosis and treatment, it has a possibility of introducing newer and better modalities. The overall purpose of this work is to develop novel nanotechnology-based methodologies for the diagnosis and treatment of various forms of cancers. The first aim of the project is the development of a multifunctional targeted nanosystem for the delivery of siRNA to overcome drug resistance. The second aspect is the synthesis of a quantum dot-based delivery system that releases drug in response to pH changes. The third aim is the development of a targeted, tumor environment responsive magnetic resonance nanoparticle contrast agent coupled with a nanoparticle-based treatment.

  19. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity.

    PubMed

    Perche, F; Yi, Y; Hespel, L; Mi, P; Dirisala, A; Cabral, H; Miyata, K; Kataoka, K

    2016-06-01

    Current technology of siRNA delivery relies on pharmaceutical dosage forms to route maximal doses of siRNA to the tumor. However, this rationale does not address intracellular bottlenecks governing silencing activity. Here, we tested the impact of hydroxychloroquine conjugation on the intracellular fate and silencing activity of siRNA conjugated PEGylated gold nanoparticles. Addition of hydroxychloroquine improved endosomal escape and increased siRNA guide strand distribution to the RNA induced silencing complex (RISC), both crucial obstacles to the potency of siRNA. This modification significantly improved gene downregulation in cellulo. Altogether, our data suggest the benefit of this modification for the design of improved siRNA delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Modification of siRNA with 3′ Cholesterol to Increase Nuclease Protection and Suppression of Native mRNA by Select siRNA Polyplexes

    PubMed Central

    Ambardekar, Vishakha V.; Han, Huai-Yun; Varney, Michelle L.; Vinogradov, Serguei V.; Singh, Rakesh K.; Vetro, Joseph A.

    2010-01-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3′ cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. PMID:21047680

  1. Transdermal Delivery of siRNA through Microneedle Array

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao

    2016-02-01

    Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.

  2. RNA-induced silencing complex-bound small interfering RNA is a determinant of RNA interference-mediated gene silencing in mice.

    PubMed

    Wei, Jie; Jones, Jeffrey; Kang, Jing; Card, Ananda; Krimm, Michael; Hancock, Paula; Pei, Yi; Ason, Brandon; Payson, Elmer; Dubinina, Natalya; Cancilla, Mark; Stroh, Mark; Burchard, Julja; Sachs, Alan B; Hochman, Jerome H; Flanagan, W Michael; Kuklin, Nelly A

    2011-06-01

    Deeper knowledge of pharmacokinetic and pharmacodynamic (PK/PD) concepts for RNA therapeutics is important to streamline the drug development process and for rigorous selection of best performing drug candidates. Here we characterized the PK/PD relationship for small interfering RNAs (siRNAs) targeting luciferase by examining siRNA concentration in plasma and liver, the temporal RNA-induced silencing complex binding profiles, mRNA reduction, and protein inhibition measured by noninvasive bioluminescent imaging. A dose-dependent and time-related decrease in bioluminescence was detected over 25 days after a single treatment of a lipid nanoparticle-formulated siRNA targeting luciferase messenger RNA. A direct relationship was observed between the degree of in vivo mRNA and protein reduction and the Argonaute2 (Ago2)-bound siRNA fraction but not with the total amount of siRNA found in the liver, suggesting that the Ago2-siRNA complex is the key determinant of target inhibition. These observations were confirmed for an additional siRNA that targets endogenously expressed Sjögren syndrome antigen B (Ssb) mRNA, indicating that our observations are not limited to a transgenic mouse system. Our data provide detailed information of the temporal regulation of siRNA liver delivery, Ago2 loading, mRNA reduction, and protein inhibition that are essential for the rapid and cost-effective clinical development of siRNAs therapeutics.

  3. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis.

    PubMed

    Cui, Qi; Yang, Su; Ye, Peng; Tian, E; Sun, Guoqiang; Zhou, Jiehua; Sun, Guihua; Liu, Xiaoxuan; Chen, Chao; Murai, Kiyohito; Zhao, Chunnian; Azizian, Krist T; Yang, Lu; Warden, Charles; Wu, Xiwei; D'Apuzzo, Massimo; Brown, Christine; Badie, Behnam; Peng, Ling; Riggs, Arthur D; Rossi, John J; Shi, Yanhong

    2016-02-03

    Glioblastomas have been proposed to be maintained by highly tumorigenic glioblastoma stem cells (GSCs) that are resistant to current therapy. Therefore, targeting GSCs is critical for developing effective therapies for glioblastoma. In this study, we identify the regulatory cascade of the nuclear receptor TLX and the DNA hydroxylase Ten eleven translocation 3 (TET3) as a target for human GSCs. We show that knockdown of TLX expression inhibits human GSC tumorigenicity in mice. Treatment of human GSC-grafted mice with viral vector-delivered TLX shRNA or nanovector-delivered TLX siRNA inhibits tumour development and prolongs survival. Moreover, we identify TET3 as a potent tumour suppressor downstream of TLX to regulate the growth and self-renewal in GSCs. This study identifies the TLX-TET3 axis as a potential therapeutic target for glioblastoma.

  4. Pulmonary Delivery of siRNA via Polymeric Vectors as Therapies of Asthma.

    PubMed

    Xie, Yuran; Merkel, Olivia M

    2015-10-01

    Asthma is a chronic inflammatory disease. Despite the fact that current therapies, such as the combination of inhaled corticosteroids and β2-agonists, can control the symptoms of asthma in most patients, there is still an urgent need for an alternative anti-inflammatory therapy for patients who suffer from severe asthma but lack acceptable response to conventional therapies. Many molecular factors are involved in the inflammatory process in asthma, and thus blocking the function of these factors could efficiently alleviate airway inflammation. RNA interference (RNAi) is often thought to be the answer in the search for more efficient and biocompatible treatments. However, difficulties of efficient delivery of small interference RNA (siRNA), the key factor in RNAi, to target cells and tissues have limited its clinical application. In this review, we summarize cytokines and chemokines, transcription factors, tyrosine kinases, and costimulatory factors that have been reported as targets of siRNA-mediated treatment in experimental asthma. Additionally, we conclude several targeted delivery systems of siRNA to specific cells such as T cells, macrophages, and dendritic cells, which could potentially be applied in asthma therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bioengineered Nanoparticles for siRNA delivery

    PubMed Central

    Kozielski, Kristen L.; Tzeng, Stephany Y.; Green, Jordan J.

    2014-01-01

    Short interfering RNA (siRNA) has been an important laboratory tool in the last two decades and has allowed researchers to better understand the functions of non-protein-coding genes through RNA interference (RNAi). Although RNAi holds great promise for this purpose as well as for treatment of many diseases, efforts at using siRNA have been hampered by the difficulty of safely and effectively introducing it into cells of interest, both in vitro and in vivo. To overcome this challenge, many biomaterials and nanoparticles (NPs) have been developed and optimized for siRNA delivery, often taking cues from the DNA delivery field, although different barriers exist for these two types of molecules. In this review, we discuss general properties of biomaterials and nanoparticles that are necessary for effective nucleic acid delivery. We also discuss specific examples of bioengineered materials, including lipid-based NPs, polymeric NPs, inorganic NPs, and RNA-based NPs, which clearly illustrate the problems and successes in siRNA delivery. PMID:23821336

  6. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    PubMed Central

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  7. Targeted nanobubbles in low-frequency ultrasound-mediated gene transfection and growth inhibition of hepatocellular carcinoma cells.

    PubMed

    Wu, Bolin; Qiao, Qiang; Han, Xue; Jing, Hui; Zhang, Hao; Liang, Hongjian; Cheng, Wen

    2016-09-01

    The use of SonoVue combined with ultrasound exposure increases the transfection efficiency of short interfering RNA (siRNA). The objective of this study was to prepare targeted nanobubbles (TNB) conjugated with NET-1 siRNA and an antibody GPC3 to direct nanobubbles to hepatocellular carcinoma cells. SMMC-7721 human hepatocellular carcinoma cells were treated with six different groups. The transfection efficiency and cellular apoptosis were measured by flow cytometry. The protein and messenger RNA (mRNA) expression were measured by Western blot and quantitative real-time PCR, respectively. The migration and invasion potential of the cells were determined by Transwell analysis. The results show that US-guided siRNA-TNB transfection effectively enhanced gene silencing. In summary, siRNA-TNB may be an effective delivery vector to mediate highly effective RNA interference in tumor treatment.

  8. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification.

    PubMed

    Zhang, Chi; Montgomery, Taiowa A; Fischer, Sylvia E J; Garcia, Susana M D A; Riedel, Christian G; Fahlgren, Noah; Sullivan, Christopher M; Carrington, James C; Ruvkun, Gary

    2012-05-22

    In nematodes, plants, and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary small interfering RNAs (siRNAs) and the target messenger RNA (mRNA) leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10, and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, and other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage but sensitive to high dosage of double-stranded RNAs. We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6, and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification

    PubMed Central

    Zhang, Chi; Montgomery, Taiowa A.; Fischer, Sylvia E. J.; Garcia, Susana M. D. A.; Riedel, Christian G.; Fahlgren, Noah; Sullivan, Christopher M.; Carrington, James C.; Ruvkun, Gary

    2012-01-01

    SUMMARY Background In nematodes, plants and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary siRNAs and the target mRNA leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. Results From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10 and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, as well as other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage, but sensitive to high dosage of double-stranded RNAs (dsRNAs). We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6 and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. Conclusions The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. PMID:22542102

  10. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems

    PubMed Central

    Caplen, Natasha J.; Parrish, Susan; Imani, Farhad; Fire, Andrew; Morgan, Richard A.

    2001-01-01

    Short interfering RNAs (siRNAs) are double-stranded RNAs of ≈21–25 nucleotides that have been shown to function as key intermediaries in triggering sequence-specific RNA degradation during posttranscriptional gene silencing in plants and RNA interference in invertebrates. siRNAs have a characteristic structure, with 5′-phosphate/3′-hydroxyl ends and a 2-base 3′ overhang on each strand of the duplex. In this study, we present data that synthetic siRNAs can induce gene-specific inhibition of expression in Caenorhabditis elegans and in cell lines from humans and mice. In each case, the interference by siRNAs was superior to the inhibition of gene expression mediated by single-stranded antisense oligonucleotides. The siRNAs seem to avoid the well documented nonspecific effects triggered by longer double-stranded RNAs in mammalian cells. These observations may open a path toward the use of siRNAs as a reverse genetic and therapeutic tool in mammalian cells. PMID:11481446

  11. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  12. Silica nanogelling of environment-responsive PEGylated polyplexes for enhanced stability and intracellular delivery of siRNA.

    PubMed

    Gouda, Noha; Miyata, Kanjiro; Christie, R James; Suma, Tomoya; Kishimura, Akihiro; Fukushima, Shigeto; Nomoto, Takahiro; Liu, Xueying; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2013-01-01

    In this study, poly(ethylene glycol) (PEG)-block-polycation/siRNA complexes (PEGylated polyplexes) were wrapped with a hydrated silica, termed "silica nanogelling", in order to enhance their stability and functionality. Silica nanogelling was achieved by polycondensation of soluble silicates onto the surface of PEGylated polyplexes comprising a disulfide cross-linked core. Formation of silica nanogel layer on the PEGylated cross-linked polyplexes was confirmed by particle size increase, surface charge reduction, and elemental analysis of transmission electron micrographs. Silica nanogelling substantially improved polyplex stability against counter polyanion-induced dissociation under non-reductive condition, without compromising the reductive environment-responsive siRNA release triggered by disulfide cleavage. Silica nanogelling significantly enhanced the sequence-specific gene silencing activity of the polyplexes in HeLa cells without associated cytotoxicity, probably due lower endosomal entrapment (or lysosomal degradation) of delivered siRNA. The lower endosomal entrapment of the silica nanogel system could be explained by an accelerated endosomal escape triggered by deprotonated silanol groups in the silica (the proton sponge hypothesis) and/or a modulated intracellular trafficking, possibly via macropinocytosis, as evidenced by the cellular uptake inhibition assay. Henceforth, silica nanogelling of PEGylated siRNA polyplexes is a promising strategy for preparation of stable and functional siRNA delivery vehicles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Development of Gold Nanoparticle towards Radioenhancement Therapy, Renal Clearance, siRNA Delivery and Light-Controlled Gene Silencing

    NASA Astrophysics Data System (ADS)

    Wang, Jianxin

    Gold nanoparticles (GNPs) have been widely studied and used in research for diagnostic, prophylactic or therapeutic purposes. However, they still face many technical challenges before they can be used to effectively address unmet biomedical needs. The theme of this dissertation is focused on addressing challenges of GNPs in clinical translation, and to improve their potential for application in radioenhancement therapy and siRNA delivery. We demonstrate the facile self-assembly of micellar gold nanocapsules using zwitterionic surfactants, with hydrodynamic diameters below 10 nm, which holds promise for good renal clearance to promote the excretion of GNPs in human body. We also prepared PEI- and PEG-coated GNPs and demonstrated their uptake into HeLa cells with exposure to soft X-rays (120 kVp), based on the consideration that the proximity of GNPs to nuclear DNA may be beneficial for enhancing low-energy ionizing radiotherapy. GNP-mediated siRNA delivery may be challenged by nonspecific siRNA desorption during circulation, which can cause off-target effects and immunogenicity. The use of gold nanorods (GNRs) for siRNA delivery also faces challenges like reduced dispersion stability during siRNA functionalization. We developed an effective way to load siRNA onto GNRs at high density, using oleylsulfobetaine (OSB) as an intermediate surfactant and dithiocarbamates (DTCs) as desorption-resistant anchors for siRNA. The GNR?siRNA complexes provided excellent control for laser-triggered gene silencing.

  14. An RNA Origami Octahedron with Intrinsic siRNAs for Potent Gene Knockdown.

    PubMed

    Høiberg, Hans Christian; Sparvath, Steffen M; Andersen, Veronica L; Kjems, Jørgen; Andersen, Ebbe S

    2018-05-26

    The fields of DNA and RNA nanotechnology have established nucleic acids as valuable building blocks for functional nanodevices with applications in nanomedicine. Here, a simple method for designing and assembling a 3D scaffolded RNA origami wireframe structure with intrinsic functioning small interfering RNAs (siRNAs) embedded is introduced. Uniquely, the method uses an mRNA fragment as scaffold strand, which is folded by sequence-complementarity of nine shorter synthetic strands. High-yield production of the intended 3D structure is verified by transmission electron microscopy (TEM). Production of functional siRNAs is facilitated by incorporating recognition sites for Dicer at selected locations in the structure, and efficient silencing of a target reporter gene is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Decreased expression of MUC1 induces apoptosis and inhibits migration in pancreatic cancer PANC-1 cells via regulation of Slug pathway.

    PubMed

    Zhao, Ping; Meng, Meng; Xu, Bin; Dong, Aiping; Ni, Guangzhen; Lu, Lianfang

    2017-12-06

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed in > 60% of human pancreatic cancers (PCs), and is associated with poor prognosis and enhanced metastasis. Here, we report the effect of silencing MUC1 expression on the growth, migration and invasive ability of pancreatic cancer cells, and explored its mechanisms. We observed that siRNA mediated suppression of the MUC1 expression significantly reduced invasive and migrative capability and induced apoptosis of the pancreatic cancer PANC-1 cells. We found that Slug was inhibited in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Expression of PUMA and E-cadherin was increased in the MUC1 siRNA/PANC-1 cells. PANC-1 cells overexpressing full long Slug gene (when transfected with Slug cDNA plasmid) significantly inhibited PUMA and E-cadherin expression in the MUC1 siRNA/PANC-1 cells. Silencing PUMA expression inhibited apoptosis in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Silencing E-cadherin expression restored the invasion and migration ability in the MUC1 siRNA/PANC-1 cells. We therefore concluded that silencing MUC1 expression inhibited migration and invasion, and induced apoptosis of PANC-1 cells via downregulation of Slug and upregulation of Slug dependent PUMA and E-cadherin expression. MUC1 could serve as a potential therapeutic target in pancreatic cancer.

  16. Conserved sequences in the current strains of HIV-1 subtype A in Russia are effectively targeted by artificial RNAi in vitro.

    PubMed

    Tchurikov, Nickolai A; Fedoseeva, Daria M; Gashnikova, Natalya M; Sosin, Dmitri V; Gorbacheva, Maria A; Alembekov, Ildar R; Chechetkin, Vladimir R; Kravatsky, Yuri V; Kretova, Olga V

    2016-05-25

    Highly active antiretroviral therapy has greatly reduced the morbidity and mortality of AIDS. However, many of the antiretroviral drugs are toxic with long-term use, and all currently used anti-HIV agents generate drug-resistant mutants. Therefore, there is a great need for new approaches to AIDS therapy. RNAi is a powerful means of inhibiting HIV-1 production in human cells. We propose to use RNAi for gene therapy of HIV/AIDS. Previously we identified a number of new biologically active siRNAs targeting several moderately conserved regions in HIV-1 transcripts. Here we analyze the heterogeneity of nucleotide sequences in three RNAi targets in sequences encoding the reverse transcriptase and integrase domains of current isolates of HIV-1 subtype A in Russia. These data were used to generate genetic constructs expressing short hairpin RNAs 28-30-bp in length that could be processed in cells into siRNAs. After transfection of the constructs we observed siRNAs that efficiently attacked the selected targets. We expect that targeting several viral genes important for HIV-1 reproduction will help overcome the problem of viral adaptation and will prevent the appearance of RNAi escape mutants in current virus strains, an important feature of gene therapy of HIV/AIDS. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo

    NASA Astrophysics Data System (ADS)

    Yin, Di; Li, Yang; Lin, Hang; Guo, Baofeng; Du, Yanwei; Li, Xin; Jia, Huijie; Zhao, Xuejian; Tang, Jun; Zhang, Ling

    2013-03-01

    Graphene oxide (GO) has attracted intensive interest in the biomedical field in recent years. We investigate whether the use of functional graphene oxide as an efficient delivery system for delivering specific molecular antitumor therapeutics in vivo could achieve a more excellent antitumor effect. Constitutive activation of signal transducer and activator of transcription 3 (Stat3) promotes survival in a wide spectrum of human cancers. In this paper, we study the in vivo behavior of graphene oxide chemically functionalized with polyethylenimine and polyethylene glycol (GO-PEI-PEG) as a plasmid-based Stat3-specific small interfering RNA (siRNA) carrier in mouse malignant melanoma. The in vivo results indicate significant regression in tumor growth and tumor weight after plasmid-based Stat3 siRNA delivered by GO-PEI-PEG treatment. Moreover, there was no significant side effect from GO-PEI-PEG treatment according to histological examination and blood chemistry analysis in mice. Thus, our work is the first success of using GO-PEI-PEG as a promising carrier for plasmid Stat3 siRNA delivery and down-regulation of Stat3 by a polymer-mediated vehicle and suggests the great promise of graphene in biomedical applications such as cancer treatment.

  18. Innovative Delivery of siRNA to Solid Tumors by Super Carbonate Apatite

    PubMed Central

    Wu, Xin; Yamamoto, Hirofumi; Nakanishi, Hiroyuki; Yamamoto, Yuki; Inoue, Akira; Tei, Mitsuyoshi; Hirose, Hajime; Uemura, Mamoru; Nishimura, Junichi; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Hossain, Sharif; Akaike, Toshihiro; Matsuura, Nariaki; Doki, Yuichiro; Mori, Masaki

    2015-01-01

    RNA interference (RNAi) technology is currently being tested in clinical trials for a limited number of diseases. However, systemic delivery of small interfering RNA (siRNA) to solid tumors has not yet been achieved in clinics. Here, we introduce an in vivo pH-sensitive delivery system for siRNA using super carbonate apatite (sCA) nanoparticles, which is the smallest class of nanocarrier. These carriers consist simply of inorganic ions and accumulate specifically in tumors, yet they cause no serious adverse events in mice and monkeys. Intravenously administered sCA-siRNA abundantly accumulated in the cytoplasm of tumor cells at 4 h, indicating quick achievement of endosomal escape. sCA-survivin-siRNA induced apoptosis in HT29 tumors and significantly inhibited in vivo tumor growth of HCT116, to a greater extent than two other in vivo delivery reagents. With innovative in vivo delivery efficiency, sCA could be a useful nanoparticle for the therapy of solid tumors. PMID:25738937

  19. Innovative delivery of siRNA to solid tumors by super carbonate apatite.

    PubMed

    Wu, Xin; Yamamoto, Hirofumi; Nakanishi, Hiroyuki; Yamamoto, Yuki; Inoue, Akira; Tei, Mitsuyoshi; Hirose, Hajime; Uemura, Mamoru; Nishimura, Junichi; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Hossain, Sharif; Akaike, Toshihiro; Matsuura, Nariaki; Doki, Yuichiro; Mori, Masaki

    2015-01-01

    RNA interference (RNAi) technology is currently being tested in clinical trials for a limited number of diseases. However, systemic delivery of small interfering RNA (siRNA) to solid tumors has not yet been achieved in clinics. Here, we introduce an in vivo pH-sensitive delivery system for siRNA using super carbonate apatite (sCA) nanoparticles, which is the smallest class of nanocarrier. These carriers consist simply of inorganic ions and accumulate specifically in tumors, yet they cause no serious adverse events in mice and monkeys. Intravenously administered sCA-siRNA abundantly accumulated in the cytoplasm of tumor cells at 4 h, indicating quick achievement of endosomal escape. sCA-survivin-siRNA induced apoptosis in HT29 tumors and significantly inhibited in vivo tumor growth of HCT116, to a greater extent than two other in vivo delivery reagents. With innovative in vivo delivery efficiency, sCA could be a useful nanoparticle for the therapy of solid tumors.

  20. Inhibiting post-translational core fucosylation protects against albumin-induced proximal tubular epithelial cell injury.

    PubMed

    Wang, Dapeng; Fang, Ming; Shen, Nan; Li, Longkai; Wang, Weidong; Wang, Lingyu; Lin, Hongli

    2017-01-01

    Albuminuria is an independent risk factor for renal interstitial fibrosis (RIF). Glomerular-filtered albumin in endocytic and non-endocytic pathways may injure proximal tubular epithelial cells (PTECs) via megalin and TGFβRII, respectively. Since megalin and TGFβRII are both modified by post-translational core fucosylation, which plays a critical role in RIF. Thus, we sought to identify whether core fucosylation is a potential target for reducing albumin-induced injury to PTECs. We constructed a human PTEC-derived cell line (HK-2 cells) and established an in vitro model of bovine serum albumin (BSA) injury. RNAi was used to inhibit the expression of megalin, TGFβRII, and Fut8. Western blotting, immunostaining, ELISA, lectin blotting, and fluorescence-activated cell sorting were used to identify BSA-induced endocytic and non-endocytic damage in HK-2 cells. Fut8 is a core fucosylation-related gene, which is significantly increased in HK-2 cells following an incubation with BSA. Fut8 siRNA significantly reduced the core fucosylation of megalin and TGFβRII and also inhibited the activation of the TGFβ/TGFβRII/Smad2/3 signaling pathway. Furthermore, Fut8 siRNA could reduce monocyte chemotactic protein-1, reactive oxygen species, and apoptosis, as well as significantly decrease the fibronectin and collagen I levels in BSA-overloaded HK-2 cells. Core fucosylation inhibition was more effective than inhibiting either megalin or TGFβRII for the prevention of albumin-induced injury to PTECs. Our findings indicate that post-translational core fucosylation is essential for the albumin-induced injury to PTECs. Thus, the inhibition of core fucosylation could effectively alleviate albumin-induced endocytic and non-endocytic injury to PTECs. Our study provides a potential therapeutic target for albuminuria-induced injury.

  1. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis

    PubMed Central

    Cui, Qi; Yang, Su; Ye, Peng; Tian, E.; Sun, Guoqiang; Zhou, Jiehua; Sun, Guihua; Liu, Xiaoxuan; Chen, Chao; Murai, Kiyohito; Zhao, Chunnian; Azizian, Krist T.; Yang, Lu; Warden, Charles; Wu, Xiwei; D'Apuzzo, Massimo; Brown, Christine; Badie, Behnam; Peng, Ling; Riggs, Arthur D.; Rossi, John J.; Shi, Yanhong

    2016-01-01

    Glioblastomas have been proposed to be maintained by highly tumorigenic glioblastoma stem cells (GSCs) that are resistant to current therapy. Therefore, targeting GSCs is critical for developing effective therapies for glioblastoma. In this study, we identify the regulatory cascade of the nuclear receptor TLX and the DNA hydroxylase Ten eleven translocation 3 (TET3) as a target for human GSCs. We show that knockdown of TLX expression inhibits human GSC tumorigenicity in mice. Treatment of human GSC-grafted mice with viral vector-delivered TLX shRNA or nanovector-delivered TLX siRNA inhibits tumour development and prolongs survival. Moreover, we identify TET3 as a potent tumour suppressor downstream of TLX to regulate the growth and self-renewal in GSCs. This study identifies the TLX-TET3 axis as a potential therapeutic target for glioblastoma. PMID:26838672

  2. Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of siRNA delivery.

    PubMed

    Chen, Min; Cooper, Helen M; Zhou, Ji Zhi; Bartlett, Perry F; Xu, Zhi Ping

    2013-01-15

    Small interfering RNAs (siRNAs) are a potentially powerful new class of pharmaceutical drugs for many disease. However, the delivery of unprotected siRNAs is ineffective due to their susceptibility to degradation by ubiquitous nucleases under physiological conditions. Layered double hydroxide nanoparticles (LDHs) have been found to be efficient carriers of anionic drugs and nucleic acids. Our previous research has shown that LDHs (with the Z-average particle size of approximately 110 nm) can mediate siRNA delivery in mammalian cells, resulting in gene silencing. However, short double-stranded nucleic acids are mostly adsorbed onto the external surface and not well protected by LDHs. In order to enhance the intercalation of siRNA into the LDH interlayer and the efficiency of subsequent siRNA delivery, we prepared smaller LDHs (with the Z-average particle size of approximately 45 nm) with an engineered non-aqueous method. We demonstrate here that dsDNA/siRNA is more effectively intercalated into these small LDH nanoparticles, more dsDNA/siRNA is transfected into HEK 293T cells, and more efficient silencing of the target gene is achieved using smaller LDHs. Thus, smaller LDH particles have greater potential as a delivery system for the application of RNA interference. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Effective cytoplasmic release of siRNA from liposomal carriers by controlling the electrostatic interaction of siRNA with a charge-invertible peptide, in response to cytoplasmic pH

    NASA Astrophysics Data System (ADS)

    Itakura, Shoko; Hama, Susumu; Matsui, Ryo; Kogure, Kentaro

    2016-05-01

    Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is effectively released via electrostatic repulsion of siRNA with negatively charged SAPSP at cytoplasmic pH (7.4). The condensed complex of siRNA and positively-charged SAPSP at acidic pH (siRNA/SAPSP) was found to result in almost complete release of siRNA upon charge inversion of SAPSP at pH 7.4, with the resultant negatively-charged SAPSP having no undesirable interactions with endogenous mRNA. Moreover, liposomes encapsulating siRNA/SAPSP demonstrated knockdown efficiencies comparable to those of commercially available siRNA carriers. Taken together, SAPSP may be very useful as a siRNA condenser, as it facilitates effective cytoplasmic release of siRNA, and subsequent induction of specific RNAi effects.Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is

  4. The RNA methyltransferase Dnmt2 is required for efficient Dicer-2-dependent siRNA pathway activity in Drosophila.

    PubMed

    Durdevic, Zeljko; Mobin, Mehrpouya Balaghy; Hanna, Katharina; Lyko, Frank; Schaefer, Matthias

    2013-09-12

    Transfer RNA (tRNA) fragmentation in response to stress conditions has been described in many organisms. tRNA fragments have been found in association with small interfering RNA (siRNA) components, but the biological role of these interactions remains unclear. We report here that the tRNA methyltransferase Dnmt2 is essential for efficient Dicer-2 (Dcr-2) function in Drosophila. Using small RNA (sRNA) sequencing, we confirmed that Dnmt2 limits the extent of tRNA fragmentation during the heat-shock response. tRNAs as well as tRNA fragments serve as Dcr-2 substrates, and Dcr-2 degrades tRNA-derived sequences, especially under heat-shock conditions. tRNA-derived RNAs are able to inhibit Dcr-2 activity on long double-stranded RNAs (dsRNAs). Consequently, heat-shocked Dnmt2 mutant animals accumulate dsRNAs, produce fewer siRNAs, and show misregulation of siRNA pathway-dependent genes. These results reveal the impact of tRNA fragmentation on siRNA pathways and implicate tRNA modifications in the regulation of sRNA homeostasis during the heat-shock response. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Targeted knockout of TNF-α by injection of lentivirus-mediated siRNA into the subacromial bursa for the treatment of subacromial bursitis in rats.

    PubMed

    Wang, Yi; Li, Quan; Wei, Xianzhao; Xu, Jie; Chen, Qi; Song, Shuang; Lu, Zhe; Wang, Zimin

    2015-09-01

    Subacromial bursitis (SAB) is the major source of pain in rotator cuff disease. Although multiple investigations have provided support for the role of inflammatory cytokines in SAB, few have focussed on the use these cytokines in the treatment of SAB. The aim of the present study was to observe the therapeutic efficacy of lentivirus‑mediated RNA interference (RNAi) on carrageenan‑induced SAB by injecting lentivirus‑tumor necrosis factor (TNF)‑α‑RNAi expressing TNF‑α small interfering (si)RNA. Using screened siRNA segments, an siRNA was designed. A lentivirus vector expressing siRNA was established and packed as lentivirus particles. A lentivirus that expressed the negative sequence was used as a lentivirus‑negative control (NC). The carrageenan‑induced SAB model was established in 32 male Sprague‑Dawley rats. The modeled rats were randomly assigned to four groups: Lentivirus‑RNAi treatment group, lentivirus‑NC group, SAB group and phosphate‑buffered saline (PBS) blank control group. The lentivirus was injected (1x10(7) transducing units) into the subacromial bursa of the rats in the lentivirus‑RNAi group and lentivirus‑NC group, whereas 100 µl PBS was injected at the same site in the SAB group and the PBS blank control group. At 5 weeks following injection, the animals were sacrificed and venous blood was obtained. The effect of TNF‑α interference and the expression of inflammatory cytokines were determined by reverse transcription‑quantitative polymerase chain reaction, western blotting, hematoxylin and eosin staining, Van Gieson's staining and immunofluorescence. The expression of TNF‑α was decreased in the lentivirus‑TNF‑α‑RNAi group compared with that in the SAB group. Morphological observations revealed that the number of inflammatory cells were reduced and damage to tendon fibers was attenuated in this group, suggesting that the downregulation of the protein expression levels of TNF‑α‑associated nuclear

  6. Improvement of Morphine-Mediated Analgesia by Inhibition of β-Arrestin 2 Expression in Mice Periaqueductal Gray Matter

    PubMed Central

    Li, Yuting; Liu, Xing; Liu, Chang; Kang, Jiuhong; Yang, Jingyu; Pei, Gang; Wu, Chunfu

    2009-01-01

    Morphine is a well-known μ-opioid receptor (MOR) agonist and an efficient analgesic, but its long-term use inevitably leads to drug addiction and tolerance. Here, we show that specific inhibition of β-arrestin2 with its siRNA lentivirus microinjected in mice periaqueductal gray matter (PAG) significantly improved both acute and chronic morphine analgesia and delayed the tolerance in the hotplate test. The specific effect of β-arrestin2 was proven by overexpression or knockdown of its homology β-arrestin1 in PAG, which showed no significant effects on morphine analgesia. These findings suggest that specific siRNA targeting β-arrestin2 may constitute a new approach to morphine therapy and other MOR agonist-mediated analgesia and tolerance. PMID:19399231

  7. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA.

    PubMed

    Jensen, Ditte Krohn; Jensen, Linda Boye; Koocheki, Saeid; Bengtson, Lasse; Cun, Dongmei; Nielsen, Hanne Mørck; Foged, Camilla

    2012-01-10

    Matrix systems based on biocompatible and biodegradable polymers like the United States Food and Drug Administration (FDA)-approved polymer poly(DL-lactide-co-glycolide acid) (PLGA) are promising for the delivery of small interfering RNA (siRNA) due to favorable safety profiles, sustained release properties and improved colloidal stability, as compared to polyplexes. The purpose of this study was to design a dry powder formulation based on cationic lipid-modified PLGA nanoparticles intended for treatment of severe lung diseases by pulmonary delivery of siRNA. The cationic lipid dioleoyltrimethylammoniumpropane (DOTAP) was incorporated into the PLGA matrix to potentiate the gene silencing efficiency. The gene knock-down level in vitro was positively correlated to the weight ratio of DOTAP in the particles, and 73% silencing was achieved in the presence of 10% (v/v) serum at 25% (w/w) DOTAP. Optimal properties were found for nanoparticles modified with 15% (w/w) DOTAP, which reduced the gene expression with 54%. This formulation was spray-dried with mannitol into nanocomposite microparticles of an aerodynamic size appropriate for lung deposition. The spray-drying process did not affect the physicochemical properties of the readily re-dispersible nanoparticles, and most importantly, the in vitro gene silencing activity was preserved during spray-drying. The siRNA content in the powder was similar to the theoretical loading and the siRNA was intact, suggesting that the siRNA is preserved during the spray-drying process. Finally, X-ray powder diffraction analysis demonstrated that mannitol remained in a crystalline state upon spray-drying with PLGA nanoparticles suggesting that the sugar excipient might exert its stabilizing effect by sterical inhibition of the interactions between adjacent nanoparticles. This study demonstrates that spray-drying is an excellent technique for engineering dry powder formulations of siRNA nanoparticles, which might enable the local

  8. PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo.

    PubMed

    Aldrian, Gudrun; Vaissière, Anaïs; Konate, Karidia; Seisel, Quentin; Vivès, Eric; Fernandez, Frédéric; Viguier, Véronique; Genevois, Coralie; Couillaud, Franck; Démèné, Héléne; Aggad, Dina; Covinhes, Aurélie; Barrère-Lemaire, Stéphanie; Deshayes, Sébastien; Boisguerin, Prisca

    2017-06-28

    Small interfering RNAs (siRNAs) present a strong therapeutic potential because of their ability to inhibit the expression of any desired protein. Recently, we developed the retro-inverso amphipathic RICK peptide as novel non-covalent siRNA carrier. This peptide is able to form nanoparticles (NPs) by self-assembling with the siRNA resulting in the fully siRNA protection based on its protease resistant peptide sequence. With regard to an in vivo application, we investigated here the influence of the polyethylene glycol (PEG) grafting to RICK NPs on their in vitro and in vivo siRNA delivery properties. A detailed structural study shows that PEGylation did not alter the NP formation (only decrease in zeta potential) regardless of the used PEGylation rates. Compared to the native RICK:siRNA NPs, low PEGylation rates (≤20%) of the NPs did not influence their cellular internalization capacity as well as their knock-down specificity (over-expressed or endogenous system) in vitro. Because the behavior of PEGylated NPs could differ in their in vivo application, we analyzed the repartition of fluorescent labeled NPs injected at the one-cell stage in zebrafish embryos as well as their pharmacokinetic (PK) profile after administration to mice. After an intra-cardiac injection of the PEGylated NPs, we could clearly determine that 20% PEG-RICK NPs reduce significantly liver and kidney accumulation. NPs with 20% PEGylation constitutes a modular, easy-to-handle drug delivery system which could be adapted to other types of functional moieties to develop safe and biocompatible delivery systems for the clinical application of RNAi-based cancer therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery.

    PubMed

    Wada, Shun-Ichi; Takesada, Anna; Nagamura, Yurie; Sogabe, Eri; Ohki, Rieko; Hayashi, Junsuke; Urata, Hidehito

    2017-12-15

    The conjugation of Aib-containing amphipathic helical peptide with cyclo(-Arg-Gly-Asp-d-Phe-Cys-) (cRGDfC) at the C-terminus of the helix peptide (PI) has been reported to be useful for constructing a carrier for targeted siRNA delivery into cells. In order to explore structure-activity relationships for the development of potential carriers for siRNA delivery, we synthesized conjugates of Aib-containing amphipathic helical peptide with cRGDfC at the N-terminus (PII) and both the N- and C-termini (PIII) of the helical peptide. Furthermore, to examine the influence of PI helical chain length on siRNA delivery, truncated peptides containing 16 (PIV), 12 (PV), and 8 (PVI) amino acid residues at the N-terminus of the helical chain were synthesized. PII and PIII, as well as PI, could deliver anti-luciferase siRNA into cells to induce the knockdown of luciferase stably expressed in cells. In contrast, all of the truncated peptides were unlikely to transport siRNA into cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study.

    PubMed

    Burslem, George M; Smith, Blake E; Lai, Ashton C; Jaime-Figueroa, Saul; McQuaid, Daniel C; Bondeson, Daniel P; Toure, Momar; Dong, Hanqing; Qian, Yimin; Wang, Jing; Crew, Andrew P; Hines, John; Crews, Craig M

    2018-01-18

    Proteolysis targeting chimera (PROTAC) technology has emerged over the last two decades as a powerful tool for targeted degradation of endogenous proteins. Herein we describe the development of PROTACs for receptor tyrosine kinases, a protein family yet to be targeted for induced protein degradation. The use of VHL-recruiting PROTACs against this protein family reveals several advantages of degradation over inhibition alone: direct comparisons of fully functional, target-degrading PROTACs with target-inhibiting variants that contain an inactivated E3 ligase-recruiting ligand show that degradation leads to more potent inhibition of cell proliferation and a more durable and sustained downstream signaling response, and thus addresses the kinome rewiring challenge seen with many receptor tyrosine kinase inhibitors. Combined, these findings demonstrate the ability to target receptor tyrosine kinases for degradation using the PROTAC technology and outline the advantages of this degradation-based approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles.

    PubMed

    Sugo, Tsukasa; Terada, Michiko; Oikawa, Tatsuo; Miyata, Kenichi; Nishimura, Satoshi; Kenjo, Eriya; Ogasawara-Shimizu, Mari; Makita, Yukimasa; Imaichi, Sachiko; Murata, Shumpei; Otake, Kentaro; Kikuchi, Kuniko; Teratani, Mika; Masuda, Yasushi; Kamei, Takayuki; Takagahara, Shuichi; Ikeda, Shota; Ohtaki, Tetsuya; Matsumoto, Hirokazu

    2016-09-10

    Despite considerable efforts to develop efficient carriers, the major target organ of short-interfering RNAs (siRNAs) remains limited to the liver. Expanding the application outside the liver is required to increase the value of siRNAs. Here we report on a novel platform targeted to muscular organs by conjugation of siRNAs with anti-CD71 Fab' fragment. This conjugate showed durable gene-silencing in the heart and skeletal muscle for one month after intravenous administration in normal mice. In particular, 1μg siRNA conjugate showed significant gene-silencing in the gastrocnemius when injected intramuscularly. In a mouse model of peripheral artery disease, the treatment with myostatin-targeting siRNA conjugate by intramuscular injection resulted in significant silencing of myostatin and hypertrophy of the gastrocnemius, which was translated into the recovery of running performance. These data demonstrate the utility of antibody conjugation for siRNA delivery and the therapeutic potential for muscular diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans.

    PubMed

    Grishok, Alla; Hoersch, Sebastian; Sharp, Phillip A

    2008-12-23

    In Caenorhabditis elegans, a vast number of endogenous short RNAs corresponding to thousands of genes have been discovered recently. This finding suggests that these short interfering RNAs (siRNAs) may contribute to regulation of many developmental and other signaling pathways in addition to silencing viruses and transposons. Here, we present a microarray analysis of gene expression in RNA interference (RNAi)-related mutants rde-4, zfp-1, and alg-1 and the retinoblastoma (Rb) mutant lin-35. We found that a component of Dicer complex RDE-4 and a chromatin-related zinc finger protein ZFP-1, not implicated in endogenous RNAi, regulate overlapping sets of genes. Notably, genes a) up-regulated in the rde-4 and zfp-1 mutants and b) up-regulated in the lin-35(Rb) mutant, but not the down-regulated genes are highly represented in the set of genes with corresponding endogenous siRNAs (endo-siRNAs). Our study suggests that endogenous siRNAs cooperate with chromatin factors, either C. elegans ortholog of acute lymphoblastic leukemia-1 (ALL-1)-fused gene from chromosome 10 (AF10), ZFP-1, or tumor suppressor Rb, to regulate overlapping sets of genes and predicts a large role for RNAi-based chromatin silencing in control of gene expression in C. elegans.

  13. RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans

    PubMed Central

    Grishok, Alla; Hoersch, Sebastian; Sharp, Phillip A.

    2008-01-01

    In Caenorhabditis elegans, a vast number of endogenous short RNAs corresponding to thousands of genes have been discovered recently. This finding suggests that these short interfering RNAs (siRNAs) may contribute to regulation of many developmental and other signaling pathways in addition to silencing viruses and transposons. Here, we present a microarray analysis of gene expression in RNA interference (RNAi)-related mutants rde-4, zfp-1, and alg-1 and the retinoblastoma (Rb) mutant lin-35. We found that a component of Dicer complex RDE-4 and a chromatin-related zinc finger protein ZFP-1, not implicated in endogenous RNAi, regulate overlapping sets of genes. Notably, genes a) up-regulated in the rde-4 and zfp-1 mutants and b) up-regulated in the lin-35(Rb) mutant, but not the down-regulated genes are highly represented in the set of genes with corresponding endogenous siRNAs (endo-siRNAs). Our study suggests that endogenous siRNAs cooperate with chromatin factors, either C. elegans ortholog of acute lymphoblastic leukemia-1 (ALL-1)-fused gene from chromosome 10 (AF10), ZFP-1, or tumor suppressor Rb, to regulate overlapping sets of genes and predicts a large role for RNAi-based chromatin silencing in control of gene expression in C. elegans. PMID:19073934

  14. Multifunctional polymeric micelles for delivery of drugs and siRNA

    PubMed Central

    Jhaveri, Aditi M.; Torchilin, Vladimir P.

    2014-01-01

    Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend toward designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to “smart,” multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA). The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs. PMID:24795633

  15. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction.

    PubMed

    Somasuntharam, Inthirai; Boopathy, Archana V; Khan, Raffay S; Martinez, Mario D; Brown, Milton E; Murthy, Niren; Davis, Michael E

    2013-10-01

    Myocardial infarction (MI) is the most common cause of heart failure (HF), the leading cause of death in the developed world. Oxidative stress due to excessive production of reactive oxygen species (ROS) plays a key role in the pathogenesis of cardiac remodeling leading to HF. NADPH oxidase with Nox2 as the catalytic subunit is a major source for cardiac ROS production. Nox2-NADPH expression is significantly increased in the infarcted myocardium, primarily in neutrophils, macrophages and myocytes. Moreover, mice lacking the Nox2 gene are protected from ischemic injury, implicating Nox2 as a potential therapeutic target. RNAi-mediated gene silencing holds great promise as a therapeutic owing to its high specificity and potency. However, in vivo delivery hurdles have limited its effective clinical use. Here, we demonstrate acid-degradable polyketal particles as delivery vehicles for Nox2-siRNA to the post-MI heart. In vitro, Nox2-siRNA particles are effectively taken up by macrophages and significantly knockdown Nox2 expression and activity. Following in vivo intramyocardial injection in experimental mice models of MI, Nox2-siRNA particles prevent upregulation of Nox2 and significantly recovered cardiac function. This study highlights the potential of polyketals as siRNA delivery vehicles to the MI heart and represents a viable therapeutic approach for targeting oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Preparation and evaluation of nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene.

    PubMed

    Ma, Tao; Jiang, Jin-Ling; Liu, Ying; Ye, Zheng-Bao; Zhang, Jun

    2014-09-01

    c-Myc plays a key role in glioma cancer stem cell maintenance. A drug delivery system, nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene (NPs-c-Myc-siRNA-pDNAs), for the treatment of glioma, has not previously been reported. NPs-c-Myc-siRNA-pDNAs were prepared and evaluated in vitro. Three kinds of c-Myc-siRNA fragments were separately synthesized and linked with empty siRNA expression vectors in the mole ratio of 3:1 by T4 DNA ligase. The linked products were then separately transfected into Escherichia coli. DH5α followed by extraction with Endofree plasmid Mega kit (Qiagen, Hilden, Germany) obtained c-Myc-siRNA-pDNAs. Finally, the recombinant c-Myc-siRNA3-pDNAs, generating the highest transfection efficiency and the greatest apoptotic ability, were chosen for encapsulation into NPs by the double-emulsion solvent-evaporation procedure, followed by stability, transfection efficiency, as well as qualitative and quantitative apoptosis evaluation. NPs-c-Myc-siRNA3-pDNAs were obtained with spherical shape in uniform size below 150 nm, with the zeta potential about -18 mV, the encapsulation efficiency and loading capacity as 76.3 ± 5.4% and 1.91 ± 0.06%, respectively. The stability results showed that c-Myc-siRNA3-pDNAs remained structurally and functionally stable after encapsulated into NPs, and NPs could prevent the loaded c-Myc-siRNA3-pDNAs from DNase degradation. The transfection efficiency of NPs-c-Myc-siRNA3-pDNAs was proven to be positive. Furthermore, NPs-c-Myc-siRNA3-pDNAs produced significant apoptosis with the apoptotic rate at 24.77 ± 5.39% and early apoptosis cells observed. Methoxy-poly-(ethylene-glycol)-poly-(lactide-co-glycolide) nanoparticles (MPEG-PLGA-NPs) are potential delivery carriers for c-Myc-siRNA3-pDNAs.

  17. Short interfering RNAs targeting a vampire-bat related rabies virus phosphoprotein mRNA.

    PubMed

    Ono, Ekaterina Alexandrovna Durymanova; Taniwaki, Sueli Akemi; Brandão, Paulo

    The aim of this study was to assess the in vitro and in vivo effects of short-interfering RNAs (siRNAs) against rabies virus phosphoprotein (P) mRNA in a post-infection treatment for rabies as an extension of a previous report (Braz J Microbiol. 2013 Nov 15;44(3):879-82). To this end, rabies virus strain RABV-4005 (related to the Desmodus rotundus vampire bat) were used to inoculate BHK-21 cells and mice, and the transfection with each of the siRNAs was made with Lipofectamine-2000™. In vitro results showed that siRNA 360 was able to inhibit the replication of strain RABV-4005 with a 1log decrease in virus titter and 5.16-fold reduction in P mRNA, 24h post-inoculation when compared to non-treated cells. In vivo, siRNA 360 was able to induce partial protection, but with no significant difference when compared to non-treated mice. These results indicate that, despite the need for improvement for in vivo applications, P mRNA might be a target for an RNAi-based treatment for rabies. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Overcoming endosomal barrier by amphotericin B-loaded dual pH-responsive PDMA-b-PDPA micelleplexes for siRNA delivery.

    PubMed

    Yu, Haijun; Zou, Yonglong; Wang, Yiguang; Huang, Xiaonan; Huang, Gang; Sumer, Baran D; Boothman, David A; Gao, Jinming

    2011-11-22

    The endosomal barrier is a major bottleneck for the effective intracellular delivery of siRNA by nonviral nanocarriers. Here, we report a novel amphotericin B (AmB)-loaded, dual pH-responsive micelleplex platform for siRNA delivery. Micelles were self-assembled from poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diisopropylamino)ethyl methacrylate) (PDMA-b-PDPA) diblock copolymers. At pH 7.4, AmB was loaded into the hydrophobic PDPA core, and siRNA was complexed with a positively charged PDMA shell to form the micelleplexes. After cellular uptake, the PDMA-b-PDPA/siRNA micelleplexes dissociated in early endosomes to release AmB. Live cell imaging studies demonstrated that released AmB significantly increased the ability of siRNA to overcome the endosomal barrier. Transfection studies showed that AmB-loaded micelleplexes resulted in significant increase in luciferase (Luc) knockdown efficiency over the AmB-free control. The enhanced Luc knockdown efficiency was abolished by bafilomycin A1, a vacuolar ATPase inhibitor that inhibits the acidification of the endocytic organelles. These data support the central hypothesis that membrane poration by AmB and increased endosomal swelling and membrane tension by a "proton sponge" polymer provided a synergistic strategy to disrupt endosomes for improved intracellular delivery of siRNA. © 2011 American Chemical Society

  19. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing.

    PubMed

    Wu, Hui; Shi, Yinfeng; Huang, Chusen; Zhang, Yang; Wu, Jiahui; Shen, Hebai; Jia, Nengqin

    2014-04-01

    RNA interference-mediated gene silencing relating to disease has recently emerged as a powerful method in gene therapy. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. Halloysites are cheap and naturally available aluminosilicate clay nanotubes with high mechanical strength and biocompatibility. In this study, a novel multifunctional nanocarrier based on functionalized halloysite nanotubes (f-HNTs) has been developed via electrostatic layer-by-layer assembling approach for loading and intracellular delivery of therapeutic antisurvivin siRNA and simultaneously tracking their intracellular transport, in which PEI-modified HNTs are used as gene vector, antisurvivin siRNA as gene therapeutic agent, and mercaptoacetic acid-capped CdSe quantum dots as fluorescent labeling probes. The successful assembly of the f-HNTs-siRNA complexes was systematically characterized by transmission electron microscopy (TEM), UV-visible spectrophotometry, Zeta potential measurement, fluorescence spectrophotometry, and electrochemical impedance spectroscopy. Confocal microscopy, biological TEM, and flow cytometry studies revealed that the complexes enabled the efficient intracellular delivery of siRNA for cell-specific gene silencing. MTT assays exhibited that the complexes can enhance antitumor activity. Furthermore, Western blot analysis showed that f-HNTs-mediated siRNA delivery effectively knocked down gene expression of survivin and thereby decreased the levels of target proteins of PANC-1 cells. Therefore, this study suggested that the synthesized f-HNTs were a new effective drug delivery system for potential application in cancer gene therapy.

  20. RNAi-mediated endogene silencing in strawberry fruit: detection of primary and secondary siRNAs by deep sequencing.

    PubMed

    Härtl, Katja; Kalinowski, Gregor; Hoffmann, Thomas; Preuss, Anja; Schwab, Wilfried

    2017-05-01

    RNA interference (RNAi) has been exploited as a reverse genetic tool for functional genomics in the nonmodel species strawberry (Fragaria × ananassa) since 2006. Here, we analysed for the first time different but overlapping nucleotide sections (>200 nt) of two endogenous genes, FaCHS (chalcone synthase) and FaOMT (O-methyltransferase), as inducer sequences and a transitive vector system to compare their gene silencing efficiencies. In total, ten vectors were assembled each containing the nucleotide sequence of one fragment in sense and corresponding antisense orientation separated by an intron (inverted hairpin construct, ihp). All sequence fragments along the full lengths of both target genes resulted in a significant down-regulation of the respective gene expression and related metabolite levels. Quantitative PCR data and successful application of a transitive vector system coinciding with a phenotypic change suggested propagation of the silencing signal. The spreading of the signal in strawberry fruit in the 3' direction was shown for the first time by the detection of secondary small interfering RNAs (siRNAs) outside of the primary targets by deep sequencing. Down-regulation of endogenes by the transitive method was less effective than silencing by ihp constructs probably because the numbers of primary siRNAs exceeded the quantity of secondary siRNAs by three orders of magnitude. Besides, we observed consistent hotspots of primary and secondary siRNA formation along the target sequence which fall within a distance of less than 200 nt. Thus, ihp vectors seem to be superior over the transitive vector system for functional genomics in strawberry fruit. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.

    PubMed

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2017-04-01

    The pro-inflammatory activation of pulmonary microvascular endothelial cells resulting in continuous expression of cellular adhesion molecules, and subsequently recruiting primed neutrophils to form a firm neutrophils-endothelium (PMN-EC) adhesion, has been examined and found to play a vital role in acute lung injury (ALI). RNA interference (RNAi) is a cellular process through harnessing a natural pathway silencing target gene based on recognition and subsequent degradation of specific mRNA sequences. It opens a promising approach for precision medicine. However, this application was hampered by many obstacles, such as immunogenicity, instability, toxicity problems, and difficulty in across the biological membrane. In this study, we reprogrammed urine exfoliated renal epithelial cells into human induced pluripotent stem cells (huiPSCs) and purified the exosomes (Exo) from huiPSCs as RNAi delivery system. Through choosing the episomal system to deliver transcription factors, we obtained a non-integrating huiPSCs. Experiments in both vitro and vivo demonstrated that these huiPSCs possess the pluripotent properties. The exosomes of huiPSCs isolated by differential centrifugation were visualized by transmission electron microscopy (TEM) showing a typical exosomal appearance with an average diameter of 122 nm. Immunoblotting confirmed the presence of the typical exosomal markers, including CD63, TSG 101, and Alix. Co-cultured PKH26-labeled exosomes with human primary pulmonary microvascular endothelial cells (HMVECs) confirmed that they could be internalized by recipient cells at a time-dependent manner. Then, electroporation was used to introduce siRNA against intercellular adhesion molecule-1 (ICAM-1) into exosomes to form an Exo/siRNA compound. The Exo/siRNA compound efficiently delivered the target siRNA into HMVECs causing selective gene silencing, inhibiting the ICAM-1 protein expression, and PMN-EC adhesion induced by lipopolysaccharide (LPS). These data suggest

  2. Targeting Prostate Cancer with Multifunctional Nanoparticles

    DTIC Science & Technology

    2015-10-01

    duplexes using Lipofectamine RNAiMAX (Invitrogen) as well as the appropriate controls including vehicle, non-targeting siRNA (siSC5) (negative...independent claudin-3 and claudin-4 siRNA duplexes using Lipofectamine RNAiMAX (Invitrogen). For these experiments we also included the appropriate

  3. p53-independent p21 induction by MELK inhibition.

    PubMed

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-08-29

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated.

  4. p53-independent p21 induction by MELK inhibition

    PubMed Central

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-01-01

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated. PMID:28938528

  5. Novel polyacrylate-based cationic nanoparticles for survivin siRNA delivery combined with mitoxantrone for treatment of breast cancer.

    PubMed

    Arami, Sanam; Mahdavi, Majid; Rashidi, Mohammad Reza; Fathi, Marziyeh; Hejazi, Mohammad-Saeid; Samadi, Nasser

    2016-11-01

    As a gene delivery method in breast cancer therapy, knocking down the undesired genes in the cancerous cells would be promising. Inhibitors of Apoptosis Protein (IAP) family genes are some of the genes whose responsibility is inhibition of apoptosis in cells. Silencing these genes seems to be helpful directing the tumor cells to death. siRNA sequence designed against survivin anti-apoptotic gene can play this role if carried to the cytoplasm. Here we prepared a positive charged biocompatible nano-sized particle made up of a Fe 3 O 4 core covered respectively by polyacrylate (PA) and polyethyleneimine (PEI) layer, which could successfully deliver the siRNA into the MCF-7 cells. The particle structure was checked and having less than 50 nm diameter in size, positive charge and, safety towards MCF-7 cells besides being able to form nanoplexes with the siRNA strand helps it entering into the biologic assays part. The siRNA delivery evaluated via flowcytometry. Apoptosis induction was determined by DAPI staining. The efficiency of survivin gene knockdown was evaluated in mRNA and protein levels using Real time PCR and western blotting methods. Overall, the Fe 3 O 4 -PA-PEI nanoparticles can deliver siRNA effectively into the cytoplasm of the MCF-7 breast cancer cells and induce apoptosis. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  6. Effect of Surface Properties on Liposomal siRNA Delivery

    PubMed Central

    Xia, Yuqiong; Tian, Jie; Chen, Xiaoyuan

    2015-01-01

    Liposomes are one of the most widely investigated carriers for siRNA delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations and ligand modifications. Cationic formulations dominate siRNA delivery and neutral formulations also have good performance while anionic formulations are generally not proper for siRNA delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal siRNA delivery, outlined existing problems and provided some future perspectives. PMID:26695117

  7. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting β‑catenin signaling.

    PubMed

    Kundu, Juthika; Wahab, S M Riajul; Kundu, Joydeb Kumar; Choi, Yoon-La; Erkin, Ozgur Cem; Lee, Hun Seok; Park, Sang Gyu; Shin, Young Kee

    2012-09-01

    Transducer of ErbB-2.1 (Tob1), a tumor suppressor protein, is inactivated in a variety of cancers including stomach cancer. However, the role of Tob1 in gastric carcinogenesis remains elusive. The present study aimed to investigate whether Tob1 could inhibit gastric cancer progression in vitro, and to elucidate its underlying molecular mechanisms. We found differential expression of Tob1 in human gastric cancer (MKN28, AGS and MKN1) cells. The overexpression of Tob1 induced apoptosis in MKN28 and AGS cells, which was associated with sub-G1 arrest, activation of caspase-3, induction of Bax, inhibition of Bcl-2 and cleavage of poly (ADP-ribose) polymerase (PARP). In addition, Tob1 inhibited proliferation, migration and invasion, which were reversed in MKN1 and AGS cells transfected with Tob1 siRNA. Overexpression of Tob1 in MKN28 and AGS cells induced the expression of Smad4, leading to the increased expression and the promoter activity of p15, which was diminished by silencing of Tob1 using specific siRNA. Tob1 decreased the phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β) in MKN28 and AGS cells, resulting in the reduced protein expression and the transcriptional activity of β‑catenin, which in turn decreased the expression of cyclin D1, cyclin-dependent kinase-4 (CDK4), urokinase plasminogen activator receptor (uPAR) and peroxisome proliferator and activator receptor-δ (PPARδ). Conversely, silencing of Tob1 induced the phosphorylation of Akt and GSK-3β, and increased the expression of β‑catenin and its target genes. Collectively, our study demonstrates that the overexpression of Tob1 inhibits gastric cancer progression by activating Smad4- and inhibiting β‑catenin-mediated signaling pathways.

  8. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover

    PubMed Central

    Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.

    2011-01-01

    RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178

  9. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.

    PubMed

    Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G

    2011-04-29

    RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    PubMed

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  11. Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer.

    PubMed

    Zhao, Ranran; Liang, Xiaolong; Zhao, Bo; Chen, Min; Liu, Renfa; Sun, Sujuan; Yue, Xiuli; Wang, Shumin

    2018-05-03

    To improve the non-invasive therapeutic efficacy for ER positive breast cancer (ER+ BC), we fabricated a multifunctional FOXA1 loaded porphyrin microbubble to combine photodynamic therapy (PDT) and gene therapy of FOXA1 knockdown (KD) with ultrasound targeted microbubble destruction (UTMD) technology under the guidance of contrast enhanced ultrasound (CEUS). Cationic porphyrin microbubbles (CpMBs) were firstly fabricated from a porphyrin grafted lipid with two cationic amino groups (PGL-NH2) and fluorocarbon inert gas of C 3 F 8 . Porphyrin group in the CpMBs monolayer could be used as a photosensitizer for PDT, while amino groups could adsorb siRNA through electrostatic interaction for FOXA1 KD, which could inhibit the proliferation of estrogen-dependent ER+ BC. This system showed high photosensitizer and gene loading content. Moreover, CpMBs/siRNA can be converted into nanoparticles with low-frequency pulsed ultrasound (LFUS) exposure, which increase the transfection efficiency of siRNA (∼4 fold) and the porphyrin uptake (∼8 fold) in MCF-7 (a human breast cancer cell line, ER+) by sonoporation effect. In vivo, UTMD was performed under the guidance of CEUS, and the fluorescence intensity of CpMBs/siRNA at the tumour site reached a peak value at 6 h after injection and it was retained in the following 24 h. Furthermore, there was no tumour recurrence during the observation period (21 days) in the group of PDT combined with FXOA1 KD. Compared to the PDT or FOXA1 KD alone group, the combination of these two methods was much more efficient in inhibiting ER+ breast cancer, showing a good synergistic effect. CpMBs/siRNA combined with UTMD dramatically increased the local accumulation of porphyrin and siRNA through ultrasound-induced sonoporation effect under the guidance of CEUS, showing excellent therapeutic effect for estrogen-dependent ER+ breast cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. psRNATarget: a plant small RNA target analysis server (2017 release).

    PubMed

    Dai, Xinbin; Zhuang, Zhaohong; Zhao, Patrick Xuechun

    2018-04-30

    Plant regulatory small RNAs (sRNAs), which include most microRNAs (miRNAs) and a subset of small interfering RNAs (siRNAs), such as the phased siRNAs (phasiRNAs), play important roles in regulating gene expression. Although generated from genetically distinct biogenesis pathways, these regulatory sRNAs share the same mechanisms for post-translational gene silencing and translational inhibition. psRNATarget was developed to identify plant sRNA targets by (i) analyzing complementary matching between the sRNA sequence and target mRNA sequence using a predefined scoring schema and (ii) by evaluating target site accessibility. This update enhances its analytical performance by developing a new scoring schema that is capable of discovering miRNA-mRNA interactions at higher 'recall rates' without significantly increasing total prediction output. The scoring procedure is customizable for the users to search both canonical and non-canonical targets. This update also enables transmitting and analyzing 'big' data empowered by (a) the implementation of multi-threading chunked file uploading, which can be paused and resumed, using HTML5 APIs and (b) the allocation of significantly more computing nodes to its back-end Linux cluster. The updated psRNATarget server has clear, compelling and user-friendly interfaces that enhance user experiences and present data clearly and concisely. The psRNATarget is freely available at http://plantgrn.noble.org/psRNATarget/.

  13. siRNA capsulated brain-targeted nanoparticles specifically knock down OATP2B1 in mice: a mechanism for acute morphine tolerance suppression.

    PubMed

    Yang, Zi-Zhao; Li, Li; Wang, Lu; Xu, Ming-Cheng; An, Sai; Jiang, Chen; Gu, Jing-Kai; Wang, Zai-Jie Jim; Yu, Lu-Shan; Zeng, Su

    2016-09-15

    Regulating main brain-uptake transporter of morphine may restrict its tolerance generation, then modify its antinociception. In this study, more than 2 fold higher intracellular uptake concentrations for morphine and morphine-6-glucuronide (M6G) were observed in stable expression cells, HEK293-hOATP2B1 than HEK293-MOCK. Specifically, the Km value of morphine to OATP2B1 (57.58 ± 8.90 μM) is 1.4-time more than that of M6G (80.31 ± 21.75 μM); Cyclosporine A (CsA), an inhibitor of OATP2B1, can inhibit their intracellular accumulations with IC50 = 3.90 ± 0.50 μM for morphine and IC50 = 6.04 ± 0.86 μM for M6G, respectively. To further investigate the role of OATP2B1 in morphine brain transport and tolerance, the novel nanoparticles of DGL-PEG/dermorphin capsulated siRNA (OATP2B1) were applied to deliver siRNA into mouse brain. Along with OATP2B1 depressed, a main reduction was found for each of morphine or M6G in cerebrums or epencephalons of acute morphine tolerance mice. Furthermore, calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) in mouse prefrontal cortex (mPFC) underwent dephosphorylation at Thr286. In conclusion, OATP2B1 downregulation in mouse brain can suppress tolerance via blocking morphine and M6G brain transport. These findings might help to improve the pharmacological effects of morphine.

  14. siRNA capsulated brain-targeted nanoparticles specifically knock down OATP2B1 in mice: a mechanism for acute morphine tolerance suppression

    PubMed Central

    Yang, Zi-Zhao; Li, Li; Wang, Lu; Xu, Ming-Cheng; An, Sai; Jiang, Chen; Gu, Jing-Kai; Wang, Zai-Jie Jim; Yu, Lu-Shan; Zeng, Su

    2016-01-01

    Regulating main brain-uptake transporter of morphine may restrict its tolerance generation, then modify its antinociception. In this study, more than 2 fold higher intracellular uptake concentrations for morphine and morphine-6-glucuronide (M6G) were observed in stable expression cells, HEK293-hOATP2B1 than HEK293-MOCK. Specifically, the Km value of morphine to OATP2B1 (57.58 ± 8.90 μM) is 1.4-time more than that of M6G (80.31 ± 21.75 μM); Cyclosporine A (CsA), an inhibitor of OATP2B1, can inhibit their intracellular accumulations with IC50 = 3.90 ± 0.50 μM for morphine and IC50 = 6.04 ± 0.86 μM for M6G, respectively. To further investigate the role of OATP2B1 in morphine brain transport and tolerance, the novel nanoparticles of DGL-PEG/dermorphin capsulated siRNA (OATP2B1) were applied to deliver siRNA into mouse brain. Along with OATP2B1 depressed, a main reduction was found for each of morphine or M6G in cerebrums or epencephalons of acute morphine tolerance mice. Furthermore, calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) in mouse prefrontal cortex (mPFC) underwent dephosphorylation at Thr286. In conclusion, OATP2B1 downregulation in mouse brain can suppress tolerance via blocking morphine and M6G brain transport. These findings might help to improve the pharmacological effects of morphine. PMID:27629937

  15. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers

    PubMed Central

    Abdul Ghafoor Raja, Maria; Katas, Haliza; Jing Wen, Thum

    2015-01-01

    Chitosan (CS) nanoparticles have been extensively studied for siRNA delivery; however, their stability and efficacy are highly dependent on the types of cross-linker used. To address this issue, three common cross-linkers; tripolyphosphate (TPP), dextran sulphate (DS) and poly-D-glutamic acid (PGA) were used to prepare siRNA loaded CS-TPP/DS/PGA nanoparticles by ionic gelation method. The resulting nanoparticles were compared with regard to their physicochemical properties including particle size, zeta potential, morphology, binding and encapsulation efficiencies. Among all the formulations prepared with different cross linkers, CS-TPP-siRNA had the smallest particle size (ranged from 127 ± 9.7 to 455 ± 12.9 nm) with zeta potential ranged from +25.1 ± 1.5 to +39.4 ± 0.5 mV, and high entrapment (>95%) and binding efficiencies. Similarly, CS-TPP nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-TPP-siRNA nanoparticles in contrast to irregular morphology displayed by CS-DS-siRNA and CS-PGA-siRNA nanoparticles. All siRNA loaded CS-TPP/DS/PGA nanoparticles showed initial burst release followed by sustained release of siRNA. Moreover, all the formulations showed low and concentration-dependent cytotoxicity with human colorectal cancer cells (DLD-1), in vitro. The cellular uptake studies with CS-TPP-siRNA nanoparticles showed successful delivery of siRNA within cytoplasm of DLD-1 cells. The results demonstrate that ionically cross-linked CS-TPP nanoparticles are biocompatible non-viral gene delivery system and generate a solid ground for further optimization studies, for example with regard to steric stabilization and targeting. PMID:26068222

  16. Inhibition of MMP-2 gene expression with small interfering RNA in rabbit vascular smooth muscle cells.

    PubMed

    Hlawaty, Hanna; San Juan, Aurélie; Jacob, Marie-Paule; Vranckx, Roger; Letourneur, Didier; Feldman, Laurent J

    2007-12-01

    Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs). Using small interfering RNA (siRNA), we evaluated the effect of MMP-2 inhibition in VSMCs in vitro and ex vivo. Rabbit VSMCs were transfected in vitro with 50 nmol/l MMP-2 siRNA or scramble siRNA. Flow cytometry and confocal microscopy showed cellular uptake of siRNA in approximately 80% of VSMCs. MMP-2 mRNA levels evaluated by real-time RT-PCR, pro-MMP-2 activity from conditioned culture media evaluated by gelatin zymography, and VSMC migration were reduced by 44 +/- 19%, 43 +/- 14%, and 36 +/- 14%, respectively, in MMP-2 siRNA-transfected compared with scramble siRNA-transfected VSMCs (P < 0.005 for all). Ex vivo MMP-2 siRNA transfection was performed 2 wk after balloon injury of hypercholesterolemic rabbit carotid arteries. Fluorescence microscopy showed circumferential siRNA uptake in neointimal cells. Gelatin zymography of carotid artery culture medium demonstrated a significant decrease of pro-MMP-2 activity in MMP-2 siRNA-transfected compared with scramble siRNA-transfected arteries (P < 0.01). Overall, our results demonstrate that in vitro MMP-2 siRNA transfection in VSMCs markedly inhibits MMP-2 gene expression and VSMC migration and that ex vivo delivery of MMP-2 siRNA in balloon-injured arteries reduces pro-MMP-2 activity in neointimal cells, suggesting that siRNA could be used to modify arterial biology in vivo.

  17. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.

    PubMed

    Song, Erwei; Zhu, Pengcheng; Lee, Sang-Kyung; Chowdhury, Dipanjan; Kussman, Steven; Dykxhoorn, Derek M; Feng, Yi; Palliser, Deborah; Weiner, David B; Shankar, Premlata; Marasco, Wayne A; Lieberman, Judy

    2005-06-01

    Delivery of small interfering RNAs (siRNAs) into cells is a key obstacle to their therapeutic application. We designed a protamine-antibody fusion protein to deliver siRNA to HIV-infected or envelope-transfected cells. The fusion protein (F105-P) was designed with the protamine coding sequence linked to the C terminus of the heavy chain Fab fragment of an HIV-1 envelope antibody. siRNAs bound to F105-P induced silencing only in cells expressing HIV-1 envelope. Additionally, siRNAs targeted against the HIV-1 capsid gene gag, inhibited HIV replication in hard-to-transfect, HIV-infected primary T cells. Intratumoral or intravenous injection of F105-P-complexed siRNAs into mice targeted HIV envelope-expressing B16 melanoma cells, but not normal tissue or envelope-negative B16 cells; injection of F105-P with siRNAs targeting c-myc, MDM2 and VEGF inhibited envelope-expressing subcutaneous B16 tumors. Furthermore, an ErbB2 single-chain antibody fused with protamine delivered siRNAs specifically into ErbB2-expressing cancer cells. This study demonstrates the potential for systemic, cell-type specific, antibody-mediated siRNA delivery.

  18. gp-91 mediates histone deacetylase inhibition-induced cardioprotection

    PubMed Central

    Zhao, Ting C; Zhang, Ling X; Cheng, Guangmao; Liu, Jun T

    2010-01-01

    We have recently shown that the inhibition of histone deacetylases (HDAC) protects the heart against ischemia and reperfusion (I/R) injury. The mechanism by which HDAC inhibition induces cardioprotection remains unknown. We sought to investigate whether the genetic disruption of gp-91, a subunit of NADPH-oxidase, would mitigate cardioprotection of HDAC inhibition. Wild-type and gp-91−/− mice were treated with a potent inhibitor of HDACs, trichostatin A (TSA, 0.1mg/kg, i.p.). Twenty-four hours later, the perfused hearts were subjected to 30 min of ischemia and 30 min of reperfusion. HDAC inhibition in wild-type mice produced marked improvements in ventricular functional recovery and the reduction of infarct size. TSA-induced cardioprotection was eliminated with genetic deletion of gp91. Notably, Western blot and immunostaining displayed a significant increase in gp-91 in myocardium following HDAC inhibition, which resulted in a mildly subsequent increase in the production of reactive oxygen species (ROS). The pretreatment of H9c2 cardiomyoblasts with TSA (50 nmol/L) decreased cell necrosis and increased viability in response to simulated ischemia (SI), which was abrogated by the transfection of cells with gp-91 siRNA, but not by scrambled siRNA. Furthermore, treatment of PLB-985 gp91+/+cells with TSA increased the resistance to SI, which also diminished with genetic disruption of gp91 in gp91phox-deficient PLB-985 cells. TSA treatment inhibited the increased active caspase-3 in H9c2 cardiomyoblasts and PLB-985 gp91+/+cells exposed to SI, which were prevented by knockdown of gp-91 by siRNA. These results suggest that a cascade consisting of gp-91 and HDAC inhibition plays an essential role in orchestrating the cardioprotective effect. PMID:20433879

  19. Annexin A9 (ANXA9) biomarker and therapeutic target in epithelial cancer

    DOEpatents

    Hu, Zhi [El Cerrito, CA; Kuo, Wen-Lin [San Ramon, CA; Neve, Richard M [San Mateo, CA; Gray, Joe W [San Francisco, CA

    2012-06-12

    Amplification of the ANXA9 gene in human chromosomal region 1q21 in epithelial cancers indicates a likelihood of both in vivo drug resistance and metastasis, and serves as a biomarker indicating these aspects of the disease. ANXA9 can also serve as a therapeutic target. Interfering RNAs (iRNAs) (such as siRNA and miRNA) and shRNA adapted to inhibit ANXA9 expression, when formulated in a therapeutic composition, and delivered to cells of the tumor, function to treat the epithelial cancer.

  20. Overexpression of uncoupling protein-2 in cancer: metabolic and heat changes, inhibition and effects on drug resistance.

    PubMed

    Pitt, Michael A

    2015-12-01

    This paper deals with the role of uncoupling protein-2 (UCP2) in cancer. UCP2 is overexpressed in cancer. This overexpression results in uncoupling of mitochondrial oxidative phosphorylation and a shift in production of ATP from mitochondrial oxidative phosphorylation to cytosolic aerobic glycolysis. UCP2 overexpression results in the following changes. Mitochondrial membrane potential (Δψ(m)) is decreased and lactate accumulates. There is a diminished production of reactive oxygen species and apoptosis is inhibited post-exposure to chemotherapeutic agents. There is an increase in heat and entropy production and a departure from the stationary state of non-cancerous tissue. Uncoupling of oxidative phosphorylation may also be caused by protonophores and non-steroidal anti-inflammatory drugs. UCP2 requires activation by superoxide and lipid peroxidation derivatives. As vitamin E inhibits lipid peroxidation, it might be expected that vitamin E would act as a chemotherapeutic agent against cancer. A recent study has shown that vitamin E and another anti-oxidant accelerate cancer progression. UCP2 is inhibited by genipin, chromane compounds and short interfering RNAs (siRNA). Genipin, chromanes and siRNA are taken up by both cancer and non-cancerous cells. Targeting the uptake of these agents by cancer cells by the enhanced permeability and retention effect is considered. Inhibition of UCP2 enhances the action of several anti-cancer agents.

  1. Current progress on aptamer-targeted oligonucleotide therapeutics

    PubMed Central

    Dassie, Justin P; Giangrande, Paloma H

    2014-01-01

    Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted. PMID:24304250

  2. Identification and validation of vesicant therapeutic targets using a high, throughput siRNA screening approach

    DTIC Science & Technology

    2014-12-24

    toxlet.2011.04.007 Rogers JV, Choi YW, Kiser RC et al (2004) Microarray analysis of gene expression in murine skin exposed to sulfur mustard. J Bio...Chemotactic factors released in culture by intact developing and healing skin lesions produced in rabbits by the irritant sulfur mustard. Inflam- mation 21(2...Project ID Number CBM.CUTOC.04.10. RC 00114. ABSTRACT See reprint. 15. SUBJECT TERMS sulfur mustard, cutaneous injury, siRNA, high-throughput screening

  3. Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis

    PubMed Central

    Peng, F; Jiang, J; Yu, Y; Tian, R; Guo, X; Li, X; Shen, M; Xu, M; Zhu, F; Shi, C; Hu, J; Wang, M; Qin, R

    2013-01-01

    Background: The multidrug resistance and distant metastasis of cholangiocarcinoma result in high postoperative recurrence and low long-term survival rates. It has been demonstrated that the ectopic expression of miR-200 suppresses the multidrug resistance and metastasis of cancer. However, the expression and function of miR-200 in cholangiocarcinoma has not yet been described. Methods: In this study, we identified dysregulated microRNAs (miRNAs, miR) in cholangiocarcinoma tissue by microarray analysis, and subsequent real-time PCR and northern blot analyses validated the expression of candidate miR. We performed functional analyses and investigated the relationship between miR-200b/c expression and the properties of cholangiocarcinoma cells. A dual luciferase assay was applied to examine the effect of miRNAs on the 3′-UTR of target genes, and we demonstrated the function of the target gene by siRNA transfection identifying the downstream pathway via western blotting. Results: We found significantly downregulated expression of four miR-200 family members (miR-200a/b/c/429) and then confirmed that ectopic miR-200b/200c inhibits the migration and invasion of cholangiocarcinoma cells both in vitro and in vivo. We found that miR-200b/c influenced the tumourigenesis of cholangiocarcinoma cells including their tumour-initiating capacity, sphere formation, and drug resistance. We further found that miR-200b/c regulated migration and invasion capacities by directly targeting rho-kinase 2 and regulated tumorigenic properties by directly targeting SUZ12 (a subunit of a polycomb repressor complex). Conclusion: Our study shows that miR-200b/c has a critical role in the regulation of the tumorigenic and metastatic capacity of cholangiocarcinoma and reveals the probable underlying mechanisms. PMID:24169343

  4. Polo-like kinase 1, a new therapeutic target in hepatocellular carcinoma

    PubMed Central

    Mok, Wei Chuen; Wasser, Shanthi; Tan, Theresa; Lim, Seng Gee

    2012-01-01

    AIM: To investigate the role of polo-like kinase 1 (PLK1) as a therapeutic target for hepatocellular carcinoma (HCC). METHODS: PLK1 gene expression was evaluated in HCC tissue and HCC cell lines. Gene knockdown with short-interfering RNA (siRNA) was used to study PLK1 gene and protein expression using real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting, and cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H-tetrazolium (MTS) and bromodeoxyuridine (BrdU) assays. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and caspase-inhibition assay. Huh-7 cells were transplanted into nude mice and co-cultured with PLK1 siRNA or control siRNA, and tumor progression was compared with controls. RESULTS: RT-PCR showed that PLK1 was overexpressed 12-fold in tumor samples compared with controls, and also was overexpressed in Huh-7 cells. siRNA against PLK1 showed a reduction in PLK1 gene and protein expression of up to 96% in Huh-7 cells, and a reduction in cell proliferation by 68% and 92% in MTS and BrdU cell proliferation assays, respectively. There was a 3-fold increase in apoptosis events, and TUNEL staining and caspase-3 assays suggested that this was caspase-independent. The pan-caspase inhibitor Z-VAD-FMK was unable to rescue the apoptotic cells. Immnofluorescence co-localized endonuclease-G to fragmented chromosomes, implicating it in apoptosis. Huh-7 cells transplanted subcutaneously into nude mice showed tumor regression in siPLK1-treated mice, but not in controls. CONCLUSION: Knockdown of PLK1 overexpression in HCC was shown to be a potential therapeutic target, leading to apoptosis through the endonuclease-G pathway. PMID:22826617

  5. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages.

    PubMed

    Qian, Yuan; Qiao, Sha; Dai, Yanfeng; Xu, Guoqiang; Dai, Bolei; Lu, Lisen; Yu, Xiang; Luo, Qingming; Zhang, Zhihong

    2017-09-26

    Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancer immunotherapy. Targeted delivery of therapeutic drugs to the tumor-promoting M2-like TAMs is challenging. Here, we developed M2-like TAM dual-targeting nanoparticles (M2NPs), whose structure and function were controlled by α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2pep (an M2 macrophage binding peptide). By loading anti-colony stimulating factor-1 receptor (anti-CSF-1R) small interfering RNA (siRNA) on the M2NPs, we developed a molecular-targeted immunotherapeutic approach to specifically block the survival signal of M2-like TAMs and deplete them from melanoma tumors. We confirmed the validity of SR-B1 for M2-like TAM targeting and demonstrated the synergistic effect of the two targeting units (α-peptide and M2pep) in the fusion peptide (α-M2pep). After being administered to tumor-bearing mice, M2NPs had higher affinity to M2-like TAMs than to tissue-resident macrophages in liver, spleen, and lung. Compared with control treatment groups, M2NP-based siRNA delivery resulted in a dramatic elimination of M2-like TAMs (52%), decreased tumor size (87%), and prolonged survival. Additionally, this molecular-targeted strategy inhibited immunosuppressive IL-10 and TGF-β production and increased immunostimulatory cytokines (IL-12 and IFN-γ) expression and CD8 + T cell infiltration (2.9-fold) in the tumor microenvironment. Moreover, the siRNA-carrying M2NPs down-regulated expression of the exhaustion markers (PD-1 and Tim-3) on the infiltrating CD8 + T cells and stimulated their IFN-γ secretion (6.2-fold), indicating the restoration of T cell immune function. Thus, the dual-targeting property of M2NPs combined with RNA interference provides a potential strategy of molecular-targeted cancer immunotherapy for clinical application.

  6. Promiscuous, Multi-Target Lupane-Type Triterpenoids Inhibits Wild Type and Drug Resistant HIV-1 Replication Through the Interference With Several Targets.

    PubMed

    Bedoya, Luis M; Beltrán, Manuela; García-Pérez, Javier; Obregón-Calderón, Patricia; Callies, Oliver; Jímenez, Ignacio A; Bazzocchi, Isabel L; Alcamí, José

    2018-01-01

    Current research on antiretroviral therapy is mainly focused in the development of new formulations or combinations of drugs belonging to already known targets. However, HIV-1 infection is not cured by current therapy and thus, new approaches are needed. Bevirimat was developed by chemical modification of betulinic acid, a lupane-type pentacyclic triterpenoid (LPT), as a first-in-class HIV-1 maturation inhibitor. However, in clinical trials, bevirimat showed less activity than expected because of the presence of a natural mutation in Gag protein that conferred resistance to a high proportion of HIV-1 strains. In this work, three HIV-1 inhibitors selected from a set of previously screened LPTs were investigated for their targets in the HIV-1 replication cycle, including their maturation inhibitor effect. LPTs were found to inhibit HIV-1 infection acting as promiscuous compounds with several targets in the HIV-1 replication cycle. LPT12 inhibited HIV-1 infection mainly through reverse transcription, integration, viral transcription, viral proteins (Gag) production and maturation inhibition. LPT38 did it through integration, viral transcription or Gag production inhibition and finally, LPT42 inhibited reverse transcription, viral transcription or Gag production. The three LPTs inhibited HIV-1 infection of human primary lymphocytes and infections with protease inhibitors and bevirimat resistant HIV-1 variants with similar values of IC 50 . Therefore, we show that the LPTs tested inhibited HIV-1 infection through acting on different targets depending on their chemical structure and the activities of the different LPTs vary with slight structural alterations. For example, of the three LPTs under study, we found that only LPT12 inhibited infectivity of newly-formed viral particles, suggesting a direct action on the maturation process. Thus, the multi-target behavior gives a potential advantage to these compounds since HIV-1 resistance can be overcome by modulating more

  7. SiRNA Delivery with PEGylated Graphene Oxide Nanosheets for Combined Photothermal and Genetherapy for Pancreatic Cancer

    PubMed Central

    Yin, Feng; Hu, Kuan; Chen, Yangzi; Yu, Mengying; Wang, Dongyuan; Wang, Qianqian; Yong, Ken-Tye; Lu, Fei; Liang, Yongye; Li, Zigang

    2017-01-01

    Since the successful exfoliation of graphene from graphite in 2004, graphene and graphene oxide (GO) have been considered the most promising two-dimensional (2D) nanomaterials with distinguished physical and chemical characteristics and have attracted great attention in many different fields. Graphene oxide is well-known for its distinct physiochemical properties and shows only minimal cytotoxicity compared to carbon nanotubes. Until now, only limited efforts have been invested in utilizing GO for gene therapy in pancreatic cancer treatments. In this study, we utilized multi-functionalized monolayer GO as a gene delivery system to efficiently co-deliver HDAC1 and K-Ras siRNAs (small interfering RNAs targeting the HDAC1 gene and the G12C mutant K-Ras gene, respectively) to specifically target pancreatic cancer cells MIA PaCa-2. The systematic mechanistic elucidation of the dual gene silencing effects indicated the inactivation of both the HDAC1 and the K-Ras gene, thereby causing apoptosis, proliferation inhibition and cell cycle arrest in treated MIA PaCa-2 cells. The synergistic combination of gene silencing and NIR light thermotherapy showed significant anticancer efficacy, inhibiting in vivo tumor volume growth by >80%. Furthermore, GO can be metabolized in the mouse model within a reasonable period of time without obvious side effects. Based on preliminary in vivo application, this study for the first time indicates the promising potential of functionalized GO as a vehicle for gene therapy delivery with low toxicity for the treatment of pancreatic adenocarcinoma. PMID:28435453

  8. Effects of the augmenter of liver regeneration on the biological behavior of hepatocellular carcinoma.

    PubMed

    Tang, Lin; Sun, Hang; Zhang, Lin; Deng, Jian C; Guo, Hui; Zhang, Ling; Liu, Qi

    2009-08-01

    To take advantage of the small interfering ribonucleic acid (siRNA) targeting the human augmenter of liver regeneration (hALR) and anti-hALR monoclonal antibody (McAb) to inhibit the function of hALR, and to demonstrate whether the growth of hepatoma is influenced by siRNA targeting hALR and anti-hALR McAb through inhibiting expression of hALR. This study was conducted in the Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Chongqing Medical University, China, between January 2005 and May 2007. We transfected siRNA plasmid pSIALR-A, which targeted the complementary deoxyribonucleic acid (cDNA) of hALR and the unrelated control plasmid pSIALR-B into human hepatocellular liver carcinoma cell line (HepG2) cells. Then, the proliferation of HepG2 cells, after being treated with pSIALR-A and anti-hALR McAb was detected. The growth of the xenograft tumor was observed after being treated with pSIALR-A and anti-hALR McAb in nude mice. We successfully constructed expressing plasmid pSIALR-A and pSIALR-B. The pSIALR-A inhibited the expression of hALR in HepG2 cells significantly. The siRNA targeting hALR and anti-hALR McAb inhibited obviously the growth of HepG2 cells in vitro. siRNA targeting hALR and anti-hALR McAb significantly inhibited the growth of xenograft tumor in 5 nude mice. Anti-hALR McAb inhibited apparently the autonomous growth of HepG2 cells. Our results demonstrated that anti-hALR McAb inhibited the autonomous growth of hepatoma cells obviously, moreover, hALR maintained the autonomous growth of hepatoma cells in vitro through an autocrine mechanism.

  9. Screening mTOR siRNA based on bioinformatics and detecting the transcription by the gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Tian, Caiping; Ma, Yi; Li, Siwen; Gu, Yueqing

    2014-09-01

    Mammalian target of rapamycin (mTOR) as a key protein in PI3K-AKT-mTOR signaling pathway ,plays an important role in the tumor growth. The small interfering RNA (siRNA) of mTOR would decrease the expression of mTOR protein. In this study, we screened the mTOR siRNA sequence using MATLAB software and ascertained it based on BLAST. Then we imported it with the aid of Lipofectamine2000 into MCF-7 cancer cells where mTOR is over expression .And then we used a special hairpin deoxyribonucleic acid (DNA) for combining with the human mTOR mRNA to functionalize gold nanoparticles, which served as a molecule beacon for detecting human mTOR mRNA transcription. Laser scanning confocal microscope and Flow Cytometry data showed that the quenching efficiency was up to 90%,which are consistent with the RT-PCR measurement and Western. Compared to the previous approaches, this beacon has advantages of higher target to background ratio of detection. The strategy reported in this study is a promising approach for the intracellular measurement of the result of siRNA or protein expression in living cells, and has great potential in the study of drug screening and discovery.

  10. Benzene Metabolite Hydroquinone Up-Regulates Chondromodulin-I and Inhibits Tube Formation in Human Bone Marrow Endothelial Cells

    PubMed Central

    Zhou, Hongfei; Kepa, Jadwiga K.; Siegel, David; Miura, Shigenori; Hiraki, Yuji; Ross, David

    2009-01-01

    Bone marrow is a major target of benzene toxicity, and NAD- (P)H:quinone oxidoreductase (NQO1), an enzyme protective against benzene toxicity, is present in human bone marrow endothelial cells, which form the hematopoietic stem cell vascular niche. In this study, we have employed a transformed human bone marrow endothelial cell (TrHBMEC) line to study the adverse effects induced by the benzene metabolite hydroquinone. Hydroquinone inhibited TrHBMEC tube formation at concentrations that were not overtly toxic, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or sulforhodamine B analysis. Hydroquinone was found to up-regulate chondromodulin-I (ChM-I), a protein that promotes chondrocyte growth and inhibits endothelial cell growth and tube formation. Recombinant human ChM-I protein inhibited tube formation in TrHBMECs, suggesting that up-regulation of ChM-I may explain the ability of hydroquinone to inhibit TrHB-MEC tube formation. To explore this possibility further, anti-ChM-I small interfering RNA (siRNA) was used to deplete ChM-I mRNA and protein. Pretreatment with anti-ChM-I siRNA markedly abrogated hydroquinone-induced inhibition of tube formation in TrHBMECs. Overexpression of the protective enzyme NQO1 in TrHBMECs inhibited the up-regulation of ChM-I and abrogated the inhibition of tube formation induced by hydroquinone. In summary, hydroquinone treatment up-regulated ChM-I and inhibited tube formation in TrHBMECs; NQO1 inhibited hydroquinone-induced up-regulation of ChM-I in TrHB-MECs and protected cells from hydroquinone-induced inhibition of tube formation. This study demonstrates that ChM-I up-regulation is one of the underlying mechanisms of inhibition of tube formation and provides a mechanism that may contribute to benzene-induced toxicity at the level of bone marrow endothelium. PMID:19525446

  11. p62 as a therapeutic target for inhibition of autophagy in prostate cancer.

    PubMed

    Wang, Lei; Kim, Donghern; Wise, James T F; Shi, Xianglin; Zhang, Zhuo; DiPaola, Robert S

    2018-04-01

    To test the hypothesis that p62 is an optimal target for autophagy inhibition and Verteporfin, a clinically available drug approved by FDA to treat macular degeneration that inhibits autophagy by targeting p62 protein, can be developed clinically to improve therapy for advanced prostate cancer. Forced expression of p62 in PC-3 cells and normal prostate epithelial cells, RWPE-1 and PZ-HPV7, were carried out by transfection of these cells with pcDNA3.1/p62 or p62 shRNA plasmid. Autophagosomes and autophagic flux were measured by transfection of tandem fluorescence protein mCherry-GFP-LC3 construct. Apoptosis was measured by Annexin V/PI staining. Tumorigenesis was measured by a xenograft tumor growth model. Verteporfin inhibited cell growth and colony formation in PC-3 cells. Verteporfin generated crosslinked p62 oligomers, resulting in inhibition of autophagy and constitutive activation of Nrf2 as well as its target genes, Bcl-2 and TNF-α. In normal prostate epithelial cells, forced expression of p62 caused constitutive Nrf2 activation, development of apoptosis resistance, and Verteporfin treatment exhibited inhibitory effects. Verteporfin treatment also inhibited starvation-induced autophagic flux of these cells. Verteporfin inhibited tumorigenesis of both normal prostate epithelial cells with p62 expression and prostate cancer cells and decreased p62, constitutive Nrf2, and Bcl-xL in xenograft tumor tissues, indicating that p62 can be developed as a drug target against prostate cancer. p62 has a high potential to be developed as a therapeutic target. Verteporfin represents a prototypical agent with therapeutic potential against prostate cancer through inhibition of autophagy by a novel mechanism of p62 inhibition. © 2018 Wiley Periodicals, Inc.

  12. Abasic pivot substitution harnesses target specificity of RNA interference

    PubMed Central

    Lee, Hye-Sook; Seok, Heeyoung; Lee, Dong Ha; Ham, Juyoung; Lee, Wooje; Youm, Emilia Moonkyung; Yoo, Jin Seon; Lee, Yong-Seung; Jang, Eun-Sook; Chi, Sung Wook

    2015-01-01

    Gene silencing via RNA interference inadvertently represses hundreds of off-target transcripts. Because small interfering RNAs (siRNAs) can function as microRNAs, avoiding miRNA-like off-target repression is a major challenge. Functional miRNA–target interactions are known to pre-require transitional nucleation, base pairs from position 2 to the pivot (position 6). Here, by substituting nucleotide in pivot with abasic spacers, which prevent base pairing and alleviate steric hindrance, we eliminate miRNA-like off-target repression while preserving on-target activity at ∼80–100%. Specifically, miR-124 containing dSpacer pivot substitution (6pi) loses seed-mediated transcriptome-wide target interactions, repression activity and biological function, whereas other conventional modifications are ineffective. Application of 6pi allows PCSK9 siRNA to efficiently lower plasma cholesterol concentration in vivo, and abolish potentially deleterious off-target phenotypes. The smallest spacer, C3, also shows the same improvement in target specificity. Abasic pivot substitution serves as a general means to harness the specificity of siRNA experiments and therapeutic applications. PMID:26679372

  13. Enhanced Gene and siRNA Delivery by Polycation-Modified Mesoporous Silica Nanoparticles Loaded with Chloroquine

    PubMed Central

    Bhattarai, Shanta Raj; Muthuswamy, Elayaraja; Wani, Amit; Brichacek, Michal; Castañeda, Antonio L.; Brock, Stephanie L.

    2014-01-01

    Purpose To prepare mesoporous silica-based delivery systems capable of simultaneous delivery of drugs and nucleic acids. Methods The surface of mesoporous silica nanoparticles (MSN) was modified with poly(ethylene glycol) (PEG) and poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) or poly (2-(diethylamino)ethylmethacrylate) (PDEAEMA). The particles were then loaded with a lysosomotropic agent chloroquine (CQ) and complexed with plasmid DNA or siRNA. The ability of the synthesized particles to deliver combinations of CQ and nucleic acids was evaluated using luciferase plasmid DNA and siRNA targeting luciferase and GAPDH. Results The results show a slow partial MSN dissolution to form hollow silica nanoparticles in aqueous solution. The biological studies show that polycation-modified MSN are able to simultaneously deliver CQ with DNA and siRNA. The co-delivery of CQ and the nucleic acids leads to a significantly increased transfection and silencing activity of the complexes compared with MSN not loaded with CQ. Conclusion PEGylated MSN modified with polycations are promising delivery vectors for combination drug/nucleic acid therapies. PMID:20730557

  14. Thermo-sensitive nanoparticles for triggered release of siRNA.

    PubMed

    Yang, Zheng; Cheng, Qiang; Jiang, Qian; Deng, Liandong; Liang, Zicai; Dong, Anjie

    2015-01-01

    Efficient delivery of small interfering RNA (siRNA) is crucially required for cancer gene therapy. Herein, a thermo-sensitive copolymer with a simple structure, poly (ethylene glycol) methyl ether acrylate-b-poly (N-isopropylacrylamide) (mPEG-b-PNIPAM) was developed. A novel kind of thermo-sensitive nanoparticles (DENPs) was constructed for the cold-shock triggered release of siRNA by double emulsion-solvent evaporation method using mPEG-b-PNIPAM and a cationic lipid, 3β [N-(N', N'-dimethylaminoethane)-carbamoyl] cholesterol [DC-Chol]. DENPs were observed by transmission electron microscopy and dynamical light scattering before and after 'cold shock' treatment. The encapsulation efficiency (EE) of siRNA in DENPs, which was measured by fluorescence spectrophotometer was 96.8% while it was significantly reduced to be 23.2% when DC-Chol was absent. DENPs/siRNA NPs exhibited a thermo-sensitive siRNA release character that the cumulatively released amount of siRNA from cold shock was approximately 2.2 folds higher after 7 days. In vitro luciferase silencing experiments indicated that DENPs showed potent gene silencing efficacy in HeLa-Luc cells (HeLa cells steadily expressed luciferase), which was further enhanced by a cold shock. Furthermore, MTT assay showed that cell viability with DENPs/siRNA up to 200 nM remained above 80%. We also observed that most of siRNA was accumulated in kidney mediated by DENPs instead of liver and spleen in vivo experiments. Thus, DENPs as a cold shock responsive quick release model for siRNA or hydrophilic macromolecules delivery provide a new way to nanocarrier design and clinic therapy.

  15. Folate receptor-targeted nanoparticle delivery of HuR-RNAi suppresses lung cancer cell proliferation and migration.

    PubMed

    Muralidharan, Ranganayaki; Babu, Anish; Amreddy, Narsireddy; Basalingappa, Kanthesh; Mehta, Meghna; Chen, Allshine; Zhao, Yan Daniel; Kompella, Uday B; Munshi, Anupama; Ramesh, Rajagopal

    2016-06-21

    Human antigen R (HuR) is an RNA binding protein that is overexpressed in many human cancers, including lung cancer, and has been shown to regulate the expression of several oncoproteins. Further, HuR overexpression in cancer cells has been associated with poor-prognosis and therapy resistance. Therefore, we hypothesized that targeted inhibition of HuR in cancer cells should suppress several HuR-regulated oncoproteins resulting in an effective anticancer efficacy. To test our hypothesis, in the present study we investigated the efficacy of folate receptor-α (FRA)-targeted DOTAP:Cholesterol lipid nanoparticles carrying HuR siRNA (HuR-FNP) against human lung cancer cells. The therapeutic efficacy of HuR-FNP was tested in FRA overexpressing human H1299 lung cancer cell line and compared to normal lung fibroblast (CCD16) cells that had low to no FRA expression. Physico-chemical characterization studies showed HuR-FNP particle size was 303.3 nm in diameter and had a positive surface charge (+4.3 mV). Gel retardation and serum stability assays showed that the FNPs were efficiently protected siRNA from rapid degradation. FNP uptake was significantly higher in H1299 cells compared to CCD16 cells indicating a receptor-dose effect. The results of competitive inhibition studies in H1299 cells demonstrated that HuR-FNPs were efficiently internalized via FRA-mediated endocytosis. Biologic studies demonstrated HuR-FNP but not C-FNP (control siRNA) induced G1 phase cell-cycle arrest and apoptosis in H1299 cells resulting in significant growth inhibition. Further, HuR-FNP exhibited significantly higher cytotoxicity against H1299 cells than it did against CCD16 cells. The reduction in H1299 cell viability was correlated with a marked decrease in HuR mRNA and protein expression. Further, reduced expression of HuR-regulated oncoproteins (cyclin D1, cyclin E, and Bcl-2) and increased p27 tumor suppressor protein were observed in HuR-FNP-treated H1299 cells but not in C

  16. Downregulation of SS18-SSX1 expression in synovial sarcoma by small interfering RNA enhances the focal adhesion pathway and inhibits anchorage-independent growth in vitro and tumor growth in vivo.

    PubMed

    Takenaka, Satoshi; Naka, Norifumi; Araki, Nobuhito; Hashimoto, Nobuyuki; Ueda, Takafumi; Yoshioka, Kiyoko; Yoshikawa, Hideki; Itoh, Kazuyuki

    2010-04-01

    Synovial sarcoma (SS) is an aggressive soft-tissue malignancy characterized by a unique t(X;18) translocation resulting in expression of SS18-SSX fusion protein. In order to investigate the biological function of this fusion protein and to develop a novel therapeutic option, we examined downregulation of SS18-SSX1 expression by small interfering RNA targeting SS18-SSX1 in three human SS cell lines. Microarray analysis comparing SS18-SSX1-silenced cells with control cells in three SS cell lines showed that SS18-SSX1 mainly affected the focal adhesion pathway. In accord with the array data, silencing of SS18-SSX1 enhances adhesion to the extracellular matrix through the induction of expression of myosin light-chain kinase. Furthermore, the silencing of SS18-SSX1 inhibits anchorage-independent growth in vitro and systemic delivery of siRNA against SS18-SSX1 using a nanoparticle system inhibited tumor growth in a nude mouse xenograft model. Our results demonstrate that siRNA targeting of SS18-SSX1 has therapeutic potential for the treatment of SS.

  17. Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA.

    PubMed

    Thi, Emily P; Mire, Chad E; Ursic-Bedoya, Raul; Geisbert, Joan B; Lee, Amy C H; Agans, Krystle N; Robbins, Marjorie; Deer, Daniel J; Fenton, Karla A; MacLachlan, Ian; Geisbert, Thomas W

    2014-08-20

    Marburg virus (MARV) and the closely related filovirus Ebola virus cause severe and often fatal hemorrhagic fever (HF) in humans and nonhuman primates with mortality rates up to 90%. There are no vaccines or drugs approved for human use, and no postexposure treatment has completely protected nonhuman primates against MARV-Angola, the strain associated with the highest rate of mortality in naturally occurring human outbreaks. Studies performed with other MARV strains assessed candidate treatments at times shortly after virus exposure, before signs of disease are detectable. We assessed the efficacy of lipid nanoparticle (LNP) delivery of anti-MARV nucleoprotein (NP)-targeting small interfering RNA (siRNA) at several time points after virus exposure, including after the onset of detectable disease in a uniformly lethal nonhuman primate model of MARV-Angola HF. Twenty-one rhesus monkeys were challenged with a lethal dose of MARV-Angola. Sixteen of these animals were treated with LNP containing anti-MARV NP siRNA beginning at 30 to 45 min, 1 day, 2 days, or 3 days after virus challenge. All 16 macaques that received LNP-encapsulated anti-MARV NP siRNA survived infection, whereas the untreated or mock-treated control subjects succumbed to disease between days 7 and 9 after infection. These results represent the successful demonstration of therapeutic anti-MARV-Angola efficacy in nonhuman primates and highlight the substantial impact of an LNP-delivered siRNA therapeutic as a countermeasure against this highly lethal human disease. Copyright © 2014, American Association for the Advancement of Science.

  18. NIR-induced spatiotemporally controlled gene silencing by upconversion nanoparticle-based siRNA nanocarrier.

    PubMed

    Chen, Guojun; Ma, Ben; Xie, Ruosen; Wang, Yuyuan; Dou, Kefeng; Gong, Shaoqin

    2017-12-27

    Spatiotemporal control over the release or activation of biomacromolecules such as siRNA remains a significant challenge. Light-controlled release has gained popularity in recent years; however, a major limitation is that most photoactivable compounds/systems respond only to UV irradiation, but not near-infrared (NIR) light that offers a deeper tissue penetration depth and better biocompatibility. This paper reports a simple NIR-to-UV upconversion nanoparticle (UCNP)-based siRNA nanocarrier for NIR-controlled gene silencing. siRNA is complexed onto a NaYF 4 :Yb/Tm/Er UCNP through an azobenzene (Azo)-cyclodextrin (CD) host-guest interaction. The UV emission generated by the NIR-activated UCNP effectively triggers the trans-to-cis photoisomerization of azobenzene, thus leading to the release of siRNA due to unmatched host-guest pairs. The UCNP-siRNA complexes are also functionalized with PEG (i.e., UCNP-(CD/Azo)-siRNA/PEG NPs), targeting ligands (i.e., EGFR-specific GE11 peptide), acid-activatable cell-penetrating peptides (i.e., TH peptide), and imaging probes (i.e., Cy5 fluorophore). The UCNP-(CD/Azo)-siRNA/PEG NPs with both GE11 and TH peptides display a high level of cellular uptake and an excellent endosomal/lysosomal escape capability. More importantly, NIR-controlled spatiotemporal knockdown of GFP expression is successfully achieved in both a 2D monolayer cell model and a 3D multicellular tumor spheroid model. Thus, this simple and versatile nanoplatform has great potential for the selective activation or release of various biomacromolecules. Copyright © 2017. Published by Elsevier B.V.

  19. "Stealth and Fully-Laden" Drug Carriers: Self-Assembled Nanogels Encapsulated with Epigallocatechin Gallate and siRNA for Drug-Resistant Breast Cancer Therapy.

    PubMed

    Ding, Jie; Liang, Tingxizi; Min, Qianhao; Jiang, Liping; Zhu, Jun-Jie

    2018-03-28

    For codelivery of therapeutic genes and chemical agents in combined therapy, the ideal drug delivery system entails high-capacity and low-body toxicity carriers, allowing adequate drug dose for tumor regions while yielding low residues in normal tissues. To augment the gene/drug load capacity and circumvent the potential toxicity brought by traditional inorganic and polymeric nanocarriers, a "stealth" carrier was herein designed in a simple self-assembly of (-)-epigallocatechin-3- O-gallate (EGCG) and small interfering RNA (siRNA) by recruiting protamine as a biodegradable medium for the treatment of drug-resistant triple-negative breast cancer. In the self-assembled nanogel, entrapped siRNA played a central role in sensitizing the tumor response to EGCG-involved chemotherapy, and the positively charged protamine served as the assembly skeleton to fully accommodate gene and drug molecules and minimize the factors causing side effects. As compared to stand-alone chemotherapy with EGCG, the multicomponent nanogel revealed a 15-fold increase in the cytotoxicity to drug-resistant MDA-MB-231 cell line. Moreover, equipped with hyaluronic acid and tumor-homing cell-penetrating peptide as the outmost targeting ligands, the siRNA- and EGCG-loaded nanogel demonstrates superior selectivity and tumor growth inhibition to free EGCG in xenograft MDA-MB-231 tumor-bearing mice. Meanwhile, thanks to the acknowledged biosafety of protamine, little toxicity was found to normal tissues and organs in the animal model. This gene/drug self-assembly caged in a biodegradable carrier opens up an effective and secure route for drug-resistant cancer therapy and provides a versatile approach for codelivery of other genes and drugs for different medical purposes.

  20. Therapeutic Potency of Nanoformulations of siRNAs and shRNAs in Animal Models of Cancers.

    PubMed

    Karim, Md Emranul; Tha, Kyi Kyi; Othman, Iekhsan; Borhan Uddin, Mohammad; Chowdhury, Ezharul Hoque

    2018-05-26

    RNA Interference (RNAi) has brought revolutionary transformations in cancer management in the past two decades. RNAi-based therapeutics including siRNA and shRNA have immense scope to silence the expression of mutant cancer genes specifically in a therapeutic context. Although tremendous progress has been made to establish catalytic RNA as a new class of biologics for cancer management, a lot of extracellular and intracellular barriers still pose a long-lasting challenge on the way to clinical approval. A series of chemically suitable, safe and effective viral and non-viral carriers have emerged to overcome physiological barriers and ensure targeted delivery of RNAi. The newly invented carriers, delivery techniques and gene editing technology made current treatment protocols stronger to fight cancer. This review has provided a platform about the chronicle of siRNA development and challenges of RNAi therapeutics for laboratory to bedside translation focusing on recent advancement in siRNA delivery vehicles with their limitations. Furthermore, an overview of several animal model studies of siRNA- or shRNA-based cancer gene therapy over the past 15 years has been presented, highlighting the roles of genes in multiple cancers, pharmacokinetic parameters and critical evaluation. The review concludes with a future direction for the development of catalytic RNA vehicles and design strategies to make RNAi-based cancer gene therapy more promising to surmount cancer gene delivery challenges.

  1. Transdermal anti-nuclear kappaB siRNA therapy for atopic dermatitis using a combination of two kinds of functional oligopeptide.

    PubMed

    Ibaraki, Hisako; Kanazawa, Takanori; Takashima, Yuuki; Okada, Hiroaki; Seta, Yasuo

    2018-05-05

    Nucleic acid-based targeting of nuclear factor kappaB (NF-κB) is gaining attention as a treatment option for skin diseases like atopic dermatitis (AD). Transdermal administration improves patient quality of life because of non-invasive; however, siRNA delivery into the skin can be challenging owing to the barrier of tight junctions in the granular layer. Therefore, we aimed to develop a delivery system of siRNA for topical skin application using functional peptides. We previously reported that combined treatment with a cytoplasm-responsive stearylated-arginine-rich peptide (STR-CH 2 R 4 H 2 C) and a tight junction opening peptide (AT1002) showed high siRNA permeability in the skin of AD-induced and normal mice. Here, we used murine macrophage RAW264.7 cells to examine siRNA permeation and the therapeutic effect of anti-NF-κB (RelA) siRNA (siRelA) complexed with STR-CH 2 R 4 H 2 C and AT1002 for AD-induced mice. We showed that significantly higher siRNA cellular uptake occurs after this treatment as well as decreased TNF-α and IL-6 expression. Additionally, we showed that effective siRNA transdermal delivery occurs with the suppression of the tight junction protein ZO-1. Moreover, topical skin application of siRelA with STR-CH 2 R 4 H 2 C and AT1002 improved AD-like symptoms in model mice. Thus, the combined treatment of STR-CH 2 R 4 H 2 C and AT1002 could serve as an effective transdermal siRNA therapeutic system for AD. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. University of Texas Southwestern Medical Center: High-Throughput siRNA Screening of a Non-Small Cell Lung Cancer (NSCLC) Cell Line Panel | Office of Cancer Genomics

    Cancer.gov

    The goal of this project is to use siRNA screens to identify NSCLC-selective siRNAs from two genome-wide libraries that will allow us to functionally define genetic dependencies of subtypes of NSCLC. Using bioinformatics tools, the CTD2 center at the University of Texas Southwestern Medical Center are discovering associations between this functional data (siRNAs) and NSCLC mutational status, methylation arrays, gene expression arrays, and copy number variation data that will help us identify new targets and enrollment biomarkers. 

  3. Inhibition of Neddylation Represses Lipopolysaccharide-induced Proinflammatory Cytokine Production in Macrophage Cells

    PubMed Central

    Chang, Fang-Mei; Reyna, Sara M.; Granados, Jose C.; Wei, Sung-Jen; Innis-Whitehouse, Wendy; Maffi, Shivani K.; Rodriguez, Edward; Slaga, Thomas J.; Short, John D.

    2012-01-01

    Cullin-RING E3 ligases (CRLs) are a class of ubiquitin ligases that control the proteasomal degradation of numerous target proteins, including IκB, and the activity of these CRLs are positively regulated by conjugation of a Nedd8 polypeptide onto Cullin proteins in a process called neddylation. CRL-mediated degradation of IκB, which normally interacts with and retains NF-κB in the cytoplasm, permits nuclear translocation and transactivation of the NF-κB transcription factor. Neddylation occurs through a multistep enzymatic process involving Nedd8 activating enzymes, and recent studies have shown that the pharmacological agent, MLN4924, can potently inhibit Nedd8 activating enzymes, thereby preventing neddylation of Cullin proteins and preventing the degradation of CRL target proteins. In macrophages, regulation of NF-κB signaling functions as a primary pathway by which infectious agents such as lipopolysaccharides (LPSs) cause the up-regulation of proinflammatory cytokines. Here we have analyzed the effects of MLN4924, and compared the effects of MLN4924 with a known anti-inflammatory agent (dexamethasone), on certain proinflammatory cytokines (TNF-α and IL-6) and the NF-κB signaling pathway in LPS-stimulated macrophages. We also used siRNA to block neddylation to assess the role of this molecular process during LPS-induced cytokine responsiveness. Our results demonstrate that blocking neddylation, either pharmacologically or using siRNA, abrogates the increase in certain proinflammatory cytokines secreted from macrophages in response to LPS. In addition, we have shown that MLN4924 and dexamethasone inhibit LPS-induced cytokine up-regulation at the transcriptional level, albeit through different molecular mechanisms. Thus, neddylation represents a novel molecular process in macrophages that can be targeted to prevent and/or treat the LPS-induced up-regulation of proinflammatory cytokines and the disease processes associated with their up-regulation. PMID

  4. Dual-Functionalized Graphene Oxide Based siRNA Delivery System for Implant Surface Biomodification with Enhanced Osteogenesis.

    PubMed

    Zhang, Li; Zhou, Qing; Song, Wen; Wu, Kaimin; Zhang, Yumei; Zhao, Yimin

    2017-10-11

    Surface functionalization by small interfering RNA (siRNA) is a novel strategy for improved implant osseointegration. A gene delivery system with safety and high transfection activity is a crucial factor for an siRNA-functionalized implant to exert its biological function. To this end, polyethylene glycol (PEG) and polyethylenimine (PEI) dual-functionalized graphene oxide (GO; nGO-PEG-PEI) may present a promising siRNA vector. In this study, nanosized nGO-PEG-PEI was prepared and optimized for siRNA delivery. Titania nanotubes (NTs) fabricated by anodic oxidation were biomodified with nGO-PEG-PEI/siRNA by cathodic electrodeposition, designated as NT-GPP/siRNA. NT-GPP/siRNA possessed benign cytocompatibility, as evaluated by cell adhesion and proliferation. Cellular uptake and knockdown efficiency of the NT-GPP/siRNA were assessed by MC3T3-E1 cells, which exhibited high siRNA delivery efficiency and sustained target gene silencing. Casein kinase-2 interacting protein-1 (Ckip-1) is a negative regulator of bone formation. siRNA-targeting Ckip-1 (siCkip-1) was introduced to the implant, and a series of in vitro and in vivo experiments were carried out to evaluate the osteogenic capacity of NT-GPP/siCkip-1. NT-GPP/siCkip-1 dramatically improved the in vitro osteogenic differentiation of MC3T3-E1 cells in terms of improved osteogenesis-related gene expression, and increased alkaline phosphatase (ALP) production, collagen secretion, and extracellular matrix (ECM) mineralization. Moreover, NT-GPP/siCkip-1 led to apparently enhanced in vivo osseointegration, as indicated by histological staining and EDX line scanning. Collectively, these findings suggest that NT-GPP/siRNA represents a practicable and promising approach for implant functionalization, showing clinical potential for dental and orthopedic applications.

  5. A modular platform for targeted RNAi therapeutics

    NASA Astrophysics Data System (ADS)

    Kedmi, Ranit; Veiga, Nuphar; Ramishetti, Srinivas; Goldsmith, Meir; Rosenblum, Daniel; Dammes, Niels; Hazan-Halevy, Inbal; Nahary, Limor; Leviatan-Ben-Arye, Shani; Harlev, Michael; Behlke, Mark; Benhar, Itai; Lieberman, Judy; Peer, Dan

    2018-01-01

    Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting4-8, their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.

  6. A modular platform for targeted RNAi therapeutics.

    PubMed

    Kedmi, Ranit; Veiga, Nuphar; Ramishetti, Srinivas; Goldsmith, Meir; Rosenblum, Daniel; Dammes, Niels; Hazan-Halevy, Inbal; Nahary, Limor; Leviatan-Ben-Arye, Shani; Harlev, Michael; Behlke, Mark; Benhar, Itai; Lieberman, Judy; Peer, Dan

    2018-03-01

    Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs 1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting 4-8 , their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.

  7. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues.

    PubMed

    Thomas, Mini; Kularatne, Sumith A; Qi, Longwu; Kleindl, Paul; Leamon, Christopher P; Hansen, Michael J; Low, Philip S

    2009-09-01

    Potential clinical applications of small interfering RNA (siRNA) are hampered primarily by delivery issues. We have successfully addressed the delivery problems associated with off-site targeting of highly toxic chemotherapeutic agents by attaching the drugs to tumor-specific ligands that will carry the attached cargo into the desired cancer cell. Indeed, several such tumor-targeted drugs are currently undergoing human clinical trials. We now show that efficient targeting of siRNA to malignant cells and tissues can be achieved by covalent conjugation of small-molecular-weight, high-affinity ligands, such as folic acid and DUPA (2-[3-(1, 3-dicarboxy propyl)-ureido] pentanedioic acid), to siRNA. The former ligand binds a folate receptor that is overexpressed on a variety of cancers, whereas the latter ligand binds to prostate-specific membrane antigen that is overexpressed specifically on prostate cancers and the neovasculature of all solid tumors. Using these ligands, we show remarkable receptor-mediated targeting of siRNA to cancer tissues in vitro and in vivo.

  8. Highly efficient delivery of siRNA to a heart transplant model by a novel cell penetrating peptide-dsRNA binding domain.

    PubMed

    Li, Hua; Zheng, Xiangtao; Koren, Viktoria; Vashist, Yogesh Kumar; Tsui, Tung Yu

    2014-07-20

    Small interfering RNAs (siRNAs) delivery remains a bottleneck for RNA interference (RNAi) - based therapies in the clinic. In the present study, a fusion protein with two cell-penetrating peptides (CPP), Hph1-Hph1, and a double-stranded RNA binding domain (dsRBD), was constructed for the siRNA delivery: dsRBD was designed to bind siRNA, and CPP would subsequently transport the dsRBD/siRNA complex into cells. We assessed the efficiency of the fusion protein, Hph1-Hph1-dsRBD, as a siRNA carrier. Calcium-condensed effects were assessed on GAPDH and green fluorescent protein (GFP) genes by western blot, real time polymerase chain reaction (RT-PCR), and flow cytometry analysis in vitro. Evaluations were also made in an in vivo heart transplantation model. The results demonstrated that the fusion protein, Hph1-Hph1-dsRBD, is highly efficient at delivering siRNA in vitro, and exhibits efficiency on GAPDH and GFP genes similar to or greater than lipofectamine. Interestingly, the calcium-condensed effects dramatically enhanced cellular uptake of the protein-siRNA complex. In vivo, Hph1-Hph1-dsRBD transferred and distributed ^ targeted siRNA throughout the whole mouse heart graft. Together, these results indicate that Hph1-Hph1-dsRBD has potential as an siRNA carrier for applications in the clinic or in biomedical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Resveratrol Directly Targets COX-2 to Inhibit Carcinogenesis

    PubMed Central

    Zykova, Tatyana A.; Zhu, Feng; Zhai, Xiuhong; Ma, Wei-ya; Ermakova, Svetlana P.; Lee, Ki Won; Bode, Ann M.; Dong, Zigang

    2008-01-01

    Targeted molecular cancer therapies can potentially deliver treatment directly to a specific protein or gene to optimize efficacy and reduce adverse side effects often associated with traditional chemotherapy. Key oncoprotein and oncogene targets are rapidly being identified based on their expression, pathogenesis and clinical outcome. One such protein target is cyclooxygenase-2 (COX-2), which is highly expressed in various cancers. Research findings suggest that resveratrol (3,5,4'-trihydroxy-trans-stilbene) demonstrates non-selective COX-2 inhibition. We report herein that resveratrol (RSVL) directly binds with COX-2 and this binding is absolutely required for RSVL's inhibition of the ability of human colon adenocarcinoma HT-29 cells to form colonies in soft agar. Binding of COX-2 with RSVL was compared with two RSVL analogues, 3,3’,4’,5’5’-pentahydroxy-trans-stilbene (RSVL-2) or 3,4’,5-trimethoxy-trans-stilbene (RSVL-3). The results indicated that COX-2 binds with RSVL-2 more strongly than with RSVL, but does not bind with RSVL-3. RSVL or RSVL-2, but not RSVL-3, inhibited COX-2-mediated PGE2 production in vitro and ex vivo. HT-29 human colon adenocarcinoma cells express high levels of COX-2 and either RSVL or RSVL-2, but not RSVL-3, suppressed anchorage independent growth of these cells in soft agar. RSVL or RSVL-2 (not RSVL-3) suppressed growth of COX-2+/+ cells by 60 or 80%, respectively. Notably, cells deficient in COX-2 were unresponsive to RSVL or RSVL-2. These data suggest that the anticancer effects of RSVL or RSLV-2 might be mediated directly through COX-2. PMID:18381589

  10. Solid nano-in-nanoparticles for potential delivery of siRNA.

    PubMed

    Amsalem, Orit; Nassar, Taher; Benhamron, Sandrine; Lazarovici, Philip; Benita, Simon; Yavin, Eylon

    2017-07-10

    siRNA-based therapeutics possess great potential to treat a wide variety of genetic disorders. However, they suffer from low cellular uptake and short half-lives in blood circulation; issues that remain to be addressed. This work is, to the best of our knowledge, the first to report the production of solid nano-in-nanoparticles, termed double nano carriers (DNCs) by means of the innovative technology of nano spray drying. DNCs (with a median size of 580-770nm) were produced by spraying at low temperatures (50°C) to prevent damage to heat-sensitive biomacromolecules like siRNA. DNCs consisting of Poly (d,l-lactide-co-glycolide) used as a wall material, encapsulating 20% human serum albumin primary nanoparticles (PNPs) loaded with siRNA, were obtained as a dry nanoparticulate powder with smooth spherical surfaces and a unique inner morphology. Incubation of pegylated or non-pegylated DNCs under sink conditions at 37°C, elicited a controlled release profile of the siRNA for up to 12 or 24h, respectively, with a minimal burst effect. Prolonged incubation of pegylated DNCs loaded with active siRNA (anti EGFR) in an A549 epithelial cell culture monolayer did not induce any apparent cytotoxicity. A slow degradation of the internalized DNCs by the cells was also observed resulting in the progressive release of the siRNA for up to 6days, as corroborated by laser confocal microscopy. The structural integrity and silencing activity of the double encapsulated siRNA were fully preserved, as demonstrated by HPLC, gel electrophoresis, and potent RNAi activity of siRNA extracted from DNCs. These results demonstrate the potential use of DNCs as a nano drug delivery system for systemic administration and controlled release of siRNA and potentially other sensitive bioactive macromolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Targeting MYCN-Driven Transcription By BET-Bromodomain Inhibition.

    PubMed

    Henssen, Anton; Althoff, Kristina; Odersky, Andrea; Beckers, Anneleen; Koche, Richard; Speleman, Frank; Schäfers, Simon; Bell, Emma; Nortmeyer, Maike; Westermann, Frank; De Preter, Katleen; Florin, Alexandra; Heukamp, Lukas; Spruessel, Annika; Astrahanseff, Kathy; Lindner, Sven; Sadowski, Natalie; Schramm, Alexander; Astorgues-Xerri, Lucile; Riveiro, Maria E; Eggert, Angelika; Cvitkovic, Esteban; Schulte, Johannes H

    2016-05-15

    Targeting BET proteins was previously shown to have specific antitumoral efficacy against MYCN-amplified neuroblastoma. We here assess the therapeutic efficacy of the BET inhibitor, OTX015, in preclinical neuroblastoma models and extend the knowledge on the role of BRD4 in MYCN-driven neuroblastoma. The efficacy of OTX015 was assessed in in vitro and in vivo models of human and murine MYCN-driven neuroblastoma. To study the effects of BET inhibition in the context of high MYCN levels, MYCN was ectopically expressed in human and murine cells. The effect of OTX015 on BRD4-regulated transcriptional pause release was analyzed using BRD4 and H3K27Ac chromatin immunoprecipitation coupled with DNA sequencing (ChIP-Seq) and gene expression analysis in neuroblastoma cells treated with OTX015 compared with vehicle control. OTX015 showed therapeutic efficacy against preclinical MYCN-driven neuroblastoma models. Similar to previously described BET inhibitors, concurrent MYCN repression was observed in OTX015-treated samples. Ectopic MYCN expression, however, did not abrogate effects of OTX015, indicating that MYCN repression is not the only target of BET proteins in neuroblastoma. When MYCN was ectopically expressed, BET inhibition still disrupted MYCN target gene transcription without affecting MYCN expression. We found that BRD4 binds to super-enhancers and MYCN target genes, and that OTX015 specifically disrupts BRD4 binding and transcription of these genes. We show that OTX015 is effective against mouse and human MYCN-driven tumor models and that BRD4 not only targets MYCN, but specifically occupies MYCN target gene enhancers as well as other genes associated with super-enhancers. Clin Cancer Res; 22(10); 2470-81. ©2015 AACR. ©2015 American Association for Cancer Research.

  12. University of Texas Southwestern Medical Center (UTSW): High-Throughput siRNA Screening of a Non-Small Cell Lung Cancer (NSCLC) Cell Line Panel | Office of Cancer Genomics

    Cancer.gov

    The goal of this project is to use siRNA screens to identify NSCLC-selective siRNAs from two genome-wide libraries that will allow us to functionally define genetic dependencies of subtypes of NSCLC. Using bioinformatics tools, the CTD2 center at the University of Texas Southwestern Medical Center are discovering associations between this functional data (siRNAs) and NSCLC mutational status, methylation arrays, gene expression arrays, and copy number variation data that will help us identify new targets and enrollment biomarkers. 

  13. HDAC6 inhibition suppresses chondrosarcoma by restoring the expression of primary cilia.

    PubMed

    Xiang, Wei; Guo, Fengjing; Cheng, Weiting; Zhang, Jiaming; Huang, Junming; Wang, Rui; Ma, Zhongxi; Xu, Kai

    2017-07-01

    Chondrosarcoma is a bone tumor characterized by the secretion of a cartilage-like extracellular matrix. It has been proved to lack extracellular sensor primary cilia. This study aimed to illustrate a feasible therapeutic method for chondrosarcoma by regulating primary cilia assembly through inhibiting histone deacetylases 6 (HDAC6) activation. In order to detect the interaction between primary cilia and HDAC6 in human chondrosarcoma, Tubastatin A and small interfering RNA (siRNA) were used to inhibit the endogenous expression of HDAC6. Cell viability test and Transwell assay were applied to evaluate the effects of malignant biological properties. Primary cilia staining and related proteins were detected. The abnormal expression of HDAC6 and cilia intraflagellar transport protein 88 (IFT88) was found in chondrosarcoma tissues. The inhibition of HDAC6 could downregulate the proliferation of chondrosarcoma cells in a concentration- and time-dependent manner and suppress the invasion capacity of tumor cells. Besides, the downregulation of HDAC6 exhibited a negative effect on the proliferation of relevant proteins but a positive effect on the primary cilia-related expression of IFT88 and acetylated α-tubulin. Primary cilia restoration could be observed after HDAC6 siRNA transfection. The Aurora A-HDAC6 cascade was involved in regulating primary cilia resorption by affecting α-tubulin deacetylation and Tubastatin A could inhibit chondrosarcoma cell growth in vivo. These results indicate that restricting HDAC6 can restore primary cilia assembly accompanied with suppressed chondrosarcoma cell proliferation and invasion capacities. Thus, promoting primary cilia restoration by targeting HDAC6 may be a feasible potential therapeutic method for chondro-sarcoma treatment.

  14. MicroRNA-1247 inhibits cell proliferation by directly targeting ZNF346 in childhood neuroblastoma.

    PubMed

    Wu, Tingting; Lin, Yun; Xie, Zhongguo

    2018-05-24

    Neuroblastoma (NB) represents the most common extracranial solid tumor in children. Accumulating evidence shows that microRNAs (miRs) play an important role in the carcinogenesis of NB. Here, we investigated the biological function of miR-1247 in NB in vitro. We found miR-1247 was downregulated in NB tissues and cells using quantitative PCR analysis. Gain- and loss-of-function studies demonstrated that miR-1247 significantly suppressed cell proliferation and induced cell cycle G0/G1 phase arrest and cell apoptosis of NB cells in vitro by using MTT, colony formation assay and Flow cytometry analysis. Luciferase assay suggested ZNF346 was the target of miR-1247 and its expression could be downregulated by miR-1247 overexpression using Western blotting. Furthermore, downregulation of ZNF346 by siRNA performed similar effects with overexpression of miR-1247 in NB cells. Our findings suggested miR-1247 directly targeted to repress ZNF346 expression, thus suppressing the progression of NB, which might be a novel therapeutic target against NB.

  15. 5'-Triphosphate siRNA targeting MDR1 reverses multi-drug resistance and activates RIG-I-induced immune-stimulatory and apoptotic effects against human myeloid leukaemia cells.

    PubMed

    Li, Dengzhe; Gale, Robert Peter; Liu, Yanfeng; Lei, Baoxia; Wang, Yuan; Diao, Dongmei; Zhang, Mei

    2017-07-01

    Multi-drug resistance (MDR), immune suppression and decreased apoptosis are important causes of therapy-failure in leukaemia. Short interfering RNAs (siRNAs) down-regulate gene transcription, have sequence-independent immune-stimulatory effects and synergize with other anti-cancer therapies in some experimental models. We designed a siRNA targeting MDR1 with 5'-triphosphate ends (3p-siRNA-MDR1). Treatment of leukaemia cells with 3p-siRNA-MDR1 down-regulated MDR1 expression, reduced-drug resistance and induced immune and pro-apoptotic effects in drug-resistant HL-60/Adr and K562/Adr human leukaemia cell lines. We show mechanisms-of-action of these effects involve alterations in the anti-viral cytosolic retinoic acid-inducible protein-I (RIG-I; encoded by RIG-I or DDX58) mediated type-I interferon signal induction, interferon-gamma-inducible protein 10 (IP-10; encoded by IP10 or CXCL10) secretion, major histocompatibility complex-I expression (MHC-I) and caspase-mediated cell apoptosis. 3p-siRNA-MDR1 transfection also enhanced the anti-leukaemia efficacy of doxorubicin. These data suggest a possible synergistic role for 3p-siRNA-MDR1 in anti-leukaemia therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sequence-based design of bioactive small molecules that target precursor microRNAs.

    PubMed

    Velagapudi, Sai Pradeep; Gallo, Steven M; Disney, Matthew D

    2014-04-01

    Oligonucleotides are designed to target RNA using base pairing rules, but they can be hampered by poor cellular delivery and nonspecific stimulation of the immune system. Small molecules are preferred as lead drugs or probes but cannot be designed from sequence. Herein, we describe an approach termed Inforna that designs lead small molecules for RNA from solely sequence. Inforna was applied to all human microRNA hairpin precursors, and it identified bioactive small molecules that inhibit biogenesis by binding nuclease-processing sites (44% hit rate). Among 27 lead interactions, the most avid interaction is between a benzimidazole (1) and precursor microRNA-96. Compound 1 selectively inhibits biogenesis of microRNA-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells. Apoptosis is ablated when FOXO1 mRNA expression is knocked down by an siRNA, validating compound selectivity. Markedly, microRNA profiling shows that 1 only affects microRNA-96 biogenesis and is at least as selective as an oligonucleotide.

  17. Sequence-based design of bioactive small molecules that target precursor microRNAs

    PubMed Central

    Velagapudi, Sai Pradeep; Gallo, Steven M.; Disney, Matthew D.

    2014-01-01

    Oligonucleotides are designed to target RNA using base pairing rules, however, they are hampered by poor cellular delivery and non-specific stimulation of the immune system. Small molecules are preferred as lead drugs or probes, but cannot be designed from sequence. Herein, we describe an approach termed Inforna that designs lead small molecules for RNA from solely sequence. Inforna was applied to all human microRNA precursors and identified bioactive small molecules that inhibit biogenesis by binding to nuclease processing sites (41% hit rate). Amongst 29 lead interactions, the most avid interaction is between a benzimidazole (1) and precursor microRNA-96. Compound 1 selectively inhibits biogenesis of microRNA-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells. Apoptosis is ablated when FOXO1 mRNA expression is knocked down by an siRNA, validating compound selectivity. Importantly, microRNA profiling shows that 1 only significantly effects microRNA-96 biogenesis and is more selective than an oligonucleotide. PMID:24509821

  18. Heightened Conflict in Cue-Target Translation Increases Backward Inhibition in Set Switching

    ERIC Educational Resources Information Center

    Grange, James A.; Houghton, George

    2010-01-01

    Backward inhibition (BI) is a performance cost that occurs when an individual returns to a task after 1 (vs. more than 1) intervening trial, and it may reflect the inhibition of task-set components during switching. In 3 experiments, we support the theory that inhibition can target cue-based preparatory stages of a task. Participants performed a…

  19. Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus

    PubMed Central

    Lipovsky, Alex; Popa, Andreea; Pimienta, Genaro; Wyler, Michael; Bhan, Ashima; Kuruvilla, Leena; Guie, Marie-Aude; Poffenberger, Adrian C.; Nelson, Christian D. S.; Atwood, Walter J.; DiMaio, Daniel

    2013-01-01

    Despite major advances in our understanding of many aspects of human papillomavirus (HPV) biology, HPV entry is poorly understood. To identify cellular genes required for HPV entry, we conducted a genome-wide screen for siRNAs that inhibited infection of HeLa cells by HPV16 pseudovirus. Many retrograde transport factors were required for efficient infection, including multiple subunits of the retromer, which initiates retrograde transport from the endosome to the trans-Golgi network (TGN). The retromer has not been previously implicated in virus entry. Furthermore, HPV16 capsid proteins arrive in the TGN/Golgi in a retromer-dependent fashion during entry, and incoming HPV proteins form a stable complex with retromer subunits. We propose that HPV16 directly engages the retromer at the early or late endosome and traffics to the TGN/Golgi via the retrograde pathway during cell entry. These results provide important insights into HPV entry, identify numerous potential antiviral targets, and suggest that the role of the retromer in infection by other viruses should be assessed. PMID:23569269

  20. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Abirami; Reddy, B. Uma; Raghav, Nallani; Ravi, Vijay Kumar; Kumar, Anuj; Maiti, Prabal K.; Sood, A. K.; Jayaraman, N.; Das, Saumitra

    2015-10-01

    A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated

  1. Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug.

    PubMed

    Shim, Gayong; Han, Su-Eun; Yu, Yong-Hee; Lee, Sangbin; Lee, Han Young; Kim, Kwangmeyung; Kwon, Ick Chan; Park, Tae Gwan; Kim, Young Bong; Choi, Yong Seok; Kim, Chan-Wha; Oh, Yu-Kyoung

    2011-10-10

    Oligolysine-based cationic lipid derivatives were synthesized for delivery of siRNA, and formulated into cationic liposomes. Among various oligolysine-based lipid derivatives differing in lysine residue number and lipid moiety, trilysinoyl oleylamide (TLO)-based liposomes (TLOL) showed the highest delivery efficiency combined with minimal cytotoxicity. Delivery of siRNA using TLOL silenced target genes both in vitro and in vivo. In green fluorescent protein (GFP)-expressing tumor tissue, a significant reduction of fluorescence was observed after intratumoral administration of siGFP using TLOL compared with control siGL2. Intravenous administration of siMcl1 employing pegylated TLOL (pTLOL) reduced the expression of human Mcl1 protein in KB-xenografted tumor tissue. Despite the reduction in target protein Mcl1 expression following such systemic delivery, tumor growth was only slightly reduced compared to a siGL2-treated control group. To potentiate the anticancer activity of siMcl1, the anticancer drug suberoylanilide hydroxamic acid (SAHA) was additionally encapsulated in pTLOL. After intravenous administration of siMcl1 using SAHA-loaded pTLOL (pSTLOL), a significant reduction in tumor growth was observed compared to that seen in animals treated with free SAHA or siGL2 complexed with pSTLOL. The results indicate that pTLOL could be further developed as a systemic delivery system for synergistic anticancer siRNA and a drug. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice

    PubMed Central

    Wei, Liya; Gu, Lianfeng; Song, Xianwei; Cui, Xiekui; Lu, Zhike; Zhou, Ming; Wang, Lulu; Hu, Fengyi; Zhai, Jixian; Meyers, Blake C.; Cao, Xiaofeng

    2014-01-01

    Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs. PMID:24554078

  3. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.

    PubMed

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti- Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa . Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu , primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  4. Preclinical Mammalian Safety Studies of EPHARNA (DOPC Nanoliposomal EphA2-Targeted siRNA).

    PubMed

    Wagner, Michael J; Mitra, Rahul; McArthur, Mark J; Baze, Wallace; Barnhart, Kirstin; Wu, Sherry Y; Rodriguez-Aguayo, Cristian; Zhang, Xinna; Coleman, Robert L; Lopez-Berestein, Gabriel; Sood, Anil K

    2017-06-01

    To address the need for efficient and biocompatible delivery systems for systemic siRNA delivery, we developed 1,2-Dioleoyl-sn-Glycero-3-Phosphatidylcholine (DOPC) nanoliposomal EphA2-targeted therapeutic (EPHARNA). Here, we performed safety studies of EPHARNA in murine and primate models. Single dosing of EPHARNA was tested at 5 concentrations in mice ( N = 15 per group) and groups were sacrificed on days 1, 14, and 28 for evaluation of clinical pathology and organ toxicity. Multiple dosing of EPHARNA was tested in mice and Rhesus macaques twice weekly at two dose levels in each model. Possible effects on hematologic parameters, serum chemistry, coagulation, and organ toxicity were assessed. Following single-dose EPHARNA administration to mice, no gross pathologic or dose-related microscopic findings were observed in either the acute (24 hours) or recovery (14 and 28 days) phases. The no-observed-adverse-effect level (NOAEL) for EPHARNA is considered >225 μg/kg when administered as a single injection intravenously in CD-1 mice. With twice weekly injection, EPHARNA appeared to stimulate a mild to moderate inflammatory response in a dose-related fashion. There appeared to be a mild hemolytic reaction in the female mice. In Rhesus macaques, minimal to moderate infiltration of mononuclear cells was found in some organs including the gastrointestinal tract, heart, and kidney. No differences attributed to EPHARNA were observed. These results demonstrate that EPHARNA is well tolerated at all doses tested. These data, combined with previously published in vivo validation studies, have led to an ongoing first-in-human phase I clinical trial (NCT01591356). Mol Cancer Ther; 16(6); 1114-23. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Co-delivery of siRNA and hypericin into cancer cells by hyaluronic acid modified PLGA-PEI nanoparticles.

    PubMed

    Li, Yanan; Zhang, Junling; Wang, Buhai; Shen, Yan; Ouahab, Ammar

    2016-01-01

    Malignant tumors cause more death because of the resistance of the hypoxic cancer cell toward radiotherapy. Targeting for hypoxic cancer area and gene silencing to overcome the hypoxia are two kinds of important therapeutic strategies for treating tumors. In order to explore the combined effects of gene therapy and hypericin (Hy) on tumor cells, hypoxia-inducible factor 1 alpha (HIF-1α) small interfering ribonucleic acid (siRNA) was transfected into the hypoxic human nasopharyngeal carcinoma (CNE2) cells using Hy-encapsulated nanocomplexes (Hy-HPP NPs) as a carrier which would achieve dual targeting to the tumor necrosis area. NPs were prepared by emulsion-diffusion-evaporation method. Formulations were evaluated by conducting in vitro physicochemical studies, electrophoresis, in vivo study, and biochemical studies. Hy-loaded nanoparticles with a mean size of around 160 nm was able to enhance the accumulation in the tumors by enhanced permeability and retention effect. The electrophoresis confirmed the good stability of siRNA/Hy-HPP NPs in the presence of phosphate-buffered saline (pH 7.4), competitive heparin, and RNase. The results of transfection showed that the uptake of siRNA was significantly increased up to 50% in CNE2 cells. The level of the HIF-1α with Hy-encapsulated nanocomplexes was significantly reduced to 30% in the transfected CNE2 cells. In vivo studies, the carrier exhibited higher intensity at the tumor tissue cells and higher affinity toward the necrotic tumor tissue. Results demonstrated that Hy-HPP NPs could significantly enhance the tranfection efficiency of siRNA, suggesting Hy-encapsulated nanoparticle as an efficient gene carrier. The co-delivery of HIF-1α siRNA (siHIF-1α) and Hy could efficiently decrease the level of HIF-1α and increase the affinity toward necrotic tissues. Hence, this is a promising strategy for further application in radiotherapy.

  6. N-Alkyl-PEI Functional Iron Oxide Nanocluster for Efficient siRNA Delivery**

    PubMed Central

    Liu, Gang; Xie, Jin; Zhang, Fan; Wang, Zhi-Yong; Luo, Kui; Zhu, Lei; Quan, Qi-Meng; Niu, Gang; Lee, Seulki

    2013-01-01

    Small interfering RNA (siRNA) is an emerging class of therapeutics, working by regulating the expression of a specific gene involved in disease progression. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. In this study, a non-viral nanoparticle gene carrier has been developed and its efficiency for siRNA delivery and transfection has been validated at both in vitro and in vivo levels. Such a nanocarrier, abbreviated as Alkyl-PEI2k-IO, was constructed with a core of iron oxide (IO) and a shell of alkylated PEI2000 (Alkyl-PEI2k). It was found to be able to bind with siRNA, resulting in well-dispersed nanoparticles with a controlled clustering structure and narrow size distribution. Electrophoresis studies showed that the Alkyl-PEI2k-IOs could retard siRNA completely at N/P ratios above 10, protect siRNA from enzymatic degradation in serum and release complexed siRNA efficiently in the presence of polyanionic heparin. The knockdown efficiency of the siRNA loaded nanocarriers was assessed with 4T1 cells stably expressing luciferase (fluc-4T1) and further, with a fluc-4T1 xenograft model. Significant downregulation of luciferase was observed, and unlike the high molecular weight analogs, the Alkyl-PEI2k coated IOs showed a good biocompatibility. In conclusion, Alkyl-PEI2k-IOs demonstrate highly efficient delivery of siRNA and an innocuous toxic profile, making it a potential carrier for gene therapy. PMID:21861295

  7. Inhibition of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Yang, Yong, E-mail: yyang@houstonmethodist.org

    2014-11-21

    Highlights: • Suppression of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin. • Repression of PKM2 affects the glycolysis and decreases ATP production. • Downregulation of PKM2 increases the intracellular accumulation of doxorubicin. • Inhibition of PKM2 enhances the antitumor efficacy of doxorubicin in vivo. - Abstract: Cancer cells alter regular metabolic pathways in order to sustain rapid proliferation. One example of metabolic remodeling in cancerous tissue is the upregulation of pyruvate kinase isoenzyme M2 (PKM2), which is involved in aerobic glycolysis. Indeed, PKM2 has previously been identified as a tumor biomarker and as a potential target for cancer therapy.more » Here, we examined the effects of combined treatment with doxorubicin and anti-PKM2 small interfering RNA (siRNA) on triple-negative breast cancer (TNBC). The suppression of PKM2 resulted in changes in glucose metabolism, leading to decreased synthesis of adenosine triphosphate (ATP). Reduced levels of ATP resulted in the intracellular accumulation of doxorubicin, consequently enhancing the therapeutic efficacy of this drug in several triple-negative breast cancer cell lines. Furthermore, the combined effect of PKM2 siRNA and doxorubicin was evaluated in an in vivo MDA-MB-231 orthotopic breast cancer model. The siRNA was systemically administered through a polyethylenimine (PEI)-based delivery system that has been extensively used. We demonstrate that the combination treatment showed superior anticancer efficacy as compared to doxorubicin alone. These findings suggest that targeting PKM2 can increase the efficacy of chemotherapy, potentially providing a new approach for improving the outcome of chemotherapy in patients with TNBC.« less

  8. Diversity of vestibular nuclei neurons targeted by cerebellar nodulus inhibition

    PubMed Central

    Meng, Hui; Blázquez, Pablo M; Dickman, J David; Angelaki, Dora E

    2014-01-01

    Abstract A functional role of the cerebellar nodulus and ventral uvula (lobules X and IXc,d of the vermis) for vestibular processing has been strongly suggested by direct reciprocal connections with the vestibular nuclei, as well as direct vestibular afferent inputs as mossy fibres. Here we have explored the types of neurons in the macaque vestibular nuclei targeted by nodulus/ventral uvula inhibition using orthodromic identification from the caudal vermis. We found that all nodulus-target neurons are tuned to vestibular stimuli, and most are insensitive to eye movements. Such non-eye-movement neurons are thought to project to vestibulo-spinal and/or thalamo-cortical pathways. Less than 20% of nodulus-target neurons were sensitive to eye movements, suggesting that the caudal vermis can also directly influence vestibulo-ocular pathways. In general, response properties of nodulus-target neurons were diverse, spanning the whole continuum previously described in the vestibular nuclei. Most nodulus-target cells responded to both rotation and translation stimuli and only a few were selectively tuned to translation motion only. Other neurons were sensitive to net linear acceleration, similar to otolith afferents. These results demonstrate that, unlike the flocculus and ventral paraflocculus which target a particular cell group, nodulus/ventral uvula inhibition targets a large diversity of cell types in the vestibular nuclei, consistent with a broad functional significance contributing to vestibulo-ocular, vestibulo-thalamic and vestibulo-spinal pathways. PMID:24127616

  9. Mechanisms of Nanoparticle Mediated siRNA Transfection by Melittin-Derived Peptides

    PubMed Central

    Hou, Kirk K.; Pan, Hua; Ratner, Lee; Schlesinger, Paul H.; Wickline, Samuel A.

    2014-01-01

    Traditional peptide-mediated siRNA transfection via peptide transduction domains exhibits limited cytoplasmic delivery of siRNA due to endosomal entrapment. This work overcomes these limitations with the use of membrane-destabilizing peptides derived from melittin for the knockdown of NFkB signaling in a model of adult T-Cell leukemia/lymphoma. While the mechanism of siRNA delivery into the cytoplasmic compartment by peptide transduction domains has not been well studied, our analysis of melittin derivatives indicates that concurrent nanocomplex disassembly and peptide-mediated endosomolysis are crucial to siRNA transfection. Importantly, in the case of the most active derivative, p5RHH, this process is initiated by acidic pH, indicating that endosomal acidification after macropinocytosis can trigger siRNA release into the cytoplasm. These data provide general principles regarding nanocomplex response to endocytosis which may guide the development of peptide/siRNA nanocomplex-based transfection. PMID:24053333

  10. Carrier-free cellular uptake and the gene-silencing activity of the lipophilic siRNAs is strongly affected by the length of the linker between siRNA and lipophilic group.

    PubMed

    Petrova, Natalya S; Chernikov, Ivan V; Meschaninova, Mariya I; Dovydenko, Iiya S; Venyaminova, Aliya G; Zenkova, Marina A; Vlassov, Valentin V; Chernolovskaya, Elena L

    2012-03-01

    The conjugation of siRNA to molecules, which can be internalized into the cell via natural transport mechanisms, can result in the enhancement of siRNA cellular uptake. Herein, the carrier-free cellular uptake of nuclease-resistant anti-MDR1 siRNA equipped with lipophilic residues (cholesterol, lithocholic acid, oleyl alcohol and litocholic acid oleylamide) attached to the 5'-end of the sense strand via oligomethylene linker of various length was investigated. A convenient combination of H-phosphonate and phosphoramidite methods was developed for the synthesis of 5'-lipophilic conjugates of siRNAs. It was found that lipophilic siRNA are able to effectively penetrate into HEK293, HepG2 and KB-8-5 cancer cells when used in a micromolar concentration range. The efficiency of the uptake is dependent upon the type of lipophilic moiety, the length of the linker between the moiety and the siRNA and cell type. Among all the conjugates tested, the cholesterol-conjugated siRNAs with linkers containing from 6 to 10 carbon atoms demonstrate the optimal uptake and gene silencing properties: the shortening of the linker reduces the efficiency of the cellular uptake of siRNA conjugates, whereas the lengthening of the linker facilitates the uptake but retards the gene silencing effect and decreases the efficiency of the silencing.

  11. Silencing of sodium/hydrogen exchanger in the heart by direct injection of naked siRNA.

    PubMed

    Morgan, Patricio E; Correa, María V; Ennis, Irene L; Ennis, Irene E; Diez, Ariel A; Pérez, Néstor G; Cingolani, Horacio E

    2011-08-01

    Cardiac Na(+)/H(+) exchanger (NHE1) hyperactivity is a central factor in cardiac remodeling following hypertension, myocardial infarction, ischemia-reperfusion injury, and heart failure. Treatment of these pathologies by inhibiting NHE1 is challenging because specific drugs that have been beneficial in experimental models were associated with undesired side effects in clinical practice. In the present work, small interference RNA (siRNA) produced in vitro to specifically silence NHE1 (siRNA(NHE1)) was injected once in vivo into the apex of the left ventricular wall of mouse myocardium. After 48 h, left ventricular NHE1 protein expression was reduced in siRNA(NHE1)-injected mice compared with scrambled siRNA by 33.2 ± 3.4% (n = 5; P < 0.05). Similarly, NHE1 mRNA levels were reduced by 20 ± 2.0% (n = 4). At 72 h, siRNA(NHE1) spreading was evident from the decrease in NHE1 expression in three portions of the myocardium (apex, medium, base). NHE1 function was assessed based on maximal velocity of intracellular pH (pH(i)) recovery (dpH(i)/dt) after an ammonium prepulse-induced acidic load. Maximal dpH(i)/dt was reduced to 14% in siRNA(NHE1)-isolated left ventricular papillary muscles compared with scrambled siRNA. In conclusion, only one injection of naked siRNA(NHE1) successfully reduced NHE1 expression and activity in the left ventricle. As has been previously suggested, extensive NHE1 expression reduction may indicate myocardial spread of siRNA molecules from the injection site through gap junctions, providing a valid technique not only for further research into NHE1 function, but also for consideration as a potential therapeutic strategy.

  12. Targeting of a Nuclease to Murine Leukemia Virus Capsids Inhibits Viral Multiplication

    NASA Astrophysics Data System (ADS)

    Natsoulis, Georges; Seshaiah, Partha; Federspiel, Mark J.; Rein, Alan; Hughes, Stephen H.; Boeke, Jef D.

    1995-01-01

    Capsid-targeted viral inactivation is an antiviral strategy in which toxic fusion proteins are targeted to virions, where they inhibit viral multiplication by destroying viral components. These fusion proteins consist of a virion structural protein moiety and an enzymatic moiety such as a nuclease. Such fusion proteins can severely inhibit transposition of yeast retrotransposon Ty1, an element whose transposition mechanistically resembles retroviral multiplication. We demonstrate that expression of a murine retrovirus capsid-staphylococcal nuclease fusion protein inhibits multiplication of the corresponding murine leukemia virus by 30- to 100-fold. Staphylococcal nuclease is apparently inactive intracellularly and hence nontoxic to the host cell, but it is active extracellularly because of its requirement for high concentrations of Ca2+ ions. Virions assembled in and shed from cells expressing the fusion protein contain very small amounts of intact viral RNA, as would be predicted for nuclease-mediated inhibition of viral multiplication.

  13. [Inhibitory effect of RNA interference targeting GFI-1 on the proliferation of atypical chronic myelogenous leukemia NT1 cells].

    PubMed

    Yang, X; Liu, H; Lin, Z H; Qian, J; Xu, X R

    2016-08-01

    To investigate the inhibitory effects of RNA interference targeting GFI-1 on growth and proliferation of atypical chronic myelogenous leukemia (aCML) NT1 cells. NT1 cells were transfected with PBS and liposome complex (vehicle group), scrambled siRNA and liposome complex (negative control, NC group), and GFI-1 siRNA and liposome complex (GFI-1 siRNA group), respectively. Real-time quantitative RT-PCR (qRT-PCR) and Western blot were performed to examine the expression levels of GFI-1 mRNA and protein, respectively. The proliferation abilities of NT1 cells of the three groups were evaluated by MTT assay. The cell cycle in cells of the three groups was analyzed by flow cytometry. Moreover, nude mouse xenograft model was used to detect the tumor formation ability in the three group cells. Quantitative real-time PCR data showed that the expression level of GFI-1 mRNA in GFI-1 siRNA group was significantly lower than those of NC group and vehicle group [(0.367±0.017) vs. (0.918±0.006) and (1.010±0.005), respectively, (P<0.05)]. Western blot results showed that the GFI-1 protein expression level in the GFI-1 siRNA group was also significantly reduced, compared with those of the NC group and vehicle group (P<0.05 for both). From MTT assay data, the absorbance value of NT1 cells in the GFI-1 siRNA group (0.667±0.059) was significantly lower than those of the NC group (1.096±0.049) and vehicle group (1.193±0.064, P=0.023). Flow cytometry data showed that sub-G1 and G0/G1 phase proportions of the GFI-1 siRNA group were significantly higher than those of the NC and vehicle groups [sub-G1: (8.2±2.5)% vs. (1.9±1.3)% and (2.0±3.6)%, respectively, (P<0.05); G0/G1: (66.7±3.8)% vs. (53.3±4.5)% and (48.6±3.2)%, respectively, (P<0.05)]. Furthermore, the tumor weight in the GFI-1 siRNA group [(0.37±0.02) g] was significantly lower than those in the NC group [(0.83±0.06) g] and vehicle group [(0.92±0.04) g] (P<0.05). RNA interference targeting GFI-1 inhibits the growth

  14. Deposition of insoluble elastin by pulmonary fibroblasts from patients with COPD is increased by treatment with versican siRNA.

    PubMed

    Wu, Lian; Zhang, Jing; Qu, Jie Ming; Bai, Chun-Xue; Merrilees, Mervyn J

    2017-01-01

    A reduced content of alveolar elastic fibers is a key feature of COPD lung. Despite continued elastogenic potential by alveolar fibroblasts in the lung affected by COPD, repair of elastic fibers does not take place, which is due to increased levels of the chondroitin sulfate proteoglycan versican that inhibits the assembly of tropoelastin into fibers. In this study, primary pulmonary fibroblast cell lines from COPD and non-COPD patients were treated with a small interfering RNA (siRNA) against versican to determine if knockdown of versican could restore the deposition of insoluble elastin. Versican siRNA treatment reduced versican expression and secretion by pulmonary fibroblasts from both COPD and non-COPD patients ( P <0.01) and significantly increased deposition of insoluble elastin in the COPD cell cultures ( P <0.05). The treatment, however, did not significantly affect production of soluble elastin (tropoelastin) in either the COPD or non-COPD cell cultures, supporting a role for versican in inhibiting assembly but not synthesis of tropoelastin. These results suggest that removal or knockdown of versican may be a possible therapeutic strategy for increasing deposition of insoluble elastin and stimulating repair of elastic fibers in COPD lung.

  15. New target for inhibition of bacterial RNA polymerase: 'switch region'.

    PubMed

    Srivastava, Aashish; Talaue, Meliza; Liu, Shuang; Degen, David; Ebright, Richard Y; Sineva, Elena; Chakraborty, Anirban; Druzhinin, Sergey Y; Chatterjee, Sujoy; Mukhopadhyay, Jayanta; Ebright, Yon W; Zozula, Alex; Shen, Juan; Sengupta, Sonali; Niedfeldt, Rui Rong; Xin, Cai; Kaneko, Takushi; Irschik, Herbert; Jansen, Rolf; Donadio, Stefano; Connell, Nancy; Ebright, Richard H

    2011-10-01

    A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Inhibition of acid sphingomyelinase disrupts LYNUS signaling and triggers autophagy.

    PubMed

    Justice, Matthew J; Bronova, Irina; Schweitzer, Kelly S; Poirier, Christophe; Blum, Janice S; Berdyshev, Evgeny V; Petrache, Irina

    2018-04-01

    Activation of the lysosomal ceramide-producing enzyme, acid sphingomyelinase (ASM), by various stresses is centrally involved in cell death and has been implicated in autophagy. We set out to investigate the role of the baseline ASM activity in maintaining physiological functions of lysosomes, focusing on the lysosomal nutrient-sensing complex (LYNUS), a lysosomal membrane-anchored multiprotein complex that includes mammalian target of rapamycin (mTOR) and transcription factor EB (TFEB). ASM inhibition with imipramine or sphingomyelin phosphodiesterase 1 ( SMPD1 ) siRNA in human lung cells, or by transgenic Smpd1 +/- haploinsufficiency of mouse lungs, markedly reduced mTOR- and P70-S6 kinase (Thr 389)-phosphorylation and modified TFEB in a pattern consistent with its activation. Inhibition of baseline ASM activity significantly increased autophagy with preserved degradative potential. Pulse labeling of sphingolipid metabolites revealed that ASM inhibition markedly decreased sphingosine (Sph) and Sph-1-phosphate (S1P) levels at the level of ceramide hydrolysis. These findings suggest that ASM functions to maintain physiological mTOR signaling and inhibit autophagy and implicate Sph and/or S1P in the control of lysosomal function. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. The combinational effect of E6/E7 siRNA and anti-miR-182 on apoptosis induction in HPV16-positive cervical cells.

    PubMed

    Javadi, Hamidreza; Lotfi, Abbas Sahebghadam; Hosseinkhani, Saman; Mehrani, Hossein; Amani, Jafar; Soheili, Zahra Soheila; Hojati, Zahra; Kamali, Mehdi

    2018-06-06

    In the present research, we assumed that reducing the amounts of E6 and E7 oncoproteins by a specific siRNA sequence and recovering p53 and RB proteins, along with the recovery of the FOXO1 protein by applying anti-miR-182, would increase apoptosis and reduce proliferation rate in cancer cells. The HPV16-positive CaSki cervical cancer cell line was used. 48 hours after transfection of siRNA for targeting E6 and E7 oncoproteins and anti-miR-182, expression of its cellular targets p53, p21 and FOXO1 was assessed by real-time PCR, western blot analysis and immunocytofluorescence staining. In all treatments, apoptosis rate and viability were evaluated using Annexin-V-FITC apoptosis detection kits and MTT assays, respectively. Among the designed siRNAs, E6-1 and E7-2 proved the most effective in reducing E6 and E7 expressions by increasing the apoptotic rates to 12.4% and 16%, respectively, after 48 hours. Also, using anti-miR-182 increased apoptotic rate to 12.7% 48 hours after transfection of cervical cancer cells. The combinational use of either E6-1 or E7-2 siRNAs with anti-miR-182 resulted in a rise in apoptosis to 19.3% and 26%, respectively, higher than those obtained from the individual application of either without anti-miR-182. The simultaneous use of siRNA E6-1 and siRNA E7-2 with cisplatin increased sensitivity to cisplatin and reduced the viability of the cancer cells as compared to the use of cisplatin alone. The simultaneous use of cisplatin and anti-miR-182 had no considerable effect on viability or apoptosis rate compared to cisplatin alone.

  18. Treating respiratory viral diseases with chemically modified, second generation intranasal siRNAs.

    PubMed

    Barik, Sailen

    2009-01-01

    Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.

  19. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    PubMed Central

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration. PMID:28184354

  20. MicroRNA-320a inhibits breast cancer metastasis by targeting metadherin

    PubMed Central

    Zhang, Lei; Yang, Hai-Ping; Wang, Lei; Ding, Di; Chen, Qi; Yang, Wen-Lin; Ren, Ke-Han; Zhou, Dan-Mei; Zou, Qiang; Jin, Yi-Ting; Liu, Xiu-Ping

    2016-01-01

    Dysregulated microRNAs play important pathological roles in carcinogenesis that are yet to be fully elucidated. This study was performed to investigate the biological functions of microRNA-320a (miR-320a) in breast cancer and the underlying mechanisms. Function analyses for cell proliferation, cell cycle, and cell invasion/migration, were conducted after miR-320a silencing and overexpression. The specific target genes of miR-320a were predicted by TargetScan algorithm and then determined by dual luciferase reporter assay and rescue experiment. The relationship between miR-320a and its target genes was explored in human breast cancer tissues. We found that miR-320a overexpression could inhibit breast cancer invasion and migration abilities in vitro, while miR-320a silencing could enhance that. In addition, miR-320a could suppress activity of 3′-untranslated region luciferase of metadherin (MTDH), a potent oncogene. The rescue experiment revealed that MTDH was a functional target of miR-320a. Moreover, we found that MTDH was negatively correlated with miR-320a expression, and it was related to clinical outcomes of breast cancer. Further xenograft experiment also showed that miR-320a could inhibit breast cancer metastasis in vivo. Our findings clearly demonstrate that miR-320a suppresses breast cancer metastasis by directly inhibiting MTDH expression. The present study provides a new insight into anti-oncogenic roles of miR-320a and suggests that miR-320a/MTDH pathway is a putative therapeutic target in breast cancer. PMID:27229534

  1. Redox-sensitive dendrimersomes assembled from amphiphilic Janus dendrimers for siRNA delivery.

    PubMed

    Du, Xiao-Jiao; Wang, Ze-Yu; Wang, Yu-Cai

    2018-06-14

    The development of delivery systems for small interfering RNA (siRNA) plays a key role in its clinical application. As the major delivery systems for siRNA, cationic polymer- or lipid-based vehicles are plagued by inherent issues. As proof of concept, a disulfide bond-containing amphiphilic Janus dendrimer (ssJD), which could be conveniently synthesized and readily scaled up with high reproducibility, was explored as a siRNA delivery system to circumvent these issues. The cationic hydrophilic head of this Janus dendrimer ensured strong and stable binding with negatively charged siRNA via electrostatic interactions, and the loaded siRNA was rapidly released from the obtained complexes under a redox environment. Therefore, after efficient internalization into tumor cells, redox-sensitive dendrimersome (RSDs)/siRNA exhibited significantly improved gene silencing efficacy.

  2. Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery.

    PubMed

    Dai, Zhi; Arévalo, Maria T; Li, Junwei; Zeng, Mingtao

    2014-01-01

    Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo.

  3. Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers

    PubMed Central

    Ashley, Carlee E.; Carnes, Eric C.; Epler, Katharine E.; Padilla, David P.; Phillips, Genevieve K.; Castillo, Robert E.; Wilkinson, Dan C.; Wilkinson, Brian S.; Burgard, Cameron A.; Sewell, Robin M.; Townson, Jason L.; Chackerian, Bryce; Willman, Cheryl L.; Peabody, David S.; Wharton, Walker; Brinker, C. Jeffrey

    2012-01-01

    The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid bilayers (or ‘protocells’), exhibit multiple properties that overcome many of the limitations of existing delivery platforms. Protocells have a 10- to 100-fold greater capacity for siRNA than corresponding lipid nanoparticles and are markedly more stable when incubated under physiological conditions. Protocells loaded with a cocktail of siRNAs bind to cells in a manner dependent on the presence of an appropriate targeting peptide and, through an endocytic pathway followed by endosomal disruption, promote delivery of the silencing nucleotides to the cytoplasm. The expression of each of the genes targeted by the siRNAs was shown to be repressed at the protein level, resulting in a potent induction of growth arrest and apoptosis. Incubation of control cells that lack expression of the antigen recognized by the targeting peptide with siRNA-loaded protocells induced neither repression of protein expression nor apoptosis, indicating the precise specificity of cytotoxic activity. In terms of loading capacity, targeting capabilities, and potency of action, protocells provide unique attributes as a delivery platform for therapeutic oligonucleotides. PMID:22309035

  4. Current Progress of siRNA/shRNA Therapeutics in Clinical Trials

    PubMed Central

    Burnett, John C.; Rossi, John J.; Tiemann, Katrin

    2012-01-01

    Through a mechanism known as RNA interference (RNAi), small interfering RNA (siRNA) molecules can target complementary mRNA strands for degradation, thus specifically inhibiting gene expression. The ability of siRNAs to inhibit gene expression offers a mechanism that can be exploited for novel therapeutics. Indeed, over the past decade, at least 21 siRNA therapeutics have been developed for more than a dozen diseases, including various cancers, viruses, and genetic disorders. Like other biological drugs, RNAi-based therapeutics often require a delivery vehicle to transport them to the targeted cells. Thus, the clinical advancement of numerous siRNA drugs has relied on the development of siRNA carriers including biodegradable nanoparticles, lipids, bacteria, and attenuated viruses. Most therapies permit systemic delivery of the siRNA drug, while others use ex vivo delivery by autologous cell therapy. For some of the drugs, advancements in bioengineering and nanotechnology have led to improved control of delivery and release of the siRNA. Likewise, progress in molecular biology has allowed for improved design of the siRNA molecules. Here, we provide an overview of siRNA therapeutics in clinical trials, including their clinical progress, the challenges they have encountered, and the future they hold in the treatment of human diseases. PMID:21744502

  5. siMacro: A Fast and Easy Data Processing Tool for Cell-Based Genomewide siRNA Screens.

    PubMed

    Singh, Nitin Kumar; Seo, Bo Yeun; Vidyasagar, Mathukumalli; White, Michael A; Kim, Hyun Seok

    2013-03-01

    Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA) screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute.

  6. siMacro: A Fast and Easy Data Processing Tool for Cell-Based Genomewide siRNA Screens

    PubMed Central

    Singh, Nitin Kumar; Seo, Bo Yeun; Vidyasagar, Mathukumalli; White, Michael A.

    2013-01-01

    Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA) screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute. PMID:23613684

  7. Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebien, Florian; Hantschel, Oliver; Wojcik, John

    2012-10-25

    Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of themore » SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.« less

  8. The protective effect of Hif3a RNA interference and HIF-prolyl hydroxylase inhibition on cardiomyocytes under anoxia-reoxygenation.

    PubMed

    Drevytska, T; Gonchar, E; Okhai, I; Lynnyk, O; Mankovska, I; Klionsky, D; Dosenko, V

    2018-06-01

    The aim of this study was to investigate the molecular mechanisms underlying the protective effects of hypoxia-inducible factor (HIF) signaling pathway activation in cardiomyocytes under anoxia-reoxygenation (A/R) injury. In this study, rat neonatal cardiomyocytes were pretreated with anti-Hif3A/Hif-3α siRNA or HIF-prolyl hydroxylase inhibitor prior to A/R injury. Our results showed that both HIF3A silencing and HIF-prolyl hydroxylase inhibition effectively increased the cell viability during A/R, led to changes in mRNA expression of HIF1-target genes, and reduced the loss of mitochondrial membrane potential (Δψ m ). Furthermore, application of anti-Hif3a siRNA led to an increase in mRNA expression of Epo, Igf1, Slc2a1/Glut-1, and Slc2a4/Glut-4. Similar results were observed with HIF-prolyl hydroxylase inhibition, which additionally upregulated the mRNA expression of Epor, Tert, and Pdk1. Hif3a RNA-interference and application of HIF-prolyl hydroxylase inhibitor during A/R modelling led to an increase of Δψ m on 11.5 and 11.9 mV respectively, compared to the control groups. Thus, Hif3a RNA interference and HIF-prolyl hydroxylase inhibition protect cardiomyocytes against A/R injury via the HIF signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. LncRNA NONRATT021972 siRNA rescued decreased heart rate variability in diabetic rats in superior cervical ganglia.

    PubMed

    Xu, Hong; Liu, Changle; Rao, Shenqiang; He, Luling; Zhang, Tengling; Sun, Shanshan; Wu, Bing; Zou, Lifang; Wang, Shouyu; Xue, Yun; Jia, Tianyu; Zhao, Shanhong; Li, Guilin; Liu, Shuangmei; Li, Guodong; Liang, Shangdong

    2016-12-01

    Diabetic cardiac autonomic neuropathy (DCAN) is a serious and common complication in diabetes mellitus (DM). Long noncoding RNAs (lncRNAs), an important class of regulatory molecules in diverse biological processes, have attracted considerable interest in DCAN. Our previous study has indicated a lncRNA, NONRATT021972 (NONCODE ID), was enhanced in sympathetic neuronal-like PC12 cells in the setting of high glucose (HG) and high FFAs (HF); its silence was found to significantly alleviate HGHF-induced tumor necrosis factor-α (TNF-α) release in PC12 cells. Here we further explore the effects of NONRATT021972 small interference RNA (siRNA) on heart rate variability (HRV) mediated by superior cervical ganglia (SCG) in diabetic rats and the possible mechanism underlying. We found an increment of NONRATT021972 in SCG of DM rats. Treatment of NONRATT021972 siRNA in DM rats decreased the elevated expression of TNF-α, blocked serine phosphorylation of insulin receptor substrate (IRS) 1 and increased the down-regulated expression of IRS1 in SCG. Meanwhile, NONRATT021972 siRNA rescued decreased HRV in DM rats. Therefore, inhibition of NONRATT021972 may serve as a novel therapeutic strategy for preventing the development of DCAN. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. SGI-1776, an imidazo pyridazine compound, inhibits the proliferation of ovarian cancer cells by inactivating Pim-1.

    PubMed

    Xie, Jing; Bai, Jun

    2014-07-01

    To investigate the antitumor effect of SGI-1776 on human ovarian cancer HO-8910 cells and its molecular mechanism. HO-8910 cells were cultured in vitro, and the proliferation inhibitory effects of SGI- 1776 were determined by MTT assay and colony formation assay. The effect of SGI-1776 on the distribution of cell cycle phase was observed by flow cytometry with propidium iodide (PI) staining. The inhibition rate of migration and invasion were valued by transwell cell assay. Multiple molecular techniques, such as ELISA, Western blot, siRNA and cDNA transfection were used to explore the molecular mechanism. SGI-1776 presented dramatic anti-tumor activity against HO-8910 cells in vitro, inhibited the cells proliferation and colony formation, and attenuated the migration and invasion in a dosedependent manner, accompanied by cell cycle arrest in G1 phase. SGI-1776 caused the proliferation inhibition with concomitant decrease in Pim-1 kinase activity, down-regulated the expression of Pim-1 protein and and its downstream genes, such as CDK6, pCDK6, CDK4, pCDK4, CDK2 and pCDK2, and increased the expression of P21 and P27. Down-regulation expression of Pim-1 by siRNA followed SGI-1776 treatment resulted in enhanced cell proliferation inhibition rate and attenuated migration/invasion. Up-regulation of Pim-1 by cDNA transfection attenuated SGI- 1776-induced cell proliferation inhibition and its migration/invasion. Pim-1 mediates the biological effect of SGI-1776 in human ovarian cancer HO-8910 cells, suggesting Pim-1 might be a novel target for human ovarian cancer.

  11. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation.

    PubMed

    Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2015-12-01

    Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis. Copyright © 2015 the American Physiological Society.

  12. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma.

    PubMed

    Arora, Shilpi; Gonzales, Irma M; Hagelstrom, R Tanner; Beaudry, Christian; Choudhary, Ashish; Sima, Chao; Tibes, Raoul; Mousses, Spyro; Azorsa, David O

    2010-08-18

    Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.

  13. Pioglitazone inhibits mitochondrial pyruvate metabolism and glucose production in hepatocytes

    PubMed Central

    Shannon, Christopher E.; Daniele, Giuseppe; Galindo, Cynthia; Abdul-Ghani, Muhammad A.; DeFronzo, Ralph A.; Norton, Luke

    2017-01-01

    Pioglitazone is used globally for the treatment of type 2 diabetes mellitus (T2DM) and is one of the most effective therapies for improving glucose homeostasis and insulin resistance in T2DM patients. However, its mechanism of action in the tissues and pathways that regulate glucose metabolism are incompletely defined. Here we investigated the direct effects of pioglitazone on hepatocellular pyruvate metabolism and the dependency of these observations on the purported regulators of mitochondrial pyruvate transport, MPC1 and MPC2. In cultured H4IIE hepatocytes, pioglitazone inhibited [2-14C]-pyruvate oxidation and pyruvate-driven oxygen consumption and, in mitochondria isolated from both hepatocytes and human skeletal muscle, pioglitazone selectively and dose-dependently inhibited pyruvate-driven ATP synthesis. Pioglitazone also suppressed hepatocellular glucose production (HGP), without influencing the mRNA expression of key HGP regulatory genes. Targeted siRNA silencing of MPC1 and 2 caused a modest inhibition of pyruvate oxidation and pyruvate-driven ATP synthesis, but did not alter pyruvate-driven HGP and, importantly, it did not influence the actions of pioglitazone on either pathway. In summary, these findings outline a novel mode of action of pioglitazone relevant to the pathogenesis of T2DM and suggest that targeting pyruvate metabolism may lead to the development of effective new T2DM therapies. PMID:27987376

  14. MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3.

    PubMed

    Li, Zhipeng; Li, Xu; Yu, Chao; Wang, Min; Peng, Feng; Xiao, Jie; Tian, Rui; Jiang, Jianxin; Sun, Chengyi

    2014-12-01

    We intended to investigate the role of microRNA 100 (miR-100) in regulating pancreatic cancer cells' growth in vitro and tumor development in vivo. QTR-PCR was used to examine the expression of miR-100 in pancreatic cancer cell lines and tumor cells from human patients. Lentivirual vector containing miR-100 mimics (lv-miR-100) was used to overexpress miR-100 in MIA PaCa-2 and FCPAC-1 cells. The effects of overexpressing miR-100 on pancreatic cancer cell proliferation and chemosensitivity to cisplatin were examined by cell proliferation essay in vitro. MIA PaCa-2 cells with endogenously overexpressed miR-100 were transplanted into null mice to examine tumor growth in vivo. The predicted target of miR-100, fibroblast growth factor receptor 3 (FGFR3), was downregulated by siRNA to examine its effect on pancreatic cancer cells. We found miR-100 was markedly underexpressed in both pancreatic cancer cell lines and tumor cells from patients. In cancer cells, transfection of lv-miR-100 was able to upregulate endogenous expression of miR-100, inhibited cancer cell proliferation, and increased sensitivities to cisplatin. Overexpressing miR-100 led to significant inhibition on tumor formation in vivo. Luciferase essay showed FGFR3 was direct target of miR-100. FGFR3 was significantly downregulated by overexpressing miR-100 in pancreatic cancer cells and knocking down FGFR3 by siRNA exerted similar effect as miR-100. Our study demonstrated that miR-100 played an important role in pancreatic cancer development, possibly through targeting FGFR3. It may become a new therapeutic target for gene therapy in patients suffered from pancreatic cancer.

  15. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis.

    PubMed

    Creasey, Kate M; Zhai, Jixian; Borges, Filipe; Van Ex, Frederic; Regulski, Michael; Meyers, Blake C; Martienssen, Robert A

    2014-04-17

    In plants, post-transcriptional gene silencing (PTGS) is mediated by DICER-LIKE 1 (DCL1)-dependent microRNAs (miRNAs), which also trigger 21-nucleotide secondary short interfering RNAs (siRNAs) via RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), DCL4 and ARGONAUTE 1 (AGO1), whereas transcriptional gene silencing (TGS) of transposons is mediated by 24-nucleotide heterochromatic (het)siRNAs, RDR2, DCL3 and AGO4 (ref. 4). Transposons can also give rise to abundant 21-nucleotide 'epigenetically activated' small interfering RNAs (easiRNAs) in DECREASED DNA METHYLATION 1 (ddm1) and DNA METHYLTRANSFERASE 1 (met1) mutants, as well as in the vegetative nucleus of pollen grains and in dedifferentiated plant cell cultures. Here we show that easiRNAs in Arabidopsis thaliana resemble secondary siRNAs, in that thousands of transposon transcripts are specifically targeted by more than 50 miRNAs for cleavage and processing by RDR6. Loss of RDR6, DCL4 or DCL1 in a ddm1 background results in loss of 21-nucleotide easiRNAs and severe infertility, but 24-nucleotide hetsiRNAs are partially restored, supporting an antagonistic relationship between PTGS and TGS. Thus miRNA-directed easiRNA biogenesis is a latent mechanism that specifically targets transposon transcripts, but only when they are epigenetically reactivated during reprogramming of the germ line. This ancient recognition mechanism may have been retained both by transposons to evade long-term heterochromatic silencing and by their hosts for genome defence.

  16. lncRNA NONRATT021972 siRNA Decreases Diabetic Neuropathic Pain Mediated by the P2X3 Receptor in Dorsal Root Ganglia.

    PubMed

    Peng, Haiying; Zou, Lifang; Xie, Jinyan; Wu, Hong; Wu, Bing; Zhu, Gaochun; Lv, Qiulan; Zhang, Xi; Liu, Shuangmei; Li, Guilin; Xu, Hong; Gao, Yun; Xu, Changshui; Zhang, Chunping; Wang, Shouyu; Xue, Yun; Liang, Shangdong

    2017-01-01

    Long noncoding RNAs (lncRNAs) participate in physiological and pathophysiological processes. Type 2 diabetes mellitus (T2DM) accounts for more than 90 % of all cases of diabetes mellitus (DM). Diabetic neuropathic pain (DNP) is a common complication of T2DM. The aim of this study was to investigate the effects of lncRNA NONRATT021972 small interference RNA (siRNA) on DNP mediated by the P2X 3 receptor in dorsal root ganglia (DRG). These experiments showed that the expression levels of NONRATT021972 in DRG were increased in the T2DM rat model (intraperitoneal injection of STZ with 30 mg/kg). The concentration of NONRATT021972 in T2DM patient serum was higher compared to control healthy subjects. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in T2DM rats were lower compared to control rats. MWT and TWL in T2DM rats treated with NONRATT021972 siRNA were higher compared with those in T2DM rats. The expression levels of the P2X 3 protein and messenger RNA (mRNA) of T2DM rat DRG were higher compared to the control, while those in T2DM rats treated with NONRATT021972 siRNA were significantly lower compared to T2DM rats. The level of tumor necrosis factor-α (TNF-α) in the serum of T2DM rats treated with NONRATT021972 siRNA was significantly decreased compared with T2DM rats. NONRATT021972 siRNA inhibited the phosphorylation and activation of ERK1/2 in T2DM DRG. Thus, NONRATT021972 siRNA treatment may suppress the upregulated expression and activation of the P2X 3 receptor and reduce the hyperalgesia potentiated by the pro-inflammatory cytokine TNF-α in T2DM rats.

  17. Efficient Intracellular siRNA Delivery by Ethyleneimine-Modified Amphiphilic Macromolecules

    PubMed Central

    Sparks, Sarah M.; Waite, Carolyn L.; Harmon, Alexander M.; Nusblat, Leora M.; Roth, Charles M.; Uhrich, Kathryn E.

    2013-01-01

    Summary New materials that can bind and deliver oligonucleotides such as short interfering RNA (siRNA) without toxicity are greatly needed to fulfill the promise of therapeutic gene silencing. Amphiphilic macromolecules (AMs) were functionalized with linear ethyleneimines to create cationic AMs capable of complexing with siRNA. Structurally, the parent AM is formed from a mucic acid backbone whose tetra-hydroxy groups are alkylated with 12-carbon aliphatic chains to form the hydrophobic component of the macromolecule. This alkylated mucic acid is then mono-functionalized with poly(ethylene glycol) (PEG) as a hydrophilic component. The resulting AM contains a free carboxylic acid within the hydrophobic domain. In this work, linear ethyleneimines were conjugated to the free carboxylic acid to produce an AM with one primary amine (1N) or one primary amine and four secondary amines (5N). Further, an AM with amine substitution both to the free carboxylic acid in the hydrophobic domain and also to the adjacent PEG was synthesized to produce a polymer with one primary amine and eight secondary amines (9N), four located on each side of the AM hydrophobic domain. All amine-functionalized AMs formed nanoscale micelles but only the 5N and 9N AMs had cationic zeta potentials, which increased with increasing number of amines. All AMs exhibited less inherent cytotoxicity than linear polyethyleneimine (L-PEI) at concentrations of 10 µM and above. By increasing the length of the cationic ethyleneimine chain and the total number of amines, successful siRNA complexation and cellular siRNA delivery was achieved in a malignant glioma cell line. In addition, siRNA-induced silencing of firefly luciferase was observed using complexes of siRNA with the 9N AM and comparable to L-PEI, yet showed better cell viability at higher concentrations (above 10 µM). This work highlights the promise of cationic AMs as safe and efficient synthetic vectors for siRNA delivery. Specifically, a novel

  18. RNA therapeutics targeting osteoclast-mediated excessive bone resorption

    PubMed Central

    Wang, Yuwei; Grainger, David W

    2011-01-01

    RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock-down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders. PMID:21945356

  19. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all ofmore » which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice

  20. Stable Dispersions of Covalently Tethered Polymer Improved Graphene Oxide Nanoconjugates as an Effective Vector for siRNA Delivery.

    PubMed

    Yadav, Nisha; Kumar, Naveen; Prasad, Peeyush; Shirbhate, Shivani; Sehrawat, Seema; Lochab, Bimlesh

    2018-05-02

    Conjugates of poly(amidoamine) (PAMAM) with modified graphene oxide (GO) are attractive nonviral vectors for gene-based cancer therapeutics. GO protects siRNA from enzymatic cleavage and showed reasonable transfection efficiency along with simultaneous benefits of low cost and large scale production. PAMAM is highly effective in siRNA delivery but suffers from high toxicity with poor in vivo efficacy. Co-reaction of GO and PAMAM led to aggregation and more importantly, have detrimental effect on stability of dispersion at physiological pH preventing their exploration at clinical level. In the current work, we have designed, synthesized, characterized and explored a new type of hybrid vector (GPD), using GO synthesized via improved method which was covalently tethered with poly(ethylene glycol) (PEG) and PAMAM. The existence of covalent linkage, relative structural changes and properties of GPD is well supported by Fourier transform infrared (FTIR), UV-visible (UV-vis), Raman, X-ray photoelectron (XPS), elemental analysis, powder X-ray diffraction (XRD), thermogravimetry analysis (TGA), dynamic light scattering (DLS), and zeta potential. Scanning electron microscopy (SEM), and transmission electron microscopy (TEM) of GPD showed longitudinally aligned columnar self-assembled ∼10 nm thick polymeric nanoarchitectures onto the GO surface accounting to an average size reduction to ∼20 nm. GPD revealed an outstanding stability in both phosphate buffer saline (PBS) and serum containing cell medium. The binding efficiency of EPAC1 siRNA to GPD was supported by gel retardation assay, DLS, zeta potential and photoluminescence (PL) studies. A lower cytotoxicity with enhanced cellular uptake and homogeneous intracellular distribution of GPD/siRNA complex is confirmed by imaging studies. GPD exhibited a higher transfection efficiency with remarkable inhibition of cell migration and lower invasion than PAMAM and Lipofectamine 2000 suggesting its role in prevention of breast

  1. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells.

    PubMed

    Rea, Ilaria; Martucci, Nicola M; De Stefano, Luca; Ruggiero, Immacolata; Terracciano, Monica; Dardano, Principia; Migliaccio, Nunzia; Arcari, Paolo; Taté, Rosarita; Rendina, Ivo; Lamberti, Annalisa

    2014-12-01

    Diatomite is a natural porous biomaterial of sedimentary origin, formed by fragments of diatom siliceous skeletons, called "frustules". Due to large availability in many areas of the world, chemical stability, and non-toxicity, these fossil structures have been widespread used in lot of industrial applications, such as food production, water extracting agent, production of cosmetics and pharmaceutics. However, diatomite is surprisingly still rarely used in biomedical applications. In this work, we exploit diatomite nanoparticles for small interfering ribonucleic acid (siRNA) transport inside human epidermoid cancer cells (H1355). Morphology and composition of diatomite microfrustules (average size lower than 40μm) are investigated by scanning electron microscopy equipped by energy dispersive X-ray spectroscopy, Fourier transform infrared analysis, and photoluminescence measurements. Nanometric porous particles (average size lower than 450nm) are obtained by mechanical crushing, sonication, and filtering of micrometric frustules. siRNA bioconjugation is performed on both micrometric and nanometric fragments by silanization. In-vitro experiments show very low toxicity on exposure of the cells to diatomite nanoparticle concentration up to 300μg/ml for 72h. Confocal microscopy imaging performed on cancer cells incubated with siRNA conjugated nanoparticles demonstrates a cytoplasmatic localization of vectors. Gene silencing by delivered siRNA is also demonstrated. Our studies endorse diatomite nanoparticles as non-toxic nanocarriers for siRNA transport in cancer cells. siRNA is a powerful molecular tool for cancer treatment but its delivery is inefficient due to the difficulty to penetrate the cell membrane. siRNA-diatomite nanoconjugate may be well suited for delivery of therapeutic to cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi

    PubMed Central

    Tsai, Hsin-Yue; Chen, Chun-Chieh G.; Conte, Darryl; Moresco, James J.; Chaves, Daniel A.; Mitani, Shohei; Yates, John R.; Tsai, Ming-Daw; Mello, Craig C.

    2015-01-01

    SUMMARY Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering (si) RNAs are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3′ uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3’ uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. PMID:25635455

  3. Direct-acting Antivirals and Host-targeting Agents against the Hepatitis A Virus

    PubMed Central

    Kanda, Tatsuo; Nakamoto, Shingo; Wu, Shuang; Nakamura, Masato; Jiang, Xia; Haga, Yuki; Sasaki, Reina; Yokosuka, Osamu

    2015-01-01

    Hepatitis A virus (HAV) infection is a major cause of acute hepatitis and occasionally leads to acute liver failure in both developing and developed countries. Although effective vaccines for HAV are available, the development of new antivirals against HAV may be important for the control of HAV infection in developed countries where no universal vaccination program against HAV exists, such as Japan. There are two forms of antiviral agents against HAV: direct-acting antivirals (DAAs) and host-targeting agents (HTAs). Studies using small interfering ribonucleic acid (siRNA) have suggested that the HAV internal ribosomal entry site (IRES) is an attractive target for the control of HAV replication and infection. Among the HTAs, amantadine and interferon-lambda 1 (IL-29) inhibit HAV IRES-mediated translation and HAV replication. Janus kinase (JAK) inhibitors inhibit La protein expression, HAV IRES activity, and HAV replication. Based on this review, both DAAs and HTAs may be needed to control effectively HAV infection, and their use should continue to be explored. PMID:26623267

  4. Cell-penetrating peptide-siRNA conjugate loaded YSA-modified nanobubbles for ultrasound triggered siRNA delivery.

    PubMed

    Xie, Xiangyang; Yang, Yanfang; Lin, Wen; Liu, Hui; Liu, Hong; Yang, Yang; Chen, Ying; Fu, Xudong; Deng, Jianping

    2015-12-01

    Due to the absence of effective in vivo delivery systems, the employment of small interference RNA (siRNA) in the clinic has been hindered. In this paper, a new siRNA targeting system for EphA2-positive tumors was developed, based on ultrasound-sensitive nanobubbles (NBs) and cell-permeable peptides (CPPs). Here, a CPP-siRNA conjugate (CPP-siRNA) was entrapped in an ephrin mimetic peptide (YSA peptide)-modified NB (CPP-siRNA/YSA-NB) and the penetration of the CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research demonstrated that the CPP-siRNA/YSA-NBs had particle sizes of approximately 200 nm and a siRNA entrapment efficiency of more than 85%. The in vitro release results showed that over 90% of the encapsulated CPP-siRNA released from the NBs in the presence of ultrasound, while less than 1.5% of that (30 min) released without ultrasound. Cell experiments showed a the higher CPP-siRNA cellular uptake of CPP-siRNA/YSA-NB among the various formulations in human breast adenocarcinoma cells (MCF-7, EphA2 positive cells). Additionally, after systemic administration in mice, CPP-siRNA/YSA-NB accumulated in the tumor, augmented c-Myc silencing and delayed tumor progression. In conclusion, the application of CPP-siRNA/YSA-NB with ultrasound may provide a strategy for the selective and efficient delivery of siRNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Efficient siRNA Delivery Using Novel Cell-Penetrating Peptide-siRNA Conjugate-Loaded Nanobubbles and Ultrasound.

    PubMed

    Xie, Xiangyang; Lin, Wen; Li, Mingyuan; Yang, Yang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yanfang

    2016-06-01

    Because of the absence of tolerable and effective carriers for in vivo delivery, the applications of small interfering RNA (siRNA) in the clinic for therapeutic purposes have been limited. In this study, development of a novel siRNA delivery system based on ultrasound-sensitive nanobubbles (NBs, nano-sized echogenic liposomes) and cell-permeable peptides (CPPs) is described. A CPP-siRNA conjugate was entrapped in an NB, (CPP-siRNA)-NB, and the penetration of CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research revealed that the (CPP-siRNA)-NBs had a mean particle size of 201 ± 2.05 nm and a siRNA entrapment efficiency >85%. In vitro release results indicated that >90% of the encapsulated CPP-siRNA was released from NBs in the presence of ultrasound, whereas <1.5% (30 min) was released in the absence of ultrasound. Cell experiments indicated higher cellular CPP-siRNA uptake of (CPP-siRNA)-NBs with ultrasound among the various formulations in human breast adenocarcinoma cells (HT-1080). Additionally, after systemic administration in mice, (CPP-siRNA)-NBs accumulated in the tumor, augmented c-myc silencing and delayed tumor progression. In conclusion, the application of (CPP-siRNA)-NBs with ultrasound may constitute an approach to selective targeted delivery of siRNA. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. A peptide targeted against phosphoprotein and leader RNA interaction inhibits growth of Chandipura virus -- an emerging rhabdovirus.

    PubMed

    Roy, Arunava; Chakraborty, Prasenjit; Polley, Smarajit; Chattopadhyay, Dhrubajyoti; Roy, Siddhartha

    2013-11-01

    The fatal illness caused by Chandipura virus (CHPV), an emerging pathogen, presently lacks any therapeutic option. Previous research suggested that interaction between the virally encoded phosphoprotein (P) and the positive sense leader RNA (le-RNA) may play an important role in the viral lifecycle. In this report, we have identified a β-sheet/loop motif in the C-terminal domain of the CHPV P protein as essential for this interaction. A synthetic peptide encompassing this motif and spanning a continuous stretch of 36 amino acids (Pep208-243) was found to bind the le-RNA in vitro and inhibit CHPV growth in infected cells. Furthermore, a stretch of three amino acid residues at position 217-219 was identified as essential for this interaction, both in vitro and in infected cells. siRNA knockdown-rescue experiments demonstrated that these three amino acid residues are crucial for the leader RNA binding function of P protein in the CHPV life cycle. Mutations of these three amino acid residues render the peptide completely ineffective against CHPV. Effect of inhibition of phosphoprotein-leader RNA interaction on viral replication was assayed. Peptide Pep208-243 tagged with a cell penetrating peptide was found to inhibit CHPV replication as ascertained by real time RT-PCR. The specific inhibition of viral growth observed using this peptide suggests a new possibility for designing of anti-viral agents against Mononegavirale group of human viruses. Copyright © 2013. Published by Elsevier B.V.

  7. Base modification strategies to modulate immune stimulation by an siRNA.

    PubMed

    Valenzuela, Rachel Anne P; Suter, Scott R; Ball-Jones, Alexi A; Ibarra-Soza, José M; Zheng, Yuxuan; Beal, Peter A

    2015-01-19

    Immune stimulation triggered by siRNAs is one of the major challenges in the development of safe RNAi-based therapeutics. Within an immunostimulatory siRNA sequence, this hurdle is commonly addressed by using ribose modifications (e.g., 2'-OMe or 2'-F), which results in decreased cytokine production. However, as immune stimulation by siRNAs is a sequence-dependent phenomenon, recognition of the nucleobases by the trigger receptor(s) is also likely. Here, we use the recently published crystal structures of Toll-like receptor 8 (TLR8) bound to small-molecule agonists to generate computational models for ribonucleotide binding by this immune receptor. Our modeling suggested that modification of either the Watson-Crick or Hoogsteen face of adenosine would disrupt nucleotide/TLR8 interactions. We employed chemical synthesis to alter either the Watson-Crick or Hoogsteen face of adenosine and evaluated the effect of these modifications in an siRNA guide strand by measuring the immunostimulatory and RNA interference properties. For the siRNA guide strand tested, we found that modifying the Watson-Crick face is generally more effective at blocking TNFα production in human peripheral blood mononuclear cells (PBMCs) than modification at the Hoogsteen edge. We also observed that modifications near the 5'-end were more effective at blocking cytokine production than those placed at the 3'-end. This work advances our understanding of how chemical modifications can be used to optimize siRNA performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Functionalized Dendrimer-Based Delivery of Angiotensin Type 1 Receptor siRNA for Preserving Cardiac Function Following Infarction

    PubMed Central

    Liu, Jie; Gu, Catherine; Cabigas, E. Bernadette; Pendergrass, Karl D.; Brown, Milton E.; Luo, Ying; Davis, Michael E.

    2013-01-01

    Cardiovascular disease (CVD) is the leading cause of death throughout the world and much pathology is associated with upregulation of inflammatory genes. Gene silencing using RNA interference is a powerful tool in regulating gene expression, but its application in CVDs has been prevented by the lack of efficient delivery systems. We report here the development of tadpole dendrimeric materials for siRNA delivery in a rat ischemia-reperfusion (IR) model. Angiotensin II (Ang II) type 1 receptor (AT1R), the major receptor that mediates most adverse effects of Ang II, was chosen to be the silencing targeting. Among the three tadpole dendrimers synthesized, the oligo-arginine conjugated dendrimer loaded with siRNA demonstrated effective down-regulation in AT1R expression in cardiomyocytes in vitro. When the dendrimeric material was applied in vivo, the siRNA delivery prevented the increase in AT1R levels and significantly improved cardiac function recovery compared to saline injection or empty dendrimer treated groups after IR injury. These experiments demonstrate a potential treatment for dysfunction caused by IR injury and may represent an alternative to AT1R blockade. PMID:23433774

  9. R1507, an Anti-Insulin-Like Growth Factor-1 Receptor (IGF-1R) Antibody, and EWS/FLI-1 siRNA in Ewing's Sarcoma: Convergence at the IGF/IGFR/Akt Axis

    PubMed Central

    Rodon, Jordi; Sun, Michael; Kuenkele, Klaus-Peter; Parsons, Henrique A.; Trent, Jonathan C.; Kurzrock, Razelle

    2011-01-01

    A subset of patients with Ewing's sarcoma responds to anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies. Mechanisms of sensitivity and resistance are unknown. We investigated whether an anti-IGF-1R antibody acts via a pathway that could also be suppressed by small interfering (si) RNA against the EWS/FLI-1 fusion protein, the hallmark of Ewing's sarcoma. The growth of two Ewing's sarcoma cell lines (TC-32 and TC-71) was inhibited by the fully human anti-IGF-1R antibody, R1507 (clonogenic and MTT assays). TC-32 and TC-71 cells express high levels of IGF-2, while RD-ES and A4573 Ewing's cell lines, which were less responsive to R1507 in our assays, express low or undetectable IGF-2, respectively. TC-71 cells also expressed high levels of IGF-1R, and R1507 decreased steady-state levels of this receptor by internalization/degradation, an effect which was associated with a decrease in p-IGF-1R, p-IRS-1, and p-Akt. EWS/FLI-1 siRNA also decreased p-Akt, due to its ability to increase IGF-BP3 levels and subsequently decrease IGF-1 and IGF-2 levels, thus inhibiting signaling through p-IGF-1R. This inhibition correlated with growth suppression and apoptosis. The attenuation of Akt activation was confirmed in TC-71 and HEK-293 (human embryonic kidney) cells by transfecting them with IGF-1R siRNA. We conclude that antibodies and siRNA to IGF-1R, as well as siRNA to EWS/FLI-1, act via intersecting IGF/IGF-1R signals that suppress a common point in this pathway, namely the phosphorylation of Akt. PMID:22022506

  10. Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis.

    PubMed

    Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M; Gish, Gerald D; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio

    2011-10-14

    Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis

    PubMed Central

    Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M.; Gish, Gerald D.; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio

    2011-01-01

    Summary Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention. PaperFlick PMID:22000011

  12. Chitosan nanoparticle carrying small interfering RNA to platelet-derived growth factor B mRNA inhibits proliferation of smooth muscle cells in rabbit injured arteries.

    PubMed

    Xia, He; Jun, Ji; Wen-Ping, Ling; Yi-Feng, Pan; Xiao-Ling, Chen

    2013-10-01

    The purpose of this study was to elucidate the transfection of chitosan nanoparticle carrying small interfering RNA against platelet-derived growth factor B (PDGF-B) to inhibit the expression of PDGF-B mRNA and proliferation of smooth muscle cells. A rabbit iliac artery injury model was constructed. A small interfering RNA (siRNA) against PDGF-B mRNA expression vector was constructed and packaged by chitosan nanoparticle to transfect into the vascular smooth muscle cells (vSMCs) of balloon catheter-injured rabbit iliac artery wall, using a therapeutic ultrasound for the gene delivery. The experiment was divided into two groups: experimental group, denudation and nano-PDGF-B siRNA treated, and only single denudation as control. Effects of the siRNA on the expressions of proliferating cell nuclear antigen (PCNA) and PDGF-B mRNA by vSMCs and the proliferation of vSMCs were observed with the methods of routine pathological, immunohistochemical staining, in situ hybridization and morphometry. The nano siRNA against PDGF-B was successfully transfected. The nano siRNA significantly inhibited the expressions of PCNA and PDGF-B mRNA in intimal vSMCs. The local intimal thickness and area were also reduced remarkably. In conclusion, transfection of chitosan nanoparticle carrying siRNA against PDGF-B mRNA could inhibit proliferation of vSMCs in the rabbit iliac artery injury model. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Hybrid Lipid/Polymer Nanoparticles for Pulmonary Delivery of siRNA: Development and Fate Upon In Vitro Deposition on the Human Epithelial Airway Barrier.

    PubMed

    d'Angelo, Ivana; Costabile, Gabriella; Durantie, Estelle; Brocca, Paola; Rondelli, Valeria; Russo, Annapina; Russo, Giulia; Miro, Agnese; Quaglia, Fabiana; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Ungaro, Francesca

    2017-10-16

    Nowadays, the downregulation of genes involved in the pathogenesis of severe lung diseases through local siRNA delivery appears an interesting therapeutic approach. In this study, we propose novel hybrid lipid-polymer nanoparticles (hNPs) consisting of poly(lactic-co-glycolic) acid (PLGA) and dipalmitoyl phosphatidylcholine (DPPC) as siRNA inhalation system. A panel of DPPC/PLGA hNPs was prepared by emulsion/solvent diffusion and fully characterized. A combination of model siRNAs against the sodium transepithelial channel (ENaC) was entrapped in optimized hNPs comprising or not poly(ethylenimine) (PEI) as third component. siRNA-loaded hNPs were characterized for encapsulation efficiency, release kinetics, aerodynamic properties, and stability in artificial mucus (AM). The fate and cytotoxicity of hNPs upon aerosolization on a triple cell co-culture model (TCCC) mimicking human epithelial airway barrier were assessed. Finally, the effect of siRNA-loaded hNPs on ENaC protein expression at 72 hours was evaluated in A549 cells. Optimized muco-inert hNPs encapsulating model siRNA with high efficiency were produced. The developed hNPs displayed a hydrodynamic diameter of ∼150 nm, a low polydispersity index, a negative ζ potential close to -25 mV, and a peculiar triphasic siRNA release lasting for 5 days, which slowed down in the presence of PEI. siRNA formulations showed optimal in vitro aerosol performance after delivery with a vibrating mesh nebulizer. Furthermore, small-angle X-ray scattering analyses highlighted an excellent stability upon incubation with AM, confirming the potential of hNPs for direct aerosolization on mucus-lined airways. Studies in TCCC confirmed that fluorescent hNPs are internalized inside airway epithelial cells and do not exert any cytotoxic or acute proinflammatory effect. Finally, a prolonged inhibition of ENaC protein expression was observed in A549 cells upon treatment with siRNA-loaded hNPs. Results demonstrate the great potential

  14. Targeted delivery of CD44s-siRNA by ScFv overcomes de novo resistance to cetuximab in triple negative breast cancer.

    PubMed

    Fu, Wenyan; Sun, Hefen; Zhao, Yang; Chen, Mengting; Yang, Lipeng; Yang, Xueli; Jin, Wei

    2018-05-16

    The overexpression of EGFR often occurs in TNBC, and the anti-EGFR receptor antibody cetuximab is used widely to treat metastatic cancer in the clinic. However, EGFR-targeted therapies have been developed for TNBC without clinical success. In this study, we show that impaired EGFR degradation is crucial for resistance to cetuximab, which depends on the cell surface molecule CD44. To further investigate the role of CD44 in EGFR signaling and its treatment potential, we developed a targeting fusion protein composed of an anti-EGFR scFv generated from cetuximab and truncated protamine, called Ce-tP. CD44 siRNA can be specifically delivered into EGFR-positive TNBC cells by Ce-tP. Efficient knockdown of CD44 and suppression of both EGFR and downstream signaling by the Ce-tP/siRNA complex were observed in EGFR-positive TNBC cells. More importantly, our results also showed that targeted delivery of siRNA specific for CD44 can efficiently overcome resistance to EGFR targeting in TNBC cells both in vitro and in vivo. Overall, our results establish a new principle to achieve EGFR inhibition in TNBC and limit drug resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Ternary complexes of folate-PEG-appended dendrimer (G4)/α-cyclodextrin conjugate, siRNA and low-molecular-weight polysaccharide sacran as a novel tumor-selective siRNA delivery system.

    PubMed

    Ohyama, Ayumu; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi

    2017-06-01

    We previously developed a tumor-selective siRNA carrier by preparing polyamidoamine dendrimer (generation 4, G4) conjugates with α-cyclodextrin and folate-polyethylene glycol (Fol-PαC (G4)). In the present study, we developed ternary complexes of Fol-PαC (G4)/siRNA with low-molecular-weight-sacrans to achieve more effective siRNA transfer activity. Among the different molecular-weight sacrans, i.e. sacran 100, 1000 and 10,000 (MW 44,889Da, 943,692Da and 1,488,281Da, respectively), sacran 100 significantly increased the cellular uptake and the RNAi effects of Fol-PαC (G4)/siRNA binary complex with negligible cytotoxicity in KB cells (folate receptor-α positive cells). In addition, the ζ-potential and particle size of Fol-PαC (G4)/siRNA complex were decreased by the ternary complexation with sacran 100. Importantly, the in vivo RNAi effect of the ternary complex after the intravenous administration to tumor-bearing BALB/c mice was significantly higher than that of the binary complex. In conclusion, Fol-PαC (G4)/siRNA/sacran 100 ternary complex has a potential as a novel tumor-selective siRNA delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. miR-618 Inhibits Prostate Cancer Migration and Invasion by Targeting FOXP2.

    PubMed

    Song, Xian-Lu; Tang, Yao; Lei, Xiang-Hui; Zhao, Shan-Chao; Wu, Zi-Qing

    2017-01-01

    miRNAs play critical role in the development and progression of prostate cancer. Here we studied the role of miR-618 in prostate cancer migration and invasion. miR-618 was downregulated in metastatic androgen-independent prostate cancer (AIPC), patients with low miR-618 had poor outcome. Overexpression of miR-618 inhibited migration and invasion and induced mesenchymal to epithelial transition (MET). Conversely, knockdown of miR-618 promoted migration and invasion and induced epithelial to mesenchymal transition (EMT). FOXP2 was the direct target of miR-618, and promoted TGF-β expression, inhibition of TGF-β reversed the effect of miR-618 knockdown. We further analyzed the correlation between miR-618 expression and FOXP2 in human prostate cancer tissues, and found there was a negative correlation between miR-618 expression and FOXP2 levels. In conclusion, we found miR-618 inhibited prostate cancer migration and invasion by targeting FOXP2 and inhibiting TGF-β.

  17. Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines

    PubMed Central

    Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro

    2013-01-01

    Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303

  18. Current progress of siRNA/shRNA therapeutics in clinical trials.

    PubMed

    Burnett, John C; Rossi, John J; Tiemann, Katrin

    2011-09-01

    Through a mechanism known as RNA interference (RNAi), small interfering RNA (siRNA) molecules can target complementary mRNA strands for degradation, thus specifically inhibiting gene expression. The ability of siRNAs to inhibit gene expression offers a mechanism that can be exploited for novel therapeutics. Indeed, over the past decade, at least 21 siRNA therapeutics have been developed for more than a dozen diseases, including various cancers, viruses, and genetic disorders. Like other biological drugs, RNAi-based therapeutics often require a delivery vehicle to transport them to the targeted cells. Thus, the clinical advancement of numerous siRNA drugs has relied on the development of siRNA carriers, including biodegradable nanoparticles, lipids, bacteria, and attenuated viruses. Most therapies permit systemic delivery of the siRNA drug, while others use ex vivo delivery by autologous cell therapy. Advancements in bioengineering and nanotechnology have led to improved control of delivery and release of some siRNA therapeutics. Likewise, progress in molecular biology has allowed for improved design of the siRNA molecules. Here, we provide an overview of siRNA therapeutics in clinical trials, including their clinical progress, the challenges they have encountered, and the future they hold in the treatment of human diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Comparison of anti-EGFR-Fab’ conjugated immunoliposomes modified with two different conjugation linkers for siRNa delivery in SMMC-7721 cells

    PubMed Central

    Deng, Li; Zhang, Yingying; Ma, Lulu; Jing, Xiaolong; Ke, Xingfa; Lian, Jianhao; Zhao, Qiang; Yan, Bo; Zhang, Jinfeng; Yao, Jianzhong; Chen, Jianming

    2013-01-01

    Background Targeted liposome-polycation-DNA complex (LPD), mainly conjugated with antibodies using functionalized PEG derivatives, is an effective nanovector for systemic delivery of small interference RNA (siRNA). However, there are few studies reporting the effect of different conjugation linkers on LPD for gene silencing. To clarify the influence of antibody conjugation linkers on LPD, we prepared two different immunoliposomes to deliver siRNA in which DSPE-PEG-COOH and DSPE-PEG-MAL, the commonly used PEG derivative linkers, were used to conjugate anti-EGFR Fab’ with the liposome. Methods First, 600 μg of anti-EGFR Fab’ was conjugated with 28.35 μL of a micelle solution containing DSPE-PEG-MAL or DSPE-PEG-COOH, and then post inserted into the prepared LPD. Various liposome parameters, including particle size, zeta potential, stability, and encapsulation efficiency were evaluated, and the targeting ability and gene silencing activity of TLPD-FPC (DSPE-PEG-COOH conjugated with Fab’) was compared with that of TLPD-FPM (DSPE-PEG-MAL conjugated with Fab’) in SMMC-7721 hepatocellular carcinoma cells. Results There was no significant difference in particle size between the two TLPDs, but the zeta potential was significantly different. Further, although there was no significant difference in siRNA encapsulation efficiency, cell viability, or serum stability between TLPD-FPM and TLPD-FPC, cellular uptake of TLPD-FPM was significantly greater than that of TLPD-FPC in EGFR-overexpressing SMMC-7721 cells. The luciferase gene silencing efficiency of TLPD-FPM was approximately three-fold high than that of TLPD-FPC. Conclusion Different conjugation linkers whereby antibodies are conjugated with LPD can affect the physicochemical properties of LPD and antibody conjugation efficiency, thus directly affecting the gene silencing effect of TLPD. Immunoliposomes prepared by DSPE-PEG-MAL conjugation with anti-EGFR Fab’ are more effective than TLPD containing DSPE

  20. DISE: A Seed-Dependent RNAi Off-Target Effect That Kills Cancer Cells.

    PubMed

    Putzbach, William; Gao, Quan Q; Patel, Monal; Haluck-Kangas, Ashley; Murmann, Andrea E; Peter, Marcus E

    2018-01-01

    Off-target effects (OTEs) represent a significant caveat for RNAi caused by substantial complementarity between siRNAs and unintended mRNAs. We now discuss the existence of three types of seed-dependent OTEs (sOTEs). Type I involves unintended targeting through the guide strand seed of an siRNA. Type II is caused by the activity of the seed on the designated siRNA passenger strand when loaded into the RNA-induced silencing complex (RISC). Both type I and II sOTEs will elicit unpredictable cellular responses. By contrast, in sOTE type III the guide strand seed preferentially targets essential survival genes resulting in death induced by survival gene elimination (DISE). In this Opinion article, we discuss DISE as a consequence of RNAi that may preferentially affect cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.